picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
17 Dec 2018 at 01:41
HITS:
8434
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Climate Change

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 17 Dec 2018 at 01:41 Created: 

Climate Change

The year 2014 was the hottest year on record, since the beginning of record keeping over 100 years ago. The year 2015 broke that record, and 2016 will break the record of 2015. The Earth seems to be on a significant warming trend.

Created with PubMed® Query: "climate change"[TITLE] or "global warming"[TITLE] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-12-15

Tüzün N, R Stoks (2018)

Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions.

Current opinion in insect science, 29:78-84.

We review the recent literature on geographic variation in insect thermal performance curves (TPCs). Despite strong thermal differences, there is often no change in TPCs across geographic gradients. When shifts occur, these are mostly vertical (indicating an overall shift in performance across temperatures, that is, countergradient or cogradient variation) and less horizontal (reflecting thermal adaptation). Based on this, using a space-for-time substitution approach, we generated likely evolutionary scenarios of TPC evolution to simulate the outcome of biotic interactions under future warming. We illustrate how taking evolution of the TPCs into account may strongly impact the predicted outcome of biotic interactions under climate warming. Importantly, both the type and the magnitude of the TPC shift was identified to be crucial to determine who will be winners and losers of biotic interactions.

RevDate: 2018-12-15

Pellissier L, S Rasmann (2018)

The functional decoupling of processes in alpine ecosystems under climate change.

Current opinion in insect science, 29:126-132.

Climate change may promote the decoupling of the different above-ground and below-ground compartments of high elevation ecosystems. Along elevation gradients, a trade-off between species tolerance to cold climates and metabolic rates dictates that cold adapted organisms display a lower efficiency in decomposition, growth or herbivory. As a consequence, if dispersal or evolution under climate change is systematically faster for agents of one compartment (e.g. insect herbivores, or soil microbes, respectively) compared to others, novel and more efficient functions will arise in the alpine systems and increase fluxes of elements to and through this compartment. We illustrate this potential decoupling using a mechanistic model, where the efficiency of agents in the compartments follows the metabolic theory. To detect and forecast ecosystem decoupling under climate change, we argue that the current efficiency of agents should be measured systematically along elevation gradients. In addition, future research should investigate the impact of dispersal and evolution in response to climate change on ecosystem processes.

RevDate: 2018-12-14

Nunfam VF, Oosthuizen J, Adusei-Asante K, et al (2018)

Perceptions of climate change and occupational heat stress risks and adaptation strategies of mining workers in Ghana.

The Science of the total environment, 657:365-378 pii:S0048-9697(18)34835-6 [Epub ahead of print].

Heavy physical workload for long hours coupled with increasing workplace heat exposure due to rising temperatures stemming from climate change, especially where there are inadequate prevention and control policies, adversely affect workers' health and safety, productive capacity and social well-being. However, variations in workers' concerns and awareness of occupational heat stress and climate change risks impede the effectiveness of heat stress management. A mixed method approach was used to assess climate change perceptions and occupational heat stress risks and adaptation strategies of Ghanaian mining workers. Questionnaires and focus group discussions were used to collect data from 320 respondents. Quantitative and qualitative approaches were used for data analysis. Workers' climate change risk perception, as confirmed by trends in climate data, was reasonable, but concerns about climate change effects and workplace heat exposure risks varied significantly across types of mining activity (p < 0.001). Workers experienced heat-related morbidities, but the variation in heat-related morbidity experiences across the type of mining activity was not significant. However, the type of heat-related morbidities experienced by workers differed across the type of mining activity (p < 0.001). Workers' awareness of occupational heat stress prevention and control was adequate. The disparities in workers' awareness and use of the prevention and control measures significantly differed across the type of mining activity (p < 0.001). Occupational heat stress prevention activities should focus on workers, and a concerted effort must be made to promote workers' adaptive capacity and inform policy decisions.

RevDate: 2018-12-14

Bai M, Mo X, Liu S, et al (2018)

Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China.

The Science of the total environment, 657:325-339 pii:S0048-9697(18)34716-8 [Epub ahead of print].

Significant increases in vegetation cover on the Loess Plateau since the early 2000s have been well documented. However, the relevant hydrological effects are still unclear. Here, we investigated the changes in actual evapotranspiration (ETa) from 2000 to 2016 and related them to climate change and vegetation greening in Yanhe River basin (YRB), a typical hilly-gully basin on the Loess Plateau, by using the remote-sensing based VIP model. Results showed that the annual ETa in the YRB increased significantly with a trend of 3.45 mm yr-1 (p < 0.01) and changes of ETa in summer months dominated the annual trend. Partial correlation analysis suggested that vegetation greening was the dominant driving factor of ETa inter-annual variations in 56% area of YRB. Model simulation experiments illustrated that relative contributions of NDVI, precipitation, and potential evapotranspiration (ETp) to the ETa trend were 93.0%, 18.1%, and -7.4%, respectively. Vegetation greening, which is closely related to the Grain for Green (GFG) afforestation, was the main driver to the long-term tendency of water consumption in the YRB. This study highlights potential water demanding conflicts between the socio-economic system and the natural ecosystem on the Loess Plateau due to the rapid vegetation expansion in this water-limited area.

RevDate: 2018-12-14

Collalti A, Thornton PE, Cescatti A, et al (2018)

The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

The future trajectory of atmospheric CO2 concentration depends on the development of the terrestrial carbon sink, which in turn is influenced by forest dynamics under changing environmental conditions. An in-depth understanding of model sensitivities and uncertainties in non steady-state conditions is necessary for reliable and robust projections of forest development and under scenarios of global warming and CO2 -enrichment. Here, we systematically assessed if a bio-geochemical process-based model (3D-CMCC-CNR), which embeds similarities with many other vegetation models, applied in simulating net primary productivity (NPP) and standing woody biomass (SWB), maintained a consistent sensitivity to its 55 input parameters through time, during forest-ageing and -structuring as well as under climate-change scenarios. Overall, the model applied at three contrasting European forests showed low sensitivity to the majority of its parameters. Interestingly, model sensitivity to parameters varied through the course of >100 years of simulations. In particular, the model showed a large responsiveness to the allometric parameters used for initialize forest carbon- and nitrogen-pools early in forest simulation (i.e. for NPP up to ~37%, 256 g C m-2 yr-1 and for SWB up to ~90%, 65 t C ha-1 , when compared to standard simulation), with this sensitivity decreasing sharply during forest development. At medium- to longer-time scales, and under climate-change scenarios, the model became increasingly more sensitive to additional and/or different parameters controlling biomass accumulation and autotrophic respiration (i.e. for NPP up to ~30%, 167 g C m-2 yr-1 and for SWB up to ~24%, 64 t C ha-1 , when compared to standard simulation). Interestingly, model outputs were shown to be more sensitive to parameters and processes controlling stand development rather than to climate-change (i.e. warming and changes in atmospheric CO2 concentration) itself although model sensitivities were generally higher under climate-change scenarios. Our results suggest the need for sensitivity and uncertainty analyses that cover multiple temporal scales along forest developmental stages to better assess the potential of future forests to act as a global terrestrial carbon sink. This article is protected by copyright. All rights reserved.

RevDate: 2018-12-14

Asseng S, Martre P, Maiorano A, et al (2019)

Climate change impact and adaptation for wheat protein.

Global change biology, 25(1):155-173.

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.

RevDate: 2018-12-14

Dorado-Liñán I, Piovesan G, Martínez-Sancho E, et al (2018)

Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests.

Global change biology [Epub ahead of print].

Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet the spatiotemporal patterns of vulnerability to both short-term extreme events as well as gradual environmental changes are quite uncertain across the species' limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short and long-term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emissions scenarios using a multispecies Generalized Linear Mixed Model. Our analysis provides four key insights into the patterns of species' vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically-limited sites. Second, estimated species-specific vulnerability did not match their a priori rank in drought-tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species-specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine-scale limitations of the climate data generated by global climate models. This article is protected by copyright. All rights reserved.

RevDate: 2018-12-14

Howard AF (2018)

Asclepias Syriaca (Common Milkweed) flowering date shift in response to climate change.

Scientific reports, 8(1):17802 pii:10.1038/s41598-018-36152-2.

The consequences of altered flowering dates due to climate change can be severe, especially for plants that rely on coordinated flower and pollinator emergence for reproduction. The plant Asclepias syriaca (Common Milkweed) relies on pollinators for movement of its pollen and evidence suggests that it has recently been declining. Given these factors and this plant's importance as a host species for the declining Danaus plexippus (Monarch Butterfly), it is critical to determine if its flowering is being modified by climate change. As a first step to answering this question I quantified the relationship between climate and flowering date for A. syriaca using data from the USA National Phenology Network repository and the National Oceanic and Atmospheric Administration. I found that temperatures were higher than they had been historically (1895-2010) and mean flowering dates occurred earlier with higher temperatures. Additionally, there is a significant negative interactive effect of temperature and year on flowering date indicating that from 2011 through 2016 higher temperatures are correlated with increasingly earlier flowering dates. The change in flowering appears to be symmetrical in regards to the flowering time distribution, in that along with the mean, both maximum and minimum flowering dates are occurring earlier, as well. There is no evidence that earlier flowering is due to earlier initial growth or results in later fruit ripening. Consequences of this shift in flowering can only be speculated upon at this point, but due to the ecological importance of A. syriaca and its susceptibility to phenological mismatch, they should be considered when developing conservation plans for A. syriaca and the organisms for which it is a host.

RevDate: 2018-12-14

Pragna P, Chauhan SS, Sejian V, et al (2018)

Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation.

Animals : an open access journal from MDPI, 8(12): pii:ani8120235.

The ability of an animal to cope and adapt itself to the changing climate virtually depends on the function of rumen and rumen inhabitants such as bacteria, protozoa, fungi, virus and archaea. Elevated ambient temperature during the summer months can have a significant influence on the basic physiology of the rumen, thereby affecting the nutritional status of the animals. Rumen volatile fatty acid (VFA) production decreases under conditions of extreme heat. Growing recent evidence suggests there are genetic variations among breeds of goats in the impact of heat stress on rumen fermentation pattern and VFA production. Most of the effects of heat stress on rumen fermentation and enteric methane (CH₄) emission are attributed to differences in the rumen microbial population. Heat stress-induced rumen function impairment is mainly associated with an increase in Streptococcus genus bacteria and with a decrease in the bacteria of Fibrobactor genus. Apart from its major role in global warming and greenhouse effect, enteric CH4 is also considered as a dietary energy loss in goats. These effects warrant mitigating against CH₄ production to ensure optimum economic return from goat farming as well as to reduce the impact on global warming as CH₄ is one of the more potent greenhouse gases (GHG). The various strategies that can be implemented to mitigate enteric CH4 emission include nutritional interventions, different management strategies and applying advanced biotechnological tools to find solution to reduce CH₄ production. Through these advanced technologies, it is possible to identify genetically superior animals with less CH₄ production per unit feed intake. These efforts can help the farming community to sustain goat production in the changing climate scenario.

RevDate: 2018-12-13

Ham YG (2018)

El Niño events will intensify under global warming.

Nature, 564(7735):192-193.

RevDate: 2018-12-13

Searchinger TD, Wirsenius S, Beringer T, et al (2018)

Assessing the efficiency of changes in land use for mitigating climate change.

Nature, 564(7735):249-253.

Land-use changes are critical for climate policy because native vegetation and soils store abundant carbon and their losses from agricultural expansion, together with emissions from agricultural production, contribute about 20 to 25 per cent of greenhouse gas emissions1,2. Most climate strategies require maintaining or increasing land-based carbon3 while meeting food demands, which are expected to grow by more than 50 per cent by 20501,2,4. A finite global land area implies that fulfilling these strategies requires increasing global land-use efficiency of both storing carbon and producing food. Yet measuring the efficiency of land-use changes from the perspective of greenhouse gas emissions is challenging, particularly when land outputs change, for example, from one food to another or from food to carbon storage in forests. Intuitively, if a hectare of land produces maize well and forest poorly, maize should be the more efficient use of land, and vice versa. However, quantifying this difference and the yields at which the balance changes requires a common metric that factors in different outputs, emissions from different agricultural inputs (such as fertilizer) and the different productive potentials of land due to physical factors such as rainfall or soils. Here we propose a carbon benefits index that measures how changes in the output types, output quantities and production processes of a hectare of land contribute to the global capacity to store carbon and to reduce total greenhouse gas emissions. This index does not evaluate biodiversity or other ecosystem values, which must be analysed separately. We apply the index to a range of land-use and consumption choices relevant to climate policy, such as reforesting pastures, biofuel production and diet changes. We find that these choices can have much greater implications for the climate than previously understood because standard methods for evaluating the effects of land use4-11 on greenhouse gas emissions systematically underestimate the opportunity of land to store carbon if it is not used for agriculture.

RevDate: 2018-12-14
CmpDate: 2018-12-14

Kump L (2018)

Climate change and marine mass extinction.

Science (New York, N.Y.), 362(6419):1113-1114.

RevDate: 2018-12-07

Limb M (2018)

Health gains make actions to curb climate change cost neutral, says WHO.

BMJ (Clinical research ed.), 363:k5197.

RevDate: 2018-12-12

Dolezal J, Dvorsky M, Kopecky M, et al (2018)

Functionally distinct assembly of vascular plants colonizing alpine cushions suggests their vulnerability to climate change.

Annals of botany pii:5239867 [Epub ahead of print].

Background and Aims: Alpine cushion plants can initially facilitate other species during ecological succession, but later on can be negatively affected by their development, especially when beneficiaries possess traits allowing them to overrun their host. This can be reinforced by accelerated warming favouring competitively strong species over cold-adapted cushion specialists. However, little empirical research has addressed the trait-based mechanisms of these interactions. The ecological strategies of plants colonizing the cushion plant Thylacospermum caespitosum (Caryophyllaceae), a dominant pioneer of subnival zones, were studied in the Western Himalayas.

Methods: To assess whether the cushion colonizers are phylogenetically and functionally distinct, 1668 vegetation samples were collected, both in open ground outside the cushions and inside their live and dead canopies, in two mountain ranges, Karakoram and Little Tibet. More than 50 plant traits related to growth, biomass allocation and resource acquisition were measured for target species, and the phylogenetic relationships of these species were studied [or determined].

Key Results: Species-based trait-environment analysis with phylogenetic correction showed that in both mountain ranges Thylacospermum colonizers are phylogenetically diverse but functionally similar and are functionally different from species preferring bare soil outside cushions. Successful colonizers are fast-growing, clonal graminoids and forbs, penetrating the cushion by rhizomes and stolons. They have higher root-to-shoot ratios, leaf nitrogen and phosphorus concentrations, and soil moisture and nutrient demands, sharing the syndrome of competitive species with broad elevation ranges typical of the late stages of primary succession. In contrast, the species from open ground have traits typical of stress-tolerant specialists from high and dry environments.

Conclusion: Species colonizing tight cushions of T. caespitosum are competitively strong graminoids and herbaceous perennials from alpine grasslands. Since climate change in the Himalayas favours these species, highly specialized subnival cushion plants may face intense competition and a greater risk of decline in the future.

RevDate: 2018-12-12

Gareau BJ, Huang X, TP Gareau (2018)

Social and ecological conditions of cranberry production and climate change attitudes in New England.

PloS one, 13(12):e0207237 pii:PONE-D-18-16356.

Cranberry growers in New England are increasingly pressured by negative effects associated with global climate change, some of which are familiar to this group (such as precipitation fluctuations and pest pressures), others that are rather new (such as warmer winters that threaten needed chill hours for the plants to bloom). The first study of this population of its kind, we use a survey, supplemented with observations and interviews, to assess Massachusetts cranberry grower attitudes towards climate change, and whether certain conditions of production might be associated with their attitudes. Our findings suggest that certain personal and ecological conditions are associated with greater worry of climate change effects, and that communal conditions of the cranberry grower social network provide some ways to cope with a warming climate. While the cranberry growing community has created a strong social network that has allowed it to sustain production, a warming planet will likely require significant change in order to overcome general attitudes of climate skepticism so that cranberry production may continue in the future.

RevDate: 2018-12-11

La Sorte FA, Horton KG, Nilsson C, et al (2018)

Projected changes in wind assistance under climate change for nocturnally migrating bird populations.

Global change biology [Epub ahead of print].

Current climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn. We intersected this information with wind projections to estimate how wind assistance is expected to change during this century at current migration altitudes. The prevailing westerlies at midlatitudes are projected to increase in strength during spring migration and decrease in strength to a lesser degree during autumn migration. Southerly winds will increase in strength across the continent during both spring and autumn migration, with the strongest gains occurring in the center of the continent. Wind assistance is projected to increase across the central (0.44 m/s; 10.1%) and eastern portions of the continent (0.32 m/s; 9.6%) during spring migration, and wind assistance is projected to decrease within the central (0.32 m/s; 19.3%) and eastern portions of the continent (0.17 m/s; 6.6%) during autumn migration. Thus, across a broad portion of the continent where migration intensity is greatest, the efficiency of nocturnal migration is projected to increase in the spring and decrease in the autumn, potentially affecting time and energy expenditures for many migratory bird species. These findings highlight the importance of placing climate change projections within a relevant ecological context informed through empirical observations, and the need to consider the possibility that climate change may generate both positive and negative implications for natural systems.

RevDate: 2018-12-11

Hof C, Voskamp A, Biber MF, et al (2018)

Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity.

Proceedings of the National Academy of Sciences of the United States of America pii:1807745115 [Epub ahead of print].

Climate and land-use change interactively affect biodiversity. Large-scale expansions of bioenergy have been suggested as an important component for climate change mitigation. Here we use harmonized climate and land-use projections to investigate their potential combined impacts on global vertebrate diversity under a low- and a high-level emission scenario. We combine climate-based species distribution models for the world's amphibians, birds, and mammals with land-use change simulations and identify areas threatened by both climate and land-use change in the future. The combined projected effects of climate and land-use change on vertebrate diversity are similar under the two scenarios, with land-use change effects being stronger under the low- and climate change effects under the high-emission scenario. Under the low-emission scenario, increases in bioenergy cropland may cause severe impacts in biodiversity that are not compensated by lower climate change impacts. Under this low-emission scenario, larger proportions of species distributions and a higher number of small-range species may become impacted by the combination of land-use and climate change than under the high-emission scenario, largely a result of bioenergy cropland expansion. Our findings highlight the need to carefully consider both climate and land-use change when projecting biodiversity impacts. We show that biodiversity is likely to suffer severely if bioenergy cropland expansion remains a major component of climate change mitigation strategies. Our study calls for an immediate and significant reduction in energy consumption for the benefit of both biodiversity and to achieve the goals of the Paris Agreement.

RevDate: 2018-12-11

Dong Z, Driscoll CT, Johnson SL, et al (2018)

Projections of water, carbon, and nitrogen dynamics under future climate change in an old-growth Douglas-fir forest in the western Cascade Range using a biogeochemical model.

The Science of the total environment, 656:608-624 pii:S0048-9697(18)34733-8 [Epub ahead of print].

Statistically downscaled climate change scenarios from four General Circulation Models for two Representative Concentration Pathways (RCP) were applied as inputs to a biogeochemical model, PnET-BGC, to examine potential future dynamics of water, carbon, and nitrogen in an old-growth Douglas-fir forest in the western Cascade Range. Projections show 56% to 77% increases in stomatal conductance throughout the year from 1986-2010 to 2076-2100, and 65% to 104% increases in leaf carbon assimilation between October and June over the same period. However, future dynamics of water and carbon under the RCP scenarios are affected by a 49% to 86% reduction in foliar biomass resulting from severe air temperature and humidity stress to the forest in summer. Important implications of future decreases in foliar biomass include 1) 20% to 71% decreases in annual transpiration which increase soil moisture by 7% to 15% in summer and fall; 2) decreases in photosynthesis by 77% and soil organic matter by 62% under the high radiative forcing scenario; and 3) altered foliar and soil carbon to nitrogen stoichiometry. Potential carbon dioxide fertilization effects on vegetation are projected to 1) amplify decreases in transpiration by 4% to 9% and increases in soil moisture in summer and fall by 1% to 2%; and 2) alleviate decreases in photosynthesis by 4%; while 3) having negligible effects on the dynamics of nitrogen. Our projections suggest that future decrease in transpiration and moderate water holding capacity may mitigate soil moisture stress to the old-growth Douglas-fir forest. Future increases in nitrogen concentration in soil organic matter are projected to alleviate the decrease in net nitrogen mineralization despite a reduction in decomposition of soil organic matter by the end of the century.

RevDate: 2018-12-11

Terzi S, Torresan S, Schneiderbauer S, et al (2018)

Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation.

Journal of environmental management, 232:759-771 pii:S0301-4797(18)31365-3 [Epub ahead of print].

Climate change has already led to a wide range of impacts on our society, the economy and the environment. According to future scenarios, mountain regions are highly vulnerable to climate impacts, including changes in the water cycle (e.g. rainfall extremes, melting of glaciers, river runoff), loss of biodiversity and ecosystems services, damages to local economy (drinking water supply, hydropower generation, agricultural suitability) and human safety (risks of natural hazards). This is due to their exposure to recent climate warming (e.g. temperature regime changes, thawing of permafrost) and the high degree of specialization of both natural and human systems (e.g. mountain species, valley population density, tourism-based economy). These characteristics call for the application of risk assessment methodologies able to describe the complex interactions among multiple hazards, biophysical and socio-economic systems, towards climate change adaptation. Current approaches used to assess climate change risks often address individual risks separately and do not fulfil a comprehensive representation of cumulative effects associated to different hazards (i.e. compound events). Moreover, pioneering multi-layer single risk assessment (i.e. overlapping of single-risk assessments addressing different hazards) is still widely used, causing misleading evaluations of multi-risk processes. This raises key questions about the distinctive features of multi-risk assessments and the available tools and methods to address them. Here we present a review of five cutting-edge modelling approaches (Bayesian networks, agent-based models, system dynamic models, event and fault trees, and hybrid models), exploring their potential applications for multi-risk assessment and climate change adaptation in mountain regions. The comparative analysis sheds light on advantages and limitations of each approach, providing a roadmap for methodological and technical implementation of multi-risk assessment according to distinguished criteria (e.g. spatial and temporal dynamics, uncertainty management, cross-sectoral assessment, adaptation measures integration, data required and level of complexity). The results show limited applications of the selected methodologies in addressing the climate and risks challenge in mountain environments. In particular, system dynamic and hybrid models demonstrate higher potential for further applications to represent climate change effects on multi-risk processes for an effective implementation of climate adaptation strategies.

RevDate: 2018-12-11

Zhu L, Wang L, CS Ma (2018)

Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects.

Journal of insect physiology pii:S0022-1910(18)30342-1 [Epub ahead of print].

Climate warming is characterized by increase in extreme heat events (EHEs). EHEs and mild temperature periods alternate with each other and form complex climate scenarios. Among these scenarios, low-frequency and short-duration extreme heat events during long mild periods (sporadic short EHEs) and low-frequency and short-duration mild periods during long extreme heat events (sporadic short mild periods) commonly occur in nature. The biological effects of these two types of temperature events have not been thoroughly elucidated to date. To clarify the biological effects of these temperature events on organisms, we selected the English grain aphid, a globally important cereal pest, as our model system. We exposed aphids to simulated 24-h diurnal fluctuating temperatures, inserted these events during the wheat growing season and then investigated development, adult longevity, fecundity, survival, and demographic parameters. We found that sporadic short mild periods during a long EHE could improve their life history traits. Increasing the duration of mild periods from 1 day to 2 days did not significantly change their demographic performance. Sporadic short EHEs during a long mild period did not significantly affect vital rates, while increasing the duration of EHEs from 1 day to 2 days worsened the aphids' performance. We found that short mild episodes in the hot season may benefit small insects to buffer long duration heatwaves. We discussed how sporadic short mild periods during a long EHE supplied aphids a chance to recover from heat stress. Thus, we suggest that sporadic temperature events should be considered in population prediction of small insects under climate change and should be integrated into pest management.

RevDate: 2018-12-11

Turner B (2018)

Tackling antimicrobial resistance and climate change.

Lancet (London, England), 392(10163):2435-2436.

RevDate: 2018-12-11

Andrews O, Le Quéré C, Kjellstrom T, et al (2018)

Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study.

The Lancet. Planetary health, 2(12):e540-e547.

BACKGROUND: Changes in temperature and humidity due to climate change affect living and working conditions. An understanding of the effects of different global temperature changes on population health is needed to inform the continued implementation of the Paris Climate Agreement and to increase global ambitions for greater cuts in emissions. By use of historical and projected climate conditions, we aimed to investigate the effects of climate change on workability (ie, the ability to work) and survivability (the ability to survive).

METHODS: In this modelling study, we estimated the changes in populations exposed to excessive heat stress between the recent past (ie, 1986-2005) and 2100. We used climate data from four models to calculate the wet-bulb globe temperature, an established heat exposure index that can be used to assess the effects of temperature, humidity, and other environmental factors on humans. We defined and applied thresholds for risks to workability (where the monthly mean of daily maximum wet-bulb globe temperature exceeds 34°C) and survivability (where the maximum daily wet-bulb globe temperature exceeds 40°C for 3 consecutive days), and we used population projections to quantify changes in risk associated with different changes to the global temperature.

FINDINGS: The risks to workability increase substantially with global mean surface temperature in all four climate models, with approximately 1 billion people affected globally after an increase in the global temperature of about 2·5°C above pre-industrial levels. There is greater variability between climate models for exposures above the threshold for risks to survivability than for risks to workability. The number of people who are likely to be exposed to heat stress exceeding the survivability threshold increases with global temperature change, to reach around 20 million people globally after an increase of about 2·5°C, estimated from the median of the models, but with a large model uncertainty. More people are likely to be exposed to heat stress in urban than in rural areas. Population exposure can fluctuate over time and change substantially within one decade.

INTERPRETATION: Exposure to excessive heat stress is projected to be widespread in tropical or subtropical low-income and middle-income countries, highlighting the need to build on the Paris Agreement regarding global temperature targets, to protect populations who have contributed little to greenhouse gas emissions. The non-linear dependency of heat exposure risk on temperature highlights the importance of understanding thresholds in coupled human-climate systems.

FUNDING: Wellcome Trust.

RevDate: 2018-12-11

Landrigan P, Fuller R, Haines A, et al (2018)

Pollution prevention and climate change mitigation: measuring the health benefits of comprehensive interventions.

The Lancet. Planetary health, 2(12):e515-e516.

RevDate: 2018-12-06

Beggs PJ, Y Zhang (2018)

The MJA-Lancet Countdown on health and climate change: Australian policy inaction threatens lives(Summary).

The Medical journal of Australia, 209(11):474-475.

RevDate: 2018-12-06

Zhang Y, Beggs PJ, Bambrick H, et al (2018)

The MJA-Lancet Countdown on health and climate change: Australian policy inaction threatens lives.

The Medical journal of Australia, 209(11):474.

Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.

RevDate: 2018-12-06

Xu Y, Ramanathan V, DG Victor (2018)

Global warming will happen faster than we think.

Nature, 564(7734):30-32.

RevDate: 2018-12-06

Slatin C (2018)

Climate Change Action Requires Unity Among Movements for Justice and Peace.

New solutions : a journal of environmental and occupational health policy : NS [Epub ahead of print].

RevDate: 2018-12-06

Yu Q, Wang F, Yan W, et al (2018)

Carbon and Nitrogen Burial and Response to Climate Change and Anthropogenic Disturbance in Chaohu Lake, China.

International journal of environmental research and public health, 15(12): pii:ijerph15122734.

Lakes are a crucial component of the global carbon and nitrogen cycle. As a trend of enhanced human activities and climate change, the mechanisms of burial remain poorly understood. In this study, diverse biogeochemical techniques were applied to analyze the temporal variation of organic carbon and nitrogen burial rates in Chaohu Lake. The results showed that burial rates have ranged from 9.39 to 35.87 g C m-2 yr-1 for carbon and from 1.66 to 5.67 g N m-2 yr-1 for nitrogen since the 1860s. The average rates were 19.6 g C m-2 yr-1 and 3.14 g N m-2 yr-1 after the 1970s, which were significantly higher than the rate before the 1970s, showing an increasing trend. The decrease of C/N ratios as well as organic matter δ13C values indicates that the major organic matter source in sediment has been algal production since the 1970s. The increase of δ15N values indicated that the promotion in productivity was stimulated by nutrient input from sewage and agricultural runoff. The burial rates of organic carbon and nitrogen were significantly positively related to socio-economics and temperature, indicating that Chaohu Lake will become an increasing carbon and nitrogen pool under conditions of enhanced human activities and intensive precipitation.

RevDate: 2018-12-03

Olusanya HO, M van Zyll de Jong (2018)

Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador.

PloS one, 13(12):e0208182 pii:PONE-D-18-08535.

Freshwater fish populations are rapidly declining globally due to the impacts of rapid climate change and existing non-climatic anthropogenic stressors. In response to these drivers, freshwater fishes are responding by shifting their distribution range, altering the timing of migration and spawning and through demographic processes. By 2050, the mean daily air temperature is predicted to increase by 2 to 3 degrees C in insular Newfoundland and by 3 to 4 degrees C in Labrador. Mean daily precipitation is also projected to increase in all locations, with increased intensity projected for several regions. To mitigate negative consequences of these changes, managers require analytical approaches that describe the vulnerability of fish to climate change. To address this need, the current study adopts the National Marine Fisheries Service vulnerability assessment framework to characterize the vulnerability of freshwater fishes in Newfoundland and Labrador. Twelve vulnerability indicators were developed from an extensive literature review and applied to the assessment. Experts were solicited using an online questionnaire survey and scores for exposure, sensitivity and adaptive capacity were collated and analyzed to derive a final vulnerability score and rank for each species. The analysis showed one species to be of high-very high vulnerability, two species were highly vulnerable while four species were moderately vulnerable to climate change. The result provides insight into the factors that drive vulnerability of freshwater fishes in the region, this information is significant to decision-makers and other stakeholders engaged in managing freshwater fish resources in Newfoundland and Labrador.

RevDate: 2018-12-03

Watts N, Amann M, Arnell N, et al (2018)

The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come.

Lancet (London, England) pii:S0140-6736(18)32594-7 [Epub ahead of print].

RevDate: 2018-12-03

The Lancet (2018)

Humanising health and climate change.

RevDate: 2018-12-05

Hess JJ, Lm S, Knowlton K, et al (2018)

Building Resilience to Climate Change: Pilot Evaluation of the Impact of India's First Heat Action Plan on All-Cause Mortality.

Journal of environmental and public health, 2018:7973519.

Background: Ahmedabad implemented South Asia's first heat action plan (HAP) after a 2010 heatwave. This study evaluates the HAP's impact on all-cause mortality in 2014-2015 relative to a 2007-2010 baseline.

Methods: We analyzed daily maximum temperature (Tmax)-mortality relationships before and after HAP. We estimated rate ratios (RRs) for daily mortality using distributed lag nonlinear models and mortality incidence rates (IRs) for HAP warning days, comparing pre- and post-HAP periods, and calculated incidence rate ratios (IRRs). We estimated the number of deaths avoided after HAP implementation using pre- and post-HAP IRs.

Results: The maximum pre-HAP RR was 2.34 (95%CI 1.98-2.76) at 47°C (lag 0), and the maximum post-HAP RR was 1.25 (1.02-1.53) estimated at 47°C (lag 0). Post-to-pre-HAP nonlagged mortality IRR for Tmax over 40°C was 0.95 (0.73-1.22) and 0.73 (0.29-1.81) for Tmax over 45°C. An estimated 1,190 (95%CI 162-2,218) average annualized deaths were avoided in the post-HAP period.

Conclusion: Extreme heat and HAP warnings after implementation were associated with decreased summertime all-cause mortality rates, with largest declines at highest temperatures. Ahmedabad's plan can serve as a guide for other cities attempting to increase resilience to extreme heat.

RevDate: 2018-12-05

Sarkodie SA, V Strezov (2018)

Economic, social and governance adaptation readiness for mitigation of climate change vulnerability: Evidence from 192 countries.

The Science of the total environment, 656:150-164 pii:S0048-9697(18)34705-3 [Epub ahead of print].

Adaptation strategies have become critical in climate change mitigation and impact reduction, to safeguard population and the ecosystem from irreparable damage. While developed countries have integrated adaptation plans and policies into their developmental agenda, developing countries are facilitating or yet to initiate adaptation policies in their development. This study examines the nexus between climate change vulnerability and adaptation readiness in 192 UN countries using mapping and panel data models. The study reveals Africa as the most vulnerable continent to climate change with high sensitivity, high exposure, and low adaptive capacity. Developed countries, including Norway, Switzerland, Canada, Sweden, United Kingdom, Finland, France, Spain, and Germany, are less vulnerable to climate change due to strong economic, governance and social adaptation readiness. International commitment from developed countries to developing countries is essential to strengthen their resilience, economic readiness and adaptive capacity to climate-related events.

RevDate: 2018-12-04

Mukundan R, Scheerer M, Gelda RK, et al (2018)

Probabilistic Estimation of Stream Turbidity and Application under Climate Change Scenarios.

Journal of environmental quality, 47(6):1522-1529.

Streamflow-based rating curves are widely used to estimate turbidity or suspended sediment concentrations in streams. However, such estimates are often inaccurate at the event scale due to inter- and intra-event variability in sediment-streamflow relationships. In this study, we use a quantile regression approach to derive a probabilistic distribution of turbidity predictions for Esopus Creek, a major stream in one of the watersheds that supply drinking water to New York City, using measured daily mean streamflow-turbidity data pairs for 2003 to 2016. Although a single regression curve can underpredict or overpredict the actual observation, quantile regression can estimate a range of possible turbidity values for a given value of streamflow. Regression relationships for various quantiles were applied to streamflows simulated by a watershed model to predict stream turbidity under: (i) the observed historical climate, and (ii) a future climate derived from 20 global climate model (GCM) scenarios. Future scenarios using quantile regression in combination with these GCMs and a stochastic weather generator indicated an increase in the frequency and magnitude of hydrological events that may generate high stream turbidity and cause potential water quality challenges to the water supply. The methods outlined in this study can be used for probabilistic estimation of stream turbidity for operational decisions and can be part of a vulnerability-based method to explore climate impacts on water resources.

RevDate: 2018-12-04

Bjornsson H (2018)

[Climate change and health].

Laeknabladid, 104(12):539.

RevDate: 2018-12-04

Arshad S, Ahmad M, Saboor A, et al (2018)

Role of trees in climate change and their authentication through scanning electron microscopy.

Microscopy research and technique [Epub ahead of print].

Climate change is the most realistic theory of this era. Sudden and drastic changes are happening on the earth and the survival of mankind is becoming questionable in the future. The plants play the key role in controlling the climate change. The study emphasizes on role of trees in the cop up or damaging the climate of this earth, whether they are medicinal trees or economically important trees. Due to the overgrazing and intense deforestation the climate is being affected hazardously. The global warming phenomenon is occurring due to the less availability of trees and more carbon dioxide in the atmosphere. In total 20 plants were collected from across the Pakistan on the basis of their abundance and their key roles. Out of which seeds of eight plants were scanned through scanning electron microscope for correct authentication and importance of these medicinally important trees in mitigating the climate change. RESEARCH HIGHLIGHTS: The role of forest sector in the climate's change mitigation. Medicinally and economically important tree species across Pakistan. By using SEM, Ultra seed sculpturing features as an authentication tool. To formulate some policies to stop or control deforestation.

RevDate: 2018-12-04

Olson JR (2018)

Predicting combined effects of land use and climate change on river and stream salinity.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1764): pii:rstb.2018.0005.

Agricultural, industrial and urban development have all contributed to increased salinity in streams and rivers, but the likely effects of future development and climate change are unknown. I developed two empirical models to estimate how these combined effects might affect salinity by the end of this century (measured as electrical conductivity, EC). The first model predicts natural background from static (e.g. geology and soils) and dynamic (i.e. climate and vegetation) environmental factors and explained 78% of the variation in EC. I then compared the estimated background EC with current measurements at 2001 sites chosen probabilistically from all conterminous USA streams. EC was more than 50% greater at 34% of these sites. The second model predicts deviation of EC from background as a function of human land use and environmental factors and explained 60% of the variation in alteration from background. I then predicted the effects of climate and land use change on EC at the end of the century by replacing dynamic variables with published projections of future conditions based on the A2 emissions scenario. By the end of the century, the median EC is predicted to increase from 0.319 mS cm-1 to 0.524 mS cm-1 with over 50% of streams having greater than 50% increases in EC and 35% more than doubling their EC. Most of the change is related to increases in human land use, with climate change accounting for only 12% of the increase. In extreme cases, increased salinity may make water unsuitable for human use, but widespread moderate increases are likely a greater threat to stream ecosystems owing to the elimination of low EC habitats.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

RevDate: 2018-12-04

Le TDH, Kattwinkel M, Schützenmeister K, et al (2018)

Predicting current and future background ion concentrations in German surface water under climate change.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1764): pii:rstb.2018.0004.

Salinization of surface waters is a global environmental issue that can pose a regional risk to freshwater organisms, potentially leading to high environmental and economic costs. Global environmental change including climate and land use change can increase the transport of ions into surface waters. We fit both multiple linear regression (LR) and random forest (RF) models on a large spatial dataset to predict Ca2+ (266 sites), Mg2+ (266 sites), and [Formula: see text] (357 sites) ion concentrations as well as electrical conductivity (EC-a proxy for total dissolved solids with 410 sites) in German running water bodies. Predictions in both types of models were driven by the major factors controlling salinity including geologic and soil properties, climate, vegetation and topography. The predictive power of the two types of models was very similar, with RF explaining 71-76% of the spatial variation in ion concentrations and LR explaining 70-75% of the variance. Mean squared errors for predictions were all smaller than 0.06. The factors most strongly associated with stream ion concentrations varied among models but rock chemistry and climate were the most dominant. The RF model was subsequently used to forecast the changes in EC that were likely to occur for the period of 2070 to 2100 in response to just climate change-i.e. no additional effects of other anthropogenic activities. The future forecasting shows approximately 10% and 15% increases in mean EC for representative concentration pathways 2.6 and 8.5 (RCP2.6 and RCP8.5) scenarios, respectively.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

RevDate: 2018-12-04

Diele-Viegas LM, CFD Rocha (2018)

Unraveling the influences of climate change in Lepidosauria (Reptilia).

Journal of thermal biology, 78:401-414.

In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.

RevDate: 2018-11-30

Dahlke FT, Butzin M, Nahrgang J, et al (2018)

Northern cod species face spawning habitat losses if global warming exceeds 1.5°C.

Science advances, 4(11):eaas8821 pii:aas8821.

Rapid climate change in the Northeast Atlantic and Arctic poses a threat to some of the world's largest fish populations. Impacts of warming and acidification may become accessible through mechanism-based risk assessments and projections of future habitat suitability. We show that ocean acidification causes a narrowing of embryonic thermal ranges, which identifies the suitability of spawning habitats as a critical life-history bottleneck for two abundant cod species. Embryonic tolerance ranges linked to climate simulations reveal that ever-increasing CO2 emissions [Representative Concentration Pathway (RCP) 8.5] will deteriorate suitability of present spawning habitat for both Atlantic cod (Gadus morhua) and Polar cod (Boreogadus saida) by 2100. Moderate warming (RCP4.5) may avert dangerous climate impacts on Atlantic cod but still leaves few spawning areas for the more vulnerable Polar cod, which also loses the benefits of an ice-covered ocean. Emissions following RCP2.6, however, support largely unchanged habitat suitability for both species, suggesting that risks are minimized if warming is held "below 2°C, if not 1.5°C," as pledged by the Paris Agreement.

RevDate: 2018-11-30

Hoffmann C, Hanisch M, Heinsohn JB, et al (2018)

Increased vulnerability of COPD patient groups to urban climate in view of global warming.

International journal of chronic obstructive pulmonary disease, 13:3493-3501 pii:copd-13-3493.

Purpose: Patients with COPD show an increase in acute exacerbations (AECOPD) during the cold season as well as during heat waves in the summer months. Due to global climate changes, extreme weather conditions are likely to occur more frequently in the future. The goal of this study was to identify patient groups most at risk of exacerbations during the four seasons of the year and to determine at which temperature threshold the daily hospital admissions due to AECOPD increase during the summer.

Patients and methods: We analyzed retrospective demographic and medical data of 990 patients, who were hospitalized for AECOPD in Berlin, Germany. The cases were grouped into the following cohorts: "spring" (admission between March and May), "summer" (June - August), "autumn" (September - November), and "winter" (December - February). AECOPD hospital admissions from 2006 and 2010 were grouped into a "hot summer" cohort and cases from 2011 and 2012 into a "cold summer" data-set. Climate data were obtained from the German Meteorological Office.

Results: Patients hospitalized for a COPD exacerbation during winter were significantly older than summertime patients (P=0.040) and also thinner than patients exacerbating in spring (P=0.042). COPD exacerbations during hot summer periods happened more often to patients with a history of myocardial infarction (P=0.014) or active smokers (P=0.011). An AECOPD during colder summers occurred in patients with a higher Charlson index, who suffered in increased numbers from peripheral vascular diseases (P=0.016) or tumors (P=0.004). Summertime hospital admissions increased above a daily minimum temperature of 18.3°C (P=0.006).

Conclusion: The identification of COPD patient groups most at risk for climate related exacerbations enables climate-adapted prevention through patient guidance and treatment. In view of global climate changes, discovering vulnerabilities and implementing adaptive measures will be of growing importance.

RevDate: 2018-11-30

Arabena K, Armstrong F, Berry H, et al (2018)

Australian health professionals' statement on climate change and health.

Lancet (London, England), 392(10160):2169-2170.

RevDate: 2018-11-29

Figueres C, Landrigan PJ, R Fuller (2018)

Tackling air pollution, climate change, and NCDs: time to pull together.

Lancet (London, England), 392(10157):1502-1503.

RevDate: 2018-11-29

Wise J (2018)

Climate change is outpacing response, warn experts.

BMJ (Clinical research ed.), 363:k5018.

RevDate: 2018-11-29

Yang L, Liao W, Liu C, et al (2018)

Associations between Knowledge of the Causes and Perceived Impacts of Climate Change: A Cross-Sectional Survey of Medical, Public Health and Nursing Students in Universities in China.

International journal of environmental research and public health, 15(12): pii:ijerph15122650.

This study aimed to measure the knowledge and perceptions of medical, public health, and nursing students about climate change and its impacts, and to identify associations between the knowledge and perceptions. Data were from a nationwide cross-sectional survey of 1387 students sampled in five different regional universities in China (April⁻May 2017). The knowledge and perceptions of the participants were collected by self-administered questionnaires. We found that most respondents believed that climate change is generally "bad" (83%) and bad for human health (88%), while 67% believed that climate change is controllable. The vast majority of respondents acknowledged illness conditions resulting from poor air quality (95%), heat stress (93%), and extreme weather events (91%) as potential impacts of climate change. Nevertheless, only 39% recognized malnutrition as a consequence of food deprivation resulting from climate change. Around 58% of respondents could correctly identify the causes of climate change. The knowledge of the causes of climate change was not associated with the ability to recognize the health consequences of climate change. However, the knowledge of causes of climate change was a significant predictor of increased awareness of the negative impacts of climate change between the medical and nursing students, although this was not the case among their public health counterparts. Poor knowledge about the causes of climate change is evident among students in China. They are able to recognize the direct links between weather events and health, but less likely to understand the consequences involving complicated pathways. Research and training into the underlying mechanisms of health impacts of climate change needs to be strengthened.

RevDate: 2018-11-29

Rakotoarison N, Raholijao N, Razafindramavo LM, et al (2018)

Assessment of Risk, Vulnerability and Adaptation to Climate Change by the Health Sector in Madagascar.

International journal of environmental research and public health, 15(12): pii:ijerph15122643.

Madagascar is cited as one of the most vulnerable countries to the effects of climate change, with significant impacts to the health of its population. In this study, the vulnerability of Madagascar's health sector to climate change was assessed and appropriate adaptation measures were identified. In order to assess climate risks, vulnerability and identify adaptation options, the Madagascar Ministry of Public Health as well as the National Meteorological and Hydrological Service worked in close collaboration with a team of local experts to conduct a literature review, field surveys, and analyses of current and future climate and health trends. Four climate-sensitive diseases of primary concern are described in the study: acute respiratory infections (ARI), diarrhea, malnutrition, and malaria. Baseline conditions of these four diseases from 2000 to 2014 show acute respiratory infections and diarrheal diseases are increasing in incidence; while incidence of malnutrition and malaria decreased over this period. To assess future impacts in Madagascar, this baseline information was used with climate projections for the two scenarios-RCP 4.5 and RCP 8.5-for the periods 2016⁻2035, 2036⁻2070 and 2071⁻2100. Future climate conditions are shown to exacerbate and increase the incidence of all four climate sensitive diseases. Further analysis of the exposure, sensitivity and adaptive capacity to the climate hazards suggests that the health sector in four regions of Madagascar is particularly vulnerable. The study recommends adaptation measures to improve the monitoring and early warning systems for climate sensitive diseases, as well as to reduce population vulnerability.

RevDate: 2018-11-28

Cohen JM, Civitello DJ, Venesky MD, et al (2018)

An interaction between climate change and infectious disease drove widespread amphibian declines.

Global change biology [Epub ahead of print].

Climate change might drive species declines by altering species interactions, such as host-parasite interactions. However, few studies have combined experiments, field data, and historical climate records to provide evidence that an interaction between climate change and disease caused any host declines. A recently proposed hypothesis, the thermal mismatch hypothesis, could identify host species that are vulnerable to disease under climate change because it predicts that cool- and warm-adapted hosts should be vulnerable to disease at unusually warm and cool temperatures, respectively. Here, we conduct experiments on Atelopus zeteki, a critically endangered, captively bred frog that prefers relatively cool temperatures, and show that frogs have high pathogen loads and high mortality rates only when exposed to a combination of the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) and high temperatures, as predicted by the thermal mismatch hypothesis. Further, we tested various hypotheses to explain recent declines experienced by species in the amphibian genus Atelopus that are thought to be associated with B. dendrobatidis and reveal that these declines are best explained by the thermal mismatch hypothesis. As in our experiments, only the combination of rapid increases in temperature and infectious disease could account for the patterns of declines, especially in species adapted to relatively cool environments. After combining experiments on declining hosts with spatiotemporal patterns in the field, our findings are consistent with the hypothesis that widespread species declines, including possible extinctions, have been driven by an interaction between increasing temperatures and infectious disease. Moreover, our findings suggest that hosts adapted to relatively cool conditions will be most vulnerable to the combination of increases in mean temperature and emerging infectious diseases.

RevDate: 2018-11-28

Henn JJ, Buzzard V, Enquist BJ, et al (2018)

Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change.

Frontiers in plant science, 9:1548.

In a rapidly changing climate, alpine plants may persist by adapting to new conditions. However, the rate at which the climate is changing might exceed the rate of adaptation through evolutionary processes in long-lived plants. Persistence may depend on phenotypic plasticity in morphology and physiology. Here we investigated patterns of leaf trait variation including leaf area, leaf thickness, specific leaf area, leaf dry matter content, leaf nutrients (C, N, P) and isotopes (δ13C and δ15N) across an elevation gradient on Gongga Mountain, Sichuan Province, China. We quantified inter- and intra-specific trait variation and the plasticity in leaf traits of selected species to experimental warming and cooling by using a reciprocal transplantation approach. We found substantial phenotypic plasticity in most functional traits where δ15N, leaf area, and leaf P showed greatest plasticity. These traits did not correspond with traits with the largest amount of intraspecific variation. Plasticity in leaf functional traits tended to enable plant populations to shift their trait values toward the mean values of a transplanted plants' destination community, but only if that population started with very different trait values. These results suggest that leaf trait plasticity is an important mechanism for enabling plants to persist within communities and to better tolerate changing environmental conditions under climate change.

RevDate: 2018-11-29

Johnson SR (2017)

'Climate change is the greatest public health threat we have'.

Modern healthcare, 47(16):32-33.

The Obama administration's public health efforts focused on acknowledging that social factors such as poverty and food insecurity affect the health outcomes of communities. The election of Donald Trump worries public health experts such as Dr. Georges Benjamin, executive director of the American Public Health Association, who sat down with Modern Healthcare reporter Steven Ross Johnson to discuss what's next for public health under a Trump administration and where he sees opportunities for collaboration in a potential post-ACA world. The following is an edited transcript.

RevDate: 2018-11-27

Berry P, Enright PM, Shumake-Guillemot J, et al (2018)

Assessing Health Vulnerabilities and Adaptation to Climate Change: A Review of International Progress.

International journal of environmental research and public health, 15(12): pii:ijerph15122626.

Climate change is increasing risks to human health and to the health systems that seek to protect the safety and well-being of populations. Health authorities require information about current associations between health outcomes and weather or climate, vulnerable populations, projections of future risks and adaptation opportunities in order to reduce exposures, empower individuals to take needed protective actions and build climate-resilient health systems. An increasing number of health authorities from local to national levels seek this information by conducting climate change and health vulnerability and adaptation assessments. While assessments can provide valuable information to plan for climate change impacts, the results of many studies are not helping to build the global evidence-base of knowledge in this area. They are also often not integrated into adaptation decision making, sometimes because the health sector is not involved in climate change policy making processes at the national level. Significant barriers related to data accessibility, a limited number of climate and health models, uncertainty in climate projections, and a lack of funding and expertise, particularly in developing countries, challenge health authority efforts to conduct rigorous assessments and apply the findings. This paper examines the evolution of climate change and health vulnerability and adaptation assessments, including guidance developed for such projects, the number of assessments that have been conducted globally and implementation of the findings to support health adaptation action. Greater capacity building that facilitates assessments from local to national scales will support collaborative efforts to protect health from current climate hazards and future climate change. Health sector officials will benefit from additional resources and partnership opportunities to ensure that evidence about climate change impacts on health is effectively translated into needed actions to build health resilience.

RevDate: 2018-11-30

Koutroulis AG (2018)

Dryland changes under different levels of global warming.

The Science of the total environment, 655:482-511 pii:S0048-9697(18)34571-6 [Epub ahead of print].

Drylands are vital ecosystems which cover almost 47% of the Earth's surface, hosting 39% of the global population. Dryland areas are highly sensitive to climatic changes and substantial impacts are foreseen under a warming climate. Many studies have examined the evolution of drylands in the future highlighting the need for improved capability of climate models to simulate aridity. The present study takes advantage of new higher resolution climate projections by the HadGEM3A Atmosphere Global Climate Model using prescribed time varying SSTs and sea ice, provided by a range of CMIP5 climate models under RCP8.5. The aim of the higher resolution models is to examine the benefit of the improved representation of atmospheric processes in the dryland research and to see where these results lie in the range of results from previous studies using the original CMIP5 ensemble. The transient response of aridity from the recent past until the end of the 21st century was examined as well as the expansion of global drylands under specific levels of global warming (1.5°C, 2°C and 4°C). Dryland changes were further assessed at the watershed level for a number of major global river basins to discuss implications on hydrological changes and land degradation. The areal coverage of drylands could increase by an additional 7% of the global land surface by 2100 under high end climate change. At a 4°C warmer world above pre-industrial, 11.2% of global land area is projected to shift towards drier types and 4.24% to wetter. At the same level of warming the number of humans projected to live in drylands varies between 3.3 and 5.2 billion, depending on the socioeconomic developments. By keeping global warming levels to 1.5°C, up to 1.9 billion people could avoid living in drylands compared to a 4°C warmer world of low environmental concern.

RevDate: 2018-11-28

Dietl GP, Nagel-Myers J, RB Aronson (2018)

Indirect effects of climate change altered the cannibalistic behaviour of shell-drilling gastropods in Antarctica during the Eocene.

Royal Society open science, 5(10):181446 pii:rsos181446.

The fossil record from Seymour Island, Antarctic Peninsula, provides a record of biotic response to the onset of global climatic cooling during the Eocene. Using drilling traces-small, round holes preserved on prey shells-we examined the effect of a cooling pulse 41 Ma on the cannibalistic behaviour of predatory naticid gastropods. We predicted that cannibalistic attacks would decline in response to the cooling climate, reflecting reduced activity levels, energy requirements and constraints on the chemically aided drilling process of the naticids. Surprisingly, however, cannibalism frequencies did not change. This counterintuitive result is best explained by a sharp reduction in durophagous (shell-crushing) predation in shallow-benthic communities in Antarctica that also occurred as the climate cooled. Reduced durophagous predation may have created a less-risky environment for foraging naticids, stimulating cannibalistic behaviour. The change in the top-down control exerted by shell-crushing predators on naticids may have counteracted the direct, negative effects of declining temperatures on the predatory performance of naticids. Our results suggest that the long-term consequences of climate change cannot be predicted solely from its direct effects on predation, because the temperature can have large indirect effects on consumer-resource interactions, especially where risk-effects dominate.

RevDate: 2018-11-28

Terblanche-Greeff AC, Dokken JV, van Niekerk D, et al (2018)

Cultural beliefs of time orientation and social self-construal: Influences on climate change adaptation.

Jamba (Potchefstroom, South Africa), 10(1):510 pii:JAMBA-10-510.

Climate change is one of the greatest challenges humankind faces and adaptive behaviour is an imperative response to such change. Culture and the resulting worldview are determinants of behaviour and eminent cultural beliefs are that of time orientation (TO) and social self-construal (SSC). To date, no research focuses on these beliefs from an indigenous South African perspective or the manner in which it may subsequently affect a community's adaptation towards climate change. Q-methodology was used to study perspectives and beliefs in three peri-urban communities in South Africa and to investigate the interrelation between themes such as TO, SSC, climate change awareness and climate change causality. It became apparent that the communities are aware of climate change, yet little to no efforts are currently being made to adapt to climatic change. This absence of motivation to adapt may be attributed to limited risk perception and cultural beliefs of TO and SSC. This study aims to contribute to the understanding of cultural beliefs and its impact on climate change adaptation behaviour in the South African context. It is concluded that TO and SSC from an indigenous South African perspective influence community adaptation to climate change.

RevDate: 2018-11-28

Schuman S, Dokken JV, van Niekerk D, et al (2018)

Religious beliefs and climate change adaptation: A study of three rural South African communities.

Jamba (Potchefstroom, South Africa), 10(1):509 pii:JAMBA-10-509.

This article argues that religious beliefs significantly influence a community's understanding and experience of climate change adaptation, indicating the need for an inclusion of such information in climate change adaptation education. Data were collected using the Q-method, whereby recurring statements were identified from semi-structured interviews with participants from three rural communities in the North-West province of South Africa: Ikageng, Ventersdorp and Jouberton. The research found that community members who regard themselves as religious (overall of the Christian faith) fall under two groups: the religious determinists or fatalists, who see climate as a natural process that is governed by God, and religious participants who deny this 'naturalness' and acknowledge humans' impact on the climate.

RevDate: 2018-11-28

Dumic I, E Severnini (2018)

"Ticking Bomb": The Impact of Climate Change on the Incidence of Lyme Disease.

The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale, 2018:5719081.

Lyme disease (LD) is the most common tick-borne disease in North America. It is caused by Borrelia burgdorferi and transmitted to humans by blacklegged ticks, Ixodes scapularis. The life cycle of the LD vector, I. scapularis, usually takes two to three years to complete and goes through three stages, all of which are dependent on environmental factors. Increases in daily average temperatures, a manifestation of climate change, might have contributed to an increase in tick abundance via higher rates of tick survival. Additionally, these environmental changes might have contributed to better host availability, which is necessary for tick feeding and life cycle completion. In fact, it has been shown that both tick activity and survival depend on temperature and humidity. In this study, we have examined the relationship between those climatic variables and the reported incidence of LD in 15 states that contribute to more than 95% of reported cases within the Unites States. Using fixed effects analysis for a panel of 468 U.S. counties from those high-incidence states with annual data available for the period 2000-2016, we have found sizable impacts of temperature on the incidence of LD. Those impacts can be described approximately by an inverted U-shaped relationship, consistent with patterns of tick survival and host-seeking behavior. Assuming a 2°C increase in annual average temperature-in line with mid-century (2036-2065) projections from the latest U.S. National Climate Assessment (NCA4)-we have predicted that the number of LD cases in the United States will increase by over 20 percent in the coming decades. These findings may help improving preparedness and response by clinicians, public health professionals, and policy makers, as well as raising public awareness of the importance of being cautious when engaging in outdoor activities.

RevDate: 2018-11-26

Lu X, Lu Y, Chen D, et al (2019)

Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve.

Journal of environmental sciences (China), 75:359-369.

Aquatic ecosystem sustainability around the globe is facing crucial challenges because of increasing anthropogenic and natural disturbances. In this study, the Tianchi Lake, a typical cold-water lake and a UNESCO/MAB (Man and Biosphere) nature reserve located in high latitude and elevation with the relatively low intensity of human activity was chosen as a system to examine the linkages between climate change and eutrophication. As a part of the UNESCO Bogda Man and Biosphere Reserve, Tianchi Lake has been well preserved for prevention from human intervention, but why has it been infected with eutrophication recent years? Our results show that climate change played a significant role in the eutrophication in the Tianchi Lake. Increased temperature, changed precipitation pattern and wind-induced hydrodynamic fluctuations in the summer season were suggested to make a major contribution to the accelerated eutrophication. The results also showed that the local temperature and precipitation changes were closely linked to the large-scale atmospheric circulation, which opens the door for the method to be applied in other regions without local climatic information. This study suggests that there is an urgent need to take into consideration of climate change adaptation into the conservation and management of cold-water lakes globally.

RevDate: 2018-11-30

Austin SE, Ford JD, Berrang-Ford L, et al (2018)

Enabling local public health adaptation to climate change.

Social science & medicine (1982), 220:236-244 pii:S0277-9536(18)30636-1 [Epub ahead of print].

Local public health authorities often lack the capacity to adapt to climate change, despite being on the 'front lines' of climate impacts. Upper-level governments are well positioned to create an enabling environment for adaptation and build local public health authorities' capacity, yet adaptation literature has not specified how upper-level governments can build local-level adaptive capacity. In this paper we examine how federal and regional governments can contribute to enabling and supporting public health adaptation to climate change at the local level in federal systems. We outline the local level's self-assessed adaptive capacity for public health adaptation in Canadian and German comparative case studies, in terms of funding, knowledge and skills, organizations, and prioritization, drawing upon 30 semi-structured interviews. Based on interviewees' recommendations and complemented by scientific literature, we develop a set of practical measures that could enable or support local-level public health adaptation. We find that adaptive capacity varies widely between local public health authorities, but most report having insufficient funding and staff for adaptation activities. We propose 10 specific measures upper-level governments can take to build local public health authorities' capacity for adaptation, under the interrelated target areas of: building financial capital; developing and disseminating usable knowledge; collaborating and coordinating for shared knowledge; and claiming leadership. Federal and regional governments have an important role to play in enabling local-level public health adaptation, and have many instruments available to them to fulfill that role. Selecting and implementing measures to enable local public health authorities' adaptive capacity will require tailoring to, and consideration, of the local context and needs.

RevDate: 2018-11-30

Thomas P, U Büntgen (2018)

A risk assessment of Europe's black truffle sector under predicted climate change.

The Science of the total environment, 655:27-34 pii:S0048-9697(18)34609-6 [Epub ahead of print].

The black truffle (Tuber melanosporum) is a highly revered culinary icon species that grows symbiotically with its host trees across several parts of southern Europe. Where harvested under natural or cultivated conditions, truffles can have a significant socioeconomic impact and may even form a key component of cultural identity. Although some aspects of truffle biology and ecology have been elucidated recently, the role of abiotic, environmental and climatic factors in the production and maturation of their fruitbodies is still largely unknown. Based on 36-year-long, continuous records of Mediterranean truffle yield, we demonstrate that decreased summer precipitation together with increased summer temperatures significantly reduce the fungus' subsequent winter harvest. Using state-of-the-art climate model projections, we predict that a significant decline of 78-100% in southern European truffle production is likely to occur between 2071 and 2100. The additional threats of forecasted heatwaves, forest fires, pest and disease outbreaks are discussed along with socioeconomic and ecological consequences of a warmer and dryer future climate. Our results emphasize the need for unravelling the direct and indirect effects of climate change on Europe's truffle sector and underline the importance of conservation initiatives at local to international scales.

RevDate: 2018-11-22

Zhou G, Luo Q, Chen Y, et al (2018)

Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change.

Global change biology [Epub ahead of print].

Predicting future carbon (C) dynamics in grassland ecosystems requires knowledge of how grazing and global climate change (e.g., warming, elevated CO2 , increased precipitation, drought and N fertilization) interact to influence C storage and release. Here, we synthesized data from 223 grassland studies to quantify the individual and interactive effects of herbivores and climate change on ecosystem C pools and soil respiration (Rs). Our results showed that grazing overrode global climate change factors in regulating grassland C storage and release (i.e., Rs). Specifically, grazing significantly decreased aboveground plant C pool (APCP), belowground plant C pool (BPCP), soil C pool (SCP), and Rs by 19.1%, 6.4%, 3.1%, and 4.6%, respectively, while overall effects of all global climate change factors increased APCP, BPCP and Rs by 6.5%, 15.3%, and 3.4% but had no significant effect on SCP. However, the combined effects of grazing with global climate change factors also significantly decreased APCP, SCP and Rs by 4.0%, 4.7% and 2.7%, respectively, but had no effect on BPCP. Most of the interactions between grazing and global climate change factors on APCP, BPCP, SCP and Rs were additive instead of synergistic or antagonistic. Our findings highlight the dominant effects of grazing on C storage and Rs when compared with the suite of global climate change factors. Therefore, incorporating the dominant effect of herbivore grazing into Earth System Models is necessary to accurately predict climate-grassland feedbacks in the Anthropocene. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-25

Elayadeth-Meethal M, Thazhathu Veettil A, Maloney SK, et al (2018)

Size does matter: Parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle.

Ecology and evolution, 8(21):10608-10620 pii:ECE34550.

The adaptive potential of livestock under a warming climate is increasingly relevant in relation to the growing pressure of global food security. Studies on heat tolerance demonstrate the interplay of adaptation and acclimatization in functional traits, for example, a reduction in body size and enhanced tolerance in response to a warming climate. However, current lack of understanding of functional traits and phylogenetic history among phenotypically distinct populations constrains predictions of climate change impact. Here, we demonstrate evidence of parallel evolution in adaptive tolerance to heat stress in dwarf cattle breeds (DCB, Bos taurus indicus) and compare their thermoregulatory responses with those in standard size cattle breeds (SCB, crossbred, Bos taurus indicus × Bos taurus taurus). We measured vital physiological, hematological, biochemical, and gene expression changes in DCB and SCB and compared the molecular phylogeny using mitochondrial genome (mitogenome) analysis. Our results show that SCB can acclimatize in the short term to higher temperatures but reach their tolerance limit under prevailing tropical conditions, while DCB is adapted to the warmer climate. Increased hemoglobin concentration, reduced cellular size, and smaller body size enhance thermal tolerance. Mitogenome analysis revealed that different lineages of DCB have evolved reduced size independently, as a parallel adaptation to heat stress. The results illustrate mechanistic ways of dwarfing, body size-dependent tolerance, and differential fitness in a large mammal species under harsh field conditions, providing a background for comparing similar populations during global climate change. These demonstrate the value of studies combining functional, physiological, and evolutionary approaches to delineate adaptive potential and plasticity in domestic species. We thus highlight the value of locally adapted breeds as a reservoir of genetic variation contributing to the global domestic genetic resource pool that will become increasingly important for livestock production systems under a warming climate.

RevDate: 2018-11-29

Wood JR, Díaz FP, Latorre C, et al (2018)

Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile.

Scientific reports, 8(1):17208 pii:10.1038/s41598-018-35299-2.

Future climate change has the potential to alter the distribution and prevalence of plant pathogens, which may have significant implications for both agricultural crops and natural plant communities. However, there are few long-term datasets against which modelled predictions of pathogen responses to climate change can be tested. Here, we use 18S metabarcoding of 28 rodent middens (solidified deposits of rodent coprolites and nesting material) from the Central Atacama, spanning the last ca. 49 ka, to provide the first long-term late Quaternary record of change in plant pathogen communities in response to changing climate. Plant pathogen richness was significantly greater in middens deposited during the Central Andean Pluvial Event (CAPE); a period of increased precipitation between 17.5-8.5 ka. Moreover, the occurrence frequency of Pucciniaceae (rust fungi) was significantly greater during the CAPE, and the highest relative abundances for five additional potentially pathogenic taxa also occurred during this period. The results demonstrate the promising potential for ancient DNA analysis of late Quaternary samples to reveal insights into how plant pathogens responded to past climatic and environmental change, which could help predict how pathogens may responded to future change.

RevDate: 2018-11-22

Symonds ME, Farhat G, Aldiss P, et al (2018)

Brown adipose tissue and glucose homeostasis - the link between climate change and the global rise in obesity and diabetes.

Adipocyte [Epub ahead of print].

There is increasing evidence that the global rise in temperature is contributing to the onset of diabetes, which could be mediated by a concomitant reduction in brown fat activity. Brown (and beige) fat are characterised as possessing a unique mitochondrial protein uncoupling protein (UCP)1 that when activated can rapidly generate large amounts of heat. Primary environmental stimuli of UCP1 include cold-exposure and diet, leading to increased activity of the sympathetic nervous system and large amounts of lipid and glucose being oxidised by brown fat. The exact contribution remains controversial, although recent studies indicate that the amount of brown and beige fat in adult humans has been greatly underestimated. We therefore review the potential mechanisms by which glucose could be utilised within brown and beige fat in adult humans and the extent to which these are sensitive to temperature and diet. This includes the potential contribution from the peridroplet and cytoplasmic mitochondrial sub-fractions recently identified in brown fat, and whether a proportion of glucose oxidation could be UCP1-independent. It is thus predicted that as new methods are developed to assess glucose metabolism by brown fat, a more accurate determination of the thermogenic and non-thermogenic functions could be feasible in humans.

RevDate: 2018-11-26
CmpDate: 2018-11-26

Li Y, Tao H, Su B, et al (2019)

Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia.

The Science of the total environment, 651(Pt 2):2866-2873.

Snow depth plays an essential role in the water and energy balance of the land surface. It is of special importance in arid and semi-arid regions of Central Asia. Owing to the limited availability of field observations, the spatial and temporal variations of snow depth are still poorly known. Using the Japanese 55-year (JRA-55) and the ERA-Interim reanalysis snow depth products, we considered four global climate models (GCMs) applied in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), examining how they represent snow depth in Central Asia during the period 1986-2005 in terms of spatial and temporal characteristics. We also investigated changes of winter (January-March) snow depth in Central Asia, at 1.5 °C and 2 °C global warming levels. Finally, the joint probabilistic behavior of winter temperature and precipitation at 1.5 °C and 2 °C global warming are investigated using the kernel density estimator (KDE). The result shows that the snow depth climatology of Central Asia is generally well simulated in both spatial pattern and temporal (inter-annual and inter-seasonal) pattern. All models approximately simulate the winter maximum and the summer minimum values of snow depth but tend to overestimate the amplitude during October-December. Only the trend in HadGEM2-ES matches fairly well to the JRA-55 reanalysis snow depth. When comparing the projections of spatial distribution of winter snow depth, distinctive spatial pattern is noted at both 1.5 °C and 2 °C global warming levels, when the snow depth is shown to increase in northeastern and to decrease in midwestern regions of Central Asia. According to the joint probability distributions of precipitation and temperature, Central Asia will tend to experience a warmer and wetter winter at both 1.5 °C and 2 °C global warming levels, which can be associated with an increase in snow depth in the northeastern regions.

RevDate: 2018-11-26
CmpDate: 2018-11-26

Liu Z, Yang Y, He C, et al (2019)

Climate change will constrain the rapid urban expansion in drylands: A scenario analysis with the zoned Land Use Scenario Dynamics-urban model.

The Science of the total environment, 651(Pt 2):2772-2786.

Evaluation of climate change impacts (CCIs) on urban expansion is important to improving the urban sustainability in drylands. Taking the agro-pastoral transitional zone of northern China (APTZNC) as an example, this study evaluates potential CCIs on urban expansion in 2015-2050. First, we set up six climate change scenarios (CCSs) based on the simulated results of global climate model and regional climate model under different representative concentration pathways. Then, we simulate regional urban expansion under the different CCSs using the zoned Land Use Scenario Dynamics-urban (LUSD-urban) model. We find that climate change will be a key factor that affects urban expansion in this region. The urban land affected by climate change in the entire region will increase from 20.24-26.48 km2 (2020) to 119.71-339.26 km2 (2050), an increase of 4.91-11.81 times. The CCIs on urban expansion will be the most significant in the mid-western region. In 2050, the urban land potentially affected by climate change will be 98.70-213.88 km2, which is 42.26%-134.12% of the urban land in the entire region. To improve urban sustainability in the APTZNC, effective measures must be adopted to mitigate and adapt to CCIs on urban expansion.

RevDate: 2018-11-21

Reid CE, MM Maestas (2018)

Wildfire smoke exposure under climate change: impact on respiratory health of affected communities.

Current opinion in pulmonary medicine [Epub ahead of print].

PURPOSE OF REVIEW: In this review, we describe the current status of the literature regarding respiratory health related to wildfire smoke exposure, anticipated future impacts under a changing climate, and strategies to reduce respiratory health impacts of wildfire smoke.

RECENT FINDINGS: Recent findings confirm associations between wildfire smoke exposure and respiratory health outcomes, with the clearest evidence for exacerbations of asthma. Although previous evidence showed a clear association between wildfire smoke and chronic obstructive pulmonary disease, findings from recent studies are more mixed. Current evidence in support of an association between respiratory infections and wildfire smoke exposure is also mixed. Only one study has investigated long-term respiratory health impacts of wildfire smoke, and few studies have estimated future health impacts of wildfires under likely climate change scenarios.

SUMMARY: Wildfire activity has been increasing over the past several decades and is likely to continue to do so as climate change progresses, which, combined with a growing population, means that population exposure to and respiratory health impacts of wildfire smoke is likely to grow in the future. More research is needed to understand which population subgroups are most vulnerable to wildfire smoke exposure and the long-term respiratory health impacts of these high pollution events.

RevDate: 2018-11-21

Dennis S, D Fisher (2018)

Climate Change and Infectious Diseases: The Next 50 Years.

Annals of the Academy of Medicine, Singapore, 47(10):401-404.

RevDate: 2018-11-21

Liu C, Huo HL, Tian LM, et al (2018)

[Potential geographical distribution of Pyrus calleryana under different climate change scena-rios based on the MaxEnt model].

Ying yong sheng tai xue bao = The journal of applied ecology, 29(11):3696-3704.

To resovle the problems of in-situ conservation and resource utilization of Pyrus caller-yana, maximum entropy model (MaxEnt) and geographic information system (GIS) were used to predict the global ecological suitable region of P. calleryana in different climate scenarios based on 236 distribution data and 19 ecological factors. The results showed that the ecological suitable regions of P. calleryana were mainly concentrated in North America, Asia and other regions, with a total area of 1.6×107 km2. In China, the regions with high ecological suitability were Hunan, Hubei, Anhui, Jiangxi, Jiangsu, Zhejiang and Fujian provinces. The main factors affecting the geographical distribution of P. calleryana were mean annual temperature and mean annual precipitation, followed by the seasonality of temperature. The model simulations indicated that P. calleryana would have different suitable habitat areas and marginally suitable habitat areas in different climate scenarios. In terms of the spatial distribution of the potential habitat area, both the distributional range and the center of distribution of suitable and marginally suitable habitat area would shift from east to west. The suitable habitat area in North America and marginally suitable habitat areas in Europe would increase rapidly.

RevDate: 2018-11-21

Liu M, Mao ZJ, Li Y, et al (2018)

[Response of radial growth to climate change in Pinus koraiensis with different diameter classes].

Ying yong sheng tai xue bao = The journal of applied ecology, 29(11):3530-3540.

Dendrochronological techniques were used to study the response of radial growth of Pinus koraiensis with different diameter classes to climate change throughout the natural range of broad-leaved Korean pine forests, including Baishilazi Nature Reserve (40.9° N), Changbai Mountain Nature Reserve (42.4° N), Liangshui Nature Reserve (47.2° N), and Shengshan Nature Reserve (49.4° N). We investigated the similarities and differences of growth responses of different diameter classes to climate factors and clarified the key climate factors affecting the growth of P. koraiensis at different latitude sites. We explored the dynamic changes of the radial growth of P. koraiensis from the latitudinal gradient over the past 40 years. The results showed many similarities in the response of two diameter classes to local climate factors. Small diameter (diameter at breast height of 10-20 cm) trees were more sensitive to the changes of average minimum temperature of the current growing season and the meteorological factors of the previous year, whereas large diameter (diameter at breast height >40 cm) trees were more sensitive to the changes of average maximum temperature and average relative humidity of the current growing season. The key meteorological factors that affecting radial growth of P. koraiensis differed along the latitude gradient. In Baishilazi Nature Reserve, the southernmost plot, the key climate factors were the average maximum temperature and the average maximum temperature in the current growing season. In Shengshan Nature Reserve, the northernmost sample plot, the key climate factors were low temperature factors, such as the minimum temperature in all seasons, the average maximum temperature in winter, the average temperature of all seasons except for the end of previous growing season and the current growing season. The Palmer drought severity index (PDSI) in the current growth season and the end of the current growth season and the precipitation in the current growth season were the key climate factors in Changbai Mountain Nature Reserve. The average temperature of the current growing season was the key climate factor of Liangshui Nature Reserve. In recent four decades, with the rising of temperature, the radial growth of P. koraiensis of two diameter classes significantly decreased in the southernmost point, significantly increased in the northernmost point, and had no significant variation in middle latitudes.

RevDate: 2018-11-21

Ahmed N, Thompson S, M Glaser (2018)

Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability.

Environmental management pii:10.1007/s00267-018-1117-3 [Epub ahead of print].

To meet the demand for food from a growing global population, aquaculture production is under great pressure to increase as capture fisheries have stagnated. However, aquaculture has raised a range of environmental concerns, and further increases in aquaculture production will face widespread environmental challenges. The effects of climate change will pose a further threat to global aquaculture production. Aquaculture is often at risk from a combination of climatic variables, including cyclone, drought, flood, global warming, ocean acidification, rainfall variation, salinity, and sea level rise. For aquaculture growth to be sustainable its environmental impacts must reduce significantly. Adaptation to climate change is also needed to produce more fish without environmental impacts. Some adaptation strategies including integrated aquaculture, recirculating aquaculture systems (RAS), and the expansion of seafood farming could increase aquaculture productivity, environmental sustainability, and climate change adaptability.

RevDate: 2018-11-21

Campoy JA, Darbyshire R, Dirlewanger E, et al (2018)

Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation.

International journal of biometeorology pii:10.1007/s00484-018-1649-5 [Epub ahead of print].

Evaluation of chilling requirements of cultivars of temperate fruit trees provides key information to assess regional suitability, according to winter chill, for both industry expansion and ongoing profitability as climate change progresses. Traditional methods for calculating chilling requirements use climate-controlled chambers and define chilling requirements (CR) using a fixed bud burst percentage, usually close to 50% (CR-50%). However, this CR-50% definition may estimate chilling requirements that lead to flowering percentages that are lower than required for orchards to be commercially viable. We used sweet cherry to analyse the traditional method for calculating chilling requirements (CR-50%) and compared the results with a more restrictive method, where the chilling requirement was defined by a 90% bud break level (CRm-90%). For sweet cherry, this higher requirement of flowering success (90% as opposed to 50%) better represents grower production needs as a greater number of flowers leads to greater potential yield. To investigate the future risk of insufficient chill based on alternate calculations of the chilling requirement, climate projections of winter chill suitability across Europe were calculated using CR-50% and CRm-90%. Regional suitability across the landscape was highly dependent on the method used to define chilling requirements, and differences were found for both cold and mild winter areas. Our results suggest that bud break percentage levels used in the assessment of chilling requirements for sweet cherry influence production risks of current and future production areas. The use of traditional methods to determine chilling requirements can result in an underestimation of productivity chilling requirements for tree crops like sweet cherry which rely on a high conversion of flowers to mature fruit to obtain profitable yields. This underestimation may have negative consequences for the fruit industry as climate change advances with climate risk underestimated.

RevDate: 2018-11-30

Nunfam VF, Van Etten EJ, Oosthuizen J, et al (2018)

Climate change and occupational heat stress risks and adaptation strategies of mining workers: Perspectives of supervisors and other stakeholders in Ghana.

Environmental research, 169:147-155 pii:S0013-9351(18)30577-2 [Epub ahead of print].

Increasing air temperatures as a result of climate change are worsening the impact of heat exposure on working populations, including mining workers, who are at risk of suffering heat-related illnesses, injury and death. However, inadequate awareness of climate change-related occupational heat stress risks and adaptation strategies have been shown to render occupational heat stress management ineffective. A concurrent mixed-methods approach was used to assess the perceptions of climate change and occupational heat stress risks and adaptation strategies of mining workers among supervisory personnel and other stakeholders in Ghana. Questionnaires and interviews were used to elicit data from 19 respondents. Data were processed and interpreted using descriptive statistics, chi-square and Fisher's exact tests, and thematic analysis. Supervisors' climate change risks perception was adequate, and their concern about workplace heat exposure risks was moderate. Mining workers' occupational heat stress risks experiences were linked to heat-related illness and minor injuries. Mining workers' adaptation strategies included water intake, use of cooling mechanisms, work-break practices, and clothing use. The related differences in job experience in the distribution of climate change risk perception and occupational heat stress risk experiences, and the difference in educational attainment in the distribution of adaptation strategies of occupational heat stress were significant (p < 0.05). Hence, an effective workplace heat management policy requires adequate understanding of occupational heat stress risks and adaptation policies and continued education and training for mining workers.

RevDate: 2018-11-20

Cochand F, Therrien R, JM Lemieux (2018)

Integrated Hydrological Modeling of Climate Change Impacts in a Snow-Influenced Catchment.

Ground water [Epub ahead of print].

The potential impact of climate change on water resources has been intensively studied for different regions and climates across the world. In regions where winter processes such as snowfall and melting play a significant role, anticipated changes in temperature might significantly affect hydrological systems. To address this impact, modifications have been made to the fully-integrated surface-subsurface flow model HydroGeoSphere (HGS) to allow the simulation of snow accumulation and melting. The modified HGS model was used to assess the potential impact of climate change on surface and subsurface flow in the Saint-Charles River catchment, Quebec (Canada) for the period 2070-2100. The model was first developed and calibrated to reproduce observed streamflow and hydraulic heads for current climate conditions. The calibrated model was then used with three different climate scenarios to simulate surface flow and groundwater dynamics of the 2070-2100 period. Winter stream discharges are predicted to increase by about 80%, 120%, and 150% for the three scenarios due to warmer winters, leading to more liquid precipitation and more snowmelt. Conversely, the summer stream discharges are predicted to fall by about 10%, 15%, and 20% due to an increase in evapotranspiration. However, the annual mean stream discharge should remain stable (+/- 0.1 m3 /s). The predicted increase in hydraulic heads in winter may reach 15 m, and the maximum decrease in summer may reach 3 m. Simulations show that winter processes play a key role in the seasonal modifications anticipated for surface and subsurface flow dynamics.

RevDate: 2018-11-23

Doughty CE, Santos-Andrade PE, Shenkin A, et al (2018)

Tropical forest leaves may darken in response to climate change.

Nature ecology & evolution, 2(12):1918-1924.

Tropical forest leaf albedo (reflectance) greatly impacts how much energy the planet absorbs; however; little is known about how it might be impacted by climate change. Here, we measure leaf traits and leaf albedo at ten 1-ha plots along a 3,200-m elevation gradient in Peru. Leaf mass per area (LMA) decreased with warmer temperatures along the elevation gradient; the distribution of LMA was positively skewed at all sites indicating a shift in LMA towards a warmer climate and future reduced tropical LMA. Reduced LMA was significantly (P < 0.0001) correlated with reduced leaf near-infrared (NIR) albedo; community-weighted mean NIR albedo significantly (P < 0.01) decreased as temperature increased. A potential future 2 °C increase in tropical temperatures could reduce lowland tropical leaf LMA by 6-7 g m-2 (5-6%) and reduce leaf NIR albedo by 0.0015-0.002 units. Reduced NIR albedo means that leaves are darker and absorb more of the Sun's energy. Climate simulations indicate this increased absorbed energy will warm tropical forests more at high CO2 conditions with proportionately more energy going towards heating and less towards evapotranspiration and cloud formation.

RevDate: 2018-11-20

MacLean HJ, Nielsen ME, Kingsolver JG, et al (2018)

Using museum specimens to track morphological shifts through climate change.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1763): pii:rstb.2017.0404.

Museum specimens offer a largely untapped resource for detecting morphological shifts in response to climate change. However, morphological shifts can be obscured by shifts in phenology or distribution or sampling biases. Additionally, interpreting phenotypic shifts requires distinguishing whether they result from plastic or genetic changes. Previous studies using collections have documented consistent historical size changes, but the limited studies of other morphological traits have often failed to support, or even test, hypotheses. We explore the potential of collections by investigating shifts in the functionally significant coloration of a montane butterfly, Colias meadii, over the past 60 years within three North American geographical regions. We find declines in ventral wing melanism, which correspond to reduced absorption of solar radiation and thus reduced risk of overheating, in two regions. However, contrary to expected responses to climate warming, we find melanism increases in the most thoroughly sampled region. Relationships among temperature, phenology and morphology vary across years and complicate the distinction between plastic and genetic responses. Differences in these relationships may account for the differing morphological shifts among regions. Our findings highlight the promise of using museum specimens to test mechanistic hypotheses for shifts in functional traits, which is essential for deciphering interacting responses to climate change.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.

RevDate: 2018-11-29

Sergi C, Serra N, Colomba C, et al (2018)

Tuberculosis evolution and climate change: How much work is ahead?.

RevDate: 2018-11-19

Shortridge J, JS Camp (2018)

Addressing Climate Change as an Emerging Risk to Infrastructure Systems.

Risk analysis : an official publication of the Society for Risk Analysis [Epub ahead of print].

The consequences that climate change could have on infrastructure systems are potentially severe but highly uncertain. This should make risk analysis a natural framework for climate adaptation in infrastructure systems. However, many aspects of climate change, such as weak background knowledge and societal controversy, make it an emerging risk where traditional approaches for risk assessment and management cannot be confidently employed. A number of research developments aimed at addressing these issues have emerged in recent years, such as the development of probabilistic climate projections, climate services, and robust decision frameworks. However, additional research is needed to improve the suitability of these methods for infrastructure planning. In this perspective, we outline some of the challenges in addressing climate change risks to infrastructure and summarize new developments aimed at meeting these challenges. We end by highlighting needs for future research, many of which could be well-served by expertise within the risk analysis community.

RevDate: 2018-11-19

Stinziano JR, Bauerle WL, DA Way (2018)

Modelled net carbon gain responses to climate change in boreal trees: impacts of photosynthetic parameter selection and acclimation.

Global change biology [Epub ahead of print].

Boreal forests are crucial in regulating global vegetation-atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C-gain) respond to variation in these parameters using a stand-level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C-gain responses to climate change. We modelled net C-gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C-gain was stimulated up to 400% by elevated temperatures and CO2 in the autumn but suppressed at the lowest latitudes during mid-summer under climate scenarios that included warming. Modelled net C-gain was more sensitive to photosynthetic capacity parameters (Vcmax , Jmax , Arrhenius temperature response parameters, and the ratio of Jmax to Vcmax) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C-gain by 10-15% within the temperature range where the equations were derived but decreased net C-gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C-gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g. whether variability is environmentally and/or biologically driven) for further model improvement. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-21

Yang Y, Halbritter AH, Klanderud K, et al (2018)

Transplants, Open Top Chambers (OTCs) and Gradient Studies Ask Different Questions in Climate Change Effects Studies.

Frontiers in plant science, 9:1574.

Long-term monitoring, space-for-time substitutions along gradients, and in situ temperature manipulations are common approaches to understand effects of climate change on alpine and arctic plant communities. Although general patterns emerge from studies using different approaches, there are also some inconsistencies. To provide better estimates of plant community responses to future warming across a range of environments, there have been repeated calls for integrating different approaches within single studies. Thus, to examine how different methods in climate change effect studies may ask different questions, we combined three climate warming approaches in a single study in the Hengduan Mountains of southwestern China. We monitored plant communities along an elevation gradient using the space-for-time approach, and conducted warming experiments using open top chambers (OTCs) and plant community transplantation toward warmer climates along the same gradient. Plant species richness and abundances were monitored over 5 years addressing two questions: (1) how do plant communities respond to the different climate warming approaches? (2) how can the combined approaches improve predictions of plant community responses to climate change? The general trend across all three approaches was decreased species richness with climate warming at low elevations. This suggests increased competition from immigrating lowland species, and/or from the species already growing inside the plots, as indicated by increased biomass, vegetation height or proportion of graminoids. At the coldest sites, species richness decreased in OTCs and along the gradient, but increased in the transplants, suggesting that plant communities in colder climates are more open to invasion from lowland species, with slow species loss. This was only detected in the transplants, showing that different approaches, may yield different results. Whereas OTCs may constrain immigration of new species, transplanted communities are rapidly exposed to new neighbors that can easily colonize the small plots. Thus, different approaches ask slightly different questions, in particular regarding indirect climate change effects, such as biotic interactions. To better understand both direct and indirect effects of climate change on plant communities, we need to combine approaches in future studies, and if novel interactions are of particular interest, transplants may be a better approach than OTCs.

RevDate: 2018-11-18

van Kerkhoff L, Munera C, Dudley N, et al (2018)

Towards future-oriented conservation: Managing protected areas in an era of climate change.

Ambio pii:10.1007/s13280-018-1121-0 [Epub ahead of print].

Management of protected areas must adapt to climate impacts, and prepare for ongoing ecological transformation. Future-Proofing Conservation is a dialogue-based, multi-stakeholder learning process that supports conservation managers to consider the implications of climate change for governance and management. It takes participants through a series of conceptual transitions to identify new management options that are robust to a range of possible biophysical futures, and steps that they can take now to prepare for ecological transformation. We outline the Future-Proofing Conservation process, and demonstrate its application in a pilot programme in Colombia. This process can be applied and adapted to a wide range of climate adaptation contexts, to support practitioners in developing positive ways forward for management and decision-making. By acknowledging scientific uncertainty, considering social values, and rethinking the rules that shape conservation governance, participants can identify new strategies towards "future-oriented conservation" over the long term.

RevDate: 2018-11-21

Warnatzsch EA, DS Reay (2018)

Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning.

The Science of the total environment, 654:378-392 pii:S0048-9697(18)34450-4 [Epub ahead of print].

Malawi is highlighted as one of the most vulnerable countries in the world to the effects of climate change. The large uncertainty around future climate change in the region remains a barrier to adaptation planning. Despite this high potential vulnerability, relatively little research has gone into determining how well available models represent this country's climate. This work therefore evaluates the ability of existing General Circulation Models (GCMs) and Regional Climate Models (RCMs) to hindcast climatic variables in Malawi at a resolution appropriate for climate change impact assessment and adaptation planning. We focus on monthly precipitation rate, and mean, maximum and minimum surface air temperature. This assessment compares available observed datasets against the outputs of six ERA-interim driven RCMs and 21 GCM-driven RCMs from the Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative, and the 11 GCMs which form their boundary conditions. It was found that the performance of the RCMs is highly influenced by their boundary conditions. None of the individual or ensemble RCMs or GCMs assessed in this paper correlate well with the observed datasets for any of the assessed climatic variables. While, they do simulate the trending change in temperature variables well, the simulated outputs for precipitation are highly divergent. Based on these findings we suggest that either the ensemble RCMs or ensemble GCMs would be suitable for understanding projected temperature trends, with the RCMs providing better spatial resolution. However, none of the assessed models provide certainty over future precipitation trends in Malawi. As such we suggest that impact assessments and adaptation plans in Malawi will need to be designed and tested against a range of future precipitation scenarios. To improve modelling for Malawi it is recommended that regional climate models be improved for higher spatial resolution and inclusion of the impacts from large water bodies, including Lake Malawi.

RevDate: 2018-11-21

Hălbac-Cotoară-Zamfir R, Keesstra S, Z Kalantari (2018)

The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania.

The Science of the total environment, 654:418-429 pii:S0048-9697(18)34517-0 [Epub ahead of print].

Throughout the history of Romania, political decisions, socio-economic measures, and cultural (traditional) characters have affected the implementation of environment friendly techniques (EFTs) policies. In the context of this paper, EFTs can be defined as solutions for the use of land resources aiming the increasing of goods for meeting the changing human needs and with neutral or positive environmental impact. Changes in the political regime have always had a visible impact on the EFTs issue in Romania. EFTs has gone through several major phases. The political impact on EFTs implementation mainly affected sustainable land management (SLM) and to a small extent, at the end of the communist era and partly during the capitalist period, climate change mitigation. Throughout history, the political factor has dominated and influenced the capacity of the EFTs implementation process in responding to socio-economic stimuli. In addition, quality of life, rural-urban and urban-rural migrations, poverty, education level, and climate change adaptation have had impacts on the status of EFTs according to governance and political reflections. The agrarian reforms from the last two centuries, based on socio-economic demands, have strongly influenced the capacity to implement EFTs both positively and negatively. However, the cultural factor was least affected by political and socio-economic changes as a stability factor in ensuring continued implementation of the EFTs. Currently, there is a strong need to reconsider EFTs as sustainability tools for Romanian agriculture that can cope with climate change and sustainable land management (SLM) demands. This paper presents a brief history of EFTs in Romania and their benefits in achieving SLM equilibrium, describing the impacts of political decisions, socio-economic measures, and cultural features on implementing ETFs policies.

RevDate: 2018-11-20

Sarun S, Ghermandi A, Sheela AM, et al (2018)

Climate change vulnerability in a tropical region based on environmental and socio-economic factors.

Environmental monitoring and assessment, 190(12):727 pii:10.1007/s10661-018-7095-3.

The understanding of the regional and local dimensions of vulnerability due to climate change is essential to develop appropriate and targeted adaptation efforts. We assessed the local dimensions of vulnerability in the tropical state of Kerala, India, using a purposely developed vulnerability index, which accounts for both environmental and socio-economic factors. The large extents of coastal wetlands and lagoons and high concentration of mangrove forests make the state environmentally vulnerable. Low human development index, large population of socially deprived groups, which are dependent on the primary sector, and high population density make the state vulnerable from a socio-economic point of view. The present study investigates climate change vulnerability at the district level in the State of Kerala relying on a purposely developed composite vulnerability index that encompasses both socio-economic and environmental factors. The Kerala coast contains the socio-economically and ecologically most vulnerable regions, as demonstrated by a composite vulnerability index.

RevDate: 2018-11-21

Eekhout J, J de Vente (2018)

Assessing the effectiveness of Sustainable Land Management for large-scale climate change adaptation.

The Science of the total environment, 654:85-93 pii:S0048-9697(18)34250-5 [Epub ahead of print].

Climate change will strongly affect essential ecosystem services, like the provision of freshwater, food production, soil erosion and flood control. Sustainable Land Management (SLM) practices are increasingly promoted to contribute to climate change mitigation and adaptation, but there is lack of evidence at scales most relevant for policymaking. We evaluated the effectiveness of SLM in a large Mediterranean catchment where climate change is projected to significantly reduce water security. We show that the on-site and off-site impacts of climate change are almost entirely reversed by the large-scale implementation of SLM under moderate climate change conditions, characterized by limited reductions in annual precipitation but significant increased precipitation intensity. Under more extreme reductions of annual precipitation, SLM implementation reduces the impacts on water security, but cannot prevent significant increased plant water stress and reduced water availability. Under these conditions, additional adaptation measures are required considering their interactions and trade-offs regarding water security.

RevDate: 2018-11-16

He W, Yang JY, Qian B, et al (2018)

Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada.

PloS one, 13(11):e0207370 pii:PONE-D-18-19782.

The impact of climate change on agricultural systems is a major concern as it can have a significant effect on the world food supply. The objective of this study was to evaluate climate change impacts on crop production and nitrate leaching in two distinct climatic zones in Canada. Spring wheat (Triticum aestivum L.) was selected for the semiarid regions of Western Canada (Swift Current, SK) and maize (Zea mays L.) was chosen for the more humid regions of central Canada (Woodslee, ON). Climate scenarios were based upon simulations from a Canadian Regional Climate Model (CanRCM4) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) and crop simulations were conducted using the Decision Support System for Agrotechnology Transfer (DSSAT) model. Compared to the baseline climate scenario, wheat yields increased by 8, 8, 11, 15%, whereas maize yields decreased by 15, 25, 22, 41% under RCP4.5 2050s (2041-2070), RCP4.5 2080s (2071-2100), RCP8.5 2050s and RCP8.5 2080s scenarios, respectively. Annual nitrate leaching increased by 19, 57, 73, 129% at Swift Current and by 84, 117, 208, 317% at Woodslee under the four scenarios, respectively. Adaptation measures suggested that fertilizer N rate for spring wheat should be increased to 80-100 kg N ha-1 to obtain optimal yields although this will result in an additional risk of 5-8 kg N ha-1 nitrate leaching at Swift Current. The fertilizer N rate of 150 kg N ha-1 was found to be suitable for high maize yields at Woodslee. New wheat and maize cultivars with long growing seasons would enable crop growth to match the phenological stage and hence maintain high crop yields to adapt to increased temperatures in the future.

RevDate: 2018-11-16

Wadgymar SM, Mactavish RM, JT Anderson (2018)

Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights from a Manipulative Field Experiment across an Elevational Gradient.

The American naturalist, 192(6):698-714.

Parental environmental effects-or transgenerational plasticity-can influence an individual's phenotype or fitness yet remain underexplored in the context of global change. Using the perennial self-pollinating plant Boechera stricta, we explored the effects of climate change on transgenerational and within-generation plasticity in dormancy, germination, growth, and survival. We first conducted a snow removal experiment in the field, in which we transplanted 16 families of known origin into three common gardens at different elevations and exposed half of the siblings to contemporary snow dynamics and half to early snow removal. We planted the offspring of these individuals in a factorial manipulation of temperature and water level in the growth chamber and reciprocally transplanted them across all parental environments in the field. The growth chamber experiment revealed that the effects of transgenerational plasticity persist in traits expressed after establishment, even when accounting for parental effects on seed mass. The field experiment showed that transgenerational and within-generation plasticity can interact and that plasticity varies clinally in populations distributed across elevations. These findings demonstrate that transgenerational plasticity can influence fitness-related traits and should be incorporated in studies of biological responses to climate change.

RevDate: 2018-11-16

Douglass-Gallagher E, D Stuart (2018)

Crop Growers' Adaptive Capacity to Climate Change: A Situated Study of Agriculture in Arizona's Verde Valley.

Environmental management pii:10.1007/s00267-018-1114-6 [Epub ahead of print].

Climate change will pose unprecedented challenges for agricultural producers globally, requiring the ability to adapt to new and unpredictable conditions. This study explores the adaptive capacity of crop growers in the Verde Valley, Arizona (US). Rather than examining pre-determined indicators of adaptive capacity, this study adopts a situated framework that examines material conditions, perceptions, and the larger social context. Interviewers used past experiences and future scenarios to allow factors that enhance or constrain adaptive capacity to emerge from the interviews. Findings reveal adaptation is site specific but general measures can be taken to enhance adaptive capacity. Encouraging diversity in crops and water sources, the use of drought and heat tolerant crops, and the use of water conservation practices will likely increase growers' adaptive capacity. In contrast, lack of support from organizations and government programs, lack of diverse crops and sources of water, lack of awareness about climate change, and growers' confidence in their ability to always adapt impairs adaptive capacity. Verde Valley growers will need increased support from local and national organizations to adapt to projected changes. The situated framework applied in this study reveals important insights and could be used to explore adaptive capacity in other agricultural regions.

RevDate: 2018-11-20
CmpDate: 2018-11-20

Klein T, H Hartmann (2018)

Climate change drives tree mortality.

Science (New York, N.Y.), 362(6416):758.

RevDate: 2018-11-15

Hemmer CJ, Emmerich P, Loebermann M, et al (2018)

[Mosquitoes and Ticks: The Influence of Global Warming in the Transmission of Infectious Diseases in Germany].

Deutsche medizinische Wochenschrift (1946), 143(23):1714-1722.

During the last 135 years, the average temperature in Germany has increased by 1.4 °C. By 2050, a further rise by 1.5 °C is expected. This is associated with an increase of precipitation during the winter months. This climate change probably will improve both the growth conditions for mosquitoes and ticks, as well as their ability to transmit infectious diseases. Today, vectors that have not yet been present are invading into Germany. Among them is Aedes albopictus, which transmits Chikungunya, Zika, and Dengue Fever. Also, spreading of autochthonous malaria and West Nile Fever appear possible in Germany. Because of the increased presence of Phlebotomus species, leishmaniasis should be considered as a potential differential diagnosis in unclear hematologic diseases. Among the tick-borne diseases, climate change has already led to increased case numbers of Borreliosis and Tick Borne Encephalitis (TBE), and Crimean Congo Virus is spreading from the Balkan region towards Central Europe. This requires physicians to consider additional differential diagnoses in febrile illnesses.

RevDate: 2018-11-15

Varela MR, Patrício AR, Anderson K, et al (2018)

Assessing climate change associated sea level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system.

Global change biology [Epub ahead of print].

Climate change associated sea level rise (SLR) is expected to have profound impacts on coastal areas, affecting many species including sea turtles which depend on these habitats for egg incubation. Being able to accurately model beach topography using digital terrain models (DTMs) is therefore crucial to project SLR impacts and develop effective conservation strategies. Traditional survey methods are typically low-cost with low accuracy or high-cost with high accuracy. We present a novel combination of drone-based photogrammetry and a low-cost and portable real-time kinematic (RTK) GPS to create DTMs which are highly accurate (<10 cm error) and visually realistic. This methodology is ideal for surveying coastal sites, can be broadly applied to other species and habitats, and is a relevant tool in supporting the development of Specially Protected Areas. Here we applied this method as a case-study to project three SLR scenarios (0.48, 0.63 and 1.20 m) and assess the future vulnerability and viability of a key nesting habitat for sympatric loggerhead (Caretta caretta) and green turtle (Chelonia mydas) at a key rookery in the Mediterranean. We combined the DTM with 5 years of nest survey data describing location and clutch depth, to identify (1) regions with highest nest densities, (2) nest elevation by species and beach, and (3) estimated proportion of nests inundated under each SLR scenario. On average, green turtles nested at higher elevations than loggerheads (1.8 m vs. 1.32 m, respectively). However, because green turtles dig deeper nests than loggerheads (0.76 m vs. 0.50 m, respectively), these were at similar risk of inundation. For a SLR of 1.2 m, we estimated a loss of 67.3% for loggerhead turtle nests and 59.1% for green turtle nests. Existing natural and artificial barriers may affect the ability of these nesting habitats to remain suitable for nesting through beach migration. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-15

Fadrique B, Báez S, Duque Á, et al (2018)

Widespread but heterogeneous responses of Andean forests to climate change.

Nature pii:10.1038/s41586-018-0715-9 [Epub ahead of print].

Global warming is forcing many species to shift their distributions upward, causing consequent changes in the compositions of species that occur at specific locations. This prediction remains largely untested for tropical trees. Here we show, using a database of nearly 200 Andean forest plot inventories spread across more than 33.5° latitude (from 26.8° S to 7.1° N) and 3,000-m elevation (from 360 to 3,360 m above sea level), that tropical and subtropical tree communities are experiencing directional shifts in composition towards having greater relative abundances of species from lower, warmer elevations. Although this phenomenon of 'thermophilization' is widespread throughout the Andes, the rates of compositional change are not uniform across elevations. The observed heterogeneity in thermophilization rates is probably because of different warming rates and/or the presence of specialized tree communities at ecotones (that is, at the transitions between distinct habitats, such as at the timberline or at the base of the cloud forest). Understanding the factors that determine the directions and rates of compositional changes will enable us to better predict, and potentially mitigate, the effects of climate change on tropical forests.

RevDate: 2018-11-15

Zhao C, Chen J, Du P, et al (2018)

Characteristics of Climate Change and Extreme Weather from 1951 to 2011 in China.

International journal of environmental research and public health, 15(11): pii:ijerph15112540.

It has been demonstrated that climate change is an established fact. A good comprehension of climate and extreme weather variation characteristics on a temporal and a spatial scale is important for adaptation and response. In this work, the characteristics of temperature, precipitation, and extreme weather distribution and variation is summarized for a period of 60 years and the seasonal fluctuation of temperature and precipitation is also analyzed. The results illustrate the reduction in daily and annual temperature divergence on both temporal and spatial scales. However, the gaps remain relatively significant. Furthermore, the disparity in daily and annual precipitation are found to be increasing on both temporal and spatial scales. The findings indicate that climate change, to a certain extent, narrowed the temperature gap while widening the precipitation gap on temporal and spatial scales in China.

RevDate: 2018-11-14

Fang J, Lau CKM, Lu Z, et al (2018)

Natural disasters, climate change, and their impact on inclusive wealth in G20 countries.

Environmental science and pollution research international pii:10.1007/s11356-018-3634-2 [Epub ahead of print].

This paper uses the 1990-2010 natural disaster and carbon emission data of G20 countries to examine the impact of natural disasters and climate change on the natural capital component of inclusive wealth. Our study shows that climate change and GDP have no positive impacts on the growth of natural capital. By contrast, trade openness and natural disaster frequency contribute to the accumulation of natural capital in G20 countries. There is an inverted U-shaped relationship between the growth of natural capital and the magnitude of natural disaster. Natural capital growth is not affected very much by small disasters. By contrast, large disasters tend to make the growth of natural capital fall sharply.

RevDate: 2018-11-16

Makate C, Makate M, Mango N, et al (2018)

Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa.

Journal of environmental management, 231:858-868 pii:S0301-4797(18)31203-9 [Epub ahead of print].

Conservation agriculture, drought tolerant maize, and improved legume varieties are key climate change management strategies for smallholder farmers in southern Africa. Their complementary efforts in adaptation to climate change are sternly important for farm productivity and income. This study evaluates factors explaining individual and multiple adoption of climate change management strategies and their differential impacts on productivity and income using a sample of 1172 smallholder farmers from Malawi and Zimbabwe. The study employs multinomial logistic regression to evaluate factors of individual and multiple adoption and regression adjustment with inverse probability weighting to evaluate impacts of the different adoption regimes on farm productivity and income. The results show that multiple adoption of innovations is mostly explained by access to key resources (credit, income and information), level of education and size of land owned by the farmer. More so, the concurrent adoption of conservation agriculture, stress adapted legume varieties and drought tolerant maize has far greater dividends on productivity and income than when considered individually. However, impacts of multiple adoption of the practices are not entirely uniform across different geographic regions and gender. Results suggest that effective institutional and policy efforts targeted towards reducing resource constraints that inhibit farmers' capacity to adopt complementary climate-smart agriculture packages such as conservation agriculture, drought tolerant maize and improved legume varieties must be gender sensitive and context specific.

RevDate: 2018-11-18

Zohner CM, Mo L, SS Renner (2018)

Global warming reduces leaf-out and flowering synchrony among individuals.

eLife, 7: pii:40214.

The temporal overlap of phenological stages, phenological synchrony, crucially influences ecosystem functioning. For flowering, among-individual synchrony influences gene flow. For leaf-out, it affects interactions with herbivores and competing plants. If individuals differ in their reaction to the ongoing change in global climate, this should affect population-level synchrony. Here, we use climate-manipulation experiments, Pan-European long-term (>15 years) observations, and common garden monitoring data on up to 72 woody and herbaceous species to study the effects of increasing temperatures on the extent of leaf-out and flowering synchrony within populations. Warmer temperatures reduce in situ leaf-out and flowering synchrony by up to 55%, and experiments on European beech provide a mechanism for how individual differences in day-length and/or chilling sensitivity may explain this finding. The rapid loss of reproductive and vegetative synchrony in European plants predicts changes in their gene flow and trophic interactions, but community-wide consequences remain largely unknown.

Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).

RevDate: 2018-11-12

Jarić I, Lennox RJ, Kalinkat G, et al (2018)

Susceptibility of European freshwater fish to climate change: species profiling based on life-history and environmental characteristics.

Global change biology [Epub ahead of print].

Climate change is expected to strongly affect freshwater fish communities. Combined with other anthropogenic drivers, the impacts may alter species spatio-temporal distributions, and contribute to population declines and local extinctions. To provide timely management and conservation of fishes, it is relevant to identify species that will be most impacted by climate change and those that will be resilient. Species traits are considered a promising source of information on characteristics that influence resilience to various environmental conditions and impacts. To this end, we collated life history traits and climatic niches of 443 European freshwater fish species and compared those identified as susceptible to climate change to those that are considered to be resilient. Significant differences were observed between the two groups in their distribution, life-history and climatic niche, with climate-change susceptible species being distributed within the Mediterranean region, and being characterized by greater threat levels, lesser commercial relevance, lower vulnerability to fishing, smaller body and range size, and warmer thermal envelopes. Based on our results, we establish a list of species of highest priority for further research and monitoring regarding climate change susceptibility within Europe. The presented approach represents a promising tool to efficiently assess large groups of species regarding their susceptibility to climate change and other threats, and to identify research and management priorities. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-10

Coleman MA, Butcherine P, Kelaher BP, et al (2018)

Climate change does not affect seafood quality of a common targeted fish.

Global change biology [Epub ahead of print].

Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near-future ocean warming and acidification on the growth, health and seafood quality of a recreationally and economically important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near-future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro-and micronutrients, moisture, ash, and total N). Yellowfin bream appear to be highly resilient to predicted near-future ocean climate change, which might be facilitated by their broad spatio-temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near-future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats, and imply their sustainable and viable fisheries into the future.We contend that widely-distributed species that span large geographic areas and habitats can be "climate-winners" by being resilient to negative direct impacts of near-future oceanic and estuarine climate change. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-10

Gao X, Wang A, Zhao Y, et al (2018)

Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change.

International journal of environmental research and public health, 15(11): pii:ijerph15112504.

With the implementation of the Grain for Green Project, the apple plantation area is increasing in Loess Plateau. However, due to severe water scarcity, the sustainability of apple tree growth is threatened. In this paper, we used meteorological data (1990⁻2013) and forecasted climate data (2019⁻2050) to estimate water demand and establish a water suitability model to study the water balance between available water and water consumption of the apple trees. The results show that: (i) the order of the average water demand of apple plantation in each subarea is Shaanxi Province > Yuncheng area > Gansu Province > Sanmenxia Region, ranging from 500 to 950 mm; (ii) the temporal variability of water suitability from 1990 to 2013 is large, and the higher values are concentrated in the late growth stage of the apple trees and the lower values are concentrated in the early growth stage; (iii) the temporal and spatial distribution of water suitability is relatively stable and even in the Loess Plateau in the period of 2019⁻2050; (iv) the water suitability is mainly affected by effective precipitation and reference evapotranspiration and the reference evapotranspiration is mainly affected by the solar radiation (36%) and average temperature (38%). Furthermore, due to the joint influence of precipitation increases and solar radiation (average temperature) increases, the future water suitability of the apple plantation area in the Loess Plateau is showing a non-significant downward trend under RCP4.5 scenario.

RevDate: 2018-11-13

Op de Hipt F, Diekkrüger B, Steup G, et al (2018)

Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN.

The Science of the total environment, 653:431-445 pii:S0048-9697(18)34251-7 [Epub ahead of print].

This study investigates the effect of land use and land cover (LULC) and climate change on catchment hydrology and soil erosion in the Dano catchment in south-western Burkina Faso based on hydrological and soil erosion modeling. The past LULC change is studied using land use maps of the years 1990, 2000, 2007 and 2013. Based on these maps future LULC scenarios were developed for the years 2019, 2025 and 2030. The observed past and modeled future LULC are used to feed SHETRAN, a hydrological and soil erosion model. Observed and modeled climate data cover the period 1990-2030. The isolated influence of LULC change assuming a constant climate is simulated by applying the seven LULC maps under observed climate data of the period 1990-2015. The isolated effect of climate scenarios (RCP4.5 and 8.5 of CCLM4-8) is studied by applying the LULC map of 1990 to the period 1990-2032. Additionally, we combined past modeled climate data and past observed LULC maps. Two chronological and continuous simulations were used to estimate the impact of LULC in the past and in the future by gradually applying the LULC maps. These simulations consider the combined impact of LULC and climate change. The simulations that assumed a constant climate and a changing LULC show increasing water yield (3.6%-46.5%) and mainly increasing specific sediment yield (-3.3%-52.6%). The simulations that assume constant LULC and climate as changing factor indicate increases in water yield of 24.5% to 46.7% and in sediment yield of 31.1% to 54.7% between the periods 1990-2005 and 2006-2032. The continuous simulations signal a clear increase in water yield (20.3%-73.4%) and specific sediment yield (24.7% to 90.1%). Actual evapotranspiration is estimated to change by between -7.3% (only LUCC) to +3.3% (only climate change). When comparing observed LULC and climate change alone, climate change has a larger impact on discharge and sediment yield, but LULC amplifies climate change impacts strongly. However, future LULC (2019-2030) will have a stronger impact as currently observed.

RevDate: 2018-11-19

Kubelka V, Šálek M, Tomkovich P, et al (2018)

Global pattern of nest predation is disrupted by climate change in shorebirds.

Science (New York, N.Y.), 362(6415):680-683.

Ongoing climate change is thought to disrupt trophic relationships, with consequences for complex interspecific interactions, yet the effects of climate change on species interactions are poorly understood, and such effects have not been documented at a global scale. Using a single database of 38,191 nests from 237 populations, we found that shorebirds have experienced a worldwide increase in nest predation over the past 70 years. Historically, there existed a latitudinal gradient in nest predation, with the highest rates in the tropics; however, this pattern has been recently reversed in the Northern Hemisphere, most notably in the Arctic. This increased nest predation is consistent with climate-induced shifts in predator-prey relationships.

RevDate: 2018-11-09

Godin-Beekmann S (2018)

[Impact of climate change and ozone layer evolution on surface ultraviolet radiation].

Annales de dermatologie et de venereologie pii:S0151-9638(18)30712-9 [Epub ahead of print].

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )