About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

21 Jun 2024 at 01:58
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 21 Jun 2024 at 01:58 Created: 


Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: ( symbiosis[tiab] OR symbiotic[tiab] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-06-19
CmpDate: 2024-06-19

Tüzün BS, Karadağ BT, Oran S, et al (2024)

Determination of phytochemical contents by LC/QTOF/MS and evaluation of in-vitro biological activities of 2 Peltigera lichens from Bursa.

Anais da Academia Brasileira de Ciencias, 96(2):e20230657 pii:S0001-37652024000200504.

Lichens are symbiotic associations of algae and fungi. They are edible as food and have been used in traditional medicine for years. It is aimed to screen Peltigera praetextata (Flörke ex Sommerf.) Zopfand and Peltigera elisabethae Gyeln. phytochemically by LC/QTOF/MS and according to the constituents to evaluate the antioxidant, tyrosinase inhibitory, and antibacterial activities. In total 54 of metabolites detected by LC/QTOF/MS were common in both species. According to LC/QTOF/MS scanning results, alkaloids, iridoid glycosides, phenolics, cyanogenetic glycosides, and terpenic structures were detected. DPPH, ABTS, superoxide radical scavenging activities, and metal chelating capacity IC50 values were 84.55, 9.349; 51.27, 9.127; 95.01, 58.65 and 20.57, 70.08 µg/mL., respectively. The CUPRAC reducing power was determined as 4.69 and 9.57 TEACCUPRAC, respectively. Tyrosinase inhibitor activity were found to be 86.95 and 196.7 µg/mL. Both lichens did not show antimicrobial effects. As a result of the antioxidant and tyrosinase inhibitor activities it was seen that their activities were significant and further in vivo studies could be carried out on this lichens.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Nawaz T, Gu L, Fahad S, et al (2024)

Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology.

Molecules (Basel, Switzerland), 29(11):.

The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Averina OV, Poluektova EU, Zorkina YA, et al (2024)

Human Gut Microbiota for Diagnosis and Treatment of Depression.

International journal of molecular sciences, 25(11):.

Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Lewis JA, Jacobo EP, Palmer N, et al (2024)

Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein.

International journal of molecular sciences, 25(11):.

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.

RevDate: 2024-06-20
CmpDate: 2024-06-19

Ziemlewska A, Zagórska-Dziok M, Mokrzyńska A, et al (2024)

Comparison of Anti-Inflammatory and Antibacterial Properties of Raphanus sativus L. Leaf and Root Kombucha-Fermented Extracts.

International journal of molecular sciences, 25(11):.

In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used in cosmetic products. The aim of this study was to evaluate the cosmetic properties of radish leaf and root extract fermented with the SCOBY. Both unfermented water extracts and extracts after 7, 14, and 21 days of fermentation were evaluated. The analysis of secondary plant metabolites by UPLC-MS showed higher values for ferments than for extracts. A similar relationship was noted when examining the antioxidant properties using DPPH and ABTS radicals and the protective effect against H2O2-induced oxidative stress in fibroblasts and keratinocytes using the fluorogenic dye H2DCFDA. The results also showed no cytotoxicity to skin cells using Alamar Blue and Neutral Red tests. The ability of the samples to inhibit IL-1β and COX-2 activity in LPS-treated fibroblasts was also demonstrated using ELISA assays. The influence of extracts and ferments on bacterial strains involved in inflammatory processes of skin diseases was also assessed. Additionally, application tests were carried out, which showed a positive effect of extracts and ferments on TEWL and skin hydration using a TEWAmeter and corneometer probe. The results obtained depended on the concentration used and the fermentation time.

RevDate: 2024-06-20

Jaiswal SK, FD Dakora (2024)

Seed-Coat Pigmentation Plays a Crucial Role in Partner Selection and N2 Fixation in Legume-Root-Microbe Associations in African Soils.

Plants (Basel, Switzerland), 13(11):.

Legume-rhizobia symbiosis is the most important plant-microbe interaction in sustainable agriculture due to its ability to provide much needed N in cropping systems. This interaction is mediated by the mutual recognition of signaling molecules from the two partners, namely legumes and rhizobia. In legumes, these molecules are in the form of flavonoids and anthocyanins, which are responsible for the pigmentation of plant organs, such as seeds, flowers, fruits, and even leaves. Seed-coat pigmentation in legumes is a dominant factor influencing gene expression relating to N2 fixation and may be responsible for the different N2-fixing abilities observed among legume genotypes under field conditions in African soils. Common bean, cowpea, Kersting's groundnut, and Bambara groundnut landraces with black seed-coat color are reported to release higher concentrations of nod-gene-inducing flavonoids and anthocyanins compared with the Red and Cream landraces. Black seed-coat pigmentation is considered a biomarker for enhanced nodulation and N2 fixation in legumes. Cowpea, Bambara groundnut, and Kersting's bean with differing seed-coat colors are known to attract different soil rhizobia based on PCR-RFLP analysis of bacterial DNA. Even when seeds of the same legume with diverse seed-coat colors were planted together in one hole, the nodulating bradyrhizobia clustered differently in the PCR-RFLP dendrogram. Kersting's groundnut, Bambara groundnut, and cowpea with differing seed-coat colors were selectively nodulated by different bradyrhizobial species. The 16S rRNA amplicon sequencing also found significant selective influences of seed-coat pigmentation on microbial community structure in the rhizosphere of five Kersting's groundnut landraces. Seed-coat color therefore plays a dominant role in the selection of the bacterial partner in the legume-rhizobia symbiosis.

RevDate: 2024-06-20

Loureiro L, Morais J, Silva R, et al (2024)

Isolation and Identification of Lichen Photobionts Collected from Different Environments in North of Portugal and Evaluation of Bioactivities of Their Extracts.

Foods (Basel, Switzerland), 13(11):.

Lichens are organisms constituted by a symbiotic relationship between a fungus (mycobiont) and a photoautotrophic partner (photobiont). Lichens produce several bioactive compounds; however, the biotechnological exploitation of this organism is hampered by its slow growth. To start studying the possibility of exploiting lichens as alternative sources of bioactive compounds, eighteen lichens were collected in the north of Portugal in order to isolate and study the bioactivity of their photobionts. It was possible to isolate and cultivate only eight photobionts. Three of them, LFR1, LFA2 and LCF3, belong to the Coelastrella genus, the other two (LFA1 and LCF1) belong to the Chlorella genus and for the remaining three photobionts, LFS1, LCA1 and LCR1, it was impossible to isolate their microalgae. These only grow in consortium with bacteria and/or cyanobacteria. All extracts showed antioxidant activity, mainly at a concentration of 10 mg.mL[-1]. LFS1, a consortium extract, showed the highest antioxidant power, as well as the highest concentration of phenolic compounds (5.16 ± 0.53 mg of gallic acid equivalents (GAE).g[-1]). The extracts under study did not show significant antibacterial activity against Escherichia coli, Listeria or Salmonella. The Coelastrella sp. and LFA1 extracts showed the highest hyaluronidase inhibition. The LFR1 extract at a concentration of 5 mg.mL[-1] showed the highest anti-inflammatory activity (79.77 ± 7.66%). The extracts of Coelastrella sp. and LFA1 also showed greater antidiabetic activity, demonstrating the high inhibitory power of α-amylase and α-glucosidase. LFR1 at a concentration of 5 mg.mL[-1], due to its selective cytotoxicity inhibiting the growth of cancer cells (Caco-2 cells), is a promising anticancer agent.

RevDate: 2024-06-18

Valadez-Ingersoll M, Aguirre Carrión PJ, Bodnar CA, et al (2024)

Correction to 'Starvation differentially affects gene expression, immunity and pathogen susceptibility across symbiotic states in a model cnidarian' (2024), by Valadez-Ingersoll et al.

Proceedings. Biological sciences, 291(2025):20241198.

RevDate: 2024-06-18
CmpDate: 2024-06-18

Gruber-Vodicka H, Berndt H, I Duarte (2024)

Symbiosis: Aquatic apicomplexans shedding light on disguised associations.

Current biology : CB, 34(12):R576-R578.

Aquatic apicomplexans called Corallicolida have been found in tropical and coral-reef settings, infecting many coral species. New data challenge this tropical distribution and expand the corallicolids' range well into the cold temperate. Surprisingly, the sister clade to corallicolids infects only one group of vertebrates - bony fishes.

RevDate: 2024-06-18
CmpDate: 2024-06-18

Ambrosio R, Burgos Herrera G, Do Nascimento M, et al (2024)

Competitive fitness and stability of ammonium-excreting Azotobacter vinelandii strains in the soil.

Applied microbiology and biotechnology, 108(1):378.

Non-symbiotic N2-fixation would greatly increase the versatility of N-biofertilizers for sustainable agriculture. Genetic modification of diazotrophic bacteria has successfully enhanced NH4[+] release. In this study, we compared the competitive fitness of A. vinelandii mutant strains, which allowed us to analyze the burden of NH4[+] release under a broad dynamic range. Long-term competition assays under regular culture conditions confirmed a large burden for NH4[+] release, exclusion by the wt strain, phenotypic instability, and loss of the ability to release NH4[+]. In contrast, co-inoculation in mild autoclaved soil showed a much longer co-existence with the wt strain and a stable NH4[+] release phenotype. All genetically modified strains increased the N content and changed its chemical speciation in the soil. This study contributes one step forward towards bridging a knowledge gap between molecular biology laboratory research and the incorporation of N from the air into the soil in a molecular species suitable for plant nutrition, a crucial requirement for developing improved bacterial inoculants for economic and environmentally sustainable agriculture. KEY POINTS: • Genetic engineering for NH4[+] excretion imposes a fitness burden on the culture medium • Large phenotypic instability for NH4[+]-excreting bacteria in culture medium • Lower fitness burden and phenotypic instability for NH4[+]-excreting bacteria in soil.

RevDate: 2024-06-17

Chen W, Wang D, Ke S, et al (2024)

A soybean cyst nematode suppresses microbial plant symbionts using a lipochitooligosaccharide-hydrolysing enzyme.

Nature microbiology [Epub ahead of print].

Cyst nematodes are the most damaging species of plant-parasitic nematodes. They antagonize the colonization of beneficial microbial symbionts that are important for nutrient acquisition of plants. The molecular mechanism of the antagonism, however, remains elusive. Here, through biochemical combined with structural analysis, we reveal that Heterodera glycines, the most notorious soybean cyst nematode, suppresses symbiosis by secreting an enzyme named HgCht2 to hydrolyse the key symbiotic signalling molecules, lipochitooligosaccharides (LCOs). We solved the three-dimensional structures of apo HgCht2, as well as its chitooligosaccharide-bound and LCO-bound forms. These structures elucidated the substrate binding and hydrolysing mechanism of the enzyme. We designed an HgCht2 inhibitor, 1516b, which successfully suppresses the antagonism of cyst nematodes towards nitrogen-fixing rhizobia and phosphorus-absorbing arbuscular mycorrhizal symbioses. As HgCht2 is phylogenetically conserved across all cyst nematodes, our study revealed a molecular mechanism by which parasitic cyst nematodes antagonize the establishment of microbial symbiosis and provided a small-molecule solution.

RevDate: 2024-06-19
CmpDate: 2024-06-17

Bartels N, Matthews JL, Lawson CA, et al (2024)

Paired metabolomics and volatilomics provides insight into transient high light stress response mechanisms of the coral Montipora mollis.

Metabolomics : Official journal of the Metabolomic Society, 20(4):66.

The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.

RevDate: 2024-06-17

Paniagua-López M, Silva-Castro GA, Romero-Freire A, et al (2024)

Integrating waste valorization and symbiotic microorganisms for sustainable bioremediation of metal(loid)-polluted soils.

The Science of the total environment pii:S0048-9697(24)04178-0 [Epub ahead of print].

Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.

RevDate: 2024-06-17

Han S, Akhtar MR, X Xia (2024)

Functions and regulations of insect gut bacteria.

Pest management science [Epub ahead of print].

The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.

RevDate: 2024-06-18

Wu D, Guan YX, Li CH, et al (2024)

"Nutrient-fungi-host" tripartite interaction in cancer progression.

iMeta, 3(2):e170.

The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.

RevDate: 2024-06-18

Huang Q, Han W, Posada-Florez F, et al (2024)

Microbiomes, diet flexibility, and the spread of a beetle parasite of honey bees.

Frontiers in microbiology, 15:1387248.

Invasive pests may disturb and destructively reformat the local ecosystem. The small hive beetle (SHB), Aethina tumida, originated in Africa and has expanded to America, Australia, Europe, and Asia. A key factor facilitating its fast global expansion is its ability to subsist on diverse food inside and outside honey bee colonies. SHBs feed on various plant fruits and exudates in the environment while searching for bee hives. After sneaking into a bee hive, they switch their diet to honey, pollen, and bee larvae. How SHBs survive on such a broad range of food remains unclear. In this study, we simulated the outside and within hive stages by providing banana and hive resources and quantified the SHB associated microbes adjusted by the diet. We found that SHBs fed on bananas were colonized by microbes coding more carbohydrate-active enzymes and a higher alpha diversity than communities from SHBs feeding on hive products or those collected directly from bee hives. SHBs fed on bananas and those collected from the hive showed high symbiont variance, indicated by the beta diversity. Surprisingly, we found the honey bee core symbiont Snodgrassella alvi in the guts of SHBs collected in bee hives. To determine the role of S. alvi in SHB biology, we inoculated SHBs with a genetically tagged culture of S. alvi, showing that this symbiont is a likely transient of SHBs. In contrast, the fungus Kodamaea ohmeri is the primary commensal of SHBs. Diet-based microbiome shifts are likely to play a key role in the spread and success of SHBs.

RevDate: 2024-06-16

Zhao R, Yang Y, Li S, et al (2024)

Comparative study of integrated bio-responses in deep-sea and nearshore mussels upon abiotic condition changes: Insight into distinct regulation and adaptation.

Marine environmental research, 199:106610 pii:S0141-1136(24)00271-X [Epub ahead of print].

Deep-sea mussels, one of the dominant species in most deep-sea ecosystems, have long been used as model organisms to investigate the adaptations and symbiotic relationships of deep-sea macrofauna under laboratory conditions due to their ability to survive under atmospheric pressure. However, the impact of additional abiotic conditions beyond pressure, such as temperature and light, on their physiological characteristics remains unknown. In this study, deep-sea mussels (Gigantidas platifrons) from cold seep of the South China Sea, along with nearshore mussels (Mytilus coruscus) from the East China Sea, were reared in unfavorable abiotic conditions for up to 8 days. Integrated biochemical indexes including antioxidant defense, immune ability and energy metabolism were investigated in the gill and digestive gland, while cytotoxicity was determined in hemocytes of both types of mussels. The results revealed mild bio-responses in two types of mussels in the laboratory, represented by the effective antioxidant defense with constant total antioxidant capability level and malondialdehyde content. There were also disparate adaptations in deep-sea and nearshore mussels. In deep-sea mussels, significantly increased immune response and energy reservation were observed in gills, together with the elevated cytotoxicity in hemocytes, implying the more severe biological adaptation was required, mainly due to the symbiotic bacteria loss under laboratory conditions. On the contrary, insignificant biological responses were exhibited in nearshore mussels except for the increased energy consumption, indicating the trade-off strategy to use more energy to deal with potential stress. Overall, this comparative study highlights the basal bio-responses of deep-sea and nearshore mussels out of their native environments, providing evidence that short-term culture of both mussels under easily achievable laboratory conditions would not dramatically alter their biological status. This finding will assist in broadening the application of deep-sea mussels as model organism in future research regardless of the specialized research equipment.

RevDate: 2024-06-15
CmpDate: 2024-06-15

Liu Y, Sun F, Zhong Y, et al (2024)

Effects of imidacloprid combined with validamycin on the population fitness and symbiotic of Nilaparvata lugens (Hemiptera: Delphacidae).

Pesticide biochemistry and physiology, 202:105973.

Using a high-efficiency insecticide in combination with fungicides that have different mechanisms of action is a conventional method in the current management of brown planthopper (BPH) resistance. In this study, we investigate the separate and combined effects of the low-toxicity fungicide validamycin and the non-cross-resistant insecticide imidacloprid on the fitness and symbiosis of BPH. These research results indicate that when the proportion of active ingredients in validamycin is combined with imidacloprid at a ratio of 1:30, the toxicity ratio and co-toxicity coefficient are 1.34 and 691.73, respectively, suggesting that the combination has a synergistic effect on the control of BPH. The number of yeast-like symbiotic (YLS) and dominant symbiotic (Noda) in the imidacloprid + validamycin groups were significantly lower than the other three treatment groups (validamycin, imidacloprid, and water). The results of the study on population fitness show that the lifespan of the BPH population in validamycin, imidacloprid, and imidacloprid + validamycin was shortened. Notably, the BPH populations in the imidacloprid + validamycin groups were significantly lower than other groups in terms of average generation cycle, intrinsic growth rate, net reproduction rate, finite rate of increase, and fitness. The Real-time quantitative PCR showed that validamycin and imidacloprid + validamycin can significantly inhibit the expression of the farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) and uricase gene (EC1.7.3.3), with imidacloprid + validamycin demonstrating the most pronounced inhibitory effect. Our research results can provide insights and approaches for delaying resistance and integrated management of BPH.

RevDate: 2024-06-15

Cinardi G, D'Urso PR, Arcidiacono C, et al (2024)

Accounting of circular economy principles in Life Cycle Assessments of extra-virgin olive oil supply chains - Findings from a systematic literature review.

The Science of the total environment pii:S0048-9697(24)04125-1 [Epub ahead of print].

This study was conceived with the aim of exploring applications of the circular economy (CE) principles in the olive oil sector, with the lens of Life Cycle Assessment (LCA). To that end, the authors performed a systematic literature review (SLR), from a pre-determined set of keywords that were searched for in the two most comprehensive databases of peer-reviewed journals, namely Scopus and Web-of-Science. From the screening process provided by the PRISMA model, a total of fifteen papers were selected that formed the final review sample, most of which included research on production systems in the Mediterranean region. To facilitate a comparative analysis of the findings from those studies, the latter were grouped into clusters, considering their characteristics and methodological approaches. Five articles were classified as dealing with 'closed-loop' systems wherein the resources from the valorisation of by-products were reintegrated into the same production system. The remaining articles were categorised as related to 'open loop' systems since by-products were utilised in processes and systems outside olive oil production. Notably, the 'closed-loop' systems showed the best LCA outcomes. Identified hotspots within the sector included the agricultural and packaging phases. Although comparing LCA applications is challenging due to the inherent nature of the method and researcher autonomy in selecting basic characteristics, valuable best practices emerged from the analysis of the current state of the art. These practices included valorisation of olive pomace (OP) by converting it into biogas to meet the energy needs of the system processes themselves, the collection of waste cooking oil to convert it into biodiesel, and the use of organic farming techniques in olive production. OP oil extraction emerged as a widespread practice enhancing system sustainability. Moreover, increasing industrial symbiosis by promoting proximity amongst plants was documented by this SLR to be a key factor in strengthening system sustainability.

RevDate: 2024-06-18
CmpDate: 2024-06-15

Del Pilar Angarita-Díaz M, Fong C, D Medina (2024)

Bacteria of healthy periodontal tissues as candidates of probiotics: a systematic review.

European journal of medical research, 29(1):328.

OBJECTIVES: The use of probiotics could promote the balance of the subgingival microbiota to contribute to periodontal health. This study aimed to identify the potential of bacteria commonly associated with healthy periodontal tissues as probiotic candidates.

MATERIAL AND METHODS: A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed, Scopus, Science Direct, ProQuest, and Ovid databases as well as the combination of Medical Subject Headings (MeSH) and non-MeSH terms. Based on the selection criteria, original studies published in English and identifying the microorganisms present in the periodontium of healthy individuals and patients with periodontitis using the high-throughput 16S ribosomal gene sequencing technique were included.

RESULTS: Out of 659 articles, 12 met the criteria for this review. These articles were published from 2012 to 2020 and mainly originated from the United States, China, and Spain. Most of these studies reported adequate criteria for selecting participants, using standardized clinical criteria, and compliance with quality based on the tools used. In periodontal healthy tissue were identified species like Actinomyces viscosus, Actinomyces naeslundii, Haemophilus parainfluenzae, Rothia dentocariosa, Streptococcus sanguinis, Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus intermedius, and Prevotella nigrescens which have recognized strains with a capacity to inhibit periodontopathogens.

CONCLUSIONS: S. sanguinis, S. oralis, S. mitis, and S. gordonii are among the bacterial species proposed as potential probiotics because some strains can inhibit periodontopathogens and have been reported as safe for humans.

RevDate: 2024-06-16

Li MY, Wang W, Mo F, et al (2024)

Seven-year long-term inoculation with Funneliformis mosseae increases maize yield and soil carbon storage evidenced by in situ [13]C-labeling in a dryland.

The Science of the total environment, 944:173975 pii:S0048-9697(24)04123-8 [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with roots of most plants, contributing to plant water uptake and soil carbon (C) sequestration. However, the interactive contribution and of long-term field AMF inoculation and water conservation on maize yield and soil organic carbon (SOC) sequestration in drylands remain largely unknown. After 7-year long-term field inoculation with AMF Funneliformis mosseae, AMF suppression by fungicide benomyl, and no-AMF/no-benomyl control, and two water conservation practices of half-film and full-film mulching (∼50 % and ∼100 crop planted area covered with plastic film), this study thus applied in situ [13]CO2-C labeling and high-throughput sequencing to quantify newly photosynthetically assimilated C into different soil C pools including soil aggregates and respiration, and their effects on maize growth and productivity. Results showed that 7-year long-term AMF inoculation significantly increased the relative abundance of F. mosseae in rhizosphere soil and root AMF colonization, indicating that F. mosseae successfully dominated in AMF communities. Compared to no-AMF/no-benomyl control, AMF colonization significantly increased shoot biomass and maize yield by 17.9 % and 20.3 % while mitigated the less water conservation effects of half-film mulching on maize performance. The SOC content under field AMF inoculation SOC was increased from 7.9 to 8.4 g kg[-1] and also the mean weight diameter of aggregates (1.21 to 1.35), e.g. aggregate stability. After 1 and/or 40 days [13]C labeling, the enhanced [13]C translocations into macro-aggregates with decreased [13]C emissions from microbial decomposition under field AMF inoculation had contributed to SOC conservation in bulk soil. These results suggest that AMF inoculation in dryland crops is promising to increase crop yield while promoting more atmospheric CO2 fixation in soil aggregates. A long-term field AMF inoculation will enhance our understanding of applying beneficial mycorrhizal fungi to enhance soil C sequestration and also crop yield via plant-fixed atmospheric CO2 in semi-arid and arid farmlands.

RevDate: 2024-06-15

Wang Z, Liu Z, Wang J, et al (2024)

Characterizing algal-bacterial symbiotic biofilms: Insights into coexistence of algae and anaerobic microorganisms.

Bioresource technology, 406:130966 pii:S0960-8524(24)00670-9 [Epub ahead of print].

This study constructed an integrated algae/partial nitrification/anammox biofilm system and operated it for 240 days. The total nitrogen removal efficiency exceeded 90 %. The structure, compositions, and function of this symbiotic biofilm, which played a pivotal role in the system, were analyzed in detail. Microscope photos and fluorescence in situ hybridization both showed that bacteria and algae were well integrated. The dissolved oxygen gradient further confirmed that different functional microorganisms grew at varying depths within biofilm. Algae formed an oxygen-producing zone (0-0.48 mm), followed by ammonia oxidizing bacteria (AOB) consuming oxygen to form an oxygen-consuming zone (0.48-0.86 mm), and anaerobic ammonia oxidizing bacteria (AnAOB) removed nitrogen in anaerobic zone (>0.86 mm). Chlorella, Nitrosomonas and Candidatus_Kuenenia were identified as the dominant algae, AOB and AnAOB, with relative abundances of 11.80 %, 19.77 % and 3.07 %, respectively. This layered biofilm benefitted providing a suitable environment for various microorganisms to survive within a complex biofilm.

RevDate: 2024-06-14

Wu J, Wu Z, Yu T, et al (2024)

Polyvinyl chloride and polybutylene adipate microplastics affect peanut and rhizobium symbiosis by interfering with multiple metabolic pathways.

Journal of hazardous materials, 475:134897 pii:S0304-3894(24)01476-6 [Epub ahead of print].

Microplastics (MPs), widely presented in cultivated soil, have caused serious stresses on crop growth. However, the mechanism by which MPs affect legumes and rhizobia symbiosis is still unclear. Here, peanut seedlings were inoculated with Bradyrhizobium zhanjiangense CCBAU 51778 and were grown in vermiculite with 3 %/5 % (w/w) addition of PVC (polyvinyl chloride)-MPs/PBAT (polybutylene adipate)-MPs. PVC-MPs and PBAT-MPs separately decreased nodule number by 33-100 % and 2.62-80.91 %. Transcriptome analysis showed that PVC-MPs affected more DEGs (differentially expressed genes) than PBAT-MPs, indicating PVC-MPs were more devastating for the symbiosis than PBAT-MPs. Functional annotation revealed that PVC-MPs and PBAT-MPs enriched DEGs related to biosynthesis pathways such as flavonoid, isoflavonoid, and phenylpropanoid, in peanut. And when the dose increased from 3 % to 5 %, PVC-MPs mainly enriched the pathways of starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, diterpenoid biosynthesis, etc.; PBAT-MPs enriched cysteine and methionine metabolism, photosynthesis, MAPK signaling, and other pathways. These significantly enriched pathways functioned in reducing nodule number and promoting peanut tolerance to MPs stresses. This study reveals the effect of PVC-MPs and PBAT-MPs on peanut and rhizobium symbiosis, and provides new perspectives for legume production and environmental safety.

RevDate: 2024-06-14

Pawlowska TE (2024)

Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity.

Current opinion in microbiology, 80:102496 pii:S1369-5274(24)00072-9 [Epub ahead of print].

Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.

RevDate: 2024-06-16
CmpDate: 2024-06-14

Meyer AR, Koch NM, McDonald T, et al (2024)

Symbionts out of sync: Decoupled physiological responses are widespread and ecologically important in lichen associations.

Science advances, 10(24):eado2783.

A core vulnerability in symbioses is the need for coordination between the symbiotic partners, which are often assumed to be closely physiologically integrated. We critically re-examine this assumed integration between symbionts in lichen symbioses, recovering a long overlooked yet fundamental physiological asymmetry in carbon balance. We examine the physiological, ecological, and transcriptional basis of this asymmetry in the lichen Evernia mesomorpha. This carbon balance asymmetry depends on hydration source and aligns with climatic range limits. Differences in gene expression across the E. mesomorpha symbiosis suggest that the physiologies of the primary lichen symbionts are decoupled. Furthermore, we use gas exchange data to show that asymmetries in carbon balance are widespread and common across evolutionarily disparate lichen associations. Using carbon balance asymmetry as an example, we provide evidence for the wide-ranging importance of physiological asymmetries in symbioses.

RevDate: 2024-06-14

Sheoran M (2024)

Audre Lorde and queer ecology: An ecological praxis of Black lesbian identity in Zami.

Journal of lesbian studies [Epub ahead of print].

This paper employs Audre Lorde's theoretical paradigm of anti-binarism and ecofeminism to explore her creation of a distinctive queer space which is achieved through the successful incorporation of ecological elements in her narrative of lesbianism. The central premise of this research lies in the intersection of lesbian concerns and the environmental sensibility in Lorde's novel, Zami. The detailed analysis of instances of lesbian lovemaking interspersed with ecological references in Zami reveals a close connection between environment and queer sexuality, realised in the phrase "queer ecology". This study investigates how the erotic contours of Lorde's lesbian identity are shaped by her sustained engagement with the environmental metaphor derived from her immediate surroundings as well as the geography of her ancestral Grenadian island where the Zami myth originates. The cartographies of the physical landscape of Grenada and Black lesbian bodies intersect to form a combined ethos of lesbian eroticism driven by a strong rootedness in ecological affiliation. Through close examination of Afrekete's role in Zami's lesbian erotics, this paper activates a distinctive queer-ecological reading of lesbian relationships derived from a combination of aquatic, green, and edible metaphors. This article is an endeavour to bring about a sustained engagement of queer and environmental concerns by unravelling a symbiotic relationship between the two.

RevDate: 2024-06-17
CmpDate: 2024-06-14

Lee CY, SY Lee (2024)

Contribution of Aerobic Cellulolytic Gut Bacteria to Cellulose Digestion in Fifteen Coastal Grapsoid Crabs Underpins Potential for Mineralization of Mangrove Production.

Current microbiology, 81(8):224.

Grapsoid crabs (Decapoda: Grapsoidea) inhabiting along the land-sea transition provided various amounts and quality of vascular plant carbon (e.g., fresh mangrove leaf, leaf litter, and mangrove-derived organic carbon) and perform differing levels of herbivory. Other than endogenous cellulase, symbiotic cellulolytic bacteria could also contribute to the crabs' vascular plant carbon assimilation and mineralization. In this study, we isolated culturable cellulolytic bacteria from three gut regions (i.e., stomach, midgut, and hindgut) of 15 species of grapsoid crabs that inhabit in various coastal habitats (i.e., land margin, mangrove forest, tidal flat, and subtidal area). Bacillus, which was isolated from 11 out of the 15 grapsoid crabs, was the most common genus of culturable prominently cellulolytic bacteria among the target species. Seventy to ninety nine percent of culturable cellulolytic bacteria were removed, and the endoglucanase activity of five species was significantly reduced by 14.4-27.7% after antibiotic treatment. These results suggest that cellulolytic bacteria play a role in assisting mangrove carbon utilization in coastal grapsoid crabs, especially those inhabiting mangrove, mudflat, and subtidal areas. The significantly higher abundance of cellulolytic bacteria and the generally higher hydrolytic capacity of the bacteria in mangrove crab species suggest that they receive more contribution from symbionts for mangrove carbon utilization, while semi-terrestrial crabs seem to depend little on symbiotic cellulase due to the lower abundances.

RevDate: 2024-06-14

Boas Lichty KE, Loughran RM, Ushijima B, et al (2024)

Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol.

Applied and environmental microbiology [Epub ahead of print].

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.

RevDate: 2024-06-14

Wierz JC, Dirksen P, Kirsch R, et al (2024)

Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders.

The ISME journal pii:7693286 [Epub ahead of print].

Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species S. clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.

RevDate: 2024-06-14

Ahuja S, Sureka N, S Zaheer (2024)

Unraveling the intricacies of cancer-associated fibroblasts: a comprehensive review on metabolic reprogramming and tumor microenvironment crosstalk.

APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [Epub ahead of print].

Cancer-associated fibroblasts (CAFs) are crucial component of tumor microenvironment (TME) which undergo significant phenotypic changes and metabolic reprogramming, profoundly impacting tumor growth. This review delves into CAF plasticity, diverse origins, and the molecular mechanisms driving their continuous activation. Emphasis is placed on the intricate bidirectional crosstalk between CAFs and tumor cells, promoting cancer cell survival, proliferation, invasion, and immune evasion. Metabolic reprogramming, a cancer hallmark, extends beyond cancer cells to CAFs, contributing to the complex metabolic interplay within the TME. The 'reverse Warburg effect' in CAFs mirrors the Warburg effect, involving the export of high-energy substrates to fuel cancer cells, supporting their rapid proliferation. Molecular regulations by key players like p53, Myc, and K-RAS orchestrate this metabolic adaptation. Understanding the metabolic symbiosis between CAFs and tumor cells opens avenues for targeted therapeutic strategies to disrupt this dynamic crosstalk. Unraveling CAF-mediated metabolic reprogramming provides valuable insights for developing novel anticancer therapies. This comprehensive review consolidates current knowledge, shedding light on CAFs' multifaceted roles in the TME and offering potential targets for future therapies.

RevDate: 2024-06-15

Shang Z, Pai L, S Patil (2024)

Unveiling the dynamics of gut microbial interactions: a review of dietary impact and precision nutrition in gastrointestinal health.

Frontiers in nutrition, 11:1395664.

The human microbiome, a dynamic ecosystem within the gastrointestinal tract, plays a pivotal role in shaping overall health. This review delves into six interconnected sections, unraveling the intricate relationship between diet, gut microbiota, and their profound impact on human health. The dance of nutrients in the gut orchestrates a complex symphony, influencing digestive processes and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional communication between the gut and the brain, the Brain-Gut Axis section highlights the crucial role of dietary choices in physical, mental, and emotional well-being. Autoimmune diseases, particularly those manifesting in the gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome imbalances. Strategies for reconciling gut microbes through diets, precision nutrition, and clinical indications showcase promising avenues for managing gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP diet to neuro-gut interventions, these strategies provide a holistic understanding of the gut's dynamic world. Precision nutrition, as a groundbreaking discipline, holds transformative potential by tailoring dietary recommendations to individual gut microbiota compositions, reshaping the landscape of gastrointestinal health. Recent advancements in clinical indications, including exact probiotics, fecal microbiota transplantation, and neuro-gut interventions, signify a new era where the gut microbiome actively participates in therapeutic strategies. As the microbiome takes center stage in healthcare, a paradigm shift toward personalized and effective treatments for gastrointestinal disorders emerges, reflecting the symbiotic relationship between the human body and its microbial companions.

RevDate: 2024-06-15

Mondal S, Biswas B, Chowdhury R, et al (2024)

Estuarine mangrove niches select cultivable heterotrophic diazotrophs with diverse metabolic potentials-a prospective cross-dialog for functional diazotrophy.

Frontiers in microbiology, 15:1324188.

INTRODUCTION: Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year[-1] to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats.

METHODS: In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions.

RESULTS: Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification.

DISCUSSION: This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.

RevDate: 2024-06-15

Ratinskaia L, Malavin S, Zvi-Kedem T, et al (2024)

Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen.

ISME communications, 4(1):ycae076.

Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.

RevDate: 2024-06-13

Li J, Li W, Huang Y, et al (2024)

Phosphorus limitation intensifies heat-stress effects on the potential mutualistic capacity in the coral-derived Symbiodinium.

The Science of the total environment pii:S0048-9697(24)04060-9 [Epub ahead of print].

Coral reef ecosystems have been severely ravaged by global warming and eutrophication. Eutrophication often originates from nitrogen (N) overloading that creates stoichiometric phosphorus (P) limitation, which can be aggravated by sea surface temperature rises that enhances stratification. However, how P-limitation interacts with thermal stress to impact coral-Symbiodiniaceae mutualism is poorly understood and underexplored. Here, we investigated the effect of P-limitation (P-depleted vs. P-replete) superimposed on heat stress (31 °C vs. 25 °C) on a Symbiodinium strain newly isolated from the coral host by a 14-day incubation experiment. The heat and P-limitation co-stress induced an increase in alkaline phosphatase activity and reppressed cell division, photosynthetic efficiency, and expression of N uptake and assimilation genes. Moreover, P limitation intensified downregulation of carbon fixation (light and dark reaction) and metabolism (glycolysis) pathways in heat stressed Symbiodinium. Notably, co-stress elicited a marked transcriptional downregulation of genes encoding photosynthates transporters and microbe-associated molecular patterns, potentially undermining the mutualism potential. This work sheds light on the interactive effects of P-limitation and heat stress on coral symbionts, indicating that nutrient imbalance in the coral reef ecosystem can intensify heat-stress effects on the mutualistic capacity of Symbiodiniaceae.

RevDate: 2024-06-13

Guan X, Jia D, Liu X, et al (2024)

Combined influence of the nanoplastics and polycyclic aromatic hydrocarbons exposure on microbial community in seawater environment.

The Science of the total environment pii:S0048-9697(24)03919-6 [Epub ahead of print].

Nanoplastics (NPs) and polycyclic aromatic hydrocarbons (PAHs) are recognized as persistent organic pollutant (POPs) with demonstrated physiological toxicity. When present in aquatic environments, the two pollutants could combine with each other, resulting in cumulative toxicity to organisms. However, the combined impact of NPs and PAHs on microorganisms in seawater is not well understood. In this study, we conducted an exposure experiment to investigate the individual and synergistic effects of NPs and PAHs on the composition, biodiversity, co-occurrence networks of bacterial communities in seawater. Exposure of individuals to PAHs led to a reduction in microbial community richness, but an increase in the relative abundance of species linked to PAHs degradation. These PAHs-degradation bacteria acting as keystone species, maintained a microbial network complexity similar to that of the control treatment. Exposure to individual NPs resulted in a reduction in the complexity of microbial networks. Furthermore, when PAHs and NPs were simultaneously present, the toxic effect of NPs hindered the presence of keystone species involved in PAHs degradation, subsequently limiting the degradation of PAHs by marine microorganisms, resulting in a decrease in community diversity and symbiotic network complexity. This situation potentially poses a heightened threat to the ecological stability of marine ecosystems. Our work strengthened the understanding of the combined impact of NPs and PAHs on microorganisms in seawater.

RevDate: 2024-06-13
CmpDate: 2024-06-13

Yaish MW (2024)

Functional Characterization and Localization of Plant-Growth Promoting Bacteria Grown Under Stressful Conditions.

Methods in molecular biology (Clifton, N.J.), 2832:257-279.

Various bacterial species are associated with plant roots. However, symbiotic and free-living plant growth-promoting bacteria (PGPB) can only help plants to grow and develop under normal and stressful conditions. Several biochemical and in vitro assays were previously designed to differentiate between the PGPB and other plant-associated bacterial strains. This chapter describes and summarizes some of these assays and proposes a strategy to screen for PGPB. To determine the involvement of the PGPB in abiotic stress tolerance, assays for the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ammonium, gibberellic acid (GA), indole acetic acid (IAA), and microbial volatile organic compounds (mVOCs) are described in this chapter. Additionally, assays to show the capacity to solubilize micronutrients such as potassium, phosphorus, and zinc by bacteria were also summarized in this chapter. To determine the contribution of the PGPB in biotic stress tolerance in plants, Fe-siderophore, hydrogen cyanide, and antibiotic and antifungal metabolites production assays were described. Moreover, assays to investigate the growth-promotion activities of a bacterium strain on plants, using the gnotobiotic root elongation, in vitro, and pots assays, were explained. Finally, an assay for the localization of endophytic bacterium in plant tissues was also presented in this chapter. Although the assays described in this chapter can give evidence of the nature of the mechanism behind the PGPB actions, other unknown growth-promoting means are yet to decipher, and until then, new methodologies will be developed.

RevDate: 2024-06-14

Wang HR, Du XR, Zhang ZY, et al (2023)

Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics.

iMeta, 2(4):e133.

The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd[2+] changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|βNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.

RevDate: 2024-06-14

Cao B, Gao JW, Zhang QP, et al (2023)

Melatonin supplementation protects against traumatic colon injury by regulating SERPINA3N protein expression.

iMeta, 2(4):e141.

Traumatic colon injury (TCI) is a typical injury with high mortality. Prolongation of the intervention time window is a potentially useful approach to improving the outcomes of TCI casualties. This study aimed to identify the pathological mechanisms of TCI and to develop effective strategies to extend the survival time. A semicircular incision was made to prepare a TCI model using C57BL/6 mice. An overview of microbiota dysregulation was achieved by metagenome sequencing. Protein expression reprogramming in the intestinal epithelium was investigated using proteomics profiling. The mice that were subjected to TCI died within a short period of time when not treated. Gut symbiosis showed abrupt turbulence, and specific pathogenic bacteria rapidly proliferated. The protein expression in the intestinal epithelium was also reprogrammed. Among the differentially expressed proteins, SERPINA3N was overexpressed after TCI modeling. Deletion of Serpina3n prolonged the posttraumatic survival time of mice with TCI by improving gut homeostasis in vivo. To promote the translational application of this research, the effects of melatonin (MLT), an oral inhibitor of the SERPINA3N protein, were further investigated. MLT effectively downregulated SERPINA3N expression and mitigated TCI-induced death by suppressing the NF-κB signaling pathway. Our findings prove that preventive administration of MLT serves as an effective regimen to prolong the posttraumatic survival time by restoring gut homeostasis perturbed by TCI. It may become a novel strategy for improving the prognosis of patients suffering from TCI.

RevDate: 2024-06-13

Li Y, Qiu J, Yang J, et al (2024)

Molecular Mechanism of GmSNE3 Ubiquitin Ligase-Mediated Inhibition of Soybean Nodulation by Halosulfuron Methyl.

Journal of agricultural and food chemistry [Epub ahead of print].

In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.

RevDate: 2024-06-14
CmpDate: 2024-06-12

Xiong X, Zeng J, Ning Q, et al (2024)

Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis.

Nature communications, 15(1):5012.

Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.

RevDate: 2024-06-12

Rosic N, Delamare-Deboutteville J, S Dove (2024)

Heat stress in symbiotic dinoflagellates: Implications on oxidative stress and cellular changes.

The Science of the total environment pii:S0048-9697(24)04064-6 [Epub ahead of print].

Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.

RevDate: 2024-06-12

Zanetti ME, Blanco F, Ferrari M, et al (2024)

Epigenetic control during root development and symbiosis.

Plant physiology pii:7691838 [Epub ahead of print].

The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.

RevDate: 2024-06-14

Yang T, Tedersoo L, Liu X, et al (2022)

Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem.

iMeta, 1(4):e49.

Microbes dominate terrestrial ecosystems via their great species diversity and vital ecosystem functions, such as biogeochemical cycling and mycorrhizal symbiosis. Fungi and other organisms form diverse association networks. However, the roles of species belonging to different kingdoms in multi-kingdom community networks have remained largely elusive. In light of the integrative microbiome initiative, we inferred multiple-kingdom biotic associations from high elevation timberline soils using the SPIEC-EASI method. Biotic interactions among plants, nematodes, fungi, bacteria, and archaea were surveyed at the community and network levels. Compared to single-kingdom networks, multi-kingdom networks and their associations increased the within-kingdom and cross-kingdom edge numbers by 1012 and 10,772, respectively, as well as mean connectivity and negative edge proportion by 15.2 and 0.8%, respectively. Fungal involvement increased network stability (i.e., resistance to node loss) and connectivity, but reduced modularity, when compared with those in the single-kingdom networks of plants, nematodes, bacteria, and archaea. In the entire multi-kingdom network, fungal nodes were characterized by significantly higher degree and betweenness than bacteria. Fungi more often played the role of connector, linking different modules. Consistently, structural equation modeling and multiple regression on matrices corroborated the "bridge" role of fungi at the community level, linking plants and other soil biota. Overall, our findings suggest that fungi can stabilize the self-organization process of multi-kingdom networks. The findings facilitate the initiation and carrying out of multi-kingdom community studies in natural ecosystems to reveal the complex above- and belowground linkages.

RevDate: 2024-06-14

Gao C, Li X, Zhao X, et al (2022)

Standardized studies of the oral microbiome: From technology-driven to hypothesis-driven.

iMeta, 1(2):e19.

The microbiome is in a symbiotic relationship with the host. Among the microbial consortia in the human body, that in the oral cavity is complex. Instead of repeatedly confirming biomarkers of oral and systemic diseases, recent studies have focused on a unified clinical diagnostic standard in microbiology that reduces the heterogeneity caused by individual discrepancies. Research has also been conducted on other topics of greater clinical importance, including bacterial pathogenesis, and the effects of drugs and treatments. In this review, we divide existing research into technology-driven and hypothesis-driven, according to whether there is a clear research hypothesis. This classification allows the demonstration of shifts in the direction of oral microbiology research. Based on the shifts, we suggested that establishing clear hypotheses may be the solution to major research challenges.

RevDate: 2024-06-12
CmpDate: 2024-06-12

Lachat J, Lextrait G, Jouan R, et al (2024)

Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts.

Proceedings of the National Academy of Sciences of the United States of America, 121(25):e2401802121.

The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.

RevDate: 2024-06-11

Huang Z, Wang D, Zhou J, et al (2024)

Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects.

Frontiers in zoology, 21(1):15.

The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.

RevDate: 2024-06-11

Saki N, Hadi H, Keikhaei B, et al (2024)

Gut microbiome composition and dysbiosis in immune thrombocytopenia: A review of literature.

Blood reviews pii:S0268-960X(24)00052-3 [Epub ahead of print].

Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by excessive reticuloendothelial platelet destruction and inadequate compensatory platelet production. However, the pathogenesis of ITP is relatively complex, and its exact mechanisms and etiology have not been definitively established. The gut microbiome, namely a diverse community of symbiotic microorganisms residing in the gastrointestinal system, affects health through involvement in human metabolism, immune modulation, and maintaining physiological balance. Emerging evidence reveals that the gut microbiome composition differs in patients with ITP compared to healthy individuals, which is related with platelet count, disease duration, and response to treatment. These findings suggest that the microbiome and metabolome profiles of individuals could unveil a new pathway for aiding diagnosis, predicting prognosis, assessing treatment response, and formulating personalized therapeutic approaches for ITP. However, due to controversial reports, definitive conclusions cannot be drawn, and further investigations are needed.

RevDate: 2024-06-13

Zhou F, Wu X, Fan S, et al (2024)

Detoxification of phoxim by a gut bacterium of Delia antiqua.

The Science of the total environment, 943:173866 pii:S0048-9697(24)04013-0 [Epub ahead of print].

The presence of certain associated bacteria has been reported to increase pest resistance to pesticides, which poses a serious threat to food security and the environment. Researches on the above microbe-derived pesticide resistance would bring innovative approaches for pest management. Investigations into the phoxim resistance of Delia antiqua, one Liliaceae crop pests, revealed the contribution of a phoxim-degrading gut bacterium, D39, to this resistance. However, how the strain degraded phoxim was unknown. In this study, the role of D39 in phoxim degradation and resistance was first confirmed. DT, which had an identical taxonomy but lacked phoxim-degrading activity, was analyzed alongside D39 via comparative genomics to identify the potential phoxim degrading genes. In addition, degradation metabolites were identified, and a potential degradation pathway was proposed. Furthermore, the main gene responsible for degradation and the metabolites of phoxim were further validated via prokaryotic expression. The results showed that D39 contributed to resistance in D. antiqua larva by degrading phoxim. Phoxim was degraded by an enzyme encoded by the novel gene phoD in D39 to O,O-diethyl hydrogen phosphorothioate and 2-hydroxyimino-2-phenylacetonitrile. Finally, downstream products were metabolized in the tricarboxylic acid cycle. Further analysis via prokaryotic expression of phoD confirmed its degradation activity. The mechanisms through which gut microbes promote pesticide resistance are elucidated in this study. These results could aid in the development of innovative pest control methods. In addition, this information could also be used to identify microbial agents that could be applied for the remediation of pesticide contamination.

RevDate: 2024-06-11

Nakamura K, Asano S, Nambu M, et al (2024)

Metagenome-assembled genome sequences of two bacterial species from polyvinyl alcohol-degrading co-colonies.

Microbiology resource announcements [Epub ahead of print].

We present the metagenome-assembled genome sequences of two polyvinyl alcohol-degrading co-colony-derived bacterial species relative to Rhodanobacter sp. DHB23 and Priestia megaterium ATCC 14581. We estimated the genomes of these species to be 3,476,996- and 5,169,587-bp long (for Rhodanobacter sp. DHB23 and Priestia megaterium ATCC 14581, respectively).

RevDate: 2024-06-12
CmpDate: 2024-06-11

Chen Y, Chen Y, Li Y, et al (2024)

Comparative study of the gut microbial community structure of Spodoptera frugiperda and Spodoptera literal (Lepidoptera).

PeerJ, 12:e17450.

BACKGROUND: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects.

METHODS: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae.

RESULTS: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways.

CONCLUSION: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.

RevDate: 2024-06-11

Guo D, Li J, Liu P, et al (2024)

The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula.

Molecular plant pii:S1674-2052(24)00184-9 [Epub ahead of print].

Root nodule symbiosis (RNS) between legume and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid in the immune response has been extensively studied. The current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, while the molecular mechanisms remain to be elucidated. Here, we found that inoculation with rhizobia Sm1021 induced the JA pathway response in Medicago truncatula, and blocking JA pathway significantly reduced the number of infection threads. Mutations in the MtMYC2 gene, a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA-seq and ChIP-seq, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense. MtMYC2 activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 promotes the expression of MtIPD3 to participate in symbiotic signaling transduction. Notably, the MtMYC2-MtIPD3 transcriptional regulation module is specifically present in legumes. Additionally, The Mtmyc2 mutants exhibits a susceptible phenotype to Rhizoctonia solani. Collectively, our findings reveal the molecular mechanisms of the JA pathway in RNS and further broaden the understanding of JA in the plant-microbe interaction network.

RevDate: 2024-06-13

Vohsen SA, S Herrera (2024)

Coral microbiomes are structured by environmental gradients in deep waters.

Environmental microbiome, 19(1):38.

BACKGROUND: Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing.

RESULTS: Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location.

CONCLUSIONS: Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.

RevDate: 2024-06-10

Moraes JR, Barrinha A, Gonçalves de Lima LS, et al (2024)

Endosymbiosis in trypanosomatids: the bacterium division depends on microtubule dynamism.

Experimental cell research pii:S0014-4827(24)00217-9 [Epub ahead of print].

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.

RevDate: 2024-06-10

Irving C, I Culverhouse (2024)

Human factors integration with clinical investigations.

Journal of medical engineering & technology [Epub ahead of print].

The human factors engineering (HFE) process supports the design and development of medical devices, especially novel devices requiring clinical investigation. The typical culmination of the HFE process prior to market approval is a human factors (HF) validation study, with specific requirements of participant, environment and task representation that carry a financial and temporal burden for medical device manufacturers. Whilst strongly recommended ahead of clinical investigations by regulators (and the authors), the prescribed methodology for HF validation studies required for pre-market approval may be excessive ahead of a clinical investigation during the development process. However, the stringent nature of HF validation studies will support effective clinical investigation design and minimise risks of poor clinical outcome or compliance. This paper provides recommendations in what to consider when determining what type of HF study to conduct ahead of each clinical investigation phase as well as insights into the symbiotic benefits of HFE and clinical investigations.

RevDate: 2024-06-11

Ke X, Xiao H, Peng Y, et al (2024)

Nitrogen deficiency modulates carbon allocation to promote nodule nitrogen fixation capacity in soybean.

Exploration (Beijing, China), 4(2):20230104.

Previously, the effect of soil mineral N deficiency on nodule nitrogen fixation capacity (NFC) is unclear. In this study, we found that N deficiency would enhance sucrose allocation to nodules and PEP allocation to bacteroid to promote nodule NFC. Our findings provide new insights into the design of leguminous crops with improved adaptation to fluctuating N levels in the soil.

RevDate: 2024-06-10

Li Y, Chen H, Gu L, et al (2024)

Domestication of rice may have changed its arbuscular mycorrhizal properties by modifying phosphorus nutrition-related traits and decreasing symbiotic compatibility.

The New phytologist [Epub ahead of print].

Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.

RevDate: 2024-06-09

Pilipenets O, Kin Peng Hui F, Gunawardena T, et al (2024)

New circularity indicator for decision making in the stockpile management of construction and demolition waste: Perspectives of Australian practitioners.

Journal of environmental management, 363:121345 pii:S0301-4797(24)01331-8 [Epub ahead of print].

Despite the increasing popularity of the circular economy, there remains a lack of consensus on how to quantify circularity, a critical aspect of the practical implementation of this model. To address this gap, this article examines the industry's perspective and efforts toward implementing the circular economy in real-world scenarios. We conducted 40 interviews with engineers, project leaders, and top-level managers in the Australian construction sector. Using Saldaña's coding approach, we analysed their views on circular economy practices and efforts within their organisations. Our findings reveal while waste minimisation, reduction of greenhouse gas emissions, and cost considerations are widely regarded as essential indicators of a successful circular economy model, the significance of waste storage and long-term stockpiling while awaiting treatment has been overlooked or under-emphasised in industry practices and academic literature. Stockpiling of waste has often been seen as a staging process in waste treatment. However, based on industry insights, it accumulates to the point of mismanagement when it becomes a safety and environmental concern. Addressing this oversight, we propose a storage circularity indicator that allows incorporating waste storage and stockpiling in circular economy models. Our research contributes to various environmental and waste management aspects, supporting policies and strategies for solid waste management and excessive stockpile prevention. By emphasising the significance of storage circularity, we clarify waste prevention techniques and address socio-economic issues such as the urgent need to reduce long-term stockpiling of solid waste. This work highlights the importance of decision-support tools in waste management to facilitate the implementation of circular economy principles. Our proposed storage circularity indicator promotes industrial collaboration, aligning with the concept of industrial symbiosis to optimise resource use and minimise waste generation. By discussing these topics, we aim to contribute to the advancement of more robust waste management strategies and policies that promote sustainable production and consumption practices.

RevDate: 2024-06-09

Luo F, Liang X, Chen W, et al (2024)

Symbiotic defect-reinforced bimetallic MOF-derived fiber components for solar-assisted atmospheric water collection.

Water research, 259:121872 pii:S0043-1354(24)00773-5 [Epub ahead of print].

Conversion of atmospheric water to sustainable and clean freshwater resources through MOF-based adsorbent has great potential for the renewable environmental industry. However, its daily water production is hampered by susceptibility to agglomeration, slow water evaporation efficiency, and limited water-harvesting capacity. Herein, a solar-assisted bimetallic MOF (BMOF)-derived fiber component that surmounts these limitations and exhibits both optimized water-collect capacity and short adsorption-desorption period is proposed. The proposed strategy involves utilizing bottom-up interface-induced assembly between carboxylated multi-walled carbon nanotube and hygroscopic BMOF on a multi-ply glass fiber support. The designed BMOF (MIL-100(Fe,Al)-3) skeleton constructed using bimetallic-node defect engineering exhibits a high specific surface area (1,535.28 m[2]/g) and pore volume (0.76 cm[3]/g), thereby surpassing the parent MOFs and other reported MOFs in capturing moisture. Benefiting from the hierarchical structure of fiber rods and the solar-driven self-heating interface of photothermal layer, the customized BMOF crystals realize efficient loading and optimized water adsorption-desorption kinetics. As a result, the resultant fiber components achieve six adsorption-desorption cycles per day and an impressive water collection of 1.45 g/g/day under medium-high humidity outdoor conditions. Therefore, this work will provide new ideas for optimizing the daily yield of atmospheric water harvesting techniques.

RevDate: 2024-06-11

Yang J, Li Z, Zhang D, et al (2024)

An empirical analysis of the coupling and coordinated development of new urbanization and ecological welfare performance in China's Chengdu-Chongqing economic circle.

Scientific reports, 14(1):13197.

New urbanization (NU) and ecological welfare performance (EWP) play pivotal roles in achieving sustainable urban development, with both emphasizing social equity and environmental management. Exploring the coordinated relationship between EWP and NU is invaluable for understanding the symbiotic interplay between humans and nature. We constructed a framework to elucidate the coupling mechanism of EWP and NU from the perspective of systems theory. We quantified the levels of NU and EWP utilizing the entropy weighting method and the super-efficient SBM method, respectively. Furthermore, we assessed the degree of coupling coordination between the two using the coupling coordination degree model (CCDM). Spatial and temporal evolution analysis was conducted, and factors influencing the degree of coupling coordination between EWP and NU were explored through a spatial-temporal geographically-weighted regression model (GTWR). The results indicate: (1) During the study period, the average annual increase in EWP in the study area was 2.59%, with a narrowing relative gap between cities. Conversely, the average annual increase in the level of NU was 7.6%, with demographic and economic dimensions carrying the highest weights. (2) The type of coupling coordination between EWP and NU transitions from basic coordination to moderate coordination, with the development of EWP lagging behind that of NU. (3) City size demonstrates a positive yet diminishing trend on the coupling coordination level, with economic development exerting the greatest influence and exhibiting a "V" trend, while the impact of green technology innovation diminishes negatively. Additionally, regional disparities are significant, with city size exhibiting a negative impact in areas of high population density and low economic levels, and green technology innovation showing notable polarization characteristics in core cities. These findings serve as a foundation for fostering coordinated ecological development amid the rapid urbanization process of the Chengdu-Chongqing Economic Circle.

RevDate: 2024-06-11

Paix B, van der Valk E, NJ de Voogd (2024)

Dynamics, diversity, and roles of bacterial transmission modes during the first asexual life stages of the freshwater sponge Spongilla lacustris.

Environmental microbiome, 19(1):37.

BACKGROUND: Sponge-associated bacteria play important roles in the physiology of their host, whose recruitment processes are crucial to maintain symbiotic associations. However, the acquisition of bacterial communities within freshwater sponges is still under explored. Spongilla lacustris is a model sponge widely distributed in European rivers and lakes, producing dormant cysts (named gemmules) for their asexual reproduction, before winter. Through an in vitro experiment, this study aims to describe the dynamics of bacterial communities and their transmission modes following the hatching of these gemmules.

RESULTS: An overall change of bacterial β-diversity was observed through the ontology of the juvenile sponges. These temporal differences were potentially linked, first to the osculum acquisition and the development of a canal system, and then, the increasing colonization of the Chlorella-like photosymbionts. Gemmules hatching with a sterilized surface were found to have a more dispersed and less diverse microbiome, revealing the importance of gemmule epibacteria for the whole holobiont stability. These epibacteria were suggested to be vertically transmitted from the maternal tissues to the gemmule surface. Vertical transmission through the incorporation of bacterial communities inside of the gemmule, was also found as a dominant transmission mode, especially with the nitrogen fixers Terasakiellaceae. Finally, we showed that almost no ASVs were shared between the free-living community and the juveniles, suggesting that horizontal recruitment is unlikely to happen during the first stages of development. However, the free-living bacteria filtered are probably used as a source of nutrients, allowing an enrichment of copiotrophic bacteria already present within its microbiome.

CONCLUSIONS: This study brings new insight for a better understanding of the microbiome acquisition during the first stages of freshwater sponge development. We showed the importance of epibacterial communities on gemmules for the whole holobiont stability, and demonstrated the near absence of recruitment of free-living bacteria during the first stages.

RevDate: 2024-06-08

Escandon-Barbosa D, Salas-Paramo J, VC Paque (2024)

The role of trophic, mutualistic, and competitive interactions in an industrial symbiosis process implementation: an ecological network perspective.

Environmental science and pollution research international [Epub ahead of print].

For both government and private institutions, the development of collaboration networks becomes an element of great importance for the implementation of related policies such as the circular economy and sustainable practices in manufacturing. Despite the above, such initiatives have not received as much attention in literature but have been decisive as both public and private initiatives. Initiatives in Latin America do not escape this scenario, especially in the creation of conditions that allow the promotion of approaches such as industrial symbiosis. In this way, the present research is aimed at identifying the role of trophic, mutualistic, and competitive interactions in an industrial symbiosis process implementation. A network analysis model is used to achieve this purpose. This technique allows us to know the degree of importance of the different actors that are part of a network, as well as the factors that determine the implementation of initiatives such as industrial symbiosis. Among the results are that empirical findings confirm the presence of trophic interactions that enhance resource efficiency, mutualistic interactions fostering collaboration and synergy, and competitive interactions promoting efficiency and dynamism. Additionally, a green culture, business size, and innovation activities are revealed as influential factors amplifying network dynamics.

RevDate: 2024-06-08

Liu Y, Wu S, Qin X, et al (2024)

Combined dynamic transcriptome and flavonoid metabolome reveal the role of Mo nanoparticles in the nodulation process in soybean.

The Science of the total environment pii:S0048-9697(24)03880-4 [Epub ahead of print].

Symbiotic nitrogen fixation can reduce the impact of agriculture on the environment by reducing fertilizer input. The rapid development of nanomaterials in agriculture provides a new prospect for us to improve the biological nitrogen fixation ability of leguminous crops. Molybdenum is an important component of nitrogenase, and the potential application of MoO3NPs in agriculture is largely unexplored. In this study, on the basis of verifying that MoO3NPs can improve the nitrogen fixation ability of soybean, the effects of MoO3NPs on the symbiotic nitrogen fixation process of soybean were investigated by using dynamic transcriptome and targeted metabolome techniques. Here we showed that compared with conventional molybdenum fertilizer, minute concentrations of MoO3NPs (0.01-0.1 mg kg[-1]) could promote soybean growth and nitrogen fixation efficiency. The nodules number, fresh nodule weight and nitrogenase activity of 0.1 mg kg[-1] were increased by 17 %, 14 % and 27 %, and plant nitrogen accumulation increased by 17 %. Compared with conventional molybdenum fertilizer, MoO3NPs had a greater effect on apigenin, kaempferol and other flavonoid, and the expression of nodulation related genes such as ENOD93, F3'H. Based on WGCNA analysis, we identified a core gene GmCHS9 that was positively responsive to molybdenum and was highly expressed during MoO3NPs induced nodulation. MoO3NPs could improve the nitrogen fixation ability of soybean by promoting the secretion of flavonoids and the expression of key genes. This study provided a new perspective for the nano-strengthening strategy of nodules development and flavonoid biosynthesis by molybdenum.

RevDate: 2024-06-08

Li X, Cheng X, Xu J, et al (2024)

Dynamic patterns of carbohydrate metabolism genes in bacterioplankton during marine algal blooms.

Microbiological research, 286:127785 pii:S0944-5013(24)00186-1 [Epub ahead of print].

Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.

RevDate: 2024-06-08

Olanipon D, Boeraeve M, H Jacquemyn (2024)

Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees.

Mycorrhiza [Epub ahead of print].

Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.

RevDate: 2024-06-09

Xiao Z, Meng H, Li S, et al (2024)

Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems.

Environmental research, 257:119326 pii:S0013-9351(24)01231-3 [Epub ahead of print].

With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.

RevDate: 2024-06-09

Kewessa G, Dejene T, P Martín-Pinto (2024)

Untangling the effect that replacing Ethiopia's natural forests with exotic tree plantations has on arbuscular mycorrhizal fungi.

The Science of the total environment, 942:173718 pii:S0048-9697(24)03865-8 [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.

RevDate: 2024-06-07

Shi Y, Ma L, Zhou M, et al (2024)

Copper stress shapes the dynamic behavior of amoebae and their associated bacteria.

The ISME journal pii:7689628 [Epub ahead of print].

Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoebae-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.

RevDate: 2024-06-07
CmpDate: 2024-06-07

Cheng T, Zhang T, Zhang P, et al (2024)

The complex world of kefir: Structural insights and symbiotic relationships.

Comprehensive reviews in food science and food safety, 23(4):e13364.

Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.

RevDate: 2024-06-07

González Ortega-Villaizán A, King E, Patel MK, et al (2024)

The endophytic fungus Serendipita indica affects auxin distribution in Arabidopsis thaliana roots through alteration of auxin transport and conjugation to promote plant growth.

Plant, cell & environment [Epub ahead of print].

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

RevDate: 2024-06-09
CmpDate: 2024-06-07

Dove R, Wolfe ER, Stewart NU, et al (2024)

Root nodules of red alder (Alnus rubra) and sitka alder (Alnus viridis ssp. sinuata) are inhabited by taxonomically diverse cultivable microbial endophytes.

MicrobiologyOpen, 13(3):e1422.

The root nodules of actinorhizal plants are home to nitrogen-fixing bacterial symbionts, known as Frankia, along with a small percentage of other microorganisms. These include fungal endophytes and non-Frankia bacteria. The taxonomic and functional diversity of the microbial consortia within these root nodules is not well understood. In this study, we surveyed and analyzed the cultivable, non-Frankia fungal and bacterial endophytes of root nodules from red and Sitka alder trees that grow together. We examined their taxonomic diversity, co-occurrence, differences between hosts, and potential functional roles. For the first time, we are reporting numerous fungal endophytes of alder root nodules. These include Sporothrix guttuliformis, Fontanospora sp., Cadophora melinii, an unclassified Cadophora, Ilyonectria destructans, an unclassified Gibberella, Nectria ramulariae, an unclassified Trichoderma, Mycosphaerella tassiana, an unclassified Talaromyces, Coniochaeta sp., and Sistotrema brinkmanii. We are also reporting several bacterial genera for the first time: Collimonas, Psychrobacillus, and Phyllobacterium. Additionally, we are reporting the genus Serratia for the second time, with the first report having been recently published in 2023. Pseudomonas was the most frequently isolated bacterial genus and was found to co-inhabit individual nodules with both fungi and bacteria. We found that the communities of fungal endophytes differed by host species, while the communities of bacterial endophytes did not.

RevDate: 2024-06-07

Dar MA, Xie R, Jing L, et al (2024)

Elucidating the structure, and composition of bacterial symbionts in the gut regions of wood-feeding termite, Coptotermes formosanus and their functional profile towards lignocellulolytic systems.

Frontiers in microbiology, 15:1395568.

The wood-feeding termite, Coptotermes formosanus, presents an efficient lignocellulolytic system, offering a distinctive model for the exploration of host-microbial symbiosis towards lignocellulose degradation. Despite decades of investigation, understanding the diversity, community structure, and functional profiles of bacterial symbionts within specific gut regions, particularly the foregut and midgut of C. formosanus, remains largely elusive. In light of this knowledge gap, our efforts focused on elucidating the diversity, community composition and functions of symbiotic bacteria inhabiting the foregut, midgut, and hindgut of C. formosanus via metagenomics. The termite harbored a diverse community of bacterial symbionts encompassing 352 genera and 26 known phyla, exhibiting an uneven distribution across gut regions. Notably, the hindgut displayed a higher relative abundance of phyla such as Bacteroidetes (56.9%) and Spirochetes (23.3%). In contrast, the foregut and midgut were predominantly occupied by Proteobacteria (28.9%) and Firmicutes (21.2%) after Bacteroidetes. The foregut harbored unique phyla like Candidate phylum_TM6 and Armatimonadetes. At the family level, Porphyromonadaceae (28.1, 40.6, and 53.5% abundance in foregut, midgut, and hindgut, respectively) and Spirochaetaceae (foregut = 9%, midgut = 16%, hindgut = 21.6%) emerged as dominant families in the termite's gut regions. Enriched operational taxonomic units (OTUs) were most abundant in the foregut (28), followed by the hindgut (14), while the midgut exhibited enrichment of only two OTUs. Furthermore, the functional analyses revealed distinct influences of bacterial symbionts on various metabolic pathways, particularly carbohydrate and energy metabolisms of the host. Overall, these results underscore significant variations in the structure of the bacterial community among different gut regions of C. formosanus, suggesting unique functional roles of specific bacteria, thereby inspiring further investigations to resolve the crosstalk between host and microbiomes in individual gut-regions of the termite.

RevDate: 2024-06-07

Chen T, Wang T, Du M, et al (2024)

Discovery of Epichloë as novel endophytes of Psathyrostachys lanuginosa in China and their alkaloid profiling.

Frontiers in microbiology, 15:1383923.

The Epichloë genus represents a significant group of above-ground endophytes extensively researched for their potential applications in agriculture and ecology. Additionally, Epichloë species synthesize bioactive alkaloids, which generally cause health problems in livestock and have detrimental effects on the performance of insect herbivores. Psathyrostachys lanuginosa serves as a valuable forage grass for livestock owing to its high nutritional value and resilience in adverse environmental conditions. Nevertheless, to date, no reports have documented Epichloë as endophytes of P. lanuginosa. In this study, four strains (PF5, PF9, QG2, and QG4) were isolated and identified through morphological, molecular, and phylogenetic analyses as endophytes of P. lanuginosa. Morphological analysis indicated colony characteristics and conidia features consistent with symbiotic Epichloë, with no significant differences observed in growth rates or conidia dimensions among the four strains. Phylogenetic analysis confirmed all strains as E. bromicola. Additionally, alkaloid biosynthetic genes were detected, revealing differences in the potential synthesis of peramine and indole diterpenoid alkaloids among strains from different geographic origins. However, all four E. bromicola strains exhibited similar potential for synthesizing ergot alkaloids, but not loline alkaloids. Overall, this study identified P. lanuginosa as a novel host for E. bromicola and provided insights into the alkaloid profiles of these strains, laying a solid foundation for the scientific and rational utilization of Epichloë resources.

RevDate: 2024-06-09

Pfail J, Drobner J, Doppalapudi K, et al (2024)

The Role of Tumor and Host Microbiome on Immunotherapy Response in Urologic Cancers.

Journal of cancer immunology, 6(1):1-13.

INTRODUCTION & OBJECTIVE: The role of the microbiome in the development and treatment of genitourinary malignancies is just starting to be appreciated. Accumulating evidence suggests that the microbiome can modulate immunotherapy through signaling in the highly dynamic tumor microenvironment. Nevertheless, much is still unknown about the immuno-oncology-microbiome axis, especially in urologic oncology. The objective of this review is to synthesize our current understanding of the microbiome's role in modulating and predicting immunotherapy response to genitourinary malignancies.

METHODS: A literature search for peer-reviewed publications about the microbiome and immunotherapy response in bladder, kidney, and prostate cancer was conducted. All research available in PubMed, Google Scholar, clinicaltrials.gov, and bioRxiv up to September 2023 was analyzed.

RESULTS: Significant differences in urinary microbiota composition have been found in patients with genitourinary cancers compared to healthy controls. Lactic acid-producing bacteria, such as Bifidobacterium and Lactobacillus genera, may have value in augmenting BCG responsiveness to bladder cancer. BCG may also be a dynamic regulator of PD-L1. Thus, the combination of BCG and immune checkpoint inhibitors may be an effective strategy for bladder cancer management. In advanced renal cell carcinoma, studies show that recent antibiotic administration negatively impacts survival outcomes in patients undergoing immunotherapy, while administration of CBM588, a live bacterial product, is associated with improved progression-free survival. Specific bacterial taxa, such as Streptococcus salivarius, have been linked with response to pembrolizumab in metastatic castrate-resistant prostate cancer. Fecal microbiota transplant has been shown to overcome resistance and reduce toxicity to immunotherapy; it is currently being investigated for both kidney and prostate cancers.

CONCLUSIONS: Although the exact mechanism is unclear, several studies identify a symbiotic relationship between microbiota-centered interventions and immunotherapy efficacy. It is possible to improve immunotherapy responsiveness in genitourinary malignancies using the microbiome, but further research with more standardized methodology is warranted.

RevDate: 2024-06-07

Liu H, Zhang M, Xu L, et al (2024)

Unlocking fungal quorum sensing: Oxylipins and yeast interactions enhance secondary metabolism in monascus.

Heliyon, 10(11):e31619.

Exploring the symbiotic potential between fungal and yeast species, this study investigates the co-cultivation dynamics of Monascus, a prolific producer of pharmacologically relevant secondary metabolites, and Wickerhamomyce anomalous. The collaborative interaction between these microorganisms catalyzed a substantial elevation in the biosynthesis of secondary metabolites, prominently Monacolin K and natural pigments. Central to our discoveries was the identification and enhanced production of oxylipins (13S-hydroxyoctadecadienoic acid,13S-HODE), putative quorum-sensing molecules, within the co-culture environment. Augmentation with exogenous oxylipins not only boosted Monacolin K production by over half but also mirrored morphological adaptations in Monascus, affecting both spores and mycelial structures. This augmentation was paralleled by a significant upregulation in the transcriptional activity of genes integral to the Monacolin K biosynthetic pathway, as well as genes implicated in pigment and spore formation. Through elucidating the interconnected roles of quorum sensing, G-protein-coupled receptors, and the G-protein-mediate signaling pathway, this study provides a comprehensive view of the molecular underpinnings facilitating these metabolic enhancements. Collectively, our findings illuminate the profound influence of Wickerhamomyces anomalous co-culture on Monascus purpureus, advocating for oxylipins as a pivotal quorum-sensing mechanism driving the observed symbiotic benefits.

RevDate: 2024-06-07

Cervantes-Pérez SA, Zogli P, Amini S, et al (2024)

Single-cell transcriptome atlases of soybean root and mature nodule reveal new regulatory programs controlling the nodulation process.

Plant communications pii:S2590-3462(24)00292-X [Epub ahead of print].

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with the N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where the atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of the cells of the mature soybean nodule have not yet been characterized. Applying single nucleus RNA-seq and Molecular Cartography[TM] technologies, we precisely characterized the transcriptomic signature of the soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule including those actively involved in nitrogen fixation, and those engaged in senescence. The mining of the single cell-resolution nodule transcriptome atlas and associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes controlling the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein controlling rhizobia infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.

RevDate: 2024-06-08
CmpDate: 2024-06-07

Zhang K, He C, Wang L, et al (2024)

Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization.

Microbiome, 12(1):104.

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database.

RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation.

CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.

RevDate: 2024-06-06
CmpDate: 2024-06-06

Patra D, Pal KK, S Mandal (2024)

Inter-species interaction of bradyrhizobia affects their colonization and plant growth promotion in Arachis hypogaea.

World journal of microbiology & biotechnology, 40(8):234.

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.

RevDate: 2024-06-06
CmpDate: 2024-06-06

Wang Y, Liao R, Pan H, et al (2024)

Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere.

Environmental microbiology reports, 16(3):e13286.

Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.

RevDate: 2024-06-06
CmpDate: 2024-06-06

Wang Z, Lajoie G, Jiang Y, et al (2024)

Host specificity of plant-associated bacteria is negatively associated with genome size and host abundance along a latitudinal gradient.

Ecology letters, 27(6):e14447.

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.

RevDate: 2024-06-06

Sosa-Jiménez VM, Kvist S, Manzano-Marín A, et al (2024)

Discovery of a novel symbiotic lineage associated with a hematophagous leech from the genus Haementeria.

Microbiology spectrum [Epub ahead of print].

UNLABELLED: Similarly to other strict blood feeders, leeches from the Haementeria genus (Hirudinida: Glossiphoniidae) have established a symbiotic association with bacteria harbored intracellularly in esophageal bacteriomes. Previous genome sequence analyses of these endosymbionts revealed co-divergence with their hosts, a strong genome reduction, and a simplified metabolism largely dedicated to the production of B vitamins, which are nutrients lacking from a blood diet. 'Candidatus Providencia siddallii' has been identified as the obligate nutritional endosymbiont of a monophyletic clade of Mexican and South American Haementeria spp. However, the Haementeria genus includes a sister clade of congeners from Central and South America, where the presence or absence of the aforementioned symbiont taxon remains unknown. In this work, we report on a novel bacterial endosymbiont found in a representative from this Haementeria clade. We found that this symbiont lineage has evolved from within the Pluralibacter genus, known mainly from clinical but also environmental strains. Similarly to Ca. Providencia siddallii, the Haementeria-associated Pluralibacter symbiont displays clear signs of genome reduction, accompanied by an A+T-biased sequence composition. Genomic analysis of its metabolic potential revealed a retention of pathways related to B vitamin biosynthesis, supporting its role as a nutritional endosymbiont. Finally, comparative genomics of both Haementeria symbiont lineages suggests that an ancient Providencia symbiont was likely replaced by the novel Pluralibacter one, thus constituting the first reported case of nutritional symbiont replacement in a leech without morphological changes in the bacteriome.

IMPORTANCE: Obligate symbiotic associations with a nutritional base have likely evolved more than once in strict blood-feeding leeches. Unlike those symbioses found in hematophagous arthropods, the nature, identity, and evolutionary history of these remains poorly studied. In this work, we further explored obligate nutritional associations between Haementeria leeches and their microbial symbionts, which led to the unexpected discovery of a novel symbiosis with a member of the Pluralibacter genus. When compared to Providencia siddallii, an obligate nutritional symbiont of other Haementeria leeches, this novel bacterial symbiont shows convergent retention of the metabolic pathways involved in B vitamin biosynthesis. Moreover, the genomic characteristics of this Pluralibacter symbiont suggest a more recent association than that of Pr. siddallii and Haementeria. We conclude that the once-thought stable associations between blood-feeding Glossiphoniidae and their symbionts (i.e., one bacteriome structure, one symbiont lineage) can break down, mirroring symbiont turnover observed in various arthropod lineages.

RevDate: 2024-06-06

Klepa MS, diCenzo GC, M Hungria (2024)

Comparative genomic analysis of Bradyrhizobium strains with natural variability in the efficiency of nitrogen fixation, competitiveness, and adaptation to stressful edaphoclimatic conditions.

Microbiology spectrum [Epub ahead of print].

Bradyrhizobium is known for fixing atmospheric nitrogen in symbiosis with agronomically important crops. This study focused on two groups of strains, each containing eight natural variants of the parental strains, Bradyrhizobium japonicum SEMIA 586 (=CNPSo 17) or Bradyrhizobium diazoefficiens SEMIA 566 (=CNPSo 10). CNPSo 17 and CNPSo 10 were used as commercial inoculants for soybean crops in Brazil at the beginning of the crop expansion in the southern region in the 1960s-1970s. Variants derived from these parental strains were obtained in the late 1980s through a strain selection program aimed at identifying elite strains adapted to a new cropping frontier in the central-western Cerrado region, with a higher capacity of biological nitrogen fixation (BNF) and competitiveness. Here, we aimed to detect genetic variations possibly related to BNF, competitiveness for nodule occupancy, and adaptation to the stressful conditions of the Brazilian Cerrado soils. High-quality genome assemblies were produced for all strains. The core genome phylogeny revealed that strains of each group are closely related, as confirmed by high average nucleotide identity values. However, variants accumulated divergences resulting from horizontal gene transfer, genomic rearrangements, and nucleotide polymorphisms. The B. japonicum group presented a larger pangenome and a higher number of nucleotide polymorphisms than the B. diazoefficiens group, possibly due to its longer adaptation time to the Cerrado soil. Interestingly, five strains of the B. japonicum group carry two plasmids. The genetic variability found in both groups is discussed considering the observed differences in their BNF capacity, competitiveness for nodule occupancy, and environmental adaptation.IMPORTANCEToday, Brazil is a global leader in the study and use of biological nitrogen fixation with soybean crops. As Brazilian soils are naturally void of soybean-compatible bradyrhizobia, strain selection programs were established, starting with foreign isolates. Selection searched for adaptation to the local edaphoclimatic conditions, higher efficiency of nitrogen fixation, and strong competitiveness for nodule occupancy. We analyzed the genomes of two parental strains of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens and eight variant strains derived from each parental strain. We detected two plasmids in five strains and several genetic differences that might be related to adaptation to the stressful conditions of the soils of the Brazilian Cerrado biome. We also detected genetic variations in specific regions that may impact symbiotic nitrogen fixation. Our analysis contributes to new insights into the evolution of Bradyrhizobium, and some of the identified differences may be applied as genetic markers to assist strain selection programs.

RevDate: 2024-06-07

Ali MA, Ahmed T, Ibrahim E, et al (2024)

A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities.

Heliyon, 10(11):e31573.

Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.

RevDate: 2024-06-05

Deng S, Pan L, Ke T, et al (2024)

Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress.

Mycorrhiza [Epub ahead of print].

Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.

RevDate: 2024-06-05

Lockwood MB, Sung C, Alvernaz SA, et al (2024)

The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities.

Biological research for nursing [Epub ahead of print].

Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.

RevDate: 2024-06-07
CmpDate: 2024-06-04

Nakayama T, Nomura M, Yabuki A, et al (2024)

Convergent reductive evolution of cyanobacteria in symbiosis with Dinophysiales dinoflagellates.

Scientific reports, 14(1):12774.

The diversity of marine cyanobacteria has been extensively studied due to their vital roles in ocean primary production. However, little is understood about the diversity of cyanobacterial species involved in symbiotic relationships. In this study, we successfully sequenced the complete genome of a cyanobacterium in symbiosis with Citharistes regius, a dinoflagellate species thriving in the open ocean. A phylogenomic analysis revealed that the cyanobacterium (CregCyn) belongs to the marine picocyanobacterial lineage, akin to another cyanobacterial symbiont (OmCyn) of a different dinoflagellate closely related to Citharistes. Nevertheless, these two symbionts are representing distinct lineages, suggesting independent origins of their symbiotic lifestyles. Despite the distinct origins, the genome analyses of CregCyn revealed shared characteristics with OmCyn, including an obligate symbiotic relationship with the host dinoflagellates and a degree of genome reduction. In contrast, a detailed analysis of genome subregions unveiled that the CregCyn genome carries genomic islands that are not found in the OmCyn genome. The presence of the genomic islands implies that exogenous genes have been integrated into the CregCyn genome at some point in its evolution. This study contributes to our understanding of the complex history of the symbiosis between dinoflagellates and cyanobacteria, as well as the genomic diversity of marine picocyanobacteria.

RevDate: 2024-06-04
CmpDate: 2024-06-04

Yashima R, Terata Y, Sakamoto K, et al (2024)

Paraburkholderia largidicola sp. nov., a gut symbiont of the bordered plant bug Physopelta gutta.

International journal of systematic and evolutionary microbiology, 74(6):.

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated strains F2[T] and PGU16, were isolated from the midgut crypts of the bordered plant bug Physopelta gutta, collected in Okinawa prefecture, Japan. Although these strains were derived from different host individuals collected at different times, their 16S rRNA gene sequences were identical and showed the highest similarity to Paraburkholderia caribensis MWAP64[T] (99.3 %). The genome of strain F2[T] consisted of two chromosomes and two plasmids, and its size and G+C content were 9.28 Mb and 62.4 mol% respectively; on the other hand, that of strain PGU16 consisted of two chromosomes and three plasmids, and its size and G+C content were 9.47 Mb and 62.4 mol%, respectively. Phylogenetic analyses revealed that these two strains are members of the genus Paraburkholderia. The digital DNA-DNA hybridization value between these two strains was 92.4 %; on the other hand, the values between strain F2[T] and P. caribensis MWAP64[T] or phylogenetically closely related Paraburkholderia species were 44.3 % or below 49.1 %. The predominant fatty acids of both strains were C16 : 0, C17 : 0 cyclo, summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), and C19 : 0 cyclo ω8c, and their respiratory quinone was ubiquinone 8. Based on the above genotypic and phenotypic characteristics, strains F2[T] and PGU16 represent a novel species of the genus Paraburkholderia for which the name Paraburkholderia largidicola sp. nov. is proposed. The type strain is F2[T] (=NBRC 115765[T]=LMG 32765[T]).

RevDate: 2024-06-04

Du Z, Nakagawa A, Fang J, et al (2024)

Cleaner anaerobic fermentation and greenhouse gas reduction of crop straw.

Microbiology spectrum [Epub ahead of print].

Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and Acremonim cellulolyticus (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals. During ensiling, large amounts of GHG such as carbon dioxide are produced due to plant respiration, enzymatic hydrolysis reactions, and proliferation of aerobic bacteria, resulting in energy and DM loss. Addition of FG1, TH14, and AC alone improved anaerobic fermentation by decreasing pH and ammonia nitrogen content (P < 0.05) and increased lactic acid content (P < 0.05) when compared to the control, and GM showed the same additive effect as LAB inoculants. Microbial additives formed a co-occurrence microbial network system dominated by LAB, enhanced the biosynthesis of secondary metabolites, diversified the microbial metabolic environment and carbohydrate metabolic pathways, weakened the amino acid metabolic pathways, and made the anaerobic fermentation cleaner. This study is of great significance for the effective utilization of crop straw resources, the promotion of sustainable livestock production, and the reduction of GHG emissions.IMPORTANCETo effectively utilize crop by-product resources, we applied microbial additives to silage fermentation of fresh rice straw. Fresh rice straw is extremely rich in microbial diversity, which was significantly reduced after silage fermentation, and its nutrients were well preserved. Silage fermentation was improved by microbial additives, where the combination of cellulase and lactic acid bacteria acted as enzyme-bacteria synergists to promote lactic acid fermentation and inhibit the proliferation of harmful bacteria, such as protein degradation and gas production, thereby reducing GHG emissions and DM losses. The microbial additives accelerated the formation of a symbiotic microbial network system dominated by lactic acid bacteria, which regulated silage fermentation and improved microbial metabolic pathways for carbohydrates and amino acids, as well as biosynthesis of secondary metabolites.

RevDate: 2024-06-04

Cantin LJ, Gregory V, Blum LN, et al (2024)

Dual RNA-seq in filarial nematodes and Wolbachia endosymbionts using RNase H based ribosomal RNA depletion.

Frontiers in microbiology, 15:1418032.

Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.

RevDate: 2024-06-03

Satiro J, Gomes A, Florencio L, et al (2024)

Effect of microalgae and bacteria inoculation on the startup of bioreactors for paper pulp wastewater and biofuel production.

Journal of environmental management, 362:121305 pii:S0301-4797(24)01291-X [Epub ahead of print].

The use of microalgae and bacteria as a strategy for the startup of bioreactors for the treatment of industrial wastewater can be a sustainable and economically viable alternative. This technology model provides satisfactory results in the nitrification and denitrification process for nitrogen removal, organic matter removal, biomass growth, sedimentation, and byproducts recovery for added-value product production. The objective of this work was to evaluate the performance of microalgae and bacteria in their symbiotic process when used in the treatment of paper pulp industry wastewater. The experiment, lasting fourteen days, utilized four bioreactors with varying concentrations in mgVSS/L of microalgae to bacteria ratio (R1-100:100, R2-100:300, R3-100:500, R4-300:100) in the startup process. Regarding the sludge volumetric index (SVI), the results show that the R1 and R2 reactors developed SVI30/SVI10 biomass in the range of 85.57 ± 7.33% and 84.72 ± 8.19%, respectively. The lipid content in the biomass of reactors R1, R2, R3 e R4 was 13%, 7%, 19%, and 22%, respectively. This high oil content at the end of the batch, may be related to the nutritional stress that the species underwent during this feeding regime. In terms of chlorophyll, the bioreactor with an initial inoculation of 100:100 showed better symbiotic growth of microalgae and bacteria, allowing exponential growth of microalgae. The total chlorophyll value for this bioreactor was 801.46 ± 196.96 μg/L. Biological removal of nitrogen from wastewater from the paper pulp industry is a challenge due to the characteristics of the effluent, but the four reactors operated in a single batch obtained good nitrogen removal. Ammonia nitrogen removal performances were 91.55 ± 9.99%, 72.13 ± 19.18%, 64.04 ± 21.34%, and 86.15 ± 30.10% in R1, R2, R3, and R4, respectively.

RevDate: 2024-06-03

Chang X, Yang Y, Cheng X, et al (2024)

Multiphase Symbiotic Engineered Elastic Ceramic-Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments.

Advanced materials (Deerfield Beach, Fla.) [Epub ahead of print].

Elastic aerogels could dissipate aerodynamic forces and thermal stresses by reversible slipping or deforming to avoid sudden failure caused by stress concentration, making them the most promising candidates for thermal protection in high-end aerospace applications. However, existing elastic aerogels face difficulties achieving reliable protection above 1500 °C in aerobic environments due to their poor thermomechanical stability and significantly increased thermal conductivity at elevated temperatures. Here, we propose a multiphase sequence and multiscale structural engineering strategy to synthesize mullite-carbon hybrid nanofibrous aerogels. The heterogeneous symbiotic effect between components simultaneously inhibits ceramic crystalline coarsening and carbon thermal etching, thus ensuring the thermal stability of the nanofiber building blocks. Efficient load transfer and high interfacial thermal resistance at crystalline-amorphous phase boundaries on the microscopic scale, coupled with mesoscale lamellar cellular and locally closed-pore structures, achieve rapid stress dissipation and thermal energy attenuation in aerogels. This robust thermal protection material system is compatible with ultralight density (30 mg cm[-3]), reversible compression strain of 60%, extraordinary thermomechanical stability (up to 1600 °C in oxidative environments), and ultralow thermal conductivity (50.58 mW m[-1] K[-1] at 300 °C), offering new options and possibilities to cope with the harsh operating environments faced by future space exploration. This article is protected by copyright. All rights reserved.

RevDate: 2024-06-04
CmpDate: 2024-06-03

Cunning R, Lenz EA, PJ Edmunds (2024)

Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs.

PeerJ, 12:e17358.

Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.

RevDate: 2024-06-04

Kim KH, Kim JM, Baek JH, et al (2024)

Metabolic relationships between marine red algae and algae-associated bacteria.

Marine life science & technology, 6(2):298-314.

UNLABELLED: Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their successful survival in the ocean, but little is known about their metabolic relationships. Here, bacterial communities in the algal sphere (AS) and bulk solution (BS) of nine marine red algal cultures were analyzed, and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS. The metabolic features of Roseibium RMAR6-6 (isolated and genome-sequenced), Phycisphaera MAG 12 (obtained by metagenomic sequencing), and a marine red alga, Porphyridium purpureum CCMP1328 (from GenBank), were analyzed bioinformatically. RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins (B1, B2, B5, B6, B9, and B12), bacterioferritin, dimethylsulfoniopropionate (DMSP), and phenylacetate that may enhance algal growth, whereas MAG 12 may have a limited metabolic capability, not producing vitamins B9 and B12, DMSP, phenylacetate, and siderophores, but with the ability to produce bacitracin, possibly modulating algal microbiome. P. purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12, DMSP, phenylacetate, and siderophore. It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P. purpureum, and DMSP reduced the oxidative stress of P. purpureum. The metabolic interactions between strain RMAR6-6 and P. purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture. Taken together, potential metabolic relationships between Roseibium and P. purpureum were proposed. This study provides a better understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42995-024-00227-z.

RevDate: 2024-06-02

Wang R, Dijkstra FA, Han X, et al (2024)

Root nitrogen reallocation: what makes it matter?.

Trends in plant science pii:S1360-1385(24)00114-6 [Epub ahead of print].

Root nitrogen (N) reallocation involves remobilization of root N-storage pools to support shoot growth. Representing a critical yet underexplored facet of plant function, we developed innovative frameworks to elucidate its connections with key ecosystem components. First, root N reallocation increases with plant species richness and N-acquisition strategies, driven by competitive stimulation of plant N demand and synergies in N uptake. Second, competitive root traits and mycorrhizal symbioses, which enhance N foraging and uptake, exhibit trade-offs with root N reallocation. Furthermore, root N reallocation is attenuated by N-supply attributes such as increasing litter quality, soil fungi-to-bacteria ratios, and microbial recruitment in the hyphosphere/rhizosphere. These frameworks provide new insights and research avenues for understanding the ecological roles of root N reallocation.

RevDate: 2024-06-02

Shekarabi A, Qureishy I, Puglisi CH, et al (2024)

Host-microbe interactions: communication in the microbiota-gut-brain axis.

Current opinion in microbiology, 80:102494 pii:S1369-5274(24)00070-5 [Epub ahead of print].

Animals harbor a diverse array of symbiotic micro-organisms that coexist in communities across different body sites. These microbes maintain host homeostasis and respond to environmental insults to impact host physiological processes. Trillions of indigenous microbes reside in the gastrointestinal tract and engage with the host central nervous system (microbiota-gut-brain axis) by modulating immune responses, interacting with gut intrinsic and extrinsic nervous system, and regulating neuromodulators and biochemicals. These gut microbiota to brain signaling pathways are constantly informed by each other and are hypothesized to mediate brain health across the lifespan. In this review, we will examine the crosstalk of gut microbiota to brain communications in neurological pathologies, with an emphasis on microbial metabolites and neuromodulators, and provide a discussion of recent advances that help elucidate the microbiota as a therapeutic target for treating brain and behavioral disorders.

RevDate: 2024-06-02

Zeng Y, DH Hembry (2024)

Coevolution-induced selection for and against phenotypic novelty shapes species richness in clade co-diversification.

Journal of evolutionary biology pii:7686463 [Epub ahead of print].

Coevolution can occur because of species interactions. However, it remains unclear how coevolutionary processes translate into the accumulation of species richness over macroevolutionary timescales. Assuming speciation occurs as a result of genetic differentiation across space due to dispersal limitation, we examine the effects of coevolution-induced phenotypic selection on species diversification. Based on the idea that dispersers often carry novel phenotypes, we propose and test two hypotheses. (1) Stability hypothesis: selection against phenotypic novelty enhances species diversification by strengthening dispersal limitation. (2) Novelty hypothesis: selection for phenotypic novelty impedes species diversification by weakening dispersal limitation. We simulate clade co-diversification using an individual-based model, considering scenarios where phenotypic selection is shaped by neutral dynamics, mutualistic coevolution, or antagonistic coevolution, where coevolution operates through trait matching or trait difference, and where the strength of coevolutionary selection is symmetrical or asymmetrical. Our key assumption that interactions occur between an independent party (whose individuals can establish or persist independently, e.g. hosts) and a dependent party (whose individuals cannot establish or persist independently, e.g. parasites or obligate mutualists) yields two contrasting results. The stability hypothesis is supported in the dependent clade but not in the independent clade. Conversely, the novelty hypothesis is supported in the independent clade but not in the dependent clade. These results are partially corroborated by empirical dispersal data, suggesting that these mechanisms might potentially explain the diversification of some of the most species-rich clades in the Tree of Life.

RevDate: 2024-06-01
CmpDate: 2024-06-01

Wang Y, Gao M, Zhu S, et al (2024)

Glycerol-driven adaptive evolution for the production of low-molecular-weight Welan gum: Characterization and activity evaluation.

Carbohydrate polymers, 339:122292.

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.

RevDate: 2024-06-04

Xu Y, Teng Y, Wang X, et al (2024)

Biohydrogen utilization in legume-rhizobium symbiosis reveals a novel mechanism of accelerated tetrachlorobiphenyl transformation.

Bioresource technology, 404:130918 pii:S0960-8524(24)00621-7 [Epub ahead of print].

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup[+]) strain (wild type) and a Hup[-] strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup[-] nodules, Hup[+] nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.

RevDate: 2024-06-01

Li H, Ou Y, Zhang J, et al (2024)

Dynamic modulation of nodulation factor receptor levels by phosphorylation-mediated functional switch of a RING-type E3 ligase during legume nodulation.

Molecular plant pii:S1674-2052(24)00177-1 [Epub ahead of print].

A precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands, however, such mechanisms regulating nodulation factor (NF) receptors (NFR1/NFR5) in perceiving NF to establish symbiosis remain unclear. This study unveils the pivotal role of the NFR-Interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. NIRE1 demonstrates a dual function in this regulatory process. NIRE1 associates with both NFR1/NFR5, facilitating their degradations through K48-linked polyubiquitination before rhizobial inoculation. Following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1. This switch enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1[Y109F] leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, the expression of phospho-mimic NIRE1[Y109E] results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings provide the inaugural evidence of a single E3 ligase undergoing a phosphorylation-dependent functional switch, dynamically and precisely regulating NF receptor protein levels.

RevDate: 2024-05-31

Corrêa PS, Fernandes MA, Jimenez CR, et al (2024)

Interaction between methanotrophy and gastrointestinal nematodes infection on the rumen microbiome of lambs.

FEMS microbiology ecology pii:7686115 [Epub ahead of print].

Complex crosstalk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and Real-time quantitative PCR (qPCR). The rumen content was collected from 6 Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's post-infection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.

RevDate: 2024-05-31

Swisa A, Kieckhaefer J, Daniel SG, et al (2024)

The evolutionarily ancient FOXA transcription factors shape the murine gut microbiome via control of epithelial glycosylation.

Developmental cell pii:S1534-5807(24)00323-X [Epub ahead of print].

Evolutionary adaptation of multicellular organisms to a closed gut created an internal microbiome differing from that of the environment. Although the composition of the gut microbiome is impacted by diet and disease state, we hypothesized that vertebrates promote colonization by commensal bacteria through shaping of the apical surface of the intestinal epithelium. Here, we determine that the evolutionarily ancient FOXA transcription factors control the composition of the gut microbiome by establishing favorable glycosylation on the colonic epithelial surface. FOXA proteins bind to regulatory elements of a network of glycosylation enzymes, which become deregulated when Foxa1 and Foxa2 are deleted from the intestinal epithelium. As a direct consequence, microbial composition shifts dramatically, and spontaneous inflammatory bowel disease ensues. Microbiome dysbiosis was quickly reversed upon fecal transplant into wild-type mice, establishing a dominant role for the host epithelium, in part mediated by FOXA factors, in controlling symbiosis in the vertebrate holobiont.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In this comprehensive history of symbiosis theory--the first to be written--Jan Sapp masterfully traces its development from modest beginnings in the late nineteenth century to its current status as one of the key conceptual frameworks for the life sciences. The symbiotic perspective on evolution, which argues that "higher species" have evolved from a merger of two or more different kinds of organisms living together, is now clearly established with definitive molecular evidence demonstrating that mitochondria and chloroplasts have evolved from symbiotic bacteria. In telling the exciting story of an evolutionary biology tradition that has effectively challenged many key tenets of classical neo-Darwinism, Sapp sheds light on the phenomena, movements, doctrines, and controversies that have shaped attitudes about the scope and significance of symbiosis. Engaging and insightful, Evolution by Association will be avidly read by students and researchers across the life sciences.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )