About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

26 Jan 2022 at 01:36
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Topologically Associating Domains


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jan 2022 at 01:36 Created: 

Topologically Associating Domains

"Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization." QUOTE FROM: Dekker Job and Heard Edith (2015), Structural and functional diversity of Topologically Associating Domains, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.08.044

Created with PubMed® Query: "Topologically Associating Domains" OR "Topologically Associating Domain" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-01-20

Tsagiopoulou M, Pechlivanis N, Maniou MC, et al (2022)

InterTADs: integration of multi-omics data on topologically associated domains, application to chronic lymphocytic leukemia.

NAR genomics and bioinformatics, 4(1):lqab121 pii:lqab121.

The integration of multi-omics data can greatly facilitate the advancement of research in Life Sciences by highlighting new interactions. However, there is currently no widespread procedure for meaningful multi-omics data integration. Here, we present a robust framework, called InterTADs, for integrating multi-omics data derived from the same sample, and considering the chromatin configuration of the genome, i.e. the topologically associating domains (TADs). Following the integration process, statistical analysis highlights the differences between the groups of interest (normal versus cancer cells) relating to (i) independent and (ii) integrated events through TADs. Finally, enrichment analysis using KEGG database, Gene Ontology and transcription factor binding sites and visualization approaches are available. We applied InterTADs to multi-omics datasets from 135 patients with chronic lymphocytic leukemia (CLL) and found that the integration through TADs resulted in a dramatic reduction of heterogeneity compared to individual events. Significant differences for individual events and on TADs level were identified between patients differing in the somatic hypermutation status of the clonotypic immunoglobulin genes, the core biological stratifier in CLL, attesting to the biomedical relevance of InterTADs. In conclusion, our approach suggests a new perspective towards analyzing multi-omics data, by offering reasonable execution time, biological benchmarking and potentially contributing to pattern discovery through TADs.

RevDate: 2022-01-18

Li CC, Zhang G, Du J, et al (2022)

Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos.

Nature communications, 13(1):346.

The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.

RevDate: 2022-01-13

Miura H, I Hiratani (2022)

Cell cycle dynamics and developmental dynamics of the 3D genome: toward linking the two timescales.

Current opinion in genetics & development, 73:101898 pii:S0959-437X(21)00143-X [Epub ahead of print].

In the mammalian cell nucleus, chromosomes are folded differently in interphase and mitosis. Interphase chromosomes are relatively decondensed and display at least two unique layers of higher-order organization: topologically associating domains (TADs) and cell-type-specific A/B compartments, which correlate well with early/late DNA replication timing (RT). In mitosis, these structures rapidly disappear but are gradually reconstructed during G1 phase, coincident with the establishment of the RT program. However, these structures also change dynamically during cell differentiation and reprogramming, and yet we are surprisingly ignorant about the relationship between their cell cycle dynamics and developmental dynamics. In this review, we summarize the recent findings on this topic, discuss how these two processes might be coordinated with each other and its potential significance.

RevDate: 2022-01-12

Jablonski KP, Carron L, Mozziconacci J, et al (2022)

Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study.

Human genomics, 16(1):2.

BACKGROUND: Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders.

RESULTS: For each of 449 diseases, we tested whether the associated SNPs are present in TAD borders more often than observed by chance, where chance (i.e., the null model in statistical terms) corresponds to the same number of pointwise loci drawn at random either in the entire genome, or in the entire set of disease-associated SNPs listed in the GWAS catalog. Our analysis shows that a fraction of diseases displays such a preferential localization of their risk loci. Moreover, cancers are relatively more frequent among these diseases, and this predominance is generally enhanced when considering only intergenic SNPs. The structure of SNP-based diseasome networks confirms that localization of risk loci in TAD borders differs between cancers and non-cancer diseases. Furthermore, different TAD border enrichments are observed in embryonic stem cells and differentiated cells, consistent with changes in topological domains along embryogenesis and delineating their contribution to disease risk.

CONCLUSIONS: Our results suggest that, for certain diseases, part of the genetic risk lies in a local genetic variation affecting the genome partitioning in topologically insulated domains. Investigating this possible contribution to genetic risk is particularly relevant in cancers. This study thus opens a way of interpreting genome-wide association studies, by distinguishing two types of disease-associated SNPs: one with an effect on an individual gene, the other acting in interplay with 3D genome organization.

RevDate: 2022-01-11

Li D, Ning C, Zhang J, et al (2022)

Dynamic transcriptome and chromatin architecture in granulosa cells during chicken folliculogenesis.

Nature communications, 13(1):131.

Folliculogenesis is a complex biological process involving a central oocyte and its surrounding somatic cells. Three-dimensional chromatin architecture is an important transcription regulator; however, little is known about its dynamics and role in transcriptional regulation of granulosa cells during chicken folliculogenesis. We investigate the transcriptomic dynamics of chicken granulosa cells over ten follicular stages and assess the chromatin architecture dynamics and how it influences gene expression in granulosa cells at three key stages: the prehierarchical small white follicles, the first largest preovulatory follicles, and the postovulatory follicles. Our results demonstrate the consistency between the global reprogramming of chromatin architecture and the transcriptomic divergence during folliculogenesis, providing ample evidence for compartmentalization rearrangement, variable organization of topologically associating domains, and rewiring of the long-range interaction between promoter and enhancers. These results provide key insights into avian reproductive biology and provide a foundational dataset for the future in-depth functional characterization of granulosa cells.

RevDate: 2022-01-04

Tian GG, Zhao X, Hou C, et al (2022)

Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties of mouse female germline stem cells.

Cellular and molecular life sciences : CMLS, 79(1):22.

The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells and further understanding of the fundamental characteristics of FGSCs.

RevDate: 2022-01-03

Zheng Y, Zhang L, Jin L, et al (2021)

Unraveling three-dimensional chromatin structural dynamics during spermatogonial differentiation.

The Journal of biological chemistry pii:S0021-9258(21)01369-7 [Epub ahead of print].

Spermatogonial stem cells (SSCs) are able to undergo both self-renewal and differentiation. Unlike self-renewal, which replenishes the SSC and progenitor pool, differentiation is an irreversible process committing cells to meiosis. While the preparations for meiotic events in differentiating spermatogonia (Di-SG) are likely to be accompanied by alterations in chromatin structure, the three-dimensional (3D) chromatin architectural differences between SSCs and Di-SG, and the higher-order chromatin dynamics during spermatogonial differentiation, have not been systematically investigated. Here, we performed in situ high-throughput chromosome conformation capture (Hi-C), RNA-sequencing (RNA-seq), and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses on porcine undifferentiated spermatogonia (Un-SG, which consist of SSCs and progenitors) and Di-SG. We identified that Di-SG exhibited less compact chromatin structural organization, weakened compartmentalization and diminished topologically associating domains (TADs) in comparison with Un-SG, suggesting that diminished higher-order chromatin architecture in meiotic cells, as shown by recent reports, might be preprogrammed in Di-SG. Our data also revealed that A/B compartments, representing open or closed chromatin regions respectively, and TADs were related to dynamic gene expression during spermatogonial differentiation. Furthermore, we unraveled the contribution of promoter-enhancer interactions (PEIs) to pre-meiotic transcriptional regulation, which has not been accomplished in previous studies due to limited cell input and resolution. Together, our study uncovered the 3D chromatin structure of SSCs/progenitors and Di-SG, as well as the interplay between higher-order chromatin architecture and dynamic gene expression during spermatogonial differentiation. These findings provide novel insights into the mechanisms for SSC self-renewal and differentiation and have implications for diagnosis and treatment of male sub-/infertility.

RevDate: 2021-12-29

Salari H, Di Stefano M, D Jost (2021)

Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the liquid- or gel-like dynamical behavior of chromatin.

Genome research pii:gr.275827.121 [Epub ahead of print].

Chromosome organization and dynamics are involved in regulating many fundamental processes such as gene transcription and DNA repair. Experiments unveiled that chromatin motion is highly heterogeneous inside cell nuclei, ranging from a liquid-like, mobile state to a gel-like, rigid regime. Using polymer modeling, we investigate how these different physical states and dynamical heterogeneities may emerge from the same structural mechanisms. We found that the formation of topologically associating domains (TADs) is a key driver of chromatin motion heterogeneity. In particular, we showed that the local degree of compaction of the TAD regulates the transition from a weakly compact, fluid state of chromatin to a more compact, gel state exhibiting anomalous diffusion and coherent motion. Our work provides a comprehensive study of chromosome dynamics and a unified view of chromatin motion enabling interpretation of the wide variety of dynamical behaviors observed experimentally across different biological conditions, suggesting that the "liquid" or "solid" state of chromatin are in fact two sides of the same coin.

RevDate: 2021-12-27

Kumar S, Kaur S, Seem K, et al (2021)

Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.

Frontiers in cell and developmental biology, 9:774719 pii:774719.

The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.

RevDate: 2021-12-27
CmpDate: 2021-12-27

Conte M, Fiorillo L, Annunziatella C, et al (2021)

Dynamic and equilibrium properties of finite-size polymer models of chromosome folding.

Physical review. E, 104(5-1):054402.

Novel technologies are revealing that chromosomes have a complex three-dimensional organization within the cell nucleus that serves functional purposes. Models from polymer physics have been developed to quantitively understand the molecular principles controlling their structure and folding mechanisms. Here, by using massive molecular-dynamics simulations we show that classical scaling laws combined with finite-size effects of a simple polymer model can effectively explain the scaling behavior that chromatin exhibits at the topologically associating domains level, as revealed by experimental observations. Model results are then validated against recently published high-resolution in situ Hi-C data.

RevDate: 2021-12-22

Huang N, Seow WQ, Appert A, et al (2021)

Accessible Region Conformation Capture (ARC-C) gives high resolution insights into genome architecture and regulation.

Genome research pii:gr.275669.121 [Epub ahead of print].

Nuclear organization and chromatin interactions are important for genome function, yet determining chromatin connections at high-resolution remains a major challenge. To address this, we developed Accessible Region Conformation Capture (ARC-C), which profiles interactions between regulatory elements genome-wide without a capture step. Applied to C. elegans, we identify ~15,000 significant interactions between regulatory elements at 500bp resolution. Of 105 TFs or chromatin regulators tested, we find that the binding sites of 60 are enriched for interacting with each other, making them candidates for mediating interactions. These include cohesin and condensin II. Applying ARC-C to a mutant of transcription factor BLMP-1 detected changes in interactions between its targets. ARC-C simultaneously profiles domain level architecture, and we observe that C. elegans chromatin domains defined by either active or repressive modifications form topologically associating domains (TADs) which interact with A/B (active/inactive) compartment-like structure. Furthermore, we discovered that inactive compartment interactions are dependent on H3K9 methylation. ARC-C is a powerful new tool to interrogate genome architecture and regulatory interactions at high resolution.

RevDate: 2021-12-16

Tian W, Wang Z, Wang D, et al (2021)

Chromatin Interaction Responds to Breast Muscle Development and Intramuscular Fat Deposition Between Chinese Indigenous Chicken and Fast-Growing Broiler.

Frontiers in cell and developmental biology, 9:782268 pii:782268.

Skeletal muscle development and intramuscular fat (IMF) content, which positively contribute to meat production and quality, are regulated by precisely orchestrated processes. However, changes in three-dimensional chromatin structure and interaction, a newly emerged mediator of gene expression, during the skeletal muscle development and IMF deposition have remained unclear. In the present study, we analyzed the differences in muscle development and IMF content between one-day-old commercial Arbor Acres broiler (AA) and Chinese indigenous Lushi blue-shelled-egg chicken (LS) and performed Hi-C analysis on their breast muscles. Our results indicated that significantly higher IMF content, however remarkably lower muscle fiber diameter was detected in breast muscle of LS chicken compared to that of AA broiler. The chromatin intra-interaction was prior to inter-interaction in both AA and LS chicken, and chromatin inter-interaction was heavily focused on the small and gene-rich chromosomes. For genomic compartmentalization, no significant difference in the number of B type compartments was found, but AA had more A type compartments versus LS. The A/B compartment switching of AA versus LS showed more A to B switching than B to A switching. There were no significant differences in the average sizes and distributions of topologically associating domains (TAD). Additionally, approximately 50% of TAD boundaries were overlapping. The reforming and disappearing events of TAD boundaries were identified between AA and LS chicken breast muscles. Among these, the HMGCR gene was located in the TAD-boundary regions in AA broilers, but in TAD-interior regions in LS chickens, and the IGF2BP3 gene was located in the AA-unique TAD boundaries. Both HMGCR and IGF2BP3 genes exhibited increased mRNA expression in one-day-old AA broiler breast muscles. It was demonstrated that the IGF2BP3 and HMGCR genes regulated by TAD boundary sliding were potential biomarkers for chicken breast muscle development and IMF deposition. Our data not only provide a valuable understanding of higher-order chromatin dynamics during muscle development and lipid accumulation but also reveal new insights into the regulatory mechanisms of muscle development and IMF deposition in chicken.

RevDate: 2021-12-13

San Martin R, Das P, Dos Reis Marques R, et al (2022)

Chromosome compartmentalization alterations in prostate cancer cell lines model disease progression.

The Journal of cell biology, 221(2):.

Prostate cancer aggressiveness and metastatic potential are influenced by gene expression and genomic aberrations, features that can be influenced by the 3D structure of chromosomes inside the nucleus. Using chromosome conformation capture (Hi-C), we conducted a systematic genome architecture comparison on a cohort of cell lines that model prostate cancer progression, from normal epithelium to bone metastasis. We describe spatial compartment identity (A-open versus B-closed) changes with progression in these cell lines and their relation to gene expression changes in both cell lines and patient samples. In particular, 48 gene clusters switch from the B to the A compartment, including androgen receptor, WNT5A, and CDK14. These switches are accompanied by changes in the structure, size, and boundaries of topologically associating domains (TADs). Further, compartment changes in chromosome 21 are exacerbated with progression and may explain, in part, the genesis of the TMPRSS2-ERG translocation. These results suggest that discrete 3D genome structure changes play a deleterious role in prostate cancer progression. .

RevDate: 2021-12-06

Cardozo Gizzi AM (2021)

A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization.

Frontiers in genetics, 12:780822 pii:780822.

The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into "territories," epigenetically-defined large domains of chromatin that interact to form "compartments" with common transcriptional status, and insulator-flanked domains called "topologically associating domains" (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled "chromatin tracing." Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of "spatial genomics." As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.

RevDate: 2021-11-25

Cinque L, Micale L, Manara E, et al (2021)

A novel complex genomic rearrangement affecting the KCNJ2 regulatory region causes a variant of Cooks syndrome.

Human genetics [Epub ahead of print].

Cooks syndrome (CS) is an ultrarare limb malformation due to in tandem microduplications involving KCNJ2 and extending to the 5' regulatory element of SOX9. To date, six CS families were resolved at the molecular level. Subsequent studies explored the evolutionary and pathological complexities of the SOX9-KCNJ2/Sox9-Kcnj2 locus, and suggested a key role for the formation of novel topologically associating domain (TAD) by inter-TAD duplications in causing CS. Here, we report a unique case of CS associated with a de novo 1;17 translocation affecting the KCNJ2 locus. On chromosome 17, the breakpoint mapped between KCNJ16 and KCNJ2, and combined with a ~ 5 kb deletion in the 5' of KCNJ2. Based on available capture Hi-C data, the breakpoint on chromosome 17 separated KCNJ2 from a putative enhancer. Gene expression analysis demonstrated downregulation of KCNJ2 in both patient's blood cells and cultured skin fibroblasts. Our findings suggest that a complex rearrangement falling in the 5' of KCNJ2 may mimic the developmental consequences of in tandem duplications affecting the SOX9-KCNJ2/Sox9-Kcnj2 locus. This finding adds weight to the notion of an intricate role of gene regulatory regions and, presumably, the related three-dimensional chromatin structure in normal and abnormal human morphology.

RevDate: 2021-11-22

Maslova A, A Krasikova (2021)

FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains.

Frontiers in cell and developmental biology, 9:753097.

The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.

RevDate: 2021-11-18

Peinado P, Andrades A, Martorell-Marugán J, et al (2021)

The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma.

Human molecular genetics, 30(23):2263-2271.

SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes are key epigenetic regulators that are recurrently mutated in cancer. Most studies of these complexes are focused on their role in regulating protein-coding genes. However, here, we show that SWI/SNF complexes control the expression of microRNAs. We used a SMARCA4-deficient model of lung adenocarcinoma (LUAD) to track changes in the miRNome upon SMARCA4 restoration. We found that SMARCA4-SWI/SNF complexes induced significant changes in the expression of cancer-related microRNAs. The most significantly dysregulated microRNA was miR-222, whose expression was promoted by SMARCA4-SWI/SNF complexes, but not by SMARCA2-SWI/SNF complexes via their direct binding to a miR-222 enhancer region. Importantly, miR-222 expression decreased cell viability, phenocopying the tumor suppressor role of SMARCA4-SWI/SNF complexes in LUAD. Finally, we showed that the miR-222 enhancer region resides in a topologically associating domain that does not contain any cancer-related protein-coding genes, suggesting that miR-222 may be involved in exerting the tumor suppressor role of SMARCA4. Overall, this study highlights the relevant role of the SWI/SNF complex in regulating the non-coding genome, opening new insights into the pathogenesis of LUAD.

RevDate: 2021-11-17

Wu DY, Li X, Sun QR, et al (2021)

Defective chromatin architectures in embryonic stem cells derived from somatic cell nuclear transfer impair their differentiation potentials.

Cell death & disease, 12(12):1085.

Nuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.

RevDate: 2021-11-09

Cheng Y, Liu M, Hu M, et al (2021)

TAD-like single-cell domain structures exist on both active and inactive X chromosomes and persist under epigenetic perturbations.

Genome biology, 22(1):309.

BACKGROUND: Topologically associating domains (TADs) are important building blocks of three-dimensional genome architectures. The formation of TADs has been shown to depend on cohesin in a loop-extrusion mechanism. Recently, advances in an image-based spatial genomics technique known as chromatin tracing lead to the discovery of cohesin-independent TAD-like structures, also known as single-cell domains, which are highly variant self-interacting chromatin domains with boundaries that occasionally overlap with TAD boundaries but tend to differ among single cells and among single chromosome copies. Recent computational modeling studies suggest that epigenetic interactions may underlie the formation of the single-cell domains.

RESULTS: Here we use chromatin tracing to visualize in female human cells the fine-scale chromatin folding of inactive and active X chromosomes, which are known to have distinct global epigenetic landscapes and distinct population-averaged TAD profiles, with inactive X chromosomes largely devoid of TADs and cohesin. We show that both inactive and active X chromosomes possess highly variant single-cell domains across the same genomic region despite the fact that only active X chromosomes show clear TAD structures at the population level. These X chromosome single-cell domains exist in distinct cell lines. Perturbations of major epigenetic components and transcription mostly do not affect the frequency or strength of the single-cell domains. Increased chromatin compaction of inactive X chromosomes occurs at a length scale above that of the single-cell domains.

CONCLUSIONS: In sum, this study suggests that single-cell domains are genome architecture building blocks independent of the tested major epigenetic components.

RevDate: 2021-11-08

Yildirir G, Sperschneider J, Malar C M, et al (2021)

Long reads and Hi-C sequencing illuminate the two compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis.

The New phytologist [Epub ahead of print].

Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains (TADs). In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts; the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta up-regulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.

RevDate: 2021-11-06

Stilianoudakis SC, Marshall MA, MG Dozmorov (2021)

preciseTAD: A transfer learning framework for 3D domain boundary prediction at base-pair resolution.

Bioinformatics (Oxford, England) pii:6422527 [Epub ahead of print].

MOTIVATION: Chromosome conformation capture technologies (Hi-C) revealed extensive DNA folding into discrete 3D domains, such as Topologically Associating Domains and chromatin loops. The correct binding of CTCF and cohesin at domain boundaries is integral in maintaining the proper structure and function of these 3D domains. 3D domains have been mapped at the resolutions of 1 kilobase and above. However, it has not been possible to define their boundaries at the resolution of boundary-forming proteins.

RESULTS: To predict domain boundaries at base-pair resolution, we developed preciseTAD, an optimized transfer learning framework trained on high-resolution genome annotation data. In contrast to current TAD/loop callers, preciseTAD-predicted boundaries are strongly supported by experimental evidence. Importantly, this approach can accurately delineate boundaries in cells without Hi-C data. preciseTAD provides a powerful framework to improve our understanding of how genomic regulators are shaping the 3D structure of the genome at base-pair resolution.

AVAILABILITY: preciseTAD is an R/Bioconductor package available at https://bioconductor.org/packages/preciseTAD/.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2021-11-01

Liehr T (2021)

Molecular Cytogenetics in the Era of Chromosomics and Cytogenomic Approaches.

Frontiers in genetics, 12:720507 pii:720507.

Here the role of molecular cytogenetics in the context of yet available all other cytogenomic approaches is discussed. A short introduction how cytogenetics and molecular cytogenetics were established is followed by technical aspects of fluorescence in situ hybridization (FISH). The latter contains the methodology itself, the types of probe- and target-DNA, as well as probe sets. The main part deals with examples of modern FISH-applications, highlighting unique possibilities of the approach, like the possibility to study individual cells and even individual chromosomes. Different variants of FISH can be used to retrieve information on genomes from (almost) base pair to whole genomic level, as besides only second and third generation sequencing approaches can do. Here especially highlighted variations of FISH are molecular combing, chromosome orientation-FISH (CO-FISH), telomere-FISH, parental origin determination FISH (POD-FISH), FISH to resolve the nuclear architecture, multicolor-FISH (mFISH) approaches, among other applied in chromoanagenesis studies, Comet-FISH, and CRISPR-mediated FISH-applications. Overall, molecular cytogenetics is far from being outdated and actively involved in up-to-date diagnostics and research.

RevDate: 2021-10-25

Awotoye W, Comnick C, Pendleton C, et al (2021)

Genome-wide Gene-by-Sex Interaction Studies Identify Novel Nonsyndromic Orofacial Clefts Risk Locus.

Journal of dental research [Epub ahead of print].

Risk loci identified through genome-wide association studies have explained about 25% of the phenotypic variations in nonsyndromic orofacial clefts (nsOFCs) on the liability scale. Despite the notable sex differences in the incidences of the different cleft types, investigation of loci for sex-specific effects has been understudied. To explore the sex-specific effects in genetic etiology of nsOFCs, we conducted a genome-wide gene × sex (GxSex) interaction study in a sub-Saharan African orofacial cleft cohort. The sample included 1,019 nonsyndromic orofacial cleft cases (814 cleft lip with or without cleft palate and 205 cleft palate only) and 2,159 controls recruited from 3 sites (Ethiopia, Ghana, and Nigeria). An additive logistic model was used to examine the joint effects of the genotype and GxSex interaction. Furthermore, we examined loci with suggestive significance (P < 1E-5) in the additive model for the effect of the GxSex interaction only. We identified a novel risk locus on chromosome 8p22 with genome-wide significant joint and GxSex interaction effects (rs2720555, p2df = 1.16E-08, pGxSex = 1.49E-09, odds ratio [OR] = 0.44, 95% CI = 0.34 to 0.57). For males, the risk of cleft lip with or without cleft palate at this locus decreases with additional copies of the minor allele (p < 0.0001, OR = 0.60, 95% CI = 0.48 to 0.74), but the effect is reversed for females (p = 0.0004, OR = 1.36, 95% CI = 1.15 to 1.60). We replicated the female-specific effect of this locus in an independent cohort (p = 0.037, OR = 1.30, 95% CI = 1.02 to 1.65), but no significant effect was found for the males (p = 0.29, OR = 0.86, 95% CI = 0.65 to 1.14). This locus is in topologically associating domain with craniofacially expressed and enriched genes during embryonic development. Rare coding mutations of some of these genes were identified in nsOFC cohorts through whole exome sequencing analysis. Our study is additional proof that genome-wide GxSex interaction analysis provides an opportunity for novel findings of loci and genes that contribute to the risk of nsOFCs.

RevDate: 2021-10-23

Marti-Marimon M, Vialaneix N, Lahbib-Mansais Y, et al (2021)

Major Reorganization of Chromosome Conformation During Muscle Development in Pig.

Frontiers in genetics, 12:748239.

The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.

RevDate: 2021-10-08

Servetti M, Pisciotta L, Tassano E, et al (2021)

Neurodevelopmental Disorders in Patients With Complex Phenotypes and Potential Complex Genetic Basis Involving Non-Coding Genes, and Double CNVs.

Frontiers in genetics, 12:732002 pii:732002.

Neurodevelopmental disorders (NDDs) are a heterogeneous class of brain diseases, with a complex genetic basis estimated to account for up to 50% of cases. Nevertheless, genetic diagnostic yield is about 20%. Array-comparative genomic hybridization (array-CGH) is an established first-level diagnostic test able to detect pathogenic copy number variants (CNVs), however, most identified variants remain of uncertain significance (VUS). Failure of interpretation of VUSs may depend on various factors, including complexity of clinical phenotypes and inconsistency of genotype-phenotype correlations. Indeed, although most NDD-associated CNVs are de novo, transmission from unaffected parents to affected children of CNVs with high risk for NDDs has been observed. Moreover, variability of genetic components overlapped by CNVs, such as long non-coding genes, genomic regions with long-range effects, and additive effects of multiple CNVs can make CNV interpretation challenging. We report on 12 patients with complex phenotypes possibly explained by complex genetic mechanisms, including involvement of antisense genes and boundaries of topologically associating domains. Eight among the 12 patients carried two CNVs, either de novo or inherited, respectively, by each of their healthy parents, that could additively contribute to the patients' phenotype. CNVs overlapped either known NDD-associated or novel candidate genes (PTPRD, BUD13, GLRA3, MIR4465, ABHD4, and WSCD2). Bioinformatic enrichment analyses showed that genes overlapped by the co-occurring CNVs have synergistic roles in biological processes fundamental in neurodevelopment. Double CNVs could concur in producing deleterious effects, according to a two-hit model, thus explaining the patients' phenotypes and the incomplete penetrance, and variable expressivity, associated with the single variants. Overall, our findings could contribute to the knowledge on clinical and genetic diagnosis of complex forms of NDD.

RevDate: 2021-10-04

Esquivel-López A, Arzate-Mejía R, Pérez-Molina R, et al (2021)

In-Nucleus Hi-C in Drosophila Cells.

Journal of visualized experiments : JoVE.

The genome is organized into topologically associating domains (TADs) delimited by boundaries that isolate interactions between domains. In Drosophila, the mechanisms underlying TAD formation and boundaries are still under investigation. The application of the in-nucleus Hi-C method described here helped to dissect the function of architectural protein (AP)-binding sites at TAD boundaries isolating the Notch gene. Genetic modification of domain boundaries that cause loss of APs results in TAD fusion, transcriptional defects, and long-range topological alterations. These results provided evidence demonstrating the contribution of genetic elements to domain boundary formation and gene expression control in Drosophila. Here, the in-nucleus Hi-C method has been described in detail, which provides important checkpoints to assess the quality of the experiment along with the protocol. Also shown are the required numbers of sequencing reads and valid Hi-C pairs to analyze genomic interactions at different genomic scales. CRISPR/Cas9-mediated genetic editing of regulatory elements and high-resolution profiling of genomic interactions using this in-nucleus Hi-C protocol could be a powerful combination for the investigation of the structural function of genetic elements.

RevDate: 2021-10-04

Luo H, Li X, Tian GG, et al (2021)

Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization.

Journal of advanced research, 33:81-98 pii:S2090-1232(21)00053-9.

Introduction: Fate determination of germline stem cells remains poorly understood at the chromatin structure level.

Objectives: Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors.

Methods: The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs. The defined factors were screened with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into induced germline stem cells (iGSCs) using high throughput chromosome conformation.

Results: We demonstrate successful production of offspring from oocytes transdifferentiated from mouse spermatogonial stem cells (SSCs). Furthermore, we demonstrate direct induction of germline stem cells (iGSCs) differentiated into functional oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf in SSCs after screening with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into iGSCs, which was highly similar to female germline stem cells. We observed that although topologically associating domains were stable during SSC conversion, chromatin interactions changed in a striking manner, altering 35% of inactive and active chromosomal compartments throughout the genome.

Conclusion: We demonstrate successful offspring production of ovarian organoids derived from SSCs by defined factors with chromatin reorganization. These findings have important implications in various areas including mammalian gametogenesis, genetic and epigenetic reprogramming, biotechnology, and medicine.

RevDate: 2021-09-29

Grabowicz IE, Wilczyński B, Kamińska B, et al (2021)

Author Correction: The role of epigenetic modifications, long-range contacts, enhancers and topologically associating domains in the regulation of glioma grade-specific genes.

Scientific reports, 11(1):19628 pii:10.1038/s41598-021-99319-4.

RevDate: 2021-09-17

He L, Ding Y, Zhao Y, et al (2021)

CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell.

Stem cell reports pii:S2213-6711(21)00429-X [Epub ahead of print].

Skeletal muscle satellite cells (SCs) are stem cells responsible for muscle development and regeneration. Although CRISPR/Cas9 has been widely used, its application in endogenous SCs remains elusive. Here, we generate mice expressing Cas9 in SCs and achieve robust editing in juvenile SCs at the postnatal stage through AAV9-mediated short guide RNA (sgRNA) delivery. Additionally, we reveal that quiescent SCs are resistant to CRISPR/Cas9-mediated editing. As a proof of concept, we demonstrate efficient editing of master transcription factor (TF) Myod1 locus using the CRISPR/Cas9/AAV9-sgRNA system in juvenile SCs. Application on two key TFs, MYC and BCL6, unveils distinct functions in SC activation and muscle regeneration. Particularly, we reveal that MYC orchestrates SC activation through regulating 3D genome architecture. Its depletion results in strengthening of the topologically associating domain boundaries thus may affect gene expression. Altogether, our study establishes a platform for editing endogenous SCs that can be harnessed to elucidate the functionality of key regulators governing SC activities.

RevDate: 2021-09-14

Franke M, De la Calle-Mustienes E, Neto A, et al (2021)

CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression.

Nature communications, 12(1):5415.

Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.

RevDate: 2021-09-08

MacPhillamy C, Pitchford WS, Alinejad-Rokny H, et al (2021)

Opportunity to improve livestock traits using 3D genomics.

Animal genetics [Epub ahead of print].

The advent of high-throughput chromosome conformation capture and sequencing (Hi-C) has enabled researchers to probe the 3D architecture of the mammalian genome in a genome-wide manner. Simultaneously, advances in epigenomic assays, such as chromatin immunoprecipitation and sequencing (ChIP-seq) and DNase-seq, have enabled researchers to study cis-regulatory interactions and chromatin accessibility across the same genome-wide scale. The use of these data has revealed many unique insights into gene regulation and disease pathomechanisms in several model organisms. With the advent of these high-throughput sequencing technologies, there has been an ever-increasing number of datasets available for study; however, this is often limited to model organisms. Livestock species play critical roles in the economies of developing and developed nations alike. Despite this, they are greatly underrepresented in the 3D genomics space; Hi-C and related technologies have the potential to revolutionise livestock breeding by enabling a more comprehensive understanding of how production traits are controlled. The growth in human and model organism Hi-C data has seen a surge in the availability of computational tools for use in 3D genomics, with some tools using machine learning techniques to predict features and improve dataset quality. In this review, we provide an overview of the 3D genome and discuss the status of 3D genomics in livestock before delving into advancing the field by drawing inspiration from research in human and mouse. We end by offering future directions for livestock research in the field of 3D genomics.

RevDate: 2021-09-24

Melo US, Piard J, Fischer-Zirnsak B, et al (2021)

Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus.

Human genetics, 140(10):1459-1469.

During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease.

RevDate: 2021-09-24

Ge X, Frank-Bertoncelj M, Klein K, et al (2021)

Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability.

Genome biology, 22(1):247.

BACKGROUND: Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci.

RESULTS: We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA.

CONCLUSION: Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.

RevDate: 2021-09-24

Groves IJ, Drane ELA, Michalski M, et al (2021)

Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis.

PLoS pathogens, 17(8):e1009875.

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.

RevDate: 2021-08-25

Chiliński M, Sengupta K, D Plewczynski (2021)

From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect.

Seminars in cell & developmental biology pii:S1084-9521(21)00211-1 [Epub ahead of print].

The three-dimensional structure of the human genome has been proven to have a significant functional impact on gene expression. The high-order spatial chromatin is organised first by looping mediated by multiple protein factors, and then it is further formed into larger structures of topologically associated domains (TADs) or chromatin contact domains (CCDs), followed by A/B compartments and finally the chromosomal territories (CTs). The genetic variation observed in human population influences the multi-scale structures, posing a question regarding the functional impact of structural variants reflected by the variability of the genes expression patterns. The current methods of evaluating the functional effect include eQTLs analysis which uses statistical testing of influence of variants on spatially close genes. Rarely, non-coding DNA sequence changes are evaluated by their impact on the biomolecular interaction network (BIN) reflecting the cellular interactome that can be analysed by the classical graph-theoretic algorithms. Therefore, in the second part of the review, we introduce the concept of BIN, i.e. a meta-network model of the complete molecular interactome developed by integrating various biological networks. The BIN meta-network model includes DNA-protein binding by the plethora of protein factors as well as chromatin interactions, therefore allowing connection of genomics with the downstream biomolecular processes present in a cell. As an illustration, we scrutinise the chromatin interactions mediated by the CTCF protein detected in a ChIA-PET experiment in the human lymphoblastoid cell line GM12878. In the corresponding BIN meta-network the DNA spatial proximity is represented as a graph model, combined with the Proteins-Interaction Network (PIN) of human proteome using the Gene Association Network (GAN). Furthermore, we enriched the BIN with the signalling and metabolic pathways and Gene Ontology (GO) terms to assert its functional context. Finally, we mapped the Single Nucleotide Polymorphisms (SNPs) from the GWAS studies and identified the chromatin mutational hot-spots associated with a significant enrichment of SNPs related to autoimmune diseases. Afterwards, we mapped Structural Variants (SVs) from healthy individuals of 1000 Genomes Project and identified an interesting example of the missing protein complex associated with protein Q6GYQ0 due to a deletion on chromosome 14. Such an analysis using the meta-network BIN model is therefore helpful in evaluating the influence of genetic variation on spatial organisation of the genome and its functional effect in a cell.

RevDate: 2021-08-24

Arrastia MV, Jachowicz JW, Ollikainen N, et al (2021)

Single-cell measurement of higher-order 3D genome organization with scSPRITE.

Nature biotechnology [Epub ahead of print].

Although three-dimensional (3D) genome organization is central to many aspects of nuclear function, it has been difficult to measure at the single-cell level. To address this, we developed 'single-cell split-pool recognition of interactions by tag extension' (scSPRITE). scSPRITE uses split-and-pool barcoding to tag DNA fragments in the same nucleus and their 3D spatial arrangement. Because scSPRITE measures multiway DNA contacts, it generates higher-resolution maps within an individual cell than can be achieved by proximity ligation. We applied scSPRITE to thousands of mouse embryonic stem cells and detected known genome structures, including chromosome territories, active and inactive compartments, and topologically associating domains (TADs) as well as long-range inter-chromosomal structures organized around various nuclear bodies. We observe that these structures exhibit different levels of heterogeneity across the population, with TADs representing dynamic units of genome organization across cells. We expect that scSPRITE will be a critical tool for studying genome structure within heterogeneous populations.

RevDate: 2021-08-25

Nicoletti C (2022)

Methods for the Differential Analysis of Hi-C Data.

Methods in molecular biology (Clifton, N.J.), 2301:61-95.

The 3D organization of chromatin within the nucleus enables dynamic regulation and cell type-specific transcription of the genome. This is true at multiple levels of resolution: on a large scale, with chromosomes occupying distinct volumes (chromosome territories); at the level of individual chromatin fibers, which are organized into compartmentalized domains (e.g., Topologically Associating Domains-TADs), and at the level of short-range chromatin interactions between functional elements of the genome (e.g., enhancer-promoter loops).The widespread availability of Chromosome Conformation Capture (3C)-based high-throughput techniques has been instrumental in advancing our knowledge of chromatin nuclear organization. In particular, Hi-C has the potential to achieve the most comprehensive characterization of chromatin 3D interactions, as it is theoretically able to detect any pair of restriction fragments connected as a result of ligation by proximity.This chapter will illustrate how to compare the chromatin interactome in different experimental conditions, starting from pre-computed Hi-C contact matrices, how to visualize the results, and how to correlate the observed variations in chromatin interaction strength with changes in gene expression.

RevDate: 2021-08-25

Zufferey M, Tavernari D, G Ciriello (2022)

Methods for the Analysis of Topologically Associating Domains (TADs).

Methods in molecular biology (Clifton, N.J.), 2301:39-59.

Chromatin folding in the 3D space of the nucleus can be explored through high-throughput chromosome conformation capture (Hi-C) approaches. These experiments quantify the number of interactions between any pair of genomic loci in the genome and, thus, allow building genome-scale maps of intra- and inter-chromosomal contacts (contact maps). Statistical and algorithmic analyses of Hi-C data consist in extracting information from these contact maps. One of the most striking patterns observed in intra-chromosomal Hi-C contact maps emerged from genomic regions that exhibit dense intra-region but sparse inter-region contacts. These have been termed topologically associating domains (TADs). The identification of TADs from Hi-C contact maps is of great interest as they have been shown to act as unit of chromosome organization and, potentially, functional activity. Several approaches have been developed to identify TADs (TAD callers). However, results from these methods are often dependent on data resolution and poorly concordant. In this chapter, we present four TAD callers and we provide detailed protocols for their use. In addition, we show how to compare TADs identified by different callers and how to assess the enrichment for TAD-associated biological features. TAD calling has become a key step in the study of chromatin 3D organization in different cellular contexts. Here we provide guidelines to improve the robustness and quality of these analyses.

RevDate: 2021-09-14

Liang J, A Perez-Rathke (2021)

Minimalistic 3D chromatin models: Sparse interactions in single cells drive the chromatin fold and form many-body units.

Current opinion in structural biology, 71:200-214 pii:S0959-440X(21)00102-0 [Epub ahead of print].

Computational three-dimensional chromatin modeling has helped uncover principles of genome organization. Here, we discuss methods for modeling three-dimensional chromatin structures, with focus on a minimalistic polymer model which inverts population Hi-C into single-cell conformations. Utilizing only basic physical properties, this model reveals that a few specific Hi-C interactions can fold chromatin into conformations consistent with single-cell imaging, Dip-C, and FISH measurements. Aggregated single-cell chromatin conformations also reproduce Hi-C frequencies. This approach allows quantification of structural heterogeneity and discovery of many-body interaction units and has revealed additional insights, including (1) topologically associating domains as a byproduct of folding driven by specific interactions, (2) cell subpopulations with different structural scaffolds are developmental stage dependent, and (3) the functional landscape of many-body units within enhancer-rich regions. We also discuss these findings in relation to the genome structure-function relationship.

RevDate: 2021-09-01
CmpDate: 2021-09-01

Boltsis I, Nowosad K, Brouwer RWW, et al (2021)

Low Input Targeted Chromatin Capture (Low-T2C).

Methods in molecular biology (Clifton, N.J.), 2351:165-179.

Targeted chromatin capture (T2C) is a 3C-based method and is used to study the 3D chromatin organization, interactomes and structural changes associated with gene regulation, progression through the cell cycle, and cell survival and development. Low input targeted chromatin capture (low-T2C) is an optimized version of the T2C protocol for low numbers of cells. Here, we describe the protocol for low-T2C, including all experimental steps and bioinformatics tools in detail.

RevDate: 2021-09-23

Yuan J, Jiang Q, Gong T, et al (2021)

Loss of grand histone H3 lysine 27 trimethylation domains mediated transcriptional activation in esophageal squamous cell carcinoma.

NPJ genomic medicine, 6(1):65.

Trimethylation of histone H3 lysine 27 trimethylation (H3K27me3) may be recruited by repressive Polycomb complexes to mediate gene silencing, which is critical for maintaining embryonic stem cell pluripotency and differentiation. However, the roles of aberrant H3K27me3 patterns in tumorigenesis are not fully understood. Here, we discovered that grand silencer domains (breadth > 50 kb) for H3K27me3 were significantly associated with epithelial cell differentiation and exhibited high gene essentiality and conservation in human esophageal epithelial cells. These grand H3K27me3 domains exhibited high modification signals involved in gene silencing, and preferentially occupied the entirety of topologically associating domains and interact with each other. We found that widespread loss of the grand H3K27me3 domains in of esophageal squamous cell carcinomas (ESCCs) were enriched in genes involved in epithelium and endothelium differentiation, which were significantly associated with overexpression with increase of active modifications of H3K4me3, H3K4me1, and H3K27ac marks, as well as DNA hypermethylation in the gene bodies. A total of 208 activated genes with loss of grand H3K27me3 domains in ESCC were identified, where the higher expression and mutation of T-box transcription factor 20 (TBX20) were associated with worse patients' outcomes. Our results showed that knockdown of TBX20 may have led to a striking defect in esophageal cancer cell growth and carcinogenesis-related pathway, including cell cycle and homologous recombination. Together, our results reveal that loss of grand H3K27me3 domains represent a catalog of remarkable activating regulators involved in carcinogenesis.

RevDate: 2021-08-10

Adeel MM, Jiang H, Arega Y, et al (2021)

Structural Variations of the 3D Genome Architecture in Cervical Cancer Development.

Frontiers in cell and developmental biology, 9:706375.

Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.

RevDate: 2021-08-19

Wei J, Tian H, Zhou R, et al (2021)

Topological Constraints with Optimal Length Promote the Formation of Chromosomal Territories at Weakened Degree of Phase Separation.

The journal of physical chemistry. B, 125(32):9092-9101.

It is generally agreed that the nuclei of eukaryotic cells at interphase are partitioned into disjointed territories, with distinct regions occupied by certain chromosomes. However, the underlying mechanism for such territorialization is still under debate. Here we model chromosomes as coarse-grained block copolymers and to investigate the effect of loop domains (LDs) on the formation of compartments and territories based on dissipative particle dynamics. A critical length of LDs, which depends sensitively on the length of polymeric blocks, is obtained to minimize the degree of phase separation. This also applies to the two-polymer system: The critical length not only maximizes the degree of territorialization but also minimizes the degree of phase separation. Interestingly, by comparing with experimental data, we find the critical length for LDs and the corresponding length of blocks to be respectively very close to the mean length of topologically associating domains (TADs) and chromosomal segments with different densities of CpG islands for human chromosomes. The results indicate that topological constraints with optimal length can contribute to the formation of territories by weakening the degree of phase separation, which likely promotes the chromosomal flexibility in response to genetic regulations.

RevDate: 2021-08-06

Grabowicz IE, Wilczyński B, Kamińska B, et al (2021)

The role of epigenetic modifications, long-range contacts, enhancers and topologically associating domains in the regulation of glioma grade-specific genes.

Scientific reports, 11(1):15668.

Genome-wide studies have uncovered specific genetic alterations, transcriptomic patterns and epigenetic profiles associated with different glioma types. We have recently created a unique atlas encompassing genome-wide profiles of open chromatin, histone H3K27ac and H3Kme3 modifications, DNA methylation and transcriptomes of 33 glioma samples of different grades. Here, we intersected genome-wide atlas data with topologically associating domains (TADs) and demonstrated that the chromatin organization and epigenetic landscape of enhancers have a strong impact on genes differentially expressed in WHO low grade versus high grade gliomas. We identified TADs enriched in glioma grade-specific genes and/or epigenetic marks. We found the set of transcription factors, including REST, E2F1 and NFKB1, that are most likely to regulate gene expression in multiple TADs, containing specific glioma-related genes. Moreover, many genes associated with the cell-matrix adhesion Gene Ontology group, in particular 14 PROTOCADHERINs, were found to be regulated by long-range contacts with enhancers. Presented results demonstrate the existence of epigenetic differences associated with chromatin organization driving differential gene expression in gliomas of different malignancy.

RevDate: 2021-08-03

Sexton CE, Tillett RL, MV Han (2021)

The essential but enigmatic regulatory role of HERVH in pluripotency.

Trends in genetics : TIG pii:S0168-9525(21)00197-9 [Epub ahead of print].

Human specific endogenous retrovirus H (HERVH) is highly expressed in both naive and primed stem cells and is essential for pluripotency. Despite the proven relationship between HERVH expression and pluripotency, there is no single definitive model for the function of HERVH. Instead, several hypotheses of a regulatory function have been put forward including HERVH acting as enhancers, long noncoding RNAs (lncRNAs), and most recently as markers of topologically associating domain (TAD) boundaries. Recently several enhancer-associated lncRNAs have been characterized, which bind to Mediator and are necessary for promoter-enhancer folding interactions. We propose a synergistic model of HERVH function combining relevant findings and discuss the current limitations for its role in regulation, including the lack of evidence for a pluripotency-associated target gene.

RevDate: 2021-09-20
CmpDate: 2021-09-20

Soochit W, Sleutels F, Stik G, et al (2021)

CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells.

Nature cell biology, 23(8):881-893.

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.

RevDate: 2021-07-28

Gupta MK, Lenz T, KG Le Roch (2021)

Chromosomes Conformation Capture Coupled with Next-Generation Sequencing (Hi-C) in Plasmodium falciparum.

Methods in molecular biology (Clifton, N.J.), 2369:15-25.

Over the last decades, novel methods have been developed to study the role of chromosome positioning within the nucleus may play in gene regulation. Established proximity ligation-based chromosome conformation capture (3C) techniques such as Hi-C have revealed the existence of chromosome territories, functional nuclear landmarks, and topologically associating domains (TAPs) in most eukaryotic organisms. Adaptation of these methods in apicomplexan parasites has recently uncovered new aspects of 3D genome biology in virulence factors. Here, we describe the Hi-C protocol in the human malaria parasite, Plasmodium falciparum. This method can determine the genome organization in malaria parasites and its role in gene regulation and virulence.

RevDate: 2021-09-13

Li X, Zeng G, Li A, et al (2021)

DeTOKI identifies and characterizes the dynamics of chromatin TAD-like domains in a single cell.

Genome biology, 22(1):217.

Topologically associating domains (TAD) are a key structure of the 3D mammalian genomes. However, the prevalence and dynamics of TAD-like domains in single cells remain elusive. Here we develop a new algorithm, named deTOKI, to decode TAD-like domains with single-cell Hi-C data. By non-negative matrix factorization, deTOKI seeks regions that insulate the genome into blocks with minimal chance of clustering. deTOKI outperforms competing tools and reliably identifies TAD-like domains in single cells. Finally, we find that TAD-like domains are not only prevalent, but also subject to tight regulation in single cells.

RevDate: 2021-08-30

Long Y, Liu Z, Wang P, et al (2021)

Disruption of topologically associating domains by structural variations in tetraploid cottons.

Genomics, 113(5):3405-3414.

Structural variations (SVs) are recognized to have an important role in transcriptional regulation, especially in the light of resolved 3D genome structure using high-throughput chromosome conformation capture (Hi-C) technology in mammals. However, the effect of SVs on 3D genome organization in plants remains rarely understood. In this study, we identified 295,496 SVs and 5251 topologically associating domains (TADs) in two diploid and two tetraploid cottons. We observed that approximately 16% of SVs occurred in TAD boundary regions that were called boundary affecting-structural variations (BA-SVs), and had a large effect on disrupting TAD organization. Nevertheless, SVs preferred occurring in TAD interior instead of TAD boundary, probably associated with the relaxed evolutionary selection pressure. We noticed the biased evolution of the At and Dt subgenomes of tetraploid cottons, in terms of SV-mediated disruption of 3D genome structure relative to diploids. In addition, we provide evidence showing that both SVs and TAD disruption could lead to expression difference of orthologous genes. This study advances our understanding of the effect of SVs on 3D genome organization and gene expression regulation in plants.

RevDate: 2021-07-26

Revikumar A, Kashyap V, Palollathil A, et al (2021)

Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines.

Journal of cell communication and signaling [Epub ahead of print].

The G-quadruplexes (G4s) are a class of DNA secondary structures with guanine rich DNA sequences that can fold into four stranded non-canonical structures. At the genomic level, their pivotal role is well established in DNA replication, telomerase functions, constitution of topologically associating domains, and the regulation of gene expression. Genome instability mediated by altered G4 formation and assembly has been associated with multiple disorders including cancers and neurodegenerative disorders. Multiple tools have also been developed to predict the potential G4 regions in genomes and the whole genome G4 maps are also being derived through sequencing approaches. Enrichment of G4s in the cis-regulatory elements of genes associated with tumorigenesis has accelerated the quest for identification of G4-DNA binding ligands (G4DBLs) that can selectively bind and regulate the expression of such specific genes. In this context, the analysis of G4DBL responsive transcriptome in diverse cancer cell lines is inevitable for assessment of the specificity of novel G4DBLs. Towards this, we assembled the transcripts differentially regulated by different G4DBLs and have also identified a core set of genes regulated in diverse cancer cell lines in response to 3 or more of these ligands. With the mode of action of G4DBLs towards topology shifts, folding, or disruption of G4 structure being currently visualized, we believe that this dataset will serve as a platform for assembly of G4DBL responsive transcriptome for comparative analysis of G4DBLs in multiple cancer cells based on the expression of specific cis-regulatory G4 associated genes in the future.

RevDate: 2021-07-24

Tena JJ, JM Santos-Pereira (2021)

Topologically Associating Domains and Regulatory Landscapes in Development, Evolution and Disease.

Frontiers in cell and developmental biology, 9:702787.

Animal genomes are folded in topologically associating domains (TADs) that have been linked to the regulation of the genes they contain by constraining regulatory interactions between cis-regulatory elements and promoters. Therefore, TADs are proposed as structural scaffolds for the establishment of regulatory landscapes (RLs). In this review, we discuss recent advances in the connection between TADs and gene regulation, their relationship with gene RLs and their dynamics during development and differentiation. Moreover, we describe how restructuring TADs may lead to pathological conditions, which explains their high evolutionary conservation, but at the same time it provides a substrate for the emergence of evolutionary innovations that lay at the origin of vertebrates and other phylogenetic clades.

RevDate: 2021-08-06

Willemin A, Lopez-Delisle L, Bolt CC, et al (2021)

Induction of a chromatin boundary in vivo upon insertion of a TAD border.

PLoS genetics, 17(7):e1009691.

Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development.

RevDate: 2021-09-01
CmpDate: 2021-08-02

Fonseca TL, Garcia T, Fernandes GW, et al (2021)

Neonatal thyroxine activation modifies epigenetic programming of the liver.

Nature communications, 12(1):4446.

The type 2 deiodinase (D2) in the neonatal liver accelerates local thyroid hormone triiodothyronine (T3) production and expression of T3-responsive genes. Here we show that this surge in T3 permanently modifies hepatic gene expression. Liver-specific Dio2 inactivation (Alb-D2KO) transiently increases H3K9me3 levels during post-natal days 1-5 (P1-P5), and results in methylation of 1,508 DNA sites (H-sites) in the adult mouse liver. These sites are associated with 1,551 areas of reduced chromatin accessibility (RCA) within core promoters and 2,426 within intergenic regions, with reduction in the expression of 1,363 genes. There is strong spatial correlation between density of H-sites and RCA sites. Chromosome conformation capture (Hi-C) data reveals a set of 81 repressed genes with a promoter RCA in contact with an intergenic RCA ~300 Kbp apart, within the same topologically associating domain (χ2 = 777; p < 0.00001). These data explain how the systemic hormone T3 acts locally during development to define future expression of hepatic genes.

RevDate: 2021-08-14
CmpDate: 2021-08-02

King AJ, Songdej D, Downes DJ, et al (2021)

Reactivation of a developmentally silenced embryonic globin gene.

Nature communications, 12(1):4439.

The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.

RevDate: 2021-07-18

Aavikko M, Kaasinen E, Andersson N, et al (2021)

WNT2 activation through proximal germline deletion predisposes to small intestinal neuroendocrine tumors and intestinal adenocarcinomas.

Human molecular genetics pii:6323170 [Epub ahead of print].

Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described. We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas. To assess the genetic susceptibility and understand the novel phenotype we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization, and organoid culture. We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain (TAD) border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.

RevDate: 2021-09-13

Li Y, Xue B, Zhang M, et al (2021)

Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency.

Genome biology, 22(1):206.

BACKGROUND: Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined.

RESULTS: We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired.

CONCLUSION: Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Kang J, Kim YW, Park S, et al (2021)

Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35(8):e21768.

Insulators are cis-regulatory elements that block enhancer activity and prevent heterochromatin spreading. The binding of CCCTC-binding factor (CTCF) protein is essential for insulators to play the roles in a chromatin context. The β-globin locus, consisting of multiple genes and enhancers, is flanked by two insulators 3'HS1 and HS5. However, it has been reported that the absence of these insulators did not affect the β-globin transcription. To explain the unexpected finding, we have deleted a CTCF motif at 3'HS1 or HS5 in the human β-globin locus and analyzed chromatin interactions around the locus. It was found that a topologically associating domain (TAD) containing the β-globin locus is maintained by neighboring CTCF sites in the CTCF motif-deleted loci. The additional deletions of neighboring CTCF motifs disrupted the β-globin TAD, resulting in decrease of the β-globin transcription. Chromatin interactions of the β-globin enhancers with gene promoter were weakened in the multiple CTCF motifs-deleted loci, even though the enhancers have still active chromatin features such as histone H3K27ac and histone H3 depletion. Genome-wide analysis using public CTCF ChIA-PET and ChIP-seq data showed that chromatin domains possessing multiple CTCF binding sites tend to contain super-enhancers like the β-globin enhancers. Taken together, our results show that multiple CTCF sites surrounding the β-globin locus cooperate with each other to maintain a TAD. The β-globin TAD appears to provide a compact spatial environment that enables enhancers to interact with promoter.

RevDate: 2021-07-24
CmpDate: 2021-07-21

Bag I, Chen S, Rosin LF, et al (2021)

M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity.

Nature communications, 12(1):4170.

Genome organization is driven by forces affecting transcriptional state, but the relationship between transcription and genome architecture remains unclear. Here, we identified the Drosophila transcription factor Motif 1 Binding Protein (M1BP) in physical association with the gypsy chromatin insulator core complex, including the universal insulator protein CP190. M1BP is required for enhancer-blocking and barrier activities of the gypsy insulator as well as its proper nuclear localization. Genome-wide, M1BP specifically colocalizes with CP190 at Motif 1-containing promoters, which are enriched at topologically associating domain (TAD) borders. M1BP facilitates CP190 chromatin binding at many shared sites and vice versa. Both factors promote Motif 1-dependent gene expression and transcription near TAD borders genome-wide. Finally, loss of M1BP reduces chromatin accessibility and increases both inter- and intra-TAD local genome compaction. Our results reveal physical and functional interaction between CP190 and M1BP to activate transcription at TAD borders and mediate chromatin insulator-dependent genome organization.

RevDate: 2021-07-20

Srikanth S, Jain L, Zepeda-Mendoza C, et al (2021)

Position effects of 22q13 rearrangements on candidate genes in Phelan-McDermid syndrome.

PloS one, 16(7):e0253859.

Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.

RevDate: 2021-07-27

Erenpreisa J, Krigerts J, Salmina K, et al (2021)

Heterochromatin Networks: Topology, Dynamics, and Function (a Working Hypothesis).

Cells, 10(7):.

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.

RevDate: 2021-08-30
CmpDate: 2021-08-30

Pachano T, Sánchez-Gaya V, Ealo T, et al (2021)

Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness.

Nature genetics, 53(7):1036-1049.

CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.

RevDate: 2021-09-23

Yasuhara T, L Zou (2021)

Impacts of chromatin dynamics and compartmentalization on DNA repair.

DNA repair, 105:103162.

The proper spatial organization of DNA, RNA, and proteins is critical for a variety of cellular processes. The genome is organized into numerous functional units, such as topologically associating domains (TADs), the formation of which is regulated by both proteins and RNA. In addition, a group of chromatin-bound proteins with the ability to undergo liquid-liquid phase separation (LLPS) can affect the spatial organization and compartmentalization of chromatin, RNA, and proteins by forming condensates, conferring unique properties to specific chromosomal regions. Although the regulation of DNA repair by histone modifications and chromatin accessibility is well established, the impacts of higher-order chromatin and protein organization on the DNA damage response (DDR) have not been appreciated until recently. In this review, we will focus on the movement of chromatin during the DDR, the compartmentalization of DDR proteins via LLPS, and the roles of membraneless nuclear bodies and transcription in DNA repair. With this backdrop, we will discuss the importance of the spatial organization of chromatin and proteins for the maintenance of genome integrity.

RevDate: 2021-08-16

Cai Z, He Y, Liu S, et al (2021)

Hierarchical dinucleotide distribution in genome along evolution and its effect on chromatin packing.

Life science alliance, 4(8):.

Dinucleotide densities and their distribution patterns vary significantly among species. Previous studies revealed that CpG is susceptible to methylation, enriched at topologically associating domain boundaries and its distribution along the genome correlates with chromatin compartmentalization. However, the multi-scale organizations of CpG in the linear genome, their role in chromatin organization, and how they change along the evolution are only partially understood. By comparing the CpG distribution at different genomic length scales, we quantify the difference between the CpG distributions of different species and evaluate how the hierarchical uneven CpG distribution appears in evolution. The clustering of species based on the CpG distribution is consistent with the phylogenetic tree. Interestingly, we found the CpG distribution and chromatin structure to be correlated in many different length scales, especially for mammals and avians, consistent with the mosaic CpG distribution in the genomes of these species.

RevDate: 2021-07-02
CmpDate: 2021-06-22

Bauer M, Vidal E, Zorita E, et al (2021)

Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation.

Nature communications, 12(1):3499.

A hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.

RevDate: 2021-08-30
CmpDate: 2021-08-30

Niu L, Shen W, Shi Z, et al (2021)

Three-dimensional folding dynamics of the Xenopus tropicalis genome.

Nature genetics, 53(7):1075-1087.

Animal interphase chromosomes are organized into topologically associating domains (TADs). How TADs are formed is not fully understood. Here, we combined high-throughput chromosome conformation capture and gene silencing to obtain insights into TAD dynamics in Xenopus tropicalis embryos. First, TAD establishment in X. tropicalis is similar to that in mice and flies and does not depend on zygotic genome transcriptional activation. This process is followed by further refinements in active and repressive chromatin compartments and the appearance of loops and stripes. Second, within TADs, higher self-interaction frequencies at one end of the boundary are associated with higher DNA occupancy of the architectural proteins CTCF and Rad21. Third, the chromatin remodeling factor ISWI is required for de novo TAD formation. Finally, TAD structures are variable in different tissues. Our work shows that X. tropicalis is a powerful model for chromosome architecture analysis and suggests that chromatin remodeling plays an essential role in de novo TAD establishment.

RevDate: 2021-06-28
CmpDate: 2021-06-28

Sahin M, Wong W, Zhan Y, et al (2021)

HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP.

Nature communications, 12(1):3366.

Recent genome-wide chromosome conformation capture assays such as Hi-C and HiChIP have vastly expanded the resolution and throughput with which we can study 3D genomic architecture and function. Here, we present HiC-DC+, a software tool for Hi-C/HiChIP interaction calling and differential analysis using an efficient implementation of the HiC-DC statistical framework. HiC-DC+ integrates with popular preprocessing and visualization tools and includes topologically associating domain (TAD) and A/B compartment callers. We found that HiC-DC+ can more accurately identify enhancer-promoter interactions in H3K27ac HiChIP, as validated by CRISPRi-FlowFISH experiments, compared to existing methods. Differential HiC-DC+ analyses of published HiChIP and Hi-C data sets in settings of cellular differentiation and cohesin perturbation systematically and quantitatively recovers biological findings, including enhancer hubs, TAD aggregation, and the relationship between promoter-enhancer loop dynamics and gene expression changes. HiC-DC+ therefore provides a principled statistical analysis tool to empower genome-wide studies of 3D chromatin architecture and function.

RevDate: 2021-08-07

Gillani R, Seong BKA, Crowdis J, et al (2021)

Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival.

Cancer research, 81(15):3971-3984.

Gene fusions frequently result from rearrangements in cancer genomes. In many instances, gene fusions play an important role in oncogenesis; in other instances, they are thought to be passenger events. Although regulatory element rearrangements and copy number alterations resulting from these structural variants are known to lead to transcriptional dysregulation across cancers, the extent to which these events result in functional dependencies with an impact on cancer cell survival is variable. Here we used CRISPR-Cas9 dependency screens to evaluate the fitness impact of 3,277 fusions across 645 cell lines from the Cancer Dependency Map. We found that 35% of cell lines harbored either a fusion partner dependency or a collateral dependency on a gene within the same topologically associating domain as a fusion partner. Fusion-associated dependencies revealed numerous novel oncogenic drivers and clinically translatable alterations. Broadly, fusions can result in partner and collateral dependencies that have biological and clinical relevance across cancer types. SIGNIFICANCE: This study provides insights into how fusions contribute to fitness in different cancer contexts beyond partner-gene activation events, identifying partner and collateral dependencies that may have direct implications for clinical care.

RevDate: 2021-09-13

Furlan-Magaril M, Ando-Kuri M, Arzate-Mejía RG, et al (2021)

The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle.

Genome biology, 22(1):162.

BACKGROUND: Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized.

RESULTS: Here we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes.

CONCLUSION: Our results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations.

RevDate: 2021-06-08

Chyr J, Zhang Z, Chen X, et al (2021)

PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines.

Computational and structural biotechnology journal, 19:2870-2880.

Topologically associating domains, or TADs, play important roles in genome organization and gene regulation; however, they are often altered in diseases. High-throughput chromatin conformation capturing assays, such as Hi-C, can capture domains of increased interactions, and TADs and boundaries can be identified using well-established analytical tools. However, generating Hi-C data is expensive. In our study, we addressed the relationship between multi-omics data and higher-order chromatin structures using a newly developed machine-learning model called PredTAD. Our tool uses already-available and cost-effective datatypes such as transcription factor and histone modification ChIPseq data. Specifically, PredTAD utilizes both epigenetic and genetic features as well as neighboring information to classify the entire human genome as boundary or non-boundary regions. Our tool can predict boundary changes between normal and breast cancer genomes. Among the most important features for predicting boundary alterations were CTCF, subunits of cohesin (RAD21 and SMC3), and chromosome number, suggesting their roles in conserved and dynamic boundaries formation. Upon further analysis, we observed that genes near altered TAD boundaries were found to be involved in several important breast cancer signaling pathways such as Ras, Jak-STAT, and estrogen signaling pathways. We also discovered a TAD boundary alteration that contributes to RET oncogene overexpression. PredTAD can also successfully predict TAD boundary changes in other conditions and diseases. In conclusion, our newly developed machine learning tool allowed for a more complete understanding of the dynamic 3D chromatin structures involved in signaling pathway activation, altered gene expression, and disease state in breast cancer cells.

RevDate: 2021-08-05
CmpDate: 2021-06-04

Olgun G, Nabi A, O Tastan (2021)

NoRCE: non-coding RNA sets cis enrichment tool.

BMC bioinformatics, 22(1):294.

BACKGROUND: While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint at a functional association.

RESULTS: We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast.

CONCLUSIONS: NoRCE is a platform-independent, user-friendly, comprehensive R package that can be used to gain insight into the functional importance of a list of ncRNAs of any type. The tool offers flexibility to conduct the users' preferred set of analyses by designing their own pipeline of analysis. NoRCE is available in Bioconductor and https://github.com/guldenolgun/NoRCE .

RevDate: 2021-09-15
CmpDate: 2021-09-15

Peterson SC, Samuelson KB, SL Hanlon (2021)

Multi-Scale Organization of the Drosophila melanogaster Genome.

Genes, 12(6):.

Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.

RevDate: 2021-09-13

Lee DI, S Roy (2021)

GRiNCH: simultaneous smoothing and detection of topological units of genome organization from sparse chromatin contact count matrices with matrix factorization.

Genome biology, 22(1):164.

High-throughput chromosome conformation capture assays, such as Hi-C, have shown that the genome is organized into organizational units such as topologically associating domains (TADs), which can impact gene regulatory processes. The sparsity of Hi-C matrices poses a challenge for reliable detection of these units. We present GRiNCH, a constrained matrix-factorization-based approach for simultaneous smoothing and discovery of TADs from sparse contact count matrices. GRiNCH shows superior performance against seven TAD-calling methods and three smoothing methods. GRiNCH is applicable to multiple platforms including SPRITE and HiChIP and can predict novel boundary factors with potential roles in genome organization.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Kim J, Kang J, Kim YW, et al (2021)

The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35(6):e21669.

The human β-globin locus control region (LCR) hypersensitive site 2 (HS2) is one of enhancers for transcription of the β-like globin genes in erythroid cells. Our previous study showed that the LCR HS2 has active chromatin structure before transcriptional induction of the β-globin gene, while another enhancer LCR HS3 is activated by the induction. To compare functional difference between them, we deleted each HS (ΔHS2 and ΔHS3) from the human β-globin locus in hybrid MEL/ch11 cells. Deletion of either HS2 or HS3 dramatically diminished the β-globin transcription and disrupted locus-wide histone H3K27ac and chromatin interaction between LCR HSs and gene. Surprisingly, ΔHS2 weakened interactions between CTCF sites forming the β-globin topologically associating domain (TAD), while ΔHS3 did not. CTCF occupancy and chromatin accessibility were reduced at the CTCF sites in the ΔHS2 locus. To further characterize the HS2, we deleted the maf-recognition elements for erythroid activator NF-E2 at HS2. This deletion decreased the β-globin transcription and enhancer-promoter interaction, but did not affect interactions between CTCF sites for the TAD. In light of these results, we propose that the HS2 has a role in forming a β-globin TAD by activating neighboring CTCF sites and this role is beyond typical enhancer activity.

RevDate: 2021-05-25

Ulianov SV, SV Razin (2021)

The two waves in single-cell 3D genomics.

Seminars in cell & developmental biology pii:S1084-9521(21)00130-0 [Epub ahead of print].

For decades, biochemical methods for the analysis of genome structure and function provided cell-population-averaged data that allowed general principles and tendencies to be disclosed. Microscopy-based studies, which immanently involve single-cell analysis, did not provide sufficient spatial resolution to investigate the particularly small details of 3D genome folding. Nevertheless, these studies demonstrated that mutual positions of chromosome territories within cell nuclei and individual genomic loci within chromosomal territories can vary significantly in individual cells. The development of new technologies in biochemistry and the advent of super-resolution microscopy in the last decade have made possible the full-scale study of 3D genome organization in individual cells. Maps of the 3D genome build based on C-data and super-resolution microscopy are highly consistent and, therefore, biologically relevant. The internal structures of individual chromosomes, loci, and topologically associating domains (TADs) are resolved as well as cell-cycle dynamics. 3D modeling allows one to investigate the physical mechanisms underlying genome folding. Finally, joint profiling of genome topology and epigenetic features will allow 3D genomics to handle complex cell-to-cell heterogeneity. In this review, we summarize the present state of studies into 3D genome organization in individual cells, analyze the technical problems of single-cell studies, and outline perspectives of 3D genomics.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Requena F, Abdallah HH, García A, et al (2021)

CNVxplorer: a web tool to assist clinical interpretation of CNVs in rare disease patients.

Nucleic acids research, 49(W1):W93-W103.

Copy Number Variants (CNVs) are an important cause of rare diseases. Array-based Comparative Genomic Hybridization tests yield a ∼12% diagnostic rate, with ∼8% of patients presenting CNVs of unknown significance. CNVs interpretation is particularly challenging on genomic regions outside of those overlapping with previously reported structural variants or disease-associated genes. Recent studies showed that a more comprehensive evaluation of CNV features, leveraging both coding and non-coding impacts, can significantly improve diagnostic rates. However, currently available CNV interpretation tools are mostly gene-centric or provide only non-interactive annotations difficult to assess in the clinical practice. Here, we present CNVxplorer, a web server suited for the functional assessment of CNVs in a clinical diagnostic setting. CNVxplorer mines a comprehensive set of clinical, genomic, and epigenomic features associated with CNVs. It provides sequence constraint metrics, impact on regulatory elements and topologically associating domains, as well as expression patterns. Analyses offered cover (a) agreement with patient phenotypes; (b) visualizations of associations among genes, regulatory elements and transcription factors; (c) enrichment on functional and pathway annotations and (d) co-occurrence of terms across PubMed publications related to the query CNVs. A flexible evaluation workflow allows dynamic re-interrogation in clinical sessions. CNVxplorer is publicly available at http://cnvxplorer.com.

RevDate: 2021-07-06
CmpDate: 2021-07-06

Yuan R, Zhang J, Wang Y, et al (2021)

Reorganization of chromatin architecture during prenatal development of porcine skeletal muscle.

DNA research : an international journal for rapid publication of reports on genes and genomes, 28(2):.

Myofibres (primary and secondary myofibre) are the basic structure of muscle and the determinant of muscle mass. To explore the skeletal muscle developmental processes from primary myofibres to secondary myofibres in pigs, we conducted an integrative three-dimensional structure of genome and transcriptomic characterization of longissimus dorsi muscle of pig from primary myofibre formation stage [embryonic Day 35 (E35)] to secondary myofibre formation stage (E80). In the hierarchical genomic structure, we found that 11.43% of genome switched compartment A/B status, 14.53% of topologically associating domains are changed intradomain interactions (D-scores) and 2,730 genes with differential promoter-enhancer interactions and (or) enhancer activity from E35 to E80. The alterations of genome architecture were found to correlate with expression of genes that play significant roles in neuromuscular junction, embryonic morphogenesis, skeletal muscle development or metabolism, typically, NEFL, MuSK, SLN, Mef2D and GCK. Significantly, Sox6 and MATN2 play important roles in the process of primary to secondary myofibres formation and increase the regulatory potential score and genes expression in it. In brief, we reveal the genomic reorganization from E35 to E80 and construct genome-wide high-resolution interaction maps that provide a resource for studying long-range control of gene expression from E35 to E80.

RevDate: 2021-08-30
CmpDate: 2021-08-30

Huang H, Zhu Q, Jussila A, et al (2021)

CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains.

Nature genetics, 53(7):1064-1074.

Insulators play a critical role in spatiotemporal gene regulation in animals. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here we explore the sequence requirements of CTCF-mediated transcriptional insulation using a sensitive insulator reporter in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF-binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on upstream flanking sequences at its binding sites. CTCF-binding sites at topologically associating domain boundaries are more likely to function as insulators than those outside topologically associating domain boundaries, independently of binding strength. We demonstrate that insulators form local chromatin domain boundaries and weaken enhancer-promoter contacts. Taken together, our results provide genetic, molecular and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.

RevDate: 2021-09-15

Wang M, Li J, Wang P, et al (2021)

Comparative Genome Analyses Highlight Transposon-Mediated Genome Expansion and the Evolutionary Architecture of 3D Genomic Folding in Cotton.

Molecular biology and evolution, 38(9):3621-3636.

Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active ("A") and inactive ("B") compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.

RevDate: 2021-05-08

Maksimenko OG, Fursenko DV, Belova EV, et al (2021)

CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers.

Acta naturae, 13(1):31-46.

In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.

RevDate: 2021-06-15
CmpDate: 2021-06-15

Marinov GK, Trevino AE, Xiang T, et al (2021)

Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum.

Nature genetics, 53(5):613-617.

Dinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome of Breviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term 'dinoTADs') without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.

RevDate: 2021-04-27

Bohrer CH, DR Larson (2021)

The Stochastic Genome and Its Role in Gene Expression.

Cold Spring Harbor perspectives in biology pii:cshperspect.a040386 [Epub ahead of print].

Mammalian genomes have distinct levels of spatial organization and structure that have been hypothesized to play important roles in transcription regulation. Although much has been learned about these architectural features with ensemble techniques, single-cell studies are showing a new universal trend: Genomes are stochastic and dynamic at every level of organization. Stochastic gene expression, on the other hand, has been studied for years. In this review, we probe whether there is a causative link between the two phenomena. We specifically discuss the functionality of chromatin state, topologically associating domains (TADs), and enhancer biology in light of their stochastic nature and their specific roles in stochastic gene expression. We highlight persistent fundamental questions in this area of research.

RevDate: 2021-04-28

Du G, Li H, Ding Y, et al (2021)

The hierarchical folding dynamics of topologically associating domains are closely related to transcriptional abnormalities in cancers.

Computational and structural biotechnology journal, 19:1684-1693.

Recent studies have shown that the three-dimensional (3D) structure of chromatin is associated with cancer progression. However, the roles of the 3D genome structure and its dynamics in cancer remains largely unknown. In this study, we investigated hierarchical topologically associating domain (TAD) structures in cancers and defined a "TAD hierarchical score (TH score)" for genes, which allowed us to assess the TAD nesting level of all genes in a simplified way. We demonstrated that the TAD nesting levels of genes in a tumor differ from those in normal tissue. Furthermore, the hierarchical TAD level dynamics were related to transcriptional changes in cancer, and some of the genes in which the hierarchical level was altered were significantly related to the prognosis of cancer patients. Overall, the results of this study suggest that the folding dynamics of TADs are closely related to transcriptional abnormalities in cancers, emphasizing that the function of hierarchical chromatin organization goes beyond simple chromatin packaging efficiency.

RevDate: 2021-08-23

Zamariolli M, Burssed B, Moysés-Oliveira M, et al (2021)

Novel MYT1 variants expose the complexity of oculo-auriculo-vertebral spectrum genetic mechanisms.

American journal of medical genetics. Part A, 185(7):2056-2064.

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by anomalies mainly involving the structures derived from the first and second pharyngeal arches. The spectrum presents with heterogeneous clinical features and complex etiology with genetic factors not yet completely understood. To date, MYT1 is the most important gene unambiguously associated with the spectrum and with functional data confirmation. In this work, we aimed to identify new single nucleotide variants (SNVs) affecting MYT1 in a cohort of 73 Brazilian patients diagnosed with OAVS. In addition, we investigated copy number variations (CNVs) encompassing this gene or its cis-regulatory elements and compared the frequency of these events in patients versus a cohort of 455 Brazilian control individuals. A new SNV, predicted as likely deleterious, was identified in five unrelated patients with OAVS. All five patients presented hearing impairment and orbital asymmetry suggesting an association with the variant. CNVs near MYT1, located in its neighboring topologically associating domain (TAD), were found to be enriched in patients when compared to controls, indicating a possible involvement of this region with OAVS pathogenicity. Our findings highlight the genetic complexity of the spectrum that seems to involve more than one variant type and inheritance patterns.

RevDate: 2021-05-02
CmpDate: 2021-04-28

Zhao Y, Hou Y, Xu Y, et al (2021)

A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome.

Nature communications, 12(1):2217.

Although major advances in genomics have initiated an exciting new era of research, a lack of information regarding cis-regulatory elements has limited the genetic improvement or manipulation of pigs as a meat source and biomedical model. Here, we systematically characterize cis-regulatory elements and their functions in 12 diverse tissues from four pig breeds by adopting similar strategies as the ENCODE and Roadmap Epigenomics projects, which include RNA-seq, ATAC-seq, and ChIP-seq. In total, we generate 199 datasets and identify more than 220,000 cis-regulatory elements in the pig genome. Surprisingly, we find higher conservation of cis-regulatory elements between human and pig genomes than those between human and mouse genomes. Furthermore, the differences of topologically associating domains between the pig and human genomes are associated with morphological evolution of the head and face. Beyond generating a major new benchmark resource for pig epigenetics, our study provides basic comparative epigenetic data relevant to using pigs as models in human biomedical research.

RevDate: 2021-09-21
CmpDate: 2021-09-21

Majumder K, AJ Morales (2021)

Utilization of Host Cell Chromosome Conformation by Viral Pathogens: Knowing When to Hold and When to Fold.

Frontiers in immunology, 12:633762.

Though viruses have their own genomes, many depend on the nuclear environment of their hosts for replication and survival. A substantial body of work has therefore been devoted to understanding how viral and eukaryotic genomes interact. Recent advances in chromosome conformation capture technologies have provided unprecedented opportunities to visualize how mammalian genomes are organized and, by extension, how packaging of nuclear DNA impacts cellular processes. Recent studies have indicated that some viruses, upon entry into host cell nuclei, produce factors that alter host chromatin topology, and thus, impact the 3D organization of the host genome. Additionally, a variety of distinct viruses utilize host genome architectural factors to advance various aspects of their life cycles. Indeed, human gammaherpesviruses, known for establishing long-term reservoirs of latent infection in B lymphocytes, utilize 3D principles of genome folding to package their DNA and establish latency in host cells. This manipulation of host epigenetic machinery by latent viral genomes is etiologically linked to the onset of B cell oncogenesis. Small DNA viruses, by contrast, are tethered to distinct cellular sites that support virus expression and replication. Here, we briefly review the recent findings on how viruses and host genomes spatially communicate, and how this impacts virus-induced pathology.

RevDate: 2021-04-27
CmpDate: 2021-04-27

Xing H, Wu Y, Zhang MQ, et al (2021)

Deciphering hierarchical organization of topologically associated domains through change-point testing.

BMC bioinformatics, 22(1):183.

BACKGROUND: The nucleus of eukaryotic cells spatially packages chromosomes into a hierarchical and distinct segregation that plays critical roles in maintaining transcription regulation. High-throughput methods of chromosome conformation capture, such as Hi-C, have revealed topologically associating domains (TADs) that are defined by biased chromatin interactions within them.

RESULTS: We introduce a novel method, HiCKey, to decipher hierarchical TAD structures in Hi-C data and compare them across samples. We first derive a generalized likelihood-ratio (GLR) test for detecting change-points in an interaction matrix that follows a negative binomial distribution or general mixture distribution. We then employ several optimal search strategies to decipher hierarchical TADs with p values calculated by the GLR test. Large-scale validations of simulation data show that HiCKey has good precision in recalling known TADs and is robust against random collisions of chromatin interactions. By applying HiCKey to Hi-C data of seven human cell lines, we identified multiple layers of TAD organization among them, but the vast majority had no more than four layers. In particular, we found that TAD boundaries are significantly enriched in active chromosomal regions compared to repressed regions.

CONCLUSIONS: HiCKey is optimized for processing large matrices constructed from high-resolution Hi-C experiments. The method and theoretical result of the GLR test provide a general framework for significance testing of similar experimental chromatin interaction data that may not fully follow negative binomial distributions but rather more general mixture distributions.

RevDate: 2021-04-06

Rozenwald MB, Galitsyna AA, Sapunov GV, et al (2020)

A machine learning framework for the prediction of chromatin folding in Drosophila using epigenetic features.

PeerJ. Computer science, 6:e307.

Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in Drosophila based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML.

RevDate: 2021-09-17

Miyazaki K, M Miyazaki (2021)

The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of Rag Gene Expression.

Frontiers in immunology, 12:659761.

Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.

RevDate: 2021-04-23
CmpDate: 2021-04-20

Espinola SM, Götz M, Bellec M, et al (2021)

Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development.

Nature genetics, 53(4):477-486.

Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.

RevDate: 2021-09-20

Davidson IF, JM Peters (2021)

Genome folding through loop extrusion by SMC complexes.

Nature reviews. Molecular cell biology, 22(7):445-464.

Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer-promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.

RevDate: 2021-05-14
CmpDate: 2021-05-14

Goldfarb CN, DJ Waxman (2021)

Global analysis of expression, maturation and subcellular localization of mouse liver transcriptome identifies novel sex-biased and TCPOBOP-responsive long non-coding RNAs.

BMC genomics, 22(1):212.

BACKGROUND: While nuclear transcription and RNA processing and localization are well established for protein coding genes (PCGs), these processes are poorly understood for long non-coding (lnc)RNAs. Here, we characterize global patterns of transcript expression, maturation and localization for mouse liver RNA, including more than 15,000 lncRNAs. PolyA-selected liver RNA was isolated and sequenced from four subcellular fractions (chromatin, nucleoplasm, total nucleus, and cytoplasm), and from the chromatin-bound fraction without polyA selection.

RESULTS: Transcript processing, determined from normalized intronic to exonic sequence read density ratios, progressively increased for PCG transcripts in going from the chromatin-bound fraction to the nucleoplasm and then on to the cytoplasm. Transcript maturation was similar for lncRNAs in the chromatin fraction, but was significantly lower in the nucleoplasm and cytoplasm. LncRNA transcripts were 11-fold more likely to be significantly enriched in the nucleus than cytoplasm, and 100-fold more likely to be significantly chromatin-bound than nucleoplasmic. Sequencing chromatin-bound RNA greatly increased the sensitivity for detecting lowly expressed lncRNAs and enabled us to discover and localize hundreds of novel regulated liver lncRNAs, including lncRNAs showing sex-biased expression or responsiveness to TCPOBOP a xenobiotic agonist ligand of constitutive androstane receptor (Nr1i3).

CONCLUSIONS: Integration of our findings with prior studies and lncRNA annotations identified candidate regulatory lncRNAs for a variety of hepatic functions based on gene co-localization within topologically associating domains or transcription divergent or antisense to PCGs associated with pathways linked to hepatic physiology and disease.

RevDate: 2021-03-29

Zhang L, Zhao J, Bi H, et al (2021)

Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication.

Horticulture research, 8(1):62.

The nonrandom three-dimensional organization of chromatin plays an important role in the regulation of gene expression. However, it remains unclear whether this organization is conserved and whether it is involved in regulating gene expression during speciation after whole-genome duplication (WGD) in plants. In this study, high-resolution interaction maps were generated using high-throughput chromatin conformation capture (Hi-C) techniques for two poplar species, Populus euphratica and Populus alba var. pyramidalis, which diverged ~14 Mya after a common WGD. We examined the similarities and differences in the hierarchical chromatin organization between the two species, including A/B compartment regions and topologically associating domains (TADs), as well as in their DNA methylation and gene expression patterns. We found that chromatin status was strongly associated with epigenetic modifications and gene transcriptional activity, yet the conservation of hierarchical chromatin organization across the two species was low. The divergence of gene expression between WGD-derived paralogs was associated with the strength of chromatin interactions, and colocalized paralogs exhibited strong similarities in epigenetic modifications and expression levels. Thus, the spatial localization of duplicated genes is highly correlated with biased expression during the diploidization process. This study provides new insights into the evolution of chromatin organization and transcriptional regulation during the speciation process of poplars after WGD.

RevDate: 2021-09-24
CmpDate: 2021-09-01

Wang L, Jia G, Jiang X, et al (2021)

Altered chromatin architecture and gene expression during polyploidization and domestication of soybean.

The Plant cell, 33(5):1430-1446.

Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.

RevDate: 2021-08-27

Soto C, Bryner D, Neretti N, et al (2021)

Toward a Three-Dimensional Chromosome Shape Alphabet.

Journal of computational biology : a journal of computational molecular cell biology, 28(6):601-618.

The study of the three-dimensional (3D) structure of chromosomes-the largest macromolecules in biology-is one of the most challenging to date in structural biology. Here, we develop a novel representation of 3D chromosome structures, as sequences of shape letters from a finite shape alphabet, which provides a compact and efficient way to analyze ensembles of chromosome shape data, akin to the analysis of texts in a language by using letters. We construct a Chromosome Shape Alphabet from an ensemble of chromosome 3D structures inferred from Hi-C data-via SIMBA3D or other methods-by segmenting curves based on topologically associating domains (TADs) boundaries, and by clustering all TADs' 3D structures into groups of similar shapes. The median shapes of these groups, with some pruning and processing, form the Chromosome Shape Letters (CSLs) of the alphabet. We provide a proof of concept for these CSLs by reconstructing independent test curves by using only CSLs (and corresponding transformations) and comparing these reconstructions with the original curves. Finally, we demonstrate how CSLs can be used to summarize shapes in an ensemble of chromosome 3D structures by using generalized sequence logos.

RevDate: 2021-05-21
CmpDate: 2021-05-21

Tian L, Ku L, Yuan Z, et al (2021)

Large-scale reconstruction of chromatin structures of maize temperate and tropical inbred lines.

Journal of experimental botany, 72(10):3582-3596.

Maize is a model plant species often used for genetics and genomics research because of its genetic diversity. There are prominent morphological, genetic, and epigenetic variations between tropical and temperate maize lines. However, the genome-wide chromatin conformations of these two maize types remain unexplored. We applied a Hi-C approach to compare the genome-wide chromatin interactions between temperate inbred line D132 and tropical line CML288. A reconstructed maize three-dimensional genome model revealed the spatial segregation of the global A and B compartments. The A compartments contain enriched genes and active epigenome marks, whereas the B compartments are gene-poor, transcriptionally silent chromatin regions. Whole-genome analyses indicated that the global A compartment content of CML288 was 3.12% lower than that of D132. Additionally, global and A/B sub-compartments were associated with differential gene expression and epigenetic changes between two inbred lines. About 25.3% of topologically associating domains (TADs) were determined to be associated with complex domain-level modifications that induced transcriptional changes, indicative of a large-scale reorganization of chromatin structures between the inbred maize lines. Furthermore, differences in chromatin interactions between the two lines correlated with epigenetic changes. These findings provide a solid foundation for the wider plant community to further investigate the genome-wide chromatin structures in other plant species.

RevDate: 2021-02-25

Liu X, Sun Q, Wang Q, et al (2021)

Epithelial Cells in 2D and 3D Cultures Exhibit Large Differences in Higher-order Genomic Interactions.

Genomics, proteomics & bioinformatics pii:S1672-0229(21)00026-7 [Epub ahead of print].

Recent studies have characterized the genomic structures of many eukaryotic cells, often with a focus on their relation to gene expression. So far, these studies have largely only investigated cells grown in 2D culture, although the transcriptomes of 3D cultured cells are generally closer to their in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably in compartment identity and strength as well as in topologically associating domain (TAD)-TAD interactions, but only minor differences at the TAD level. RNA-seq analysis reveals an up-regulation in the 3D cultured cells of those genes involved in physiological hepatocyte functions. We find that these genes are associated with a subset of the structural changes, suggesting that the differences in genomic structure are indeed critically important for transcriptional regulation. However, there are also many structural differences that are not directly associated with changed expression, whose cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters higher-order genomic interactions, which may be consequential for a subset of genes that are important for the physiological functioning of the cell.

RevDate: 2021-08-18

Arnould C, Rocher V, Finoux AL, et al (2021)

Loop extrusion as a mechanism for formation of DNA damage repair foci.

Nature, 590(7847):660-665.

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.

RevDate: 2021-03-26
CmpDate: 2021-03-26

Li D, Sun X, Yu F, et al (2021)

Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency.

Nucleic acids research, 49(5):2642-2654.

The CRISPR/Cas9 system is a technology for genome engineering, which has been applied to indel mutations in genes as well as targeted gene deletion and replacement. Here, we describe paired gRNA deletions along the PIGA locus on the human X chromosome ranging from 17 kb to 2 Mb. We found no compelling linear correlation between deletion size and the deletion efficiency, and there is no substantial impact of topologically associating domains on deletion frequency. Using this precise deletion technique, we have engineered a series of designer deletion cell lines, including one with deletions of two X-chromosomal counterselectable (negative selection) markers, PIGA and HPRT1, and additional cell lines bearing each individual deletion. PIGA encodes a component of the glycosylphosphatidylinositol (GPI) anchor biosynthetic apparatus. The PIGA gene counterselectable marker has unique features, including existing single cell level assays for both function and loss of function of PIGA and the existence of a potent counterselectable agent, proaerolysin, which we use routinely for selection against cells expressing PIGA. These designer cell lines may serve as a general platform with multiple selection markers and may be particularly useful for large scale genome engineering projects such as Genome Project-Write (GP-write).

RevDate: 2021-09-02

Zheng W, Yang Z, Ge X, et al (2021)

Freeze substitution Hi-C, a convenient and cost-effective method for capturing the natural 3D chromatin conformation from frozen samples.

Journal of genetics and genomics = Yi chuan xue bao, 48(3):237-247.

Chromatin interactions functionally affect genome architecture and gene regulation, but to date, only fresh samples must be used in High-through chromosome conformation capture (Hi-C) to keep natural chromatin conformation intact. This requirement has impeded the advancement of 3D genome research by limiting sample collection and storage options for researchers and severely limiting the number of samples that can be processed in a short time. Here, we develop a freeze substitution Hi-C (FS-Hi-C) technique that overcomes the need for fresh samples. FS-Hi-C can be used with samples stored in liquid nitrogen (LN2): the water in a vitreous form in the sample cells is replaced with ethanol via automated freeze substitution. After confirming that the FS step preserves the natural chromosome conformation during sample thawing, we tested the performance of FS-Hi-C with Drosophila melanogaster and Gossypium hirsutum. Beyond allowing the use of frozen samples and confirming that FS-Hi-C delivers robust data for generating contact heat maps and delineating A/B compartments and topologically associating domains, we found that FS-Hi-C outperforms the in situ Hi-C in terms of library quality, reproducibility, and valid interactions. Thus, FS-Hi-C will probably extend the application of 3D genome structure analysis to the vast number of experimental contexts in biological and medical research for which Hi-C methods have been unfeasible to date.

RevDate: 2021-09-13

Liao Y, Zhang X, Chakraborty M, et al (2021)

Topologically associating domains and their role in the evolution of genome structure and function in Drosophila.

Genome research, 31(3):397-410.

Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )