About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

29 Sep 2023 at 01:56
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Neanderthals


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 29 Sep 2023 at 01:56 Created: 


Wikipedia: Neanderthals or Neandertals — named for the Neandertal region in Germany — were a species or subspecies of archaic human, in the genus Homo. Neanderthals became extinct around 40,000 years ago. They were closely related to modern humans, sharing 99.7% of DNA. Remains left by Neanderthals include bone and stone tools, which are found in Eurasia, from Western Europe to Central and Northern Asia. Neanderthals are generally classified by paleontologists as the species Homo neanderthalensis, having separated from the Homo sapiens lineage 600,000 years ago, but a minority consider them to be a subspecies of Homo sapiens (Homo sapiens neanderthalensis). Several cultural assemblages have been linked to the Neanderthals in Europe. The earliest, the Mousterian stone tool culture, dates to about 160,000 years ago. Late Mousterian artifacts were found in Gorham's Cave on the south-facing coast of Gibraltar. Compared to Homo sapiens, Neanderthals had a lower surface-to-volume ratio, with shorter legs and a bigger body, in conformance with Bergmann's rule, as an energy-loss reduction adaptation to life in a high-latitude (i.e. seasonally cold) climate. Their average cranial capacity was notably larger than typical for modern humans: 1600 cm3 vs. 1250-1400 cm3. The Neanderthal genome project published papers in 2010 and 2014 stating that Neanderthals contributed to the DNA of modern humans, including most humans outside sub-Saharan Africa, as well as a few populations in sub-Saharan Africa, through interbreeding, likely between 50,000 and 60,000 years ago.

Created with PubMed® Query: ( Neanderthal OR Neandertal ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2023-09-25

Hui J, A Balzeau (2023)

The diploic venous system in Homo neanderthalensis and fossil Homo sapiens: A study using high-resolution computed tomography.

American journal of biological anthropology [Epub ahead of print].

OBJECTIVES: The diploic venous system has been hypothesized to be related to human brain evolution, though its evolutionary trajectory and physiological functions remain largely unclear. This study examines the characteristics of the diploic venous channels (DCs) in a selection of well-preserved Homo neanderthalensis and Upper Paleolithic Homo sapiens crania, searching for the differences between the two taxa and exploring the associations between brain anatomy and DCs.

MATERIALS AND METHODS: Five H. neanderthalensis and four H. sapiens fossil specimens from Western Europe were analyzed. Based on Micro-CT scanning and 3D reconstruction, the distribution pattern and draining orifices of the DCs were inspected qualitatively. The size of the DCs was quantified by volume calculation, and the degree of complexity was quantified by fractal analyses.

RESULTS: High-resolution data show the details of the DC structures not documented in previous studies. H. neanderthalensis and H. sapiens specimens share substantial similarities in the DCs. The noticeable differences between the two samples manifest in the connecting points surrounding the frontal sinuses, parietal foramina, and asterional area.

DISCUSSION: This study provides a better understanding of the anatomy of the DCs in H. neanderthalensis and H. sapiens. The connection patterns of the DCs have potential utility in distinguishing between the two taxa and in the phylogenetic and taxonomic discussion of the Neandertal-like specimens with controversial taxonomic status.

RevDate: 2023-09-22

Vidal-Cordasco M, Terlato G, Ocio D, et al (2023)

Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity.

Science advances, 9(38):eadi4099.

It has been proposed that climate change and the arrival of modern humans in Europe affected the disappearance of Neanderthals due to their impact on trophic resources; however, it has remained challenging to quantify the effect of these factors. By using Bayesian age models to derive the chronology of the European Middle to Upper Paleolithic transition, followed by a dynamic vegetation model that provides the Net Primary Productivity, and a macroecological model to compute herbivore abundance, we show that in continental regions where the ecosystem productivity was low or unstable, Neanderthals disappeared before or just after the arrival of Homo sapiens. In contrast, regions with high and stable productivity witnessed a prolonged coexistence between both species. The temporal overlap between Neanderthals and H. sapiens is significantly correlated with the carrying capacity of small- and medium-sized herbivores. These results suggest that herbivore abundance released the trophic pressure of the secondary consumers guild, which affected the coexistence likelihood between both human species.

RevDate: 2023-09-22

Fajardo S, Kozowyk PRB, GHJ Langejans (2023)

Measuring ancient technological complexity and its cognitive implications using Petri nets.

Scientific reports, 13(1):14961.

We implement a method from computer sciences to address a challenge in Paleolithic archaeology: how to infer cognition differences from material culture. Archaeological material culture is linked to cognition, and more complex ancient technologies are assumed to have required complex cognition. We present an application of Petri net analysis to compare Neanderthal tar production technologies and tie the results to cognitive requirements. We applied three complexity metrics, each relying on their own unique definitions of complexity, to the modeled production processes. Based on the results, we propose that Neanderthal technical cognition may have been analogous to that of contemporary modern humans. This method also enables us to distinguish the high-order cognitive functions combining traits like planning, inhibitory control, and learning that were likely required by different ancient technological processes. The Petri net approach can contribute to our understanding of technology and cognitive evolution as it can be used on different materials and technologies, across time and species.

RevDate: 2023-09-21

Breno M, Noris M, Rubis N, et al (2023)

A GWAS in the pandemic epicenter highlights the severe COVID-19 risk locus introgressed by Neanderthals.

iScience, 26(10):107629.

Large GWAS indicated that genetic factors influence the response to SARS-CoV-2. However, sex, age, concomitant diseases, differences in ancestry, and uneven exposure to the virus impacted the interpretation of data. We aimed to perform a GWAS of COVID-19 outcome in a homogeneous population who experienced a high exposure to the virus and with a known infection status. We recruited inhabitants of Bergamo province-that in spring 2020 was the epicenter of the SARS-Cov-2 pandemic in Europe-via an online questionnaire followed by personal interviews. Cases and controls were matched by age, sex and risk factors. We genotyped 1195 individuals and replicated the association at the 3p21.31 locus with severity, but with a stronger effect size that further increased in gravely ill patients. Transcriptome-wide association study highlighted eQTLs for LZTFL1 and CCR9. We also identified 17 loci not previously reported, suggestive for an association with either COVID-19 severity or susceptibility.

RevDate: 2023-09-15

Ge X, Lu Y, Chen S, et al (2023)

Genetic origins and adaptive evolution of the Deng people on the Tibetan Plateau.

Molecular biology and evolution pii:7275013 [Epub ahead of print].

The Tibetan Plateau is populated by diverse ethnic groups, but most of them are under-represented in genomics studies compared with the Tibetans. Here, to gain further insight into the genetic diversity and evolutionary history of the people living in the Tibetan Plateau, we sequenced 54 whole genomes of the Deng people with high coverage (30-60×) and analyzed the data together with that of Tibetans and Sherpas, as well as 968 ancient Asian genomes and available archaic and modern human data. We identified 17.74 million novel single-nucleotide variants from the newly sequenced genomes, although the Deng people showed reduced genomic diversity and a relatively small effective population size. Compared with the other Tibetan highlander groups which are highly admixed, the Deng people are dominated by a sole ancestry that could be traced to some ancient northern East Asian populations. The divergence between Deng and Tibetan people (∼4,700-7,200 years) was more recent than that between highlanders and the Han Chinese (HAN) (Deng-HAN: ∼9,000-14,000 years, TIB-HAN: 7,200-10,000 years). Adaptive genetic variants (AGVs) identified in the Deng are only partially shared with those previously reported in the Tibetans like HLA-DQB1; while others like KLHL12, were not reported in Tibetans. In contrast, the top candidate genes harboring AGVs as previously identified in Tibetans, like EPAS1 and EGLN1, do not show strong positive selection signals in Deng. Interestingly, Deng also showed a different archaic introgression scenario from that observed in the Tibetans. Our results suggest that convergent adaptation might be prevalent on the Tibetan Plateau.

RevDate: 2023-09-07

Kozowyk PRB, Baron LI, GHJ Langejans (2023)

Identifying Palaeolithic birch tar production techniques: challenges from an experimental biomolecular approach.

Scientific reports, 13(1):14727.

The intentional production of birch bark tar by European Neanderthals as early as 190,000 years ago plays an important role in discussions about the technological and behavioural complexity of Pleistocene hominins. However, research is hampered because it is currently unknown how Neanderthals were producing birch tar. There are several different techniques that could have been employed, but these differ in their apparent production complexity, time and resource efficiency. Identifying production processes in the archaeological record is therefore paramount for furthering research on the technical behavioural repertoire. Organic biomarkers, identified with Gas Chromatograph-Mass Spectrometry (GC-MS), have been used to identify possible production processes during the Neolithic. Here we test whether these biomarkers can also distinguish Palaeolithic (aceramic) tar production methods. We produced tar using five different methods and analysed their biomolecular composition with GC-MS. Our results show that the biomarkers used to distinguish Neolithic tar production strategies using ceramic technology cannot be reliably used to identify tar production processes using aceramic Palaeolithic techniques. More experimentation is required to produce a larger reference library of different tars for future comparisons. To achieve this, complete GC-MS datasets must also be made publicly available, as we have done with our data.

RevDate: 2023-09-07

Kozowyk PRB, Fajardo S, GHJ Langejans (2023)

Scaling Palaeolithic tar production processes exponentially increases behavioural complexity.

Scientific reports, 13(1):14709.

Technological processes, reconstructed from the archaeological record, are used to study the evolution of behaviour and cognition of Neanderthals and early modern humans. In comparisons, technologies that are more complex infer more complex behaviour and cognition. The manufacture of birch bark tar adhesives is regarded as particularly telling and often features in debates about Neanderthal cognition. One method of tar production, the 'condensation technique', demonstrates a pathway for Neanderthals to have discovered birch bark tar. However, to improve on the relatively low yield, and to turn tar into a perennial innovation, this method likely needed to be scaled up. Yet, it is currently unknown how scaling Palaeolithic technological processes influences their complexity. We used Petri net models and the Extended Cyclomatic Metric to measure system complexity of birch tar production with a single and three concurrent condensation assemblies. Our results show that changing the number of concurrent tar production assemblies substantially increases the measured complexity. This has potential implications on the behavioural and cognitive capacities required by Neanderthals, such as an increase in cooperation or inhibition control.

RevDate: 2023-09-07

Flegontov P, Işıldak U, Maier R, et al (2023)

Modeling of African population history using f-statistics is biased when applying all previously proposed SNP ascertainment schemes.

PLoS genetics, 19(9):e1010931 pii:PGENETICS-D-23-00086 [Epub ahead of print].

f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.

RevDate: 2023-09-07

Mester Z, Coqueugniot H, Tillier AM, et al (2023)

First direct dating of the Late Neanderthal remains from Subalyuk Cave in Northern Hungary.

Anthropologischer Anzeiger; Bericht uber die biologisch-anthropologische Literatur [Epub ahead of print].

The Subalyuk hominin remains were uncovered in 1932 in a cave of the same name in the Bükk Mountains, near the village of Cserépfalu in Borsod-Abaúj-Zemplén County, Northern Hungary. The remains represent two individuals, an adult and a young child who have been described in a few publications since their discovery, providing substantial anthropological data and general assessments of their Neanderthal affiliation. They were associated with Late Mousterian industry. Thus, the Bükk Mountains gain importance in the discussion concerning the contribution of East Central European sites to the debate on the peopling history of Europe during the Late Middle to Early Upper Palaeolithic transition. In this paper, we summarize the archaeological and chronological context of the two individuals, and publish the first direct dating results that place them among the Last Neanderthals of Central Europe.

RevDate: 2023-09-02

Glunčić M, Vlahović I, Rosandić M, et al (2023)

Tandem NBPF 3mer HORs (Olduvai triplets) in Neanderthal and two novel HOR tandem arrays in human chromosome 1 T2T-CHM13 assembly.

Scientific reports, 13(1):14420.

It is known that the ~ 1.6 kb Neuroblastoma BreakPoint Family (NBPF) repeats are human specific and contributing to cognitive capabilities, with increasing frequency in higher order repeat 3mer HORs (Olduvai triplets). From chimpanzee to modern human there is a discontinuous jump from 0 to ~ 50 tandemly organized 3mer HORs. Here we investigate the structure of NBPF 3mer HORs in the Neanderthal genome assembly of Pääbo et al., comparing it to the results obtained for human hg38.p14 chromosome 1. Our findings reveal corresponding NBPF 3mer HOR arrays in Neanderthals with slightly different monomer structures and numbers of HOR copies compared to humans. Additionally, we compute the NBPF 3mer HOR pattern for the complete telomere-to-telomere human genome assembly (T2T-CHM13) by Miga et al., identifying two novel tandem arrays of NBPF 3mer HOR repeats with 5 and 9 NBPF 3mer HOR copies. We hypothesize that these arrays correspond to novel NBPF genes (here referred to as NBPFA1 and NBPFA2). Further improving the quality of the Neanderthal genome using T2T-CHM13 as a reference would be of great interest in determining the presence of such distant novel NBPF genes in the Neanderthal genome and enhancing our understanding of human evolution.

RevDate: 2023-09-02

Fiorenza L, Habashi W, Moggi-Cecchi J, et al (2023)

Relationship between interproximal and occlusal wear in Australopithecus africanus and Neanderthal molars.

Journal of human evolution, 183:103423 pii:S0047-2484(23)00102-1 [Epub ahead of print].

RevDate: 2023-08-28
CmpDate: 2023-08-28

Chevy ET, Huerta-Sánchez E, S Ramachandran (2023)

Integrating sex-bias into studies of archaic introgression on chromosome X.

PLoS genetics, 19(8):e1010399.

Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.

RevDate: 2023-08-23

Yee SW, Ferrández-Peral L, Alentorn P, et al (2023)

Illuminating the Function of the Orphan Transporter, SLC22A10 in Humans and Other Primates.

bioRxiv : the preprint server for biology pii:2023.08.08.552553.

SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17β-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.

RevDate: 2023-08-17

Sánchez Goñi MF (2020)

Regional impacts of climate change and its relevance to human evolution.

Evolutionary human sciences, 2:e55.

The traditional concept of long and gradual, glacial-interglacial climate changes during the Quaternary has been challenged since the 1980s. High temporal resolution analysis of marine, terrestrial and ice geological archives has identified rapid, millennial- to centennial-scale, and large-amplitude climatic cycles throughout the last few million years. These changes were global but have had contrasting regional impacts on the terrestrial and marine ecosystems, with in some cases strong changes in the high latitudes of both hemispheres but muted changes elsewhere. Such a regionalization has produced environmental barriers and corridors that have probably triggered niche contractions/expansions of hominin populations living in Eurasia and Africa. This article reviews the long- and short-timescale ecosystem changes that have punctuated the last few million years, paying particular attention to the environments of the last 650,000 years, which have witnessed key events in the evolution of our lineage in Africa and Eurasia. This review highlights, for the first time, a contemporaneity between the split between Denisovan and Neanderthals, at ~650-400 ka, and the strong Eurasian ice-sheet expansion down to the Black Sea. This ice expansion could form an ice barrier between Europe and Asia that may have triggered the genetic drift between these two populations.

RevDate: 2023-08-13

Piccardi M, Gentiluomo M, Bertoncini S, et al (2023)

Exploring the Neandertal legacy of pancreatic ductal adenocarcinoma risk in Eurasians.

Biological research, 56(1):46.

BACKGROUND: The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations.

RESULTS: The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10[-6]), with a P-value close to a threshold that takes into account multiple testing.

CONCLUSIONS: Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.

RevDate: 2023-08-10

Ruan J, Timmermann A, Raia P, et al (2023)

Climate shifts orchestrated hominin interbreeding events across Eurasia.

Science (New York, N.Y.), 381(6658):699-704.

When, where, and how often hominin interbreeding happened is largely unknown. We study the potential for Neanderthal-Denisovan admixture using species distribution models that integrate extensive fossil, archaeological, and genetic data with transient coupled general circulation model simulations of global climate and biomes. Our Pleistocene hindcast of past hominins' habitat suitability reveals pronounced climate-driven zonal shifts in the main overlap region of Denisovans and Neanderthals in central Eurasia. These shifts, which influenced the timing and intensity of potential interbreeding events, can be attributed to the response of climate and vegetation to past variations in atmospheric carbon dioxide and Northern Hemisphere ice-sheet volume. Therefore, glacial-interglacial climate swings likely played an important role in favoring gene flow between archaic humans.

RevDate: 2023-08-10

Garralda MD, Le Cabec A, Maíllo Fernández JM, et al (2023)

Mousterian human fossils from El Castillo cave (Puente Viesgo, Cantabria, Spain).

Journal of anthropological sciences = Rivista di antropologia : JASS, 100: [Epub ahead of print].

El Castillo cave is a well-known site because of its Paleolithic archaeology and parietal rock art. This paper is focused on the human remains found by V. Cabrera in the Mousterian Unit XX assigned to MIS 4 and early MIS 3. The fossils consist of one upper left second premolar (ULP4), one incomplete proximal hand phalanx, and one partial femoral head. The tooth and the phalanx were assigned to adults, whereas the femoral head belonged to an immature individual due to the absence of fusion traces to the metaphyseal surface. The external morphology and metrical characterization of the Castillo-1466 (ULP4) tooth crown was quantified and compared to the variability of other Neanderthal dental remains and a sample of modern human populations. We also quantified its 3D enamel thickness distribution, its roots morphology, as well as the presence of chipping, and their possible relation to masticatory or paramasticatory activities. Castillo-1466 shows crown dimensions compatible with middle-sized Neanderthal teeth, but with a remarkably thicker enamel than other Neanderthal premolars, such as Marillac 13. The femoral head and the hand phalanx fragment are compared to published values for Neanderthals, although both partial fossils lack diagnostic features precluding any clear taxonomic diagnostic. Therefore, their attribution to Neanderthals is assumed based on the dating of the layers in which they were discovered. El Castillo cave Mousterian fossils represent another contribution to the knowledge of the Middle Paleolithic populations of Northern Spain, where different sites along the Cantabrian mountains yielded several human remains assigned to MIS 4 and early MIS 3.

RevDate: 2023-08-09

Aquino Y, Bisiaux A, Li Z, et al (2023)

Dissecting human population variation in single-cell responses to SARS-CoV-2.

Nature [Epub ahead of print].

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection[1-3], the genetic and immunological basis of which has begun to be deciphered[4]. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.

RevDate: 2023-08-06

Augoyard M, Zanolli C, Santos F, et al (2023)

Evaluation of age, sex, and ancestry-related variation in cortical bone and dentine volumes in modern humans, and a preliminary assessment of cortical bone-dentine covariation in later Homo.

Journal of anthropological sciences = Rivista di antropologia : JASS, 100: [Epub ahead of print].

Cortical bone and dentine share similarities in their embryological origin, development, and genetic background. Few analyses have combined the study of cortical bone and dentine to quantify their covariation relative to endogenous and exogenous factors. However, knowing how these tissues relate in individuals is of great importance to decipher the factors acting on their evolution, and ultimately to understand the mechanisms responsible for the different patterns of tissue proportions shown in hominins. The aims of this study are to examine age-, sex-, and ancestry-related variation in cortical bone and dentine volumes, and to preliminary assess the possible covariation between these tissues in modern humans and in five composite Neandertals. The modern analytical sample includes 12 immature individuals from France and 49 adults from France and South Africa. Three-dimensional tissue proportions were assessed from microtomographic records of radii and permanent maxillary canines. Results suggest ontogenic differences and a strong sexual dimorphism in cortical bone and dentine developments. The developmental pattern of dentine also seems to vary according to individual's ancestry. We measure a stronger covariation signal between cortical bone and dentine volumes than with any other dental tissue. A more complex covariation pattern is shown when splitting the modern sample by age, sex, and ancestry, as no signal is found in some subsamples while others show a covariation between cortical bone and either crown or radicular dentine. Finally, no difference in cortical bone volume is noticed between the modern young adults and the five young adult composite Neandertals from Marine Isotopic Stages (MIS) 5 and 3. Greater dentine Cortical bone and dentine (co)variation volumes are measured in the MIS 5 chimeric Neandertals whereas a strong interpopulation variation in dentine thickness is noticed in the MIS 3 chimeric Neandertals. Further research on the cortical bonedentine covariation will increase understanding of the impact of endogenous and exogenous factors on the development of the mineralized tissues.

RevDate: 2023-08-07
CmpDate: 2023-08-07

Gicqueau A, Schuh A, Henrion J, et al (2023)

Anatomically modern human in the Châtelperronian hominin collection from the Grotte du Renne (Arcy-sur-Cure, Northeast France).

Scientific reports, 13(1):12682.

Around 42,000 years ago, anatomically modern humans appeared in Western Europe to the detriment of indigenous Neanderthal groups. It is during this period that new techno-cultural complexes appear, such as the Châtelperronian that extends from northern Spain to the Paris Basin. The Grotte du Renne (Arcy-sur-Cure) is a key site for discussing the biological identity of its makers. This deposit has yielded several Neanderthal human remains in its Châtelperronian levels. However, the last inventory of the paleoanthropological collection attributed to this techno-complex allowed the identification of an ilium belonging to a neonate (AR-63) whose morphology required a thorough analysis to assess its taxonomic attribution. Using geometric morphometrics, we quantified its morphology and compared it to that of 2 Neanderthals and 32 recent individuals deceased during the perinatal period to explore their morphological variation. Our results indicate a morphological distinction between the ilia of Neanderthals and anatomically modern neonates. Although AR-63 is slightly outside recent variability, it clearly differs from the Neanderthals. We propose that this is due to its belonging to an early modern human lineage whose morphology differs slightly from present-day humans. We also explore different hypotheses about the presence of this anatomically modern neonate ilium among Neanderthal remains.

RevDate: 2023-08-04
CmpDate: 2023-08-03

Badino F, Pini R, Ravazzi C, et al (2023)

High-resolution ecosystem changes pacing the millennial climate variability at the Middle to Upper Palaeolithic transition in NE-Italy.

Scientific reports, 13(1):12478.

Observation of high-resolution terrestrial palaeoecological series can decipher relationships between past climatic transitions, their effects on ecosystems and wildfire cyclicity. Here we present a new radiocarbon dated record from Lake Fimon (NE-Italy) covering the 60-27 ka interval. Palynological, charcoal fragments and sediment lithology analysis were carried out at centennial to sub-centennial resolutions. Identification of the best modern analogues for MIS 3 ecosystems further enabled to thoroughly reconstruct structural changes in the vegetation through time. This series also represents an "off-site" reference record for chronologically well-constrained Palaeolithic sites documenting Neanderthal and Homo sapiens occupations within the same region. Neanderthals lived in a mosaic of grasslands and woodlands, composed of a mixture of boreal and broad-leaved temperate trees analogous to those of the modern Central-Eastern Europe, the Southern Urals and central-southern Siberia. Dry and other grassland types expanded steadily from 44 to 43 ka and peaked between 42 and 39 ka, i.e., about the same time when Sapiens reached this region. This vegetation, which finds very few reliable modern analogues in the adopted Eurasian calibration set, led to the expansion of ecosystems able to sustain large herds of herbivores. During 39-27 ka, the landscape was covered by steppe, desert-steppe and open dry boreal forests similar to those of the modern Altai-Sayan region. Both Neanderthal and Sapiens lived in contexts of expanded fire-prone ecosystems modulated by the high-frequency climatic cycles of MIS 3.

RevDate: 2023-07-29

Maasch JRMA, Torres MDT, Melo MCR, et al (2023)

Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.

Cell host & microbe pii:S1931-3128(23)00296-2 [Epub ahead of print].

Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.

RevDate: 2023-08-03

Sidik S (2023)

AI search of Neanderthal proteins resurrects 'extinct' antibiotics.

RevDate: 2023-07-27

Pawar H, Rymbekova A, Cuadros-Espinoza S, et al (2023)

Ghost admixture in eastern gorillas.

Nature ecology & evolution [Epub ahead of print].

Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.

RevDate: 2023-07-27

Muotri AR (2023)

Brain Model Technology and Its Implications.

Cambridge quarterly of healthcare ethics : CQ : the international journal of healthcare ethics committees pii:S096318012300018X [Epub ahead of print].

The complexity of the human brain creates a spectrum of sophisticated behavioral repertoires, such as language, tool use, self-awareness, symbolic thought, cultural learning, and consciousness. Understanding how the human brain achieves that has been a longstanding challenge for neuroscientists and may bring insights into the evolution of human cognition and disease states. Human pluripotent stem cells could differentiate into specialized cell types and tissues in vitro. From this pluripotent state, it is possible to generate models of the human brain, such as brain organoids. The recent observation that brain organoids can spontaneously develop complex neural network activity in a dish can help one understand how neural network oscillations evolve and vary between normal and disease states. Moreover, this finding can be leveraged to other applications outside medicine, including engineering and artificial intelligence. However, as the brain model technology becomes more complex, it raises a series of ethical and moral dilemmas. This article discusses the status of this technology, some of its current limitations, and a vision of the future.

RevDate: 2023-07-26

Bird EE, Kivell TL, Dunmore CJ, et al (2023)

Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart-thrower's motion.

American journal of biological anthropology [Epub ahead of print].

OBJECTIVES: This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM).

MATERIALS AND METHODS: We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV).

RESULTS: Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side.

CONCLUSION: The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.

RevDate: 2023-07-14

Yang C, Zhou Y, Song Y, et al (2023)

The complete and fully-phased diploid genome of a male Han Chinese.

Cell research [Epub ahead of print].

Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.

RevDate: 2023-07-20
CmpDate: 2023-07-07

Smith TM, Arora M, Bharatiya M, et al (2023)

Brief Communication: Elemental Models of Primate Nursing and Weaning Revisited.

American journal of biological anthropology, 180(1):216-223.

OBJECTIVES: Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each.

MATERIALS AND METHODS: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution.

RESULTS: Postnatal Ba/Ca values were typically high, peaking ~0.5 years of age and then decreasing throughout M1 crown formation; all four individuals showed minimal Ba/Ca values between ~1.2-1.8 years, consistent with field reports of the cessation of suckling. Enamel Sr/Ca did not support patterns of previous LA-ICP-MS spot sampling as the enamel rarely showed discrete Sr/Ca secretory zonation. Increases in Sr/Ca appeared in coronal dentine beginning ~0.3 years, with varied peak value ages (~0.7-2.7 years) and no evidence of a predicted postweaning decline.

DISCUSSION: Inferences of baboon weaning ages from initial Ba/Ca minima are more congruent with behavioral observations than Sr/Ca maxima; this is consistent with studies of captive macaques of known weaning ages. Elemental variation is more apparent in the coronal dentine than the enamel of these baboons, which may relate to its more rapid mineralization and protection from the oral environment. Inferences of nursing histories from enamel Sr/Ca patterns alone should be reconsidered, and elevated values of Ba/Ca and Sr/Ca in teeth formed after weaning require further study.

RevDate: 2023-08-02
CmpDate: 2023-07-31

Henrion J, Hublin JJ, B Maureille (2023)

New Neanderthal remains from the Châtelperronian-attributed layer X of the Grotte du Renne (Arcy-sur-Cure, France).

Journal of human evolution, 181:103402.

RevDate: 2023-07-01

Tozzi A (2023)

Non-ultrametric phylogenetic trees shed new light on Neanderthal introgression.

Organisms, diversity & evolution [Epub ahead of print].

Ultrametric spaces are widely used to depict evolutionary times in phylogenetic trees since they assume that every population/species is located at the tips of bifurcating branches of the same length. The discrete branching of ultrametric trees permits the measurement of distances between pairs of individuals that are proportional to their divergence time. Here the traditional ultrametric concept of bifurcating and divergent phylogenetic tree is overturned and a new type of non-ultrametric diagram is introduced. The objective of this study is the description of gene flows in branching species/populations in terms of converging trees instead of bifurcating trees. To provide an operational example, the paleoanthropological issue of the date of Neanderthal genome's introgression in non-African humans is examined. Neanderthals and ancient humans are not anymore two species that exchange chunks of DNA, rather become a single, novel cluster of extant hominins that must be considered by itself. The novel converging, non-ultrametric phylogenetic trees permit the calibration of molecular clocks with a twofold benefit. When the date of the branching of two population/species from a common ancestor is known, the novel approach allows to calculate the time of subsequent introgressions. On the contrary, when the date of the introgression between two population/species is known, the novel approach allows to detect the time of their previous branching from a common ancestor.

RevDate: 2023-06-24

Condemi S, Panuel M, Chaumoitre K, et al (2023)

A pathological Neandertal thumb phalanx from Moula-Guercy (France).

International journal of paleopathology, 42:14-17 pii:S1879-9817(23)00035-9 [Epub ahead of print].

OBJECTIVE: To discuss a Neandertal pathological adult first pollical proximal phalanx (I2-104) from the Baume de Moula-Guercy (Ardèche, France) and evaluate the possible causes of this pathology.

METHODS: Macroscopic analyses of external features, as well as CT imaging, were used in the analysis RESULTS: The presence of asymmetric eburnation on the distal epiphysis associated with an osteophyte on the palmar surface, as well as the absence of periosteal bone reaction visible on CT images, is consistent with osteoarthritis.

CONCLUSION: Osteoarthritis (OA) can have different origins and the cause is difficult to identify. The pathology of the Moula-Guercy I2-104 phalanx may be due to a genetic predisposition for OA known in Neandertals and associated with short limb bones. The OA could have been aggravated by the age of this individual and by an inflammatory reaction caused by repeated movements and intense vibrations provoked by high-frequency knapping or by other use of the hands SIGNIFICANCE: The I2-104 phalanx is the first Neandertal pollical phalanx known to display OA, although joints of this bone are frequently affected by this pathology in modern humans. Thus, greater insight into the presence and consequences of Neandertal behaviors is offered LIMITATION: It is impossible to give a definitive conclusion on the cause(s) of the OA in this case.

More data is needed concerning OA within Neandertals and its relationship with behavior and genetics.

RevDate: 2023-06-22

Rodríguez L, García-González R, Arsuaga JL, et al (2023)

Uncovering the adult morphology of the forearm bones from the Sima de los Huesos Site in Atapuerca (Spain), with comments on biomechanical features.

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

The forearm skeleton is composed of two bones: the radius and the ulna. This is closely related to manipulative movements. The ulna is part of the elbow joint, whereas the radius and ulna together with the scaphoid and lunate bones, form the wrist joints. Thus, morphofunctional analysis of the adult Sima de los Huesos (SH) forearm bones, provides clues about manipulative activities in one Pleistocene population. From 1976 to the present, over 7000 human fossils have been recovered from the SH site. The radial sample comprised 98 labeled fragments, of which 49 belonged to adult individuals, representing at least 7 individuals. The ulnar sample included 31 labeled adult fossils representing at least nine individuals. In this study, we describe the SH radii and ulnae and analyze their functional implications for manipulative and forearm movements. We confirmed that the SH radii are long and curved, with variations in robusticity and radial tuberosity orientation. The SH ulnae are characterized by an anteriorly oriented trochlear notch, a massive olecranon process, an obliquely oriented radial notch, a blunt and short supinator crest, a gracile and curved diaphysis, and a round and anteriorly oriented pronator crests. In general, they exhibit Neanderthal morphology. The SH collection provides a unique opportunity to conduct morphological analyses of these bones in the Middle Pleistocene population.

RevDate: 2023-07-01
CmpDate: 2023-06-23

Marquet JC, Freiesleben TH, Thomsen KJ, et al (2023)

The earliest unambiguous Neanderthal engravings on cave walls: La Roche-Cotard, Loire Valley, France.

PloS one, 18(6):e0286568.

Here we report on Neanderthal engravings on a cave wall at La Roche-Cotard (LRC) in central France, made more than 57±3 thousand years ago. Following human occupation, the cave was completely sealed by cold-period sediments, which prevented access until its discovery in the 19th century and first excavation in the early 20th century. The timing of the closure of the cave is based on 50 optically stimulated luminescence ages derived from sediment collected inside and from around the cave. The anthropogenic origin of the spatially-structured, non-figurative marks found within the cave is confirmed using taphonomic, traceological and experimental evidence. Cave closure occurred significantly before the regional arrival of H. sapiens, and all artefacts from within the cave are typical Mousterian lithics; in Western Europe these are uniquely attributed to H. neanderthalensis. We conclude that the LRC engravings are unambiguous examples of Neanderthal abstract design.

RevDate: 2023-07-01
CmpDate: 2023-06-23

Mocci S, Littera R, Chessa L, et al (2023)

A review of the main genetic factors influencing the course of COVID-19 in Sardinia: the role of human leukocyte antigen-G.

Frontiers in immunology, 14:1138559.

INTRODUCTION: A large number of risk and protective factors have been identified during the SARS-CoV-2 pandemic which may influence the outcome of COVID-19. Among these, recent studies have explored the role of HLA-G molecules and their immunomodulatory effects in COVID-19, but there are very few reports exploring the genetic basis of these manifestations. The present study aims to investigate how host genetic factors, including HLA-G gene polymorphisms and sHLA-G, can affect SARS-CoV-2 infection.

MATERIALS AND METHODS: We compared the immune-genetic and phenotypic characteristics between COVID-19 patients (n = 381) with varying degrees of severity of the disease and 420 healthy controls from Sardinia (Italy).

RESULTS: HLA-G locus analysis showed that the extended haplotype HLA-G*01:01:01:01/UTR-1 was more prevalent in both COVID-19 patients and controls. In particular, this extended haplotype was more common among patients with mild symptoms than those with severe symptoms [22.7% vs 15.7%, OR = 0.634 (95% CI 0.440 - 0.913); P = 0.016]. Furthermore, the most significant HLA-G 3'UTR polymorphism (rs371194629) shows that the HLA-G 3'UTR Del/Del genotype frequency decreases gradually from 27.6% in paucisymptomatic patients to 15.9% in patients with severe symptoms (X[2 ]= 7.095, P = 0.029), reaching the lowest frequency (7.0%) in ICU patients (X[2 ]= 11.257, P = 0.004). However, no significant differences were observed for the soluble HLA-G levels in patients and controls. Finally, we showed that SARS-CoV-2 infection in the Sardinian population is also influenced by other genetic factors such as β-thalassemia trait (rs11549407C>T in the HBB gene), KIR2DS2/HLA-C C1+ group combination and the HLA-B*58:01, C*07:01, DRB1*03:01 haplotype which exert a protective effect [P = 0.005, P = 0.001 and P = 0.026 respectively]. Conversely, the Neanderthal LZTFL1 gene variant (rs35044562A>G) shows a detrimental consequence on the disease course [P = 0.001]. However, by using a logistic regression model, HLA-G 3'UTR Del/Del genotype was independent from the other significant variables [ORM = 0.4 (95% CI 0.2 - 0.7), PM = 6.5 x 10[-4]].

CONCLUSION: Our results reveal novel genetic variants which could potentially serve as biomarkers for disease prognosis and treatment, highlighting the importance of considering genetic factors in the management of COVID-19 patients.

RevDate: 2023-06-21

Groh J, G Coop (2023)

The temporal and genomic scale of selection following hybridization.

bioRxiv : the preprint server for biology.

Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.

RevDate: 2023-08-03

Baquedano E, Arsuaga JL, Pérez-González A, et al (2023)

Author Correction: A symbolic Neanderthal accumulation of large herbivore crania.

Nature human behaviour, 7(7):1228.

RevDate: 2023-06-19
CmpDate: 2023-06-16

Ågren R, Patil S, Zhou X, et al (2023)

Major Genetic Risk Factors for Dupuytren's Disease Are Inherited From Neandertals.

Molecular biology and evolution, 40(6):.

Dupuytren's disease is characterized by fingers becoming permanently bent in a flexed position. Whereas people of African ancestry are rarely afflicted by Dupuytren's disease, up to ∼30% of men over 60 years suffer from this condition in northern Europe. Here, we meta-analyze 3 biobanks comprising 7,871 cases and 645,880 controls and find 61 genome-wide significant variants associated with Dupuytren's disease. We show that 3 of the 61 loci harbor alleles of Neandertal origin, including the second and third most strongly associated ones (P = 6.4 × 10-132 and P = 9.2 × 10-69, respectively). For the most strongly associated Neandertal variant, we identify EPDR1 as the causal gene. Dupuytren's disease is an example of how admixture with Neandertals has shaped regional differences in disease prevalence.

RevDate: 2023-06-18
CmpDate: 2023-06-16

Baumann M, Plisson H, Maury S, et al (2023)

On the Quina side: A Neanderthal bone industry at Chez-Pinaud site, France.

PloS one, 18(6):e0284081.

Did Neanderthal produce a bone industry? The recent discovery of a large bone tool assemblage at the Neanderthal site of Chagyrskaya (Altai, Siberia, Russia) and the increasing discoveries of isolated finds of bone tools in various Mousterian sites across Eurasia stimulate the debate. Assuming that the isolate finds may be the tip of the iceberg and that the Siberian occurrence did not result from a local adaptation of easternmost Neanderthals, we looked for evidence of a similar industry in the Western side of their spread area. We assessed the bone tool potential of the Quina bone-bed level currently under excavation at chez Pinaud site (Jonzac, Charente-Maritime, France) and found as many bone tools as flint ones: not only the well-known retouchers but also beveled tools, retouched artifacts and a smooth-ended rib. Their diversity opens a window on a range of activities not expected in a butchering site and not documented by the flint tools, all involved in the carcass processing. The re-use of 20% of the bone blanks, which are mainly from large ungulates among faunal remains largely dominated by reindeer, raises the question of blank procurement and management. From the Altai to the Atlantic shore, through a multitude of sites where only a few objects have been reported so far, evidence of a Neanderthal bone industry is emerging which provides new insights on Middle Paleolithic subsistence strategies.

RevDate: 2023-06-12

Curtis D, W Amos (2023)

The human genome harbours widespread exclusive yin yang haplotypes.

European journal of human genetics : EJHG [Epub ahead of print].

There have been reports of examples of exclusive yin yang haplotypes, differing at every locus, but there has been no systematic search for them. Unphased whole genome sequence data for 2504 unrelated 1000 Genomes subjects was searched for chains of SNPs having global minor allele frequency (MAF) > =0.1 made up of at least 20 SNPs in complete linkage disequilibrium with each other and with no pair being separated by more than 9 other SNPs. The global distribution of these haplotypes was investigated, along with their ancestral origins and associations with genes and phenotypes. A number of previously unrecognised repeats were noted, flagged by all or most subjects being called as heterozygotes, and these were discarded. There were 5114 exclusive yin yang haplotypes each consisting of on average 34.8 SNPs, each spanning on average 15.7 kb and cumulatively covering 80 Mb. Although for some haplotypes the MAF varied markedly between populations the average global fixation index was similar to that for SNPs elsewhere in the genome and there was no evidence of enrichment for genes or gene ontologies. For all but 92 haplotypes there were partial forms present in the chimpanzee and/or Neanderthal genome, indicating that they had been formed in a gradual process but that intermediate haplotypes were now absent from modern humans. Exclusive yin yang haplotypes cover over 2% of the human genome. The mechanisms accounting for their formation and preservation are unclear. They may serve as useful markers of the dispersal of chromosomal regions through human history.

RevDate: 2023-06-13

Kou SH, Li J, Tam B, et al (2023)

TP53 germline pathogenic variants in modern humans were likely originated during recent human history.

NAR cancer, 5(3):zcad025.

TP53 is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in TP53 damages its function, causing genome instability and increased cancer risk. Despite extensive study in TP53, the evolutionary origin of the human TP53 germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of TP53 germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human TP53 germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that TP53 germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.

RevDate: 2023-06-03

Garcia-Heras J (2023)

The 2022 Nobel Prize in Physiology or Medicine.

Journal of the Association of Genetic Technologists, 49(2):56-67.

The Nobel Assembly at the Karolinska Institute awarded the 2022 Nobel Prize in Physiology or Medicine to Svante Pääbo (Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany). This award acknowledged his discoveries about the genomes of extinct hominins (Neandertal man and the Denisovans), the molecular genetic insights of human origin and evolutionary history, and the understanding of phylogenetic relationships between archaic hominins and modern humans. The scientific advances included detection of Neandertal and Denisovan DNA carried by modern humans due to past admixture events, which in turn stimulated active research about the functional and phenotypic significance of such archaic ancestry on non-disease and disease phenotypic features in modern populations. In addition, comparative genomic studies started to delineate the genes and genetic regulation mechanisms that distinguish modern-day humans from the archaic hominins and our immediate ancestors, the anatomically modern humans. These breakthroughs allowed a more thorough understanding of ancestral and modern human population genetics, and propelled the take-off of human paleogenomics as a new scientific discipline in its own right.

RevDate: 2023-05-31

Demidenko YE, P Škrdla (2023)

Lincombian-Ranisian-Jerzmanowician Industry and South Moravian Sites: a Homo sapiens Late Initial Upper Paleolithic with Bohunician Industrial Generic Roots in Europe.

Journal of paleolithic archaeology, 6(1):17.

This article re-examines the Lincombian-Ranisian-Jerzmanowician (LRJ) industry, a well-known Early Upper Paleolithic complex in northern Europe. It is widely thought that the LRJ was produced by late Neanderthals and that its industrial roots are in late Middle Paleolithic industries with bifacial leaf points in north-western Europe. On the basis of evidence from four recently excavated open-air sites in southern Moravia (Czech Republic) (Líšeň/Podolí I, Želešice III/Želešice-Hoynerhügel, Líšeň I/Líšeň-Čtvrtě, and Tvarožná X/Tvarožná, "Za školou"), combined with findings from two cave sites in Bohemia (Nad Kačákem Cave) and southern Moravia (Pekárna Cave) and critical re-examination of the LRJ sites and materials from other areas, we propose that the LRJ should actually be considered a late Initial Upper Paleolithic industry. Its initial dates are just before Heinrich Event 4 (HE-4) and the Campanian Ignimbrite (CI) super-eruption, c. 42-40 ka cal BP. We further propose that LRJ assemblages were produced by Homo sapiens, and that its roots are in the Bohunician industry. The LRJ originated as a result of a gradual technological transition, centering on the development of Levallois points into Jerzmanowice-type blade-points. It is also suggested that the LRJ industry first appeared in Moravia, in central Europe, and spread along with its makers (Homo sapiens) across the northern latitudes of central and western Europe. Accordingly, the IUP "Bohunician package" did not disappear in Europe but gave rise to another IUP industry successfully adapted for the then steppe-tundra belts in northern Europe.

RevDate: 2023-06-19
CmpDate: 2023-06-02

Petersen J, Englmaier L, Artemov AV, et al (2023)

A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology.

Nature communications, 14(1):3092.

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.

RevDate: 2023-05-29

Boneta Jiménez I, Cardoso JL, A Pérez-García (2023)

The turtles from the middle Paleolithic site of Gruta Nova da Columbeira (Bombarral, Portugal): Update through an archaeozoological perspective.

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

Twenty-five years after the preliminary systematic study of the turtle remains (Agrionemys [=Testudo] hermanni and Emys or Mauremys) recovered from Gruta Nova da Columbeira site (Bombarral, Portugal), the results of its review from systematic and archaeozoological perspectives are presented here. Tortoise remains studies from pre-Upper Paleolithic sites worldwide have provided relevant data confirming its role as a dietary supply for hominid populations and informing about their ability to adapt to local environmental resources. The Iberian Peninsula record in general, and specifically, that from Portugal, have yielded substantial evidence to this highly debated topic. In this sense, turtle remains recovered in Gruta Nova da Columbeira site, discovered in the 1960s and the main ensemble chronologically ascribed to the MIS-5 (87.1 ± 6.3 ka BP), offer new information to this debate. Its detailed restudy, has allowed us the identification, justification, and figuration of remains attributed to two Iberian turtle taxa, Chersine hermanni and Emys orbicularis. Therefore, this update on the data concerning the turtle record from Gruta Nova da Columbeira provides new justified taxonomic evidence regarding the Iberian turtle taxa distribution during the Upper Pleistocene. The previously suggested hypothesis about the tortoise human consumption on the site is here evaluated through the development of an archaeozoological and taphonomical analysis, as well as considering the potential documentation of anthropic alterations (e.g., burning, cutmarks, percussion marks). In this sense, this hypothesis is confirmed. In addition, the presence of carnivore activity evidence indicates the engagement of other agents in the deposit formation.

RevDate: 2023-05-28

Schmidt P, Koch TJ, Blessing MA, et al (2023)

Production method of the Königsaue birch tar documents cumulative culture in Neanderthals.

Archaeological and anthropological sciences, 15(6):84.

UNLABELLED: Birch tar is the oldest synthetic substance made by early humans. The earliest such artefacts are associated with Neanderthals. According to traditional interpretations, their study allows understanding Neanderthal tool behaviours, skills and cultural evolution. However, recent work has found that birch tar can also be produced with simple processes, or even result from fortuitous accidents. Even though these findings suggest that birch tar per se is not a proxy for cognition, they do not shed light on the process by which Neanderthals produced it, and, therefore, cannot evaluate the implications of that behaviour. Here, we address the question of how tar was made by Neanderthals. Through a comparative chemical analysis of the two exceptional birch tar pieces from Königsaue (Germany) and a large reference birch tar collection made with Stone Age techniques, we found that Neanderthals did not use the simplest method to make tar. Rather, they distilled tar in an intentionally created underground environment that restricted oxygen flow and remained invisible during the process. This degree of complexity is unlikely to have been invented spontaneously. Our results suggest that Neanderthals invented or developed this process based on previous simpler methods and constitute one of the clearest indicators of cumulative cultural evolution in the European Middle Palaeolithic.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12520-023-01789-2.

RevDate: 2023-06-05
CmpDate: 2023-05-25

Tobler R, Souilmi Y, Huber CD, et al (2023)

The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa.

Proceedings of the National Academy of Sciences of the United States of America, 120(22):e2213061120.

The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.

RevDate: 2023-06-19
CmpDate: 2023-06-19

Klein K, Weniger GC, Ludwig P, et al (2023)

Assessing climatic impact on transition from Neanderthal to anatomically modern human population on Iberian Peninsula: a macroscopic perspective.

Science bulletin, 68(11):1176-1186.

The Iberian Peninsula is of particular interest for the research on the Neanderthal (NEA) to anatomically modern human (AMH) population transition. The AMHs arrived in Iberia last from Eastern Europe and thus any possible contacts between the two populations occurred here later than elsewhere. The transition process took place in the earlier part of the Marine Isotope Stage 3 (∼60-27 cal ka BP) as repeated and profound climate changes challenged the population stability. To investigate how climate change and population interactions influenced the transition, we combine climate data with archaeological-site data to reconstruct the Human Existence Potential, a measure of the probability of human existence, for both the NEA and AMH populations in the Greenland Interstadial 11-10 (GI11-10) and Stadial 10-9/Heinrich event 4 (GS10-9/HE4) times. It is found that during GS10-9/HE4, large parts of the peninsula became unsuitable for NEA human existence and the NEA settlement areas contracted to isolated coastal hot spots. As a consequence, the NEA networks became highly unstable, triggering the final collapse of the population. The AMHs arrived in Iberia in GI10 but were confined to patches in the northern most strip of the peninsula. They were soon facing the much colder climate of GS10-9/HE4, which prevented their further expansion or even caused a contraction of their settlement areas. Thus, due to the constellation of climate change and the dispersal of the two populations into different regions of the peninsula, it is unlikely that the NEAs and AMHs coexisted in extensive areas and the AMHs had a significant influence on the demography of the NEAs.

RevDate: 2023-05-17

Cobat A, Zhang Q, Covid Human Genetic Effort , et al (2023)

Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants.

Annual review of biomedical data science [Epub ahead of print].

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 6 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2023-05-29
CmpDate: 2023-05-18

Rong S, Neil CR, Welch A, et al (2023)

Large-scale functional screen identifies genetic variants with splicing effects in modern and archaic humans.

Proceedings of the National Academy of Sciences of the United States of America, 120(21):e2218308120.

Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.

RevDate: 2023-05-15
CmpDate: 2023-05-10

Li Q, Chen J, Faux P, et al (2023)

Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape.

Communications biology, 6(1):481.

We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10[-8]) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.

RevDate: 2023-05-20
CmpDate: 2023-05-10

Linscott B, Pike AWG, Angelucci DE, et al (2023)

Reconstructing Middle and Upper Paleolithic human mobility in Portuguese Estremadura through laser ablation strontium isotope analysis.

Proceedings of the National Academy of Sciences of the United States of America, 120(20):e2204501120.

Understanding mobility and landscape use is important in reconstructing subsistence behavior, range, and group size, and it may contribute to our understanding of phenomena such as the dynamics of biological and cultural interactions between distinct populations of Upper Pleistocene humans. However, studies using traditional strontium isotope analysis are generally limited to identifying locations of childhood residence or nonlocal individuals and lack the sampling resolution to detect movement over short timescales. Here, using an optimized methodology, we present highly spatially resolved [87]Sr/[86]Sr measurements made by laser ablation multicollector inductively coupled plasma mass spectrometry along the growth axis of the enamel of two marine isotope stage 5b, Middle Paleolithic Neanderthal teeth (Gruta da Oliveira), a Tardiglacial, Late Magdalenian human tooth (Galeria da Cisterna), and associated contemporaneous fauna from the Almonda karst system, Torres Novas, Portugal. Strontium isotope mapping of the region shows extreme variation in [87]Sr/[86]Sr, with values ranging from 0.7080 to 0.7160 over a distance of c. 50 km, allowing short-distance (and arguably short-duration) movement to be detected. We find that the early Middle Paleolithic individuals roamed across a subsistence territory of approximately 600 km[2], while the Late Magdalenian individual parsimoniously fits a pattern of limited, probably seasonal movement along the right bank of the 20-km-long Almonda River valley, between mouth and spring, exploiting a smaller territory of approximately 300 km[2]. We argue that the differences in territory size are due to an increase in population density during the Late Upper Paleolithic.

RevDate: 2023-06-12
CmpDate: 2023-06-12

Brand CM, Colbran LL, JA Capra (2023)

Resurrecting the alternative splicing landscape of archaic hominins using machine learning.

Nature ecology & evolution, 7(6):939-953.

Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.

RevDate: 2023-06-12
CmpDate: 2023-06-12

Rotival M (2023)

Archaic hominin traits through the splicing lens.

Nature ecology & evolution, 7(6):800-801.

RevDate: 2023-05-25
CmpDate: 2023-05-25

Klapper M, Hübner A, Ibrahim A, et al (2023)

Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic.

Science (New York, N.Y.), 380(6645):619-624.

Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. We investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans ranging from 100,000 years ago to the present and reconstructed 459 bacterial metagenome-assembled genomes. We identified a biosynthetic gene cluster shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites that we name "paleofurans." This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.

RevDate: 2023-05-11
CmpDate: 2023-05-05

Slimak L (2023)

The three waves: Rethinking the structure of the first Upper Paleolithic in Western Eurasia.

PloS one, 18(5):e0277444.

The Neronian is a lithic tradition recognized in the Middle Rhône Valley of Mediterranean France now directly linked to Homo sapiens and securely dated to 54,000 years ago (ka), pushing back the arrival of modern humans in Europe by 10 ka. This incursion of modern humans into Neandertal territory and the relationships evoked between the Neronian and the Levantine Initial Upper Paleolithic (IUP) question the validity of concepts that define the first H. sapiens migrations and the very nature of the first Upper Paleolithic in western Eurasia. Direct comparative analyses between lithic technology from Grotte Mandrin and East Mediterranean archeological sequences, especially Ksar Akil, suggest that the three key phases of the earliest Levantine Upper Paleolithic have very precise technical and chronological counterparts in Western Europe, recognized from the Rhône Valley to Franco-Cantabria. These trans-Mediterranean technical connections suggest three distinct waves of H. sapiens expansion into Europe between 55-42 ka. These elements support an original thesis on the origin, structure, and evolution of the first moments of the Upper Paleolithic in Europe tracing parallel archaeological changes in the East Mediterranean region and Europe.

RevDate: 2023-05-01
CmpDate: 2023-05-01

Benítez-Burraco A, Torres-Ruiz R, Gelabert P, et al (2022)

Human-specific changes in two functional enhancers of FOXP2.

Cellular and molecular biology (Noisy-le-Grand, France), 68(11):16-19.

FOXP2 is a gene involved in language development and function. Neanderthals and humans share the same coding region of the gene, although the formers are thought to have exhibited less sophisticated language abilities. In this paper, we report on several human-specific changes in two functional enhancers of FOXP2. Two of these variants are located within the binding sites for the transcription factors POLR2A and SMARCC1, respectively. Interestingly, SMARCC1 is involved in brain development and vitamin D metabolism. We hypothesize that the human specific change in this position might have resulted in a different regulation pattern of FOXP2 expression in our species compared to extinct hominins, with a potential impact on our language abilities.

RevDate: 2023-06-21
CmpDate: 2023-05-22

Witt KE, Funk A, Añorve-Garibay V, et al (2023)

The Impact of Modern Admixture on Archaic Human Ancestry in Human Populations.

Genome biology and evolution, 15(5):.

Admixture, the genetic merging of parental populations resulting in mixed ancestry, has occurred frequently throughout the course of human history. Numerous admixture events have occurred between human populations across the world, which have shaped genetic ancestry in modern humans. For example, populations in the Americas are often mosaics of different ancestries due to recent admixture events as part of European colonization. Admixed individuals also often have introgressed DNA from Neanderthals and Denisovans that may have come from multiple ancestral populations, which may affect how archaic ancestry is distributed across an admixed genome. In this study, we analyzed admixed populations from the Americas to assess whether the proportion and location of admixed segments due to recent admixture impact an individual's archaic ancestry. We identified a positive correlation between non-African ancestry and archaic alleles, as well as a slight increase of Denisovan alleles in Indigenous American segments relative to European segments in admixed genomes. We also identify several genes as candidates for adaptive introgression, based on archaic alleles present at high frequency in admixed American populations but low frequency in East Asian populations. These results provide insights into how recent admixture events between modern humans redistributed archaic ancestry in admixed genomes.

RevDate: 2023-05-10
CmpDate: 2023-04-28

Ríos L, Sleeper MM, Danforth MD, et al (2023)

The aorta in humans and African great apes, and cardiac output and metabolic levels in human evolution.

Scientific reports, 13(1):6841.

Humans have a larger energy budget than great apes, allowing the combination of the metabolically expensive traits that define our life history. This budget is ultimately related to the cardiac output, the product of the blood pumped from the ventricle and the number of heart beats per minute, a measure of the blood available for the whole organism physiological activity. To show the relationship between cardiac output and energy expenditure in hominid evolution, we study a surrogate measure of cardiac output, the aortic root diameter, in humans and great apes. When compared to gorillas and chimpanzees, humans present an increased body mass adjusted aortic root diameter. We also use data from the literature to show that over the human lifespan, cardiac output and total energy expenditure follow almost identical trajectories, with a marked increase during the period of brain growth, and a plateau during most of the adult life. The limited variation of adjusted cardiac output with sex, age and physical activity supports the compensation model of energy expenditure in humans. Finally, we present a first study of cardiac output in the skeleton through the study of the aortic impression in the vertebral bodies of the spine. It is absent in great apes, and present in humans and Neanderthals, large-brained hominins with an extended life cycle. An increased adjusted cardiac output, underlying higher total energy expenditure, would have been a key process in human evolution.

RevDate: 2023-06-02

Sinaei R, Pezeshki S, R Sinaei (2023)

What Kept Back on the Mirror of COVID-19-Related Acute Transverse Myelitis? A Genetic Background!.

Iranian journal of child neurology, 17(2):143-147.

COVID-19-associated acute transverse myelitis (ATM) cases have been reported worldwide. Nevertheless, Iran, Italy, and the USA are the most affected countries, witnessing the possibility that genetic factors might be associated with this susceptibility. The genetic variants of the coronavirus-2 entry mechanisms and host innate immune response-related genes like interferons, interleukins, Toll-like receptors, human leukocyte antigens, blood groups, and some risk loci may be accountable. This study describes the compatibility of the geographical distribution between ATM and the Neanderthal core haplotype that confers risk for severe COVID-19 and some possible culprit genes.

RevDate: 2023-04-18

Gómez-Olivencia A, JL Arsuaga (2023)

The Sima de los Huesos cervical spine.

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

Information regarding the evolution of the neck in genus Homo is hampered owing to a limited fossil record. Neandertals display significant metric and/or morphological differences in all the cervical vertebrae, when compared to Homo sapiens. Thus, the important fossil record from the Middle Pleistocene site of Sima de los Huesos (SH) not only offers important information about the evolution of this anatomical region within the Neandertal lineage, but also provides important clues to understand the evolution of this region at the genus level. We present the current knowledge of the anatomy of the cervical spine of the hominins found in SH compared to that of Neandertals and modern humans, and, when possible, to Homo erectus and Homo antecessor. The current SH fossil record comprises 172 cervical specimens (after refittings) belonging to a minimum of 11 atlases, 13 axes, and 52 subaxial cervical vertebrae. The SH hominins exhibit a morphological pattern in their cervical spine more similar to that of Neandertals than that of H. sapiens, which is consistent with the phylogenetic position of these hominins. However, there are some differences between the SH hominins and Neandertals in this anatomical region, primarily in the length and robusticity, and to a lesser extent in the orientation of the spinous processes of the lowermost cervical vertebrae. We hypothesize that these differences in the lowermost subaxial cervical vertebrae could be related to the increase in the brain size and/or changes in the morphology of the skull that occurred in the Neandertal lineage.

RevDate: 2023-04-18
CmpDate: 2023-04-17

Doronicheva EV, Golovanova LV, Doronichev VB, et al (2023)

Archaeological evidence for two culture diverse Neanderthal populations in the North Caucasus and contacts between them.

PloS one, 18(4):e0284093.

Neanderthals were widespread during the Middle Palaeolithic (MP) across Europe and Asia, including the Caucasus Mountains. Occupying the border between eastern Europe and West Asia, the Caucasus is important region regarding the Neanderthal occupation of Eurasia. On current radiometric estimates, the MP is represented in the Caucasus between about 260-210 ka and about 40 ka. Archaeological record indicates that several culture diverse MP hominin populations inhabited the Caucasus, but the region complex population history during this period remains poorly understood. In this paper, we identify for the first time the archaeological evidence indicating contacts between two culture diverse MP Neanderthal populations in the North Caucasus and discuss the nature of these contacts. Basing on the lithic assemblages that we excavated at Mezmaiskaya cave in the north-western Caucasus (Kuban River basin) and Saradj-Chuko grotto in the north-central Caucasus (Terek River basin), dating from MIS 5 to MIS 3, and comparative data from other MP sites in the Caucasus, we identify two large cultural regions that existed during the late MP in the North Caucasus. The distinctive toolkits and stone knapping technologies indicate that the MP assemblages from Mezmaiskaya cave and other sites in the west of North Caucasus represent a Caucasian variant of the Eastern Micoquian industry that was wide spread in central and eastern Europe, while the assemblages from Saradj-Chuko Grotto and other sites in the east of North Caucasus closely resemble the Zagros Mousterian industry that was wide spread in the Armenian Highlands, Lesser Caucasus and Zagros Mountains. The archaeological evidence implies that two culture diverse populations of Neanderthals settled the North Caucasus during the Late Pleistocene from two various source regions: from the Armenian Highlands and Lesser Caucasus along the Caspian Sea coast, and from Russian plain along the Sea of Azov coast.

RevDate: 2023-04-11

Chung S, JW Son (2023)

How Well Do We Understand Autistic Savant Artists: A Review of Various Hypotheses and Research Findings to Date.

Soa--ch'ongsonyon chongsin uihak = Journal of child & adolescent psychiatry, 34(2):93-111.

The authors investigated the artistic characteristics of autistic savant artists, hypotheses on the proximate and ultimate causes of their emergence, recent psychological and other studies about them, and psychological and neuroaesthetic studies about non-savant autistic individuals. The artistic features of autistic savant artists were significantly similar to those of outsider artists. Furthermore, the authors investigated the explanatory power of the paradoxical functional facilitation theory, the superior visual perception hypothesis, the "Hmmmmm" hypothesis, and the Neanderthal theory of autism regarding the emergence of autistic savant artists. In addition, we investigated whether an increase in savant characteristics was related to a decrease in the ability for social communication. The authors suggested that in studies on the aesthetic experience of non-savant autistic individuals, their aesthetic experience ability is never lower than that of neurotypical individuals and that some non-savant autistic individuals may potentially have artistic talent. Finally, the authors reviewed the effectiveness of the "autism savant spectrum syndromic disorder" proposed by some researchers. More scientific and systematic studies on autistic savant artists from a multidisciplinary perspective are warranted.

RevDate: 2023-04-06

Turner MD (2023)

Possible Causes of Hypertrophic Osteoarthropathy in the La Ferrassie 1 Neanderthal.

Cureus, 15(3):e35721.

For over a century, researchers have been perplexed by the unique osteological findings on La Ferrassie 1 (LF1), one of the most complete Neanderthal remains ever found. In 1997, Fennel and Trinkaus proposed that LF1 suffered from hypertrophic osteoarthropathy (HOA), likely secondary to chronic thoracic infection or pulmonary malignancy. This disease process can have many etiologies, and no study has fully explored the possible origin of LF1's HOA. Ultimately, it is most likely that LF1's HOA etiology arose from one of the many infectious diseases that prehistoric Neanderthals were exposed to, specifically a chronic pulmonary RNA virus.

RevDate: 2023-04-03

Richards GD, Jabbour RS, Guipert G, et al (2023)

Neanderthal child's maxilla from Baume Moula-Guercy (Soyons, Ardèche, France).

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

This article provides an ontogenetically-based comparative description of the Guercy 3 partial child's maxilla with Rdm[2] -RM[1] and unerupted RI[2] -RP[4] from Baume Moula-Guercy (MIS 5e) and examines its affinities to European and Middle Eastern Middle-to-Late Pleistocene (≈MIS 14-MIS 1) Homo. Description of the Guercy 3 maxilla and dentition (7.0 year ± 0.9 month) is based on observations of original fossils, casts, CT scans, literature descriptions, and virtual reconstructions. Our ontogenetic sample comprises a Preneanderthal-Neanderthal group and a Homo sapiens group. These groups are subdivided into (1) Preneanderthals (≈MIS 14-9), Early Neanderthals (MIS 7-5e), and Late Neanderthals (MIS 5d-3), and (2) Middle (MIS 5), Upper (MIS 3-2), and Late Upper Paleolithic (≈MIS 1), and recent H. sapiens. Standard techniques were employed for measurements and developmental age determinations.The Guercy 3 maxilla lacks changes found in Late Neanderthals, including the positioning of the root of the zygomatic process, infraorbital and nasal plates, premaxilla, buccal and labial alveolus, maxillary sinus, nasal cavity, and verticality of anterior tooth implantation. The morphology of the Guercy 3 maxilla more closely approximates that of Sima de los Huesos Preneanderthals, while the dentition more closely approximates the Early-Late Neanderthal condition. Maxillary remains of children and juveniles between MIS 14-MIS 5e are rare, and the available sample is fragmentary and distorted. Although fragmentary, the Guercy 3 maxilla is undistorted and provides new insights into the evolution of the midface in Neanderthals.

RevDate: 2023-04-20
CmpDate: 2023-04-18

Pomeroy E (2023)

Review: The different adaptive trajectories in Neanderthals and Homo sapiens and their implications for contemporary human physiological variation.

Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 280:111420.

Neanderthals are our one of our closest evolutionary cousins, but while they evolved in Eurasia, we (anatomically modern humans, AMH) originated in Africa. This contrasting evolutionary history has led to morphological and genetic distinctions between our species. Neanderthals are characterised by a relatively stocky build, high body mass, proportionally wide bodies and shorter limbs, a bell-shaped ribcage with a wide pelvis, and a long, low cranial vault compared with AMH. Classic readings of Neanderthal morphology link many of these traits to cold climate adaptations, however these interpretations have been questioned and alternative hypotheses including behavioural factors, dietary adaptations, locomotor specialisations, evolutionary history and neutral evolutionary processes have been invoked. Compared with AMH, Neanderthals may have been adapted for strength and power rather than endurance and may have consumed a diet high in animal products. However, reviewing these hypotheses highlights a number of limitations in our understanding of contemporary human physiology and metabolism, including the relationship between climate and morphology in AMH and Neanderthals, physiological limits on protein consumption, and the relationship between gut morphology and diet. As various relevant factors are clearly linked (e.g. diet, behaviour, metabolism, morphology, activity), ultimately a more integrated approach may be needed to fully understand Neanderthal biology. Variation among contemporary AMHs may offer, with caveats, a useful model for understanding the evolution of both Neanderthal and modern human characteristics, which in turn may further deepen our understanding of variability within and between contemporary humans. Neanderthals; Anatomically modern humans; morphology; climate adaptation; power adaptations; metabolism; diet; physiology; endurance running.

RevDate: 2023-03-31

Quam R, Martínez I, Rak Y, et al (2023)

The Neandertal nature of the Atapuerca Sima de los Huesos mandibles.

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

The recovery of additional mandibular fossils from the Atapuerca Sima de los Huesos (SH) site provides new insights into the evolutionary significance of this sample. In particular, morphological descriptions of the new adult specimens are provided, along with standardized metric data and phylogenetically relevant morphological features for the expanded adult sample. The new and more complete specimens extend the known range of variation in the Atapuerca (SH) mandibles in some metric and morphological details. In other aspects, the addition of new specimens has made it possible to confirm previous observations based on more limited evidence. Pairwise comparisons of individual metric variables revealed the only significant difference between the Atapuerca (SH) hominins and Neandertals was a more vertical symphysis in the latter. Similarly, principal components analysis of size-adjusted variables showed a strong similarity between the Atapuerca (SH) hominins and Neandertals. Morphologically, the Atapuerca (SH) mandibles show nearly the full complement of Neandertal-derived features. Nevertheless, the Neandertals differ from the Atapuerca (SH) mandibles in showing a high frequency of the H/O mandibular foramen, a truncated, thinned and inverted gonial margin, a high placement of the mylohyoid line at the level of the M3, a more vertical symphysis and somewhat more pronounced expression of the chin structures. Size-related morphological variation in the SH hominins includes larger retromolar spaces, more posterior placement of the lateral corpus structures, and stronger markings associated with the muscles of mastication in larger specimens. However, phylogenetically relevant features in the SH sample are fairly stable and do not vary with the overall size of the mandible. Direct comparison of the enlarged mandibular sample from Atapuerca (SH) with the Mauer mandible, the type specimen of H. heidelbergensis, reveals important differences from the SH hominins, and there is no morphological counterpart of Mauer within the SH sample, suggesting the SH fossils should not be assigned to this taxon. The Atapuerca (SH) mandibles show a greater number of derived Neandertal features, particularly those related to midfacial prognathism and in the configuration of the superior ramus, than other European middle Pleistocene specimens. This suggests that more than one evolutionary lineage co-existed in the middle Pleistocene, and, broadly speaking, it appears possible to separate the European middle Pleistocene mandibular remains into two distinct groupings. One group shows a suite of derived Neandertal features and includes specimens from the sites of Atapuerca (SH), Payre, l'Aubesier and Ehringsdorf. The other group includes specimens that generally lack derived Neandertal features and includes the mandibles from the sites of Mauer, Mala Balanica, Montmaurin and (probably) Visogliano. The two published Arago mandibles differ strongly from one another, with Arago 2 probably belonging to this former group, and Neandertal affinities being more difficult to identify in Arago 13. Outside of the SH sample, derived Neandertal features in the mandible only become more common during the second half of the middle Pleistocene. Acceptance of a cladogenetic pattern of evolution during the European middle Pleistocene has the potential to reconcile the predictions of the accretion model and the two phases model for the appearance of Neandertal morphology. The precise taxonomic classification of the SH hominins must contemplate features from the dentition, cranium, mandible and postcranial skeleton, all of which are preserved at the SH site. Nevertheless, the origin of the Neandertal clade may be tied to a speciation event reflected in the appearance of a suite of derived Neandertal features in the face, dentition and mandible, all of which are present in the Atapuerca (SH) hominins. This same suite of features also provides a useful anatomical basis to include other European middle Pleistocene mandibles and crania within the Neandertal clade.

RevDate: 2023-04-24
CmpDate: 2023-03-30

Toncheva D, Marinova M, Chobanov T, et al (2023)

Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data.

Genes, 14(3):.

Ancient anatomically modern humans (AMHs) encountered other archaic human species, most notably Neanderthals and Denisovans, when they left Africa and spread across Europe and Asia ~60,000 years ago. They interbred with them, and modern human genomes retain DNA inherited from these interbreeding events. High quality (high coverage) ancient human genomes have recently been sequenced allowing for a direct estimation of individual heterozygosity, which has shown that genetic diversity in these archaic human groups was very low, indicating low population sizes. In this study, we analyze ten ancient human genome-wide data, including four sequenced with high-coverage. We screened these ancient genome-wide data for pathogenic mutations associated with monogenic diseases, and established unusual aggregation of pathogenic mutations in individual subjects, including quadruple homozygous cases of pathogenic variants in the PAH gene associated with the condition phenylketonuria in a ~120,000 years old Neanderthal. Such aggregation of pathogenic mutations is extremely rare in contemporary populations, and their existence in ancient humans could be explained by less significant clinical manifestations coupled with small community sizes, leading to higher inbreeding levels. Our results suggest that pathogenic variants associated with rare diseases might be the result of introgression from other archaic human species, and archaic admixture thus could have influenced disease risk in modern humans.

RevDate: 2023-04-01
CmpDate: 2023-04-01

Xiao F, Li J, Lagniton PNP, et al (2023)

Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans.

Biomolecules, 13(3):.

MUTYH plays an essential role in preventing oxidation-caused DNA damage. Pathogenic germline variations in MUTYH damage its function, causing intestinal polyposis and colorectal cancer. Determination of the evolutionary origin of the variation is essential to understanding the etiological relationship between MUTYH variation and cancer development. In this study, we analyzed the origins of pathogenic germline variants in human MUTYH. Using a phylogenic approach, we searched MUTYH pathogenic variants in modern humans in the MUTYH of 99 vertebrates across eight clades. We did not find pathogenic variants shared between modern humans and the non-human vertebrates following the evolutionary tree, ruling out the possibility of cross-species conservation as the origin of human pathogenic variants in MUTYH. We then searched the variants in the MUTYH of 5031 ancient humans and extinct Neanderthals and Denisovans. We identified 24 pathogenic variants in 42 ancient humans dated between 30,570 and 480 years before present (BP), and three pathogenic variants in Neanderthals dated between 65,000 and 38,310 years BP. Data from our study revealed that human MUTYH pathogenic variants mostly arose in recent human history and partially originated from Neanderthals.

RevDate: 2023-06-20
CmpDate: 2023-04-14

Zhang Y, Z Li (2023)

Three-dimensional geometric morphometric study of the Xuchang 2 cranium.

Journal of human evolution, 178:103347.

Results of traditional metric and nonmetric assessments suggest that the Xuchang hominin shares features with Neanderthals. To comprehensively compare the nuchal morphology of XC 2 to those of the genus Homo, we conduct a three-dimensional geometric morphometric study with 35 cranial landmarks and surface semilandmarks of XC 2, Homo erectus, Middle Pleistocene humans, Neanderthals, and early and recent modern humans. Results reveal that the centroid size of XC 2 is larger than that of early and recent modern humans and can only be compared to that of Middle Pleistocene humans and H. erectus. Early and recent modern humans share a nuchal morphology distinct from archaic hominins (Ngandong H. erectus, Middle Pleistocene humans, and Neanderthals), except for SM 3, Sangiran 17, and Asian and African H. erectus. Although Ngandong specimens differ from the other H. erectus, it is unclear whether this represents a temporal or spatial trend in the process of evolution of this species. The nuchal morphological resemblance between Middle Pleistocene humans and Neanderthals may be attributed to similar cranial architecture and cerebellar shape. The great nuchal morphological variation shared by recent modern humans may indicate a particular developmental pattern. In conclusion, the nuchal morphology of different human groups is highly variable and may be caused by different factors including brain globularization and developmental plasticity. XC 2 shares similar nuchal morphology with Middle Pleistocene humans and Neanderthals, but these results are insufficient to fully resolve the taxonomic status of XC 2.

RevDate: 2023-04-07
CmpDate: 2023-03-28

Profico A, Buzi C, Di Vincenzo F, et al (2023)

Virtual excavation and analysis of the early Neanderthal cranium from Altamura (Italy).

Communications biology, 6(1):316.

Complete Neanderthal skeletons are almost unique findings. A very well-preserved specimen of this kind was discovered in 1993 in the deepest recesses of a karstic system near the town of Altamura in Southern Italy. We present here a detailed description of the cranium, after we virtually extracted it from the surrounding stalagmites and stalactites. The morphology of the Altamura cranium fits within the Neanderthal variability, though it retains features occurring in more archaic European samples. Some of these features were never observed in Homo neanderthalensis, i.e. in fossil specimens dated between 300 and 40 ka. Considering the U-Th age we previously obtained (>130 ka), the morphology of Altamura suggests that the archaic traits it retains may have been originated by geographic isolation of the early Neanderthal populations from Southern Italy.

RevDate: 2023-03-24

Skov L, Coll Macià M, Lucotte EA, et al (2023)

Extraordinary selection on the human X chromosome associated with archaic admixture.

Cell genomics, 3(3):100274.

The X chromosome in non-African humans shows less diversity and less Neanderthal introgression than expected from neutral evolution. Analyzing 162 human male X chromosomes worldwide, we identified fourteen chromosomal regions where nearly identical haplotypes spanning several hundred kilobases are found at high frequencies in non-Africans. Genetic drift alone cannot explain the existence of these haplotypes, which must have been associated with strong positive selection in partial selective sweeps. Moreover, the swept haplotypes are entirely devoid of archaic ancestry as opposed to the non-swept haplotypes in the same genomic regions. The ancient Ust'-Ishim male dated at 45,000 before the present (BP) also carries the swept haplotypes, implying that selection on the haplotypes must have occurred between 45,000 and 55,000 years ago. Finally, we find that the chromosomal positions of sweeps overlap previously reported hotspots of selective sweeps in great ape evolution, suggesting a mechanism of selection unique to X chromosomes.

RevDate: 2023-04-23
CmpDate: 2023-04-07

Wei X, Robles CR, Pazokitoroudi A, et al (2023)

The lingering effects of Neanderthal introgression on human complex traits.

eLife, 12:.

The genetic variants introduced into the ancestors of modern humans from interbreeding with Neanderthals have been suggested to contribute an unexpected extent to complex human traits. However, testing this hypothesis has been challenging due to the idiosyncratic population genetic properties of introgressed variants. We developed rigorous methods to assess the contribution of introgressed Neanderthal variants to heritable trait variation and applied these methods to analyze 235,592 introgressed Neanderthal variants and 96 distinct phenotypes measured in about 300,000 unrelated white British individuals in the UK Biobank. Introgressed Neanderthal variants make a significant contribution to trait variation (explaining 0.12% of trait variation on average). However, the contribution of introgressed variants tends to be significantly depleted relative to modern human variants matched for allele frequency and linkage disequilibrium (about 59% depletion on average), consistent with purifying selection on introgressed variants. Different from previous studies (McArthur et al., 2021), we find no evidence for elevated heritability across the phenotypes examined. We identified 348 independent significant associations of introgressed Neanderthal variants with 64 phenotypes. Previous work (Skov et al., 2020) has suggested that a majority of such associations are likely driven by statistical association with nearby modern human variants that are the true causal variants. Applying a customized fine-mapping led us to identify 112 regions across 47 phenotypes containing 4303 unique genetic variants where introgressed variants are highly likely to have a phenotypic effect. Examination of these variants reveals their substantial impact on genes that are important for the immune system, development, and metabolism.

RevDate: 2023-03-22
CmpDate: 2023-03-21

Avni HL, Shvalb N, Pokhojaev A, et al (2023)

Evolutionary roots of the risk of hip fracture in humans.

Communications biology, 6(1):283.

The transition to bipedal locomotion was a fundamental milestone in human evolution. Consequently, the human skeleton underwent substantial morphological adaptations. These adaptations are responsible for many of today's common physical impairments, including hip fractures. This study aims to reveal the morphological changes in the proximal femur, which increase the risk of intracapsular hip fractures in present-day populations. Our sample includes chimpanzees, early hominins, early Homo Neanderthals, as well as prehistoric and recent humans. Using Geometric Morphometric methods, we demonstrate differences in the proximal femur shape between hominids and populations that practiced different lifestyles. We show that the proximal femur morphology is a risk factor for intracapsular hip fracture independent of osteoporosis. Changes in the proximal femur, such as the shortening of the femoral neck and an increased anterolateral expansion of the greater trochanter, are associated with an increased risk for intracapsular hip fractures. We conclude that intracapsular hip fractures are a trade-off for efficient bipedal walking in humans, and their risk is exacerbated by reduced physical activity.

RevDate: 2023-04-21
CmpDate: 2023-04-18

Chen Z, Reynolds RH, Pardiñas AF, et al (2023)

The contribution of Neanderthal introgression and natural selection to neurodegenerative diseases.

Neurobiology of disease, 180:106082.

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.

RevDate: 2023-03-14

Carretero JM, García-González R, Rodríguez L, et al (2023)

Main anatomical characteristics of the hominin fossil humeri from the Sima de los Huesos Middle Pleistocene site, Sierra de Atapuerca, Burgos, Spain: An update.

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

Some of the Sima de los Huesos (SH) humeri have been previously studied and described elsewhere. Here we present an updated inventory and a review of the specimens recovered to the present day. The morphological key traits of the adult and subadult specimens are described, discussed, and illustrated. The SH humeri share with Neandertals many traits usually considered to be Neandertal specializations, thus, most of this morphological pattern is not exclusive to them. The variation found within fossil samples stresses the frequential nature of all these traits and in the specific case of the SH humeri, most of the traits considered as phylogenetically relevant are retained by their descendants, the Neandertals. Some traits are plesiomorphic for the entire genus Homo or are present in European hominins since the early Pleistocene. Finally, some other traits display high variability within the SH sample or different hominin samples and are of uncertain phylogenetic value. Altogether, this evidence is consistent with the hypothesis based on the overall cranial and postcranial morphology that the SH hominins are a sister group to the later Neandertals.

RevDate: 2023-04-10
CmpDate: 2023-04-10

Herai RH, Semendeferi K, AR Muotri (2023)

Comment on "Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals".

Science (New York, N.Y.), 379(6636):eadf0602.

Pinson et al. (1) concluded that the modern human TKTL1 gene is responsible for an increased number of cortical neurons. We show that the "putative Neanderthal variant" of TKTL1 is present in modern human backgrounds. We dispute their argument that this genetic variant is responsible for brain differences in modern humans as opposed to Neanderthals.

RevDate: 2023-04-10
CmpDate: 2023-04-10

Pinson A, Maricic T, Zeberg H, et al (2023)

Response to Comment on "Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals".

Science (New York, N.Y.), 379(6636):eadf2212.

Herai et al. discuss the known fact that a low percentage of modern humans who lack any overt phenotypes carry the ancestral TKTL1 allele. Our paper demonstrates that the amino acid substitution in TKTL1 increases neural progenitor cells and neurogenesis in the developing brain. It is another question if, and to what extent, this has consequences for the adult brain.

RevDate: 2023-04-20
CmpDate: 2023-04-17

Marín-Arroyo AB, Terlato G, Vidal-Cordasco M, et al (2023)

Subsistence of early anatomically modern humans in Europe as evidenced in the Protoaurignacian occupations of Fumane Cave, Italy.

Scientific reports, 13(1):3788.

Documenting the subsistence strategies developed by early modern humans is relevant for understanding the success of their dispersal throughout Eurasia. Today, we know that there was not a single colonization event and that the process was progressive while coping with the MIS3 abrupt climatic oscillations. Modern humans expanded into the continent by adapting to different topographic situations and by exploiting resources in diverse ecological niches. The northern part of Italy is one of the first European regions where early modern humans are documented. Here, we present the subsistence regimen adopted by the Protoaurignacian groups in two different levels in Fumane Cave based on archaeozoological data. New radiocarbon dates confirm an overlap between Uluzzian and Protoaurignacian occupations, around 42 and 41,000 cal BP, and reveal that modern humans occupied the cave from GI10 to GS9, the last level coinciding with the Heinrich Event 4. The data indicate seasonal site occupations during late spring/summer and that prey exploitation was focused mostly on ibex and chamois, killed in nearby areas. The whole faunal assemblage suggests the presence of early modern humans in a cold environment with mostly open landscapes and patchy woodlands. The estimation of net primary productivity (NPP) in Fumane, compared with other contemporaneous Italian sites, reflects how the NPP fluctuations in the Prealpine area, where Fumane is located, affected the biotic resources in contrast to known Mediterranean sites. From a pan-European perspective, the spatiotemporal fluctuation of the NPP versus the subsistence strategies adopted by Protoaurignacian groups in the continent supports rapid Homo sapiens dispersal and resilience in a mosaic of environments that were affected by significant climate changes.

RevDate: 2023-04-05
CmpDate: 2023-03-28

Jones EL, M Carvalho (2023)

Ecospaces of the Middle to Upper Paleolithic transition: The archaeofaunal record of the Iberian Peninsula.

Journal of human evolution, 177:103331.

The rich archaeofaunal record of Iberia provides a means of exploring potential differences between Neanderthal and anatomically modern human interactions with the environment. In this article, we present an analysis of Iberian archaeofaunas dating between 60 and 30 ka to explore if, how, and why the faunal ecospaces of Neanderthals and anatomically modern humans differed. We test for impacts of chronology (as a proxy for Neanderthal and anatomically modern human exploitation) and environmental regionalization (using bioclimatic regions) on archaeofaunal composition, using a combination of cluster (unweighted pair-group method using arithmetic averages) and nonmetric multidimensional scaling. Our chronological analysis finds no significant compositional difference between Neanderthal and anatomically modern mammalian faunal assemblages; however, bioclimatic regionalization is stronger in anatomically modern human-affiliated assemblages than in Neanderthal ones, a finding that may indicate a difference in site occupation duration or foraging mobility between Neanderthals and anatomically modern humans.

RevDate: 2023-04-18
CmpDate: 2023-03-03

Shoaee MJ, Breeze PS, Drake NA, et al (2023)

Defining paleoclimatic routes and opportunities for hominin dispersals across Iran.

PloS one, 18(3):e0281872.

Fossil and archaeological evidence indicates that hominin dispersals into Southwest Asia occurred throughout the Pleistocene, including the expansion of Homo sapiens populations out of Africa. While there is evidence for hominin occupations in the Pleistocene in Iran, as evidenced by the presence of Lower to Upper Paleolithic archaeological sites, the extent to which humid periods facilitated population expansions into western Asia has remained unclear. To test the role of humid periods on hominin dispersals here we assess Paleolithic site distributions and paleoenvironmental records across Iran. We developed the first spatially comprehensive, high-resolution paleohydrological model for Iran in order to assess water availability and its influence on hominin dispersals. We highlight environmentally mediated routes which likely played a key role in Late Pleistocene hominin dispersals, including the expansion of H. sapiens and Neanderthals eastwards into Asia. Our combined analyses indicate that, during MIS 5, there were opportunities for hominins to traverse a northern route through the Alborz and Kopet Dagh Mountains and the Dasht-I Kavir desert owing to the presence of activated fresh water sources. We recognize a new southern route along the Zagros Mountains and extending eastwards towards Pakistan and Afghanistan. We find evidence for a potential northern route during MIS 3, which would have permitted hominin movements and species interactions in Southwest Asia. Between humid periods, these interconnections would have waned, isolating populations in the Zagros and Alborz Mountains, where hominins may have continued to have had access to water.

RevDate: 2023-02-28
CmpDate: 2023-02-28

Ganapathee DS, P Gunz (2023)

Insights into brain evolution through the genotype-phenotype connection.

Progress in brain research, 275:73-92.

It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.

RevDate: 2023-03-06
CmpDate: 2023-02-28

González-Álvarez R, Rodríguez-Sánchez IP, HA Barrera-Saldaña (2023)

Gene Content and Coding Diversity of the Growth Hormone Loci of Apes.

Genes, 14(2):.

The growth hormone (GH) locus has experienced a dramatic evolution in primates, becoming multigenic and diverse in anthropoids. Despite sequence information from a vast number of primate species, it has remained unclear how the multigene family was favored. We compared the structure and composition of apes' GH loci as a prerequisite to understanding their origin and possible evolutionary role. These thorough analyses of the GH loci of the chimpanzee, gorilla, and orangutan were done by resorting to previously sequenced bacterial artificial chromosomes (BACs) harboring them, as well as to their respective genome projects data available in GenBank. The GH loci of modern man, Neanderthal, gibbon, and wild boar were retrieved from GenBank. Coding regions, regulatory elements, and repetitive sequences were identified and compared among species. The GH loci of all the analyzed species are flanked by the genes CD79B (5') and ICAM-1 (3'). In man, Neanderthal, and chimpanzee, the loci were integrated by five almost indistinguishable genes; however, in the former two, they rendered three different hormones, and in the latter, four different proteins were derived. Gorilla exhibited six genes, gibbon seven, and orangutan four. The sequences of the proximal promoters, enhancers, P-elements, and a locus control region (LCR) were highly conserved. The locus evolution might have implicated duplications of the ancestral pituitary gene (GH-N) and subsequent diversification of the copies, leading to the placental single GH-V gene and the multiple CSH genes.

RevDate: 2023-02-24

Conde-Valverde M, Martínez I, Quam R, et al (2023)

The ear of the Sima de los Huesos hominins (Atapuerca, Spain).

Anatomical record (Hoboken, N.J. : 2007) [Epub ahead of print].

Previous studies on the morphology of the inner ear (semicircular canals and cochlea) in the Sima de los Huesos hominin sample have provided important results on the evolution of these structures in the Neandertal lineage. Similarly, studies of the anatomy of the external and middle ear cavities of the Sima de los Huesos hominins have also provided important data on the auditory capacities of this European Middle Pleistocene population. The present contribution provides unpublished data on three new middle ear variables from the Sima de los Huesos fossils and compares these data with values from samples of Pan troglodytes, Homo neanderthalensis and Homo sapiens. The results of this analysis are combined with those obtained in previous studies to characterize the anatomy of the outer, middle and inner ear in the Sima de los Huesos fossils, as well as to establish the order of appearance of the features that characterize Neandertal ears. As in other cranial structures, the ear region in the Sima de los Huesos show a mosaic evolutionary pattern that includes primitive traits, others shared exclusively with Neandertals, and others that are specific to the Sima de los Huesos hominins. Neandertals and Sima de los Huesos hominins share two exclusive features of the middle ear that are among the first characteristics of the Neandertal lineage: a long tympanic cavity and a large entrance and exit of the mastoid antrum. Along with these traits, the Sima de los Huesos hominins present two specialized features: large volumes of the tympanic cavity and the mastoid antrum. Finally, the middle ear of the Neandertals is characterized by the presence of small angles between the tympanic axis and the plane of the oval window.

RevDate: 2023-04-11
CmpDate: 2023-02-27

Wang PY, Yang Y, Shi XQ, et al (2023)

Distilling functional variations for human UGT2B4 upstream region based on selection signals and implications for phenotypes of Neanderthal and Denisovan.

Scientific reports, 13(1):3134.

Our previous work identified one region upstream human UGT2B4 (UDP glucuronosyltransferase family 2 member B4) which is associated with breast cancer and under balancing selection. However, the distribution, functional variation and molecular mechanism underlying breast cancer and balancing selection remain unclear. In current study, the two haplotypes with deep divergence are described by analyzing 1000 genomes project data and observed to be with high frequencies in all human populations. Through population genetics analysis and genome annotation, the potential functional region is identified and verified by reporter gene assay. Further mutagenesis indicates that the functional mutations are rs66862535 and rs68096061. Both SNPs can alter the interaction efficiency of transcription factor POU2F1 (POU class 2 homeobox 1). Through chromosome conformation capture, it is identified that the enhancer containing these two SNPs can interact with UGT2B4 promoter. Expression quantitative trait loci analysis indicates that UGT2B4 expression is dependent on the genotype of this locus. The common haplotype in human is lost in four genomes of archaic hominins, which suggests that Neanderthal and Denisovan should present relatively lower UGT2B4 expression and further higher steroid hormone level. This study provides new insight into the contribution of ancient population structure to human phenotypes.

RevDate: 2023-04-09
CmpDate: 2023-02-27

Ghasidian E, Kafash A, Kehl M, et al (2023)

Modelling Neanderthals' dispersal routes from Caucasus towards east.

PloS one, 18(2):e0281978.

The study of the cultural materials associated with the Neanderthal physical remains from the sites in the Caucasus, Central Asia and Siberian Altai and adjacent areas documents two distinct techno-complexes of Micoquian and Mousterian. These findings potentially outline two dispersal routes for the Neanderthals out of Europe. Using data on topography and Palaeoclimate, we generated computer-based least-cost-path modelling for the Neanderthal dispersal routes from Caucasus towards the east. In this regard, two dispersal routes have been identified: A northern route from Greater Caucasus associated with Micoquian techno-complex towards Siberian Altai and a southern route from Lesser Caucasus associated with Mousterian towards Siberian Altai via the Southern Caspian Corridor. Based on archaeological, bio- and physio-geographical data, our model hypothesises that during climatic deterioration phases (e.g. MIS 4) the connection between Greater and Lesser Caucasus was limited. This issue perhaps resulted in the separate development and spread of two cultural groups of Micoquian and Mousterian with an input from two different population sources of Neanderthal influxes: eastern and southern Europe refugia for these two northern and southern dispersal routes respectively. Of these two, we focus on the southern dispersal route, for it comprises a 'rapid dispersal route' towards east. The significant location of the Southern Caspian corridor between high mountains of Alborz and the Caspian Sea, provided a special biogeographical zone and a refugium. This exceptional physio-geographic condition brings forward the Southern Caspian corridor as a potential place of admixture of different hominin species including Neanderthals and homo sapiens.

RevDate: 2023-05-25
CmpDate: 2023-04-11

Cazenave M, D Radovčić (2023)

The Neanderthal patellae from Krapina (Croatia): A comparative investigation of their endostructural conformation and distinctive features compared to the extant human condition.

American journal of biological anthropology, 181(1):118-129.

OBJECTIVES: The Neanderthal patella differs from that of extant humans by being thicker anteroposteriorly and by having more symmetric medial and lateral articular facets. However, it is still unclear to what extent these differences affect knee kinesiology. We aim at assessing the endostructural conformation of Neanderthal patellae to reveal functionally related mechanical information comparatively to the extant human condition. In principle, we expect that the Neanderthal patella (i) shows a higher amount of cortical bone and (ii) a trabecular network organization distinct from the extant human condition.

MATERIALS AND METHODS: By using micro-focus X-ray tomography, we characterized the endostructure of six adult patellae from the OIS 5e Neanderthal site of Krapina, Croatia, the largest assemblage of human fossil patellae assessed so far, and compared their pattern to the configuration displayed by a sample of 22 recent humans.

RESULTS AND DISCUSSION: The first expectation is rejected, indicating that the patellar bone might have not followed the trend of generalized gracilization of the human postcranial skeleton occurred through the Upper Pleistocene. The second prediction is at least partially supported. In Krapina the trabecular network differs from the comparative sample by showing a higher medial density and by lacking a proximal reinforcement. Such conformation indicates similar load patterns exerted in Neanderthals and extant humans by the vastus lateralis, but not by the vastus medialis, with implications on the mediolateral stabilization of the knee joint. However, the patterns of structural variation of the patellar network remain to be assessed in other Neanderthal samples.

RevDate: 2023-03-30
CmpDate: 2023-03-20

Corcoran M, Chernyshev M, Mandolesi M, et al (2023)

Archaic humans have contributed to large-scale variation in modern human T cell receptor genes.

Immunity, 56(3):635-652.e6.

Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.

RevDate: 2023-04-06
CmpDate: 2023-02-27

Talamo S, Kromer B, Richards MP, et al (2023)

Back to the future: The advantage of studying key events in human evolution using a new high resolution radiocarbon method.

PloS one, 18(2):e0280598.

Radiocarbon dating is the most widely applied dating method in archaeology, especially in human evolution studies, where it is used to determine the chronology of key events, such as the replacement of Neanderthals by modern humans in Europe. However, the method does not always provide precise and accurate enough ages to understand the important processes of human evolution. Here we review the newest method developments in radiocarbon dating ('Radiocarbon 3.0'), which can lead us to much better chronologies and understanding of the major events in recent human evolution. As an example, we apply these new methods to discuss the dating of the important Palaeolithic site of Bacho Kiro (Bulgaria).

RevDate: 2023-05-25
CmpDate: 2023-02-17

Oxilia G, Bortolini E, Marciani G, et al (2022)

Direct evidence that late Neanderthal occupation precedes a technological shift in southwestern Italy.

American journal of biological anthropology, 179(1):18-30.

OBJECTIVES: During the middle-to-upper Paleolithic transition (50,000 and 40,000 years ago), interaction between Neanderthals and Homo sapiens varied across Europe. In southern Italy, the association between Homo sapiens fossils and non-Mousterian material culture, as well as the mode and tempo of Neanderthal demise, are still vividly debated. In this research, we focus on the study of two human teeth by using 3D geometric morphometric approaches for a reliable taxonomical attribution as well as obtaining new radiometric dates on the archeological sequence.

MATERIAL AND METHODS: This work presents two lower deciduous molars uncovered at Roccia San Sebastiano (Mondragone-Caserta, Italy), stratigraphically associated with Mousterian (RSS1) and Uluzzian (RSS2) artifacts. To obtain a probabilistic attribution of the two RSS teeth to each reference taxa group composed of Neanderthals and Homo sapiens, we performed and compared the performance of three supervised learning algorithms (flexible discriminant analysis, multiadaptive regression splines, and random forest) on both crown and cervical outlines obtained by virtual morphometric methods.

RESULTS: We show that RSS1, whose Mousterian context appears more recent than 44,800-44,230 cal BP, can be attributed to a Neanderthal, while RSS2, found in an Uluzzian context that we dated to 42,640-42,380 cal BP, is attributed to Homo sapiens.

DISCUSSION: This site yields the most recent direct evidence for a Neanderthal presence in southern Italy and confirms a later shift to upper Paleolithic technology in southwestern Italy compared to the earliest Uluzzian evidence at Grotta del Cavallo (Puglia, Italy).

RevDate: 2023-05-16

Velazquez-Arcelay K, Colbran LL, McArthur E, et al (2023)

Neanderthal Introgression Shaped Human Circadian Traits.

bioRxiv : the preprint server for biology.

INTRODUCTION: When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultra-violet radiation and an increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology, and whether archaic introgression adaptively contributed to human chronotypes remains unknown.

RESULTS: Here we traced the evolution of chronotype based on genomes from archaic hominin and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants likely to alter splicing in archaics (e.g., CLOCK, PER2, RORB, RORC), and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA . These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among eQTLs for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have strong associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, which is consistent with adaptations to high latitude in other species. Finally, we identified 26 circadian loci with evidence of adaptive introgression, including PER2 and MYBBP1A .

CONCLUSIONS: These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.

SIGNIFICANCE STATEMENT: Interbreeding between modern humans and Neanderthals created the potential for adaptive introgression as humans moved into new environments that had been populated by Neanderthals for hundreds of thousands of years. Here we discover substantial lineage-specific genetic differences in circadian genes and their regulatory elements between humans and Neanderthals. We then show that introgressed archaic alleles are enriched for effects on circadian gene regulation and consistently increase propensity for morningness in modern Europeans. These results substantially expand our understanding of how the genomes of humans and our closest relatives responded to living in environments with different light/dark cycles, and they demonstrate a coordinated contribution of archaic admixture to modern human chronotype in a direction that is consistent with adaptation to higher latitudes.

RevDate: 2023-03-17

Hagymási K (2023)

The Nobel prize in physiology and medicine - 2022.

Structural chemistry, 34(2):733-736.

The Nobel Assembly at Karolinska Institutet awarded the 2022 Nobel Prize in Physiology or Medicine to a Swedish geneticist, Svante Pääbo, for his discoveries concerning the genomes of extinct hominins and human evolution, for the sequencing of the genome of the Neanderthal, the discovery of a previously unknown hominin, Denisova, and the establishment of a new scientific discipline, paleogenomics.

RevDate: 2023-02-22
CmpDate: 2023-02-14

Jagoda E, Marnetto D, Senevirathne G, et al (2023)

Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals.

eLife, 12:.

Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.

RevDate: 2023-03-14
CmpDate: 2023-02-08

Kozowyk PRB (2023)

Archaeological Podocarpus tar supports the cognitive complexity of Neanderthals.

Proceedings of the National Academy of Sciences of the United States of America, 120(7):e2221676120.

RevDate: 2023-02-07

Sironi M, Cagliani R, Biasin M, et al (2022)

No association of a risk variant for severe COVID-19 with HIV protection in three cohorts of highly exposed individuals.

PNAS nexus, 1(3):pgac138.

An extended haplotype on chromosome 3 is the major genetic risk factor for severe COVID-19. The risk haplotype, which was inherited from Neanderthals, decreases the expression of several cytokine receptors, including CCR5. Recently, a study based on three general population cohorts indicated that the minor allele of one of the variants in the haplotype (rs17713054) protects against HIV infection. We thus expected this allele to be over-represented in highly exposed individuals who remain uninfected (exposed seronegative individuals, ESN). To perform a meta-analysis, we genotyped rs17713054 in three ESN cohorts of European ancestry exposed to HIV through different routes. No evidence of association was detected in the single cohorts. The meta-analysis also failed to detect any effect of the variant on protection from HIV-1. The same results were obtained in a Cox-regression analysis for the time to seroconversion. An in-vitro infection assay did not detect differences in viral replication as a function of rs17713054 genotype status. We conclude that the rs17713054 minor allele is not associated with the ESN phenotype and does not modulate HIV infection in vitro.

RevDate: 2023-03-15
CmpDate: 2023-03-15

Dekker J, Larson T, Tzvetkov J, et al (2023)

Spatial analysis of the ancient proteome of archeological teeth using mass spectrometry imaging.

Rapid communications in mass spectrometry : RCM, 37(8):e9486.

RATIONALE: Proteins extracted from archaeological bone and teeth are utilised for investigating the phylogeny of extinct and extant species, the biological sex and age of past individuals, as well as ancient health and physiology. However, variable preservation of proteins in archaeological materials represents a major challenge.

METHODS: To better understand the spatial distribution of ancient proteins preserved within teeth, we applied matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for the first time to bioarchaeological samples to visualise the intensity of proteins in archaeological teeth thin sections. We specifically explored the spatial distribution of four proteins (collagen type I, of which the chains alpha-1 and alpha-2, alpha-2-HS-glycoprotein, haemoglobin subunit alpha and myosin light polypeptide 6).

RESULTS: We successfully identified ancient proteins in archaeological teeth thin sections using mass spectrometry imaging. The data are available via ProteomeXchange with identifier PXD038114. However, we observed that peptides did not always follow our hypotheses for their spatial distribution, with distinct differences observed in the spatial distribution of several proteins, and occasionally between peptides of the same protein.

CONCLUSIONS: While it remains unclear what causes these differences in protein intensity distribution within teeth, as revealed by MALDI-MSI in this study, we have demonstrated that MALDI-MSI can be successfully applied to mineralised bioarchaeological tissues to detect ancient peptides. In future applications, this technique could be particularly fruitful not just for understanding the preservation of proteins in a range of archaeological materials, but making informed decisions on sampling strategies and the targeting of key proteins of archaeological and biological interest.

RevDate: 2023-03-01
CmpDate: 2023-03-01

Curry A (2023)

Neanderthals lived in groups big enough to eat giant elephants.

Science (New York, N.Y.), 379(6631):428.

Meat from the butchered beasts would have fed hundreds.

RevDate: 2023-03-07
CmpDate: 2023-02-06

Gaudzinski-Windheuser S, Kindler L, MacDonald K, et al (2023)

Hunting and processing of straight-tusked elephants 125.000 years ago: Implications for Neanderthal behavior.

Science advances, 9(5):eadd8186.

Straight-tusked elephants (Palaeoloxodon antiquus) were the largest terrestrial mammals of the Pleistocene, present in Eurasian landscapes between 800,000 and 100,000 years ago. The occasional co-occurrence of their skeletal remains with stone tools has generated rich speculation about the nature of interactions between these elephants and Pleistocene humans: Did hominins scavenge on elephants that died a natural death or maybe even hunt some individuals? Our archaeozoological study of the largest P. antiquus assemblage known, excavated from 125,000-year-old lake deposits in Germany, shows that hunting of elephants weighing up to 13 metric tons was part of the cultural repertoire of Last Interglacial Neanderthals there, over >2000 years, many dozens of generations. The intensity and nutritional yields of these well-documented butchering activities, combined with previously reported data from this Neumark-Nord site complex, suggest that Neanderthals were less mobile and operated within social units substantially larger than commonly envisaged.

RevDate: 2023-03-13
CmpDate: 2023-02-02

Ben-Dor M, R Barkai (2023)

A limited protein high-fat diet may explain the low δ[66]Zn conundrum in the Neandertal from Gabasa.

Proceedings of the National Academy of Sciences of the United States of America, 120(6):e2218081120.

RevDate: 2023-02-02

Williams SA, Zeng I, Paton GJ, et al (2022)

Inferring lumbar lordosis in Neandertals and other hominins.

PNAS nexus, 1(1):pgab005.

Lumbar lordosis is a key adaptation to bipedal locomotion in the human lineage. Dorsoventral spinal curvatures enable the body's center of mass to be positioned above the hip, knee, and ankle joints, and minimize the muscular effort required for postural control and locomotion. Previous studies have suggested that Neandertals had less lordotic (ventrally convex) lumbar columns than modern humans, which contributed to historical perceptions of postural and locomotor differences between the two groups. Quantifying lower back curvature in extinct hominins is entirely reliant upon bony correlates of overall lordosis, since the latter is significantly influenced by soft tissue structures (e.g. intervertebral discs). Here, we investigate sexual dimorphism, ancestry, and lifestyle effects on lumbar vertebral body wedging and inferior articular facet angulation, two features previously shown to be significantly correlated with overall lordosis in living individuals, in a large sample of modern humans and Neandertals. Our results demonstrate significant differences between postindustrial cadaveric remains and archaeological samples of people that lived preindustrial lifestyles. We suggest these differences are related to activity and other aspects of lifestyle rather than innate population (ancestry) differences. Neandertal bony correlates of lumbar lordosis are significantly different from all human samples except preindustrial males. Therefore, although Neandertals demonstrate more bony kyphotic wedging than most modern humans, we cast doubt on proposed locomotor and postural differences between the two lineages based on inferred lumbar lordosis (or lack thereof), and we recommend future research compare fossils to modern humans from varied populations and not just recent, postindustrial samples.

RevDate: 2023-02-18

Flegontov P, Işıldak U, Maier R, et al (2023)

Modeling of African population history using f -statistics can be highly biased and is not addressed by previously suggested SNP ascertainment schemes.

bioRxiv : the preprint server for biology.

f -statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. These statistics can provide strong evidence for either admixture or cladality, which can be robust to substantial rates of errors or missing data. f -statistics are guaranteed to be unbiased under "SNP ascertainment" (analyzing non-randomly chosen subsets of single nucleotide polymorphisms) only if it relies on a population that is an outgroup for all groups analyzed. However, ascertainment on a true outgroup that is not co-analyzed with other populations is often impractical and uncommon in the literature. In this study focused on practical rather than theoretical aspects of SNP ascertainment, we show that many non-outgroup ascertainment schemes lead to false rejection of true demographic histories, as well as to failure to reject incorrect models. But the bias introduced by common ascertainments such as the 1240K panel is mostly limited to situations when more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans) or non-human outgroups are co-modelled, for example, f 4 -statistics involving one non-African group, two African groups, and one archaic group. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, cannot fix all these problems since for some classes of f -statistics it is not a clean outgroup ascertainment, and in other cases it demonstrates relatively low power to reject incorrect demographic models since it provides a relatively small number of variants common in anatomically modern humans. And due to the paucity of high-coverage archaic genomes, archaic individuals used for ascertainment often act as sole representatives of the respective groups in an analysis, and we show that this approach is highly problematic. By carrying out large numbers of simulations of diverse demographic histories, we find that bias in inferences based on f -statistics introduced by non-outgroup ascertainment can be minimized if the derived allele frequency spectrum in the population used for ascertainment approaches the spectrum that existed at the root of all groups being co-analyzed. Ascertaining on sites with variants common in a diverse group of African individuals provides a good approximation to such a set of SNPs, addressing the great majority of biases and also retaining high statistical power for studying population history. Such a "pan-African" ascertainment, although not completely problem-free, allows unbiased exploration of demographic models for the widest set of archaic and modern human populations, as compared to the other ascertainment schemes we explored.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Click covers to order from Amazon
We will earn a commission.


The first fossil recognized to be an ancestral human was found in the Neander Valley (thal in German) in 1856. William King suggested Homo neanderthalensis (human from the Neander Valley) as the scientific name for the specimen — hence Neanderthal became the common name by which this early human became known. Now Neanderthal genomes have been sequenced, more is known about their path to extinction, and the existence of Neanderthal culture, including music, has been established. To understand the evolutionary path of the hominid line, one must be familiar with Homo neanderthalensis. These books are highly recommended. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )