About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

16 Oct 2018 at 01:42
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 16 Oct 2018 at 01:42 Created: 


Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: symbiosis NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-10-15

Dos Santos Lima Fagotti D, Abrantes JLF, Cerezini P, et al (2018)

Quorum sensing communication: Bradyrhizobium-Azospirillum interaction via N-acyl-homoserine lactones in the promotion of soybean symbiosis.

Journal of basic microbiology [Epub ahead of print].

Quorum-sensing (QS) mechanisms are important in intra- and inter-specific communication among bacteria. We investigated QS mechanisms in Bradyrhizobium japonicum strain CPAC 15 and Azospirillum brasilense strains Ab-V5 and Ab-V6, used in commercial co-inoculants for the soybean crop in Brazil. A transconjugant of CPAC 15-QS with partial inactivation of N-acyl-homoserine lactones (AHLs) was obtained and several parameters were evaluated; in vitro, CPAC 15 and the transconjugant differed in growth, but not in biofilm formation, and no differences were observed in the symbiotic performance in vivo. The genome of CPAC 15 carries functional luxI and luxR genes and low amounts of three AHL molecules were detected: 3-OH-C12-AHL, 3-OH-C14-AHL, and 3-oxo-C14-AHL. Multiple copies of luxR-like genes, but not of luxI are present in the genomes of Ab-V5 and Ab-V6, and differences in gene expression were observed when the strains were co-cultured with B. japonicum; we may infer that the luxR-genes of A. brasilense may perceive the AHL molecules of B. japonicum. Soybean symbiotic performance was improved especially by co-inoculation with Ab-V6, which, contrarily to Ab-V5, did not respond to the AHLs of CPAC 15. We concluded that A. brasilense Ab-V5, but not Ab-V6, responded to the QS signals of CPAC 15, and that the synergistic interaction may be credited, at least partially, to the QS interaction. In addition, we confirmed inter- and intra-species QS communication between B. japonicum and A. brasilense and, for Azospirillum, at the strain level, impacting several steps of the symbiosis, from cell growth to plant nodulation and growth.

RevDate: 2018-10-15

Kremer N, Koch EJ, El Filali A, et al (2018)

Persistent Interactions with Bacterial Symbionts Direct Mature-Host Cell Morphology and Gene Expression in the Squid-Vibrio Symbiosis.

mSystems, 3(5): pii:mSystems00165-18.

In horizontally transmitted symbioses, structural, biochemical, and molecular features both facilitate host colonization by specific symbionts and mediate their persistent carriage. In the association between the squid Euprymna scolopes and its luminous bacterial partner Vibrio fischeri, the symbionts interact with two epithelial fields; they interact (i) transiently with the superficial ciliated field that potentiates colonization and regresses within days of colonization and (ii) persistently with the cells that line the internal crypts, whose ultrastructure changes in response to the symbionts. Development of the association creates conditions that promote the symbiotic partner over the lifetime of the host. To determine whether light organ maturation requires continuous interactions with V. fischeri or only the signaling that occurs during its initiation, we compared 4-week-old squid that were uncolonized with those colonized either persistently by wild-type V. fischeri or transiently by a V. fischeri mutant that triggers early events in morphogenesis but does not persist. Microscopic analysis of the light organs showed that, while morphogenesis of the superficial ciliated field is greatly accelerated by V. fischeri colonization, its eventual outcome is largely independent of colonization state. In contrast, the symbiont-induced changes in crypt cell shape require persistent host-symbiont interaction, reflected in the similarity between uncolonized and transiently colonized animals. Transcriptomic analyses reflected the microscopy results; host gene expression at 4 weeks was due primarily to the persistent interactions of host and symbiont cells. Further, the transcriptomic signature of specific pathways reflected the daily rhythm of symbiont release and regrowth and required the presence of the symbionts. IMPORTANCE A long-term relationship between symbiotic partners is often characterized by development and maturation of host structures that harbor the symbiont cells over the host's lifetime. To understand the mechanisms involved in symbiosis maintenance more fully, we studied the mature bobtail squid, whose light-emitting organ, under experimental conditions, can be transiently or persistently colonized by Vibrio fischeri or remain uncolonized. Superficial anatomical changes in the organ were largely independent of symbiosis. However, both the microanatomy of cells with which symbionts interact and the patterns of gene expression in the mature animal were due principally to the persistent interactions of host and symbiont cells rather than to a response to early colonization events. Further, the characteristic pronounced daily rhythm on the host transcriptome required persistent V. fischeri colonization of the organ. This experimental study provides a window into how persistent symbiotic colonization influences the form and function of host animal tissues.

RevDate: 2018-10-15

Buhian WP, S Bensmihen (2018)

Mini-Review: Nod Factor Regulation of Phytohormone Signaling and Homeostasis During Rhizobia-Legume Symbiosis.

Frontiers in plant science, 9:1247.

The rhizobia-legume symbiosis is a mutualistic association in which bacteria provide plants with nitrogen compounds and the plant provides bacteria with carbon sources. A successful symbiotic interaction relies on a molecular dialog between the plant and the bacteria, and generally involves rhizobial lipo-chitooligosaccharide signals called Nod factors (NFs). In most cases, specific NF perception is required for rhizobia to enter root cells through newly formed intracellular structures called infection threads (ITs). Concomitantly to IT formation in root hairs, root cortical cells start to divide to create a new root organ called the nodule, which will provide the bacteria with a specific micro-environment required for symbiotic nitrogen fixation. During all these steps of plant-bacteria interaction, new plant cellular compartments and developmental programs are activated. This interaction is costly for the plant that tightly controls symbiosis establishment and functioning. Phytohormones are key regulators of cellular and developmental plasticity in plants, and they are influential endogenous signals that rapidly control plant responses. Although early symbiotic responses were known for decades to be linked to phytohormone-related responses, new data reveal the molecular mechanisms involved and links between phytohormones and the control of early symbiotic events. Reciprocally, NF signaling also targets phytohormone signaling pathways. In this review, we will focus on the emerging notion of NF and phytohormone signaling crosstalk, and how it could contribute to the tight control of symbiosis establishment in legume host plants.

RevDate: 2018-10-15

Santos-Garcia D, Juravel K, Freilich S, et al (2018)

To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies.

Frontiers in microbiology, 9:2254.

Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Candidatus Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, many whitefly species harbor additional endosymbionts which may potentially further supplement their host's diet. To test this hypothesis, genomes of several endosymbionts of the whiteflies Aleurodicus dispersus, Aleurodicus floccissimus and Trialeurodes vaporariorum were analyzed. In addition to Portiera, all three species were found to harbor one Arsenophonus and one Wolbachia endosymbiont. A comparative analysis of Arsenophonus genomes revealed that although all three are capable of synthesizing B vitamins and cofactors, such as pyridoxal, riboflavin, or folate, their genomes and phylogenetic relationship vary greatly. Arsenophonus of A. floccissimus and T. vaporariorum belong to the same clade, and display characteristics of facultative endosymbionts, such as large genomes (3 Mb) with thousands of genes and pseudogenes, intermediate GC content, and mobile genetic elements. In contrast, Arsenophonus of A. dispersus belongs to a different lineage and displays the characteristics of a primary endosymbiont-a reduced genome (670 kb) with ~400 genes, 32% GC content, and no mobile genetic elements. However, the presence of 274 pseudogenes suggests that this symbiotic association is more recent than other reported primary endosymbionts of hemipterans. The gene repertoire of Arsenophonus of A. dispersus is completely integrated in the symbiotic consortia, and the biosynthesis of most vitamins occurs in shared pathways with its host. In addition, Wolbachia endosymbionts have also retained the ability to produce riboflavin, flavin adenine dinucleotide, and folate, and may make a nutritional contribution. Taken together, our results show that Arsenophonus hold a pivotal place in whitefly nutrition by their ability to produce B vitamins.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Barbosa DD, Brito SL, Fernandes PD, et al (2018)

Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts?.

World journal of microbiology & biotechnology, 34(7):87 pii:10.1007/s11274-018-2474-z.

Drought is one of the environmental factors that most affects peanut cultivation in semi-arid regions, resulting in economic losses to growers. However, growth promoting bacteria are able to reduce water deficit damage in some plant species. In this context, this study aimed to evaluate the interaction of Bradyrhizobium strains reducing water stress effects on peanut genotypes by antioxidant enzymes activities, leaf gas exchanges and vegetative growth, as well as to determine the taxonomic positioning of strain ESA 123. The 16S rRNA gene of ESA 123 was amplified by PCR and sequenced by dideoxy Sanger sequencing method. An experiment was performed in greenhouse with three peanut genotypes (BRS Havana, CNPA 76 AM and 2012-4), two Bradyrhizobium strains (SEMIA 6144 and ESA 123), a mineral source of N and an absolute control (without N) under two water regimes (with and without irrigation). Seeds of peanut were sown and the plants were grown until 30 days after emergence. On the 20th day, the water deficit plants group had their irrigation suspended for 10 days. At in silico analyzes, ESA 123 presented 98.97% similarity with the type strain of B. kavangense. Leaf gas exchange was affected by water deficit; as well as alteration of antioxidant activities and reduction of vegetative growth variables. However, some plants inoculated with SEMIA 6144 and ESA 123 strains presented lower reductions and increment of some evaluated variables, mainly the ones inoculated with the ESA 123 strain, Bradyrhizobium sp. from the semi-arid region of Northeast Brazil. This data suggests beneficial effects of the peanut-Bradyrhizobium interaction in a water stress condition, specially with the ESA 123 strain.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Gerhart JG, Auguste Dutcher H, Brenner AE, et al (2018)

Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks.

Genome biology and evolution, 10(2):607-615.

Bacterial endosymbionts of ticks are of interest due to their close evolutionary relationships with tick-vectored pathogens. For instance, whereas many ticks contain Francisella-like endosymbionts (FLEs), others transmit the mammalian pathogen Francisella tularensis. We recently sequenced the genome of an FLE present in the hard tick Amblyomma maculatum (FLE-Am) and showed that it likely evolved from a pathogenic ancestor. In order to expand our understanding of FLEs, in the current study we sequenced the genome of an FLE in the soft tick Ornithodoros moubata and compared it to the genomes of FLE-Am, Francisella persica-an FLE in the soft tick Argus (Persicargas) arboreus, Francisella sp. MA067296-a clinical isolate responsible for an opportunistic human infection, and F. tularensis, the established human pathogen. We determined that FLEs and MA067296 belonged to a sister taxon of mammalian pathogens, and contained inactivated versions of virulence genes present in F. tularensis, indicating that the most recent common ancestor shared by FLEs and F. tularensis was a potential mammalian pathogen. Our analyses also revealed that the two soft ticks (O. moubata and A. arboreus) probably acquired their FLEs separately, suggesting that the virulence attenuation observed in FLEs are not the consequence of a single acquisition event followed by speciation, but probably due to independent transitions of pathogenic francisellae into nonpathogenic FLEs within separate tick lineages. Additionally, we show that FLEs encode intact pathways for the production of several B vitamins and cofactors, denoting that they could function as nutrient-provisioning endosymbionts in ticks.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Glaum P, A Kessler (2017)

Functional reduction in pollination through herbivore-induced pollinator limitation and its potential in mutualist communities.

Nature communications, 8(1):2031 pii:10.1038/s41467-017-02072-4.

Plant-pollinator interactions are complex because they are affected by both interactors' phenotypes and external variables. Herbivory is one external variable that can have divergent effects on the individual and the population levels depending on specific phenotypic plastic responses of a plant to herbivory. In the wild tomato, Solanum peruvianum, herbivory limits pollinator visits, which reduces individual plant fitness due to herbivore-induced chemical defenses and signaling on pollinators (herbivore-induced pollinator limitation). We showed these herbivory-induced decreases in pollination to individual plants best match a Type II functional-response curve. We then developed a general model that shows these individual fitness reductions from herbivore-induced changes in plant metabolism can indirectly benefit overall populations and community resilience. These results introduce mechanisms of persistence in antagonized mutualistic communities that were previously found prone to extinction in theoretical models. Results also imply that emergent ecological dynamics of individual fitness reductions may be more complex than previously thought.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Ohno Y, Iguchi A, Shinzato C, et al (2017)

An aposymbiotic primary coral polyp counteracts acidification by active pH regulation.

Scientific reports, 7:40324 pii:srep40324.

Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Lammerts van Bueren A, Mulder M, Leeuwen SV, et al (2017)

Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron.

Scientific reports, 7:40478 pii:srep40478.

Galactooligosaccharides (GOS) are prebiotic carbohydrates that impart changes in the gut bacterial composition of formula-fed infants to more closely resemble that of breast-fed infants. Consuming human milk oligosaccharides (HMOs) provides specific bacterial strains with an advantage for colonizing the infant intestine. These same effects are seen in infants after GOS consumption, however GOS are very complex mixtures and the underlying molecular mechanisms of how GOS mimic HMOs are relatively unknown. Here we studied the effects of GOS utilization on a prominent gut symbiont, Bacteroides thetaiotaomicron, which has been previously shown to consume HMOs via mucin O-glycan degradation pathways. We show that several pathways for targeting O-mucin glycans are activated in B. thetaiotaomicron by GOS, as well as the galactan utilization sytem. Characterization of the endo-galactanase from this system identified activity on various longer GOS substrates while a subset of GOS compounds were identified as potential activators of mucin glycan metabolism in B. thetaiotaomicron. Our results show that GOS functions as an inducer of mucin-glycan pathways while providing a nutrient source in the form of β-(1 → 4)-galactan. These metabolic features of GOS mixtures may serve to explain the beneficial effects that are seen for GOS supplemented infant formula.

RevDate: 2018-10-14

Fabiańska I, Gerlach N, Almario J, et al (2018)

Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana.

The New phytologist [Epub ahead of print].

Plants respond to phosphorus (P)-limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi)-starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil. Using amplicon sequencing of the fungal taxonomical marker ITS2 we examined the changes in root-associated fungal communities in the AM non-host species Arabidopsis thaliana in response to soil amendment with P and to genetic perturbations in the plant PSR. We observed robust shifts in root-associated fungal communities of P-replete plants in comparison to their P-deprived counterparts, while bulk-soil communities remained unaltered. Moreover, plants carrying mutations in phosphate signaling network genes, phr1, phl1 and pho2, exhibited similarly altered root fungal communities characterized by the depletion of the chytridiomycete taxon Olpidium brassicae specifically under P-replete conditions. This study highlights the nutritional status and the underlying nutrient signaling network of an AM non-host plant, as previously unrecognized factors influencing the assembly of the plant fungal microbiota in response to P in nonsterile soil. This article is protected by copyright. All rights reserved.

RevDate: 2018-10-14

Chew SF, Koh CZY, Hiong KC, et al (2018)

Light-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa.

Gene pii:S0378-1119(18)31057-6 [Epub ahead of print].

Giant clams represent symbiotic associations between a host clam and its extracellular zooxanthellae. They are able to grow in nutrient-deficient tropical marine environments and conduct light-enhanced shell formation (calcification) with the aid of photosynthates donated by the symbiotic zooxanthellae. In light, there is a high demand for inorganic carbon (Ci) to support photosynthesis in the symbionts and light-enhanced calcification in the host. In this study, we cloned and characterized a host Carbonic Anhydrase 4 homolog (CA4-like) from the whitish inner mantle of the giant clam Tridacna squamosa. The full cDNA coding sequence of CA4-like consisted of 1002 bp, encoding for 334 amino acids of 38.5 kDa. The host CA4-like was phenogramically distinct from algal CAs. The transcript level of CA4-like in the inner mantle was ~3-fold higher than those in the colorful outer mantle and the ctenidium. In the inner mantle, CA4-like was immunolocalized in the apical membrane of the seawater-facing epithelial cells, but absent from the shell-facing epithelium. Hence, CA4-like was positioned to catalyze the conversion of HCO3- to CO2 in the ambient seawater which would facilitate CO2 uptake. The absorbed CO2 could be converted back to HCO3- by the cytoplasmic CA2-like. As the protein abundance of CA4-like increased in the inner mantle after 6 or 12 h of light exposure, there could be an augmentation of the total CA4-like activity to increase Ci uptake in light. It is plausible that the absorbed Ci was allocated preferentially for shell formation due to the close proximity of the seawater-facing epithelium to the shell-facing epithelium in the inner mantle that contains only few zooxanthellae.

RevDate: 2018-10-13

Zhou Z, Liu Z, Wang L, et al (2018)

Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature.

Fish & shellfish immunology pii:S1050-4648(18)30666-1 [Epub ahead of print].

Giant clams are one of the most important animals in coral reef ecosystem, and its growth and reproduction are being threatened by acute heat stress due to global warming. In the present study, the symbiont density, the crucial enzymes to physiological activities and the transcriptome were investigated in the outer mantle of giant clam Tridacna crocea after the acute exposure of high temperature. The density of symbiotic zooxanthellae decreased significantly during 12-24 h, with the minimum level (7.75 × 105 cell cm-2, p < 0.05) at 12 h after heat stress. The activities of superoxide dismutase in the heat stress group was significantly lower than that in the control group at 24 h after heat stress, while no significant change in the activities of catalase was observed during the entire stress process. The activation level of caspase3 began to increase significantly at 12 h (1.22-fold, p < 0.05), and reached the highest level at 24 h (1.38-fold, p < 0.05) after heat stress. Six paired-end libraries were sequenced in two groups, including the heat stress and control group at 12 h after heat stress. Through the assembling of 187,116,632 paired-end reads with lengths of 2 × 150 bp, a total of 26,676 genes were obtained which derived from giant clam. Bioinformatics analysis revealed 47 significantly upregulated and 88 significantly downregulated genes at 12 h after the treatment. There were 12 overrepresented GO terms for significantly upregulated genes, mostly related to unfolded protein binding and ATP binding, whereas no GO term was overrepresented for significantly downregulated genes. These results collectively suggest high temperature could induce excessive oxidative stress through the repressed antioxidant ability, the apoptosis activated by the unfolded protein response, and further the collapse of the symbiosis between host and symbiont, which has been threatening the growth and reproduction of the giant clam T. crocea.

RevDate: 2018-10-13

Ribeiro-Barros AI, Catarino S, Moura I, et al (2018)

Actinorhizal trees and shrubs from Africa: distribution, conservation and uses.

Antonie van Leeuwenhoek pii:10.1007/s10482-018-1174-x [Epub ahead of print].

Actinorhizal plants are a group of perennial dicotyledonous angiosperms, comprised of more than 200 species, most of which can establish root-nodule symbiosis with the nitrogen fixing actinobacteria of the genus Frankia. They are key providers of fundamental goods and services and can give a major contribution to mitigate the combined effects of climate changes, human population growth and loss of biodiversity. This aspect is particularly relevant for the developing economies of many African countries, which are highly exposed to climate and anthropogenic disturbances. In this work we have analyzed the distribution, conservation and uses of actinorhizal species native to or introduced in Africa. A total of 42 taxa distributed over six botanical families (Betulaceae, Casuarinaceae, Myricaceae, Elaeagnaceae, Rhamnaceae and Coriariaceae) were identified. The vast majority is able to thrive under a range of diverse environments and has multiple ecological and economic potential. More than half of the identified species belong to the genus Morella (Myricaceae), most of them native to Middle, Eastern and Southern Africa. Although the information about the conservation status and uses of Morella spp. is largely incomplete, the available data is indicative of their potential in e.g. forestry and agroforestry, food and medicine. Therefore, efforts should be made to upgrade actinorhizal research in Africa towards the sustainable use of biodiversity at the service of local (bio)economies.

RevDate: 2018-10-13

ŠobÁŇovÁ A, Z ĎuriŠ (2018)

Kaviengella jeffkinchi, a new genus and species of symbiotic shrimp (Crustacea: Decapoda: Palaemonidae) from Papua New Guinea.

Zootaxa, 4415(1):118-134 pii:zootaxa.4415.1.5.

A very small adult specimen of symbiotic palaemonid shrimp collected from Kavieng Lagoon, N.W. New Ireland Island, Papua New Guinea, is described as a new genus and species. Due to the slender subcylindrical body, reduced rostrum, elongated eyes and distolaterally produced uropodal exopods, the new species is somewhat similar to shrimps of the endosymbiotic sponge genus Nippontonia. Both second pereiopods are lost, but the specimen is unique by its bidentate scaphocerites, an apical corona of spiniform teeth on the mandibular molar process, five posterior telson cuspidate setae from which the median and intermediate ones are long, hooked, and the broadly spoon-like dactyli of the first pereiopods chelae with marginal pectination. Based on those characters, the new genus is without parallel among all symbiotic palaemonid shrimps. Its close phylogenetic relationship to the spongobiotic genera Nippontonia, Onycocaridella, and Thaumastocaris, is also confirmed by molecular comparison.

RevDate: 2018-10-13

Osawa M, Naruse T, PKL Ng (2018)

New records of species of the Polyonyx sinensis group (Crustacea: Decapoda: Anomura: Porcellanidae) from Japan, the Philippines, Singapore, and Malaysia, with descriptions of two new species.

Zootaxa, 4429(2):303-323 pii:zootaxa.4429.2.6.

Five species of the genus Polyonyx Stimpson, 1858 are reported from southern Japan, the Philippines, Singapore, and Peninsular Malaysia. All of them belong to the P. sinensis group, which is morphologically defined by having the dactyli of the ambulatory legs each with the dorsal claw being much smaller than the ventral claw. Two species are described as new to science, one each from Peninsular Malaysia and the Ryukyu Islands in Japan, and their affinities are discussed. Polyonyx boucheti Osawa, 2007, P. heok Osawa Ng, 2016, and P. thai Werding, 2001, are also newly reported from southern Japan, the Philippines, and Singapore. A key to the Indo-West Pacific species of the P. sinensis group is provided.

RevDate: 2018-10-12

An J, Sun M, van Velzen R, et al (2018)

Comparative transcriptome analysis of Poncirus trifoliata identifies a core set of genes involved in arbuscular mycorrhizal symbiosis.

Journal of experimental botany, 69(21):5255-5264.

The perennial woody plants of citrus are one of the most important fruit crops in the world and largely depends on arbuscular mycorrhizal symbiosis (AMS) to obtain essential nutrients from soil. However, the molecular aspects of AMS in citrus and perennial woody plants in general have largely been understudied. We used RNA-sequencing to identify differentially expressed genes in roots of Poncirus trifoliata upon mycorrhization by the AM fungus Glomus versiforme and evaluated their conservation by comparative transcriptome analyses with four herbaceous model plants. We identified 282 differentially expressed genes in P. trifoliata, including orthologs of 21 genes with characterized roles in AMS and 83 genes that are considered to be conserved in AM-host plants. Comparative transcriptome analysis revealed a 'core set' of 156 genes from P. trifoliata whose orthologous genes from at least three of the five species also exhibited similar transcriptional changes during AMS. Functional analysis of one of these conserved AM-induced genes, a 3-keto-acyl-ACP reductase (FatG) involved in fatty acid biosynthesis, confirmed its involvement in AMS in Medicago truncatula. Our results identify a core transcriptional program for AMS that is largely conserved between P. trifoliata and other plants. The comparative transcriptomics approach adds to previous phylogenomics studies to identify conserved genes required for AMS.

RevDate: 2018-10-12

Van Geel M, Yu K, Ceulemans T, et al (2018)

Variation in ectomycorrhizal fungal communities associated with Silver linden (Tilia tomentosa) within and across urban areas.

FEMS microbiology ecology pii:5128480 [Epub ahead of print].

Trees in urban areas face harsh environmental conditions. Ectomycorrhizal fungi (EcM) form a symbiosis with many tree species and provide a range of benefits to their host through their extraradical hyphal network. Although our understanding of the environmental drivers and large scale geographical variation of EcM communities in natural ecosystems is growing, our knowledge of EcM communities within and across urban areas is still limited. Here we characterized EcM communities using Illumina miseq sequencing on 175 root samples of the urban tree Tilia tomentosa from three European cities, namely Leuven (Belgium), Strasbourg (France) and Porto (Portugal). We found strong differences in EcM richness and community composition between cities. Soil acidity, organic matter and moisture content were significantly associated with EcM community composition. In agreement, the explained variability in EcM communities was mostly attributed to general soil characteristics, whereas very little variation was explained by city and heavy metal pollution. Overall, our results suggest that EcM communities in urban areas are significantly associated with soil characteristics, while heavy metal pollution and biogeography had little or no impact. These findings deliver new insights into EcM distribution patterns in urban areas and contribute to specific inoculation strategies to improve urban tree vitality.

RevDate: 2018-10-12

Navrátilová D, Tláskalová P, Kohout P, et al (2018)

Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil.

FEMS microbiology ecology pii:5128479 [Epub ahead of print].

Microbial communities in roots and shoots of plants and in soil are important for plant growth and health and take part in important ecosystem processes. Therefore, understanding the factors that affect their diversity is important. We have analysed fungal and bacterial communities associated with plant shoots, roots and soil over a 1 km2 area in a semi-natural temperate grassland with 1-43 plant species per 0.1 m2, to describe the relationships between plant and microbial diversity and to identify the drivers of bacterial and fungal community composition. Microbial community composition differed between shoots, roots and soil. While both fungal and bacterial species richness in shoots increased with plant species richness, no correlation was found between plant and microbial diversity in roots and soil. Chemistry was a significant predictor of bacterial and fungal community composition in soil as was also the spatial location of the sampled site. In this species rich grassland, the effects of plants on the microbiome composition seemed to be restricted to the shoot-associated taxa; in contrast, the microbiomes of roots or soil were not affected. The results support our hypothesis that the effect of plants on the microbiome composition decreases from shoots to roots and soil.

RevDate: 2018-10-12

Leftwich PT, Hutchings MI, T Chapman (2018)

Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation.

BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].

All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.

RevDate: 2018-10-12

Hasid R, Jaya Arma M, A Nurmas (2018)

Existence Arbuscula Mycorrhiza and Its Application Effect to Several Variety of Corn Plant (<I>Zeal mays </I> L.) in Marginal Dry Land.

Pakistan journal of biological sciences : PJBS, 21(4):199-204.

BACKGROUND AND OBJECTIVE: Arbuscula mycorrhiza (AM) have a very large function in symbiosis with plant roots, it's very important to be studied further because AM utilization is an alternative solution to improve the yield of corn plant in poor land. Until now the productivity of corn plant, especially in Southeast Sulawesi, Indonesia is lower than it's genetic potential, one of the causes is the cultivation of many plant done in sub optimal land with low technology applications especially the use of organic and biological fertilizer very low. This study aimed to observe the presence of AM and evaluate the growth and productivity of corn plant that AM inoculated.

MATERIALS AND METHODS: The study consisted two series of experiments, namely (1) Existence arbuscula mycorrhiza in rhizosphere of dominant weed (bladygrass) in dry land in Kendari, Southeast Sulawesi, Indonesia, was observed descriptively, (2) Effect of arbuscula mycorrhiza to several variety of corn plant (Zea mays L.) in Marginal dry land. The experiment was arranged based Randomized Block Design (RBD) consisted of eight treatments corn variety.

RESULTS: The results showed that spore populations were found in rhizosphere of dominant weed was 792-901 spores 100 g-1 soil, 70-90% roots infection. Some genera found are Glomus, Gigasphora, Acaulospora, Entrophospora, Scutellospora. Symbiosis effect of arbuscula mycorrhiza with plant growth indicates that Phosphorus uptake was highest in Batu Putih variety. However the highest in yield was show in Dana variety. Compared with the lowest production, the production difference was higher in Dana 47.70%.

CONCLUSION: Existence of arbuscula mycorrhiza in dominant weed rhizosphere in dry land is very high. The response of various varieties of maize plants to arbuscula mycorrhiza indicates that local varieties have a higher adaptability compared with introduction varieties.

RevDate: 2018-10-12
CmpDate: 2018-10-12

Vitas M, A Dobovišek (2018)

In the Beginning was a Mutualism - On the Origin of Translation.

Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life, 48(2):223-243.

The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.

RevDate: 2018-10-12
CmpDate: 2018-10-12

Skaljac M, Kirfel P, Grotmann J, et al (2018)

Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum.

Pest management science, 74(8):1829-1836.

BACKGROUND: Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g. by providing essential nutrients or facilitating adaptations to biotic and abiotic stress.

RESULTS: We investigated the pea aphid (Acyrthosiphon pisum Harris) and its commonly associated secondary bacterial symbiont Serratia symbiotica to study the effect of this symbiont on host fitness and susceptibility to the insecticides imidacloprid, chlorpyrifos methyl, methomyl, cyantraniliprole and spirotetramat. There is emerging evidence that members of the genus Serratia can degrade and/or detoxify diverse insecticides. Therefore, we hypothesized that S. symbiotica may promote resistance to these artificial stress agents in aphids. Our results showed that Serratia-infected aphids were more susceptible to most of the tested insecticides than non-infected aphids. This probably reflects the severe fitness costs associated with S. symbiotica, which negatively affects development, reproduction and body weight.

CONCLUSION: Our study demonstrates that S. symbiotica plays an important role in the ability of aphid hosts to tolerate insecticides. These results provide insight into the potential changes in tolerance to insecticides in the field because there is a continuous and dynamic process of symbiont acquisition and loss that may directly affect host biology. © 2018 Society of Chemical Industry.

RevDate: 2018-10-12
CmpDate: 2018-10-12

Gao J, Guo H, Sun Y, et al (2018)

Differential accumulation of leucine and methionine in red and green pea aphids leads to different fecundity in response to nitrogen fertilization.

Pest management science, 74(8):1779-1789.

BACKGROUND: Nitrogen fertilization affects plants directly and herbivorous insects indirectly. Although insect species and even genotypes are known to differ in their responses to nitrogen fertilization, the physiological and molecular mechanisms remain unclear. This study assessed the fecundity and related regulatory signaling pathways in the green and red morphs of pea aphid (Acyrthosiphon pisum) feeding on Medicago truncatula with and without nitrogen fertilization.

RESULTS: Nitrogen fertilization significantly increased foliar amino acid concentrations and consequently increased the concentrations of several individual essential amino acids in body tissue of the green morph. The increased concentration of Leu, Ile, Met and Val was consistent with enhanced biosynthesis of these amino acids in the endosymbiont Buchnera. Under nitrogen fertilization, Leu and Met accumulated in the green morph enhanced the target of rapamycin (TOR) signaling pathway, which consequently increased fecundity by promoting vitellogenin synthesis. In the red morph, however, nitrogen fertilization did not change the concentration of essential amino acids, TOR signaling or fecundity.

CONCLUSION: Specific amino acids accumulation and the nutrient transduction pathway in pea aphids are responsible for genotype-specific fecundity in response to nitrogen fertilization, which could be used as potential target for pest control. © 2018 Society of Chemical Industry.

RevDate: 2018-10-11

Hocher V, Ngom M, Carré-Mlouka A, et al (2018)

Signalling in actinorhizal root nodule symbioses.

Antonie van Leeuwenhoek pii:10.1007/s10482-018-1182-x [Epub ahead of print].

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.

RevDate: 2018-10-11

Rimington WR, Pressel S, Duckett JG, et al (2018)

Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi.

Proceedings. Biological sciences, 285(1888): pii:rspb.2018.1600.

Arbuscular mycorrhizas are widespread in land plants including liverworts, some of the closest living relatives of the first plants to colonize land 500 million years ago (MYA). Previous investigations reported near-exclusive colonization of liverworts by the most recently evolved arbuscular mycorrhizal fungi, the Glomeraceae, indicating a recent acquisition from flowering plants at odds with the widely held notion that arbuscular mycorrhizal-like associations in liverworts represent the ancestral symbiotic condition in land plants. We performed an analysis of symbiotic fungi in 674 globally collected liverworts using molecular phylogenetics and electron microscopy. Here, we show every order of arbuscular mycorrhizal fungi colonizes early-diverging liverworts, with non-Glomeraceae being at least 10 times more common than in flowering plants. Arbuscular mycorrhizal fungi in liverworts and other ancient plant lineages (hornworts, lycopods, and ferns) were delimited into 58 taxa and 36 singletons, of which at least 43 are novel and specific to liverworts. The discovery that early plant lineages are colonized by early-diverging fungi supports the hypothesis that arbuscular mycorrhizas are an ancestral symbiosis for all land plants.

RevDate: 2018-10-11

Lang C, Barnett MJ, Fisher RF, et al (2018)

Most Sinorhizobium meliloti Extracytoplasmic Function Sigma Factors Control Accessory Functions.

mSphere, 3(5): pii:3/5/e00454-18.

Bacteria must sense alterations in their environment and respond with changes in function and/or structure in order to cope. Extracytoplasmic function sigma factors (ECF σs) modulate transcription in response to cellular and environmental signals. The symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti carries genes for 11 ECF-like σs (RpoE1 to -E10 and FecI). We hypothesized that some of these play a role in mediating the interaction between the bacterium and its plant symbiotic partner. The bacterium senses changes in its immediate environment as it establishes contact with the plant root, initiates invasion of the plant as the root nodule is formed, traverses several root cell layers, and enters plant cortical cells via endocytosis. We used genetics, transcriptomics, and functionality to characterize the entire S. meliloti cohort of ECF σs. We discovered new targets for individual σs, confirmed others by overexpressing individual ECF σs, and identified or confirmed putative promoter motifs for nine of them. We constructed precise deletions of each ECF σ gene and its demonstrated or putative anti-σ gene and also a strain in which all 11 ECF σ and anti-σ genes were deleted. This all-ECF σ deletion strain showed no major defects in free-living growth, in Biolog Phenotype MicroArray assays, or in response to multiple stresses. None of the ECF σs were required for symbiosis on the host plants Medicago sativa and Medicago truncatula: the strain deleted for all ECF σ and anti-σ genes was symbiotically normal.IMPORTANCE Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress.

RevDate: 2018-10-11

Guyomar C, Legeai F, Jousselin E, et al (2018)

Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches.

Microbiome, 6(1):181 pii:10.1186/s40168-018-0562-9.

BACKGROUND: Most metazoans are involved in durable relationships with microbes which can take several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics tools have opened opportunities to shed light on the diversity of microbial communities and to give some insights into the functions they perform in a broad array of hosts. The pea aphid is a model system for the study of insect-bacteria symbiosis. It is organized in a complex of biotypes, each adapted to specific host plants. It harbors both an obligatory symbiont supplying key nutrients and several facultative symbionts bringing additional functions to the host, such as protection against biotic and abiotic stresses. However, little is known on how the symbiont genomic diversity is structured at different scales: across host biotypes, among individuals of the same biotype, or within individual aphids, which limits our understanding on how these multi-partner symbioses evolve and interact.

RESULTS: We present a framework well adapted to the study of genomic diversity and evolutionary dynamics of the pea aphid holobiont from metagenomic read sets, based on mapping to reference genomes and whole genome variant calling. Our results revealed that the pea aphid microbiota is dominated by a few heritable bacterial symbionts reported in earlier works, with no discovery of new microbial associates. However, we detected a large and heterogeneous genotypic diversity associated with the different symbionts of the pea aphid. Partitioning analysis showed that this fine resolution diversity is distributed across the three considered scales. Phylogenetic analyses highlighted frequent horizontal transfers of facultative symbionts between host lineages, indicative of flexible associations between the pea aphid and its microbiota. However, the evolutionary dynamics of symbiotic associations strongly varied depending on the symbiont, reflecting different histories and possible constraints. In addition, at the intra-host scale, we showed that different symbiont strains may coexist inside the same aphid host.

CONCLUSIONS: We present a methodological framework for the detailed analysis of NGS data from microbial communities of moderate complexity and gave major insights into the extent of diversity in pea aphid-symbiont associations and the range of evolutionary trajectories they could take.

RevDate: 2018-10-11

Osti JF, A Rodrigues (2018)

Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants.

BMC microbiology, 18(1):130 pii:10.1186/s12866-018-1265-x.

BACKGROUND: Fungus gardens of fungus-growing (attine) ants harbor complex microbiomes in addition to the mutualistic fungus they cultivate for food. Fungi in the genus Escovopsioides were recently described as members of this microbiome but their role in the ant-fungus symbiosis is poorly known. In this study, we assessed the phylogenetic diversity of 21 Escovopsioides isolates obtained from fungus gardens of leafcutter ants (genera Atta and Acromyrmex) and non-leafcutter ants (genera Trachymyrmex and Apterostigma) sampled from several regions in Brazil.

RESULTS: Regardless of the sample locality or ant genera, phylogenetic analysis showed low genetic diversity among the 20 Escovopsisoides isolates examined, which prompted the identification as Escovopsioides nivea (the only described species in the genus). In contrast, one Escovopsioides isolate obtained from a fungus garden of Apterostigma megacephala was considered a new phylogenetic species. Dual-culture plate assays showed that Escovopsioides isolates inhibited the mycelium growth of Leucoagaricus gongylophorus, the mutualistic fungus cultivated by somes species of leafcutter ants. In addition, Escovopsioides growth experiments in fungus gardens with and without ant workers showed this fungus is detrimental to the ant-fungus symbiosis.

CONCLUSIONS: Here, we provide clues for the antagonism of Escovopsioides towards the mutualistic fungus of leafcutter ants.

RevDate: 2018-10-10

Santiago R, Martins MCB, Vilaça MD, et al (2018)

Phytochemical and biological evaluation of metabolites produced by alginate-immobilized Bionts isolated from the lichen Cladonia substellata vain.

Fitoterapia pii:S0367-326X(18)31047-5 [Epub ahead of print].

In this work, new biotechnological procedures have been optimized on the basis of immobilization in alginate of bionts isolated from the lichen C. substellata. From these immobilizates, soluble and biologically active phenolics can be obtained. During bionts-immobilization, stictic, norstictic and usnic acids were secreted to the medium. The amount produced of each of them differed depending on the immobilization time, the precursor supplied and the type of biont used. Greater amounts of stictic acid were detected and maintained over time in all bioreactors. The opposite occurs in non-immobilized thallus. Virtually, all plant phenols exhibit antioxidant activity to a greater or lesser degree, so that the antioxidant capacity of stictic acid (82.13% oxidation inhibition) was tested. The soluble extract of immobilized algae co-incubated in sodium acetate with fungal hyphae contained carbohydrates and exhibited a potent antioxidant capacity after 13 days of immobilization (94.87%). Therefore, attempts have been made to relate both parameters. On the other hand, the growth of Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae was inhibited by phenolic compounds produced by immobilizates, although the organic extract of the whole lichen showed the highest activity due to a possible synergy with other indeterminate compounds. Thus, C. substellata immobilized bionts are a potential source of different natural antioxidant and antimicrobial compounds.

RevDate: 2018-10-10

Li Y, Ruan Y, Kasson MT, et al (2018)

Structure of the Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography.

Journal of insect science (Online), 18(5): pii:5125956.

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) rely on a symbiosis with fungi for their nutrition. Symbiotic fungi are preserved and transported in specialized storage structures called mycangia. Although pivotal in the symbiosis, mycangia have been notoriously difficult to study, given their minute size and membranous structure. We compared the application of novel visualization methods for the study of mycangia, namely micro-computed tomography (micro-CT) and laser ablation tomography (LATscan) with traditional paraffin sectioning. Micro-CT scanning has shown the greatest promise in new organ discovery, while sectioning remains the only method with sufficient resolution for cellular visualization. All three common types of mycangia (oral, mesonotal, and pronotal) were successfully visualized and presented for different species of ambrosia beetles: Ambrosiodmus minor (Stebbing) 1909, Euplatypus compositus (Say) 1823, Premnobius cavipennis Eichhoff 1878, Scolytoplatypus raja Blandford 1893, Xylosandrus crassiusculus (Motschulsky) 1866 and X. amputatus (Blandford) 1894. A reconstruction of the mycangium and the surrounding musculature in X. amputatus is also presented. The advantages of micro-CT compared to the previously commonly used microtome sectioning include the easy visualization and recording of three-dimensional structures, their position in reference to other internal structures, the ability to distinguish natural aberrations from technical artifacts, and the unprecedented visualizations of the anatomic context of mycangia enabled by the integrated software.

RevDate: 2018-10-10

Wiles TJ, Wall ES, Schlomann BH, et al (2018)

Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages.

mBio, 9(5): pii:mBio.01877-18.

Correlating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis and in vitro assays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.IMPORTANCE A great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis.

RevDate: 2018-10-10

Hernandez-Agreda A, Leggat W, Bongaerts P, et al (2018)

Rethinking the Coral Microbiome: Simplicity Exists within a Diverse Microbial Biosphere.

mBio, 9(5): pii:mBio.00812-18.

Studies of the coral microbiome predominantly characterize the microbial community of the host species as a collective, rather than that of the individual. This ecological perspective on the coral microbiome has led to the conclusion that the coral holobiont is the most diverse microbial biosphere studied thus far. However, investigating the microbiome of the individual, rather than that of the species, highlights common and conserved community attributes which can provide insights into the significance of microbial associations to the host. Here, we show there are consistent characteristics between individuals in the proposed three components of the coral microbiome (i.e., "environmentally responsive community," "resident or individual microbiome," and "core microbiome"). We found that the resident microbiome of a photoendosymbiotic coral harbored <3% (∼605 phylotypes) of the 16S rRNA phylotypes associated with all investigated individuals of that species ("species-specific microbiome") (∼21,654 phylotypes; individuals from Pachyseris speciosa [n = 123], Mycedium elephantotus [n = 95], and Acropora aculeus [n = 91] from 10 reef locations). The remaining bacterial phylotypes (>96%) (environmentally responsive community) of the species-specific microbiome were in fact not found in association with the majority of individuals of the species. Only 0.1% (∼21 phylotypes) of the species-specific microbiome of each species was shared among all individuals of the species (core microbiome), equating to ∼3.4% of the resident microbiome. We found taxonomic redundancy and consistent patterns of composition, structure, and taxonomic breadth across individual microbiomes from the three coral species. Our results demonstrate that the coral microbiome is structured at the individual level.IMPORTANCE We propose that the coral holobiont should be conceptualized as a diverse transient microbial community that is responsive to the surrounding environment and encompasses a simple, redundant, resident microbiome and a small conserved core microbiome. Most importantly, we show that the coral microbiome is comparable to the microbiomes of other organisms studied thus far. Accurately characterizing the coral-microbe interactions provides an important baseline from which the functional roles and the functional niches within which microbes reside can be deciphered.

RevDate: 2018-10-10

Okubo N, Takahashi S, Y Nakano (2018)

Microplastics disturb the anthozoan-algae symbiotic relationship.

Marine pollution bulletin, 135:83-89.

World production of plastic has dramatically increased from the 1950's and now it reaches approximately 311 million tons per year. The resulting accumulation of small plastic detritus less than 5 mm in size, termed "microplastics", has started threatening the life cycles of marine organisms. Here we show the first evidence that microplastics disturb the initiation of symbiotic relationships in anthozoan-algae symbiosis. We found in both the aposymbiotic sea-anemone Aiptasia sp. and the coral Favites chinensis that the infectivity of symbiotic algae into the host is severely suppressed by microspheres fed either directly or indirectly through microsphere-fed Artemia sp. Similar trends were seen when microplastics collected from commercial facewash were used instead of microspheres. Therefore, ongoing accumulation of microplastics in the ocean might disturb the healthy anthozoan-algae symbiotic relationships, which are cornerstones of the biologically enriched coral reef ecosystem.

RevDate: 2018-10-10
CmpDate: 2018-10-10

Yahiaoui RY, Bootsma HJ, den Heijer CDJ, et al (2018)

Distribution of serotypes and patterns of antimicrobial resistance among commensal Streptococcus pneumoniae in nine European countries.

BMC infectious diseases, 18(1):440 pii:10.1186/s12879-018-3341-0.

BACKGROUND: Streptococcus pneumoniae is a commensal of the human upper respiratory tract and a major cause of morbidity and mortality worldwide. This paper presents the distribution of serotypes and antimicrobial resistance in commensal S. pneumoniae strains cultured from healthy carriers older than four years of age in nine European countries.

METHODS: Nasal swabs from healthy persons (age between 4 and 107 years old) were obtained by general practitioners from each country from November 2010 to August 2011. Swabs were cultured for S. pneumoniae using a standardized protocol. Antibiotic resistance was determined for isolated S. pneumoniae by broth microdilution. Capsular sequencing typing was used to identify serotypes, followed by serotype-specific PCR assays in case of ambiguous results.

RESULTS: Thirty-two thousand one hundred sixty-one nasal swabs were collected from which 937 S. pneumoniae were isolated. A large variation in serotype distribution and antimicrobial resistant serotypes across the participating countries was observed. Pneumococcal vaccination was associated with a higher risk of pneumococcal colonization and antimicrobial resistance independently of country and vaccine used, either conjugate vaccine or PPV 23).

CONCLUSIONS: Serotype 11A was the most common in carriage followed by serotypes 23A and 19A. The serotypes showing the highest resistance to penicillin were 14 followed by 19A. Serotype 15A showed the highest proportion of multidrug resistance.

RevDate: 2018-10-10
CmpDate: 2018-10-10

Uchida Y, Irie K, Fukuhara D, et al (2018)

Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

Molecules (Basel, Switzerland), 23(7): pii:molecules23071517.

Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of &gamma;-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin, which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II, and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1. In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.

RevDate: 2018-10-11
CmpDate: 2018-10-11

López SMY, Sánchez MDM, Pastorino GN, et al (2018)

Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen.

Current microbiology, 75(8):997-1005.

The purpose of this work was to study further two Bradyrhizobium japonicum strains with high nitrogen-fixing capacity that were identified within a collection of approximately 200 isolates from the soils of Argentina. Nodulation and nitrogen-fixing capacity and the level of expression of regulatory as well as structural genes of nitrogen fixation and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene of the isolates were compared with that of E109-inoculated plants. Both isolates of B. japonicum, 163 and 366, were highly efficient to fix nitrogen compared to commercial strain E109. Isolate 366 developed a higher number and larger biomass of nodules and because of this fixed more nitrogen. Isolate 163 developed the same number and nodule biomass than E109. However, nodules developed by isolate 163 had red interiors for a longer period, had a higher leghemoglobin content, and presented high levels of expression of acdS gene, that codes for an ACC deaminase. In conclusion, naturalized rhizobia of the soils of Argentina hold a diverse population that might be the source of highly active nitrogen-fixing rhizobia, a process that appears to be based on different strategies.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Ventura C, Briones-Roblero CI, Hernández E, et al (2018)

Comparative Analysis of the Gut Bacterial Community of Four Anastrepha Fruit Flies (Diptera: Tephritidae) Based on Pyrosequencing.

Current microbiology, 75(8):966-976.

Fruit flies are the most economically important group of phytophagous flies worldwide. Whereas the ecological role of bacteria associated with tephritid fruit fly species of the genera Bactrocera and Ceratitis has been demonstrated, the diversity of the bacterial community in Anastrepha has been poorly characterized. This study represents the first comprehensive analysis of the bacterial community in the gut of larvae and adults of Anastrepha ludens, A. obliqua, A. serpentina, and A. striata using 454 pyrosequencing. A total of four phyla, seven classes, 11 families, and 27 bacterial genera were identified. Proteobacteria was the most represented phylum, followed by Firmicutes, Actinobacteria, and Deinococcus-Thermus. The genera Citrobacter, Enterobacter, Escherichia, Klebsiella, and Raoultella were dominant in all samples analyzed. In general, the bacterial community diversity in adult flies was higher in species with a broader diet breadth than species with a restricted number of hosts, whereas it was also higher in adults versus larvae. Differences in bacterial communities in adults might be determined by the number of fruit species infested. Lastly, the predictive functional profile analysis suggested that community members may participate in metabolic pathways related to membrane transport and metabolism of carbohydrates, amino acids, cofactors, and lipids. These results provide the basis for the study of unexplored functional roles of bacteria in this insect group.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Kubiak K, Sielawa H, Chen W, et al (2018)

Endosymbiosis and its significance in dermatology.

Journal of the European Academy of Dermatology and Venereology : JEADV, 32(3):347-354.

Proposed at the beginning of the twentieth century to explain the origin of eukaryotic organelles from prokaryotes, endosymbiosis is now medically defined by various interaction patterns between microorganisms and their residing hosts, best exemplified by the bacterial endosymbiont Wolbachia identified in arthropods and filarial nematodes, which can influence normal development, reproduction, survival and transmission of the hosts. Based on the transmission modes, vertical or horizontal, and the function of the endosymbionts, the host-symbiont dependence can be divided into primary or secondary. In dermatology, the role of endosymbionts in skin ectoparasitosis has aroused great interests in the past years. Riesia pediculicola is a primary bacterial endosymbiont in body lice Pediculus humanus, and supplement their hosts with vitamin B, especially pantothenic acid. In cimicosis, the Gram-negative Wolbachia can synthesize biotin and riboflavin, which are crucial for the growth and reproduction of the bedbug Cimex lectularius. In human demodicosis and rosacea, further study is required to prove the pathogenic role of the Gram-negative bacteria Bacillus oleronius or the Gram-positive bacteria Bacillus cereus demonstrated in the Demodex mites. The high infection rate of adult female ticks Ixodes ricinus with the Gram-negative bacteria Midichloria mitochondrii present in the mitochondria in diverse ovarian cells, with the high seroprevalence rate in tick-exposed subjects, raises the possibility that this non-pathogenic endosymbiont may play a role in immune response and successful transmission of the tick-borne pathogen. The anaerobic protozoan Trichomonas vaginalis and bacteria Mycoplasma hominis are two obligate parasites in the urogenital epithelium, with partially overlapping symptoms. Intracellular localization of Mycoplasma hominis can avoid host immune response and penetration of antibiotics, while Trichomonas vaginalis infected with Mycoplasma hominis seems to have a higher cytopathic activity and amoeboid transformation rate. Further study on the biology and pathogenesis of different endosymbionts in dermatological parasitosis will help for the development of new treatment modalities.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Pickard JM, Zeng MY, Caruso R, et al (2017)

Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.

Immunological reviews, 279(1):70-89.

The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Delavaux CS, Smith-Ramesh LM, SE Kuebbing (2017)

Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils.

Ecology, 98(8):2111-2119.

Arbuscular mycorrhizal fungi (AMF) can increase plant fitness under certain environmental conditions. Among the mechanisms that may drive this mutualism, the most studied is provisioning of nutrients by AMF in exchange for carbon from plant hosts. However, AMF may also provide a suite of non-nutritional benefits to plants including improved water uptake, disease resistance, plant chemical defense, soil aggregation, and allelochemical transport and protection. Here, we use a meta-analysis of 93 studies to assess the relative effect of AMF on nutritional and non-nutritional factors that may influence plant fitness. We find that the positive effects of AMF on soil aggregation, water flow and disease resistance are equal to the effect of AMF on plant nitrogen and phosphorus uptake. However, AMF had no effect on the uptake of other nutrients, plant water content, allelopathic transport or production of chemical defense compounds. We suggest future research directions, including experimentally assessing the relative contribution on plant fitness of AMF interactions by untangling the independence of alternative benefits of AMF from an increase in nutrient uptake. This will lead to a more holistic view of the mycorrhizal-plant association and a more accurate picture of the net impact on the plant or plant community in question.

RevDate: 2018-10-09

Dovrat G, E Sheffer (2018)

Symbiotic dinitrogen fixation is seasonal and strongly regulated in water-limited environments.

The New phytologist [Epub ahead of print].

1.Plants, especially perennials, growing in drylands and seasonally dry ecosystems are uniquely adapted to dry conditions. Legume shrubs and trees, capable of symbiotic dinitrogen (N2) fixation, often dominate in drylands. However, the strategies that allow symbiotic fixation in these ecosystems, and their influence on the nitrogen cycle, are largely unresolved. We evaluated the climatic, biogeochemical and ontogenetic factors influencing nitrogen fixation in an abundant Mediterranean legume shrub, Calicotome villosa. 2.We measured nodulation, fixation rate, nitrogen allocation, and soil biogeochemistry, in three field sites over a full year. A controlled experiment evaluated differences in plant regulation of fixation as a function of soil nutrient availability and seedling and adult developmental stages. 3.We found a strong seasonal pattern, shifting between high fixation rates during the rainy season at flowering and seed-set times to almost none in the rainless season. Under controlled conditions plants downregulated fixation in response to soil nitrogen availability, but this response was stronger in seedlings compared to adult shrubs. Finally, we did not find elevated soil nitrogen under N2 -fixing shrubs. 4.We conclude that seasonal nitrogen fixation, regulation of fixation, and nitrogen conservation, are key adaptations influencing the dominance of dryland legumes in the community, with broader consequences on the ecosystem nitrogen cycle. This article is protected by copyright. All rights reserved.

RevDate: 2018-10-09
CmpDate: 2018-10-09

Goubet AG, Daillère R, Routy B, et al (2018)

The impact of the intestinal microbiota in therapeutic responses against cancer.

Comptes rendus biologies, 341(5):284-289.

Accumulating evidence points to the impact of the gut microbiota in regulating various chronic inflammatory disorders such as cancers. The intestinal microbiome is not only influencing the spontaneous course of colon malignancies but also acts at distant sterile sites of neoplasia, mostly playing a detrimental role. By providing microbial-associated molecular patterns and potentially antigens sharing molecular mimicry with tumor antigens, our commensals modulate the local and the systemic immune tonus, eventually influencing tumor microenvironment. Complicating this algorithm, therapeutic interventions alter the delicate balance between the epithelium, the microbial community, and the intestinal immunity, governing the final clinical outcome. This seminar focused on the impact of the intestinal composition on the immunomodulatory and therapeutic activities of distinct compounds (alkylating agents, platinum salts and immunotherapies) used in oncology. This research opens up "the era of anticancer probiotics" aimed at restoring gut eubiosis for a better clinical outcome in cancer patients.

RevDate: 2018-10-09
CmpDate: 2018-10-09

Eberl G (2018)

The microbiota, a necessary element of immunity.

Comptes rendus biologies, 341(5):281-283.

The intestinal microbiota is essential for digestion, the production of physiological metabolites, and defense. More than 1013 bacteria are present in the intestine, inspiring awe as well as fear of potential infections. By definition, the immune system protects us from infection, and is given the task to recognize dangerous pathogens from useful mutualists. Nevertheless, the definition of pathogens and mutualists is often contextual, and the immune system reacts to all types of microbes. In fact, immune reactivity to microbiota is necessary for the development of the immune system. If the host-microbe cross-talk is perturbed before birth or weaning, the immune system develops "pathological imprinting" and increased susceptibility to inflammatory pathology later in life. Reactivity to microbiota is also important in adulthood to regulate immune responses and maintain homeostasis.

RevDate: 2018-10-09
CmpDate: 2018-10-09

Peaudecerf FJ, Bunbury F, Bhardwaj V, et al (2018)

Microbial mutualism at a distance: The role of geometry in diffusive exchanges.

Physical review. E, 97(2-1):022411.

The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.

RevDate: 2018-10-09
CmpDate: 2018-10-09

Chong G, Kuo FW, Tsai S, et al (2017)

Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium.

Scientific reports, 7:39396 pii:srep39396.

Quantification by real-time RT-PCR requires a stable internal reference known as a housekeeping gene (HKG) for normalising the mRNA levels of target genes. The present study identified and validated stably expressed HKGs in post-thaw Symbiodinium clade G. Six potential HKGs, namely, pcna, gapdh, 18S rRNA, hsp90, rbcl, and ps1, were analysed using three different algorithms, namely, GeNorm, NormFinder, and BestKeeper. The GeNorm algorithm ranked the candidate genes as follows in the order of decreasing stability: pcna and gapdh > ps1 > 18S rRNA > hsp90 > rbcl. Results obtained using the NormFinder algorithm also showed that pcna was the most stable HKG and ps1 was the second most stable HKG. We found that the candidate HKGs examined in this study showed variable stability with respect to the three algorithms. These results indicated that both pcna and ps1 were suitable for normalising target gene expression determined by performing real-time RT-PCR in cryopreservation studies on Symbiodinium clade G. The results of the present study would help future studies to elucidate the effect of cryopreservation on gene expression in dinoflagellates.

RevDate: 2018-10-08

Palmer AG, Senechal AC, Haire TC, et al (2018)

Selection of appropriate autoinducer analogs for the modulation of quorum sensing at the host-bacteria interface.

ACS chemical biology [Epub ahead of print].

Bacteria regulate a variety of phenotypes in response to their population density using quorum sensing (QS). This phenomenon is regulated by small molecule or peptide signals, the best characterized of which are the N-acyl L-homoserine lactones (AHLs) utilized by Gram-negative bacteria. As many QS-controlled phenotypes, notably pathogenic-ity and symbiosis, can profoundly impact host eukaryotes, there is significant interest in developing methods to modulate QS signaling and either ameliorate or augment these phenotypes. One strategy has been the use of non-native AHL ana-logues to agonize or antagonize specific AHL receptors. This approach is complicated, however, by the potential for pro-spective hosts to respond to both native AHLs as well as synthetic analogues. Accordingly, identifying AHL analogues with little or no activity towards eukaryotes is important in developing QS modulation as a strategy for the regulation of prokaryotic behaviors. Herein, we utilize the model plant Arabidopsis thaliana to characterize eukaryotic responses to a variety of synthetic AHL analogues to identify structural elements of existing scaffolds that may elicit responses in pro-spective hosts. Our results indicate that, while many of these compounds have no discernable effect on A. thaliana, some elicit strong phenotypes similar to those produced by auxin, a hormone involved in almost all aspects of plant develop-ment. We outline concentrations and chemical scaffolds ideal for deployment on plant hosts for the regulation of QS. This approach should be exportable to other eukaryotes for the selection of optimal AHL tools for the study of QS at the host-microbe interface.

RevDate: 2018-10-08

Kalra S, Jena BN, R Yeravdekar (2018)

Emotional and Psychological Needs of People with Diabetes.

Indian journal of endocrinology and metabolism, 22(5):696-704.

Diabetes is a chronic metabolic disorder that impacts physical, social and mental including psychological well-being of people living with it. Additionally, psychosocial problems that are most common in diabetes patients often result in serious negative impact on patient's well-being and social life, if left un-addressed. Addressing such psychosocial aspects including cognitive, emotional, behavioral and social factors in the treatment interventions would help overcome the psychological barriers, associated with adherence and self-care for diabetes; the latter being the ultimate goal of management of patients with diabetes. While ample literature on self-management and psychological interventions for diabetes is available, there is limited information on the impact of psychological response and unmanaged emotional distresses on overall health. The current review therefore examines the emotional, psychological needs of the patients with diabetes and emphasizes the role of diabetologist, mental health professionals including clinical psychologists to mitigate the problems faced by these patients. Search was performed using a combination of keywords that cover all relevant terminology for diabetes and associated emotional distress. The psychological reactions experienced by the patient upon diagnosis of diabetes have been reviewed in this article with a focus on typical emotional distress at different levels. Identifying and supporting patients with psychosocial problems early in the course of diabetes may promote psychosocial well-being and improve their ability to adjust or take adequate responsibility in diabetes self-management - the utopian state dreamt of by all diabetologists !.

RevDate: 2018-10-07

Jiang Y, Xie Q, Wang W, et al (2018)

Medicago AP2-domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer During Mycorrhizal Symbiosis.

Molecular plant pii:S1674-2052(18)30301-0 [Epub ahead of print].

Most land plants evolve a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi to improve nutrient acquisition from the soil. In return, up to 20% of host plant photosynthate is transferred to the mycorrhizal fungus in the form of lipids and sugar. Nutrient exchange must be regulated by both partners in order to maintain a reliable symbiotic relationship. However, the mechanisms underlying the regulation of lipid transfer from plant to AM fungus remain elusive. Here, we show that Medicago truncatula AP2/EREBP transcription factor WRI5a, and likely its two homologs WRI5b/Erf1 and WRI5c, are master regulators of AM symbiosis by controlling lipid transfer and periarbuscular membrane formation. We found that WRI5a binds the AW-box cis-regulatory elements in the promoters of STR and MtPT4 in M. truncatula, which encodes a periarbuscular membrane-localized ABC transporter required for lipid transfer from the plant to AM fungi-and a phosphate transporter required for phosphate transfer from AM fungi to the plant, respectively. The M. truncatula wri5a mutant and RNAi composite plants hairy roots displayed impaired arbuscule formation, whereas overexpression of WRI5a resulted in enhanced expression of STR and MtPT4, suggesting that WRI5a regulates bidirectional symbiotic nutrient exchange. Moreover, we found that WRI5a and RAM1 (Required for Arbuscular Mycorrhization symbiosis 1) encoding a GRAS-domain transcription factor regulate each other at the transcriptional level, forming a positive feedback loop for regulating AM symbiosis. Our data suggest a role for WRI5a in controlling lipid transfer and periarbuscular membrane formation via the regulation of genes for the biosynthesis and supply of fatty acids and phosphate uptake in arbuscule-containing cells.

RevDate: 2018-10-05

Becquer A, Garcia K, C Plassard (2018)

HcPT1.2 participates in Pi acquisition in Hebeloma cylindrosporum external hyphae of ectomycorrhizas under high and low phosphate conditions.

Plant signaling & behavior [Epub ahead of print].

Ectomycorrhizal fungi improve tree phosphorus nutrition through transporters specifically localized at soil-hyphae and symbiotic interfaces. In the model symbiosis between the fungus Hebeloma cylindrosporum and the maritime pine (Pinus pinaster), several transporters possibly involved in phosphate fluxes were identified, including three H+:Pi transporters. Among these three, we recently unraveled the function of one of them, named HcPT2, in both pure culture and symbiotic interaction with P. pinaster. Here we investigated the transporter named HcPT1.2, by analyzing inorganic phosphate transport ability in a yeast complementation assay, assessing its expression in the fungus associated or not with the plant, and immunolocalizing the proteins in ectomycorrhizas. We also evaluated the effect of external Pi concentration on expression and localization of HcPT1.2. Our results revealed that HcPT1.2 is involved in Pi acquisition by H. cylindrosporum mycelium, irrespective of the external Pi concentrations.

RevDate: 2018-10-05

Mancini MV, Damiani C, Accoti A, et al (2018)

Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing.

BMC microbiology, 18(1):126 pii:10.1186/s12866-018-1266-9.

BACKGROUND: Symbiosis in insects is accumulating significant amount of studies: the description of a wide array of mutualistic associations across the evolutionary history of insects suggests that resident microbiota acts as a driving force by affecting several aspects of hosts biology. Among arthropods, mosquito midgut microbiota has been largely investigated, providing crucial insights on the role and implications of host-symbiont relationships. However, limited amount of studies addressed their efforts on the investigation of microbiota colonizing salivary glands and reproductive tracts, crucial organs for pathogen invasion and vertical transmission of symbiotic microorganisms. Using 16S rRNA gene sequencing-based approach, we analysed the microbiota of gut, salivary glands and reproductive tracts of several mosquito species, representing some of the main vectors of diseases, aiming at describing the dynamics of bacterial communities within the individual.

RESULTS: We identified a shared core microbiota between different mosquito species, although interesting inter- and intra-species differences were detected. Additionally, our results showed deep divergences between genera, underlining microbiota specificity and adaptation to their host.

CONCLUSIONS: The comprehensive landscape of the bacterial microbiota components may ultimately provide crucial insights and novel targets for possible application of symbionts in innovative strategies for the control of vector borne diseases, globally named Symbiotic Control (SC), and suggesting that the holobiont of different mosquito species may significantly vary. Moreover, mosquito species are characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes.

RevDate: 2018-10-05
CmpDate: 2018-10-05

Tahir U, Sohail S, UH Khan (2017)

Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach.

Environmental science and pollution research international, 24(29):22914-22931.

Manipulation of bio-technological processes in treatment of dyestuffs has attracted considerable attention, because a large proportion of these synthetic dyes enter into natural environment during synthesis and dyeing operations that contaminates different ecosystems. Moreover, these dyestuffs are toxic and difficult to degrade because of their synthetic origin, durability, and complex aromatic molecular structures. Hence, bio-assisted phytoremediation has recently emerged as an innovative cleanup approach in which microorganisms and plants work together to transform xenobiotic dyestuffs into nontoxic or less harmful products. This manuscript will focus on competence and potential of plant-microbe synergistic systems for treatment of dyestuffs, their mixtures and real textile effluents, and effects of symbiotic relationship on plant performances during remediation process and will highlight their metabolic activities during bio-assisted phytodegradation and detoxification.

RevDate: 2018-10-04

Higuchi R, Song C, Hoshina R, et al (2018)

Endosymbiosis-related changes in ultrastructure and chemical composition of Chlorella variabilis (Archaeplastida, Chlorophyta) cell wall in Paramecium bursaria (Ciliophora, Oligohymenophorea).

European journal of protistology, 66:149-155 pii:S0932-4739(18)30081-6 [Epub ahead of print].

Chlorella variabilis, a symbiotic alga, is usually present in the cytoplasm of Paramecium bursaria, although it can be cultured in host-free conditions. Morphological and chemical properties of its cell wall were compared between its free-living and symbiotic states. Transmission electron microscopy (quick-freezing and freeze-substitution methods) revealed that the cell wall thickness of symbiotic C. variabilis was reduced to about half that of the free-living one. Chemical properties of the cell wall were examined by treatment with three fluorescent reagents (calcofluor white M2R, FITC-WGA, and FITC-LFA) having specific binding affinities to different polysaccharides. When the algae were re-introduced into Paramecium host cells, calcofluor fluorescence intensity reduced by about 50%. Calcofluor stains β-d-glucopyranose polysaccharides such as cellulose, N-acetylglucosamine, sialic acid, and glycosaminoglycans. Because treatment with cellulase showed no effect on calcofluor fluorescence intensity, we consider that cellulose is not majorly responsible for the stainability of calcofluor. Staining intensities of FITC-WGA and FITC-LFA were similar in the free-living and symbiotic conditions, suggesting that N-acetylglucosamine and sialic acid are also not responsible for the reduction in the stainability of calcofluor associated with intracellular symbiosis. The amount of glycosaminoglycans on the cell wall may decrease in C. variabilis present in the cytoplasm of P. bursaria.

RevDate: 2018-10-04

Tsikou D, Ramirez EE, Psarrakou IS, et al (2018)

A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation.

BMC plant biology, 18(1):217 pii:10.1186/s12870-018-1425-z.

BACKGROUND: Post-translational modification of receptor proteins is involved in activation and de-activation of signalling systems in plants. Both ubiquitination and deubiquitination have been implicated in plant interactions with pathogens and symbionts.

RESULTS: Here we present LjPUB13, a PUB-ARMADILLO repeat E3 ligase that specifically ubiquitinates the kinase domain of the Nod Factor receptor NFR5 and has a direct role in nodule organogenesis events in Lotus japonicus. Phenotypic analyses of three LORE1 retroelement insertion plant lines revealed that pub13 plants display delayed and reduced nodulation capacity and retarded growth. LjPUB13 expression is spatially regulated during symbiosis with Mesorhizobium loti, with increased levels in young developing nodules.

CONCLUSION: LjPUB13 is an E3 ligase with a positive regulatory role during the initial stages of nodulation in L. japonicus.

RevDate: 2018-10-04

Malolepszy A, Kelly S, Sørensen KK, et al (2018)

A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis.

eLife, 7: pii:38874 [Epub ahead of print].

Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.

RevDate: 2018-10-04

Zhu X, Cao Q, Sun L, et al (2018)

Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress.

Frontiers in plant science, 9:1363.

RevDate: 2018-10-04

Li H, Sosa-Calvo J, Horn HA, et al (2018)

Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants.

Proceedings of the National Academy of Sciences of the United States of America pii:1809332115 [Epub ahead of print].

Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming "attine" ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts' fungus gardens from pathogens. Here we reconstruct ant-Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant-Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genus Pseudonocardia Tracing the evolutionary trajectories of Pseudonocardia-maintaining mechanisms across attine ants reveals a continuum of adaptations. In Myrmicocrypta species, which retain many ancestral morphological and behavioral traits, Pseudonocardia occur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences in Pseudonocardia-maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with vertical Pseudonocardia transmission. Although the majority of attine ants are associated with Pseudonocardia, there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant-Pseudonocardia mutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate that Pseudonocardia have played a critical role in the evolution of ant fungiculture.

RevDate: 2018-10-04

Hecht LBB, Thompson PC, BM Rosenthal (2018)

Comparative demography elucidates the longevity of parasitic and symbiotic relationships.

Proceedings. Biological sciences, 285(1888): pii:rspb.2018.1032.

Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria, Plasmodium falciparum, and its mosquito vector, Anopheles gambiae, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of Trichinella spiralis, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (Exaiptasia pallida and Symbiodinium minutum). Concerted growth in potatoes and the agent of potato blight (Solanum tuberosum and Phytophthora infestans) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.

RevDate: 2018-10-04
CmpDate: 2018-10-04

Vidal MC, Sendoya SF, PS Oliveira (2016)

Mutualism exploitation: predatory drosophilid larvae sugar-trap ants and jeopardize facultative ant-plant mutualism.

Ecology, 97(7):1650-1657.

An open question in the evolutionary ecology of ant-plant facultative mutualism is how other members of the associated community can affect the interaction to a point where reciprocal benefits are disrupted. While visiting Qualea grandiflora shrubs to collect sugary rewards at extrafloral nectaries, tropical savanna ants deter herbivores and reduce leaf damage. Here we show that larvae of the fly Rhinoleucophenga myrmecophaga, which develop on extrafloral nectaries, lure potentially mutualistic, nectar-feeding ants and prey on them. Foraging ants spend less time on fly-infested foliage. Field experiments showed that predation (or the threat of predation) on ants by fly larvae produces cascading effects through three trophic levels, resulting in fewer protective ants on leaves, increased numbers of chewing herbivores, and greater leaf damage. These results reveal an undocumented mode of mutualism exploitation by an opportunistic predator at a plant-provided food source, jeopardizing ant-derived protection services to the plant. Our study documents a rather unusual case of predation of adult ants by a dipteran species and demonstrates a top-down trophic cascade within a generalized ant-plant mutualism.

RevDate: 2018-10-03
CmpDate: 2018-10-03

Liang X, Sun C, Chen B, et al (2018)

Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production.

Applied microbiology and biotechnology, 102(11):4951-4962.

Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes. High-yield lactic acid production can be achieved by the strain EMB156 from renewable biomass substrates under alkaline pretreatments. Single-molecule real-time (SMRT) sequencing technology revealed its 3.01 Mbp whole genome sequence. A total of 2956 protein-coding sequences, 65 tRNA genes, and 6 rRNA operons were predicted in the EMB156 chromosome. Remarkable genomic features responsible for lactic acid fermentation included key enzymes involved in the pentose phosphate (PP)/glycolytic pathway, and an alpha amylase and xylose isomerase were characterized in EMB156. This genomic information coincides with the phenotype of E. mundtii EMB156, reflecting its metabolic flexibility in efficient lactate fermentation, and established a foundation for future biotechnological application. Interestingly, enzyme activities of amylase were quite stable in high-pH broths, indicating a possible mechanism for strong EMB156 growth in an alkaline environment, thereby facilitating lactic acid production. Together, these findings implied that valuable lactic acid-producing bacteria can be discovered efficiently by screening under the extremely alkaline conditions, as exemplified by gut microbial symbionts of Lepidoptera insects.

RevDate: 2018-10-03
CmpDate: 2018-10-03

van Tienderen KM, SE van der Meij (2017)

Extreme mitochondrial variation in the Atlantic gall crab Opecarcinus hypostegus (Decapoda: Cryptochiridae) reveals adaptive genetic divergence over Agaricia coral hosts.

Scientific reports, 7:39461 pii:srep39461.

The effectiveness of migration in marine species exhibiting a pelagic larval stage is determined by various factors, such as ocean currents, pelagic larval stage duration and active habitat selection. Direct measurement of larval movements is difficult and, consequently, factors determining the gene flow patterns remain poorly understood for many species. Patterns of gene flow play a key role in maintaining genetic homogeneity in a species by dampening the effects of local adaptation. Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia). Preliminary data showed high genetic diversity on the COI gene for 19 Opecarcinus hypostegus specimens collected off Curaçao. In this study, an additional 176 specimens were sequenced and used to characterize the population structure along the leeward side of Curaçao. Extremely high COI genetic variation was observed, with 146 polymorphic sites and 187 unique haplotypes. To determine the cause of this high genetic diversity, various gene flow scenarios (geographical distance along the coast, genetic partitioning over depth, and genetic differentiation by coral host) were examined. Adaptive genetic divergence across Agariciidae host species is suggested to be the main cause for the observed high intra-specific variance, hypothesised as early signs of speciation in O. hypostegus.

RevDate: 2018-10-02

Giauque H, Connor EW, CV Hawkes (2018)

Endophyte traits relevant to stress tolerance, resource use, and habitat of origin predict effects on host plants.

The New phytologist [Epub ahead of print].

All terrestrial plants are colonized by foliar endophytic fungi that can affect plant growth and physiology, but predicting those effects on the plant host remains a challenge. Here, we examined three paradigms that potentially control how endophytes affect plant hosts: habitat adaptation, evolutionary history, and functional traits. We screened 35 plant-endophyte pairings in a microcosm experiment under well-watered and drought conditions with Panicum virgatum as the host. We related measured plant responses to fungal phylogenetic relatedness, characteristics of fungal habitats across a rainfall gradient, and functional traits of the fungi related to stress tolerance and resource use. Functional traits and habitat characteristics of the fungi predicted 26-53% of endophyte-mediated effects on measures of plant growth, physiology, and survival. Overall, survival was higher for plants grown with more stress-tolerant fungi and aboveground biomass was enhanced by fungi from warmer and drier habitats. Plant growth and physiology were also dependent on fungal resource use indicators; however, specific predictors depended on water availability. Simple ecological traits of foliar endophytic fungi observed in culture can translate to symbiotic lifestyles. These findings offer new insight and key testable predictions for likely pathways by which endophytes benefit the plant host. This article is protected by copyright. All rights reserved.

RevDate: 2018-10-02

Ledón-Rettig CC, Moczek AP, EJ Ragsdale (2018)

Diplogastrellus nematodes are sexually transmitted mutualists that alter the bacterial and fungal communities of their beetle host.

Proceedings of the National Academy of Sciences of the United States of America pii:1809606115 [Epub ahead of print].

A recent accumulation of studies has demonstrated that nongenetic, maternally transmitted factors are often critical to the health and development of offspring and can therefore play a role in ecological and evolutionary processes. In particular, microorganisms such as bacteria have been championed as heritable, symbiotic partners capable of conferring fitness benefits to their hosts. At the same time, parents may also pass various nonmicrobial organisms to their offspring, yet the roles of such organisms in shaping the developmental environment of their hosts remain largely unexplored. Here, we show that the nematode Diplogastrellus monhysteroides is transgenerationally inherited and sexually transmitted by the dung beetle Onthophagus taurus By manipulating artificial chambers in which beetle offspring develop, we demonstrate that the presence of D. monhysteroides nematodes enhances the growth of beetle offspring, empirically challenging the paradigm that nematodes are merely commensal or even detrimental to their insect hosts. Finally, our research presents a compelling mechanism whereby the nematodes influence the health of beetle larvae: D. monhysteroides nematodes engineer the bacterial and fungal communities that also inhabit the beetle developmental chambers, including specific taxa known to be involved in biomass degradation, possibly allowing larval beetles better access to their otherwise recalcitrant, plant-based diet. Thus, our findings illustrate that nongenetic inheritance can include intermediately sized organisms that live and proliferate in close association with, and in certain cases enhance, the development of their hosts' offspring.

RevDate: 2018-10-01

Liu H, Stephens TG, González-Pech RA, et al (2018)

Erratum: Publisher Correction: Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis.

Communications biology, 1:126 pii:117.

[This corrects the article DOI: 10.1038/s42003-018-0098-3.].

RevDate: 2018-10-01

Hoeksema JD, Bever JD, Chakraborty S, et al (2018)

Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism.

Communications biology, 1:116 pii:120.

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

RevDate: 2018-10-01

Liu H, Stephens TG, González-Pech RA, et al (2018)

Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis.

Communications biology, 1:95 pii:98.

Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis.

RevDate: 2018-10-01

Birnbaum C, Morald TK, Tibbett M, et al (2018)

Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms.

Ecology and evolution, 8(17):8652-8664 pii:ECE34397.

The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen-fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non-native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field-conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia-forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (A. microbotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in A. microbotrya and AMF colonization in A. acuminata which could be indicative of legumes' increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground.

RevDate: 2018-10-01

Mohammed M, Jaiswal SK, Sowley ENK, et al (2018)

Symbiotic N2 Fixation and Grain Yield of Endangered Kersting's Groundnut Landraces in Response to Soil and Plant Associated Bradyrhizobium Inoculation to Promote Ecological Resource-Use Efficiency.

Frontiers in microbiology, 9:2105.

Kersting's groundnut (Macrotyloma geocarpum Harms) is a neglected, endangered food and medicinal legume in Africa. Efforts to harness the benefits of the legume-rhizobia symbiosis have focused on few major legumes to the neglect of underutilized ones such as Kersting's groundnut. This study assessed plant growth, N-fixed and grain yield of five Kersting's groundnut landraces in response to inoculation with Bradyrhizobium strain CB756 at two locations in the Northern Region of Ghana. The transferability of cowpea-derived Simple Sequence Repeat (SSR) markers to Kersting's groundnut was also assessed. The symbiotic results revealed significant variation in nodulation, shoot biomass, δ15N, percent N derived from fixation, amount of N-fixed and soil N uptake. The cross-taxa SSR primers revealed monomorphic bands with sizes within the expected range in all the Kersting's groundnut landraces. The results of the aligned nucleotide sequences revealed marked genetic variability among the landraces. Kersting's groundnut was found to be a low N2-fixer, with 28-45% of its N derived from fixation at Nyankpala and 15-29% at Savelugu. Nitrogen contribution was 28-50 kg N-fixed·ha-1 at Nyankpala, and 12-32 kg N-fixed·ha-1 at Savelugu. Uninoculated plants of the Kersting's groundnut landraces Puffeun, Dowie, Sigiri and Boli, respectively, contributed 22, 16, 13, and 15 kg N-fixed·ha-1 from symbiosis at Savelugu as opposed to 89, 82, 69, and 89 kg N·ha-1 from soil. Landrace Puffeun was highly compatible with the introduced strain CB756 if based on δ15N and %Ndfa values, while Dowie, Funsi and Boli showed greater compatibility with native rhizobia in Ghanaian soils. The unimproved Kersting's groundnut in association with soil microsymbionts could produce grain yield of 1,137-1,556 kg ha-1 at Nyankpala, and 921-1,192 kg ha-1 at Savelugu. These findings suggest the need for further work to improve the efficiency of the Kersting's groundnut-rhizobia symbiosis for increased grain yield and resource-use efficiency in cropping systems.

RevDate: 2018-10-01

Meng F, Seredych M, Chen C, et al (2018)

MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney.

ACS nano [Epub ahead of print].

The wearable artificial kidney can deliver continuous ambulatory dialysis for more than 3 million patients with end-stage renal disease. However, the efficient removal of urea is a key challenge in miniaturizing the device and making it light and small enough for practical use. Here, we show that two-dimensional titanium carbide (MXene) with the composition of Ti3C2T x, where T x represents surface termination groups such as -OH, -O-, and -F, can adsorb urea, reaching 99% removal efficiency from aqueous solution and 94% from dialysate at the initial urea concentration of 30 mg/dL, with the maximum urea adsorption capacity of 10.4 mg/g at room temperature. When tested at 37 °C, we achieved a 2-fold increase in urea removal efficiency from dialysate, with the maximum urea adsorption capacity of 21.7 mg/g. Ti3C2T x showed good hemocompatibility; it did not induce cell apoptosis or reduce the metabolizing cell fraction, indicating no impact on cell viability at concentrations of up to 200 μg/mL. The biocompatibility of Ti3C2T x and its selectivity for urea adsorption from dialysate open a new opportunity in designing a miniaturized dialysate regeneration system for a wearable artificial kidney.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Bultman TL, McNeill MR, Krueger K, et al (2018)

Complex Interactions among Sheep, Insects, Grass, and Fungi in a Simple New Zealand Grazing System.

Journal of chemical ecology, 44(10):957-964.

Epichloë fungi (Ascomycota) live within aboveground tissues of grasses and can have important implications for natural and managed ecosystems through production of alkaloids. Nonetheless, vertebrate herbivores may possess traits, like oral secretions, that mitigate effects of alkaloids. We tested if sheep saliva mitigates effects of Epichloë alkaloids on a beetle pest of perennial ryegrass (Lolium perenne L.) in a New Zealand pasture setting. Plants with one of several fungal isolates were clipped with scissors, grazed by sheep, or clipped with sheep saliva applied to cut ends of stems. We then assessed feeding damage by Argentine stem weevils on blade segments collected from experimental plants. We found that clipping plants induced synthesis of an alkaloid that reduces feeding by beetles and that sheep saliva mitigates this effect. Unexpectedly, the alkaloid (perloline) that explains variation in beetle feeding is one produced not by the endophyte, but rather by the plant. Yet, these effects depended upon fungal isolate. Such indirect, complex interactions may be much more common in both managed and natural grassland systems than typically thought and could have implications for managing grazing systems.

RevDate: 2018-10-01
CmpDate: 2018-09-28

Ali H, Muhammad A, Y Hou (2018)

Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping.

Journal of microbiology and biotechnology, 28(5):796-808.

The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia-mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein (wsp) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles (ftsZ-234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia. The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima, which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima. Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Floriano AM, Castelli M, Krenek S, et al (2018)

The Genome Sequence of "Candidatus Fokinia solitaria": Insights on Reductive Evolution in Rickettsiales.

Genome biology and evolution, 10(4):1120-1126.

"Candidatus Fokinia solitaria" is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the "Candidatus Midichloriaceae" family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family "Candidatus Midichloriaceae") or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; "Candidatus Fokinia solitaria" could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Klinger CM, Paoli L, Newby RJ, et al (2018)

Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends.

Genome biology and evolution, 10(4):1019-1038.

Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Hönigschmid P, Bykova N, Schneider R, et al (2018)

Evolutionary Interplay between Symbiotic Relationships and Patterns of Signal Peptide Gain and Loss.

Genome biology and evolution, 10(3):928-938.

Can orthologous proteins differ in terms of their ability to be secreted? To answer this question, we investigated the distribution of signal peptides within the orthologous groups of Enterobacterales. Parsimony analysis and sequence comparisons revealed a large number of signal peptide gain and loss events, in which signal peptides emerge or disappear in the course of evolution. Signal peptide losses prevail over gains, an effect which is especially pronounced in the transition from the free-living or commensal to the endosymbiotic lifestyle. The disproportionate decline in the number of signal peptide-containing proteins in endosymbionts cannot be explained by the overall reduction of their genomes. Signal peptides can be gained and lost either by acquisition/elimination of the corresponding N-terminal regions or by gradual accumulation of mutations. The evolutionary dynamics of signal peptides in bacterial proteins represents a powerful mechanism of functional diversification.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Ghorbani A, Razavi SM, Ghasemi Omran VO, et al (2018)

Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.).

Plant biology (Stuttgart, Germany), 20(4):729-736.

Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants. In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated. Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non-inoculated roots. P. indica further significantly improved K+ content and reduced Na+ level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F0 and qP increased but Fm , Fv /Fm , F'v /F'm and NPQ declined in the controls, while inoculation with P. indica improved these values. The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Wang SL, Li YL, Han Z, et al (2018)

Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma.

Marine drugs, 16(3): pii:md16030080.

N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L-1 culture) with a stable activity in a wide pH (5.0-9.0) and temperature (40-60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Chevignon G, Boyd BM, Brandt JW, et al (2018)

Culture-Facilitated Comparative Genomics of the Facultative Symbiont Hamiltonella defensa.

Genome biology and evolution, 10(3):786-802.

Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Nowak BF, JM Archibald (2018)

Opportunistic but Lethal: The Mystery of Paramoebae.

Trends in parasitology, 34(5):404-419.

Paramoebae are enigmatic single-celled eukaryotes that can be opportunistic pathogens of marine animals. For example, amoebic gill disease ravages farmed salmonids worldwide, causing tens of millions of dollars in losses annually. Although paramoebae can be found associated with animals ranging from fish and lobster to molluscs and sea urchins, how and how often they actually cause disease is unknown. Here we review recent progress towards understanding the biology and ecology of paramoebid species and the eukaryotic endosymbionts that live inside them. Genomic and transcriptomic sequence data serve as a platform upon which future research on paramoebiasis can build.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Senra MVX, Sung W, Ackerman M, et al (2018)

An Unbiased Genome-Wide View of the Mutation Rate and Spectrum of the Endosymbiotic Bacterium Teredinibacter turnerae.

Genome biology and evolution, 10(3):723-730.

Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion-deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10-9 per site per generation and indel rate of 1.55 × 10-10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Owen CD, Tailford LE, Monaco S, et al (2017)

Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus.

Nature communications, 8(1):2196 pii:10.1038/s41467-017-02109-8.

Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.

RevDate: 2018-10-01
CmpDate: 2018-10-01

Eleftherianos I, Yadav S, Kenney E, et al (2018)

Role of Endosymbionts in Insect-Parasitic Nematode Interactions.

Trends in parasitology, 34(5):430-444.

Endosymbiotic bacteria exist in many animals where they develop relationships that affect certain physiological processes in the host. Insects and their nematode parasites form great models for understanding the genetic and molecular basis of immune and parasitic processes. Both organisms contain endosymbionts that possess the ability to interfere with certain mechanisms of immune function and pathogenicity. This review summarizes recent information on the involvement of insect endosymbionts in the response to parasitic nematode infections, and the influence of nematode endosymbionts on specific aspects of the insect immune system. Analyzing this information will be particularly useful for devising endosymbiont-based strategies to intervene in insect immunity or nematode parasitism for the efficient management of noxious insects in the field.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Triki Z, Wismer S, Levorato E, et al (2018)

A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations.

Global change biology, 24(1):481-489.

Coral reef ecosystems are declining worldwide and under foreseeable threat due to climate change, resulting in significant changes in reef communities. It is unknown, however, how such community changes impact interspecific interactions. Recent extreme weather events affecting the Great Barrier Reef, that is, consecutive cyclones and the 2016 El Niño event, allowed us to explore potential consequences in the mutualistic interactions involving cleaner fish Labroides dimidiatus (hereafter "cleaner"). After the perturbations, cleaner densities were reduced by 80%, disproportionally compared to the variety of reef fish clients from which cleaners remove ectoparasites. Consequently, shifts in supply and demand yielded an increase in the clients' demand for cleaning. Therefore, clients became less selective toward cleaners, whereas cleaners were able to choose from a multitude of partners. In parallel, we found a significant decline in the ability of cleaners to manage their reputation and to learn to prioritize ephemeral food sources to maximize food intake in laboratory experiments. In other words, cleaners failed to display the previously documented strategic sophistication that made this species a prime example for fish intelligence. In conclusion, low population densities may cause various effects on individual behavior, and as a consequence, interspecific interactions. At the same time, our data suggest that a recovery of population densities would cause a recovery of previously described interaction patterns and cleaner strategic sophistication within the lifetime of individuals.

RevDate: 2018-10-02
CmpDate: 2018-10-01

Tusco R, Jacomin AC, Jain A, et al (2017)

Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses.

Nature communications, 8(1):1264 pii:10.1038/s41467-017-01287-9.

Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans.

RevDate: 2018-10-02
CmpDate: 2018-10-02

Fricke EC, Tewksbury JJ, HS Rogers (2018)

Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network.

Global change biology, 24(1):e190-e200.

Following defaunation, the loss of interactions with mutualists such as pollinators or seed dispersers may be compensated through increased interactions with remaining mutualists, ameliorating the negative cascading impacts on biodiversity. Alternatively, remaining mutualists may respond to altered competition by reducing the breadth or intensity of their interactions, exacerbating negative impacts on biodiversity. Despite the importance of these responses for our understanding of the dynamics of mutualistic networks and their response to global change, the mechanism and magnitude of interaction compensation within real mutualistic networks remains largely unknown. We examined differences in mutualistic interactions between frugivores and fruiting plants in two island ecosystems possessing an intact or disrupted seed dispersal network. We determined how changes in the abundance and behavior of remaining seed dispersers either increased mutualistic interactions (contributing to "interaction compensation") or decreased interactions (causing an "interaction deficit") in the disrupted network. We found a "rich-get-richer" response in the disrupted network, where remaining frugivores favored the plant species with highest interaction frequency, a dynamic that worsened the interaction deficit among plant species with low interaction frequency. Only one of five plant species experienced compensation and the other four had significant interaction deficits, with interaction frequencies 56-95% lower in the disrupted network. These results do not provide support for the strong compensating mechanisms assumed in theoretical network models, suggesting that existing network models underestimate the prevalence of cascading mutualism disruption after defaunation. This work supports a mutualist biodiversity-ecosystem functioning relationship, highlighting the importance of mutualist diversity for sustaining diverse and resilient ecosystems.

RevDate: 2018-09-30

Mansfield KM, TD Gilmore (2018)

Innate immunity and cnidarian-Symbiodiniaceae mutualism.

Developmental and comparative immunology pii:S0145-305X(18)30381-1 [Epub ahead of print].

The phylum Cnidaria (sea anemones, corals, hydra, jellyfish) is one the most distantly related animal phyla to humans, and yet cnidarians harbor many of the same cellular pathways involved in innate immunity in mammals. In addition to its role in pathogen recognition, the innate immune system has a role in managing beneficial microbes and supporting mutualistic microbial symbioses. Some corals and sea anemones undergo mutualistic symbioses with photosynthetic algae in the family Symbiodiniaceae. These symbioses can be disrupted by anthropogenic disturbances of ocean environments, which can have devastating consequences for the health of coral reef ecosystems. Several studies of cnidarian-Symbiodiniaceae symbiosis have implicated proteins in the host immune system as playing a role in both symbiont tolerance and loss of symbiosis (i.e., bleaching). In this review, we critically evaluate current knowledge about the role of host immunity in the regulation of symbiosis in cnidarians.

RevDate: 2018-09-29

Prasad S, Rastogi B, Shah A, et al (2018)

DTI in essential tremor with and without rest tremor: Two sides of the same coin?.

RevDate: 2018-09-29

Li X, Zheng J, Yang Y, et al (2018)

INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development.

Plant physiology pii:pp.18.01018 [Epub ahead of print].

Nodulation is crucial for biological nitrogen fixation (BNF) in legumes, but the molecular mechanisms underlying BNF have remained elusive. Here, we cloned a candidate gene underlying a major nodulation QTL in soybean (Glycine max), INCREASING NODULE SIZE1 (GmINS1). GmINS1 encodes a cell wall a β-expansin, and is primarily expressed in vascular bundles, along with cortical and parenchyma cells of nodules. Four SNPs distinguishing the two parents were found in the GmINS1 promoter region. Among them, SNP A/C has a significant effect on GmINS1 expression in the parental genotype P2, based on GUS activity and promoter deletion analysis. The expression of GmINS1 and the P2 genotype promoter were strongly associated with nodule development, not only in the parents but also in 40 progeny lines and 40 genotypes selected from a soybean core collection. Overexpression of GmINS1 resulted in increases in the number, biomass, infection cell abundance, and nitrogenase activity of large nodules, and subsequently changed the N content and biomass of soybean plants. GmINS1 suppression via RNAi had the opposite effect. Double suppression of GmEXPB2 and GmINS1 dramatically inhibited soybean nodulation. Our results reveal that GmINS1 is a critical gene in nodule development, and that GmEXPB2 and GmINS1 synergistically control nodulation in soybean. Our findings shed light on the genetic basis of soybean nodulation, and provide a candidate gene for optimizing BNF capacity through molecular breeding in soybean.

RevDate: 2018-09-28

Pouncey AL, Scott AJ, Alexander JL, et al (2018)

Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment.

Ecancermedicalscience, 12:868 pii:can-12-868.

The gut microbiota exists in a dynamic balance between symbiosis and pathogenesis and can influence almost any aspect of host physiology. Growing evidence suggests that the gut microbiota not only plays a key role in carcinogenesis but also influences the efficacy and toxicity of anticancer therapy. The microbiota modulates the host response to chemotherapy via numerous mechanisms, including immunomodulation, xenometabolism and alteration of community structure. Furthermore, exploitation of the microbiota offers opportunities for the personalisation of chemotherapeutic regimens and the development of novel therapies. In this article, we explore the host-chemotherapeutic microbiota axis, from basic science to clinical research, and describe how it may change the face of cancer treatment.

RevDate: 2018-09-27

Hinzke T, Kleiner M, S Markert (2018)

Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria-Invertebrate Symbioses.

Methods in molecular biology (Clifton, N.J.), 1841:319-334.

Owing to high sample complexity, metaproteomic investigations on bacteria-animal symbioses with two or more uncultured partners can be challenging. A selective isolation or enrichment of distinct (sub-)populations within those consortia can solve this problem. Subsequent discrete proteomic analyses benefit from increased sample purity and higher proteome coverage for each of the individual organisms. Here, we describe centrifugation-based methods that allow for a separation of the host and its bacterial symbiont population(s), or even for an enrichment of distinct symbiotic cell cycle stages in the deep-sea mussels Bathymodiolus azoricus and B. thermophilus, the gutless oligochaete Olavius algarvensis and the deep-sea tube worm Riftia pachyptila, respectively.

RevDate: 2018-09-27

Lorite MJ, Estrella MJ, Escaray FJ, et al (2018)

The Rhizobia-Lotus Symbioses: Deeply Specific and Widely Diverse.

Frontiers in microbiology, 9:2055.

The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.

RevDate: 2018-09-27
CmpDate: 2018-09-27

Liu J, Yu H, Huang Y, et al (2018)

Complete genome sequence of a novel bacteriophage infecting Bradyrhizobium diazoefficiens USDA110.

Science China. Life sciences, 61(1):118-121.

RevDate: 2018-09-26

Hage-Ahmed K, Rosner K, S Steinkellner (2018)

Arbuscular mycorrhizal fungi and their response to pesticides.

Pest management science [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plant species and can provide multiple benefits to the host plant. In agro-ecosystems, the abundance and community structure of AMF are affected by agricultural management practices. This review describes and discusses the current knowledge on the effects of inorganic and organic chemical pesticides on AMF in the conflicting area between agricultural use and environmental concerns. Variable effects have been reported following chemical pesticide use, ranging from neutral to positive and negative. Moreover, a species-specific reaction has been documented. The reported effects of pesticides on arbuscular mycorrhizal symbiosis are very diverse, and even when the same substance is investigated, the results are often contradictory. These effects depend on many parameters, such as the active substance, the mode of action, the mode of application and the dosage. In the field, determinants such as the physico-chemical behavior of the active substances, the soil type and other soil microorganisms contribute to the fate of pesticides and thus the amount of active substances to which AMF are exposed. This review highlights that the fate of AMF following pesticide use needs to be addressed in a broader agro-ecosystem context. This article is protected by copyright. All rights reserved.

RevDate: 2018-09-26

Cornejo-Castillo FM, Del Carmen Muñoz-Marin M, Turk-Kubo KA, et al (2018)

UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N2 -fixing cyanobacterium Candidatus Atelocyanobacterium thalassa.

Environmental microbiology [Epub ahead of print].

The symbiotic unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is one of the most abundant and widespread nitrogen (N2)-fixing cyanobacteria in the ocean. Although it remains uncultivated, multiple sublineages have been detected based on partial nitrogenase (nifH) gene sequences, including the four most commonly detected sublineages UCYN-A1, UCYN-A2, UCYN-A3 and UCYN-A4. However, very little is known about UCYN-A3 beyond the nifH sequences from nifH gene diversity surveys. In this study, single cell sorting, DNA sequencing, qPCR and CARD-FISH assays revealed discrepancies involving the identification of sublineages, which led to new information on the diversity of the UCYN-A symbiosis. 16S rRNA and nifH gene sequencing on single sorted cells allowed us to identify the 16S rRNA gene of the uncharacterized UCYN-A3 sublineage. We designed new CARD-FISH probes that allowed us to distinguish and observe UCYN-A2 in a coastal location (SIO Pier; San Diego) and UCYN-A3 in an open ocean location (Station ALOHA; Hawaii). Moreover, we reconstructed about 13% of the UCYN-A3 genome from Tara Oceans metagenomic data. Finally, our findings unveil the UCYN-A3 symbiosis in open ocean waters suggesting that the different UCYN-A sublineages are distributed along different size fractions of the plankton defined by the cell-size ranges of their prymnesiophyte hosts. This article is protected by copyright. All rights reserved.

RevDate: 2018-09-26

Ankrah NYD, Chouaia B, AE Douglas (2018)

The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes.

mBio, 9(5): pii:mBio.01433-18.

Various intracellular bacterial symbionts that provide their host with essential nutrients have much-reduced genomes, attributed largely to genomic decay and relaxed selection. To obtain quantitative estimates of the metabolic function of these bacteria, we reconstructed genome- and transcriptome-informed metabolic models of three xylem-feeding insects that bear two bacterial symbionts with complementary metabolic functions: a primary symbiont, Sulcia, that has codiversified with the insects, and a coprimary symbiont of distinct taxonomic origin and with different degrees of genome reduction in each insect species (Hodgkinia in a cicada, Baumannia in a sharpshooter, and Sodalis in a spittlebug). Our simulations reveal extensive bidirectional flux of multiple metabolites between each symbiont and the host, but near-complete metabolic segregation (i.e., near absence of metabolic cross-feeding) between the two symbionts, a likely mode of host control over symbiont metabolism. Genome reduction of the symbionts is associated with an increased number of host metabolic inputs to the symbiont and also reduced metabolic cost to the host. In particular, Sulcia and Hodgkinia with genomes of ≤0.3 Mb are calculated to recycle ∼30 to 80% of host-derived nitrogen to essential amino acids returned to the host, while Baumannia and Sodalis with genomes of ≥0.6 Mb recycle 10 to 15% of host nitrogen. We hypothesize that genome reduction of symbionts may be driven by selection for increased host control and reduced host costs, as well as by the stochastic process of genomic decay and relaxed selection.IMPORTANCE Current understanding of many animal-microbial symbioses involving unculturable bacterial symbionts with much-reduced genomes derives almost entirely from nonquantitative inferences from genome data. To overcome this limitation, we reconstructed multipartner metabolic models that quantify both the metabolic fluxes within and between three xylem-feeding insects and their bacterial symbionts. This revealed near-complete metabolic segregation between cooccurring bacterial symbionts, despite extensive metabolite exchange between each symbiont and the host, suggestive of strict host controls over the metabolism of its symbionts. We extended the model analysis to investigate metabolic costs. The positive relationship between symbiont genome size and the metabolic cost incurred by the host points to fitness benefits to the host of bearing symbionts with small genomes. The multicompartment metabolic models developed here can be applied to other symbioses that are not readily tractable to experimental approaches.

RevDate: 2018-09-25

Varga S, CD Soulsbury (2018)

Arbuscular mycorrhizal fungi change host plant DNA methylation systemically.

Plant biology (Stuttgart, Germany) [Epub ahead of print].

DNA methylation is an important epigenetic mechanism regulating gene expression in plants. DNA methylation has been shown to vary among species and also among plant tissues. However, no study has evaluated whether arbuscular mycorrhizal (AM) fungi affect DNA methylation levels in a tissue-specific manner. We investigated whether symbiosis with AM fungi affects DNA methylation in the host, focusing on different plant tissues (roots vs. leaves) and across time. We carried out a 6-month pot experiment using Geranium robertianum in symbiosis with the AM fungus Funneliformis mosseae. Our results show that the pattern of total DNA methylation differed between leaves and roots and was related to when plants were harvested, confirming that DNA methylation is a process that occurs dynamically throughout an organism's lifetime. More importantly, the presence of AM fungus in roots of our experimental plants had a positive effect on total DNA methylation in both tissues. This study shows that colonisation by AM fungi can affect DNA methylation levels in their hosts and that plant DNA methylation varies in an age- and tissue-specific manner. This article is protected by copyright. All rights reserved.

RevDate: 2018-09-25

Berrabah F, Ratet P, B Gourion (2018)

Legume nodule: massive infection in the absence of defense induction.

Molecular plant-microbe interactions : MPMI [Epub ahead of print].

Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs: the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active and do not develop defense reactions. Here we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.

RevDate: 2018-09-25

Li M, Wang R, Tian H, et al (2018)

Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.

Mycorrhiza pii:10.1007/s00572-018-0868-2 [Epub ahead of print].

The influence of arbuscular mycorrhizal (AM) colonization on the expression of genes in the roots of wheat (Triticum aestivum L.) at the transcriptome level is largely unknown. A pot experiment was established to study the responses of the transcriptome profile in the roots of wheat to colonization by the AM fungus Rhizophagus irregularis using high through-put sequencing methods. The results indicated that the expression of 11,746 genes was regulated by AM colonization, and 64.7% of them were up-regulated genes. 1106 genes were only expressed in roots colonized by AM fungi, and 108 genes were only expressed in non-mycorrhizal roots. The differentially expressed genes (DEGs) were primarily distributed on the 2B, 3B, 2A, 2D, and 5B chromosomes of wheat. The DEGs (including both up- and down- regulated) mainly located on membranes, and functioned in nucleotide binding and transferase activity during cellular protein modification and biosynthetic processes. The data revealed that AM colonization up-regulated genes involved in the phenylpropanoid biosynthesis pathway and transcription factors which play vital roles in protecting plants from biotic or abiotic stresses. A number of key genes involved in molecular signal biosynthesis and recognition, epidermal cell colonization and arbuscule formation, carbon and nutrients exchange during AM symbiosis were found. All the ammonium transporter (AMT), iron-phytosiderophore transporter, boron, zinc, and magnesium transporter genes found in our study were up-regulated DEGs. One new AM-specific induced AMT and three new AM-specific induced nitrate transporter (NRT) genes were found in the roots of wheat colonized by AM fungi, even though a negative growth response of wheat to AM colonization occurred. The present study provided new information which is important for understanding the mechanisms behind the development and function of the symbiosis between wheat and AM fungi.

RevDate: 2018-09-25

Linden CV, C Corbet (2018)

Killing two birds with one stone: Blocking the mitochondrial pyruvate carrier to inhibit lactate uptake by cancer cells and radiosensitize tumors.

Molecular & cellular oncology, 5(4):e1465016 pii:1465016.

Lactate-based metabolic symbiosis between glycolytic and oxidative cancer cells is known to facilitate tumor growth. We have recently demonstrated that 7ACC2 blocks extracellular lactate uptake via the inhibition of mitochondrial pyruvate carrier. 7ACC2 also prevents compensatory glucose oxidation, induces tumor reoxygenation and potentiates radiotherapy, making it a promising anticancer drug.

RevDate: 2018-09-25

Wang X, Luo Y, Liu D, et al (2018)

Complete genome sequence of the Robinia pseudoacacia L. symbiont Mesorhizobium amorphae CCNWGS0123.

Standards in genomic sciences, 13:18 pii:321.

Mesorhizobium amorphae CCNWGS0123 was isolated in 2006, from effective nodules of Robinia pseudoacacia L. grown in lead-zinc mine tailing site, in Gansu Province, China. M. amorphae CCNWGS0123 is an aerobic, Gram-negative, non-spore-forming rod strain. This paper characterized M. amorphae CCNWGS0123 and presents its complete genome sequence information and genome annotation. The 7,374,589 bp long genome which encodes 7136 protein-coding genes and 63 RNA coding genes, contains one chromosome and four plasmids. Moreover, a chromosome with no gaps was assembled.

RevDate: 2018-09-26
CmpDate: 2018-09-26

Dinh C, Farinholt T, Hirose S, et al (2018)

Lectins modulate the microbiota of social amoebae.

Science (New York, N.Y.), 361(6400):402-406.

The social amoeba Dictyostelium discoideum maintains a microbiome during multicellular development; bacteria are carried in migrating slugs and as endosymbionts within amoebae and spores. Bacterial carriage and endosymbiosis are induced by the secreted lectin discoidin I that binds bacteria, protects them from extracellular killing, and alters their retention within amoebae. This altered handling of bacteria also occurs with bacteria coated by plant lectins and leads to DNA transfer from bacteria to amoebae. Thus, lectins alter the cellular response of D. discoideum to bacteria to establish the amoebae's microbiome. Mammalian cells can also maintain intracellular bacteria when presented with bacteria coated with lectins, so heterologous lectins may induce endosymbiosis in animals. Our results suggest that endogenous or environmental lectins may influence microbiome homeostasis across eukaryotic phylogeny.

RevDate: 2018-09-26
CmpDate: 2018-09-26

Li J, Sun Y, Zhang X, et al (2018)

A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization.

Chemosphere, 209:392-400.

Arbuscular mycorrhizal fungi (AMF), ubiquitous symbiotic fungi associated with the majority of terrestrial plants, were demonstrated to play important roles in arsenic (As) translocation and transformation in the plant-soil continuum, and substantially influence plant As tolerance. However, the direct involvement of AMF in As methylation and volatilization and their molecular mechanisms remain unsolved. Here, an arsenite methyltransferase gene RiMT-11 was identified and characterized from AM fungus Rhizophagus irregularis. Heterologous expression of RiMT-11 enhanced arsenite resistance of E. coli (Δars) through methylating As into monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and ultimately volatile trimethyl arsine (TMAs). In a two-compartment in vitro monoxenic cultivation system, methylated and volatile As were also detected from AM symbioses with arsenate addition, accompanied by strong up-regulation of RiMT-11 expression in extraradical hyphae. The present study provided direct evidence and illustrated an underlying mechanism of As methylation and volatilization by AMF, leading to a deeper insight into the role of AMF in As biogeochemical cycling.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )