picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
22 Oct 2024 at 01:59
HITS:
31253
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 22 Oct 2024 at 01:59 Created: 

Symbiosis

Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: ( symbiosis[tiab] OR symbiotic[tiab] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-10-18

Radić T, Vuković R, Gaši E, et al (2024)

Tripartite interactions between grapevine, viruses, and arbuscular mycorrhizal fungi provide insights into modulation of oxidative stress responses.

Journal of plant physiology, 303:154372 pii:S0176-1617(24)00203-7 [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.

RevDate: 2024-10-18

Gomberg AF, AD Grossman (2024)

It's complicated: relationships between integrative and conjugative elements and their bacterial hosts.

Current opinion in microbiology, 82:102556 pii:S1369-5274(24)00132-2 [Epub ahead of print].

Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE-host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.

RevDate: 2024-10-18

Juárez-Trujillo N, Ortiz-Basurto RI, Chacón-López MA, et al (2024)

Effect of the drying methods on the stabilization of symbiotic microbeads produced by ionic gelation.

Food chemistry, 464(Pt 1):141546 pii:S0308-8146(24)03196-0 [Epub ahead of print].

Lactobacillus salivarius was encapsulated by ionic gelation using high polymerization degree agave fructans and sodium alginate to obtain symbiotic microspheres stabilized by different drying methods. The microbeads were characterized by physicochemical, reconstitution, microstructure, thermal, radiographic and infrared properties. The viability of L. salivarius was evaluated for one month at 4 °C and under in vitro gastrointestinal conditions. The ionic gelation-drying technique allowed an encapsulation efficiency greater than 90 %. Oven-dried microbeads showed higher viability under in vitro gastrointestinal conditions. Freeze-drying microbeads showed higher viability during storage at 4 °C, and spray-dried microbeads showed a more notable survival at 40 °C after one month of storage. All samples showed up to 7 log CFU/g of viability after in vitro digestion, which is a benefit for consumer health. It was concluded that the ionic gelation-drying process allows obtaining dry microbeads with the potential to be added to various food products.

RevDate: 2024-10-18

Lu F, Huang T, Chen R, et al (2024)

Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury.

Microbiology spectrum [Epub ahead of print].

UNLABELLED: The mechanisms behind the high inflammatory state and immunocompromise in severe sepsis remain unclear. While microbiota's role in immune regulation is known, the impact of pulmonary microbiota on sepsis progression is not fully understood. This study aims to investigate pulmonary microbial characteristics in septic patients and their relationship with host immune-related genes and clinical features. Fifty-four sepsis patients were divided into the immunocompromised host (ICH) group (n = 18) and the control group (n = 36). Bronchoalveolar lavage fluid (BALF) was analyzed using metagenomic next-generation sequencing (mNGS) to assess the pulmonary microbiome, and transcriptomic sequencing evaluated host gene expression. The pulmonary microbiota network in the ICH group showed notable alterations. Symbiotic bacteria like Streptococcus salivarius and Streptococcus oralis were key taxa in the control group. In contrast, opportunistic pathogens such as Campylobacter concisus and Prevotella melaninogenica, typically linked to infections in various body sites, dominated in the ICH group. Transcriptomic analysis revealed differential genes between the two groups. The downregulated differential genes in the ICH group were primarily enriched in pathways related to T-cell activation and the Type I interferon signaling pathway, both crucial for the immune system. Further correlation analysis identified significant associations between certain microbes and host genes, as well as clinical indicators, particularly with species like Campylobacter concisus, Streptococcus salivarius, Streptococcus oralis, and several species of Veillonella. These findings suggest that alterations in the pulmonary microbiome, especially the presence of opportunistic pathogens, may contribute to immune dysregulation in immunocompromised septic patients, warranting further research to explore causal relationships.

IMPORTANCE: Recent research has substantiated the significant role of microbiota in immune regulation, which could influence high inflammatory state and immunocompromise in patients with severe sepsis, as well as provide new opportunities for acute lung injury induced by sepsis diagnosis and treatment. Our study identified some potential critical microbes (Campylobacter concisus and several species of Veillonella), which were correlated with immune-related genes and might be the novel target to regulate immunotherapy in sepsis.

RevDate: 2024-10-18

Naveed WA, Liu Q, Lu C, et al (2024)

Unveiling symbiotic bacterial communities in insects feeding on the latex-rich plant Ficus microcarpa.

Bulletin of entomological research pii:S0007485324000439 [Epub ahead of print].

The diversity and health of insects that feed on plants are closely related to their mutualistic symbionts and host plants. These symbiotic partners significantly influence various metabolic activities in these insects. However, the symbiotic bacterial community of toxic plant feeders still needs further characterisation. This study aims to unravel bacterial communities associated with the different species of insect representing three insect orders: Thysanoptera, Hemiptera, and Lepidoptera, along with their predicted functional role, which exclusively feeds on latex-rich plant species Ficus microcarpa. By using 16S rRNA gene high-throughput sequencing, the analysis was able to define the major alignment of the bacterial population, primarily comprising Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, and Acidobacteriota. Significant differences in symbiotic organisms between three insect groups were discovered by the study: hemipterans had Burkholderia and Buchnera, and lepidopterans had Acinetobacter. At the same time, Pseudomonas was detected in high abundance in both lepidopteran and thysanopteran insects. Furthermore, these symbionts exhibit consistent core functions, potentially explaining how different insects can consume the same host plant. The identified core functions of symbionts open avenues for innovative approaches in utilising these relationships to develop environment-friendly solutions for pest control, with broader implications for agriculture and environmental conservation.

RevDate: 2024-10-19

Ren W, Zhang L, Tondre B, et al (2024)

The rootstock genotype shapes the diversity of pecan (Carya illinoinensis) rhizosphere microbial community.

Frontiers in microbiology, 15:1461685.

Pecans (Carya illinoinensis), one of the most valuable native North American nut crops, are commonly propagated through grafting to preserve the desired characteristics from parent trees. Since successful cultivation of pecan trees relies on the interplay among scion varieties, rootstocks, and soil conditions, this study investigated the microbial change to communities in the soils and roots of southern (87MX5-1.7) and northern (Peruque) rootstocks in a rootstock test orchard. Both grafted with the 'Pawnee' scion cultivar. Bacterial 16S ribosomal RNA and fungal ITS were amplified from both roots and rhizosphere soils of the two 10-year-grafted trees, then sequenced and annotated into trophic and nutrient-related groups to characterize the rhizosphere microbiota. The Peruque roots had a higher relative abundance of saprotroph fungi, while 87MX5-1.7 exhibited higher levels of symbiotroph fungi and nitrogen fixation-related bacteria. Among them, the presence of symbiotroph fungi, particularly ectomycorrhizal fungi, notably differed between these two rootstocks, with a significantly higher presence observed in the root of 87MX5-1.7 compared to Peruque. This variation likely leads to divergent pathways of nutrient translocation: Peruque was in favor of multiple fungi (Russula and Inocybe) to gain nutrition, while 87MX5-1.7 preferred a specific domain of fungi (Tuber) and nitrogen fixation-related bacteria (Bradyrhizobia) to form beneficial symbiosis. Moreover, the presence of pathogens suggested a potential risk of Fusarium patch and snow molds in 87MX5-1.7, while canker and black foot disease pose threats in Peruque. The findings of this study suggest that rootstocks from different origins shape rhizosphere microbes differently, potentially affecting nutrient uptake and nut yield. Exploring rootstock-microbe combinations could provide insights into optimizing scion growth and ultimately increasing nut yield. By understanding how different rootstock-microbe interactions influence pecan tree development, growers can strategically select combinations that promote beneficial symbiotic relationships, enhancing nutrient uptake, disease resistance, and overall tree vigor.

RevDate: 2024-10-18

Luo L, Yu L, Yang J, et al (2024)

Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants.

Plant, cell & environment [Epub ahead of print].

Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.

RevDate: 2024-10-19
CmpDate: 2024-10-18

Khalil A, Bramucci AR, Focardi A, et al (2024)

Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom.

Microbiome, 12(1):205.

BACKGROUND: Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth.

RESULTS: We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers.

CONCLUSION: Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.

RevDate: 2024-10-17

Roman A, Koenraadt CJM, B Raymond (2024)

Asaia spp. Accelerate development of the yellow fever mosquito, Aedes aegypti, via interactions with the vertically transmitted larval microbiome.

Journal of applied microbiology pii:7825875 [Epub ahead of print].

AIMS: A wide range of vector control programs rely on the efficient production and release of male mosquito. Asaia bacteria are described as potential symbionts of several mosquito species but their relationship with Aedes aegypti has never been rigorously tested. Here we aimed to quantify the benefits of three Asaia species on host development in Ae. aegypti, and the ability of these bacteria to form a stable symbiotic association with growing larvae.

METHODS AND RESULTS: In order to disentangle direct and indirect effects of Asaia inoculation on host development, experiments used insects with an intact microbiome and those reared in near-aseptic conditions, while we characterized bacterial communities and Asaia densities with culture dependent and independent methods (16S rRNA amplicon sequencing). Neonate larvae were inoculated with Asaia spp. for 24 hours, or left as uninoculated controls, all were reared on sterile food. Aseptic larvae were produced by surface sterilization of eggs. Although all Asaia were transient members of the gut community, two species accelerated larval development relative to controls. The two mutualistic species had lasting impacts on the larval microbiome, largely by altering the relative abundance of dominant bacteria, namely Klebsiella and Pseudomonas. Axenic larvae were dominated by Asaia when inoculated with this species but showed slower development than conventionally reared insects, indicating that Asaia alone could not restore normal development.

CONCLUSIONS: Our results reveal Asaia as a poor mutualist for Ae. aegypti, but with a species-specific positive effect on improving host performance mediated by interactions with other bacteria.

RevDate: 2024-10-17

Wei J, Liu C, Qin D, et al (2024)

Targeting Inflammation and Gut Microbiota with Antibacterial Therapy: Implications for Central Nervous System Health.

Ageing research reviews pii:S1568-1637(24)00362-3 [Epub ahead of print].

The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.

RevDate: 2024-10-19

Zhou Y, Jin Z, Ren X, et al (2024)

Symbiotic conserved arbuscular mycorrhiza fungi supports plant health.

The Science of the total environment, 955:176974 pii:S0048-9697(24)07131-6 [Epub ahead of print].

Arbuscular mycorrhiza fungi (AMF) forms a multi-beneficial symbiotic relationship with the host plant, therefore it is considered to be an effective helper to promote plant health. However, failure to consider the source or universality of AMF is often unstable during application. Therefore, it is necessary to screen potential AMF inoculants based on the source and the relationship with host. In search of more effective and broad-spectrum AMF inoculants, we studied AMF community structure properties of healthy and diseased plants in 24 fields from four sampling sites. The results indicated that the environmental filtering effect of roots was obvious, which was manifested as a decrease of α-diversity from rhizosphere to root. Differences in α-diversity between healthy and diseased roots further indicate the importance of AMF communities within roots for maintaining plant health. Glomus is significantly enriched and dominant in healthy roots, independent of environment and phylogenically conserved. Spores were further isolated and evaluated for their disease-preventing and pro-growth properties. Based on whether they were symbiotic with plant and root-enrichment characteristics, isolated AMF spores were classified as symbiotic conserved, symbiotic non-conserved, and non-symbiotic AMF. After spores were propagated and inoculated to plant roots, only symbiotic conserved AMF significantly promoted plant growth and maintained health, highlighting the potential of symbiotic conserved AMF in sustainable plant production.

RevDate: 2024-10-17

Qin Y, Cheng K, Jong MC, et al (2024)

Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress.

Marine pollution bulletin, 209(Pt A):117116 pii:S0025-326X(24)01093-2 [Epub ahead of print].

Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.

RevDate: 2024-10-17

Zeng S, Wang S, Lin Z, et al (2024)

Functions of the Sinorhizobium meliloti LsrB Substrate-Binding Domain in Oxidized Glutathione Resistance, Alfalfa Nodulation Symbiosis, and Growth.

Journal of agricultural and food chemistry [Epub ahead of print].

To successfully colonize legume root nodules, rhizobia must effectively evade host-generated reactive oxygen species (ROS). LsrB, a redox regulator from Sinorhizobium meliloti, is essential for symbiosis with alfalfa (Medicago sativa). The three cysteine residues in LsrB's substrate domain play distinct roles in activating downstream redox genes. The study found that LsrB's substrate-binding domain, dependent on the cysteine residue Cys146, is involved in oxidized glutathione (GSSG) resistance and alfalfa nodulation symbiosis. LsrB homologues from other rhizobia, with Cys172/Cys238 or Cys146, enhance GSSG resistance and complement lsrB mutant's symbiotic nodulation. Substituting amino acids in Azorhizobium caulinodans LsrB with Cys restores lsrB mutant phenotypes. The lsrB deletion mutant shows increased sensitivity to NCR247, suggesting an interaction with host plant-derived NCRs in alfalfa nodules. Our findings reveal that the key cysteine residue in the LsrB's substrate domain is vital for rhizobium-legume symbiosis.

RevDate: 2024-10-19
CmpDate: 2024-10-17

Kho JW, Jung M, DH Lee (2024)

Effects of the symbiotic bacteria, Caballeronia insecticola, on the life history parameters of Riptortus pedestris (Hemiptera: Alydidae) and their implications for the host population growth.

Journal of insect science (Online), 24(5):.

This study aimed to investigate the effects of symbiosis on the life history of host insects and address their implications at the host population level. We evaluated the effects of symbiotic bacteria Caballeronia insecticola on its host Riptortus pedestris (Fabricus) (Hemiptera: Alydidae) from cohorts for nymphal development, adult survivorship, and female reproduction. Then, life table parameters were compared between symbiotic and apo-symbiotic groups, and the effects of symbiosis on the abundance of R. pedestris were simulated for varying proportions of symbiotic individuals in host populations. We found that symbiosis significantly accelerated the nymphal development and reproductive maturation of females. However, symbiosis incurred survival cost on adult females, reducing their longevity by 28.6%. Nonetheless, symbiotic females laid significantly greater numbers of eggs than the apo-symbiotic during early adult ages. This early reproductive investment negated the adverse effect of their reduced longevity, resulting in the mean lifetime fecundity to not significantly differ between the 2 groups. Indeed, total cohort fecundity of the symbiotic group was 1.3-fold greater than that of the apo-symbiotic group. Life table analysis demonstrated shorter generation time and greater population growth rate in the symbiotic population. Finally, the simulation model results indicate that an increase in the proportion of symbiotic R. pedestris favored the population growth, increasing the population size by 1.9 times for every 25% increase in the proportion of symbiotic individuals. Our study demonstrates that symbiont-mediated changes in the life history parameters of host individuals favor the host population growth, despite substantial reduction in the female longevity.

RevDate: 2024-10-19

Lahrach Z, Legeay J, Ahmed B, et al (2024)

The composition of the arbuscular mycorrhizal fungal bacteriome is species dependent.

Environmental microbiome, 19(1):77.

BACKGROUND: In addition to their role as endosymbionts for plant roots, arbuscular mycorrhizal fungi (AMF) engage in complex interactions with various soil microorganisms, the rhizosphere, and the root endosphere of host plants. They also host diverse prokaryotic groups within their mycelia, contributing to what is termed multipartite symbiosis. In this study, we examined the impact of three AMF species-Rhizophagus irregularis, R. clarus, and R. cerebriforme-combined with microbial bioaugmentation on the diversity and composition of bacterial communities in the mycelia and hyphosphere. Using a microcosm design to separate the influence of host plant roots from AMF mycelia and Illumina MiSeq amplicon sequencing to analyze the bacterial communities.

RESULTS: Our results revealed that, while AMF identity and microbial bioaugmentation did not affect the structure of bacterial communities in the hyphosphere soil, they significantly altered the communities associated with their mycelia. Although all three AMF species belong to the same genus, with R. irregularis and R. clarus being closely related compared to R. cerebriforme, we observed variations in the bacterial communities associated with their mycelia. Interestingly, the mycelial bacterial community of R. cerebriforme contained 60 bacteriome core taxa exclusive to it, while R. clarus and R. irregularis had 25 and 9 exclusive taxa, respectively.

CONCLUSION: This study suggests that organismal phylogeny influences the bacterial communities associated with AMF mycelia. These findings provide new insights into AMF and bacterial interactions, which are crucial for the successful deployment of AMF inoculants. The taxonomic diversity of AMF inoculants is important for engineering the plant microbiome and enhancing ecosystem services.

RevDate: 2024-10-16

Barreira-Silva P, Lian Y, Kaufmann SHE, et al (2024)

The role of the AHR in host-pathogen interactions.

Nature reviews. Immunology [Epub ahead of print].

Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.

RevDate: 2024-10-18
CmpDate: 2024-10-16

Zhou M, Li Y, Yao XL, et al (2024)

Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules.

Nature communications, 15(1):8946.

Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.

RevDate: 2024-10-16

Zhang B, Zhang N, Sui H, et al (2024)

Unique ecology of biofilms and flocs: Bacterial composition, assembly, interaction, and nitrogen metabolism within deteriorated bioreactor inoculated with mature partial nitrification-anammox sludge.

Bioresource technology pii:S0960-8524(24)01347-6 [Epub ahead of print].

This work unraveled discrepant ecological patterns between biofilms and flocs in a deteriorated bioreactor inoculated with mature partial nitrification-anammox (PN/A) sludge. Based on 16S rRNA analysis, a comprehensive evaluation of neutral and null models, along with niche width, delineated that the bacterial community assembly in biofilms and flocs was dominantly driven by the stochastic process, and dispersal limitation critically shaped the community assembly. Co-occurrence network analysis revealed that environmental stress caused decentralized and fragmented bacterial colonies, and anammox bacteria were mainly peripheral in biofilms network and less involved in interspecific interactions. Simultaneous PN/A and partial denitrification-anammox (PD/A) processes were identified, whereas PN and PD process primarily occurred in the biofilms and flocs, respectively, as evidenced by metagenomics. Collectively, these outcomes are expected to deepen the basic understanding of complex microbial community and nitrogen metabolism under environmental disturbance, thereby better characterizing and serving the artificial ecosystems.

RevDate: 2024-10-18

Lv J, Huo C, Zhang J, et al (2024)

Host genotype and age shape the microbial community in the rhizosphere soils of Camellia forests.

Frontiers in microbiology, 15:1440255.

Microbiota living in the rhizosphere influences plant growth and fitness, from the opposite perspective; whether host genotypes control its root microbiota is of great interest to forest breeders and microbiologists. To improve low-yield plantations and promote sustainable management of Camellia oleifera, high-throughput sequencing was used to study the chemical properties and microbiome in rhizosphere soil of Camellia forests under three genotypes (common C. oleifera, local C. gauchowensis, and C. chekiangoleosa) and three growth stages (sapling stage at 4-year-old, primary fruit stage at 7-year-old, and full fruiting stage at 11-year-old). The results showed that the rhizosphere soil organic matter (OM), nutrient concentrations, diversity, and community composition of the microbiome were significantly varied among different Camellia genotypes. The relative abundance of symbiotic and pathotrophic fungi in the rhizosphere soil of C. chekiangoleosa was significantly higher than that of C. gauchowensis. Concentrations of OM, available phosphorus (AP), and bacterial alpha diversity increased with tree age. Fungi of Saitozyma, Mortierella, and Glomeromycota and bacteria of Burkholderia-Caballeronia-Paraburkholderia and Vicinamibacterales had potential for fertilizer development for Camellia plantation. Camellia genotypes and growth stages were significantly correlated with the rhizosphere soil pH, OM, and available potassium (AK). Soil pH and OM were key factors that affected the microbiome in the Camellia rhizosphere soils. In conclusion, tree genotypes and growth stages shaped microbial communities in Camellia rhizosphere soils, and some plant growth-promoting rhizobacteria were identified as preliminary candidates for improving Camellia plantation growth.

RevDate: 2024-10-18

Innocent TM, Sapountzis P, Zhukova M, et al (2024)

From the inside out: Were the cuticular Pseudonocardia bacteria of fungus-farming ants originally domesticated as gut symbionts?.

PNAS nexus, 3(10):pgae391.

The mutualistic interaction specificity between attine ants and antibiotic-producing Actinobacteria has been controversial because Pseudonocardia strains cannot always be isolated from worker cuticles across attine ant species, while other actinobacteria can apparently replace Pseudonocardia and also inhibit growth of Escovopsis mycopathogens. Here we report that across field samples of Panamanian species: (i) Cuticular Pseudonocardia were largely restricted to species in the crown of the attine phylogeny and their appearance likely coincided with the first attines colonizing Central/North America. (ii) The phylogenetically basal attines almost always had cuticular associations with other Actinobacteria than Pseudonocardia. (iii) The sub-cuticular glands nourishing cuticular bacteria appear to be homologous throughout the phylogeny, consistent with an ancient general attine-Actinobacteria association. (iv) The basal attine species investigated always had Pseudonocardia as gut symbionts while Pseudonocardia presence appeared mutually exclusive between cuticular and gut microbiomes. (v) Gut-associated Pseudonocardia were phylogenetically ancestral while cuticular symbionts formed a derived crown group within the Pseudonocardia phylogeny. We further show that laboratory colonies often secondarily acquire cuticular Actinobacteria that they do not associate with in the field, suggesting that many previous studies were uninformative for questions of co-adaptation in the wild. An exhaustive literature survey showed that published studies concur with our present results, provided that they analyzed field colonies and that Actinobacteria were specifically isolated from worker cuticles shortly after field collection. Our results offer several testable hypotheses for a better overall understanding of attine-Pseudonocardia interaction dynamics and putative coevolution throughout the Americas.

RevDate: 2024-10-16

Wang J, Wang X, Bian C, et al (2024)

Effect of aeration pretreatment on anaerobic digestion of swine manure.

Environmental technology [Epub ahead of print].

To investigate the effects of aeration pretreatment on the anaerobic digestion (AD) of swine manure, five pretreatment groups were established with dissolved oxygen (DO) in each group set to 0.0, 0.4, 0.8, 1.4, and 2.0 mg/L, respectively. The results demonstrated that compared to the non-aeration group, methane production increased to varying degrees with different aeration pretreatments (AP), with a maximum increase of 27.98% (DO = 2.0 mg/L). AP reduced the hydrogen sulfide (H2S) content of biogas. The H2S concentration in the DO = 2.0 mg/L was only 0.209%, and this represented an increased H2S removal rate of 49.27% compared to that of the DO = 0.0 mg/L (0.412%). Simultaneously, AP increases the hydrolysis rate. When the DO concentration reached 2.0 mg/L, the hydrolysis rate reached its maximum. An increase in the hydrolysis rate further enhanced the removal rate of organic matter. The organic matter removal rate was highest (36.96%) at DO = 2.0 mg/L. AP effectively prolonged the methane generation time and shortened the lag time of methane generation. AP creates a brief micro aerobic environment, accelerates substrate hydrolysis, and promotes the production and consumption of total volatile fatty acids, particularly acetic acid. Additionally, AP promoted the symbiotic relationship between Caldicoprobacter (20.93%-34.96%) and Metanosaeta (14.73%-18.45%).

RevDate: 2024-10-16

Bujak JP, Pereira AL, Azevedo J, et al (2024)

Azolla as a Safe Food: Suppression of Cyanotoxin-Related Genes and Cyanotoxin Production in Its Symbiont, Nostoc azollae.

Plants (Basel, Switzerland), 13(19): pii:plants13192707.

The floating freshwater fern Azolla is the only plant that retains an endocyanobiont, Nostoc azollae (aka Anabaena azollae), during its sexual and asexual reproduction. The increased interest in Azolla as a potential source of food and its unique evolutionary history have raised questions about its cyanotoxin content and genome. Cyanotoxins are potent toxins synthesized by cyanobacteria which have an anti-herbivore effect but have also been linked to neurodegenerative disorders including Alzheimer's and Parkinson's diseases, liver and kidney failure, muscle paralysis, and other severe health issues. In this study, we investigated 48 accessions of Azolla-Nostoc symbiosis for the presence of genes coding microcystin, nodularin, cylindrospermopsin and saxitoxin, and BLAST analysis for anatoxin-a. We also investigated the presence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in Azolla and N. azollae through LC-MS/MS. The PCR amplification of saxitoxin, cylindrospermospin, microcystin, and nodularin genes showed that Azolla and its cyanobiont N. azollae do not have the genes to synthesize these cyanotoxins. Additionally, the matching of the anatoxin-a gene to the sequenced N. azollae genome does not indicate the presence of the anatoxin-a gene. The LC-MS/MS analysis showed that BMAA and its isomers AEG and DAB are absent from Azolla and Nostoc azollae. Azolla therefore has the potential to safely feed millions of people due to its rapid growth while free-floating on shallow fresh water without the need for nitrogen fertilizers.

RevDate: 2024-10-16
CmpDate: 2024-10-16

Guryanova SV (2024)

Bacteria and Allergic Diseases.

International journal of molecular sciences, 25(19): pii:ijms251910298.

Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.

RevDate: 2024-10-16
CmpDate: 2024-10-16

Bačkor M, Kecsey D, Drábová B, et al (2024)

Secondary Metabolites from Australian Lichens Ramalina celastri and Stereocaulon ramulosum Affect Growth and Metabolism of Photobiont Asterochloris erici through Allelopathy.

Molecules (Basel, Switzerland), 29(19): pii:molecules29194620.

In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were evaluated. Algae were cultivated on the surface of glass microfiber disks with applied crystals of lichen extracts for 14 days. The toxicity of each extract was tested at the two selected doses in quantities of 0.01 mg/disk and 0.1 mg/disk. Cytotoxicity of lichen extracts was assessed using selected physiological parameters, such as growth (biomass production) of photobiont cultures, content of soluble proteins, chlorophyll a fluorescence, chlorophyll a integrity, contents of chlorophylls and total carotenoids, hydrogen peroxide, superoxide anion, TBARS, ascorbic acid (AsA), reduced (GSH) and oxidized (GSSG) glutathione, and composition of selected organic acids of the Krebs cycle. The application of both tested metabolic extracts decreased the growth of photobiont cells in a dose-dependent manner; however, a mixture of atranorin and perlatolic acid was more effective when compared to usnic acid at the same dose tested. A higher degree of cytotoxicity of extracts from lichen S. ramulosum when compared to identical doses of extracts from lichen R. celastri was also confirmed by a more pronounced decrease in chlorophyll a fluorescence and chlorophyll a integrity, decreased content of chlorophylls and total carotenoids, increased production of hydrogen peroxide and superoxide anion, peroxidation of membrane lipids (assessed as TBARS), and a strong decrease in non-enzymatic antioxidants such as AsA, GSH, and GSSG. The cytotoxicity of lichen compounds was confirmed by a strong alteration in the composition of selected organic acids included in the Krebs cycle. The increased ratio between pyruvic acid and citric acid was a very sensitive parameter of phytotoxicity of lichen secondary metabolites to the algal partner of symbiosis. Secondary metabolites of lichens are potent allelochemicals and play significant roles in maintaining the balance between mycobionts and photobionts, forming lichen thallus.

RevDate: 2024-10-16
CmpDate: 2024-10-16

Kidaj D, Zamlynska K, Swatek A, et al (2024)

The Influence of Rhizobial Nod Factors on the Synthesis of Flavonoids in Common Buckwheat (Fagopyrum esculentum Moench).

Molecules (Basel, Switzerland), 29(19): pii:molecules29194546.

Flavonoids constitute a class of polyphenolic secondary metabolites synthesised mainly by plants and possessing anticancer, antioxidant, anti-inflammatory, and antiviral properties. Common buckwheat (F. esculentum Moench) is a dicotyledonous plant rich in different classes of flavonoids (e.g., rutin) and other phenolic compounds. Lipochitooligosaccharides (LCOs), i.e., rhizobial Nod factors and important signalling molecules for the initiation of symbiosis with legumes, are very effective mitogens that stimulate cell division in plant meristems and the production of secondary metabolites. They can also act in this way in non-legume plants. It has been shown that rhizobial Nod factors noticeably improve plant growth. Rhizobial Nod factors influence the production of flavonoids in common buckwheat grown in greenhouse conditions. The amount of rutin and isoorientin in leaves and flowers has been shown to increase in a statistically significant way after application of Nod factors to buckwheat seeds. The presence of rhizobial Nod factors has no influence on the flavonoid content in stems and roots.

RevDate: 2024-10-15
CmpDate: 2024-10-16

Salgado JFM, Hervé V, Vera MAG, et al (2024)

Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut.

Microbiome, 12(1):201.

BACKGROUND: The microbial landscape within termite guts varies across termite families. The gut microbiota of lower termites (LT) is dominated by cellulolytic flagellates that sequester wood particles in their digestive vacuoles, whereas in the flagellate-free higher termites (HT), cellulolytic activity has been attributed to fiber-associated bacteria. However, little is known about the role of individual lineages in fiber digestion, particularly in LT.

RESULTS: We investigated the lignocellulolytic potential of 2223 metagenome-assembled genomes (MAGs) recovered from the gut metagenomes of 51 termite species. In the flagellate-dependent LT, cellulolytic enzymes are restricted to MAGs of Bacteroidota (Dysgonomonadaceae, Tannerellaceae, Bacteroidaceae, Azobacteroidaceae) and Spirochaetota (Breznakiellaceae) and reflect a specialization on cellodextrins, whereas their hemicellulolytic arsenal features activities on xylans and diverse heteropolymers. By contrast, the MAGs derived from flagellate-free HT possess a comprehensive arsenal of exo- and endoglucanases that resembles that of termite gut flagellates, underlining that Fibrobacterota and Spirochaetota occupy the cellulolytic niche that became vacant after the loss of the flagellates. Furthermore, we detected directly or indirectly oxygen-dependent enzymes that oxidize cellulose or modify lignin in MAGs of Pseudomonadota (Burkholderiales, Pseudomonadales) and Actinomycetota (Actinomycetales, Mycobacteriales), representing lineages located at the hindgut wall.

CONCLUSIONS: The results of this study refine our concept of symbiotic digestion of lignocellulose in termite guts, emphasizing the differential roles of specific bacterial lineages in both flagellate-dependent and flagellate-independent breakdown of cellulose and hemicelluloses, as well as a so far unappreciated role of oxygen in the depolymerization of plant fiber and lignin in the microoxic periphery during gut passage in HT. Video Abstract.

RevDate: 2024-10-17
CmpDate: 2024-10-17

Min BR, Wang W, Pitta DW, et al (2024)

Characterization of the ruminal microbiota in sheep and goats fed different levels of tannin-rich Sericea lespedeza hay.

Journal of animal science, 102:.

Understanding ruminal microbiota and diet-host breed interactions under forage feeding conditions is essential for optimizing rumen fermentation and improving feed efficiency in small ruminants. This study aimed to investigate the effects of different ratios of condensed tannin-rich Sericea lespedeza (SL; Lespedeza cuneata) in the diets on changes and interactions of ruminal microbiota and host species (i.e., sheep and goats). Katahdin sheep (n = 12) and Alpine goats (n = 12) at approximately 10 to 12 mo of age were blocked by body weight (BW = 30.3 and 25.5 kg, respectively) and randomly assigned to one of the 3 treatments. Diets contained 75% coarsely ground forage and 25% concentrate. The forages were 1) 100% alfalfa hay (AL), 2) 100% SL, and 3) 50% AL + 50% SL (ASL). In the present study, the diversity and composition of ruminal microbiota differed between sheep and goats fed similar diets. Based on the taxonomic analysis, there was a distinct clustering pattern (P < 0.05) for sheep by diets, but such a pattern was not observed for goats (P > 0.1). The most predominant phyla were Firmicutes, Bacteroidetes, Ascomycota, and methanogen species of Methanobrevibactor sp. in the rumen of sheep and goats, regardless of diets. The Bacteroidetes and Ascomycota were enriched in sheep fed AL and ASL. In contrast, these microbial phyla were enhanced in goats fed tannin-rich SL diets, with the diet-by-host species interaction (P < 0.02) for the Bacteroidetes phylum. Sheep rumen fluid samples showed a higher degree of variability in microbial community composition compared to goat rumen fluid samples. The relative proportion of the Aspergillus fungi population was reduced to 90.7% in the SL group compared with the AL group, regardless of host species. The antimicrobial activity of tannins and greater sensitivities of selected microbiota species to these tannin compounds during SL feeding in sheep and goats perhaps caused this difference. The results from this study suggest that differences in the microbiota were associated with differences in diets and host species. Therefore, this study provides a better understanding of ruminal microbiota and diet-host species interactions under various tannin-rich diets, which could advance consolidative information on rumen microbiome community diversity changes and may improve sheep and goat production.

RevDate: 2024-10-15
CmpDate: 2024-10-16

Li J, Li J, Cao L, et al (2024)

An iron-binding protein of entomopathogenic fungus suppresses the proliferation of host symbiotic bacteria.

Microbiome, 12(1):202.

BACKGROUND: Entomopathogenic fungal infection-induced dysbiosis of host microbiota offers a window into understanding the complex interactions between pathogenic fungi and host symbionts. Such insights are critical for enhancing the efficacy of mycoinsecticides. However, the utilization of these interactions in pest control remains largely unexplored.

RESULTS: Here, we found that infection by the host-specialist fungus Metarhizium acridum alters the composition of the symbiotic microbiota and increases the dominance of some bacterial symbionts in locusts. Meanwhile, M. acridum also effectively limits the overgrowth of the predominant bacteria. Comparative transcriptomic screening revealed that the fungus upregulates the production of MaCFEM1, an iron-binding protein, in the presence of bacteria. This protein sequesters iron, thereby limiting its availability. Functionally, overexpression of MaCFEM1 in the fungus induces iron deprivation, which significantly suppresses bacterial growth. Conversely, MaCFEM1 knockout relieves the restriction on bacterial iron availability, resulting in iron reallocation. Upon ΔMaCFEM1 infection, some host bacterial symbionts proliferate uncontrollably, turning into opportunistic pathogens and significantly accelerating host death.

CONCLUSIONS: This study elucidates the critical role of pathogenic fungal-dominated iron allocation in mediating the shift of host microbes from symbiosis to pathogenicity. It also highlights a unique biocontrol strategy that jointly exploits pathogenic fungi and bacterial symbionts to increase host mortality. Video Abstract.

RevDate: 2024-10-15
CmpDate: 2024-10-15

Diaz de Villegas SC, Borbee EM, Abdelbaki PY, et al (2024)

Prior heat stress increases pathogen susceptibility in the model cnidarian Exaiptasia diaphana.

Communications biology, 7(1):1328.

Anthropogenic climate change has significantly altered terrestrial and marine ecosystems globally, often in the form of climate-related events such as thermal anomalies and disease outbreaks. Although the isolated effects of these stressors have been well documented, a growing body of literature suggests that stressors often interact, resulting in complex effects on ecosystems. This includes coral reefs where sequential associations between heat stress and disease have had profound impacts. Here we used the model cnidarian Exaiptasia diaphana to investigate mechanisms linking prior heat stress to increased disease susceptibility. We examined anemone pathogen susceptibility and physiology (symbiosis, immunity, and energetics) following recovery from heat stress. We observed significantly increased pathogen susceptibility in anemones previously exposed to heat stress. Notably, prior heat stress reduced anemone energetic reserves (carbohydrate concentration), and activity of multiple immune components. Minimal effects of prior heat stress on symbiont density were observed. Together, results suggest changes in energetic availability might have the strongest effect on pathogen susceptibility and immunity following heat stress. The results presented here provide critical insight regarding the interplay between heat stress recovery and pathogen susceptibility in cnidarians and are an important first step towards understanding temporal associations between these stressors.

RevDate: 2024-10-15

Zardi GI, Seuront L, Gevaert F, et al (2024)

Plastiskin: A new form of plastic pollution affecting rocky shore organisms.

Marine pollution bulletin, 209(Pt A):117121 pii:S0025-326X(24)01098-1 [Epub ahead of print].

Plastic pollution has become a significant environmental concern, with profound consequences for ecosystems worldwide, particularly for marine systems. Our study introduces 'plastiskin', a newly identified plastic pollution type encrusting intertidal organisms. Found on mussels and macroalgae, 'plastiskin' was composed of polypropylene and polyethylene. In mussels, the presence of 'plastiskin' was correlated with the absence of living endoliths in areas of the shells it covered, indicating a detrimental impact on the symbiotic endolithic community residing within mussel shells. In addition, we examined the potential negative effects of 'plastiskin' on the photosynthetic efficiency of macroalgae, however, these findings were inconclusive, stressing the need for further studies with larger sample sizes. Our baseline observations may serve as a groundwork for further investigation into the spatial distribution, temporal persistence, and ecological ramifications of 'plastiskin'. potential incorporation of 'plastiskin' as a new marine debris category into management and monitoring frameworks warrants serious consideration.

RevDate: 2024-10-15

Li C, Huang Q, Sun S, et al (2024)

Preinoculation with Bradyrhizobium japonicum enhances the salt tolerance of Glycine max seedlings by regulating polyamine metabolism in roots.

Plant physiology and biochemistry : PPB, 216:109196 pii:S0981-9428(24)00864-7 [Epub ahead of print].

Rhizobia are common symbiotic microorganisms in the root system of leguminous plants that can usually provide nitrogen to the host through nitrogen fixation. Studies have shown that rhizobium-preinoculated soybean plants usually exhibit improved salt tolerance, but the underlying mechanism is not fully understood. In this paper, transcriptome sequencing (RNA-seq) revealed that preinoculation with rhizobia affected polyamine (PA) metabolism in soybean roots. The assay of PA contents showed that preinoculation with rhizobia significantly increased the putrescine (Put) content in roots and leaves during short-term salt treatment (0-5 d). Long-term salt treatment (5-7 d) resulted in a high Put content and significantly increased Spm and Spd contents, resulting in a rapid increase in the Put/(Spd + Spm) ratio (0-5 d) and subsequent decrease. Moreover, rhizobium preinoculation of soybean plants resulted in increased contents of conjugated and bound PAs under salt stress. Further transcriptome sequencing, PA contents, PA synthase expression and activity analysis revealed that GmADC may be a key gene related to salt tolerance in rhizobium-preinoculated soybean plants, and the GmADC-overexpressing soybean hairy-root composite plants exhibited less ROS damage, lower Cl[-]/NO3[-] ratios and Na[+]/K[+] ratios, and stabilized ion homeostasis. Taken together, preinoculation with rhizobia increased the expression level and enzyme activity of arginine decarboxylase (ADC) in soybean roots, increased the content of Put in roots and leaves, and increased the content of conjugated and bound PAs in soybean plants, thereby alleviating the oxidative and ionic injuries of soybean plants and enhancing the salt tolerance.

RevDate: 2024-10-15

Tan Y, Yu P, Yu Z, et al (2024)

Deciphering defense system modulating bacteria-mobile genetic elements symbiosis in microbial aggregates under elevated hydraulic stress.

Water research, 268(Pt A):122590 pii:S0043-1354(24)01489-1 [Epub ahead of print].

Bacterial defense systems are under strong evolutionary pressures to defend against mobile genetic elements (MGEs), yet their distribution in microbial aggregates in engineered systems remains largely unexplored. Herein, we investigated the bacterial defensome and MGEs within activated sludge flocs (AS) and membrane-attached biofilm (MF) in a full-scale membrane bioreactor. Similar distribution pattern of bacterial defense systems (63 types) was observed in prokaryotic genome in AS and MF, including RM system (∼40 %), Cas system (∼18 %) and TA-Abi system (∼28 %), exhibiting a dependency on the genome size and bacterial taxonomy in microbial aggregates under elevated hydraulic stress (MF). In contrast to plasmid and provirus, which carried defense systems (22 types) similar to their associated hosts, virome (61 %) carried novel defense systems (40 types) absent in their associated hosts. With 54 % of which involved in MGEs geneflow network, 69 % of high quality bacterial genome bins were associated with horizontal gene transfer (HGT), facilitating the exchange of mobile core functional genes. This potentially conferred competitive advantages to hosts through habitat-specific payload genes related to biotic defense, antibiotic resistance, and nitrogen metabolism. The longer growth cycle and varied defense gene density suggested the potential defense redundancy and trade-off of metabolic expense and immunity in bacterial host-MGE symbionts. Furthermore, enhanced cooperative network modules of cross-feeding and defense were observed in the MF, potentially helped the symbiotic microbial communities in coping with hostile conditions under elevated hydraulic stress. These findings shed light on the dynamics of bacterial defense systems in host-MGE coevolution and provide new perspectives of microbial aggregates manipulation for ecological and engineering application.

RevDate: 2024-10-15
CmpDate: 2024-10-15

Li S, Xu J, Hu Y, et al (2024)

Variation in SSRs at different genomic regions and implications for the evolution and identification of Armillaria gallica.

PloS one, 19(10):e0312114.

Armillaria spp. are devastating forest pathogens. Due to its low pathogenicity and abundant genetic variation, Armillaria gallica exhibited a unique and beneficial symbiosis with Gastrodia elata, which was used as a traditional Chinese medicine. However, the variation and population structure of A. gallica populations have rarely been investigated. Hence, we analyzed the evolution and variation in simple sequence repeats (SSRs) in three Armillaria genomes: A. gallica, A. cepistipes, and A. ostoyae to assess the genetic diversity and population structure of 14 A. gallica strains. Genome analysis revealed that SSRs were more abundant in the intergenic region than the intron and exon region, as was the SSR density. Compared with other two genomes, SSR density was the lowest in exon region and largest in the intron region of A. gallica, with significant variation in genic region. There were 17 polymorphic markers in A. gallica genome was identified, with 26.7% in genic region, which is higher than that of 18.8% in the intergenic region. Moreover, a total of 50 alleles and 42 polymorphic loci were detected among these A. gallica strains. The averaged polymorphism information content (PIC) was 0.4487, ranged from 0.2577 to 0.6786. Both principal coordinate analysis (PCoA) and population structure analyses based on the genotype data of SSRs divided the strains into two clusters. The cluster I included all the strains from high-altitude G. elata producing areas and some low-altitude areas, while the strains in Cluster II originated from low-altitude G. elata producing areas. These results indicated that substantial genome-specific variation in SSRs within the genic region of A. gallica and provide new insights for further studies on the evolution and breeding of A. gallica.

RevDate: 2024-10-16
CmpDate: 2024-10-14

Jian C, Yinhang W, Jing Z, et al (2024)

Escherichia coli on colorectal cancer: A two-edged sword.

Microbial biotechnology, 17(10):e70029.

Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.

RevDate: 2024-10-14

Youngsteadt E, Prado SG, Duran Aquino AK, et al (2024)

Urbanization drives partner switching and loss of mutualism in an ant-plant symbiosis.

Ecology [Epub ahead of print].

Mutualistic interactions between species underpin biodiversity and ecosystem function, but may be lost when partners respond differently to abiotic conditions. Except for a few prominent examples, effects of global anthropogenic change on mutualisms are poorly understood. Here we assess the effects of urbanization on a symbiosis in which the plant Cordia nodosa house ants in hollow structures (domatia) in exchange for defense against herbivores. We expected to find that mutualist ants would be replaced in the city by heat-tolerant opportunists, leaving urban plants vulnerable to herbivory. In five protected forest sites and five urban forest fragments in southeast Perú, we recorded the identity and heat tolerance (CTmax) of ant residents of C. nodosa. We also assayed their plant-defensive behaviors and their effects on herbivory. We characterized the urban heat-island effect in ambient temperatures and within domatia. Forest plants housed a consistent ant community dominated by three specialized plant ants, whereas urban plants housed a suite of 10 opportunistic taxa that were, collectively, about 13 times less likely than forest ants to respond defensively to plant disturbance. In the forest, ant exclusion had the expected effect of increasing herbivory, but in urban sites, exclusion reduced herbivory. Despite poor ant defense in urban sites, we detected no difference in total standing herbivory, perhaps because herbivores themselves also declined in the city. Urban sites were warmer than forest sites (daily maxima in urban domatia averaged 1.6°C hotter), and the urban ant community as a whole was slightly more heat tolerant. These results illustrate a case of mutualism loss associated with anthropogenic disturbance. If urbanization is representative of increasing anthropogenic stressors more broadly, we might expect to see destabilization of myrmecophytic mutualisms in forest ecosystems in the future.

RevDate: 2024-10-14

Gan B, Wang K, Zhang B, et al (2024)

Dynamic microbiome diversity shaping the adaptation of sponge holobionts in coastal waters.

Microbiology spectrum [Epub ahead of print].

UNLABELLED: The microbial communities associated with sponges contribute to the adaptation of hosts to environments, which are essential for the trophic transformation of benthic-marine coupling. However, little is known about the symbiotic microbial community interactions and adaptative strategies of high- and low-microbial abundance (HMA and LMA) sponges, which represent two typical ecological phenotypes. Here, we compared the 1-year dynamic patterns of microbiomes with the HMA sponge Spongia officinalis and two LMA sponge species Tedania sp. and Haliclona simulans widespread on the coast of China. Symbiotic bacterial communities with the characteristic HMA-LMA dichotomy presented higher diversity and stability in S. officinalis than in Tedania sp. and H. simulans, while archaeal communities showed consistent diversity across all sponges throughout the year. Dissolved oxygen, dissolved inorganic phosphorus, dissolved organic phosphorus, and especially temperature were the major factors affecting the seasonal changes in sponge microbial communities. S. officinalis-associated microbiome had higher diversity, stronger stability, and closer interaction, which adopted a relatively isolated strategy to cope with environmental changes, while Tedania sp. and H. simulans were more susceptible and shared more bacterial Amplicon Sequence Variants (ASVs) with surrounding waters, with an open way facing the uncertainty of the environment. Meta-analysis of the microbiome in composition, diversity, and ecological function from 13 marine sponges further supported that bacterial communities associated with HMA and LMA sponges have evolved two distinct environmental adaptation strategies. We propose that the different adaptive ways of sponges responding to the environment may be responsible for their successful evolution and their competence in global ocean change.

IMPORTANCE: During long-term evolution, sponge holobionts, among the oldest symbiotic relationships between microbes and metazoans, developed two distinct phenotypes with high- and low-microbial abundance (HMA and LMA). Despite sporadic studies indicating that the characteristic microbial assemblages present in HMA and LMA sponges, the adaptation strategies of symbionts responding to environments are still unclear. This deficiency limits our understanding of the selection of symbionts and the ecological functions during the evolutionary history and the adaptative assessment of HMA and LMA sponges in variable environments. Here, we explored symbiotic communities with two distinct phenotypes in a 1-year dynamic environment and combined with the meta-analysis of 13 sponges. The different strategies of symbionts in adapting to the environment were basically drawn: microbes with LMA were more acclimated to environmental changes, forming relatively loose-connected communities, while HMA developed relatively tight-connected and more similar communities beyond the divergence of species and geographical location.

RevDate: 2024-10-15

Arliyani I, Noori MT, Ammarullah MI, et al (2024)

Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation.

RSC advances, 14(44):32073-32100.

The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.

RevDate: 2024-10-15

Alammari DM, Melebari RE, Alshaikh JA, et al (2024)

Beyond Boundaries: The Role of Artificial Intelligence in Shaping the Future Careers of Medical Students in Saudi Arabia.

Cureus, 16(9):e69332.

INTRODUCTION: Artificial intelligence (AI) stands at the forefront of revolutionizing healthcare, wielding its computational prowess to navigate the labyrinth of medical data with unprecedented precision. In this study, we delved into the perspectives of medical students in the Kingdom of Saudi Arabia (KSA) regarding AI's seismic impact on their careers and the medical landscape.

METHODS:  A cross-sectional study conducted from February to December 2023 examined the impact of AI on the future of medical students' careers in KSA, surveying approximately 400 participants, including Saudi medical students and interns, and uncovering a fascinating tapestry of perceptions.

RESULTS: Astonishingly, 75.4% of respondents boasted familiarity with AI, heralding its transformative potential. A resounding 88.9% lauded its capacity to enrich medical education, marking a paradigm shift in learning approaches. However, amidst this wave of optimism, shadows of apprehension loomed. A staggering 42.5% harbored concerns of AI precipitating job displacement, while 34.4% envisioned a future where AI usurps traditional doctor roles. Despite this dichotomy, there existed a unanimous recognition of the symbiotic relationship between AI and human healthcare professionals, heralding an era of collaborative synergy.

CONCLUSION: Our findings underscored a critical need for educational initiatives to assuage fears and facilitate the seamless integration of AI into clinical practice. Moreover, AI's burgeoning influence in diagnostic radiology and personalized healthcare plans emerged as catalysts propelling the domain of precision medicine into uncharted realms of innovation. As AI reshapes the contours of healthcare delivery, it not only promises unparalleled efficiency but also holds the key to unlocking new frontiers in treatment outcomes and accessibility, heralding a transformative epoch in the annals of medicine.

RevDate: 2024-10-15

Fujita M, Tanaka T, Kusajima M, et al (2024)

Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana.

Journal of pesticide science, 49(3):186-194.

Strigolactones (SLs) are a class of plant hormones that play several roles in plants, such as suppressing shoot branching and promoting arbuscular mycorrhizal symbiosis. The positive regulation of plant disease resistance by SLs has recently been demonstrated by analyses using SL-related mutants. In Arabidopsis, SL-mediated signaling has been reported to modulate salicylic acid-mediated disease resistance, in which the priming of plant immunity plays an important role. In this study, we analyzed the effect of the synthetic SL analogue rac-GR24 on resistance against necrotrophic pathogen Botrytis cinerea. In rac-GR24-treated plants, disease resistance against B. cinerea was enhanced in an ethylene- and camalexin-dependent manners. Expression of the ethylene-related genes and the camalexin biosynthetic gene and camalexin accumulation after pathogen infection were enhanced by immune priming in rac-GR24-treated plants. These suggest that SL-mediated immune priming is effective for many types of resistance mechanisms in plant self-defense systems.

RevDate: 2024-10-13
CmpDate: 2024-10-13

González A, Fullaondo A, Odriozola I, et al (2024)

Microbiota and beneficial metabolites in colorectal cancer.

Advances in genetics, 112:367-409.

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.

RevDate: 2024-10-13
CmpDate: 2024-10-13

González A, Odriozola I, Fullaondo A, et al (2024)

Microbiota and detrimental protein derived metabolites in colorectal cancer.

Advances in genetics, 112:255-308.

Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.

RevDate: 2024-10-13

Zhao H, Yue W, Cao C, et al (2024)

Microbial production of methyl-uranium via the Wood-Ljungdahl pathway.

The Science of the total environment pii:S0048-9697(24)07001-3 [Epub ahead of print].

The misuse of uranium is a major threat to human health and the environment. In microbial ecosystems, microbes deploy various strategies to cope with uranium-induced stress. However, the exact ecological strategies and mechanisms underlying uranium tolerance in microbes remain unclear. Therefore, this study aimed to investigate the survival strategies and tolerance mechanisms of microbial communities in uranium-contaminated soil and groundwater. Microbial co-occurrence networks and molecular biology techniques were used to analyze the properties of microbes in groundwater and soil samples from various depths of uranium-contaminated areas in Northwest China. Uranium pollution altered microbial ecological strategies. Uranium stress facilitated the formation of microbial community structures, leading to symbiosis. Furthermore, microbes primarily resisted uranium hazards by producing polysaccharides and phosphate groups that chelate uranium, releasing phosphate substances that precipitate uranium, and reducing U(VI) through sulfate- and iron-reducing processes. The relative abundance of metal-methylation genes in soil microorganisms positively correlated with uranium concentration, indicating that soil microorganisms can produce methyl uranium via the Wood-Ljungdahl pathway. Furthermore, soil and groundwater microorganisms demonstrated different responses to uranium stress. This study provides new insights into microbial responses to uranium stress and novel approaches for the bioremediation of uranium-contaminated sites.

RevDate: 2024-10-15

Mehta A, Kumar L, Serventi L, et al (2024)

Bacterial cellulose infusion: A comprehensive investigation into textural, tribological and temporal sensory evaluation of ice creams.

International journal of biological macromolecules, 281(Pt 3):136510 pii:S0141-8130(24)07319-7 [Epub ahead of print].

The study examines how adding bacterial cellulose also referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY) to ice cream affects the textural, tribological, and sensory attributes, particularly texture and mouthfeel perception. Analytical assessments were performed on three types: SCOBY-added ice cream and two reference samples (control and guar gum-added ice creams). Evaluations included physicochemical properties, textural and tribological characteristics, and dynamic sensory mouthfeel using the temporal dominance of sensation (TDS) methodology. SCOBY ice cream showed higher probiotics content, lower pH, and higher acidity than reference samples. The addition of SCOBY increased hardness and altered the textural properties. TDS analysis highlighted distinct temporal dominance patterns, with guar gum ice cream presenting a pronounced mouth/residual coating pre-swallowing, while SCOBY and control ice cream exhibited a thin/fluid perception. The frictional factor at 37 °C was positively correlated with the melting rate, graininess, and thin/fluid perception while negatively correlated with firmness, smoothness and mouthfeel liking. Additionally, the mouthfeel liking was higher with firm, smooth and mouth/residual coating sensations and lower with grainy and thin/fluid perception. In summary, incorporating SCOBY in ice cream formulations can provide health benefits and meet consumer preferences for natural ingredients, while ensuring careful optimization of mouthfeel.

RevDate: 2024-10-15

Dubey I, K N, G V, et al (2024)

Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health.

Reproductive toxicology (Elmsford, N.Y.), 130:108732 pii:S0890-6238(24)00199-0 [Epub ahead of print].

The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.

RevDate: 2024-10-15

Zhou J, Bilyera N, Guillaume T, et al (2024)

Microbial necromass and glycoproteins for determining soil carbon formation under arbuscular mycorrhiza symbiosis.

The Science of the total environment, 955:176732 pii:S0048-9697(24)06889-X [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and critically modulate soil organic carbon (C) dynamics. Whether AMF promote soil C storage and stability is, however, largely unknown. Since microbial necromass C (MNC) and glomalin-related soil protein (GRSP) are stable microbial-derived C in soils, we therefore evaluated how AMF symbiosis alters both soil C pools and their contributions to soil organic C (SOC) under nitrogen fertilization, based on a 16-weeks mesocosm experiment using a mutant tomato with highly reduced AMF symbiosis. Results showed that SOC content is 4.5 % higher following AMF symbiosis. Additionally, the content of MNC and total GRSP were 47.5 % and 22.3 % higher under AMF symbiosis than at AMF absence, respectively. The accumulations of GRSP and microbial necromass in soil were closely associated with mineral-associated organic C and the abundance of AMF. The increased soil living microbial biomass under AMF symbiosis was mainly derived from AMF biomass, and fungal necromass C significantly contributed to SOC accumulation, as evidenced by the higher fungal:bacterial necromass C ratio under AMF symbiosis. On the contrary, bacterial necromass was degraded to compensate for the increased microbial nutrient demand because of the aggravated nutrient limitation under AMF symbiosis, leading to a decrease in bacterial necromass. Redundancy analysis showing that bacterial necromass was negatively correlated with soil C:N ratio supported this argument. Moreover, the relative change rate of total GRSP was consistently greater in nitrogen-limited soil than that of microbial necromass. Our findings suggested GRSP accumulates faster and contributes more to SOC pools under AMF symbiosis than microbial necromass. The positive correlation between the contributions of GRSP and MNC to SOC further provided valuable information in terms of enhancing our understanding of mechanisms underlying the maintenance of SOC stocks through microbial-derived C.

RevDate: 2024-10-12

Ren Y, Tobin B, Yang S, et al (2024)

Brassinosteroids mediate arbuscular mycorrhizal symbiosis through multiple potential pathways and partial identification in tomato.

Microbiological research, 289:127924 pii:S0944-5013(24)00325-2 [Epub ahead of print].

Currently, little is known regarding the specific processes through which brassinosteroids (BR) affect arbuscular mycorrhizal (AM) symbiosis. Understanding this relationship is vital for advancing plant physiology and agricultural applications. In this study, we aimed to elucidate the regulatory mechanisms of BR in AM symbiosis. According to the log2 fold change-value and adjP-value, we integrated the common differentially expressed genes (DEGs) in maize (Zea mays L.) treated with BR and AM, Arabidopsis (Arabidopsis thaliana) mutants deficient in BR receptors, and tomato (Solanum lycopersicum) plants inoculated with AM fungi. In addition, we characterized the symbiotic performance of tomato plants with BR receptor defects and overexpression. The results indicated that the common differential genes induced by BR and AM were involved in metabolic processes, such as cell wall modification, cytoskeleton remodeling, auxin and ethylene signaling, photosynthesis, mineral nutrient transport, and stress defense. Specifically, these include the BR1 gene, which modifies the cell wall. However, the fungal colonization rate of BR receptor-deficient tomato plants was significantly reduced, and the total phosphorus concentration was increased. Conversely, the performance of the overexpressing tomato transformation plants demonstrated a significant contrast. Additionally, the mild rescue of mycorrhizal attenuation in mutants treated with exogenous BR suggests the possibility of direct feedback from BR synthesis to AM. Notably, the cell wall modification gene (SlBR1) and calcium spike gene (SlIPD3) were induced by both BR and AM, suggesting that BR may influence cell penetration during the early stages of AM colonization. Synthesis: Our results demonstrated that BR positively regulates AM symbiosis through multiple pathways. These findings pave the way for future research, including isolation of the individual contributions of each pathway to this complex process and exploration of possible agricultural applications.

RevDate: 2024-10-11
CmpDate: 2024-10-11

Muthusamy Pandian T, Esakkimuthu R, Rangasamy A, et al (2024)

Exploring the Potential of Bacterial Endophytes in Plant Disease Management.

Current microbiology, 81(12):403.

Endophytic bacteria live in the internal tissues of plants, forming symbiotic, mutualistic, commensalistic and trophobiotic relationships. Some are spread via seeds after sprouting from the rhizosphere or phyllosphere. These bacteria capable of promoting plant growth and impart biotic stress by synthesing plant growth hormones, ACC deaminase, organic acids and siderophore. Endophytes aid in phytoremediation by removing soil contaminants and boosting soil fertility via phosphate solubilization and nitrogen fixation. The endophytic microbes are becoming increasingly popular in biotechnological applications which supports sustainable growth of non-food crops for biomass and biofuel. They offer valuable natural materials which is used in medicine, agriculture and industry. Bacterial endophytes are endowed with the enormous potential in the biological treatment of plant pathogens and considered as the superior alternative to synthetic fungicides. The review emphasizes benefits of bacterial endophytes in promoting plant growth and prospects of agricultural applications viz., increasing crop yield under biotic stress condition and their mode of action towards plant diseases. It also summarises the diverse and vital role of endophytes in agroecosystems as well as insights for sustainable agriculture and crop resilience.

RevDate: 2024-10-14
CmpDate: 2024-10-11

El-Speiy ME, Zeitoun MM, El-Sawy MA, et al (2024)

Bioactive compounds enrichment in rabbit doe's diet pre-and during pregnancy improves productive and reproductive performance and cost-effectiveness under hot climates.

Tropical animal health and production, 56(8):339.

This study aimed to investigate the effect of diet supplementation with a symbiotic (SY), bee pollen (BP), honey bee (HB), date palm pollen (DPP) and their mixture (MIX) on female rabbit productive and reproductive performances under desert hot climates. Seventy-two Californian does of 5 months age and average body weight of 3250 ± 78.2 g were randomly allotted into six groups, each of 12 does. All does orally receive 3 ml distilled water for 10 days before mating and 28 days during pregnancy. Treatments were repeated for four consecutive parities. The first group served as control (C) given distilled water only, however the second, third, fourth and fifth groups were supplemented with 3 ml distilled water containing 0.2 ml SY, 200 mg DPP, 200 mg BP, 0.2 ml HB/doe per day, respectively. While, the sixth group does were given all previous ingredients (MIX). Sexual receptivity rate, fertility rate, kindling rate, and newborn traits were recorded. Also, maternal feed intake, feed conversion ratio, and digestibility coefficients of nutrients were recorded. Does in all groups were artificially inseminated with 0.5 ml of fresh heterospermic semen of 15 fertile bucks extended in Tris at 806-1006 sperm/ml. Treatment increased maternal body weight and daily gain with highest values (P < 0.05) in BP, SY, and MIX does. All treatments enhanced feed intake and feed conversion ratio (FCR) compared with control. Number services per conception decreased (P < 0.01), while litter size and weight and survival at birth and weaning increased (P < 0.01) in treated than control does. Treated does produced more milk than control. Digestibility coefficients of all nutrients were improved (P < 0.01) in treated does. In conclusion, supporting rabbit does pre- and during pregnancy with diets supplemented with a mixture of honey bee, date palm pollen, bee pollen, and synbiotic improves the productive and reproductive performances of rabbit does and their offspring.

RevDate: 2024-10-14
CmpDate: 2024-10-11

Pan W, Wang X, Ren C, et al (2024)

Sea cucumbers and their symbiotic microbiome have evolved to feed on seabed sediments.

Nature communications, 15(1):8825.

Sea cucumbers are predominant deposit feeders in benthic ecosystems, providing protective benefits to coral reefs by reducing disease prevalence. However, how they receive sufficient nutrition from seabed sediments remains poorly understood. Here, we investigate Holothuria leucospilota, an ecologically significant tropical sea cucumber, to elucidate digestive mechanisms underlying marine deposit-feeding. Genomic analysis reveals intriguing evolutionary adaptation characterized by an expansion of digestive carbohydrase genes and a contraction of digestive protease genes, suggesting specialization in digesting microalgae. Developmentally, two pivotal dietary shifts, namely, from endogenous nutrition to planktonic feeding, and from planktonic feeding to deposit feeding, induce changes in digestive tract enzyme profiles, with adults mainly expressing carbohydrases and lipases. A nuanced symbiotic relationship exists between gut microbiota and the host, namely, specific resident bacteria supply crucial enzymes for food digestion, while other bacteria are digested and provide assimilable nutrients. Our study further identifies Holothuroidea lineage-specific lysozymes that are restrictedly expressed in the intestines to support bacterial digestion. Overall, this work advances our knowledge of the evolutionary innovations in the sea cucumber digestive system which enable them to efficiently utilize nutrients from seabed sediments and promote food recycling within marine ecosystems.

RevDate: 2024-10-11

Jin G, Jeong JS, Kim IH, et al (2024)

Suppression of a transcriptional regulator, HexA, is essential for triggering the bacterial virulence of the entomopathogen, Xenorhabdus hominickii.

Journal of invertebrate pathology pii:S0022-2011(24)00162-9 [Epub ahead of print].

A nematode-symbiotic bacterium, Xenorhabdus hominickii, exhibits two distinct lifestyles. Upon infection of its host nematode into a target insect, X. hominickii is released into the insect hemocoel and becomes pathogenic. This study examines the critical transformation in bacterial life forms concerning the activity of a transcriptional regulator, HexA. When X. hominickii was cultured in tryptic soy broth, HexA was expressed during the stationary phase of bacterial growth. Conversely, HexA was expressed in the early growth stage within the insect host, Spodoptera exigua, when infected with X. hominickii. The transient expression of HexA was succeeded by the expression of another transcriptional regulator, Lrp, which led to the production of bacterial virulent factors. Expression of HexA was manipulated by replacing its promoter with an inducible promoter controlled by the inducer, l-arabinose. In the absence of the inducer, the mutant bacteria expressed HexA at a low level, resulting in a bacterial culture broth that was more effective at suppressing insect immune responses than the wild type. When the inducer was added, HexA was expressed at high levels, rendering the culture broth ineffective in immunosuppression. Interestingly, expression of HexA inhibited the expression of another transcriptional regulator, Lrp, which in turn induced the expression of a non-ribosomal peptide synthetase, gxpS, leading to the production of an immunosuppressive metabolite, GXP. Suppression of HexA expression in mutant bacteria augmented GXP levels in secondary metabolites. This indicates that infection of X. hominickii into the insect host represses HexA expression and upregulates Lrp expression, leading to GXP production. The GXP metabolites inhibit insect immunity, thus protecting the bacteria-nematode complex. Therefore, the suppression of HexA expression in the insect hemocoel is crucial for the bacteria's transition from a symbiotic to a pathogenic life form.

RevDate: 2024-10-11

Azeem I, Wang Q, Adeel M, et al (2024)

Assessing the combined impacts of microplastics and nickel oxide nanomaterials on soybean growth and nitrogen fixation potential.

Journal of hazardous materials, 480:136062 pii:S0304-3894(24)02641-4 [Epub ahead of print].

The excessive presence of polystyrene microplastic (PS-MPx) and nickel oxide nanomaterials (NiO-NPs) in agriculture ecosystem have gained serious attention about their effect on the legume root-nodule symbiosis and biological nitrogen fixation (BNF). However, the impact of these contaminants on the root-nodule symbiosis and biological N2-fixation have been largely overlooked. The current findings highlighted that NiO-NMs at 50 mg kg[-1] improved nodule formation and N2-fixation potential, leading to enhanced N2 uptake by both roots and shoots, resulting in increased plant growth and development. While single exposure of PS-MPx (500 mg kg[-1]) significantly reduced the photosynthetic pigment (8-14 %), phytohormones (9-25 %), nodules biomass (24 %), N2-related enzymes (12-17 %) that ultimately affected the N2-fixation potential. Besides, co-exposure of MPx and NiO at 100 mg kg[-1] altered the nodule morphology. Additionally, single and co-exposure of MPx and NiO-NMs at 100 mg kg[-1] reduced the relative abundance of Proteobacteria, Gemmatimonadota, Actinobacteria, Firmicutes, and Bacteroidetes is associated with N2-cycling and N2-fixation potential. The findings of this study will contribute to understanding the potential risks posed by MPx and NiO-NMs to leguminous crops in the soil environment and provide scientific insights into the soybean N2-fixation potential.

RevDate: 2024-10-10

Alcaraz CM, Séneca J, Kunert M, et al (2024)

Sulfur-oxidizing symbionts colonize the digestive tract of their Lucinid hosts.

The ISME journal pii:7817834 [Epub ahead of print].

Like many marine invertebrates, marine lucinid clams have an intimate relationship with beneficial sulfur-oxidizing bacteria located within specialized gill cells known as bacteriocytes. Most previous research has focused on the symbionts in the gills of these (and other) symbiotic bivalves, often assuming that the symbionts only persistently colonize the gills, at least in the adult stage. We used 16S rRNA gene sequencing and digital polymerase chain reaction with symbiont-specific primers targeting the soxB gene on the foot, mantle, visceral mass, and gills of the lucinid clam Loripes orbiculatus. We also used fluorescence in situ hybridization with symbiont-specific probes to examine symbiont distribution at the level of the whole holobiont. Despite 40 years of research on these symbioses, we detected previously unknown populations of symbiont cells in several organs, including the digestive tract. As in the well-studied gills, symbionts in the digestive tract may be housed within host cells. A 14-month starvation experiment without hydrogen sulfide to power symbiont metabolism caused a larger reduction in symbiont numbers in the gills compared to the visceral mass, raising the possibility that symbionts in the digestive tract are persistent and may have a distinct physiology and role in the symbiosis compared with the gill symbionts. Our results highlight the unexpectedly complex relationships between marine lucinid clams and their symbionts and challenge the view that chemosynthetic symbionts are restricted to the gills of these hosts.

RevDate: 2024-10-10

Waller RF, VB Carruthers (2024)

Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments.

Microbiology and molecular biology reviews : MMBR [Epub ahead of print].

SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.

RevDate: 2024-10-12

Pisarz F, Rabbachin L, Platz F, et al (2024)

Lights off - Role of bioluminescence for the biology of the biocontrol agent Photorhabdus luminescens.

iScience, 27(10):110977.

Bioluminescence is found across various organisms having crucial functions for biotic interactions and stress adaptation. The only known terrestrial bioluminescent bacteria are entomopathogenic bacteria of the genus Photorhabdus. However, the reason why these bacteria produce light is not understood. P. luminescens exists in two cell forms called primary (1°) and secondary (2°) cells. The 1° cells colonize the nematode symbiosis partner and produce bright light, whereas 2° cells colonize plant roots only emitting weak light. Here we show that bioluminescence is important but not essential for the biology of the bacteria. Deletion of the luxCDABE operon in 1° cells impaired insect pathogenicity and nematode interaction. The complete loss of light of 2° cells resulted in enhanced plant root colonization, enhanced haemolysis, and reduced oxidative stress adaptation. Since bioluminescence is not essential for the survival of the bacteria, P. luminescens Δlux 1° and 2° emerged as useful tools for bioluminescence-based reporter assays.

RevDate: 2024-10-12

Zhang J, Zhao Z, Feng Y, et al (2024)

Rhizobium acaciae and R. anhuiense are the dominant rhizobial symbionts of Pisum sativum L. from Yunnan-Guizhou Plateau.

Frontiers in microbiology, 15:1437586.

INTRODUCTION: The aim of this study is to investigate the diversity and geographic distribution of pea-nodulating rhizobia in the subtropical region of Yunnan Province from Yunnan-Guizhou Plateau.

METHODS AND RESULTS: A total of 615 rhizobial isolates were obtained from root nodules of the trapping plants and characterized genetically and symbiotically. The isolates discriminated into 43 genotypes by PCR-RFLP of IGS DNA. Multiple locus sequence analysis based on 16S rRNA, recA, atpD, dnaK, and rpoB genes placed them into eight clusters corresponding to species R. acaciae, R. anhuiense, R. binae, R. bangladeshense, R. hidalgonense, and three suspected novel populations of Rhizobium genosp. I-III. R. acaciae was the dominant group (52.5%) followed by R. anhuiense (30.7%). The other species were minor groups. Based on nodC phylogeny, all of them were the symbiovar viciae. All the tested strains showed efficient symbiotic N2 fixation on pea plants, in which WLB27, WCB18, and WNY29 presented the best PGP effects. Some of the tested strains had better IAA production, with WCB18 as the best producer (64.556 mg/L). Their distribution was mainly affected by soil available phosphorus, available potassium, and effective nitrogen. According to the results of symbiotic effect and resistance tests, strains of WLB27, WCB18, and WNY29 were selected as candidates for creating inoculants.

DISCUSSION: This suggests that the pea-nodulating rhizobia in Yunnan Province form a unique community. The results gave some novel information about the diversity, diversification, and biogeography of pea-nodulating rhizobia.

RevDate: 2024-10-13
CmpDate: 2024-10-11

Cai Q, Codjia JEI, Buyck B, et al (2024)

The evolution of ectomycorrhizal symbiosis and host-plant switches are the main drivers for diversification of Amanitaceae (Agaricales, Basidiomycota).

BMC biology, 22(1):230.

BACKGROUND: Evolutionary radiation is widely recognized as a mode of species diversification, but the drivers of the rapid diversification of fungi remain largely unknown. Here, we used Amanitaceae, one of the most diverse families of macro-fungi, to investigate the mechanism underlying its diversification.

RESULTS: The ancestral state of the nutritional modes was assessed based on phylogenies obtained from fragments of 36 single-copy genes and stable isotope analyses of carbon and nitrogen. Moreover, a number of time-, trait-, and paleotemperature-dependent models were employed to investigate if the acquisition of ectomycorrhizal (ECM) symbiosis and climate changes promoted the diversification of Amanitaceae. The results indicate that the evolution of ECM symbiosis has a single evolutionary origin in Amanitaceae. The earliest increase in diversification coincided with the acquisition of the ECM symbiosis with angiosperms in the middle Cretaceous. The recent explosive diversification was primarily triggered by the host-plant switches from angiosperms to the mixed forests dominated by Fagaceae, Salicaceae, and Pinaceae or to Pinaceae.

CONCLUSIONS: Our study provides a good example of integrating phylogeny, nutritional mode evolution, and ecological analyses for deciphering the mechanisms underlying fungal evolutionary diversification. This study also provides new insights into how the transition to ECM symbiosis has driven the diversification of fungi.

RevDate: 2024-10-10
CmpDate: 2024-10-10

Zhen Q, Wang X, Cheng X, et al (2024)

Remediation of toxic metal and metalloid pollution with plant symbiotic fungi.

Advances in applied microbiology, 129:171-187.

Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.

RevDate: 2024-10-10

Sainz TP, Sahu V, Gomez JA, et al (2024)

Role of the crosstalk B:neoplastic T follicular helper (TFH) cells in the pathobiology of nodal TFH cell lymphomas.

Laboratory investigation; a journal of technical methods and pathology pii:S0023-6837(24)01825-7 [Epub ahead of print].

Angioimmunoblastic T cell lymphoma (AITL), the most common form of peripheral T cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B cells. These findings suggest that the symbiotic relationship between these two cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.

RevDate: 2024-10-10

Crouch LI, Rodrigues CS, Bakshani CR, et al (2024)

The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system.

Seminars in immunology, 73:101891 pii:S1044-5323(24)00029-0 [Epub ahead of print].

The human gut microbiota is home to a diverse collection of microorganisms that has co-evolved with the host immune system in which host-microbiota interactions are essential to preserve health and homeostasis. Evidence suggests that the perturbation of this symbiotic host-microbiome relationship contributes to the onset of major diseases such as chronic inflammatory diseases including Inflammatory Bowel Disease. The host glycocalyx (repertoire of glycans/sugar-chains at the surface of gut mucosa) constitutes a major biological and physical interface between the intestinal mucosa and microorganisms, as well as with the host immune system. Glycans are an essential niche for microbiota colonization and thus an important modulator of host-microorganism interactions both in homeostasis and in disease. In this review, we discuss the role of gut mucosa glycome as an instrumental pathway that regulates host-microbiome interactions in homeostasis but also in health to inflammation transition. We also discuss the power of mucosa glycosylation remodelling as an attractive preventive and therapeutic strategy to preserve gut homeostasis.

RevDate: 2024-10-10

Zhang H, Y Xiao (2024)

Contribution of mycorrhizal symbiosis and root strategy to red clover aboveground biomass under nitrogen addition and phosphorus distribution.

Mycorrhiza [Epub ahead of print].

Soil nutrients exhibit heterogeneity in their spatial distribution, presenting challenges to plant acquisition. Notably, phosphorus (P) heterogeneity is a characteristic feature of soil, necessitating the development of adaptive strategies by plants to cope with this phenomenon. To address this, fully crossed three-factor experiments were conducted using red clover within rhizoboxes. Positions of P in three conditions, included P even distribution (even P), P close distribution (close P), and P far distribution (far P). Concurrently, N addition was two amounts(0 and 20 mg kg[- 1]), both with and without AMF inoculation. The findings indicated a decrease in aboveground biomass attributable to uneven P distribution, whereas N and AMF demonstrated the potential to affect aboveground biomass. In a structural equation model, AMF primarily increased aboveground biomass by enhancing nodule number and specific leaf area (SLA). In contrast, N addition improved aboveground biomass through increased nodule number or direct effects. Subsequently, a random forest model indicated that under the far P treatment, fine root length emerged as the primary factor affecting aboveground biomass, followed by thickest root length. Conversely, in the even P treatment, the thickest root length was of paramount importance. In summary, when confronted with uneven P distribution, clover plants adopted various root foraging strategies. AMF played a pivotal role in elevating nodule number, and SLA.

RevDate: 2024-10-11

Kumazawa M, K Ifuku (2024)

Unraveling the evolutionary trajectory of LHCI in red-lineage algae: Conservation, diversification, and neolocalization.

iScience, 27(10):110897.

Red algae and the secondary symbiotic algae that engulfed a red alga as an endosymbiont are called red-lineage algae. Several photosystem (PS) I-light-harvesting complex I (LHCI) structures have been reported from red-lineage algae-two red algae Cyanidioschyzon merolae (Cyanidiophyceae) and Porphyridium purpureum (Rhodophytina), a diatom, and a Cryptophyte. Here, we clarified the orthologous relation of LHCIs by combining a detailed phylogenetic analysis and the structural information of PSI-LHCI. We found that the seven Lhcr groups in LHCI are conserved in Rhodophytina; furthermore, during both genome reduction in Cyanidioschyzonales and endosymbiosis leading to Cryptophyta, some LHCIs were lost and replaced by existing or differentiated LHCIs. We denominate "neolocalization" to these examples of flexible reorganization of LHCIs. This study provides insights into the evolutionary process of LHCIs in red-lineage algae and clarifies the need for both molecular phylogeny and structural information to elucidate the plausible evolutionary history of LHCI.

RevDate: 2024-10-10

Smith S, Bongrand C, Lawhorn S, et al (2024)

Application of hsp60 amplicon sequencing to characterize microbial communities associated with juvenile and adult Euprymna scolopes squid.

bioRxiv : the preprint server for biology pii:2024.09.23.614625.

The symbiotic relationship between Vibrio (Aliivibrio) fischeri and the Hawaiian bobtail squid, Euprymna scolopes , serves as a key model for understanding host-microbe interactions. Traditional culture-based methods have primarily isolated V. fischeri from the light organs of wild-caught squid, yet culture-independent analyses of this symbiotic microbiome remain limited. This study aims to enhance species-level resolution of bacterial communities associated with E. scolopes using hsp60 amplicon sequencing. We validated our hsp60 sequencing approach using pure cultures and mixed bacterial populations, demonstrating its ability to distinguish V. fischeri from other closely-related vibrios and the possibility of using this approach for strain-level diversity with further optimization. This approach was applied to whole-animal juvenile squid exposed to either seawater or a clonal V. fischeri inoculum, as well as ventate samples and light organ cores from wild-caught adults. V. fischeri accounted for the majority of the identifiable taxa for whole-animal juvenile samples and comprised 94%-99% of amplicon sequence variants (ASVs) for adult light organ core samples, confirming that V. fischeri is the dominant, if not sole, symbiont typically associated with E. scolopes light organs. In one ventate sample, V. fischeri comprised 82% of reads, indicating the potential for non-invasive community assessments using this approach. Analysis of non- V. fischeri ASVs revealed that Bradyrhizobium spp . and other members of the Rhodobacterales order are conserved across juvenile and adult samples. These findings provide insight into the presence of additional microbial associations with the squid host tissue outside of the light organ that have not been previously detected through traditional culture methods.

RevDate: 2024-10-09

Lafont R, L Dinan (2024)

Insect Sterols and Steroids.

Advances in experimental medicine and biology [Epub ahead of print].

Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.

RevDate: 2024-10-09
CmpDate: 2024-10-09

Vishwakarma K, Buckley S, Plett JM, et al (2024)

Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling.

Fungal biology, 128(7):2157-2166.

Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.

RevDate: 2024-10-09

Iwai S (2024)

A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks.

Theoretical population biology pii:S0040-5809(24)00092-3 [Epub ahead of print].

The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.

RevDate: 2024-10-09
CmpDate: 2024-10-09

Santos VJD, Barros G, Moreira TF, et al (2024)

Occurrence and diversity of arbuscular mycorrhizal fungi in yerba mate (Ilex paraguariensis - Aquifoliaceae) cultivation environments.

Brazilian journal of biology = Revista brasleira de biologia, 84:e282738 pii:S1519-69842024000101288.

Yerba mate (Ilex paraguariensis) represents a culture of economic, social, and ecological importance for the cultivation regions. Due to the chemical, physical, and biological variations that occur in the different soils where yerba mate is economically exploited, the symbiotic associations with arbuscular mycorrhizal fungi (AMF) guarantee the plant's ability to absorb nutrients. The purpose of this study was to identify and quantify the occurrence of arbuscular mycorrhizal fungi in different environments of yerba mate cultivation. The research was performed in four areas located in the rural area of the municipality of Seberi/RS: Environment with production of yerba mate in the conventional system, silvopastoral system, organic system, and native forest. The normality of residuals and homogeneity of variances assumptions were verified using the Lilliefors and Chi-square tests and the averages compared by the Tukey's test at 5% probability of error. In addition to calculations of diversity, equivalent species, and evenness indices. The presence of AMF spores showed a direct relationship with the phosphorus (P) availability in each treatment, with a count reduction in the organic system, with P content lower than 3 mg kg-1 of soil. The species with the highest predominance were the Acaulosporaceae (Acaulospora colombiana, A. delicata, and A. tuberculata), followed by the Glomaceae (Glomus ambisporum and Glomus pansihalos) in the conventional and silvopastoral systems. The silvopastoral and conventional systems showed the highest levels of Shannon-Weaver diversity (H') and Pielou's evenness, demonstrating greater diversity and consequently greater richness and uniformity.

RevDate: 2024-10-09
CmpDate: 2024-10-09

Solans M, Tadey M, Messuti MI, et al (2024)

Do Streptomyces sp. Help Mycorrhization in Raspberry?.

Current microbiology, 81(11):399.

Actinobacteria may help the mycorrhizal symbiosis by producing various bioactive metabolites. Mycorrhizae, in turn, are very important since they increase the absorption of nutrients, promoting the growth of their host plant and making inoculation with arbuscular mycorrhizae fungi (AM) a common practice applied in agriculture and forestry. The cultivation of Rubus idaeus (raspberry) is widespread in Patagonia, Argentina; however, the potential benefits of using actinobacteria-mycorrhizal inoculums to enhance crop growth and yield remain unexplored. The objective of this work was to study the interaction between actinobacteria (Streptomyces, Actinomycetota) and AM in raspberry plants. We performed an experiment applying 4 treatments to raspberry plants growing in two substrates, sterile soil and natural (non-sterile) soil. The treatments consisted in a control (without inoculation) and three inoculations treatments (AM, Streptomyces SH9 strain, and AM + Streptomyces). After 3 months of inoculation, mycorrhization parameters (%) and plant growth were recorded. When comparing both substrates, the mycorrhization parameters were higher in natural soil than in sterile soil. The co-inoculation with AM + Streptomyces SH9 showed the highest mycorrhization. Both factors (treatment x substrate) interacted showing that in sterile soil the treatments with the highest effect on mycorrhization parameters were AM and the co-inoculation, while in natural soil all inoculations improved mycorrhization parameters, being highest with the co-inoculation. These results show that Streptomyces SH9 strain helps the mycorrhizal symbiosis in raspberry, being the first report about the effect of a native rhizospheric actinobacterium on an economically important species, promising potential for environmentally friendly improvements in raspberry crops within the temperate Southern Patagonian region.

RevDate: 2024-10-09

Marques A (2024)

Pulmonary rehabilitation and family/friend caregivers: the hidden reciprocal relationship improving outcomes in chronic respiratory diseases.

Expert review of respiratory medicine [Epub ahead of print].

INTRODUCTION: The experiences and needs of living with chronic respiratory diseases (CRD) can be overwhelming. Individuals often rely on informal care for daily assistance and having a family/friend caregiver has been associated with better health outcomes. Nevertheless, family/friend caregivers frequently feel alone and unsupported. Pulmonary rehabilitation (PR) leads to multidimensional benefits across CRD and individuals have suggested improvements for PR. Family/friend caregivers highly support PR in practical and psychosocial ways and have identified this intervention as an opportunity to be supported. This reciprocal relationship between PR and the family/friend caregivers has been scarcely explored and its importance for the management of CRD is poorly understood.

AREAS COVERED: This perspective synthesizes the experiences and needs of living with CRD from the perspective of people with CRD and their family/friend caregivers; and proposes a vision of a reciprocal/symbiotic relationship, through PR, for optimizing care for people with CRD and their caregivers.

EXPERT OPINION: A deeper understanding/recognition of the extensiveness and somewhat overlap of the experiences and unmet needs of individuals with CRD and their family/friend caregivers; and of the reciprocal/symbiotic relationship between PR and the family/friend caregivers might be important to optimizing management and, ultimately, individuals and caregivers' outcomes in CRD.

RevDate: 2024-10-10

Feng Y, Kong L, Zheng R, et al (2024)

Adjusted bacterial cooperation in anammox community to adapt to high ammonium in wastewater treatment plant.

Water research X, 25:100258.

Bacterial cooperation is very important for anammox bacteria which perform low-carbon and energy-efficient nitrogen removal, yet its variation to adapt to high NH4 [+]-N concentration in actual wastewater treatment plants (WWTPs) remains unclear. Here, we found wide and varied cross-feedings of anammox bacteria and symbiotic bacteria in the two series connected full-scale reactors with different NH4 [+]-N concentrations (297.95 ± 54.84 and 76.03 ± 34.01 mg/L) treating sludge digester liquor. The uptake of vitamin B6 as highly effective antioxidants secreted by the symbiotic bacteria was beneficial for anammox bacteria to resist the high NH4 [+]-N concentration and varied dissolved oxygen (DO). When NH4 [+]-N concentration in influent (1785.46 ± 228.5 mg/L) increased, anammox bacteria tended to reduce the amino acids supply to symbiotic bacteria to save metabolic costs. A total of 26.1% bacterial generalists switched to specialists to increase the stability and functional heterogeneity of the microbial community at high NH4 [+]-N conditions. V/A-type ATPase for anammox bacteria to adapt to the change of NH4 [+]-N was highly important to strive against cellular alkalization caused by free ammonia. This study expands the understanding of the adjusted bacterial cooperation within anammox consortia at high NH4 [+]-N conditions, providing new insights into bacterial adaptation to adverse environments from a sociomicrobiology perspective.

RevDate: 2024-10-10

Qiu HY, Lv QB, Wang CR, et al (2024)

Microbiota profile in organs of the horseflies (Diptera: Tabanidae) in Northeastern China.

Frontiers in microbiology, 15:1467875.

Tabanids, commonly known as horseflies and belonging to the family Tabanidae, are blood-feeding arthropods (BFA) found worldwide. They are known for their ability to mechanically and biologically transmit various animal pathogens. Tabanids are potential vectors for diseases such as Francisella tularensis, Anaplasma marginale, Theileria spp., and contributors to lumpy skin diseases. Despite their involvement in common BFA studies, tabanids have not been extensively explored in microbiome research. In this study, the microbiota structure and composition in various organs of four distinct genera of tabanids: Atylotus, Haematopota, Tabanus, and Hybomitra were examined. High-throughput sequencing of the bacterial 16S rRNA gene was performed to gain insights into the microbial communities associated with the different tabanid species. Result display that microbiota composition and diversity, including Firmicutes, Proteobacteria, and Bacteroidetes, varied significantly among the different organs, with the ovaries exhibiting significantly higher diversity. Apart from the Haematopota genus, Tenericutes were enriched in the midgut of other tabanid species, whereas the Malpighian tubules exhibited a higher abundance of Bacteroides. Notably, the ovarian microbiota structure was conserved among the four tabanid species, indicating its potential association with reproductive development. Evaluation of the potential pathogen risk revealed putative pathogens in over 100 genera associated with these tabanid commensal organisms. Twenty genera were annotated as zoonotic agents with a high abundance of Citrobacter and Brucella, highlighting the presence of this important group of zoonotic pathogens. Functional predictions of vector-microbiota interactions indicate that microbiota significantly affects vector biological traits and can influence pathogen transmission via direct interactions or by regulating host immunity and nutrition. For the first time, the distribution characteristics and functions of four genera of horsefly microbiota were analyzed, revealing the presence of multiple potential pathogenic microorganisms. These findings provide valuable insights for future research and the development of symbiotic-based strategies to control insect-borne diseases among tabanids.

RevDate: 2024-10-09

Fu JX, Jiao J, Gai QY, et al (2024)

Enhanced Accumulation of Health-Promoting Cajaninstilbene Acid in Pigeon Pea Hairy Root Cultures Cocultured with an Endophytic Fungus during Early Stages of Colonization.

Journal of agricultural and food chemistry [Epub ahead of print].

Endophytic fungi can effectively regulate the biosynthesis of health-beneficial metabolites in plants. However, few studies have revealed how the accumulation of host metabolites varies during interactions with endophytic fungi. Here, pigeon pea hairy root cultures (PPHRCs) were cocultured with an endophytic fungus Penicillium rubens to explore the impact on the biosynthesis and accumulation of cajaninstilbene acid (CSA). The results showed that CSA accumulation in PPHRCs increased significantly (15.29-fold) during the early stages of P. rubens colonization (fungal attachment and invasion phases). Once P. rubens successfully colonized the intercellular gap of hairy roots to form a symbiotic relationship, the CSA levels in PPHRCs decreased drastically. Moreover, P. rubens could be recognized by plant pattern recognition receptors that regulate immunity/symbiosis, triggering the expression of genes related to pathogenesis, CSA biosynthesis, and ABC transporter. Overall, P. rubens could enhance the accumulation of health-promoting CSA in PPHRCs during the early stages of colonization.

RevDate: 2024-10-10

Bollati E, Hughes DJ, Suggett DJ, et al (2024)

Microscale sampling of the coral gastrovascular cavity reveals a gut-like microbial community.

Animal microbiome, 6(1):55.

Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.

RevDate: 2024-10-08

Obayashi K, Y Kodama (2024)

Dynamics of digestive vacuole differentiation clarified by the observation of living Paramecium bursaria.

Protoplasma [Epub ahead of print].

Paramecium bursaria is a ciliate species that has a symbiotic relationship with Chlorella spp. This study aimed to elucidate the dynamics of digestive vacuole (DV) differentiation in P. bursaria, using yeast stained with a pH indicator. Previously, DV differentiation in P. bursaria has been classified into eight periods based on fixed-cell observations. However, to understand the behavior and physiology of P. bursaria in its natural state, it is essential to observe living cells. This study presented a novel method using Cornig® Cell-Tak™ to immobilize living P. bursaria cells, which enabled long-term observation of the same cell from the same direction. This technique allowed for real-time observation of DV differentiation, including the relationship between changes in the internal pH of DV and the diameter of DV, yeast budding from the DV membrane by a single cell into the cytoplasm, and separation of a DV containing multiple yeasts into two DVs. This study provides new insights into the dynamic process of DV differentiation in P. bursaria. These findings contribute to a better understanding of the cellular mechanisms underlying the symbiotic relationship between the two organisms and shed light on the complex process of intracellular digestion in ciliates.

RevDate: 2024-10-08

Fan W, Wei B, Zhu Y, et al (2024)

Deciphering anammox response characteristics and potential mechanisms to polyethylene terephthalate microplastic exposure.

Journal of hazardous materials, 480:136044 pii:S0304-3894(24)02623-2 [Epub ahead of print].

Microplastics (MPs) are frequently detected in the wastewater. Herein, the short-term and long-term effects of polyethylene terephthalate (PET) MPs on anammox granular sludge were investigated and the potential response mechanisms were analyzed. Results showed that although short-term exposure of anammox granular sludge to PET-MPs induced a stress response, the nitrogen removal performance was not significantly affected. By contrast, long-term exposure to PET-MPs inhibited nitrogen removal performance with increased exposure time and PET-MP concentration. The total nitrogen removal efficiency (TNRE) decreased by 28.7 % when sludge was exposed to 200 mg/L of PET-MPs. However, the anammox activity recovered with prolonged operation time, and approximately 87 % of the initial TNRE was recovered after three months. Microbial community evolution and metabolic exchange variations were the potential response mechanisms of anammox granular sludge to PET-MP exposure, with PET-MP exposure decreasing the anammox bacteria growth rate and relative symbiotic bacterial abundance in the anammox consortia and hindering cross-feeding pathways. The findings of this study provide novel insight into anammox behavior when treating wastewater containing PET-MPs.

RevDate: 2024-10-09

Hathnagoda R, Gunathilake P, Buddhinee T, et al (2024)

Diversity and Species Composition of Midgut Symbiotic Bacteria in Culex quinquefasciatus Mosquitoes in Gampaha District, Sri Lanka.

Journal of tropical medicine, 2024:1832200.

Mosquitoes, notorious for their deadly impact as disease vectors, also hold economic value owing to their roles in disease transmission. The present study focuses on the importance of understanding mosquito gut microbiota for implementing innovative vector control strategies, thereby mitigating disease transmission. The study was conducted in the Gampaha Medical Office of Health (MOH) area of Sri Lanka with the focus of elucidating the microbial diversity within the midgut of Culex quinquefasciatus, a crucial step to support ongoing paratransgenesis efforts. Sampling was performed by utilizing standard mosquito sampling techniques and their midgut homogenates were plated on Plate Count Agar to isolate bacteria, which were then identified through biochemical tests. Subsequently, the most abundant bacterial families were subjected to DNA extraction, PCR amplification, and gene sequencing for species identification. The study revealed the presence of four bacterial families (Staphylococcaceae, Streptococcaceae, Neisseriaceae, and Moraxellaceae) in adult mosquitoes, while larvae harbored an additional family, Micrococcaceae. Interestingly, the relative distribution of midgut bacteria varied significantly among field-caught larval and adult strains from different study areas (chi-square = 1.673; P < 0.05), indicating similar bacterial flora across mosquito life stages and geographical locations. Of particular interest is the identification of Lysinibacillus sphaericus, a bacterium with potential for paratransgenesis applications. Given the high mosquito density in the study area, leveraging paratransgenesis for Cx. quinquefasciatus control is recommended. Furthermore, insights into gut microbes could inform the integration of gut microflora from modified strains into existing Sterile Insect Technique (SIT) and Incompatible Insect Technique (IIT) approaches in Sri Lanka.

RevDate: 2024-10-09
CmpDate: 2024-10-07

Ikeda M, Yamazaki A, Ohmori K, et al (2024)

Regime shift of skeletal δ[13]C after 1997/1998 El Nino event in Porites coral from Green Island, Taiwan.

Scientific reports, 14(1):23332.

The 1997/1998 El Niño event caused mass coral bleaching and mortality in many tropical and subtropical regions, including corals on Green Island, Taiwan, in the northwestern Pacific Ocean. This study analyzed coral carbon isotope ratios (δ[13]C), oxygen isotope ratios (δ[18]O), and Sr/Ca ratios for 29 years, including the 1997/1998 El Niño period, to examine how high water temperature events are recorded in coral geochemical indicators. Sr/Ca ratios in coral skeletons from Green Island show the lowest peak, means the highest temperature during the 1997/1998 El Niño period. However, we couldn't observe high-temperature events on δ[18]O. Furthermore, a negative δ[13]C shift was observed after El Niño events. The regime shift of δ[13]C might have been caused by temporal bleaching and/or a decrease in symbiotic algae due to high water temperature stress under the continuous decrease in δ[13]C in DIC due to the Suess effect.

RevDate: 2024-10-07

Garritano AN, Zhang Z, Jia Y, et al (2024)

Simple Porifera holobiont reveals complex interactions between the host, an archaeon, a bacterium, and a phage.

The ISME journal pii:7815078 [Epub ahead of print].

The basal metazoan phylum, Porifera (sponges), is increasingly used as a model to investigate ecological and evolutionary features of microbe-animal symbioses. However, sponges often host complex microbiomes, which has hampered our understanding of their interactions with their microbial symbionts. Here, we describe the discovery and characterisation of the simplest sponge holobiont reported to date, consisting of the deep-sea glass sponge Aphrocalistes beatrix and two newly described microbial symbionts: an autotrophic ammonia-oxidising archaeon and a bacterial heterotroph. Omics analyses and metabolic modelling revealed the dependency of the ammonia-oxidising archaea on sponge-derived ammonia to drive primary production, which in turn supports the bacterium's growth by providing the dicarboxylate fumarate. Furthermore, virus-mediated archaeal lysis appears crucial to overcome the bacterium's vitamin B12 auxotrophy. These findings reveal that the exchange of vitamin B12 and dicarboxylate may be evolutionarily conserved features of symbiosis as they can also be found in interactions between free-living marine bacteria, and between microbes and plants or diatoms.

RevDate: 2024-10-07

Cai T, Nadal-Jimenez P, Gao Y, et al (2024)

Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus.

The ISME journal pii:7815079 [Epub ahead of print].

Facultative vertically transmitted symbionts are a common feature of insects that determine many aspects of their hosts' phenotype. Our capacity to understand and exploit these symbioses is commonly compromised by the microbes unculturability and consequent lack of genetic tools, an impediment of particular significance for symbioses of pest and vector species. Previous work had established that insecticide susceptibility of the economically important pest of rice, the brown planthopper Nilaparvata lugens, was higher in field-collected lineages that carry Ca. Arsenophonus nilaparvatae. We established Ca. A. nilaparvatae into cell-free culture and used this to establish the complete closed genome of the symbiont. We transformed the strain to express GFP and reintroduced it to N. lugens to track infection in vivo. The symbiont established vertical transmission, generating a discrete infection focus towards the posterior pole of each N. lugens oocyte. This infection focus was retained in early embryogenesis before transition to a diffuse somatic infection in late N. lugens embryos and nymphs. We additionally generated somatic infection in novel host species, but these did not establish vertical transmission. Transinfected planthopper lines acquired the insecticide sensitivity trait, with associated downregulation of the P450 xenobiotic detoxification system of the host. Our results causally establish the role of the symbiont in increasing host insecticide sensitivity with implications for insecticide use and stewardship. Further, the culturability and transformation of this intracellular symbiont, combined with its ease of reintroduction to planthopper hosts, enables novel approaches both for research into symbiosis and into control of insect pest species.

RevDate: 2024-10-07

Davidson-Lowe E, Zainuddin N, Trase O, et al (2024)

Arbuscular mycorrhizal fungi influence belowground interactions between a specialist root-feeder and its natural enemy.

Journal of invertebrate pathology pii:S0022-2011(24)00143-5 [Epub ahead of print].

As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tri-trophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.

RevDate: 2024-10-07

Zhao A, Li J, Gao P, et al (2024)

Insight into the responses of the anammox granular sludge system to tetramethylammonium hydroxide (TMAH) during chip wastewater treatment.

Environmental research pii:S0013-9351(24)02006-1 [Epub ahead of print].

Tetramethylammonium hydroxide (TMAH), an extensively utilized photoresist developer, is frequently present in ammonium-rich wastewater from semiconductor manufacturing, and its substantial ecotoxicity should not be underestimated. This study systematically investigated the effects of TMAH on the anammox granular sludge (AnGS) system and elucidated its inhibitory mechanisms. The results demonstrated that the median inhibitory concentration of TMAH for anammox was 84.85 mg/L. The nitrogen removal performance of the system was significantly decreased after long-term exposure to TMAH (0 - 200 mg/L) for 30 days (p < 0.05), but it showed adaptability to certain concentrations (≤ 50 mg/L). Concurrently, the stability of the granules decreased dramatically, resulting in the breakdown of AnGS. Further investigations indicated that TMAH exposure increased the secretion of extracellular polymeric substances but weakened their defense function. The increase in reactive oxygen species resulted in damage to the cell membrane. Reduced activity of anammox bacteria, impeded electron transfer, and changes in enzyme activity suggested that TMAH affected the metabolic activity. Microbiological analysis revealed that TMAH caused a decrease in the abundance of anammox bacteria and a weakening of symbiotic interactions within the microbial community. These results provide valuable guidance for the AnGS system application in chip wastewater treatment.

RevDate: 2024-10-07

Thaggard GC, Kankanamalage BKPM, Park KC, et al (2024)

Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs.

Advanced materials (Deerfield Beach, Fla.) [Epub ahead of print].

Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution-like response of stimuli-responsive moieties to solid-state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal-organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting-edge advancements in photochromic material development, but also highlights novel, vital-to-pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.

RevDate: 2024-10-07

Nian X, Wu S, He J, et al (2024)

The conserved role of miR-2 and novel miR-109 in the increase in fecundity of Diaphorina citri induced by symbiotic bacteria and pathogenic fungi.

mBio [Epub ahead of print].

UNLABELLED: Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported the pivotal role of DcKr-h1 in the fecundity improvement of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas), and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In the D. citri-CLas interaction, the expression levels of miR-2 and novel-miR-109 in the ovaries of CLas-positive psyllids were lower compared to CLas-negative individuals. Overexpression of miR-2 or novel-miR-109 significantly decreased fecundity and CLas titer in ovaries and caused reproductive defects reminiscent of DcKr-h1 knockdown. Similarly, in the D. citri-Cf interaction, the levels of miR-2 and novel-miR-109 markedly decreased in the ovaries. Upregulation of miR-2 or novel-miR-109 also resulted in reduced fecundity and ovary defects similar to those caused by DcKr-h1 silencing. Moreover, feeding antagomir-2 or antagomir-109 partially rescued the defective phenotypes caused by DcKr-h1 silencing in both model systems, and miR-2 and novel-miR-109 were repressed by juvenile hormone (JH) and regulated the genes associated with egg development. This study shows a conserved regulatory mechanism, whereby JH suppresses the expression of miR-2 and novel-miR-109 which, together with JH-induced transcription of DcKr-h1, increases female fecundity induced by both symbiotic bacteria and pathogenic fungi.

IMPORTANCE: Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported that DcKr-h1 plays a critical role in the increase in fecundity of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas) and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In both D. citri-CLas and D. citri-Cf interactions, the increased juvenile hormone (JH) titer and reduced abundance of miR-2 and novel-miR-109 ensure high levels of DcKr-h1 expression, consequently stimulating ovarian development and enhancing fecundity. These observations provide evidence that miR-2 and miR-109 are crucial players in the JH-dependent increase in fecundity in psyllids induced by infection with different pathogens.

RevDate: 2024-10-08

He J, Huang R, X Xie (2024)

A gap in the recognition of two mycorrhizal factors: new insights into two LysM-type mycorrhizal receptors.

Frontiers in plant science, 15:1418699.

Arbuscular mycorrhizal (AM) fungi are crucial components of the plant microbiota and can form symbioses with 72% of land plants. Researchers have long known that AM symbioses have dramatic effects on plant performance and also provide multiple ecological services in terrestrial environments. The successful establishment of AM symbioses relies on the host plant recognition of the diffusible mycorrhizal (Myc) factors, lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs). Among them, the short-chain COs such as CO4/5 secreted by AM fungi are the major Myc factors in COs. In this review, we summarize current advances, develop the concept of mycorrhizal biceptor complex (double receptor complexes for Myc-LCOs and CO4/5 in the same plant), and provide a perspective on the future development of mycorrhizal receptors. First, we focus on the distinct perception of two Myc factors by different host plant species, highlighting the essential role of Lysin-Motif (LysM)-type mycorrhizal receptors in perceiving them. Second, we propose the underlying molecular mechanisms by which LysM-type mycorrhizal receptors in various plants recognize both the Myc-LCOs and -COs. Finally, we explore future prospects for studies on the biceptor complex (Myc-LCO and -CO receptors) in dicots to facilitate the utilization of them in cereal crops (particularly in modern cultivated rice). In conclusion, our understanding of the precise perception processes during host plant interacting with AM fungi, where LysM-type mycorrhizal receptors act as recruiters, provides the tools to design biotechnological applications addressing agricultural challenges.

RevDate: 2024-10-08

Jiang C, Peng F, Zhang L, et al (2024)

Isolation, identification, and mechanism analysis of plant growth-promoting rhizobacteria in tobacco.

Frontiers in microbiology, 15:1457624.

Plant growth, crop yield, and pest and disease control are enhanced by PGPR (Plant growth promoting rhizobacteria), which are beneficial microorganisms found in a close symbiosis with plant roots. Phytohormones are secreted, nutrient uptake is improved, and soil properties along with the microbiological environment are regulated by these microorganisms, making them a significant focus in agricultural research. In this study, the efficient PGPR strain T1 was isolated and screened from tobacco inter-root soil, and identified and confirmed by ITS sequencing technology. Tobacco growth indicators and soil property changes were observed and recorded through potting experiments. The activities of key enzymes (e.g., sucrase, catalase, urease) in soil were further determined. High-throughput sequencing technology was utilized to sequence the soil microbial community, and combined with macro-genomics analysis, the effects of T1 strain on soil microbial diversity and metabolic pathways were explored. Following the application of T1, significant improvements were observed in the height, leaf length, and width of tobacco plants. Furthermore, the physical and chemical properties of the soil were notably enhanced, including a 26.26% increase in phosphorus availability. Additionally, the activities of key soil enzymes such as sucrase, catalase, and urease were significantly increased, indicating improved soil health and fertility. Comprehensive joint microbiomics and macrogenomics analyses revealed a substantial rise in the populations of beneficial soil microorganisms and an enhancement in metabolic pathways, including amino acid metabolism, synthesis, and production of secondary metabolites. These increase in beneficial microorganisms and the enhancement of their metabolic functions are crucial for plant growth and soil fertility. This study provides valuable references for the development of innovative microbial fertilizers and offers programs for the sustainable development of modern agriculture.

RevDate: 2024-10-07

Wang A, Tang H, Sun J, et al (2024)

Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground.

Plant, cell & environment [Epub ahead of print].

Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.

RevDate: 2024-10-06

Vásquez P, Stucken K, Garcia-Martin A, et al (2024)

Enzymatic production, physicochemical characterization, and prebiotic potential of pectin oligosaccharides from pisco grape pomace.

International journal of biological macromolecules pii:S0141-8130(24)07111-3 [Epub ahead of print].

The prebiotic capacity of Pectin Oligosaccharides (POS) is influenced by structural factors such as molecular size, composition, and degree of esterification, which affect their interaction with the gut microbiota. While existing literature has predominantly examined POS derived from apple and citrus pectins, the extrapolation of these findings to other pectin sources remains complex due to variations in their composition. This study focused on obtaining POS with prebiotic potential from pisco grape pomace through controlled enzymatic hydrolysis, resulting in three molecular size fractions: <3 kDa, 3-10 kDa, and > 10 kDa. The POS fractions were analyzed using FTIR, HPSEC, HPLC, and MALDI-TOF-MS techniques to characterize their physical-chemical properties. Each fraction presented distinct compositions, with the <3 kDa fraction showing a higher concentration of galacturonic acid and glucose, while the >10 kDa fraction was also composed of rhamnose and arabinose. Notably, the <3 kDa fraction supported greater biomass growth of the probiotic strain Lactobacillus casei ATCC 393 compared to the other fractions. In contrast, the non-probiotic strain Escherichia coli ATCC 25922 achieved the lowest biomass with this fraction. Consequently, the <3 kDa POS fraction exhibited the highest prebiotic index. This fraction, composed of oligomers from the rhamnogalacturonan region and arabino-oligosaccharides with a degree of polymerization between two and five, highlights its potential for further research and applications. Therefore, investigating other sources and optimizing extraction conditions could lead to developing novel prebiotic formulations that supply specific probiotic strains for a symbiotic product.

RevDate: 2024-10-06

Zhang W, Qin J, Feng JQ, et al (2024)

A mycoheterotrophic orchid uses very limited soil inorganic nitrogen in its natural habitat.

Journal of plant physiology, 303:154367 pii:S0176-1617(24)00198-6 [Epub ahead of print].

Mycoheterotrophic plants acquire nitrogen (N) directly from the soil and through their symbiotic fungi. The fungi-derived N has received considerable attention, but the contribution of soil-derived N has been largely overlooked. We investigated how the leafless, rootless, and almost mycoheterotrophic orchid Cymbidium macrorhizon obtains soil N by applying [15]N-labeled ammonium nitrate in its natural habitat, and tracking metabolite accumulation and mycorrhizal fungal association after N application. The decline of N in the rhizome from flowering to fruiting indicated a transfer of N from the rhizome to fruits. At current dose of N application (0.6 g NH4NO3 each plant), only 1.5% of the plant's N was derived from fertilizer, resulting in a low nitrogen use efficiency of 0.27%. The majority of those newly absorbed N (88.89%) was found sank in the rhizome. Amino acids (or their derivatives) and alkaloids were predominant differentially accumulated nitrogenous metabolites after N application, with amino acids occurring in both fruits and the rhizome, and alkaloids primarily in the fruits. The addition of N did not alter the richness of mycorrhizal fungi, but did affect their relative abundance. Our findings suggest that Cymbidium macrorhizon uses very limited soil inorganic nitrogen in its natural habitat, and the root-like rhizome primarily stores N rather than absorbs its inorganic forms, offering new insights into how mycoheterotrophic plants utilize soil N, and the influence of nutrient availability on the orchid-fungi association.

RevDate: 2024-10-05
CmpDate: 2024-10-05

Figueroa-Gonzalez PA, Bornemann TLV, Hinzke T, et al (2024)

Metaproteogenomics resolution of a high-CO2 aquifer community reveals a complex cellular adaptation of groundwater Gracilibacteria to a host-dependent lifestyle.

Microbiome, 12(1):194.

BACKGROUND: Bacteria of the candidate phyla radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways, suggesting a symbiotic lifestyle. Gracilibacteria (BD1-5), which are part of the CPR branch, possess alternate coded genomes and have not yet been cultivated. The lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, particularly in groundwater, has remained largely unexplored. Here, we aimed to investigate Gracilibacteria activity in situ and to discern their lifestyle based on expressed genes, using the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany.

RESULTS: We coupled genome-resolved metagenomics and metaproteomics to investigate a cold-water geyser microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered to fraction CPR and other bacteria. Based on 725 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes, and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Gallionellales and Gracilibacteria along with keystone microbes, which were low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations, such as limited amino acid or nucleotide synthesis, in their central metabolism but no co-occurrence with potential hosts. The genomes of these Gracilibacteria were encoded for a high number of proteins involved in cell to cell interaction, supporting the previously surmised host-dependent lifestyle, e.g., type IV and type II secretion system subunits, transporters, and features related to cell motility, which were also detected on protein level.

CONCLUSIONS: We here identified microbial keystone taxa in a high-CO2 aquifer, and revealed microbial dynamics of Gracilibacteria. Although Gracilibacteria in this ecosystem did not appear to target specific organisms in this ecosystem due to lack of co-occurrence despite enrichment on 0.2-µm filter fraction, we provide proteomic evidence for the complex machinery behind the host-dependent lifestyle of groundwater Gracilibacteria. Video Abstract.

RevDate: 2024-10-05
CmpDate: 2024-10-05

Schmidt S, Murphy R, Vizueta J, et al (2024)

Comparative genomics unravels a rich set of biosynthetic gene clusters with distinct evolutionary trajectories across fungal species (Termitomyces) farmed by termites.

Communications biology, 7(1):1269.

The use of compounds produced by hosts or symbionts for defence against antagonists has been identified in many organisms, including in fungus-farming termites (Macrotermitinae). The obligate mutualistic fungus Termitomyces plays a pivotal role in plant biomass decomposition and as the primary food source for these termites. Despite the isolation of various specialized metabolites from different Termitomyces species, our grasp of their natural product repertoire remains incomplete. To address this knowledge gap, we conducted a comprehensive analysis of 39 Termitomyces genomes, representing 21 species associated with members of five termite host genera. We identified 754 biosynthetic gene clusters (BGCs) coding for specialized metabolites and categorized 660 BGCs into 61 biosynthetic gene cluster families (GCFs) spanning five compound classes. Seven GCFs were shared by all 21 Termitomyces species and 21 GCFs were present in all genomes of subsets of species. Evolutionary constraint analyses on the 25 most abundant GCFs revealed distinctive evolutionary histories, signifying that millions of years of termite-fungus symbiosis have influenced diverse biosynthetic pathways. This study unveils a wealth of non-random and largely undiscovered chemical potential within Termitomyces and contributes to our understanding of the intricate evolutionary trajectories of biosynthetic gene clusters in the context of long-standing symbiosis.

RevDate: 2024-10-05

Liang H, Pan CG, Peng FJ, et al (2024)

Integrative transcriptomic analysis reveals a broad range of toxic effects of triclosan on coral Porites lutea.

Journal of hazardous materials, 480:136033 pii:S0304-3894(24)02612-8 [Epub ahead of print].

Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 μg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 μg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.

RevDate: 2024-10-05

Jiao P, Zhou Y, Zhang X, et al (2024)

Mechanisms of horizontal gene transfer and viral contribution to the fate of intracellular and extracellular antibiotic resistance genes in anaerobic digestion supplemented with conductive materials under ammonia stress.

Water research, 267:122549 pii:S0043-1354(24)01448-9 [Epub ahead of print].

The addition of conductive materials (CMs) is an effective strategy for mitigating ammonia inhibition during anaerobic digestion (AD). However, the introduction of CMs can result in increased antibiotic resistance genes (ARGs) pollution, potentially facilitated by enhanced horizontal gene transfer (HGT). The complex dynamics of intracellular and extracellular ARGs (iARGs/eARGs) and the mechanisms underlying their transfer, mediated by CMs, in ammonia-stressed AD systems remain unclear. In this study, we investigated the effects of three commonly used CMs-nano magnetite (Mag), nano zero-valent iron (nZVI), and granular activated carbon (GAC)-on the fate of iARGs and eARGs during the AD of waste activated sludge under ammonia stress. The results revealed an unexpected enrichment of iARGs by 1.5 %-10.9 % and a reduction of eARGs by 14.1 %-25.2 % in CM-supplemented AD. This discrepancy in the dynamics of iARGs and eARGs may be attributed to changes in microbial hosts and the horizontal transfer of ARGs. Notably, CMs activated prophages within antibiotic-resistant bacteria (ARB) and their symbiotic partners involved in vitamin B12 provision, leading to the lysis of ARB and the subsequent release of eARGs for transformation. Additionally, the abundance of potentially mobile ARGs, which co-occurred with mobile genetic elements, increased by 56.6 %-134.5 % with CM addition, highlighting an enhanced potential for the HGT of ARGs. Specifically, Mag appeared to promote both transformation and conjugation processes, while nZVI only promoted conjugation. Moreover, none of the three CMs had any discernible impact on transduction. GAC proved superior to both nano Mag and nZVI in controlling the enrichment of iARGs, reducing eARGs, and limiting HGTs simultaneously. Overall, these findings provide novel insights into the role of viruses and the mechanisms of ARG spread in CM-assisted AD, offering valuable information for developing strategies to mitigate ARG pollution in practical applications.

RevDate: 2024-10-05

Bâ AM, Séne S, Manokari M, et al (2024)

Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes.

Mycorrhiza [Epub ahead of print].

Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.

RevDate: 2024-10-05

Wang Y, Zhao X, Cai D, et al (2024)

Insights into links between redox cycling of dissolved organic matter ranked by molecular weight and methanogen-bacteria symbiosis-driven methane production.

The Science of the total environment, 954:176682 pii:S0048-9697(24)06838-4 [Epub ahead of print].

Molecular weight (MW) of dissolved organic matter (DOM) governs its redox capacity, playing pivotal roles in methanogen-bacteria symbiosis-driven CH4 production. However, the effect of redox capacity of DOM ranked by MW on these symbiotic associations during anaerobic digestion have never been investigated. The electron-donating (EDC) and -accepting capacity (EAC) of DOM with different MW were quantified, elucidating their impacts on bacteria-methanogen symbiosis-driven CH4 production. By contrast, DOM with 7000 > MW > 14,000 Da constituted the primary contribution to EAC, with an average contribution of 44.63 %. DOM with MW > 14,000 Da emerged as the predominant contributor to EDC, with an average contribution of 49.10 %. Random forest showed that EAC/EDC of DOM ranked by MW was the important factors for methanogenesis by driving shifts in microbial symbiotic relationships. 46 genera (relative abundance of 69.55 %) of microorganisms exhibited robust associations with EAC/EDC. EDC of DOM with 3500 < MW < 7000 Da exerted positive effect on CH4 by modulating the corporation of Caldicoprobacter, norank_o__TSCOR001-H18, norank_o__MBA03 and Methanobrevibacter. EDC of DOM (7000 < MW < 14,000 Da) promotes CH4 production by regulating cooperation of Corynebacterium, Pseudomonas and Methanosarcina, Methanothermus. EDC of DOM (MW > 14,000 Da) enhances CH4 production by modulating cooperation of Ureibacillus, Treponema and methanomassiliicoccus, methanogenium. EAC of DOMs were negatively correlated with CH4. This study broadens our knowledge on the intricate process of methanogenesis and holds significant importance in developing a microbial symbiosis regulation strategy based on electron transfer system.

RevDate: 2024-10-06

Wang Z, Wang Q, Lu B, et al (2024)

Biogas slurry treatment and biogas upgrading by microalgae-based systems under the induction of different phytohormones.

Bioresource technology, 414:131569 pii:S0960-8524(24)01273-2 [Epub ahead of print].

The low grade of biogas and the difficulty of treating biogas slurry are the two major bottlenecks limiting the sustainable development of the fermentation engineering. This study investigates the potential role of microalgae-microbial symbiosis and phytohormones in solving this challenge. Chlorella microalgae were combined with endophytic bacteria (S395-2) and Clonostachys fungus to construct symbiotic systems. Growth, photosynthetic activity, and carbon dioxide and pollutant removal out of biogas slurry and biogas were analyzed under treatment with three different phytohormones (cytokinin, synthetic strigolactones (GR24), natural strigolactones). The Chlorella-S395-2-Clonostachys symbiont achieved the highest purification efficiency under GR24 induction, with removal efficiency exceeding 86% for chemical oxygen demand, total phosphorous, and total nitrogen, as well as over 76% for CO2. Economic efficiency can be increased by about 150%. The positive correlation between treatment effectiveness and co-culture performance suggests a promising avenue for developing symbiotic systems for biogas slurry treatment and biogas upgrading.

RevDate: 2024-10-04

Zhang G, T Ott (2024)

Cellular morphodynamics and signaling around the transcellular passage cleft during rhizobial infections of legume roots.

Current opinion in cell biology, 91:102436 pii:S0955-0674(24)00115-7 [Epub ahead of print].

Legume roots allow intracellular infections of rhizobia to establish the mutualistic root nodule symbiosis. During this colonization event, specialized and membrane-defined infection threads provide the host-controlled path for the bacteria through the multilayered root tissue to reach a newly developing organ, the root nodule. On this way, bacteria have to propagate transcellularly and thus overcome cell wall barriers. This process not only requires continuous molecular surveillance of the invading microbe but also structural adaptations of the extracellular matrix components in a spatially confined manner leading to the formation of a novel compartment that we term the "transcellular passage cleft" (TPC). Here, we review the molecular mechanisms and signaling events around the TPC and propose a step-wise model for TPC formation.

RevDate: 2024-10-07
CmpDate: 2024-10-04

Lin S (2024)

A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell.

BMC genomics, 25(1):932.

Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.

RevDate: 2024-10-06
CmpDate: 2024-10-04

Shi W, Q Wang (2024)

The framework for analyzing the mechanism of the evolution of inter-city relationship networks on regional economic resilience.

PloS one, 19(10):e0308280.

In this paper, we applied an analytical framework called "city cooperation intention → city relationship network → regional economic resilience," while considering the concept of externality as a measure of city cooperation intention, to draw insights from the perspectives of city relationships, biological evolution, and evolutionary economy. The evaluation system we developed focuses on the impact of inherent city culture on the inter-city relationship network, using variables such as knowledge spillover effect, technology symbiosis index, and market structure. We also incorporated innovation, resilience, and regeneration as determinants of regional economic resilience, building upon previous research findings. By applying structural force theory and a three-dimensional coordinate method, we analyzed the correlation between the relationship network and regional economic resilience, established a model to illustrate how the relationship network influences regional economic resilience, and described the course of action taken by the "three factors" of the relationship network on regional economic resilience. Ultimately, the aim of this study is to uncover the mechanism through which the inter-city relationship network affects regional economic resilience, with implications for healthy city design.

RevDate: 2024-10-04

Muller A, Morales-Montero P, Boss A, et al (2024)

Bacterial bioluminescence is an important regulator of multitrophic interactions in the soil.

Cell reports, 43(10):114817 pii:S2211-1247(24)01168-9 [Epub ahead of print].

Enormous efforts have been made to understand the functions of bioluminescence; however, its relevance in soil ecosystems has barely been investigated. In addition, our understanding of the biological relevance of bioluminescence is hampered by the scarcity of tools to genetically manipulate this trait. Using the symbionts of entomopathogenic nematodes, Photorhabdus bacteria, we show that bioluminescence plays important regulatory roles in multitrophic interactions in the soil. Through genetic modifications and exploiting natural variability, we provide direct evidence for the multifunctional nature of bioluminescence. It regulates abiotic and biotic stress resistance, impacts other trophic levels, including nematodes, insects, and plants, and contributes to symbiosis. Our study contributes to understanding the factors that have driven the evolution and maintenance of this trait in belowground ecosystems.

RevDate: 2024-10-05

Perkowski EA, Terrones J, German HL, et al (2024)

Symbiotic nitrogen fixation reduces belowground biomass carbon costs of nitrogen acquisition under low, but not high, nitrogen availability.

AoB PLANTS, 16(5):plae051.

Many plant species form symbiotic associations with nitrogen-fixing bacteria. Through this symbiosis, plants allocate photosynthate belowground to the bacteria in exchange for nitrogen fixed from the atmosphere. This symbiosis forms an important link between carbon and nitrogen cycles in many ecosystems. However, the economics of this relationship under soil nitrogen availability gradients is not well understood, as plant investment toward symbiotic nitrogen fixation tends to decrease with increasing soil nitrogen availability. Here, we used a manipulation experiment to examine how costs of nitrogen acquisition vary under a factorial combination of soil nitrogen availability and inoculation with Bradyrhizobium japonicum in Glycine max L. (Merr.). We found that inoculation decreased belowground biomass carbon costs to acquire nitrogen and increased total leaf area and total biomass, but these patterns were only observed under low fertilization and were the result of increased plant nitrogen uptake and no change in belowground carbon allocation. These results suggest that symbioses with nitrogen-fixing bacteria reduce carbon costs of nitrogen acquisition by increasing plant nitrogen uptake, but only when soil nitrogen is low, allowing individuals to increase nitrogen allocation to structures that support aboveground growth. This pattern may help explain the prevalence of plants capable of forming these associations in less fertile soils and provides useful insight into understanding the role of nutrient acquisition strategy on plant nitrogen uptake across nitrogen availability gradients.

RevDate: 2024-10-05

Wu D, He X, Jiang L, et al (2024)

Root exudates facilitate the regulation of soil microbial community function in the genus Haloxylon.

Frontiers in plant science, 15:1461893.

INTRODUCTION: Root exudates act as the "language" of plant-soil communication, facilitating crucial interactions, information exchange, and energy transfer between plants and soil. The interactions facilitated by root exudates between plants and microorganisms in the rhizosphere are crucial for nutrient uptake and stress resilience in plants. However, the mechanism underlying the interaction between root exudates and rhizosphere microorganisms in desert plants under drought conditions remains unclear, especially among closely related species.

METHODS: To reveal the ecological strategies employed by the genus Haloxylon in different habitats. Using DNA extraction and sequencing and UPLC-Q-Tof/MS methods, we studied root exudates and soil microorganisms from two closely related species, Haloxylon ammodendron (HA) and Haloxylon persicum (HP), to assess differences in their root exudates, soil microbial composition, and interactions.

RESULTS: Significant differences were found in soil properties and root traits between the two species, among which soil water content (SWC) and soil organic carbon (SOC) in rhizosphere and bulk soils (P < 0.05). While the metabolite classification of root exudates was similar, their components varied, with terpenoids being the main differential metabolites. Soil microbial structure and diversity also exhibited significant differences, with distinct key species in the network and differential functional processes mainly related to nitrogen and carbon cycles. Strong correlations were observed between root exudate-mediated root traits, soil microorganisms, and soil properties, although the complex interactions differed between the two closely relative species. The primary metabolites found in the network of HA include sugars and fatty acids, while HP relies on secondary metabolites, steroids and terpenoids.

DISCUSSION: These findings suggest that root exudates are key in shaping rhizosphere microbial communities, increasing microbial functionality, fostering symbiotic relationships with hosts, and bolstering the resilience of plants to environmental stress.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In this comprehensive history of symbiosis theory--the first to be written--Jan Sapp masterfully traces its development from modest beginnings in the late nineteenth century to its current status as one of the key conceptual frameworks for the life sciences. The symbiotic perspective on evolution, which argues that "higher species" have evolved from a merger of two or more different kinds of organisms living together, is now clearly established with definitive molecular evidence demonstrating that mitochondria and chloroplasts have evolved from symbiotic bacteria. In telling the exciting story of an evolutionary biology tradition that has effectively challenged many key tenets of classical neo-Darwinism, Sapp sheds light on the phenomena, movements, doctrines, and controversies that have shaped attitudes about the scope and significance of symbiosis. Engaging and insightful, Evolution by Association will be avidly read by students and researchers across the life sciences.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )