picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
01 Apr 2025 at 02:00
HITS:
32336
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 01 Apr 2025 at 02:00 Created: 

Symbiosis

Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: ( symbiosis[tiab] OR symbiotic[tiab] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-03-29
CmpDate: 2025-03-29

Jährig J, Kleyböcker A, Kraus F, et al (2025)

Innovative pre-treatments for reverse osmosis to reclaim water from biotech and municipal wastewater for the industrial symbiosis in Kalundborg.

Water science and technology : a journal of the International Association on Water Pollution Research, 91(6):698-713.

The challenge of water reclamation using membranes in this study was the quite unique wastewater composition resulting from a high share of biotech wastewater. The high content of organic matter and high concentrations of calcium, bicarbonate, and sulphate were considered as challenging for membrane processes. Consequently, an innovative ultra-tight ultrafiltration (u-t UF) membrane was developed and tested on-site at pilot scale. In comparison, a conventional UF and an open nanofiltration (NF) were piloted. The aim was to find the best pre-treatment option for reverse osmosis (RO) to reduce fouling and scaling and produce fit-for-purpose water; for example, cooling. Overall, the quality of the currently used water source was surpassed by the pilot plant. Only a standard post-treatment of the RO permeate was necessary for stabilisation. Results indicated that denser membranes only minimally reduced fouling of RO. An assessment comparing the treatment trains in a life cycle assessment using the data collected from the pilot operation (UF/NF operating settings, RO plant performance, and the design of multi-stage industrial scale RO) revealed lower greenhouse gas emissions compared to seawater desalination. However, if the RO brine treatment becomes mandatory, the greenhouse gas emissions from water reclamation and supply will be higher than those from freshwater supply.

RevDate: 2025-03-29
CmpDate: 2025-03-29

Arfah RA, Ahmad A, Khairunnur S, et al (2025)

Isolation of Protein and Peptides from Symbiont Bacteria of Green Algae, Caulerpa lentillifera and Their Potency as Anticancer.

Asian Pacific journal of cancer prevention : APJCP, 26(3):767-774 pii:91557.

OBJECTIVE: Algae contain many symbiotic bacteria, often considered pollutants in algal cultivation. Recent studies indicate that these connections enhance the longevity of both organisms. Researching the bioactive metabolites of marine bacteria has emerged as a promising strategy for drug discovery. Green algae, including Caulerpa lentillifera, have anticancer activity and possess antioxidant qualities. The research emphasizes the isolation and identification of beneficial proteins from symbiotic bacteria, particularly Caulerpa lentillifera.

METHODS: The stages of the research included isolation and identification of the endophytic bacteria of the green alga symbiont C. lentillifera, isolation of protein from the bacterial symbiont, fractionation, hydrolysis, ultrafiltration of protein into peptides, and testing for activity. Screening activities used the BSLT to obtain the value of LC50, and the mitotic test of the sea urchin zygote cell Tripneustes gratilla Linn to find the value of IC50.

RESULTS: The results of this study indicated that the bacterial symbiont of the algae C. lentillifera was a species of Cobetia marina strain CL2-2. The peptide with molecular weight < 3 kDa from Cobetia marina strain CL2-2 was active. The peptide was from protein deposited with 40-60% saturated ammonium sulfate and hydrolyzed using pepsin enzyme. BSLT toxicity tests indicate that peptides with a molecular weight of less than 3 kDa showed significant toxicity, indicated by an LC50 value of 4.061 ppm. In a mitotic cytotoxicity test involving sea urchin zygote cells, peptides with a molecular weight of less than 3 kDa indicated significant cytotoxic activity, resulting in an IC50 value of 7.236 μg/mL.

CONCLUSION: The bioactive peptide with molecular weight of less than 3 kDa resulting from protein hydrolysis isolated from the green algae symbiont C. lentillifera has the potential as an anticancer agent.

RevDate: 2025-03-29

Gotze CR, Dungan AM, van de Meene AML, et al (2025)

Differential aggregation patterns of Endozoicomonas within tissues of the coral Acropora loripes.

The ISME journal pii:8099496 [Epub ahead of print].

Bacteria in the genus Endozoicomonas are well-known coral symbionts commonly found as clusters within tissues of several coral species. Mapping the spatial distribution of these microbial communities is critical to gaining a holistic understanding of the potential role they may play within the coral host. This study focuses on characterizing bacterial aggregates associated with the common reef-building coral, Acropora loripes, from the central Great Barrier Reef, Australia. A conventional cultivation-based method was employed to establish a pure culture collection of 11 undescribed Endozoicomonas strains isolated from A. loripes. Subsequent 16S rRNA gene amplicon sequencing revealed their classification into two distinct phylogenetic clades. To resolve their spatial distribution in hospite, clade-specific fluorescence in situ hybridization probes were designed. Aggregates were consistently observed in the gastrodermal tissue layers surrounding the upper and lower gastrovascular cavity and were predominantly formed by cells from the same phylogenetic clade, with a minor proportion of aggregates formed by Endozoicomonas from both targeted clades. Furthermore, a clear distinction in aggregation pattern was observed; one clade exhibited clusters with regular and contained growth patterns, whereas the other formed clusters lacking clear boundaries and having irregular shapes. Scanning electron microscopy revealed the presence of a membrane of unknown origin associated with bacterial aggregates in two instances, suggesting potential structural or functional differences in these aggregates. These morphological differences highlight the importance of further investigations into the mechanisms governing bacterial aggregate formation in corals.

RevDate: 2025-03-28

Ang WSL, Blaszynski MM, Cai JB, et al (2025)

Genome sequences of two cyanobacteria strains isolated from hornworts.

Microbiology resource announcements [Epub ahead of print].

We report two complete genome assemblies of symbiotic cyanobacteria isolated from the hornwort species Notothylas orbicularis and Phaeoceros carolinianus. These new datasets will facilitate future comparative genomic studies across symbiotic cyanobacteria.

RevDate: 2025-03-28

Liu Y, Li X, Kormas KA, et al (2025)

Variable phylosymbiosis and cophylogeny patterns in wild fish gut microbiota of a large subtropical river.

mSphere [Epub ahead of print].

UNLABELLED: The persistence and specificity of fish host-microbial interaction during evolution is an important part of exploring the host-microbial symbiosis mechanism. However, it remains unclear how the environmental and host factors shape fish host-microbe symbiotic relationships in subtropical rivers with complex natural environments. Freshwater fish are important consumers in rivers and lakes and are considered keystone species in maintaining the stability of food webs there. In this study, patterns and mechanisms shaping gut microbiota community in 42 fish species from the Pearl River, in the subtropical zone of China, were investigated. The results showed that fish host specificity is a key driver of gut microbiota evolution and diversification. Different taxonomic levels of the host showed different degrees of contribution to gut microbiota variation. Geographical location and habitat type were the next most important factors in shaping gut microbiota across the 42 fishes, followed by diet and gut trait. Our results emphasized the contribution of stochastic processes (drift and homogenizing dispersal) in the gut microbial community assembly of freshwater fishes in the middle and lower reaches of the Pearl River. Phylosymbiosis is evident at both global and local levels, which are jointly shaped by complex factors including ecological or host physiological filtration and evolutionary processes. The core microbiota showed co-evolutionary relationships of varying degrees with different taxonomic groups. We speculate that host genetic isolation or habitat variation facilitates the heterogeneous selection (deterministic process), which occurs and results in different host-core bacterium specificity.

IMPORTANCE: Freshwater fish are regarded as the dominant consumers in rivers and lakes. Due to their diverse feeding modes, fish significantly enhance the trophic link and nutrient recycling/retention in aquatic habitats. For this, they are often considered keystone species in maintaining the stability of food webs in rivers and lakes. A significant part of fish nutrition is essentially mediated by their gut microbiota, which can enhance fish tolerance to fluctuations in external resources and improve the efficiency of nutrients extracted from various food sources. As gut bacterial symbionts have a profound impact on the nutrition and development of their hosts, as well as their overall fitness, it is critical to answer the question of how hosts maintain these benefits by procuring or inheriting these vital symbionts, which is still largely unanswered, especially for freshwater fish. Our study provides new insights into the co-evolutionary relationship between wild fish and their symbiotic microbiome, the hidden diversity of gut microbiome, and the ecological adaptation potential of wild freshwater fish.

RevDate: 2025-03-28
CmpDate: 2025-03-28

Papa V, Li Pomi F, Di Gioacchino M, et al (2025)

Mast Cells and Microbiome in Health and Disease.

Frontiers in bioscience (Landmark edition), 30(3):26283.

Inter-kingdom communication between human microbiota and mast cells (MCs), as sentinels of innate immunity, is crucial in determining health and disease. This complex signaling hub involves micro-organisms and, more importantly, their metabolic products. Gut microbiota is the host's largest symbiotic ecosystem and, under physiological conditions, it plays a vital role in mediating MCs tolerogenic priming, thus ensuring immune homeostasis across organs. Conversely, intestinal dysbiosis of various etiologies promotes MC-oriented inflammation along major body axes, including gut-skin, gut-lung, gut-liver, and gut-brain. This review of international scientific literature provides a comprehensive overview of the cross-talk under investigation. This process is a key biological event involved in disease development across clinical fields, with significant prognostic and therapeutic implications for future research.

RevDate: 2025-03-28

Salzman S, Bustos-Díaz ED, Whitaker MRL, et al (2025)

Chemical ecology of symbioses in cycads, an ancient plant lineage.

The New phytologist [Epub ahead of print].

Cycads are an ancient lineage of gymnosperms that maintain a plethora of symbiotic associations from across the tree of life. They have myriad morphological, structural, physiological, chemical, and behavioral adaptations that position them as a unique system to study the evolution, ecology, and mechanism of symbiosis. To this end, we have provided an overview of cycad symbiosis biology covering insects, bacteria, and fungi, and discuss the most recent advances in the underlying chemical ecology of these associations.

RevDate: 2025-03-28

Shishkina OD, NE Gruntenko (2025)

Symbiosis of intracellular bacteria Wolbachia with insects: a hundred years of study summarized.

Vavilovskii zhurnal genetiki i selektsii, 29(1):79-91.

Wolbachia pipientis is an α-proteobacterium, which is a widespread intracellular symbiont in a number of Arthropoda and some Nematoda species. With insects, W. pipientis forms a symbiont-host system characterized by very close interactions between its components. The mutual effects of Wolbachia on the host and the host on Wolbachia are important biotic factors for both components of this symbiotic system. Wolbachia is able to affect both host reproduction and somatic organ function. Due to its prevalence among insects and a wide variety of both negative (cytoplasmic incompatibility and androcide are among the most well-known examples) and positive (increasing resistance to biotic and abiotic factors, providing vitamins and metabolites) effects on the host organism, Wolbachia is of great interest for both entomologists and microbiologists. The diversity of host phenotypes induced by Wolbachia provides a broad choice of evolutionary strategies (such as reproductive parasitism or mutually beneficial symbiont-host relationships) that it utilizes. The influence of Wolbachia is to be considered in the design of any experiment conducted on insects. The application of sequencing technologies has led to new approaches being created to study the existing relationships within the Wolbachia-insect system, but interpretation of the data obtained is challenging. Nevertheless, the prospects for the use of the whole-genome analysis data to study Wolbachia-host coevolution are beyond doubt. Ongoing projects to introduce Wolbachia strains, which provide antiviral host defense, into insect populations to control the spread of RNA-viruses are actively pursued, which could result in saving many human lives. The aim of this brief review is to summarize the data collected by scientists over the past hundred years of Wolbachia studies and the current understanding of its genetic diversity and mechanisms of interaction with the host, including those based on transcriptome analysis.

RevDate: 2025-03-28

Danish M, Shahid M, Ibrahim SM, et al (2025)

Enhancing Pea Plant Growth, Nutrient Acquisition, and Symbiosis in Cobalt-Stressed Soil Using Metal-Tolerant Klebsiella sp.

Journal of basic microbiology [Epub ahead of print].

Excessive cobalt (Co) levels in agricultural soil cause significant toxicity, reducing crop growth and yield. This study aimed to assess the potential of Klebsiella sp. SRB-5 (Accession no. OR715782), in mitigating cobalt toxicity and enhancing the growth of garden peas under cobalt stress. Strain SRB-5, tolerant to 4000 ppm of Co(II), was evaluated for producing growth-regulating substances, including indole-3-acetic acid (IAA), ammonia, siderophore, ACC deaminase, and solubilized phosphate, under cobalt stress. The optimal conditions for Co-(II) biosorption by SRB-5 were determined to be 25°C, pH 6.0, and an incubation time of 72 h. The strain's ability to mitigate Co-(II) toxicity was tested by inoculating peas grown in soil treated with 1000, 2000, and 3000 ppm Co-(II). Inoculation with Co-tolerant SRB-5 alleviated cobalt toxicity and significantly enhanced the physiological and biochemical properties of plants. Notably, SRB-5 increased root length (19.2%), root biomass (29%), seedling vigor index (18.4%), total chlorophyll (52%), nodule biomass (41%), leghaemoglobin content (38%), root nitrogen (27%), and phosphorous content (19.3%) in 1000 ppm Co-stressed peas. Additionally, bacterial inoculation reduced proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and membrane injury by 85%, 57.3%, 90%, and 75%, respectively, in 1000 ppm Co-exposed plants. Priming with SRB-5 also reduced cobalt uptake in roots (88%), shoots (53.7%), and grains (79.6%) compared to uninoculated treatments. Metal-tolerant beneficial soil bacteria, such as Klebsiella sp. strain SRB-5, could serve as an effective alternative for enhancing pea production in metal-contaminated soils. The use of Co-tolerant PGPR strains holds potential for development as biofertilizers in future agricultural practices.

RevDate: 2025-03-30
CmpDate: 2025-03-28

Wei Y, Li J, Jin J, et al (2025)

Centenary Progress on Orchidaceae Research: A Bibliometric Analysis.

Genes, 16(3):.

BACKGROUND: Research on orchids has experienced substantial growth since the early 20th century, reflecting their ecological and evolutionary significance.

METHODS: This paper provides a comprehensive bibliometric analysis of orchid-related literature published between 1902 and 2024, based on data retrieved from the Web of Science Core Collection™ (WoS).

RESULTS: The primary goal is to assess the global research landscape of orchids by identifying key authors, institutions, and journals, as well as major research themes in the field. A thorough analysis of publication trends, citation frequencies, and keyword co-occurrence networks was conducted to uncover significant research hotspots. The findings indicate that orchid research has evolved from foundational topics such as taxonomy and classification to more intricate subjects, including conservation strategies, orchid-pollinator dynamics, and the role of orchids in ecosystem functions. Additionally, biotechnology-related research is emerging as a dominant trend. This study also highlights that China has the highest publication output, while collaboration between the United States and Europe continues to grow. The co-word analysis of keywords suggests that future research is likely to continue to focus on orchid conservation, the impacts of climate change, pollination biology, and symbiotic relationships with mycorrhizal fungi.

CONCLUSIONS: This review offers valuable insights for researchers and conservationists, helping to identify future research priorities and strategies for the preservation and sustainable use of orchids.

RevDate: 2025-03-30
CmpDate: 2025-03-28

Revalska M, Radkova M, Zhiponova M, et al (2025)

Functional Genomics of Legumes in Bulgaria-Advances and Future Perspectives.

Genes, 16(3):.

Members of the Leguminosae family are important crops that provide food, animal feed and vegetable oils. Legumes make a substantial contribution to sustainable agriculture and the nitrogen cycle through their unique ability to fix atmospheric nitrogen in agricultural ecosystems. Over the past three decades, Medicago truncatula and Lotus japonicus have emerged as model plants for genomic and physiological research in legumes. The advancement of innovative molecular and genetic tools, particularly insertional mutagenesis using the retrotransposon Tnt1, has facilitated the development of extensive mutant collections and enabled precise gene tagging in plants for the identification of key symbiotic and developmental genes. Building on these resources, twelve years ago, our research team initiated the establishment of a platform for functional genomic studies of legumes in Bulgaria. In the framework of this initiative, we conducted systematic sequencing of selected mutant lines and identified genes involved in plant growth and development for detailed functional characterization. This review summarizes our findings on the functions of selected genes involved in the growth and development of the model species, discusses the molecular mechanisms underlying important developmental processes and examines the potential for the translation of this fundamental knowledge to improve commercially important legume crops in Bulgaria and globally.

RevDate: 2025-03-30
CmpDate: 2025-03-28

Alharbi SM, Al-Sulami N, Al-Amrah H, et al (2025)

Metagenomic Characterization of the Maerua crassifolia Soil Rhizosphere: Uncovering Microbial Networks for Nutrient Acquisition and Plant Resilience in Arid Ecosystems.

Genes, 16(3):.

Background/Objectives:Maerua crassifolia, a threatened medicinal species endemic to drylands, exhibits a pronounced drought sensitivity. Despite the critical role of microorganisms, particularly bacteria and fungi, the microbial consortia in M. crassifolia's rhizosphere remain underexplored. Methods: Metagenomic whole genome shotgun sequencing (WGS) was employed to elucidate the taxonomic composition of bacterial and fungal communities inhabiting the soil rhizosphere of M. crassifolia. Results: The data revealed a marked predominance of bacterial genomes relative to fungal communities, as evidenced by non-redundant gene analysis. Notably, arbuscular mycorrhizal fungi (AMF), specifically Rhizophagus clarus, Rhizophagus irregularis and Funneliformis geosporum, are key rhizosphere colonizers. This study confirmed the presence of phosphate-solubilizing bacteria (PSB), such as Sphingomonas spp., Cyanobacteria and Pseudomonadota, underscoring the critical role of these microorganisms in the phosphorus cycle. Additionally, the study uncovered the presence of previously uncharacterized species within the phylum Actinobacteria, as well as unidentified taxa from the Betaproteobacteria, Gemmatimonadota and Chloroflexota phyla, which may represent novel microbial taxa with potential plant growth-promoting properties. Conclusions: Findings suggest a complex, symbiotic network where AMF facilitate phosphorus uptake through plant-root interactions. In a tripartite symbiosis, PSB enhance inorganic phosphorus solubilization, increasing bioavailability, which AMF assimilate and deliver to plant roots, optimizing nutrition. This bacterial-fungal interplay is essential for plant resilience in arid environments. Future investigations should prioritize the isolation and characterization of underexplored microbial taxa residing in the rhizosphere of M. crassifolia, with particular emphasis on members of the Actinobacteria, Betaproteobacteria, Gemmatimonadota and Chloroflexota phyla to uncover their roles in nutrient acquisition and sustainability.

RevDate: 2025-03-28

Hu B, Messerer M, Haberer G, et al (2025)

Genomic and transcriptomic insights into legume-rhizobia symbiosis in the nitrogen-fixing tree Robinia pseudoacacia.

The New phytologist [Epub ahead of print].

Robinia pseudoacacia L. (black locust) is a nitrogen (N)-fixing legume tree with significant ecological and agricultural importance. Unlike well-studied herbaceous legumes, R. pseudoacacia is a perennial woody species, representing an understudied group of legume trees that establish symbiosis with Mesorhizobium. Understanding its genomic and transcriptional responses to nodulation provides key insights into N fixation in long-lived plants and their role in ecosystem N cycling. We assembled a high-quality 699.6-Mb reference genome and performed transcriptomic analyses comparing inoculated and noninoculated plants. Differential expression and co-expression network analyses revealed organ-specific regulatory pathways, identifying key genes associated with symbiosis, nutrient transport, and stress adaptation. Unlike Medicago truncatula, which predominantly responds to nodulation in roots, R. pseudoacacia exhibited stem-centered transcriptional reprogramming, with the majority of differentially expressed genes located in stems rather than in roots. Co-expression network analysis identified gene modules associated with "leghemoglobins", metal detoxification, and systemic nutrient allocation, highlighting a coordinated long-distance response to N fixation. This study establishes R. pseudoacacia as a genomic model for nodulating trees, providing essential resources for evolutionary, ecological, and applied research. These findings have significant implications for reforestation, phytoremediation, forestry, and sustainable N management, particularly in depleted, degraded, and contaminated soil ecosystems.

RevDate: 2025-03-31

Kaltenpoth M, Flórez LV, Vigneron A, et al (2025)

Origin and function of beneficial bacterial symbioses in insects.

Nature reviews. Microbiology [Epub ahead of print].

Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts' metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host-symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.

RevDate: 2025-03-27

Wu T, Bi F, Liu H, et al (2025)

Identification of nitrogen-fixing bacteria on green tide - Causing species and evaluation of their nitrogen-fixing capacity.

Bioresource technology pii:S0960-8524(25)00416-X [Epub ahead of print].

Different algae host distinct phycosphere microenvironments, where mutualistic relationships between algae and symbiotic and epiphytic bacteria are common. Ulva prolifera (U. prolifera) harbors a diverse microbial community that plays a crucial role in its morphogenesis and growth. In this study, 28 bacterial strains were isolated from U. prolifera using 2216E medium. Molecular identification via the nifH gene (nitrogenase coding gene) revealed that three of these strains harbored the nifH gene, all belonging to the genus Cobetia. When co-cultured with sterile U. prolifera for 31 days, the results indicated that these nitrogen-fixing bacteria significantly enhanced the growth of U. prolifera. Nitrogenase activity was quantified, which demonstrated that these bacteria supplied nitrogen to U. prolifera through biological nitrogen fixation, thus promoting its growth. This study demonstrates that there are indeed microorganisms with nitrogen-fixing ability on the U. prolifera, which provide nitrogen for U. prolifera and significantly promote its growth.

RevDate: 2025-03-27

Shi R, Lian Y, Zeb A, et al (2025)

Foliar exposure to microplastics disrupts lettuce metabolism and negatively interferes with symbiotic microbial communities.

Plant physiology and biochemistry : PPB, 223:109823 pii:S0981-9428(25)00351-1 [Epub ahead of print].

Plant leaves are considered an important sink for atmospheric microplastics (MPs) because they serve as a vital interface between the atmosphere and terrestrial ecosystems. However, there is still a dearth of information regarding how plant-symbiotic microbe-soil systems are affected by foliar exposure to MPs. In this study, MPs (polystyrene (PS), polyethylene (PE), and polypropylene (PP)) were sprayed over soil-cultivated lettuce (Lactuca sativa L.) four occasions, with final sprays containing 0.4 and 4 μg of MPs per plant. MPs had no discernible impact on lettuce growth as compared to the control group. However, MPs led to reductions in relative chlorophyll content from 16.91 to 30.64 % and net photosynthetic rate from 6.64 to 81.41 %. These results validate the phytotoxicity linked to MP exposure through foliar application. The presence of MPs triggered interspecific competition among phyllosphere microbial species and reduced microbial network complexity by forming ecological niches and regulating carbon- and nitrogen-related metabolic pathways. Furthermore, MPs inhibited the growth of beneficial bacteria in the rhizosphere soil, including a variety of plant growth-promoting bacteria (PGPR) such as Rhizobiales, Pseudomonadales, and Bacillales. This study identifies the ecological health risks associated with atmospheric MPs, which may have a detrimental impact on crop production and further compromise soil ecosystem security.

RevDate: 2025-03-27

Ahmad M, M Yousaf (2025)

Co-conversion of CO2 and refractory organics into bioplastics through a stable biocarrier.

Water research, 280:123519 pii:S0043-1354(25)00432-4 [Epub ahead of print].

An attractive solution to traditional plastics is scaling up the microbial system to produce bioplastics like polyhydroxyalkanoates (PHAs). Herein, we developed a dynamic microbial ecosystem on porous biocarrier for conversion of refractory organics to bioplastics. biocarriers of 25 mm sized were packed in a 5 L bioreactor and operated for 200 days, to achieve stable performance for commercial applications. Reaching to bioreactor stability, microbial ecosystem utilized quinoline (5.2 kg/m[3]/day) for carbon & nitrogen metabolism, phenol (4.5 kg/m[3]/day) to trigger synthesis of PHAs, pyridines (4.2 kg/m[3]/day) to manufacture hydroxy fatty acid polyesters, NH4[+](7.2 kg/m[3]/day) to regulate symbiosis, NO3/NO2 (1.2 kg/m[3]/day) to serve as mediators and electron acceptors. On 200th day, bioplastic production reached to 76.8 (kg/m[3]/day) with stable pollutants degradation of 70.3 (kg/m[3]/day). Purity of the bioplastics remained quite high (average 90 %) after 100 days of bioreactor operation. Interestingly, PHAs synthesis was triggered (31-581 g/day) with increased CO2 fixation from 45 to 594 (mol/h/g protein), due to the growth of CO2 assimilators. The developed biocarriers could be directly poured into the secondary tank of the existing wastewater treatment plants (WWTPs), which will not only produce bioplastics but also boost treatment efficiency and resource recovery potential of WWTPs.

RevDate: 2025-03-27

Nevicka B, van den Hee SM, van Loenen M, et al (2025)

The symbiosis of narcissistic leaders and low-self-esteem followers: Dominance complementarity in childhood.

The American psychologist pii:2025-98392-001 [Epub ahead of print].

Narcissistic leaders are on the rise globally. Although research has documented the harmful consequences of narcissistic leadership, little is known about the interplay between narcissistic leaders and their followers. Building on the dominance-complementarity theory, we theorized that the dominance and confidence of narcissistic leaders would match well with the submissiveness and insecurity of followers with low self-esteem. We conducted an observational-experimental study (N = 332; 46% boys; 96% born in the Netherlands) in childhood (ages 7-14), a period that is considered critical for the formation of leader-follower relationships. Children completed a collaborative decision-making task in three-person groups. Within each group, one child was randomly assigned as leader; others were followers. We combined self-reports, informant reports, and observer-coded behaviors to provide a rigorous test of our hypotheses. Consistent with dominance-complementarity theory, in groups with a more narcissistic leader, followers with lower self-esteem perceived their leader as more effective, endorsed the leader more strongly for future leadership roles, experienced more inclusion and less bullying from the leader, felt better about themselves, perceived greater group cohesion, and showed less antagonistic behavior. This complementarity effect generalized to observer-coded leader behavior: In groups with lower self-esteem followers, more narcissistic leaders showed less aggression and less social exclusion toward their followers. Overall, findings were more pronounced in younger children and did not depend on the sex composition of groups. Our research reveals childhood manifestations of leader-follower dynamics, underlines the importance of leader-follower complementarity, and uncovers conditions under which narcissistic leadership can benefit versus harm the group. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

RevDate: 2025-03-27

Rivera C, Wakley T, Röder G, et al (2025)

Rhizobia-Bean Symbiosis Increases Root Herbivore Attraction and Growth via Volatile Signals and Enhanced Nutrition.

Plant, cell & environment [Epub ahead of print].

The symbiosis between nitrogen-fixing rhizobia and plants is considered mutually beneficial, yet its indirect effects on other organisms remain understudied. We examined how rhizobia symbiosis in Phaseolus vulgaris influences the behaviour and performance of Diabrotica balteata larvae. Specifically, we tested larval preference for nodulated (R[+]) vs. non-nodulated (R[-]) roots and assessed the impact on larval growth. We also analysed root nutrient content and volatile organic compounds (VOCs) to identify potential chemical cues driving feeding preferences. Larvae strongly preferred R[+] roots, where they exhibited enhanced growth and higher survival post-metamorphosis. Nutritional analysis revealed that R[+] roots had greater nutrient content, supporting improved larval performance. VOC profiles differed significantly between treatments, and olfactometer assays confirmed that larval attraction was mediated by VOCs, likely signalling enhanced nutritional benefits from rhizobia symbiosis. Our results demonstrate that rhizobia-induced metabolic changes in bean roots make them more attractive and nutritious to herbivorous larvae. This highlights a complex belowground interaction between nitrogen-fixing bacteria, host plants and herbivores, with potential implications for ecological theory and sustainable agriculture. Understanding these interactions could inform pest management strategies and improve legume cultivation by balancing plant-microbe mutualisms with herbivore dynamics.

RevDate: 2025-03-27

Kryukov AA, Yurkov AP, Gorbunova AO, et al (2025)

Evaluation of the biodiversity of arbuscular mycorrhizal fungi during regenerative succession in quarries.

Vavilovskii zhurnal genetiki i selektsii, 29(1):72-78.

Arbuscular mycorrhizal fungi (AMF) play a key role in the regenerative successions of plant communities after anthropogenic disturbances, particularly in quarries. AMF help plants with water and mineral nutrition, contributing to the restoration rate of vegetation cover. The research is aimed to study the biodiversity of AMF using molecular genetic methods at different stages of overgrowth of two quarries in the Leningrad region. Molecular genetic identification of fungi was carried out using Illumina MiSeq analysis of the ITS1 and ITS2 regions as barcodes for the identification of operational taxonomic units (OTUs) with species-level identification. An adapted and error-checked AMF genetic sequence database from NCBI was used as a reference. The study applied an optimized nucleic acid isolation technique for sandy soils. The results showed maximum AMF biodiversity at the initial stages of overgrowth - pioneer and grass stages - with minimum diversity observed at the shrub stage, where it decreased by five times. At the forest stage, the biodiversity of AMF was almost restored to the level seen at the grass stage. It has been shown that the biodiversity and species composition of AMF can vary greatly between the stages of regenerative succession and probably depends primarily on the biodiversity of grasses, with which AMF most effectively enter into symbiotic relationships. The analysis showed a reliable negative correlation between the number of AMF species and the number of woody plant species. Such studies can aid in understanding how plant-fungal symbiosis develops in regenerative successions and which AMF most effectively contribute to vegetation cover restoration.

RevDate: 2025-03-28

Luong J, Tzang CC, McWatt S, et al (2025)

Exploring Artificial Intelligence Readiness in Medical Students: Analysis of a Global Survey.

Medical science educator, 35(1):331-341.

INTRODUCTION: The impact of artificial intelligence (AI) in diverse fields, including medical education, has emerged as a pivotal topic as the integration of AI technologies is becoming increasingly prevalent. This research delved into the landscape of AI integration in academic settings aimed to evaluate the students' readiness for the evolving AI landscape in medical education.

MATERIALS AND METHODS: Participants were recruited from the International Collaboration and Exchange Program (ICEP) in the fall of 2023. An online survey was conducted to collect data on demographics, the landscape of AI utilization in academic settings, and the perceived readiness levels related to AI from 223 participants. The Medical Artificial Intelligence Readiness Scale for Medical Students (MAIRS-MS) was used.

RESULTS: Results indicated that 41.82% of participants "agreed" or "strongly agreed" that AI education should be part of medical training. Overall levels of AI readiness exhibited a statistically significant positive correlation with the frequency of AI inclusion in the curriculum (r = 0.217, p = 0.009), the frequency of AI use for studying (r = 0.246, p = 0.003), and the agreement that AI education should be integrated into medical training (r = 0.594, p < 0.001).

CONCLUSIONS: This study offers valuable insights into the ongoing discussion on the role of AI in education, providing a foundation for educators to consider the integration of AI into their educational framework. The implementation of AI education could potentially enhance students' AI readiness, considering the multiple benefits this symbiosis can offer.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40670-024-02190-x.

RevDate: 2025-03-28

Deng AQ, Yue SY, Niu D, et al (2025)

The role of microbiota in the chronic prostatitis/chronic pelvis pain syndrome: a review.

Frontiers in microbiology, 16:1488732.

Chronic prostatitis/Chronic pelvis pain syndrome (CP/CPPS), a kind of frequent urinary condition among adult males, has caused a lot of inconvenience to patients in life, whose pathogenesis is unclear. Current evidence suggests that it is most likely to be an autoimmune disease. Symbiotic microbes, a highly diverse biological community that harbors trillions of microbes in each region of the human body, have gradually made people realize their important role in immune regulation, material metabolism, and health maintenance. In recent years, increasing studies have shown a connection between microbiota and CP/CPPS. In view of this, we performed this review to summarize the literature pertaining to microbiota and its association with the pathophysiological mechanism of CP/CPPS. In addition, we gleaned the latest progress in the therapeutic strategy of CP/CPPS that related to microbiota regulation in order to offer new perspectives on the management of CP/CPPS.

RevDate: 2025-03-28

Dey R, Valle DO, Chakraborty A, et al (2025)

Quorum sensing regulators and non-ribosomal peptide synthetases govern antibacterial secretions in Xenorhabdus szentirmaii.

Frontiers in microbiology, 16:1560663.

The decades-long gap in antibiotic discovery has led to a significant health crisis due to antimicrobial resistance (AMR). The bacterial genus Xenorhabdus, which forms symbiotic relationships with the soil nematode Steinernema, are known to secrete a variety of antimicrobial compounds with potential effectiveness against AMR. These antimicrobial compounds are primarily bio-synthesized by non-ribosomal peptide synthetases (NRPS) and polyketide synthase (PKS) genes. In this study, we report that X. szentirmaii produces high levels of antibiotic activity during the stationary phase against diverse bacteria including known antibiotic resistant pathogens. It possesses 17 operons to encode predicted NRPS and PKS enzymes, designated as ste1 through ste17. The ste15-ste16 and ste17 operons are predicted to produce the known antibiotics Pax peptide and Fabclavine, respectively. Additionally, the newly identified operons ste3, ste4, ste5, ste8, ste9, and ste14 consist of single genes, each containing two or more NRPS genes. The ste13 operon harbors two NRPS genes, while the ste7 and ste12 operons contain three NRPS genes each. Further, RNA-seq analysis showed that lsrF that encodes a quorum sensing autoinducer-2 (AI-2) thiolase was expressed at high levels during stationary phase. These findings provide evidence that X. szentirmaii uses quorum sensing (QS) to synchronize the expression of multiple NRPS and PKS enzymes responsible for synthesizing various antimicrobial compounds. This study underscores the potential to leverage these regulatory insights for maximizing commercial applications of novel antibiotics combating AMR, as well as broader industrial uses.

RevDate: 2025-03-27

Jaiswal SK, FD Dakora (2025)

Maximizing Photosynthesis and Plant Growth in African Legumes Through Rhizobial Partnerships: The Road Behind and Ahead.

Microorganisms, 13(3):.

The interplay between soil rhizobial bacteria and leguminous plants, particularly in Africa, has a profound impact on photosynthetic efficiency and overall crop productivity. This review explores the critical role of rhizobia in enhancing photosynthesis through nitrogen fixation, a process crucial for sustainable agriculture. Rhizobial bacteria residing in root nodules provide legumes with symbiotic nitrogen that significantly boosts plant growth and photosynthetic capacity. Recent advances in molecular genomics have elucidated the genetic frameworks underlying this symbiosis, identifying key genes involved in root nodule formation and nitrogen fixation. Comparative genomics of Bradyrhizobium species have revealed seven distinct lineages, with diverse traits linked to nodulation, nitrogen fixation, and photosynthesis. Field studies across Africa demonstrate that rhizobial inoculation can markedly increase nodulation, nitrogen fixation, and grain yields, though outcomes vary depending on local soil conditions and legume species. Notable findings include enhanced nutrient uptake and photosynthetic rates in inoculated legumes compared with nitrate-fed plants. This review highlights the potential of utilizing indigenous rhizobia to improve photosynthesis and crop resilience. Future prospects involve leveraging genomic insights to optimize rhizobial inoculants and enhance legume productivity in water-limited environments. As climate change intensifies, integrating these advancements into agricultural practices could play a crucial role in improving food security and sustainable soil health in Africa.

RevDate: 2025-03-27

Williams MD, L Smith (2025)

Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials.

Microorganisms, 13(3):.

This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.

RevDate: 2025-03-27

Hassen AI, Muema EK, Diale MO, et al (2025)

Non-Rhizobial Endophytes (NREs) of the Nodule Microbiome Have Synergistic Roles in Beneficial Tripartite Plant-Microbe Interactions.

Microorganisms, 13(3):.

Microbial symbioses deal with the symbiotic interactions between a given microorganism and another host. The most widely known and investigated microbial symbiosis is the association between leguminous plants and nitrogen-fixing rhizobia. It is one of the best-studied plant-microbe interactions that occur in the soil rhizosphere and one of the oldest plant-microbe interactions extensively studied for the past several decades globally. Until recently, it used to be a common understanding among scientists in the field of rhizobia and microbial ecology that the root nodules of thousands of leguminous species only contain nitrogen-fixing symbiotic rhizobia. With the advancement of molecular microbiology and the coming into being of state-of-the-art biotechnology innovations, including next-generation sequencing, it has now been revealed that rhizobia living in the root nodules of legumes are not alone. Microbiome studies such as metagenomics of the root nodule microbial community showed that, in addition to symbiotic rhizobia, other bacteria referred to as non-rhizobial endophytes (NREs) exist in the nodules. This review provides an insight into the occurrence of non-rhizobial endophytes in the root nodules of several legume species and the beneficial roles of the tripartite interactions between the legumes, the rhizobia and the non-rhizobial endophytes (NREs).

RevDate: 2025-03-27

Chen X, Zhang J, Xia W, et al (2025)

Influence of Cover Crop Root Functional Traits on Sweet Potato Yield and Soil Microbial Communities.

Microorganisms, 13(3):.

The symbiotic relationship between cover crops and soil microorganisms is closely linked to nutrient cycling and crop growth within agroecosystems. However, how cover crops with different root functional traits influence soil microbial communities, soil properties, and crop yields has remained understudied. This study assessed the root traits of hairy vetch (HV) and rapeseed (RP), along with soil properties, sweet potato yield, and microbial enzyme activity under red soil dryland conditions. High-throughput sequencing was also employed to characterize the diversity, composition, and network structure of soil bacterial and fungal communities. According to the plant economic spectrum theory and our research results on plant root traits, HV can be identified as a resource-acquisitive cover crop, and RP treatment can be identified as a resource-conservative cover crop. Although RP treatment did not significantly increase the sweet potato yield, the increase rate reached 8.49%. Resource-conservative cover crops were associated with increased pH, SOC, and TP, which enhanced bacterial species diversity and boosted the populations of Chloroflexi and Alphaproteobacteria. In contrast, resource-acquisitive cover crops promoted the proliferation of Gammaproteobacteria. Network analysis indicated that resource-conservative cover crops facilitated network complexity through intensified intra-community competition. Resource-acquisitive cover crops enhanced the stability of microbial communities. Collectively, these findings underscore the distinct advantages of cover crops with varying root functional traits in shaping soil microbial communities. Appropriate cover crop rotations can effectively regulate microbial communities and hold the potential to enhance crop yield.

RevDate: 2025-03-27
CmpDate: 2025-03-27

Cruz Mosquera FE, Perlaza CL, Naranjo Rojas A, et al (2025)

Effectiveness of Probiotics, Prebiotics, and Symbiotic Supplementation in Cystic Fibrosis Patients: A Systematic Review and Meta-Analysis of Clinical Trials.

Medicina (Kaunas, Lithuania), 61(3):.

Background and Objectives: Cystic fibrosis (CF), caused by CFTR gene mutations, primarily affects the respiratory and gastrointestinal systems. Microbiota modulation through probiotics, prebiotics, or synbiotics may help restore microbial diversity and reduce inflammation. This study aimed to evaluate their efficacy in CF. Materials and Methods: A systematic review and meta-analysis of randomized controlled trials (RCTs) published between 2000 and 2024 was conducted in Cochrane, ScienceDirect, Web of Science, LILAC, BMC, PubMed, and SCOPUS following PRISMA guidelines. Methodological quality was assessed using the Jadad scale, and RevMan 5.4[®] estimated effects on pulmonary function (FEV1), exacerbations, hospitalizations, quality of life, and inflammatory markers. Results: Thirteen RCTs (n = 552), mostly in pediatric populations, were included. Most examined probiotics (e.g., Lactobacillus rhamnosus GG, L. reuteri), while four used synbiotics. Several studies reported reduced fecal calprotectin and proinflammatory interleukins (e.g., IL-6, IL-8), suggesting an anti-inflammatory effect. However, no significant differences were observed regarding hospitalizations or quality of life. Additionally, none of the studies documented serious adverse events associated with the intervention. The meta-analysis showed no significant decrease in exacerbations (RR = 0.81; 95% CI = 0.48-1.37; p = 0.43) or improvements in FEV1 (MD = 4.7; 95% CI = -5.4 to 14.8; p = 0.37), even in subgroup analyses. Sensitivity analyses did not modify the effect of the intervention on pulmonary function or exacerbation frequency, supporting the robustness of the findings. Conclusions: Current evidence suggests that probiotics or synbiotics yield inconsistent clinical benefits in CF, although some reduction in inflammatory markers may occur. Larger, multicenter RCTs with longer follow-up are needed for clearer conclusions. Until more definitive evidence is available, these supplements should be considered experimental adjuncts rather than standard interventions for CF management.

RevDate: 2025-03-27

Savic B, Savic B, Kalezic T, et al (2025)

Assessment of IL28 (rs12980275) and (rs8099917) Frequency in Recurrent Ocular Herpes Simplex Virus (HSV) Infection.

Life (Basel, Switzerland), 15(3): pii:life15030389.

(1) Introduction: The main way of spreading the herpes simplex virus 1 (HSV-1) is through direct contact, as the virus enters the host via mucous membranes. Ocular infection can occur as a primary infection or as a recurrent one. The movement of HSV-1 along the ophthalmic branch of the fifth cranial nerve from its latency phase in the trigeminal ganglion and its activation represent a process influenced by various symbiotic factors, such as environmental conditions and the host's genetic characteristics. The aim of this study was to assess the frequency of IL28 (rs12980275) and (rs8099917) in recurrent ocular HSV infections. (2) Materials and methods: The study included 60 patients aged over 18, of both sexes, all of whom had a history of herpes simplex labialis (HSL). Patients were tested for HSV-1-specific IgG antibodies, and seropositive individuals were genotyped for single nucleotide polymorphisms (SNPs) rs12980275 and rs8099917. A total of 57 seropositive patients were included in the study. (3) Results: A statistically significant association was found between recurrent HSV keratitis (HSK) and heterozygous GT rs8099917 and homozygous TT rs8099917, as well as heterozygous AG rs12980275 and homozygous AA rs12980275 (p < 0.01). Interestingly, patients with homozygous GG polymorphism for both genotypes GG rs8099917 and GG rs12980275 did not develop recurrent HSV keratitis. (4) Conclusion: The most frequent SNP variations in patients with recurrent HSV disease were heterozygous AG rs12980275 (61.40%) and heterozygous GT rs8099917 (52.63%). Patients with recurrent HSV keratitis lacked the homozygous GG polymorphism in both GG rs8099917 and GG rs12980275 genotypes, suggesting that HSV-seropositive individuals expressing these genotypes may have lower predisposition to develop recurrent stromal HSV keratitis.

RevDate: 2025-03-27
CmpDate: 2025-03-27

Liu J, Lu Y, Chen X, et al (2025)

The Silent Conversation: How Small RNAs Shape Plant-Microbe Relationships.

International journal of molecular sciences, 26(6): pii:ijms26062631.

This review highlights the emerging role of cross-kingdom RNA interference in plant-microbe interactions, particularly the transfer of sRNAs from microbes to plants and vice versa, emphasizing the importance of this mechanism in both mutualistic and pathogenic contexts. As plants adapted to terrestrial life, they formed symbiotic relationships with microbes, essential for nutrient uptake and defense. Emerging evidence underscores sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), as critical regulators of gene expression and immune responses in plant-microbe interactions. In mutualistic symbioses, such as mycorrhizal fungi and nitrogen-fixing bacteria associations, sRNAs are hypothesized to regulate nutrient exchange and symbiotic stability. In pathogenic scenarios, microbes utilize sRNAs to undermine plant defenses, while plants employ strategies like host-induced gene silencing (HIGS) to counteract these threats. We further explore the emerging role of extracellular vesicles (EVs) in sRNA transport, which is critical for facilitating interspecies communication in both pathogenic and mutualistic contexts. Although the potential of ckRNAi in mutualistic interactions is promising, the review highlights the need for further experimental validation to establish its true significance in these relationships. By synthesizing current research, this review highlights the intricate molecular dialogues mediated by sRNAs in plant-microbe interactions and identifies critical gaps, proposing future research directions aimed at harnessing these mechanisms for agricultural advancements.

RevDate: 2025-03-27
CmpDate: 2025-03-27

Chen X, Han W, Chang X, et al (2025)

High-quality genome assembly of the azooxanthellate coral Tubastraea coccinea (Lesson, 1829).

Scientific data, 12(1):507.

Coral reefs are among the most biodiverse and economically significant ecosystems globally, yet they are increasingly degrading due to global climate change and local human activities. The sun coral Tubastraea coccinea (T. coccinea) an obligate heterotroph lacking symbiotic zooxanthellae, exhibits remarkable tolerance to conditions that cause bleaching and mortality in zooxanthellate species. With its extensive low-latitude distribution across multiple oceans, T. coccinea has become a highly invasive species, adversely impacting native species, degrading local ecosystems, and causing significant socio-economic challenges that demand effective management. Despite substantial research efforts, the molecular biology of T. coccinea remains insufficiently characterized. To address this gap, we generated a draft genome assembly for T. coccinea using PacBio Hi-Fi long-read sequencing. The assembly spans 875.9 Mb with a scaffold N50 of 694.3 kb and demonstrates high completeness, with a BUSCO score of 97.4%. A total of 37,307 protein-coding sequences were identified, 95.2% of which were functionally annotated through comparisons with established protein databases. This reference genome provides a valuable resource for understanding the genetic structure of T. coccinea, advancing research into its adaptive mechanism to environmental changes, and informing conservation and management strategies to mitigate its invasive impact.

RevDate: 2025-03-26

Sarquah K, Narra S, Beck G, et al (2025)

Evaluating opportunities of refuse derived fuel for energy-based industrial symbiosis towards a circular economy - A case study.

Journal of environmental management, 380:125126 pii:S0301-4797(25)01102-8 [Epub ahead of print].

Refuse derived fuel (RDF) production enables the utilisation of municipal solid waste (MSW) as a substitute fuel for industrial applications. This contributes to reducing the challenges of MSW management and associated GHG emissions by substituting conventional fuel. However, RDF quality characteristics rely on the production process and composition, contributing to market value for RDF utilisation. In this study, RDF production from MSW and utilisation potentials were investigated through a case study at a waste-to-energy system in Kumasi, Ghana. The study consisted of field and laboratory experimentation, survey and statistical analysis to assess RDF physicochemical properties and usability options for thermal energy application. The results classify the RDF produced under NCV: II-IV, Cl: II and Hg: I, according to the EN 15359:2011 classification. An average of 14-22 MJ/kg of lower heating values recorded was within the limits for RDF thermal application. Among the potential RDF users surveyed showed positive interest in RDF utilisation as a substitute fuel. However, the outcomes suggest that RDF adoption is highly sensitive to cost concerns, perceived operational barriers, and environmental considerations. Awareness, regulations, and stakeholder support are important in improving perspectives on RDF adoption as an alternative fuel. The results establish opportunities for RDF as an industrial alternative fuel. Also, a contribution to knowledge of the demand-side factors affecting RDF utilisation, especially in Ghana and other emerging economies.

RevDate: 2025-03-26

Velandia K, E Foo (2025)

Cracking the chitin code: how a single pair of LysM receptors deciphers symbiosis and immunity in Marchantia.

Science China. Life sciences [Epub ahead of print].

RevDate: 2025-03-26
CmpDate: 2025-03-26

Papamentzelopoulou M, VC Pitiriga (2025)

Unlocking the Interactions Between the Whole-Body Microbiome and HPV Infection: A Literature Review.

Pathogens (Basel, Switzerland), 14(3): pii:pathogens14030293.

The human microbiome plays a vital role in maintaining human homeostasis, acting as a key regulator of host immunity and defense mechanisms. However, dysbiotic microbial communities may cause disruption of the symbiotic relationship between the host and the local microbiota, leading to the pathogenesis of various diseases, including viral infections and cancers. One of the most common infectious agents causing cancer is the human papilloma virus (HPV), which accounts for more than 90% of cervical cancers. In most cases, the host immune system is activated and clears HPV, whereas in some cases, the infection persists and can lead to precancerous lesions. Over the last two decades, the advent of next-generation sequencing (NGS) technology and bioinformatics has allowed a thorough and in-depth analysis of the microbial composition in various anatomical niches, allowing researchers to unveil the interactions and the underlying mechanisms through which the human microbiota could affect HPV infection establishment, persistence, and progression. Accordingly, the present narrative review aims to shed light on our understanding of the role of the human microbiome in the context of HPV infection and its progression, mainly to cervical cancer. Furthermore, we explore the mechanisms by which the composition and balance of microbial communities exert potential pathogenic or protective effects, leading to either HPV persistence and disease outcomes or clearance. Special interest is given to how the microbiome can modulate host immunity to HPV infection. Lastly, we summarize the latest findings on the therapeutic efficacy of probiotics and prebiotics in preventing and/or treating HPV infections and the potential of vaginal microbiota transplantation while highlighting the significance of personalized medicine approaches emerging from NGS-based microbiome profiling and artificial intelligence (AI) for the optimal management of HPV-related diseases.

RevDate: 2025-03-26
CmpDate: 2025-03-26

Moretti R, Lim JT, Ferreira AGA, et al (2025)

Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability.

Pathogens (Basel, Switzerland), 14(3): pii:pathogens14030285.

Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.

RevDate: 2025-03-27
CmpDate: 2025-03-26

Yuan Y, Lei Y, Xu M, et al (2025)

Bioactive Terpenes from Marine Sponges and Their Associated Organisms.

Marine drugs, 23(3):.

In recent years, marine natural products have continued to serve as a pivotal resource for novel drug discovery. Globally, the number of studies focusing on Porifera has been on the rise, underscoring their considerable importance and research value. Marine sponges are prolific producers of a vast array of bioactive compounds, including terpenes, alkaloids, peptides, and numerous secondary metabolites. Over the past fifteen years, a substantial number of sponge-derived terpenes have been identified, exhibiting extensive structural diversity and notable biological activities. These terpenes have been isolated from marine sponges or their associated symbiotic microorganisms, with several demonstrating multifaceted biological activities, such as anti-inflammatory, antibacterial, cytotoxic, anticancer, and antioxidant properties. In this review, we summarize 997 novel terpene metabolites, detailing their structures, sources, and activities, from January 2009 to December 2024. The structural features and structure-activity relationship (SAR) of different types of terpenes are broadly analyzed and summarized. This systematic and comprehensive review will contribute to the summary of and speculation on the taxonomy, activity profiles, and SAR of terpenes and the development of sponge-derived terpenes as potential lead drugs.

RevDate: 2025-03-27

Prado T, Degrave WMS, GF Duarte (2025)

Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem.

Journal of fungi (Basel, Switzerland), 11(3):.

Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.

RevDate: 2025-03-27

Tang SM, Zhao G, Niu KY, et al (2025)

Species Diversity of Edible Mushrooms I-Four New Laccaria Species from Yunnan Province, China.

Journal of fungi (Basel, Switzerland), 11(3):.

As symbiotic mycorrhizal associates, species within the genus Laccaria play pivotal roles in forest ecosystems, specifically forming ectomycorrhizal relationships with the root systems of various plants. Some Laccaria species are recognized for their edibility, holding potential as a sustainable food source in the context of future food security and dietary diversification. In this study, the species diversity of Laccaria in Yunnan was investigated, and four novel species were identified. Their taxonomical positions and phylogenetic affinities were confirmed through phylogenetic analysis based on ITS, nrLSU, tef1-α, and rpb2 sequence data. Macro- and micro-morphological characteristics of the new species are also given here. Laccaria brownii sp. nov. has a dark to slightly desaturated orange pileus, stipe context broadly fistulose and soft orange, and relatively smaller cheilocystidia and pleurocystidia. Laccaria orangei sp. nov. has a hemispherical to paraboloid pileus, abundant narrowly clavate, flexuose, and branched cheilocystidia. Laccaria ruber sp. nov. pileus is red on the margin, clearly striate on the pileus surface, basidia clavate, mostly four-spored, rarely two-spored. Laccaria stipalba sp. nov. stipe surface is white, long sterigmata (4-13 μm × 2-3 μm), pleurocystidia narrowly clavate to subclavate, flexuose or mucronate, rarely branch. The descriptions, illustrations, and phylogenetic analysis results of the new taxa are provided. In addition, the new taxa are compared with closely related taxa.

RevDate: 2025-03-27

Zheng T, Wang L, Ai M, et al (2025)

Taxonomic Revision of Solorina (Peltigeraceae, Ascomycota), Reveals a New Genus and Three New Species.

Journal of fungi (Basel, Switzerland), 11(3):.

The lichen genus Solorina exhibits significant morphological and chemical variations between species. Recent molecular studies have demonstrated that Solorina is polyphyletic, underscoring the need for a comprehensive taxonomic revision. Phylogenetic analyses employing Bayesian methods and Maximum Likelihood approaches based on three molecular loci (nrITS, nrLSU, mtSSU) revealed that species of Solorina segregate into two distinct clades. The first clade includes species characterized by bright orange lower surfaces that contain secondary metabolites, notably solorinic acid. The type species, Solorina crocea, is retained in the genus Solorina. The second clade encompasses species with white or brownish lower surfaces; most species lack secondary metabolites and are now classified as a new genus, Pseudosolorina. As a result of this taxonomic revision, two species: S. crocea and S. crocoides remain in the genus Solorina. Five species with white or brownish lower surfaces were transferred to the new genus Pseudosolorina, which consists of three newly described species and five new combinations. Four species previously described as Solorina: S. embolina, S. fuegiensis, S. octospora, and S. platycarpa have morphology consistent with Pseudosolorina, but are currently retained in Solorina due to the absence of supporting DNA sequence data. A key to Solorina and Pseudosolorina is provided. The spores of S. crocea exhibit wall ornamentation featuring rounded papillae, which are distinct from those of Pseudosolorina. Molecular data and morphological characters also indicate that both Solorina and Pseudosolorina engage in symbiotic associations with photobionts cyanobacteria Nostoc and chlorophytes Coccomyxa or Asterochloris.

RevDate: 2025-03-26

Fan X, Zhou X, He J, et al (2025)

Spray-induced gene silencing of three G-protein signaling genes from the arbuscular mycorrhizal fungus Rhizophagus irregularis inhibits spore germination and hyphopodium formation.

The New phytologist [Epub ahead of print].

About 70% of land plants form symbioses with arbuscular mycorrhizal (AM) fungi. Some plant genes important for accommodating AM fungi within roots have been characterized, but AM fungal genes involved in asymbiotic growth and hyphopodium formation remain elusive due to a lack of methods for genetic manipulation. Here, we introduce an innovative gene silencing technology based on spraying double-stranded RNA (dsRNA) to characterize the functions of three genes encoding G-protein signaling proteins, including the regulator of G-protein signaling RiRgs3, the Gα subunit RiGpa3, and the Gβ subunit RiGpb1 from the AM fungus Rhizophagus irregularis at the asymbiotic and initial symbiotic stages. RiRgs3, RiGpa3, and RiGpb1 expression is induced in the early stages of AM symbiosis. Using spray-induced gene silencing (SIGS), we discovered that R. irregularis can take up dsRNA. Moreover, SIGS of RiRgs3, RiGpa3, or RiGpb1 led to defects in spore germination and hyphopodium formation. In conclusion, our results reveal that SIGS is a suitable technique for the analysis of gene function in AM fungi and that G-protein signaling is required for spore germination and hyphopodium formation.

RevDate: 2025-03-26

Wong KK, Papachristou E, Francesconi M, et al (2025)

Editorial: 'Like a bee and a flower' - the symbiotic relationship between physical environment and children and young people's psychosocial outcomes.

This special issue captures the multifaceted and dynamic human-environment relationship across a critical stage of development and illustrates the importance of the physical environment in understanding child and adolescent mental health. Illustrated through original articles, action research, systematic reviews, debates, editorial perspectives and commentaries, our authors showcase the nuances of this relationship through diverse methodologies, data sources, interdisciplinary teams and international perspectives. Authors evidence the impact of physical environmental characteristics on psychosocial outcomes early in life, for both community and clinical populations. Exposure to adversities early in life or during critical developmental periods, such as early childhood and adolescence, has the potential to shape later life outcomes. We hope this special issue provides helpful examples of good practice and the ways of working together needed to inspire future youth-led context-specific health research. We also hope that this special issue can encourage us to rethink public health and education policies, urban planning and design priorities, and clinical research and practice to have young people in the centre of this work.

RevDate: 2025-03-26

Trombley J, Celenza JL, Frey SD, et al (2025)

Arbuscular Mycorrhizal Fungi Boost Development of an Invasive Brassicaceae.

Plant, cell & environment [Epub ahead of print].

Invasive plant growth is affected by interactions with arbuscular mycorrhizal fungi (AMF). AMF are mutualists of most land plants but suppress the growth of many plants within the Brassicaceae, a large plant family including many invasive species. Alliaria petiolata (garlic mustard) is a nonnative, nonmycorrhizal Brassicaceae distributed throughout North America in forest understories where native species rely on AMF. If AMF suppress growth of garlic mustard, it may be possible to inoculate AMF to manage invasions. Here, we show that in contrast to expectation, garlic mustard growth nearly doubled in response to AMF inoculation under both laboratory and field conditions. This effect was negatively linked to investments in glucosinolates, a class of defensive compounds. In contrast to typical symbiosis, AMF did not produce arbuscules where nutrient exchange occurs in roots, but AMF inoculation increased plant and soil nitrogen availability. Our findings reveal an adjacent pathway by which AMF promote invasive plant growth without classic symbiotic exchanges. Prior assumptions that garlic mustard suppresses AMF are inadequate to explain invasion success since it benefits from interactions with AMF. This study is the first to demonstrate extensive growth promotion following AMF inoculation in mustard plants, with important implications for invasion biology and agriculture.

RevDate: 2025-03-25

Kennedy PG, ME Smith (2025)

Mountains are not like poles for symbiotic and saprotrophic soil fungi.

The New phytologist [Epub ahead of print].

RevDate: 2025-03-26

Chei E, Conti-Jerpe IE, Pons L, et al (2025)

Changes within the coral symbiosis underpin seasonal trophic plasticity in reef corals.

ISME communications, 5(1):ycae162.

Scleractinian corals are mixotrophic organisms that use both autotrophic and heterotrophic pathways to fulfill their metabolic needs. Corals span a spectrum of trophic strategies and vary in their dependence on associated algal symbionts, with certain species capable of increasing heterotrophic feeding to compensate for the loss of autotrophic nutrition. As this ability can improve the likelihood of survival following marine heat waves and environmental disturbance, the continued threat of global and local stressors necessitates the investigation of trophic plasticity to determine coral responses to changing conditions. Here, we examined trophic strategy shifts between wet (high temperature and light) and dry (low temperature and light) seasons for seven genera of scleractinian corals by applying a Bayesian statistical model to determine the isotopic niches of paired coral hosts and their symbionts. Using a novel index (Host Evaluation: Reliance on Symbionts), trophic strategy was evaluated along a continuum of mixotrophy for each season. Three genera exhibited significant trophic shifts and were more heterotrophic in the dry season, likely as a mechanism to compensate for decreased symbiont functioning under lower temperatures and irradiance during these months. The magnitude of trophic plasticity varied across genera, and this pattern was positively correlated with global distribution. Together, our findings substantiate taxonomic differences in nutritional flexibility and provide support for trophic plasticity as a distinguishing trait for understanding coral biogeography.

RevDate: 2025-03-26

He M, Wang Q, Wang Y, et al (2025)

Temporal dynamics of soil microbial symbioses in the root zone of wolfberry: deciphering the effects of biotic and abiotic factors on bacterial and fungal ecological networks.

Frontiers in plant science, 16:1518439.

Long-term monoculture of Lycium barbarum significantly affects its productivity and soil health. Soil microbiota, which mediate the sustainable development of soil ecosystems, are influenced by the age of wolfberry plants. However, the comprehensive effects of long-term cultivation of L. barbarum on the soil microbial community are not yet fully understood. Here, we assessed the effects of stand age on the diversity, composition, assembly, and symbiotic networks of bacterial and fungal communities in the root zone soil of L. barbarum using high-throughput sequencing technology. The results showed that stand age significantly affected the α-diversity of bacterial and fungal communities, as evidenced by the tendency of their Shannon and Chao1 indices to increase and then decrease. At the same time, the structure of soil bacterial and fungal communities was significantly influenced by tree age. However, Proteobacteria (28.77%-32.81%) was always the most dominant bacterial phylum, and Ascomycetes (49.72%-55.82%) was always the most dominant fungal phylum. A number of genus-level biomarkers were also identified in soils associated with roots of trees of varying ages. Additionally, stochastic processes dominated the assembly of soil bacterial communities, whereas the balance between stochastic and deterministic processes in the assembly of fungal communities fluctuated with stand age. The complexity and stability of bacterial and fungal community networks were notably affected by tree age, particularly in networks from 10- and 15-year-old trees. The partial least squares path modeling (PLS-PM) analysis emphasized that stand age can indirectly regulate the diversity and network complexity of both bacterial and fungal communities by influencing soil physicochemical properties. Furthermore, the bacterial community, but not the fungal community, exhibited direct and strong regulation of network complexity. The study offers valuable data for improving the soil quality and fruit yield of L. barbarum under long-term continuous cropping, which has implications for the sustainable development of the L. barbarum industry.

RevDate: 2025-03-27
CmpDate: 2025-03-25

Laanisto L, Pavanetto N, Puglielli G, et al (2025)

Contrasting mycorrhizal functionality in abiotic stress tolerance of woody species.

Scientific reports, 15(1):10123.

Current understanding of how woody plants respond to abiotic stress and how mycorrhizal interactions mitigate this stress is limited, as research has mostly focused on single stress factors. The diverse range of woody plants and mycorrhizal fungi, and the varying intensity and composition of multiple stress factors in different regions worldwide, have made it difficult to study these highly functional symbiotic interactions from a global perspective. Here, we used a top-down approach that involved partitioning known interactions into functional types, and mapping stress tolerances and interactions into overlapping heatmaps. We used a comprehensive dataset of 621 woody species' tolerance of shade, drought, waterlogging, and cold stress, as well as their mycorrhizal interaction data, to test how stress polytolerance correlates with different functional types of mycorrhiza. We show that single mycorrhizal type associates with shade tolerance, while dual type with cold and waterlogging tolerance. Both arbuscular mycorrhiza and obligate interactions are more abundant in drought stress tolerance conditions, while ectomycorrhiza and facultative interactions are found in more cold and waterlogged stressful conditions. Thus, functionally distinct mycorrhizal interactions form significantly contrasting stress mitigation patterns with woody species, providing insights into both evolutionary and biogeographic patterns related to the development of plant-mycorrhiza interactions.

RevDate: 2025-03-24

Gresshoff PM, Su C, Su H, et al (2025)

Functional genomics dissection of the nodulation autoregulation pathway (AON) in soybean (Glycine max).

Journal of integrative plant biology [Epub ahead of print].

The combination of mutation-based genetics and functional genomics has allowed a detailed dissection of the nodulation-induction and autoregulation of nodulation (AON) pathways of soybean. Applicable to all legumes, nodulation is induced by Rhizobium/Bradyrhizobium-produced lipopolysaccharides (Nod factors), perceived by Nod factor receptors (NFR1/NFR5 dimers), leading to cortical and pericycle cell divisions. These induce the production of Clavata3-like (CLE) peptides, which travel in the xylem to the shoot, where they are perceived by a receptor complex including a leucine-rich repeat (LRR) receptor kinase, encoded by GmNARK, LjHAR1, MtSUNN and closely related receptors in other legumes like Phaseolus vulgaris (common bean), Pisum sativum (pea), and Glycine soja. The activated receptor complex negatively regulates by phosphorylation of the constitutive synthesis of miR2111 in the shoot. This is normally is translocated via the phloem to the entire plant body, initiating suppression of a root-expressed Kelch repeat-containing F-box protein "Too Much Love (TML)," which in turn suppresses the nodule initiation cascade. Nodulation is therefore permitted during a developmental window between the induction and progress of the nodulation/cell division/infection cascade during the first few days after inoculation and the functional "readiness" of the AON cascade, delayed by the root-shoot-root loop. Loss-of-function mutations in GmNARK and LjTML result in excessive nodulation (supernodulation/hypernodulation/supernummary nodulation) as well as localized tolerance to externally applied nitrate. Recent analyses have indicated an interaction of the AON with lateral root formation as well as with the autoregulation of mycorrhization (AOM). Further details of the parallel functions of key points in this regulatory loop remain to be elucidated.

RevDate: 2025-03-24

Tsuda H, Iwai K, N Hayashizaki (2025)

Pseudovitamin B12 producing Loigolactobacillus coryniformis enhances soy milk fermentation by Lactobacillus delbrueckii subsp. bulgaricus.

Journal of the science of food and agriculture [Epub ahead of print].

BACKGROUND: Fermenting soy milk with lactic acid bacteria is challenging. Generally, carbohydrates are added to enhance the acid production in soy milk. However, the yoghurt starter Lactobacillus delbrueckii subsp. bulgaricus did not succeed in fermenting soy milk supplemented with carbohydrates. If this yoghurt starter could be used with soy milk, it is expected that it would produce a yoghurt-like flavour, making soy yoghurt more appealing. In this study, we aimed to ferment soy milk using Lb. delbrueckii subsp. bulgaricus and pseudovitamin B12-producing lactic acid bacteria.

RESULTS: Loigolactobacillus coryniformis SAB01 was found to produce corrinoid in soy milk, with the highest production being observed at 20 °C. The produced corrinoid was identified as pseudovitamin B12 using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Another bacterial strain, Lb. delbrueckii subsp. bulgaricus NBRC 13953, was examined for its ability to produce lactic acid in soy milk. Compared with soy milk supplemented with glucose or cyanocobalamin alone, the highest lactic acid production was observed in soy milk supplemented with both glucose and cyanocobalamin. These findings indicate that the combined addition of glucose and cyanocobalamin enhances lactic acid production by strain NBRC 13953 in soy milk. We accordingly examined lactic acid production in soy milk inoculated with strains SAB01 and NBRC 13953, and found that a substantial quantity of lactic acid was produced when glucose was added to soy milk.

CONCLUSIONS: Our findings in this study indicate that the growth of Lb. delbrueckii subsp. bulgaricus NBRC 13953 was promoted by the pseudovitamin B12 produced by Loigolactobacillus coryniformis SAB01, thereby suggesting a novel symbiotic relationship between these two lactic acid bacteria in soy milk. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

RevDate: 2025-03-25

Pinko D, Langlet D, Sur O, et al (2025)

Long-term functional kleptoplasty in benthic foraminifera.

iScience, 28(3):112028.

Foraminifera are highly diverse rhizarian protists, with some lineages having developed the ability to retain chloroplasts from algal prey (kleptoplasty). Recently, we revealed the evolutionary relationship between kleptoplasty and algal symbiosis in the benthic foraminifera Hauerina diversa. In this study, we explored fundamental aspects of host-kleptoplast interactions. The photosynthetic rates of H. diversa show the sequestered kleptoplast activity under a wide range of light intensities with no signs of photoinhibition. This lack of photoinhibition response may be attributed to the loss of key elements responsible for this process during the acquisition of kleptoplasts. Our study demonstrates the stability and notably extended retention of kleptoplasty in H. diversa, evidenced by its plastid retention under conditions of heterotrophic feeding deprivation for 50 days. The host-kleptoplast interactions suggest that H. diversa is highly committed to this partnership and that this kleptoplasty species likely relies on similar kleptoplast/alga maintenance mechanisms as symbiont-bearing foraminifera.

RevDate: 2025-03-27
CmpDate: 2025-03-24

Asghari B, Hoseinzadeh M, S Mafakheri (2025)

Enhancing drought resistance in Dracocephalum moldavica L. through mycorrhizal fungal inoculation and melatonin foliar application.

Scientific reports, 15(1):10051.

This research focused on improving the drought tolerance of Dracocephalum moldavica, a plant vulnerable to water stress, by exploring the combined effects of melatonin spray and mycorrhizal fungus Glomus intraradices inoculation. The experiment was designed as a factorial randomized study to evaluate the plant's morphological, physiological, and phytochemical responses under different drought conditions (100%, 75%, and 50% field capacity). The findings revealed that the combination of melatonin and mycorrhizal inoculation significantly improved the morphological traits of Moldavian balm under drought conditions. Under severe drought (50% field capacity), chlorophyll a and b levels increased by 26.3% and 35.5%, respectively, when both treatments were applied. Stress indicators, including electrolyte leakage and malondialdehyde content, were substantially reduced with the simultaneous application of melatonin and mycorrhizal symbiosis, indicating decreased cellular damage. Moreover, the combined treatment resulted in the highest activities of the antioxidant enzymes catalase and peroxidase, suggesting that these treatments bolster the plant's oxidative stress defense mechanisms. Additionally, drought stress alone led to an increase in secondary metabolites like phenolic and flavonoid compounds, which were further amplified by the treatments. The study also observed significant alterations in the essential oil composition of the plant. Drought stress increased the levels of α-pinene, 1,8-cineole, and borneol, and these increases were even more pronounced with the combined treatments. Conversely, the levels of geraniol and geranial decreased under drought stress and further with treatment. Overall, this research demonstrates that melatonin and Glomus intraradices inoculation can effectively enhance drought tolerance in Dracocephalum moldavica by improving its physiological characteristics and biochemical composition.

RevDate: 2025-03-23

Su R, Wen W, Jin Y, et al (2025)

Dietary whey protein protects against Crohn's disease by orchestrating cross-kingdom interaction between the gut phageome and bacteriome.

Gut pii:gutjnl-2024-334516 [Epub ahead of print].

BACKGROUND: The gut microbiome and diet are important factors in the pathogenesis and management of Crohn's disease (CD). However, the role of the gut phageome under dietary influences is unknown.

OBJECTIVE: We aim to explore the effect of diet on the gut phageome-bacteriome interaction linking to CD protection.

DESIGN: We recruited CD patients and healthy subjects (n=140) and conducted a multiomics investigation, including paired ileal mucosa phageome and bacteriome profiling, dietary survey and phenome interrogation. We screened for the effect of diet on the gut phageome and bacteriome, as well as its epidemiological association with CD risks. The underlying mechanisms were explored in target phage-bacteria monocultures and cocultures in vitro and in two mouse models in vivo.

RESULTS: On dietary screening in humans, whey protein (WP) consumption was found to profoundly impact the gut phageome and bacteriome (more pronounced on the phageome) and was associated with a lower CD risk. Indeed, the WP reshaped gut phageome can causally attenuate intestinal inflammation, as shown by faecal phageome versus bacteriome transplantation from WP-consuming versus WP-non-consuming mice to recipient mice. Mechanistically, WP induced phage (a newly isolated phage AkkZT003P herein) lysis of the mucin-foraging bacterium Akkermansia muciniphila, which unleashed the symbiotic bacterium Streptococcus thermophilus to counteract intestinal inflammation.

CONCLUSION: Our study charted the importance of cross-kingdom interaction between gut phage and bacteria in mediating the dietary effect on CD protection. Importantly, we uncovered a beneficial dietary WP, a keystone phage AkkZT003P, and a probiotic S. thermophilus that can be used in CD management in the future.

RevDate: 2025-03-23

Tang S, Qian J, Zhu Y, et al (2025)

Polystyrene nanoplastics reshape the peatland plants (Sphagnum) bacteriome under simulated wet-deposition pathway: Insights into unequal impact of ecological niches.

Journal of hazardous materials, 491:138004 pii:S0304-3894(25)00920-3 [Epub ahead of print].

Nanoplastics (NPs) enter peatlands through atmospheric deposition, yet their effects on Sphagnum bacterial communities (SBCs) and plant-self remain unknown. We hypothesize that NPs alter the composition, structure, and co-occurrence pattern of epiphytes (Epi) and endophytes (En), thereby differentially affecting the growth and physiological performance of Sphagnum. The 30-day simulated wet deposition experiment was conducted to test this. Here, polystyrene NPs reduced the α-diversity of SBCs, unevenly reshaped the structure of Epi and En. Mfuzz clustering was used to reveal the co-abundance behavior of SBCs, and the null model found SBCs relied on stochastic assembly, formed stable Epi molecular ecological network (MEN) and connected En MEN. NPs disrupted symbiosis of SBCs, with high-abundance phyla reductions impacting MENs and low-abundance phyla affecting the inter-domain ecological network (IDEN) between Epi and En. Increasingly positive NPs (from carboxyl-modified to unmodified, and then to amino-modified NPs) further decreased SBCs abundance. Key clusters of Proteobacteria (Pro.), with α-Pro. and γ-Pro. as module hubs of MENs, and β-Pro. as a network hub in the IDEN, could reflect these changes. Additionally, NPs lowered plant spread area (P < 0.05) and chlorophyll content (P < 0.01), but the reduction in biomass was not significant. Structural equation modeling showed reduced SBCs α-diversity alleviated the NPs phytotoxicity (up to 33.31 % offset), as genetic analysis revealed that methane oxidation, carbon fixation, and trace element metabolism may upregulate plant nutrient supply. Our findings offer critical insights into NPs deposition risks in remote areas and highlight the responses of plant-bacteriome symbiosis.

RevDate: 2025-03-22

Radice VZ, Gijsbers JC, Vimercati S, et al (2025)

First reference genomes for two mesophotic, reef-building coral species: Leptoseris cf. scabra and Montipora cf. grisea.

The Journal of heredity pii:8090358 [Epub ahead of print].

Coral mortality is occurring worldwide at an alarming rate. Despite the immense and underestimated biodiversity of reef-building corals, very few genomes are available. Further, almost all genomic resources originate from shallow water corals even though photosynthetic, symbiotic corals occur at mesophotic depths deeper than 30 m and even >100 m. We present annotated, de novo genomes for two mesophotic, scleractinian (reef-building) corals Montipora cf. grisea and Leptoseris cf. scabra from American Sāmoa, the latter being the first genome for the widespread genus Leptoseris. We used PacBio continuous long reads and Omni-C data to assemble chromosome-level reference genomes. For Montipora cf. grisea, the final genome size was 1.3 Gb with a completeness level (BUSCO) of 99.9% and 97.2% against the eukaryotic and metazoan databases, respectively. The M. cf. grisea genome had a N50 of 50.2 Mb and the annotation predicted 41,981 genes. For Leptoseris cf. scabra, the final genome size was 794 Mb with a BUSCO of 99.2% and 96.1% against the eukaryotic and metazoan databases, respectively. The L. cf. scabra genome had a N50 of 45.2 Mb and 35,741 predicted genes. These genomes serve as critical references for the analysis of coral gene expression responses to climate change such as ocean warming (i.e., coral bleaching) and ocean acidification impacts. The genomes can be used to investigate the genetic diversity and adaptive divergence of shallow vs. mesophotic coral populations to understand reef resilience and guide conservation strategies.

RevDate: 2025-03-22

Wang Z, Mou R, Jin S, et al (2025)

Streptococcus anginosus promotes gastric cancer progression via GSDME-mediated pyroptosis pathway: Molecular mechanisms of action of GSDME, cleaved caspase-3, and NLRP3 proteins.

International journal of biological macromolecules, 307(Pt 4):142341 pii:S0141-8130(25)02893-4 [Epub ahead of print].

Streptococcus vasculosus is a common oral and intestinal symbiotic bacteria, but it can transform into a pathogen under certain conditions, affecting the host's immune response. Studies have shown that Streptococcus vasculosus may promote tumor growth and metastasis by activating host inflammatory responses. This study simulated the environment of Streptococcus vascularis infection through in vitro cell culture experiment, and observed the influence of streptococcus vascularis at different time points and different concentrations on cancer cells. The expression and activity of GSDME, cleaved caspase-3 and NLRP3 proteins were detected by Western blot, immunofluorescence and flow cytometry. By constructing gene knockout and overexpression cell models, the role of these protein molecules in promoting cancer progression of Streptococcus vascularis was further verified. It was found that GSDME activation is a key step in Pyroptosis occurrence, and cleaved caspase-3 plays an important role in GSDME cleavage activation. The activation of NLRP3 inflammatome is closely related to the inflammatory response induced by Streptococcus vasculosus, and thus affects the tumor microenvironment.

RevDate: 2025-03-21
CmpDate: 2025-03-21

Hochstrasser M (2025)

A cut above: Bacterial deubiquitinases with ubiquitin clippase activity.

Molecular cell, 85(6):1048-1050.

Pathogenic or symbiotic bacteria residing inside eukaryotic cells often foil attempts to eliminate them by secreting deubiquitinases into the host. In this issue of Molecular Cell, Hermanns et al.[1] uncover an unexpected "clippase" activity in certain bacterial deubiquitinases, which cleaves substrate-linked ubiquitin within the ubiquitin C terminus, thereby inactivating it.

RevDate: 2025-03-21
CmpDate: 2025-03-21

Ha SH, Lee MS, Park MJ, et al (2025)

Roseovarius conchicola sp. nov. and Aliiroseovarius conchicola sp. nov., isolated from the marine conch Reishia bronni.

International journal of systematic and evolutionary microbiology, 75(3):.

The intertidal zone is an area located between the marine environment and the terrestrial environment and is exposed to various stresses. To investigate the mutualistic relationship between hosts and symbiotic micro-organisms inhabiting the intertidal zone, strains 2305UL8-3[T] and 2305UL8-7[T] were isolated from Reishia bronni, a species living in the intertidal zone of Ulleungdo Island, South Korea. Both strains are Gram-stain-negative, catalase- and oxidase-positive and facultatively anaerobic. Strains 2305UL8-3[T] and 2305UL8-7[T] grow optimally at 30.0 °C and 28.0-30.0 °C, respectively, under conditions of pH 8.0 and 3.0 % (w/v) NaCl. They have Q-10 as the primary quinone, and their common main fatty acids are C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Additionally, their primary polar lipids include phosphatidylcholine and phosphatidylglycerol. The two novel strains have an arsenic reduction pathway that reduces the oxidation state of arsenic and are expected to influence environmental regulation processes through the catabolic sulphate reduction system. Based on these characteristics, they exhibit resistance potential to environmental stresses, specifically arsenic exposure in the intertidal zone, where arsenic contamination is often associated with pollution and tidal fluctuations. Analysing the 16S rRNA gene sequence similarity, strain 2305UL8-3[T] shared 96.60 % similarity with Roseovarius faecimaris MME-070[T], while strain 2305UL8-7[T] showed 98.13 % similarity with Aliiroseovarius sediminilitoris M-M10[T]. Polyphasic analysis revealed that strains 2305UL8-3[T] and 2305UL8-7[T] should be identified as novel species within the genera Roseovarius and Aliiroseovarius, respectively. Therefore, Roseovarius conchicola sp. nov. with the type strain 2305UL8-3[T] (=KCTC 8475[T]=MCCC 1K09523[T]=JCM 37202[T]) and Aliiroseovarius conchicola sp. nov. with the type strain 2305UL8-7[T] (=KCTC 8476[T]=MCCC 1K09524[T]=JCM 37203[T]) are proposed.

RevDate: 2025-03-21

Baa-Puyoulet P, Gerlin L, Parisot N, et al (2025)

ArtSymbioCyc, a metabolic network database collection dedicated to arthropod symbioses: a case study, the tripartite cooperation in Sipha maydis.

mSystems [Epub ahead of print].

Most arthropods live in close association with bacteria. The genomes of associated partners have co-evolved, creating situations of interdependence that are complex to decipher despite the availability of their complete sequences. We developed ArtSymbioCyc, a metabolism-oriented database collection gathering genomic resources for arthropods and their associated bacteria. ArtSymbioCyc uses the powerful tools of the BioCyc community to produce high-quality annotations and to analyze and compare metabolic networks on a genome-wide scale. We used ArtSymbioCyc to study the case of the tripartite symbiosis of the cereal aphid Sipha maydis focusing on amino acid and vitamin metabolisms, as these compounds are known to be important in this strictly phloemophagous insect. We showed that the metabolic pathways of the insect host and its two obligate bacterial associates are interdependent and specialized in the exploitation of Poaceae phloem, particularly for the biosynthesis of sulfur-containing amino acids and most vitamins. This demonstrates that ArtSymbioCyc does not only reveal the individual metabolic capacities of each partner and their respective contributions to the holobiont they constitute but also allows to predict the essential inputs that must come from host nutrition.IMPORTANCEThe evolution has driven the emergence of complex arthropod-microbe symbiotic systems, whose metabolic integration is difficult to unravel. With its user-friendly interface, ArtSymbioCyc (https://artsymbiocyc.cycadsys.org) eases and speeds up the analysis of metabolic networks by enabling precise inference of compound exchanges between associated partners and helps unveil the adaptive potential of arthropods in contexts such as conservation or agricultural control.

RevDate: 2025-03-21

Stillson PT, Martinez K, Adamson J, et al (2025)

Temperature influences outcomes of an environmentally acquired symbiosis.

The ISME journal pii:8089910 [Epub ahead of print].

Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.

RevDate: 2025-03-22

Fujimoto R, Kuchida M, Ban-Tokuda T, et al (2025)

Isolation and molecular identification of Lactobacillaceae bacteria and Bifidobacterium from horse feces.

Journal of equine science, 36(1):39-43.

The equine large intestine harbors a diverse array of symbiotic microorganisms. Disruptions in the gut microbiota can lead to various diseases in horses. Probiotics offer promising avenues for enhancing equine health and performance. However, commercial formulations lack robust scientific validation. This study aimed to isolate and identify Lactobacillaceae and Bifidobacterium spp. from horse feces to explore their potential as probiotics. Fecal samples from Thoroughbred horses were subjected to isolation procedures. Lactic acid-producing bacteria were isolated using specific media and identified. The results revealed the isolation of Lactobacillaceae strains, including Limosilactobacillus equigenerosi, Ligilactobacillus equi, Ligilactobacillus agilis, and a Bifidobacterium sp., Bifidobacterium pseudolongum. These findings contribute to the understanding of equine gut microbiota and offer insights into potential probiotic candidates.

RevDate: 2025-03-22

Jiang Y, Li M, X Guo (2025)

Spartina alterniflora modifies the native arbuscular mycorrhizal fungal community in coastal ecosystem.

Frontiers in microbiology, 16:1544111.

The effect of invasive plants is mediated by their interactions with microbial communities. However, it is still uncertain how Spartina alterniflora impacts the arbuscular mycorrhizal fungi (AMF) community within the native rhizosphere what the resulting AMF differences are associated with. Here, we investigated what kind of AMF communities are formed in the roots of S. alterniflora to distinguish it from native plants such as Suaeda salsa, Phragmites australis, and Tamarix chinensis by analyzing the AMF communities and the associations with selected environmental factors. The dynamics of AM fungal communities are linked to plant-soil systems. The AMF communities of S. alterniflora and native vegetation demonstrated notable differences in composition, diversity, and symbiotic networks. Significantly higher ω, Ec, AN, AP, and AK were observed in S. alterniflora-invaded soils. Although plant rhizosphere AMF responded to soil environmental factors, AN and AP were highly explanatory environmental factors driving AMF community characteristics during S. alterniflora expansion, while increased soil P and N availability may be involved in shaping AMF community characteristics in S. alterniflora. Our findings can provide complementary evidence-based solutions for defending against invasive plants and mitigating their impacts, as well as protecting coastal ecosystems.

RevDate: 2025-03-24

Park G, Johnson K, Miller K, et al (2025)

Almond snacking modulates gut microbiome and metabolome in association with improved cardiometabolic and inflammatory markers.

NPJ science of food, 9(1):35.

Western-style dietary patterns have been linked with obesity and associated metabolic disorders and gut dysbiosis, whereas prudent dietary and snacking choices mitigate these predispositions. Using a multi-omics approach, we investigated how almond snacking counters gut imbalances linked to adiposity and an average American Diet (AAD). Fifteen adults with overweight or obesity underwent a randomized, crossover-controlled feeding trial comparing a 4-week AAD with a similar isocaloric diet supplemented with 42.5 g/day of almonds (ALD). Almond snacking increases functional gut microbes, including Faecalibacterium prausnitzii, while suppressing opportunistic pathogens, thereby favorably modulating gut microecological niches through symbiotic and microbe-metabolite interactions. Moreover, ALD elevates health-beneficial monosaccharides and fosters bacterial consumption of amino acids, owing to enhanced microbial homeostasis. Additionally, ALD enhances metabolic homeostasis through a ketosis-like effect, reduces inflammation, and improves satiety-regulating hormones. The findings suggest that prudent dietary choices, such as almond snacking, promote gut microbial homeostasis while modulating immune metabolic state.

RevDate: 2025-03-20

Tu TH, Hsieh HY, Meng PJ, et al (2025)

Physiological responses of scleractinian coral to trace metal enrichment and thermal stress.

Marine environmental research, 207:107085 pii:S0141-1136(25)00142-4 [Epub ahead of print].

Coral bleaching events are increasingly frequent due to global climate change and marine pollution. Trace metals, such as manganese (Mn) and iron (Fe), though toxic at high concentrations, are vital for coral physiology, supporting photosynthesis and antioxidation. This study investigates how thermal stress and trace metal exposure interact to influence the physiology of the scleractinian corals Turbinaria irregularis and Montipora mollis. Corals were exposed to Mn and Fe at varying concentrations under control (25 °C) and elevated (30 °C) temperatures. Mn enhanced photosynthetic efficiency, an increase of 1.7°% in M. mollis at 250 nM and 1.4°% in T. irregularis at 30 °C (p < 0.05). Fe improved photosynthesis by 1.8°% in M. mollis at 50 nM and growth rates by 2.1°% in T. irregularis at 25 °C (p < 0.05). Both metals mitigated bleaching, as seen in reduced relative gray intensity and increased symbiotic algal density, particularly at moderate concentrations. However, elevated temperatures suppressed growth and photosynthetic efficiency, with decreases up to 1.6°% in M. mollis (p < 0.01). These results highlight the pivotal role of trace metals in coral health and stress resilience, while emphasizing the importance of species-specific differences in trace metal uptake, thermal tolerance, and physiological responses. Further studies are necessary to elucidate the mechanisms and long-term impacts of these interactions in the face of ongoing climate change.

RevDate: 2025-03-20

Nian X, Wang B, Holford P, et al (2025)

Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.

RevDate: 2025-03-20
CmpDate: 2025-03-20

Shen D, Micic N, Venado RE, et al (2025)

Apoplastic barriers are essential for nodule formation and nitrogen fixation in Lotus japonicus.

Science (New York, N.Y.), 387(6740):1281-1286.

Establishment of the apoplastic root barrier known as the Casparian strip occurs early in root development. In legumes, this area overlaps with nitrogen-fixing nodule formation, which raises the possibility that nodulation and barrier formation are connected. Nodules also contain Casparian strips, yet, in this case, their role is unknown. We established mutants with defective barriers in Lotus japonicus. This revealed that effective apoplastic blockage in the endodermis is important for root-to-shoot signals underlying nodulation. Our findings further revealed that in nodules, the genetic machinery for Casparian strip formation is shared with roots. Apoplastic blockage controls the metabolic source-sink status required for nitrogen fixation. This identifies Casparian strips as a model system to study spatially constrained symbiotic plant-microbe relationships.

RevDate: 2025-03-20
CmpDate: 2025-03-20

He J, L Cheng (2025)

The Oral Microbiome: A Key Determinant of Oral Health.

Advances in experimental medicine and biology, 1472:133-149.

As the second largest reservoir of human microbes, the oral cavity is colonized by millions of tiny creatures collectively named as oral microbiome. Species detected in human mouth are diverse, including bacteria, fungi, viruses, and protozoa. Active bidirectional interaction exists between the oral microbiome and the host. Stresses from hosts shape the composition, distribution pattern, and the community behaviors of the oral microbiome, while any changes occurring on the oral microbiome may disrupt its symbiosis relationship with the host and ultimately lead to oral and systemic diseases that jeopardize the host's health. In this chapter, the latest understanding about the role of oral microbiome in common oral diseases, including dental caries, periodontal disease, oral candidiasis, and hyposalivation, is discussed.

RevDate: 2025-03-20
CmpDate: 2025-03-20

Colombo APV, Lourenço TGB, de Oliveira AM, et al (2025)

Link Between Oral and Gut Microbiomes: The Oral-Gut Axis.

Advances in experimental medicine and biology, 1472:71-87.

In the last decades, groundbreaking research on the human microbiome has changed our reductionist conception of the etiology and pathogenesis of several chronic diseases. As a result, we have come to appreciate the significance of a balanced microbiome in maintaining human health. In this context, the upper and lower gastrointestinal tracts (GITs) comprise the most abundant and diverse microbiotas of the human body. In addition to its diversity, functional redundancy, and temporal stability, a healthy GIT microbiome is characterized by its body site specificity. In fact, current evidence has indicated that the translocation of oral species to the gut environment through the oral-gut axis is increased in an array of illnesses, including chronic inflammatory and metabolic diseases, neurological disorders, and cancer. Oral pathogens have also been shown to promote gut dysbiosis and systemic inflammation in animal models. Yet, some level of overlapping between oral and gut microbiomes may occur without disruption of these microbial communities and loss of site specificity. The uniqueness of each host-microbiome entity may hinder our ability to define a "universal" normal GIT microbiome. Despite that, this chapter summarizes the predominant health-related taxa along the human GIT, as well as their role in the physiology and immunity of the digestive system. Some mechanisms that may lead to disturbances and relevant shifts in the oral and gut microbiomes of major inflammatory chronic diseases are also pointed out. Lastly, oral-fecal microbial signatures are presented as potential biomarkers for several oral and systemic disorders. The recognition of such symbiotic/dysbiotic microbial profiles may provide insights into the development of more accurate early diagnosis and therapeutic ecological approaches to restore the balance of the GIT microbiome.

RevDate: 2025-03-20
CmpDate: 2025-03-20

Santonocito S, Polizzi A, G Isola (2025)

The Impact of Diet and Nutrition on the Oral Microbiome.

Advances in experimental medicine and biology, 1472:53-69.

At present, it is well known that oral health is essential for the well-being of the body as a whole, thanks to the increasing awareness of how various oral diseases, including periodontal disease, oral carcinomas, and other conditions, have a close connection with various systemic disorders. In recent decades, studies on the oral microbiome have increasingly emphasized how the balance between the host and the microbial species that coexist there is essential for oral health at all stages of life. However, there are many factors capable of interfering with that balance, and diet is precisely one of them. The real influence of diet on the oral microbiota, and consequently on oral health, has been much debated. In this context, the observation of two key periods in human history, the Neolithic and the Industrial Revolution, has proved to be diriment. The foods and processing techniques that emerged in these two historical periods, in association with changes in customs and habits, significantly altered the central constituents of the human diet, including macronutrient proportions, glycemic load, fatty acid composition, sodium and potassium levels, micronutrient levels, dietary pH, and fiber content taken in by human beings. The introduction of these foods into the daily human routine has been linked to a decline in oral health and an increase of several other diseases, including cardiovascular diseases, inflammatory bowel disease, rheumatic diseases, many cancers, and obesity. The aim of this chapter is to update the current knowledge and further discuss the role of diet and nutrition on oral health.

RevDate: 2025-03-20
CmpDate: 2025-03-20

de Barros Santos HS, Pagnussatti MEL, RA Arthur (2025)

Symbiosis Between the Oral Microbiome and the Human Host: Microbial Homeostasis and Stability of the Host.

Advances in experimental medicine and biology, 1472:31-51.

The oral cavity presents a highly diverse microbial composition. All the three domains of life, Bacteria, Eukarya, and Archaea, as well as viruses constitute the oral microbiome. Bacteria are among the most abundant microorganisms in the oral cavity, followed by viruses, fungi, and Archaea. These microorganisms tend to live in harmony with each other and with the host by preventing the colonization of oral sites by exogenous microorganisms. Interactions between the host and its microbiota are crucial for keeping ecological stability in the oral cavity and a condition compatible with oral health. This chapter focuses on describing the oral microbiota in healthy individuals based on both targeted and nontargeted genome sequencing methods and the functional activity played by those microorganisms based on metagenomic, metatranscriptomic, metaproteomic, and metabolomic analyses. Additionally, this chapter explores mutualistic and antagonistic microbe-microbe relationships. These interactions are mediated by complex mechanisms like cross-feeding networks, production of bacteriocins and secondary metabolites, synthesis of pH-buffering compounds, and the use of universal signaling molecules. At last, the role played by host-microbe interactions on colonization resistance and immune tolerance will help provide a better understanding about the harmonious and peaceful coexistence among host and microbial cells under oral health-related conditions.

RevDate: 2025-03-20
CmpDate: 2025-03-20

Dame-Teixeira N, Do T, D Deng (2025)

The Oral Microbiome and Us.

Advances in experimental medicine and biology, 1472:3-9.

Oral and systemic human health depend on the symbiotic relationship between the human host and its microbiome. As the second most diverse site of the human microbiome, the oral cavity is instrumental in symbiotic relationships, transforming nutrients and acting as the human body's initial barrier against pathogens. However, under certain conditions, the typically beneficial oral microbiome can become harmful. Systemic inflammatory diseases can send signals through the oral-gut axis, such as cytokines and host defensins, altering gene expression and, consequently, the composition of the oral microbiome. These changes can be responsible for causing oral diseases, such as periodontitis and candidiasis. Evidence of metabolic syndrome, including obesity, hypertension, hyperglycemia, and dyslipidemia, exacerbates oral microbiome dysbiosis. On the other hand, the oral microbiota can also influence systemic health. Inflammatory processes in the gingival structures caused by a dysbiotic oral microbiome are linked to worsen glycemic levels in diabetics, premature birth, and rheumatoid arthritis, among others. The idea for this book emerged from the need to explore the multifaceted nature of this relationship in its various dimensions. We discuss multispecies characteristics from an ecological perspective, focusing on how the host affects the microbiome and vice versa. Understanding how the oral microbiome influences human health will guide tailored strategies for disease prevention and treatment, which is discussed in the last section of the book. Looking ahead, predictive health and disease models will enable personalized therapies centered on restoring the healthy human microbiome.

RevDate: 2025-03-20

Thies AB, Paul MR, Wangpraseurt D, et al (2025)

Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana.

The Journal of experimental biology pii:367441 [Epub ahead of print].

The upside-down jellyfish, Cassiopea spp., host their algal symbionts inside a subset of amoebocytes, phagocytic cells that also play innate immune functions akin to macrophages from vertebrate animals. Amoebocyte precursors phagocytose algae from the jellyfish gut and store them inside intracellular compartments called symbiosomes. Subsequently, the precursors migrate to the mesoglea, differentiate into symbiotic amoebocytes, and roam throughout the jellyfish body where the algae remain photosynthetically active and supply the jellyfish host with a significant portion of their organic carbon needs. Here, we show that the amoebocyte symbiosome membrane contains V-H+-ATPase (VHA), the proton pump that acidifies phagosomes and lysosomes in all eukaryotes. Many symbiotic amoebocytes also abundantly express a carbonic anhydrase (CA), an enzyme that reversibly hydrates CO2 into H+ and HCO3-. Moreover, we found that the symbiosome lumen is pronouncedly acidic and that pharmacological inhibition of VHA or CA activities significantly decreases photosynthetic oxygen production in live jellyfish. These results point to a carbon concentrating mechanism (CCM) that co-opts VHA and CA from the phago-lysosomal machinery that ubiquitously mediates food digestion and innate immune responses. Analogous VHA-dependent CCMs have been previously described in reef-building corals, anemones, and giant clams; however, these other two cnidarians host their dinoflagellate algae inside gastrodermal cells -not in amoebocytes- and the clam hosts theirs within the gut lumen. Thus, our study identifies an example of convergent evolution at the cellular level that might broadly apply to invertebrate-microbe photosymbioses while also providing evolutionary links with intra- and extracellular food digestion and the immune system.

RevDate: 2025-03-21

Liu C, Zhang J, Li Q, et al (2025)

Horizontal transmission of symbiotic bacteria and host selective sweep in the giant clam Tridacna crocea.

ISME communications, 5(1):ycaf037.

Giant clams, with their significant ecological importance, depend on associated bacteria for their health and development, yet the transmission modes and succession of community dynamics of these bacteria remain poorly understood. This study employed 16S rRNA gene sequencing and microscopy to investigate the transmission and community dynamics of symbiotic bacteria in the giant clam Tridacna crocea during early developmental stages (fertilized eggs, blastocyst, D-larvae, and pediveliger larvae). Fluorescence in situ hybridization and transmission electron microscopy did not detect internal symbiotic bacteria in fertilized eggs and adult gonad gametes, but scanning electron microscopy revealed microbial structures on egg surface microvilli, suggesting their role as microbial carriers. 16S rRNA sequencing confirmed microbial presence in fertilized eggs, indicating bacterial acquisition via external vertical transmission (adherence to microvilli) or horizontal transmission. Given the lack of internalized bacteria in reproductive organs, we prefer to classify the symbiotic bacteria acquisition as horizontal transmission. Microbial community analysis showed that T. crocea acquired a significant portion of its microbiome from seawater throughout its development. Before reaching the pediveliger stage, the bacterial community composition closely resembled that of the surrounding seawater, primarily featuring the family Rhodobacteraceae. As T. crocea matured, the host's selective pressure increased (e.g. deterministic assembly), which simplified the microbial community and reduced diversity. During the pediveliger stage, the genus Endozoicomonas became dominant, forming a large proportion of the bacterial community within the gonads. This highlights the ecological significance of host-microbe interactions in maintaining biodiversity and driving ecosystem stability through dynamic community assembly processes.

RevDate: 2025-03-20

Dong J, Dai W, Xu J, et al (2025)

Impact and elastic modulus of coal mining on terrestrial ecosystems.

Scientific reports, 15(1):9454.

The energy consumption structure is gradually evolving into a "diversified energy structure" against the backdrop of the global implementation of energy-saving and low-carbon policies. Coal, as the main energy source in China, is difficult to change in the short term, given the characteristics of China's energy and resource endowments, as well as the actual social and economic development at the present stage. Nevertheless, coal mining inevitably leads to a range of ecological issues. Identifying the impact of coal mining on terrestrial ecosystems and adopting resilient recovery measures are crucial prerequisites for advancing green coal mining efforts and attaining carbon peaking and carbon neutrality goals. Using China's open-pit coal mining as a case study: (1) the research examines the fundamental attributes and evolving patterns of spatial distribution among these mines within the country. Furthermore, it delineates the life cycle stages and distinctive features of the five principal open-pit coal mines. The life cycle of a coal mining area is divided into four distinct development phases: the initial phase, the accelerated phase, the stable phase, and the declining phase. The spatial relationship between the life cycle stages of coal mining and ecosystem succession is elucidated by examining the evolutionary types of ecosystems within coal mine area. In the accelerated and stable development phase, the adverse effects of coal mining on the ecosystem are in a long-term increasing trend, causing the key elements of the ecosystem to gradually surpass their threshold values. The ecosystem is out of balance, severely damaged, and gradually undergoing degradation or extreme degradation. The types of ecological succession in coal mining areas can be categorized as follows: terrestrial succession leading to a new terrestrial ecosystem, terrestrial to aquatic ecosystem transitions, or the development of an amphibious symbiotic ecosystem. (2) The research quantitatively assessed the impact of surface coal mining on terrestrial ecosystems by utilizing remote sensing data in conjunction with coal production information. In 2022, the affected areas of the five major open-pit coal mines due to coal mining activities amounted to approximately 0.02% of China's total land area. Meanwhile, the nationwide affected areas of all open-pit coal mines combined reached to approximately 0.13% of China's land area. Open-pit coal mining activities have a significant impact on the surface. (3) By incorporating the ecological resilience theory, we establish a model for the ecosystem's elastic modulus in coal mining areas, taking into account landscape diversity, vegetation coverage, land type, and climate factors, which are based on the concepts of elastic strength and elastic limit. A conceptual model for recognizing ecological thresholds in coal mining areas is developed by incorporating the comprehensive integrity index of the ecosystem. The comprehensive integrity of the ecosystem within a coal mining area undergoes significant alterations as it crosses three distinct ecological thresholds: the elastic point, the yield point, and the mutational point. There should be a corresponding constant (or constant interval) at the three ecological thresholds of ecosystem resilience, the elastic point, the yield point, and the mutational point, which is closely related to the scale of mining operations, mining technology, and the service life in coal mining areas. The established models for identifying ecological thresholds and the resilience modulus degree serve as both theoretical references and practical bases for managing the progress and trends of ecosystem changes during coal resource extraction, making ecological restoration in coal mine areas more target-oriented and specific.

RevDate: 2025-03-20

Dourmap C, Fustec J, Naudin C, et al (2025)

White lupin: improving legume-based protein production via intercropping.

Journal of experimental botany pii:8087429 [Epub ahead of print].

Climate change, increased needs for food, industry and mitigation of environmental impacts are currently driving changes in agricultural practices. Moreover, increasing demand for plant-based protein in substitution to animal protein or to reduce soybean importations is driving cultivation of high-protein crops. Legumes are such crops that play a critical role in this process. Amongst them, white lupin is a so-called orphan species, i.e. associated with relatively little cultivated surface area worldwide and limited agronomic knowledge. Lupin is nevertheless very promising since seeds contain a high content of storage proteins with interesting nutritional properties. Also, it has low fertilisation requirements since it forms root clusters allowing efficient phosphorus (P) acquisition, along with symbiotic nitrogen (N) fixation by nodules. Nevertheless, lupin cultivation faces important challenges such as yield variability, slow vegetative development or susceptibility to weeds diseases and water stress, for example. Lupin has an enormous potential for resource-saving practices such as intercropping with non-legumes, because of niche complementarity for N acquisition and facilitation of P transfer to the associated species, which can in turn mitigate weeds and pests, and ensure yield stability. To overcome several bottlenecks associated with lupin cultivation (e.g. nutrient utilisation, drought resistance or limiting the impact of weeds), genetic, metabolic, and agronomic research is required in order to define ideotypes that are particularly well-fitted to sustainable agricultural practices such as intercropping, with optimal protein yield. This is one of the purposes of the trans-disciplinary research programme PULSAR, funded by France 2030, which aims to unlock several bottlenecks in lupin utilisation in agronomy.

RevDate: 2025-03-19

Gould AL, HK Osland (2025)

Strain-level variation in microbial symbiosis: lessons from the Siphamia-Photobacterium mandapamensis system.

Trends in microbiology pii:S0966-842X(25)00042-3 [Epub ahead of print].

The Siphamia-Photobacterium mandapamensis symbiosis is a binary, gut-associated mutualism that serves as a powerful model for studying strain-level variation in host-microbe interactions. Its combination of high species-level specificity and significant strain diversity makes it ideal for exploring host selectivity, microbial diversity, and the broader mechanisms driving strain-level dynamics in microbial symbioses.

RevDate: 2025-03-19

Chen J, Zhang Z, Shen N, et al (2025)

Bipartite trophic levels cannot resist the interference of microplastics: A case study of submerged macrophytes and snail.

Journal of hazardous materials, 491:137898 pii:S0304-3894(25)00812-X [Epub ahead of print].

Some studies frequently focus on the toxic effects of compound pollution formed by microplastics and other pollutants on individual organisms, but it is still unclear how multi-trophic level organisms in compound communities resist the stress of microplastics. Thus, this research used a dose-response experiment (0, 0.1, 0.2, 0.5, 1 mg L[-1]) to illustrate the influences that microplastics might have on two symbiotic freshwater organisms Vallisneria natans and Sinotaia quadrata. The results showed the reduction of V. natans biomass in 0.5 and 1 mg L[-1] groups (28-38 %), and disturbances on the photosynthetic system, reduced the chlorophyll content (15-85 %) and maximum quantum yields (10-31 %). In the case of S. quadrata, which subsisted by scraping leaf biofilms, there was a disruption in the functioning of the antioxidant system. Concurrently, the activities of digestive and neurotransmitter enzymes were affected, potentially leading to detrimental impacts on the organism's essential physiological processes. The introduction of microplastics significantly enhanced the relative abundance of specific microbial taxa, such as Proteobacteria within the biofilm of V. natans leaves and chloroflexi in the rhizosphere, thereby altering the microbial community assembly process. This means the potential ecological functions with microbes as the carrier was influenced. These results indicated that microplastic in aquatic environments can impact the metabolism, autotrophic, and heterotrophic behavior of double-end trophic organisms through symbiotic activities. Therefore, our study reveals how polystyrene microplastics affect the growth of submerged aquatic plants and snails, and from the perspective of community integrity and health, the introduction of these pollutants into freshwater environments may cause disruptive effects.

RevDate: 2025-03-19

Lakshmikandan M, M Li (2025)

Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment.

Journal of environmental management, 380:125018 pii:S0301-4797(25)00994-6 [Epub ahead of print].

Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.

RevDate: 2025-03-19
CmpDate: 2025-03-19

Maurya AK, Kröninger L, Ehret G, et al (2025)

A nucleus-encoded dynamin-like protein controls endosymbiont division in the trypanosomatid Angomonas deanei.

Science advances, 11(12):eadp8518.

Angomonas deanei is a trypanosomatid of the Strigomonadinae. All members of this subfamily contain a single β-proteobacterial endosymbiont. Intriguingly, cell cycles of host and endosymbiont are synchronized. The molecular mechanisms underlying this notable level of integration are unknown. Previously, we identified a nucleus-encoded dynamin-like protein, called ETP9, that localizes at the endosymbiont division site of A. deanei. Here, we found by comparative genomics that endosymbionts throughout the Strigomonadinae lost the capacity to autonomously form a division septum. We describe the cell cycle-dependent subcellular localization of ETP9 that follows accumulation of the bacterium-encoded division protein FtsZ at the endosymbiont division site. Furthermore, we found that ETP9 is essential in symbiotic but dispensable in aposymbiotic A. deanei that lost the endosymbiont. In the symbiotic strain, ETP9 knockdowns resulted in filamentous, division-impaired endosymbionts. Our work unveiled that in A. deanei an endosymbiont division machinery of dual genetic origin evolved in which a neo-functionalized host protein compensates for losses of endosymbiont division genes.

RevDate: 2025-03-19

Yang J, Gao F, H Pan (2025)

Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis.

Journal of integrative plant biology [Epub ahead of print].

Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.

RevDate: 2025-03-19

Osmanović D, Rabin Y, Y Soen (2025)

A Model of Epigenetic Inheritance Accounts for Unexpected Adaptation to Unforeseen Challenges.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Accumulated evidence of transgenerational inheritance of epigenetic and symbiotic changes raises fundamental questions about the possible types, significance and duration of impacts on the population, as well as whether, and under which conditions, the inheritance of non-genetic changes confers long-term advantage to the population. To address these questions, a population epigenetics model of individuals undergoing stochastic changes and/or induced responses that are transmitted to the offspringis introduced. Potentially adaptive and maladaptive responses are represented, respectively, by environmentally driven changes that reduce and increase the selective pressure. Analytic solutions in a simplified case of populations that are exposed to either periodic or progressively deteriorating environments shows that acquisition and transmission of non-genetic changes that alleviate the selective pressure confer long-term advantage and may facilitate escape from extinction. Systematic analysis of outcomes as a function of population properties further identifies a non-traditional regime of adaptation mediated by stochastic changes that are rapidly acquired within a lifetime. Contrasting model predictions with experimental findings shows that inheritance of dynamically acquired changes enables rapid adaptation to unforeseen challenges and can account for population dynamics that is either unexpected or beyond the scope of traditional models.

RevDate: 2025-03-20
CmpDate: 2025-03-19

Yang H, Gan Y, Jiang S, et al (2025)

Genomic alterations in Bacteroides fragilis favor adaptation in colorectal cancer microenvironment.

BMC genomics, 26(1):269.

BACKGROUND: The occurrence and development of colorectal cancer (CRC) is an incredibly long process that involves continuous changes in the tumor microenvironment. These constant changes may ultimately result in genetic alterations and changes in the metabolic processes of some symbiotic bacteria as a way to adapt to the changing environment. Patients with CRC exhibit an altered abundance of Bacteroides fragilis (B. fragilis) as indicated by several studies. To better understand the genomic characteristics and virulence spectrum of B. fragilis strains in tumor tissues, B. fragilis strains were isolated from tumor and paracancerous tissues of CRC patients.

METHODS: The isolates were identified using 16 S rRNA sequencing, morphological analysis, physiological and biochemical characterization and PCR, and they were then subjected to whole genome sequencing (WGS) analysis.

RESULTS: A strain of B. fragilis enterotoxin (BFT) bft1-producing ZY0302 and a non-enterotoxin-producing B. fragilis ZY0804 were isolated from cancerous and paraneoplastic tissues, respectively. Analysis based on the core and nonessential genes showed that the genomic profiles of the isolates, ZY0302 and ZY0804, differed from those of B. fragilis from other tissue sources. This core and the co-evolution of non-essential genes may be the result of their adaptation to fluctuations in the tumor microenvironment and enhancing their survival. In addition, the ZY0302 and ZY0804 genomes underwent extensive horizontal gene transfer and varying degrees of genomic rearrangements, inversions, insertions, and deletion events, which may favor the enhancement of bacteria's ability to adapt to environmental changes. For instance, the virulence factors, such as the capsular biosynthesis gene clusters and components of the type IV secretion system, acquired through horizontal gene transfer, may facilitated B. fragilis in evading immune responses and managing oxidative stress. Moreover, our analysis revealed that multiple virulence factors identified in the isolates were mainly involved in bacterial adhesion and colonization, oxidative stress, iron acquisition, and immune evasion. This observation is worth noting given that enzymes such as neuraminidase, lipase, hemolysin, protease, and phosphatase, along with genes responsible for LPS biosynthesis, which are recognized for their association with the virulence of B. fragilis, were prevalent among the isolates.

CONCLUSIONS: In summary, it is our assertion that the alterations observed in both core and nonessential genes of B. fragilis, which have been isolated from tissues of colorectal cancer patients, along with significant instances of horizontal gene transfer to the genome, are likely intended to enhance adaptation to the evolving conditions of the tumor microenvironment. This study may provide new insights into the interaction between B. fragilis and the CRC microenvironment.

RevDate: 2025-03-18

Lai TV, Ryder MH, Rathjen JR, et al (2025)

Seed-applied micronutrient toxicity to rhizobia and impaired legume nodulation.

Journal of applied microbiology pii:8085148 [Epub ahead of print].

AIMS: Micronutrients are sometimes mixed with rhizobial inoculants in liquid solutions to promote the growth and development of legume crops. The compatibility of rhizobia with micronutrients is poorly documented. The objective of this study was to assess the effect of some frequently used micronutrients on rhizobial inoculant survival, nodulation, nutrition of chickpea and field pea.

METHODS AND RESULTS: Four Australian commercial rhizobia (CC1192, SARDI969, WSM1455 and WU425) were assessed in vitro for their compatibility with plant micronutrients as used in a liquid mixture (4% MnSO4, 2% ZnSO4, 0.2% CuSO4 and 0.04% Na2MoO4). The impact of this mixture on nodulation and plant nutrition was tested on chickpea and field pea under glasshouse conditions. The micronutrient mixture was toxic to all tested rhizobia. While MnSO4 and Na2MoO4 were not inhibitory to rhizobia, individual CuSO4 (>20 µmol L-1 or 0.0005%) and ZnSO4 (>250 µmol L-1 or 0.007%) were lethal to rhizobia. Rhizobial survival was relatively low in a combination of 20 µmol L-1 CuSO4 and 250 µmol L-1 ZnSO4 due to their interactive effect. When rhizobial peat inoculants were suspended in the micronutrient mix, only 35% of rhizobia were recovered at sowing time (1 h after preparation), resulting in poor nodulation of both legumes. Separation of rhizobia (inoculants on seeds) from the micronutrient mixture (applied in-furrow) reduced the risk of inadequate nodulation, while meeting plant nutritional requirements and symbiosis.

RevDate: 2025-03-18
CmpDate: 2025-03-18

Ashey J, Putnam HM, MC McManus (2025)

Guided by the northern star coral: a research synthesis and roadmap for Astrangia poculata.

Biology letters, 21(3):20240469.

The northern star coral, Astrangia poculata, is a temperate, facultatively symbiotic, scleractinian coral spanning the coastal western Atlantic. This calcifying species is mixotrophic with a broad geographical range, and therefore has high utility in addressing questions related to community ecology, symbiosis, population genetics, biomineralization and resilience to environmental perturbations. Here, we review the current A. poculata peer-reviewed literature, which is primarily found in six focal areas: geographic range, habitat and ecology, symbiosis, life history, microbiome and genomics and transcriptomics. A cross-cutting theme of these studies emerges as the value of an experimental system that is facultatively symbiotic. Yet, the historic overgeneralization of symbiotic versus 'aposymbiotic' A. poculata has constrained the interpretation of the basic biology and generalizability of conclusions. Emergent from our review, and timely with respect to climate change, is the value that A. poculata brings as an experimental system with the potential to test questions on range adaptability and environmental resilience. We identify future avenues of research for A. poculata studies that include integration of population genetics with organismal-molecular-cellular biology across the geographical range, while leveraging the power of the facultative symbiosis context.

RevDate: 2025-03-18
CmpDate: 2025-03-18

Brieuc H, Eléonore B, Bruno H, et al (2025)

Fungicide seed treatments delay arbuscular mycorrhizal fungi colonization of winter wheat in the greenhouse, but the effect is attenuated in the field.

Mycorrhiza, 35(2):22.

Seed-applied fungicides support agricultural production by controlling seed- or soil-borne diseases. However, they can impact non-target soil organisms. In this study, we investigated the effect of eight seed treatments (including two authorized for organic farming) on root colonization of winter wheat (Triticum aestivum L.) by arbuscular mycorrhizal (AM) fungi. One experiment was conducted in greenhouse conditions, on a sterile substrate inoculated with the AM fungus Rhizophagus irregularis MUCL 41833 and one in field conditions, where winter wheat was colonized by native soil AM fungi. In greenhouse conditions, the six conventional seed treatments reduced root colonization five weeks after sowing. No difference with the control treatment was measured thereafter for a product containing triazole alone. In contrast, seed treatments containing fludioxonil (fungicide molecule alone or formulated with the triazole difenoconazole), and prochloraz formulated with the triazole triticonazole significantly reduced root colonization until 11 weeks after sowing. Notably, when formulated with sedaxane, the adverse effect of fludioxonil was reduced. The negative effect of seed treatments on AM fungal root colonization in field was smaller than in the greenhouse and generally not significant, with disparate results from one timestep to another. This may be related to the dilution or the degradation of the active ingredients in the soil during the winter period or AM fungal species/strain involved in symbiosis. Overall, our results outline that the direct effect of seed treatment is highly variable depending on the modes of action, half-lives and interactions between active ingredients. By contributing to highlight the undesired effects of pesticides on AM fungi (i.e., by delaying root colonization), this study pleads for a reduction of pesticide applications to encourage the rapid and efficient establishment of functional mycorrhizal symbioses.

RevDate: 2025-03-19

Lee W, Kim JS, Jo S, et al (2025)

Taxonomic Study of Sixteen Unrecorded and Five New Species of Hypocreales from the Korean Marine Environment.

Mycobiology, 53(2):144-167.

The order Hypocreales, which belongs to the Ascomycota class Sordariomycetes, has a large number of species and occupies a variety of ecological niches, including saprophytic, symbiotic, and parasitic fungi. While much research has focused on terrestrial Hypocrealean fungi, there remains a significant gap in our understanding of their diversity and ecological roles in marine environments. In this study, we isolated 47 fungal strains from various marine habitats in South Korea. Through the polyphasic study, including phylogenetic analysis using multi-genetic markers (ITS, LSU, TEF1, RPB2, TUB, and ACT) and morphological analysis, we identified 21 species previously undiscovered in Korea, including 5 new and 16 unrecorded species. Our findings illustrate the species diversity of marine Hypocreales, highlighting the need for additional research into their ecological functions and potential in biotechnology and medicine.

RevDate: 2025-03-18

Tanfouri N, Guerfali MM, Asimakis E, et al (2025)

Characterization of the microbial communities in Tunisian wild populations of the Mediterranean fruit fly (Ceratitis capitata) and their implications for the future implementation of the sterile insect technique.

Insect science [Epub ahead of print].

Insects and their associated microbiota have developed a sustained and mutually beneficial relationship, characterized by the influence of the symbiotic microorganisms on the host's physiological processes and fitness parameters. The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), is one of the world's most ubiquitous, invasive, and harmful agricultural pests. In Tunisia, the medfly is widely distributed across all bioclimatic zones. However, in the absence of surveillance, infestations can escalate drastically, causing damage levels as high as 100%. Our study aimed to characterize the microbiome profile of Tunisian medfly populations from Zaghouan, Tozeur, Siliana, and Bizerte to understand the microbial dynamics implicated in the invasiveness and adaptability potential if SIT is applied. We conducted amplicon sequencing using MiSeq Illumina and a culture-dependent approach. Our findings revealed notable differences in symbiotic communities across regions. For instance, Serratia was prevalent in Tozeur populations, while Klebsiella showed high abundance in Bizerte. The composition of the bacterial communities within the medfly populations was influenced by several factors including the environmental conditions, geographical location, developmental stage, and the sex of the insects. Investigating the intricate relationship between insects and their microbiota is pivotal for understanding their biology and developing effective pest management strategies. Additionally, the isolation of bacteria from adult and larval medflies collected in the Bizerte region revealed the presence of bacterial species that could be utilized as attractants or supplements in larval artificial diets in the case of application of the SIT aiming at producing competitive sterile males.

RevDate: 2025-03-17

Su B, Li H, Zhang K, et al (2025)

Evening complex component ELF3 interacts with LUX proteins to repress soybean root nodulation.

Plant biotechnology journal [Epub ahead of print].

Formation of root nodules is a unique hallmark of the symbiotic interaction between legume host plants and rhizobia and is governed by a complex regulatory framework that balances the appropriate orchestration of rhizobial infection and subsequent nodule organogenesis. In contrast to prominent model species such as Medicago truncatula and Lotus japonicus, research on symbiotic signal transduction in the staple-crop soybean Glycine max remains relatively insufficient. Here, we identified a soybean mutant with ~25% additional root nodules over wild-type, designated as increased number of nodules 1 (inn1). Through map-based cloning, INN1 encodes the EARLY FLOWERING 3a (ELF3a) protein component of the soybean Evening Complex, together with LUX1 and LUX2. INN1 is co-expressed with LUX1 and LUX2 in roots, and knockout of INN1 or knockdown of LUX1 and LUX2 enhances root nodulation. The function of INN1 in negatively regulating nodulation is genetically and biochemically dependent upon LUXs, as the INN1-LUX complex binds to the promoter of the downstream pro-nodulation target ENOD40, repressing its expression. ELF3a/INN1's repression of root-nodule formation extends beyond its established roles in diverse above-ground developmental and physiological processes and offers a theoretical basis for enhancing the biological-nitrogen fixation capacity of soybean.

RevDate: 2025-03-17

Fei DL, Wu ZW, K Zhang (2025)

Benefit Game 2.0: Alien Seaweed Swarms-Exploring the Interplay of Human Activity and Environmental Sustainability.

Artificial life pii:128364 [Epub ahead of print].

This article presents Benefit Game 2.0, a multiscreen Artificial Life gameplay installation. Saccharina latissima, a seaweed species economically beneficial to humans but threatened by overexploitation, motivates the creation of this artwork. Technically, the authors create an underwater virtual ecosystem consisting of a seaweed swarm and symbiotic fungi, created using procedural content generation via machine learning and rule-based methods. Moreover, the work features a unique cybernetic loop structure, incorporating audience observation and game token interactions. This virtual system is also symbolically influenced in real time by indoor carbon dioxide measurements, serving as an artistic metaphor for the broader impacts of climate change. This integration with the physical game machine underscores the fragile relationship between human activities and the environment under severe global climate change and immerses the audience in the challenging balance between sustainability and profit seeking in this context.

RevDate: 2025-03-17

Xie X, X Fan (2025)

Fungal small RNA hijacking: a new layer of cross-kingdom communications in arbuscular mycorrhizal symbiosis.

The New phytologist [Epub ahead of print].

RevDate: 2025-03-17

Ranner JL, Stabl G, Piller A, et al (2025)

Untargeted metabolomics reveals novel metabolites in Lotus japonicus roots during arbuscular mycorrhiza symbiosis.

The New phytologist [Epub ahead of print].

Arbuscular mycorrhiza (AM) improves mineral nutrient supply, stress tolerance, and growth of host plants through re-programing of plant physiology. We investigated the effect of AM on the root secondary metabolome of the model legume Lotus japonicus using untargeted metabolomics. Acetonitrile extracts of AM and control roots were analysed using ultra-high-performance liquid chromatography-electrospray ionization-ion mobility-time-of-flight-mass spectrometry (UPLC-ESI-IM-ToF-MS). We characterized AM-regulated metabolites using co-chromatography with authentic standards or isolation and structure identification from L. japonicus roots using preparative high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Arbuscular mycorrhiza triggered major changes in the root metabolome, with most features representing unknown compounds. We identified three novel polyphenols: 5,7-dihydroxy-4'-methoxycoumaronochromone (lotuschromone), 4-hydroxy-2-(2'-hydroxy-4'-methoxyphenyl)-6-methoxybenzofuran-3-carbaldehyde (lotusaldehyde), and 7-hydroxy-3,9-dimethoxypterocarp-6a-ene (lotuscarpene). Further AM-enhanced secondary metabolites included the previously known lupinalbin A and B, ayamenin D, biochanin A, vestitol, acacetin, coumestrol, and betulinic acid. Lupinalbin A, biochanin A, ayamenin D, liquiritigenin, isoliquiritigenin, lotuscarpene, medicarpin, daidzein, genistein, and 2'-hydroxygenistein inhibited Rhizophagus irregularis spore germination upon direct application. Our results show that AM enhances the production of polyphenols in L. japonicus roots and highlights a treasure trove of numerous unknown plant secondary metabolites awaiting structural identification and functional characterization.

RevDate: 2025-03-19

Soliman ERS, Abdelhameed RE, RA Metwally (2025)

Role of arbuscular mycorrhizal fungi in drought-resilient soybeans (Glycine max L.): unraveling the morphological, physio-biochemical traits, and expression of polyamine biosynthesis genes.

Botanical studies, 66(1):9.

BACKGROUND: Drought stress is a catastrophic abiotic stressor that impedes the worldwide output of commodities and the development of plants. The Utilizing biological antioxidant stimulators, Arbuscular mycorrhizal fungi (AMF) are one example increased the plants' ability to withstand the effects of drought. The symbiotic response of soybean (Glycine max L.) to AMF inoculation was assessed in the experiment presented herewith at different watering regimes (field capacity of 25, 50, and 90%). The vegetative, physio-biochemical traits, and regulation of genes involved in polyamine synthesis in G. max plants were evaluated.

RESULTS: The results obtained suggested that AMF inoculation has an advantage over plants that were non-inoculated in terms of their growth and all assessed criteria, which responded to drought stress by showing slower development. It is evident that the gas exchange parameters of the soybean plant were substantially reduced by 36.79 (photosynthetic rate; A), 60.59 (transpiration rate; E), and 53.50% (stomatal conductance gs), respectively, under severe stress of drought in comparison to control; non-stressed treatment. However, the AMF inoculation resulted in a 40.87, 29.89, and 33.65% increase in A, E, and gs levels, respectively, in extremely drought-stressful circumstances, when in contrast to non-AMF one that was grown under well-watered conditions. The drought level was inversely proportional to mycorrhizal colonization. The total antioxidant capacity, protein, and proline contents were all enhanced by AMF inoculation, while the malondialdehyde and hydrogen peroxide contents were decreased. Polyamine biosynthesis genes expression; Ornithine decarboxylase (ODC2), Spermidine synthase (SPDS) and Spermine synthase (SpS) were upregulated in drought and to even higher level in AMF's mild drought inoculated plants' shoots. This implies that AMF plays apart in the enhanced survival of soybean plants stressed by drought and reduced plant membranes damage by limiting the excessive production of oxidative stress generators; ROS.

CONCLUSIONS: In summary, the present investigation demonstrates that inoculation of AMF may be a supportable and environmentally advantageous method for improving the physio-biochemical traits, plant growth, and polyamine biosynthesis genes of soybean plants in the incident of limited water availability.

RevDate: 2025-03-19

Adu Oparah I, Deaker R, Hartley JC, et al (2025)

Symbiotic Effectiveness, Rhizosphere Competence and Nodule Occupancy of Chickpea Root Nodule Bacteria from Soils in Kununurra Western Australia and Narrabri New South Wales Australia.

Plants (Basel, Switzerland), 14(5):.

Root nodule bacterial isolates from field-grown chickpea were evaluated in glasshouse and field experiments based on infectivity, relative symbiotic effectiveness, nodule occupancy, plant yield and survivability in the soil rhizosphere for their use as inoculants to enhance chickpea production in Western Australia. Compared to the Australian commercial chickpea inoculant strain Mesorhizobium ciceri sv. ciceri CC1192, 10 new strains were 'fast' growers, averaging 72 h to grow in culture at 28 °C. The relative symbiotic effectiveness (RSE%) of the new strains in field experiments determined by shoot weight ranged from 77 to 111% in the Desi genotype (var. Kyabra) and 83 to 102% in Kabuli (var. Kimberley Large). Kyabra yielded greater output (2.4-3 t/ha) than Kimberley Large (1.2-1.8 t/ha), with mean 100 seed weights of 23 and 59 g, respectively. The rhizobial strains living in the rhizosphere presented a higher competitive ability for nodule occupancy than those in the bulk soil. Tukey's multiple comparisons test showed no significant differences between the nodule occupancy ability of the introduced strains (i.e., 3/4, 6/7, N5, N300, K66, K188 and CC1192) in either Kyabra or Kimberley Large (p = 0.7321), but the strain competitiveness with each cultivar differed (p < 0.0001) for some of the test strains. Strains N5, N300, K72 and 6/7 were the top contenders that matched or beat CC1192 in nitrogen fixation traits. These findings show that new rhizobial strains derived from naturalized soil populations exhibited better adaptability to local soil conditions than CC1192.

RevDate: 2025-03-18

Yang N, Shan X, Wang K, et al (2025)

A fusarioid fungus forms mutualistic interactions with poplar trees that resemble ectomycorrhizal symbiosis.

IMA fungus, 16:e143240.

Fusarium species, recognised as global priority pathogens, frequently induce severe diseases in crops; however, certain species exhibit alternative symbiotic lifestyles and are either non-pathogenic or endophytic. In this study, we characterised the mutualistic relationship between the eFp isolate of F.pseudograminearum and five poplar species, resulting in formation root structures reminiscent of ectomycorrhizal (ECM) symbiosis. This functional symbiosis is evidenced by enhanced plant growth, reciprocal nutrient exchange, improved nitrogen and phosphorus uptake and upregulation of root sugar transporter gene expression (PtSweet1). Comparative and population genomics confirmed that eFp maintains a structurally similar genome, but exhibits significant divergence from ten conspecific pathogenic isolates. Notably, eFp enhanced the growth of diverse plant lineages (Oryza, Arabidopsis, Pinus and non-vascular liverworts), indicating a near-complete loss of virulence. Although this specialised symbiosis has only been established in vitro, it holds significant value in elucidating the evolutionary track from endophytic to mycorrhizal associations.

RevDate: 2025-03-18

Bhatia A, Sharma D, Mehta J, et al (2025)

Probiotics and Synbiotics: Applications, Benefits, and Mechanisms for the Improvement of Human and Ecological Health.

Journal of multidisciplinary healthcare, 18:1493-1510.

This review explores the multifaceted roles and applications of probiotics, emphasizing their significance in maintaining and enhancing host health through microbial interactions. It includes the concept of holobionts and the symbiotic relationships between hosts and their microbiomes, illustrating how various microbiota can enhance immunity, support growth, and prevent diseases. It delves into the customization of probiotics using molecular and genomic techniques, focusing Enterococcus, Bifidobacterium, and Lactobacillus species. Furthermore, it discusses the symbiotic effects of symbiotics which aids in enhancing the survivability and beneficial effects of probiotics. The role beneficial microbes in gut is emphasized, noting its impact on preventing diseases and maintaining a stable microbial community. The potential therapeutic value of probiotics includes the ability to treat gastrointestinal diseases, as well as to strengthen the immune system and reduce the number of free radicals that are present in the body. Additionally, it explores secondary metabolites produced by bacteria in the gut, such as bacteriocins and exopolysaccharides, and their effect on the health of human, particularly in the gastrointestinal tract. The review concludes by addressing the use of probiotics in traditional medicine and their potential in novel therapeutic applications, including the treatment of endangered wildlife species and various human ailments.

RevDate: 2025-03-17

Carrier TJ, Elder H, Macrander J, et al (2025)

Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima.

Molecular ecology [Epub ahead of print].

Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima, which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.

RevDate: 2025-03-17

Cheng C, Liu F, Wu Y, et al (2025)

Positive Linkage in Bacterial Microbiota at the Plant-Insect Interface Benefits an Invasive Bark Beetle.

Plant, cell & environment [Epub ahead of print].

Symbiotic microbes facilitate rapid adaptation of invasive insects on novel plants via multifaceted function provisions, but little was known on the importance of cross linkages in symbiotic microbiota to insect invasiveness. Novel host pine Pinus tabuliformis is inherently unsuitable for invasive red turpentine beetle (RTB) in China; however, Novosphingobium and Erwinia/Serratia in gallery microbiota (at the interface between RTB larvae and pine phloem) have been discovered to help beetles via biodegrading pine detrimental compounds naringenin and pinitol, respectively. Here, we further revealed significant positive linkage of the two functions, with higher activity level conferring more growth benefit to RTB larvae. Abundance of Erwinia/Serratia was remarkably increased in response to pinitol, while naringenin-biodegrading Novosphingobium was unable to utilize this main phloem carbohydrate directly. High-activity bacterial microbiota produced nutritive metabolites (sucrose and hexadecanoic acid) from pinitol consumption that facilitated growth of both Novosphingobium and beetle larvae. Functional proteins of several bacterial taxa were enriched in high-activity microbiota that appeared to form a metabolic network collectively to regulate the nutrient production. Our results indicate that positive interaction between Erwinia/Serratia and Novosphingobium is critical for RTB invasion success, while Bacilli bacteria might restrict this linkage, providing new insights into symbiotic microbial interactions for insect herbivores.

RevDate: 2025-03-17

Ngambia Freitas FS, De Vooght L, Njiokou F, et al (2025)

Evaluation of two candidate molecules-TCTP and cecropin-on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis.

Insect science [Epub ahead of print].

Trypanosomiasis, transmitted by tsetse flies (Glossina spp.), poses a significant health threat in 36 sub-Saharan African countries. Current control methods targeting tsetse flies, while effective, allow reinfestation. This study investigates paratransgenesis, a novel strategy to engineer symbiotic bacteria in tsetse flies, Sodalis glossinidius, to deliver anti-trypanosome compounds. Disrupting the trypanosome life cycle within the fly and reducing parasite transmission could offer a sustainable solution for trypanosomiasis control. In this context, we tested the effect of cecropin, reported to be lethal for Trypanosoma cruzi (Chagas disease) and TbgTCTP (Translationally Controlled Tumor Protein from Trypanosoma brucei gambiense), previously reported to modulate the growth of bacteria isolated from the fly microbiome, to delay the first peak of parasitemia and the death of trypanosome-infected mice. We have successfully cloned and transfected the genes encoding the two proteins into Sodalis strains. These Sodalis recombinant strains (recSodalisTbgTCTP and recSodaliscecropin) have been then microinjected into the L3 larval stage of Glossina palpalis gambiensis flies. The stability of the cloned genes was checked up to the 20th day after microinjection of recSodalis. The rate of fly emergence from untreated pupae was 95%; it was reduced by nearly 50% due to the mechanical injury caused by microinjection. It decreased to nearly 7% when larvae were injected with recSodalisTbgTCTP, which suggests TCTP could have a lethal impact to larvae development. When challenged with T. brucei gambiense, a slightly lower, but statistically non-significant, infection rate was recorded in flies harboring recSodaliscecropin compared to control flies. The effect of recSodalisTbgTCTP could not be measured due to the very low rate of fly emergence after corresponding treatment of the larvae. The results do not allow to conclude on the effect of cecropin or TCTP, delivered by para-transgenesis into the fly's gut, on the fly infection by the trypanosome. Nevertheless, the results are encouraging insofar as the technical approach works on the couple G. p. gambiensis/T. brucei gambiense. The next step will be to optimize the system and test other targets chosen among the ESPs (Excreted-Secreted Proteins) of the trypanosome secretum, or the differentially expressed genes associated with the sensitivity/resistance of the fly to trypanosome infection.

RevDate: 2025-03-16

Skalny M, Czeremuga J, Rokowska A, et al (2025)

Engineered magnetic particles derived from steelmaking dust for phosphorus recovery and extracellular DNA removal from municipal wastewater.

Journal of environmental management, 380:124830 pii:S0301-4797(25)00806-0 [Epub ahead of print].

Phosphorus (P) is a critical and finite raw material fundamental to various biological roles and industrial applications. Its limited availability can be managed through recovery from wastewater. However, wastewater often contains hazardous contaminants, including antibiotic resistance and virulence genes associated with extracellular DNA (exDNA), which may compromise the safety of recovered P products. To address this issue, magnetically separated electric arc furnace dust (ms-EAFD), a by-product of the steelmaking process, was functionalized using dissolution recrystallization protocol utilizing NaOH and Ca(OH)2 and applied as an adsorbent for P recovery and exDNA removal from municipal wastewater treatment plant effluent. Upon functionalization, ms-EAFD increases its specific surface area seven-fold and shifts zeta potential towards positive values. This causes an increase in phosphate removal efficiency from 7.1% to above 70% and adsorption capacity from 0.5 to above 4.5 mg/g (at 15 mg/L PO4[3-]). Ca-enriched material induce microprecipitation of CaP in P-rich wastewater, improving phosphorus removal efficiency. exDNA removal efficiency depends on its concentration and the composition of the water matrix regardless of the applied adsorbent. All materials demonstrate exDNA removal efficiency ranging from 75 to 100% in wastewater containing 0.5 PO4[3-] mg/L, which drops to approximately 20% when PO4[3-] concentration reaches 5 mg/L. The adsorbent regeneration with 0.5M NaOH (pH > 13) led to efficient phosphate desorption and complete degradation of exDNA in the eluate. The proposed approach may facilitate industrial symbiosis and repurpose EAFD into a valuable material for improving wastewater treatment efficiency.

RevDate: 2025-03-16

Bai Y, Wang N, Xie S, et al (2025)

Paradigm and efficiency of industrial waste resource utilization: Evidence from China.

Journal of environmental management, 380:124922 pii:S0301-4797(25)00898-9 [Epub ahead of print].

Achieving industrial symbiosis and zero emissions requires integrated frameworks for optimizing industrial waste valorization. However, existing studies often overlook the synergy between operational paradigms and multidimensional efficiency. This study bridges this gap through a mixed-methods investigation of 48 Chinese industrial waste resource (IWR) utilization centers, combining qualitative analysis of 1.90 GB of textual case data with a Multi-Criteria Decision Making-Grey Relational Projection Method (MCDM-GRPM) quantitative analysis framework. Two key contributions emerge: (1) redefining industrial waste as IWRs and formulating a "technology-enterprise-policy" paradigm that integrates policy incentives, cross-sector collaboration, and technological innovation to facilitate closed-loop recycling; and (2) developing a multidimensional efficiency evaluation system incorporating technical, economic, and ecological criteria to assess IWR utilization performance. Findings demonstrate that the proposed paradigm operationalizes the 3R principles, transforming waste into high-value resources while fostering industrial symbiosis. Efficiency analysis reveals notable disparities among centers, with top performers (e.g., DMU25, DMU21) leveraging geographic advantages, waste-type characteristics, and industrial diversification. High efficiency in individual dimensions does not ensure overall performance, underscoring the need for balanced, multicriteria-driven strategies. By integrating qualitative and quantitative insights, this study provides a replicable framework for advancing circular economy transitions and promoting industrial symbiosis, aligning economic and environmental objectives.

RevDate: 2025-03-15

Becks L, Gaedke U, T Klauschies (2025)

Emergent feedback between symbiosis form and population dynamics.

Trends in ecology & evolution pii:S0169-5347(25)00034-5 [Epub ahead of print].

Symbiotic relationships represent prolonged physical interactions between different species and include various forms such as mutualism, commensalism, exploitation, and competition. Here, we show that the form of symbiosis may change with the densities of the symbiotic partners as they influence the costs and benefits each species experiences. In turn, the form of symbiosis is expected to influence species persistence, population dynamics, and ultimately ecosystem stability. Based on this, we introduce the theoretical concept of a density-symbiosis feedback, where population densities affect the form of symbiosis, and symbiosis form in return affects population dynamics. This dynamic interplay calls for a re-evaluation of traditional ecological concepts and a framework considering the flexibility in symbiosis forms.

RevDate: 2025-03-15
CmpDate: 2025-03-15

Christophoridis C, Touloupi M, Bizani EA, et al (2025)

Polyphenol extraction from industrial water by-products: a case study of the ULTIMATE project in the fruit processing industry.

Water science and technology : a journal of the International Association on Water Pollution Research, 91(5):540-553.

This study investigates the sustainable management and utilization of water resources in the fruit processing industry, focusing on a case study from the EU-funded ULTIMATE project. Conducted in a juice factory in Nafplio, Greece, the primary objective is to explore the recovery of polyphenols from water by-product streams generated during orange juice production. The research aims to evaluate the effectiveness of a mobile wastewater treatment unit in selectively adsorbing polyphenols onto a polymeric resin. The following three extraction methods are compared: conventional solvent extraction, subcritical water extraction (SWE), and supercritical CO2 extraction (SFE). To determine the most efficient extraction method, the polyphenol profiles of the extracts were analyzed using UHPLC-Q-Orbitrap-MS/MS, identifying flavonoids, terpenes, coumarins, and anthocyanins. SFE not only was the most efficient method but provided the most diverse and abundant profile. The research highlights the potential of converting industrial by-products that would otherwise be treated as wastewater, into valuable resources that generate revenue, promote circular economy practices, and enhance sustainability in the fruit and vegetable processing sector. The economic viability of polyphenol extraction is also discussed, emphasizing its significance and impact on various industries. The findings support integrating advanced extraction technologies to maximize resource recovery and minimize environmental impact.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In this comprehensive history of symbiosis theory--the first to be written--Jan Sapp masterfully traces its development from modest beginnings in the late nineteenth century to its current status as one of the key conceptual frameworks for the life sciences. The symbiotic perspective on evolution, which argues that "higher species" have evolved from a merger of two or more different kinds of organisms living together, is now clearly established with definitive molecular evidence demonstrating that mitochondria and chloroplasts have evolved from symbiotic bacteria. In telling the exciting story of an evolutionary biology tradition that has effectively challenged many key tenets of classical neo-Darwinism, Sapp sheds light on the phenomena, movements, doctrines, and controversies that have shaped attitudes about the scope and significance of symbiosis. Engaging and insightful, Evolution by Association will be avidly read by students and researchers across the life sciences.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )