About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

12 Jul 2020 at 01:36
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: CRISPR-Cas


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 12 Jul 2020 at 01:36 Created: 


Clustered regularly interspaced short palindromic repeats (CRISPR, pronounced crisper) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to foreign DNA (e.g a virus or plasmid). The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages, and provides a form of acquired immunity. CRISPR associated proteins (Cas) use the CRISPR spacers to recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. CRISPRs are found in approximately 40% of sequenced bacterial genomes and 90% of sequenced archaea. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added. The Cas9-gRNA complex corresponds with the CAS III crRNA complex in the above diagram. CRISPR/Cas genome editing techniques have many potential applications, including altering the germline of humans, animals, and food crops. The use of CRISPR Cas9-gRNA complex for genome editing was the AAAS's choice for breakthrough of the year in 2015.

Created with PubMed® Query: "CRISPR.CAS" OR "crispr/cas" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2020-07-11

Chang J, Chen X, Zhang T, et al (2020)

The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species.

International journal of biological macromolecules pii:S0141-8130(20)33784-3 [Epub ahead of print].

The CRISPR/Cas (clustered regularly interspaced short palindromic repeat technology/CRISPR-associated protein) is a widely used and powerful research tool in biosciences and a promising therapeutic agent for treating genetic diseases. Mutations induced by Cas9 are generally considered stochastic and unpredictable, thus hindering its applications where precise genetic alternations are required. Here, through deep sequencing and analysis of genome editing outcomes of multiple sites in four distinct species, we found that Cas9-induced mutations are coincident in mutation types but are significantly different in indel patterns among species. In human and mouse cells, indels were almost evenly distributed at both ends of the cleavage sites. However, the indels mainly appeared at the upstream of cleavage sites in Bombyx mori, while they predominantly occurred downstream of the cleavage sites in the zebrafish Danio rerio. We also found that within a species, indel patterns are sequence dependent, wherein deletions between two adjacent micro-homology sequences were the most frequently observed mutations in the repair spectrum. These results suggested the species differences in DNA repair processes during Cas9-induced gene editing, and the important role of sequence structure at the target site in predicting the gene editing outcome.

RevDate: 2020-07-11

Mathony J, Hoffmann MD, D Niopek (2020)

Optogenetics and CRISPR: A New Relationship Built to Last.

Methods in molecular biology (Clifton, N.J.), 2173:261-281.

Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.

RevDate: 2020-07-11

Jang HK, Song B, Hwang GH, et al (2020)

Current trends in gene recovery mediated by the CRISPR-Cas system.

Experimental & molecular medicine pii:10.1038/s12276-020-0466-1 [Epub ahead of print].

The CRISPR-Cas system has undoubtedly revolutionized the genome editing field, enabling targeted gene disruption, regulation, and recovery in a guide RNA-specific manner. In this review, we focus on currently available gene recovery strategies that use CRISPR nucleases, particularly for the treatment of genetic disorders. Through the action of DNA repair mechanisms, CRISPR-mediated DNA cleavage at a genomic target can shift the reading frame to correct abnormal frameshifts, whereas DNA cleavage at two sites, which can induce large deletions or inversions, can correct structural abnormalities in DNA. Homology-mediated or homology-independent gene recovery strategies that require donor DNAs have been developed and widely applied to precisely correct mutated sequences in genes of interest. In contrast to the DNA cleavage-mediated gene correction methods listed above, base-editing tools enable base conversion in the absence of donor DNAs. In addition, CRISPR-associated transposases have been harnessed to generate a targeted knockin, and prime editors have been developed to edit tens of nucleotides in cells. Here, we introduce currently developed gene recovery strategies and discuss the pros and cons of each.

RevDate: 2020-07-10

Lin FL, Wang PY, Chuang YF, et al (2020)

Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update.

Molecular therapy : the journal of the American Society of Gene Therapy pii:S1525-0016(20)30341-5 [Epub ahead of print].

Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.

RevDate: 2020-07-10

de Oliveira VC, Gomes Mariano Junior C, Belizário JE, et al (2020)

Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model.

PloS one, 15(7):e0235856 pii:PONE-D-20-07086.

Gene editing in large animal models for future applications in translational medicine and food production must be deeply investigated for an increase of knowledge. The mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters. This gene maintains mtDNA, and it is essential for the initiation of mtDNA transcription. Lately, we generated a new cell line through the disruption of the TFAM gene in bovine fibroblast cells by CRISPR/Cas 9 technology. We showed that the CRISPR/Cas9 design was efficient through the generation of heterozygous mutant clones. In this context, once this gene regulates the mtDNA replication specificity, the study aimed to determine if the post-edited cells are capable of in vitro maintenance and assess if they present changes in mtDNA copies and mitochondrial membrane potential after successive passages in culture. The post-edited cells were expanded in culture, and we performed a growth curve, doubling time, cell viability, mitochondrial DNA copy number, and mitochondrial membrane potential assays. The editing process did not make cell culture unfeasible, even though cell growth rate and viability were decreased compared to control since we observed the cells grow well when cultured in a medium supplemented with uridine and pyruvate. They also exhibited a classical fibroblastoid appearance. The RT-qPCR to determine the mtDNA copy number showed a decrease in the edited clones compared to the non-edited ones (control) in different cell passages. Cell staining with Mitotracker Green and red suggests a reduction in red fluorescence in the edited cells compared to the non-edited cells. Thus, through characterization, we demonstrated that the TFAM gene is critical to mitochondrial maintenance due to its interference in the stability of the mitochondrial DNA copy number in different cell passages and membrane potential confirming the decrease in mitochondrial activity in cells edited in heterozygosis.

RevDate: 2020-07-10

Kolay S, MI Diamond (2020)

Alzheimer's Disease risk modifier genes do not affect tau aggregate uptake, seeding or maintenance in cell models.

FEBS open bio [Epub ahead of print].

Alzheimer's disease (AD) afflicts millions of people worldwide and is caused by accumulated amyloid beta and tau pathology. Progression of tau pathology in AD may utilize prion mechanisms of propagation in which pathological tau aggregates released from one cell are taken up by neighboring or connected cells and act as templates for their own replication, a process termed "seeding." We have used HEK293T cells to model various aspects of pathological tau propagation, including uptake of tau aggregates, induced seeding by exogenous aggregates, seeding caused by Lipofectamine-mediated delivery to the cell interior, and stable maintenance of aggregates in dividing cells. The factors that regulate these processes are not well understood, and we hypothesized that AD risk modifier genes might play a role. We identified 22 genes strongly linked to AD via meta-analysis of genome-wide association studies (GWAS). We used CRISPR/Cas-9 to individually knock out each gene in HEK293T cells, and verified disruption using genomic sequencing. We then tested the effect of gene knockout in tau aggregate uptake, naked and Lipofectamine-mediated seeding, and aggregate maintenance in these cultured cell lines. GWAS gene knockouts had no effect in these models of tau pathology. With obvious caveats due to the model systems used, these results imply that the 22 AD risk modifier genes are unlikely to directly modulate tau uptake, seeding, or aggregate maintenance in a cell-autonomous fashion.

RevDate: 2020-07-10

Chen Y, Liu J, Zhi S, et al (2020)

Author Correction: Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells.

Nature communications, 11(1):3522 pii:10.1038/s41467-020-17379-y.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2020-07-10
CmpDate: 2020-07-10

Ni XY, Zhou ZD, Huang J, et al (2020)

Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.

Archives of insect biochemistry and physiology, 104(1):e21662.

Although the Cas9 protein from Streptococcus pyogenes (SpCas9) is the most widely used clustered regularly interspaced short palindromic repeats (CRISPR) variant in genome engineering experiments, it does have certain limitations. First, the stringent requirement for the protospacer adjacent motif (PAM) sequence limits the target DNA that can be manipulated using this method in insects. Second, its complementarity specifications are not very stringent, meaning that it can sometimes cause off-target effects at the target site. A recent study reported that an evolved SpCas9 variant, xCas9(3.7), with preference for various 5'-NG-3' PAM sequences not only has the broadest PAM compatibility but also has much greater DNA specificity and lower genome-wide off-target activity than SpCas9 in mammalian cells. Here we applied the CRISPR/xCas9 system to target the white gene in Drosophila melanogaster, testing the genome-editing efficiency of xCas9 at different PAM sites. On the GGG PAM site, xCas9 showed less activity than SpCas9. For the non-NGG PAM site TGA, xCas9 could produce DNA cleavage and indel-mediated disruption on the target gene. However, for other non-NGG PAM sites, xCas9 showed no activity. These findings show that the evolved Cas9 variant with broad PAM compatibility is functional in Drosophila to induce heritable gene alterations, increasing the targeting range for the applications of genome editing in insects.

RevDate: 2020-07-09

Harrington LB, Ma E, Chen JS, et al (2020)

A scoutRNA Is Required for Some Type V CRISPR-Cas Systems.

Molecular cell pii:S1097-2765(20)30424-X [Epub ahead of print].

CRISPR-Cas12c/d proteins share limited homology with Cas12a and Cas9 bacterial CRISPR RNA (crRNA)-guided nucleases used widely for genome editing and DNA detection. However, Cas12c (C2c3)- and Cas12d (CasY)-catalyzed DNA cleavage and genome editing activities have not been directly observed. We show here that a short-complementarity untranslated RNA (scoutRNA), together with crRNA, is required for Cas12d-catalyzed DNA cutting. The scoutRNA differs in secondary structure from previously described tracrRNAs used by CRISPR-Cas9 and some Cas12 enzymes, and in Cas12d-containing systems, scoutRNA includes a conserved five-nucleotide sequence that is essential for activity. In addition to supporting crRNA-directed DNA recognition, biochemical and cell-based experiments establish scoutRNA as an essential cofactor for Cas12c-catalyzed pre-crRNA maturation. These results define scoutRNA as a third type of transcript encoded by a subset of CRISPR-Cas genomic loci and explain how Cas12c/d systems avoid requirements for host factors including ribonuclease III for bacterial RNA-mediated adaptive immunity.

RevDate: 2020-07-09

Nesbit KT, A Hamdoun (2020)

Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation.

Developmental dynamics : an official publication of the American Association of Anatomists [Epub ahead of print].

BACKGROUND: Sea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such as Strongylocentrotus purpuratus, have long generation times making them suboptimal for genetic, transgenerational studies.

RESULTS: Here, we present an overview of the development of a rapidly developing echinoderm species, Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours post-fertilization (hpf). The swimming embryos gastrulate from 12-36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4-6 months of age, depending on individual growth rate.

CONCLUSIONS: This staging scheme lays a foundation for future studies in L. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR-CAS mediated gene editing. This article is protected by copyright. All rights reserved.

RevDate: 2020-07-09

Wang X, Shang X, X Huang (2020)

Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods.

Emerging microbes & infections [Epub ahead of print].

Ideal methods for detecting pathogens should be sensitive, specific, rapid, cost-effective and instrument-free. Conventional nucleic acid pathogen detection strategies, mostly PCR-based techniques, have various limitations, such as expensive equipment, reagents and skilled performance. Recently, CRISPR/Cas-based methods have burst onto the scene, with the potential to power the pathogen detection field. Here we introduce these unique methods and discuss its hurdles and promises.

RevDate: 2020-07-09

Lui NS, Benson J, He H, et al (2020)

Sub-solid lung adenocarcinoma in Asian versus Caucasian patients: different biology but similar outcomes.

Journal of thoracic disease, 12(5):2161-2171.

Background: Asian and Caucasian patients with lung cancer have been compared in several database studies, with conflicting findings regarding survival. However, these studies did not include proportion of ground-glass opacity or mutational status in their analyses. Asian patients commonly develop sub-solid lung adenocarcinomas that harbor EGFR mutations, which have a better prognosis. We hypothesized that among patients undergoing surgery for sub-solid lung adenocarcinomas, Asian patients have better survival compared to Caucasian patients.

Methods: We identified Asian and Caucasian patients who underwent surgical resection for a sub-solid lung adenocarcinoma from 2002 to 2015 at our institution. Sub-solid was defined as ≥10% ground-glass opacity on preoperative CT scan or ≥10% lepidic component on surgical pathology. Time-to-event multivariable analysis was performed to determine which characteristics were associated with recurrence and survival.

Results: Two hundred twenty-four patients were included with median follow up 48 months. Asian patients were more likely to be never smokers (76.3% vs. 29.0%, P<0.01) and have an EGFR mutation (69.4% vs. 25.6% of those tested, P<0.01), while Caucasian patients were more likely to have a KRAS mutation (23.5% vs. 4.9% of those tested, P<0.01). There was a trend towards Asian patients having a higher proportion of ground-glass opacity (38.8% vs. 30.5%, P=0.11). Time-to-event multivariable analysis showed that higher proportion of ground-glass opacity was significantly associated with better recurrence-free survival (HR 0.76 per 20% increase, P=0.02). However, mutational status and race did not have a significant impact on recurrence-free or overall survival.

Conclusions: Asian and Caucasian patients with sub-solid lung adenocarcinoma have different tumor biology, but recurrence-free and overall survival after surgical resection is similar.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Tsanni A (2020)

Bolstering Africa's coronavirus detection efforts.

Nature, 582(7810):140.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Vukmirovic D, Seymour C, C Mothersill (2020)

Deciphering and simulating models of radiation genotoxicity with CRISPR/Cas9 systems.

Mutation research, 783:108298.

This short review explores the utility and applications of CRISPR/Cas9 systems in radiobiology. Specifically, in the context of experimentally simulating genotoxic effects of Ionizing Radiation (IR) to determine the contributions from DNA targets and 'Complex Double-Stranded Breaks' (complex DSBs) to the IR response. To elucidate this objective, this review considers applications of CRISPR/Cas9 on nuclear DNA targets to recognize the respective 'nucleocentric' response. The article also highlights contributions from mitochondrial DNA (mtDNA) - an often under-recognized target in radiobiology. This objective requires accurate experimental simulation of IR-like effects and parameters with the CRISPR/Cas9 systems. Therefore, the role of anti-CRISPR proteins in modulating enzyme activity to simulate dose rate - an important factor in radiobiology experiments is an important topic of this review. The applications of auxiliary domains on the Cas9 nuclease to simulate oxidative base damage and multiple stressor experiments are also topics of discussion. Ultimately, incorporation of CRISPR/Cas9 experiments into computational parameters in radiobiology models of IR damage and shortcomings to the technology are discussed as well. Altogether, the simulation of IR parameters and lack of damage to non-DNA targets in the CRISPR/Cas9 system lends this rapidly emerging tool as an effective model of IR induced DNA damage. Therefore, this literature review ultimately considers the relevance of complex DSBs to radiobiology with respect to using the CRISPR/Cas9 system as an effective experimental tool in models of IR induced effects.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Char SN, Wei J, Mu Q, et al (2020)

An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum.

Plant biotechnology journal, 18(2):319-321.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Li C, Li W, Zhou Z, et al (2020)

A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice.

Plant biotechnology journal, 18(2):313-315.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Elaimy AL, Wang M, Sheel A, et al (2019)

Real-time imaging of integrin β4 dynamics using a reporter cell line generated by Crispr/Cas9 genome editing.

Journal of cell science, 132(15):.

The ability to monitor changes in the expression and localization of integrins is essential for understanding their contribution to development, tissue homeostasis and disease. Here, we pioneered the use of Crispr/Cas9 genome editing to tag an allele of the β4 subunit of the α6β4 integrin. A tdTomato tag was inserted with a linker at the C-terminus of integrin β4 in mouse mammary epithelial cells. Cells harboring this tagged allele were similar to wild-type cells with respect to integrin β4 surface expression, association with the α6 subunit, adhesion to laminin and consequent signaling. These integrin β4 reporter cells were transformed with YAP (also known as YAP1), which enabled us to obtain novel insight into integrin β4 dynamics in response to a migratory stimulus (scratch wound) by live-cell video microscopy. An increase in integrin β4 expression in cells proximal to the wound edge was evident, and a population of integrin β4-expressing cells that exhibited unusually rapid migration was identified. These findings could shed insight into integrin β4 dynamics during invasion and metastasis. Moreover, these integrin β4 reporter cells should facilitate studies on the contribution of this integrin to mammary gland biology and cancer.This article has an associated First Person interview with the first author of the paper.

RevDate: 2020-07-08

Cheng H, Hao M, Ding B, et al (2020)

Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE base editing system.

Plant biotechnology journal [Epub ahead of print].

CRISPR/Cas- base editing is an emerging technology that could convert a nucleotide to another type at the target site. In this study, A3A-PBE system consisting of human A3A cytidine deaminase fused with a Cas9 nickase and uracil glycosylase inhibitor, was established and developed in allotetraploid Brassica napus. We designed three sgRNAs to target ALS, RGA and IAA7 genes, respectively. Base editing efficiency was demonstrated to be more than 20% for all of the three target genes. Target sequencing results revealed that the editing window ranged from C1 to C10 of the PAM sequence. Base edited plants of ALS conferred high herbicide resistance, while base edited plants of RGA or IAA7 exhibited decreased plant height. All the base editing could be genetically inherited from T0 to T1 generation. Several Indel mutations were confirmed at the target sites for all the three sgRNAs. Furthermore, though no C to T substitution was detected at the most potential off target sites, large scale SNP variations were determined through whole genome sequencing between some base edited and wild type plants. These results revealed that A3A-PBE base editing system could effectively convert C to T substitution with high editing efficiency and broadened editing window in oilseed rape. Mutants for ALS, IAA7 and RGA genes could be potentially applied to confer herbicide resistance for weed control or with better plant architecture suitable for mechanic harvesting.

RevDate: 2020-07-08

Nguyen V, Riley S, Nagel S, et al (2020)

Common Vetch: A Drought Tolerant, High Protein Neglected Leguminous Crop With Potential as a Sustainable Food Source.

Frontiers in plant science, 11:818.

Global demand for protein is predicted to increase by 50% by 2050. To meet the increasing demand whilst ensuring sustainability, protein sources that generate low-greenhouse gas emissions are required, and protein-rich legume seeds have the potential to make a significant contribution. Legumes like common vetch (Vicia sativa) that grow in marginal cropping zones and are drought tolerant and resilient to changeable annual weather patterns, will be in high demand as the climate changes. In common vetch, the inability to eliminate the γ-glutamyl-β-cyano-alanine (GBCA) toxin present in the seed has hindered its utility as a human and animal food for many decades, leaving this highly resilient species an "orphan" legume. However, the availability of the vetch genome and transcriptome data together with the application of CRISPR-Cas genome editing technologies lay the foundations to eliminate the GBCA toxin constraint. In the near future, we anticipate that a zero-toxin vetch variety will become a significant contributor to global protein demand.

RevDate: 2020-07-08

Meshalkina DA, Glushchenko AS, Kysil EV, et al (2020)

SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.

Genes, 11(7): pii:genes11070740.

CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein) genome editing is a powerful technology widely used in current genetic research. In the most simple and straightforward way it can be applied for a gene knockout resulting from repair errors, induced by dsDNA cleavage by Cas nuclease. For decades, zebrafish (Danio rerio) has been known as a convenient model object of developmental biology. Both commonly used nucleases SpCas9 (Streptococcus pyogenes Cas9) and LbCas12a (Lachnospiraceae bacterium Cas12a) are extensively used in this model. Among them, LbCas12a is featured with higher specificity and efficiency of homology-directed editing in human cells and mouse. But the editing outcomes for these two nucleases in zebrafish are still not compared quantitatively. Therefore, to reveal possible advantages of one nuclease in comparison to the other in the context of gene knockout generation, we compare here the outcomes of repair of the DNA breaks introduced by these two commonly used nucleases in zebrafish embryos. To address this question, we microinjected the ribonucleoprotein complexes of the both nucleases with the corresponding guide RNAs in zebrafish zygotes and sequenced the target gene regions after three days of development. We found that LbCas12a editing resulted in longer deletions and more rare inserts, in comparison to those generated by SpCas9, while the editing efficiencies (percentage of mutated copies of the target gene to all gene copies in the embryo) of both nucleases were the same. On the other hand, overlapping of protospacers resulted in similarities in repair outcome, although they were cut by two different nucleases. Thus, our results indicate that the repair outcome depends both on the nuclease mode of action and on protospacer sequence.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Deem MW (2020)

CRISPR recognizes as many phage types as possible without overwhelming the Cas machinery.

Proceedings of the National Academy of Sciences of the United States of America, 117(14):7550-7552.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Miller SM, Wang T, Randolph PB, et al (2020)

Continuous evolution of SpCas9 variants compatible with non-G PAMs.

Nature biotechnology, 38(4):471-481.

The targeting scope of Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants is largely restricted to protospacer-adjacent motif (PAM) sequences containing G bases. Here we report the evolution of three new SpCas9 variants that collectively recognize NRNH PAMs (where R is A or G and H is A, C or T) using phage-assisted non-continuous evolution, three new phage-assisted continuous evolution strategies for DNA binding and a secondary selection for DNA cleavage. The targeting capabilities of these evolved variants and SpCas9-NG were characterized in HEK293T cells using a library of 11,776 genomically integrated protospacer-sgRNA pairs containing all possible NNNN PAMs. The evolved variants mediated indel formation and base editing in human cells and enabled A•T-to-G•C base editing of a sickle cell anemia mutation using a previously inaccessible CACC PAM. These new evolved SpCas9 variants, together with previously reported variants, in principle enable targeting of most NR PAM sequences and substantially reduce the fraction of genomic sites that are inaccessible by Cas9-based methods.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Liu Z, Shan H, Chen S, et al (2020)

Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(1):588-596.

Base editors, composed of a cytidine deaminase or an evolved adenine deaminase fused to Cas9 nickase, enable efficient C-to-T or A-to-G conversion in various organisms. However, the NGG protospacer adjacent motif (PAM) requirement of Streptococcus pyogenes Cas9 (SpCas9) substantially limits the target sites suitable for base editing. Quite recently, a new engineered SpCas9-NG variant, which can recognize minimal NG PAMs more efficiently than the present xCas9 variant. Here, we investigated the efficiency and PAM compatibility of SpCas9-NG-assisted cytidine base editors (CBEs) and adenine base editors (ABEs) in rabbits. In this study, we showed that NG-BE4max and NG-ABEmax systems can achieve a targeted mutation efficiency of 75%-100% and 80%-100% with excellent PAM compatibility of NGN PAMs in rabbit embryos, respectively. In addition, both base editors were successfully applied to create new rabbit models with precise point mutations, demonstrating their high efficiency and expanded genome-targeting scope in rabbits. Meanwhile, NG-ABEmax can be used to precisely mimic human Hoxc13 p.Q271R missense mutation in Founder (F0) rabbits, which is arduous for conventional ABEs to achieve due to a NGA PAM requirement. Collectively, NG-BE4max and NG-ABEmax systems provide promising tools to perform efficient base editing with expanded targeting scope in rabbits and enhances its capacity to model human diseases.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Roberston MJ, Raghunathan S, Potaman VN, et al (2020)

CRISPR-Cas9-induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(1):555-570.

Muscle wasting, or muscle atrophy, can occur with age, injury, and disease; it affects the quality of life and complicates treatment. Insulin-like growth factor 1 (IGF1) is a key positive regulator of muscle mass. The IGF1/Igf1 gene encodes multiple protein isoforms that differ in tissue expression, potency, and function, particularly in cellular proliferation and differentiation, as well as in systemic versus localized signaling. Genome engineering is a novel strategy for increasing gene expression and has the potential to recapitulate the diverse biology seen in IGF1 signaling through the overexpression of multiple IGF1 isoforms. Using a CRISPR-Cas9 gene activation approach, we showed that the expression of multiple IGF1 or Igf1 mRNA variants can be increased in human and mouse skeletal muscle myoblast cell lines using a single-guide RNA (sgRNA). We found increased IGF1 protein levels in the cell culture media and increased cellular phosphorylation of AKT1, the main effector of IGF1 signaling. We also showed that the expression of Class 1 or Class 2 mRNA variants can be selectively increased by changing the sgRNA target location. The expression of multiple IGF1 or Igf1 mRNA transcript variants in human and mouse skeletal muscle myoblasts promoted myotube differentiation and prevented dexamethasone-induced atrophy in myotubes in vitro. Our findings suggest that this novel approach for enhancing IGF1 signaling has potential therapeutic applications for treating skeletal muscle atrophy.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Kueh AJ, Eccles S, Tang L, et al (2020)

HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells.

Molecular and cellular biology, 40(4):.

HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Kong T, Backes N, Kalwa U, et al (2019)

Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies.

ACS sensors, 4(10):2638-2645.

The ability to study bacteria at the single cell level has advanced our insights into microbial physiology and genetics in ways not attainable by studying large populations using more traditional culturing methods. To improve methods to characterize bacteria at the cellular level, we developed a new microfluidic platform that enables cells to be exposed to metabolites in a gradient of concentrations. By designing low-cost, three-dimensional devices with adhesive tapes and tailoring them for bacterial imaging, we avoided the complexities of silicon and polymeric microfabrication. The incorporation of an agarose membrane as the resting substrate, along with a temperature-controlled environmental chamber, allows the culturing of bacterial cells for over 10 h under stable growth or inhibition conditions. Incorporation of an autofocusing module helped the uninterrupted, high-resolution observation of bacteria at the single-cell and at low density population levels. We used the microfluidic platform to record morphological changes in Escherichia coli during ampicillin exposure and to quantify the minimum inhibitory concentration of the antibiotic. We further demonstrated the potential of finely-tuned, incremental gene regulation in a concentration gradient utilizing CRISPR interference (CRISPRi). These low-cost engineering tools, when implemented in combination with genetic approaches such as CRISPRi, should prove useful to uncover new genetic determinants of antibiotic susceptibility and evaluate the long-term effectiveness of antibiotics in bacterial cultures.

RevDate: 2020-07-08
CmpDate: 2020-07-08

López-Gutiérrez B, Cova M, L Izquierdo (2019)

A Plasmodium falciparum C-mannosyltransferase is dispensable for parasite asexual blood stage development.

Parasitology, 146(14):1767-1772.

C-mannosylation was recently identified in the thrombospondin-related anonymous protein (TRAP) from Plasmodium falciparum salivary gland sporozoites. A candidate P. falciparum C-mannosyltransferase (PfDPY-19) was demonstrated to modify thrombospondin type 1 repeat (TSR) domains in vitro, exhibiting a different acceptor specificity than their mammalian counterparts. According to the described minimal acceptor of PfDPY19, several TSR domain-containing proteins of P. falciparum could be C-mannosylated in vivo. However, the relevance of this protein modification for the parasite viability remains unknown. In the present study, we used CRISPR/Cas9 technology to generate a PfDPY19 null mutant, demonstrating that this glycosyltransferase is not essential for the asexual blood development of the parasite. PfDPY19 gene disruption was not associated with a growth phenotype, not even under endoplasmic reticulum-stressing conditions that could impair protein folding. The data presented in this work strongly suggest that PfDPY19 is unlikely to play a critical role in the asexual blood stages of the parasite, at least under in vitro conditions.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Lau CH, C Tin (2019)

The Synergy between CRISPR and Chemical Engineering.

Current gene therapy, 19(3):147-171.

Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.

RevDate: 2020-07-07

Toyoshima Y, Nakamura K, Tokita R, et al (2020)

Disruption of insulin receptor substrate-2 impairs growth but not insulin function in rats.

The Journal of biological chemistry pii:RA120.013095 [Epub ahead of print].

Insulin receptor substrate (IRS)-2, along with IRS-1, is a key signaling molecule that mediates the action of insulin and insulin-like growth factor (IGF)-I. The activated insulin and IGF-I receptors phosphorylate IRSs on tyrosine residues, leading to the activation of downstream signaling pathways and the induction of various physiological functions of insulin and IGF-I. Studies using IRS-2 knockout (KO) mice showed that the deletion of IRS-2 causes type 2 diabetes due to peripheral insulin resistance and impaired β-cell function. However, little is known about the roles of IRS-2 in other animal models. Here, we created IRS-2 KO rats to elucidate the physiological functions of IRS-2 in rats. The body weights of IRS-2 KO rats at birth were lower compared to those of their wild-type (WT) littermates. The postnatal growth of both male and female IRS-2 KO rats was also suppressed. Compared to male WT rats, the glucose and insulin tolerance of male IRS-2 KO rats were slightly enhanced, whereas a similar difference was not observed between female WT and IRS-2 KO rats. Besides the modestly increased insulin sensitivity, male IRS-2 KO rats displayed the enhanced insulin-induced activation of the mammalian target of rapamycin complex 1 pathway in the liver compared to WT rats. Taken together, these results indicate that in rats, IRS-2 plays important roles in the regulation of growth but is not essential for the glucose-lowering effects of insulin.

RevDate: 2020-07-07

Naeem M, Majeed S, Hoque MZ, et al (2020)

Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing.

Cells, 9(7): pii:cells9071608.

Gene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system. Numerous types of approaches have been developed to reduce off-target effects. Here, we review several latest approaches to reduce the off-target effects, including biased or unbiased off-target detection, cytosine or adenine base editors, prime editing, dCas9, Cas9 paired nickase, ribonucleoprotein (RNP) delivery and truncated gRNAs. This review article provides extensive information to cautiously interpret off-target effects to assist the basic and clinical applications in biomedicine.

RevDate: 2020-07-07

Almughem FA, Aldossary AM, Tawfik EA, et al (2020)

Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies.

Pharmaceutics, 12(7): pii:pharmaceutics12070616.

Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Glazier VE, DJ Krysan (2020)

Genetic interaction analysis comes to the diploid human pathogen Candida albicans.

PLoS pathogens, 16(4):e1008399.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Fichtner AS, Karunakaran MM, Gu S, et al (2020)

Alpaca (Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset.

Proceedings of the National Academy of Sciences of the United States of America, 117(12):6697-6707.

Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Doyle TB, Muntean BS, Ejendal KF, et al (2019)

Identification of Novel Adenylyl Cyclase 5 (AC5) Signaling Networks in D1 and D2 Medium Spiny Neurons using Bimolecular Fluorescence Complementation Screening.

Cells, 8(11):.

Adenylyl cyclase type 5 (AC5), as the principal isoform expressed in striatal medium spiny neurons (MSNs), is essential for the integration of both stimulatory and inhibitory midbrain signals that initiate from dopaminergic G protein-coupled receptor (GPCR) activation. The spatial and temporal control of cAMP signaling is dependent upon the composition of local regulatory protein networks. However, there is little understanding of how adenylyl cyclase protein interaction networks adapt to the multifarious pressures of integrating acute versus chronic and inhibitory vs. stimulatory receptor signaling in striatal MSNs. Here, we presented the development of a novel bimolecular fluorescence complementation (BiFC)-based protein-protein interaction screening methodology to further identify and characterize elements important for homeostatic control of dopamine-modulated AC5 signaling in a neuronal model cell line and striatal MSNs. We identified two novel AC5 modulators: the protein phosphatase 2A (PP2A) catalytic subunit (PPP2CB) and the intracellular trafficking associated protein-NSF (N-ethylmaleimide-sensitive factor) attachment protein alpha (NAPA). The effects of genetic knockdown (KD) of each gene were evaluated in several cellular models, including D1- and D2-dopamine receptor-expressing MSNs from CAMPER mice. The knockdown of PPP2CB was associated with a reduction in acute and sensitized adenylyl cyclase activity, implicating PP2A is an important and persistent regulator of adenylyl cyclase activity. In contrast, the effects of NAPA knockdown were more nuanced and appeared to involve an activity-dependent protein interaction network. Taken together, these data represent a novel screening method and workflow for the identification and validation of adenylyl cyclase protein-protein interaction networks under diverse cAMP signaling paradigms.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Bosch JA, Colbeth R, Zirin J, et al (2020)

Gene Knock-Ins in Drosophila Using Homology-Independent Insertion of Universal Donor Plasmids.

Genetics, 214(1):75-89.

Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint [clustered regularly interspaced short palindromic repeat (CRISPR)-assisted insertion tagging] homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and nonhomologous end joining to insert "universal" donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-red fluorescent protein into seven genes in the fly germ line, producing heritable loss-of-function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, insertions/deletions always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Zhang Y, Chi X, Feng L, et al (2019)

Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing.

BioTechniques, 67(6):294-298.

The CRISPR/Cas9 system is an efficient gene-editing method, but it is difficult to obtain mutants for some specific species and special genome structures. A previously reported multiplexed, semi-nested PCR target-enrichment approach, which does not rely on transgenic technology, has been shown to be an effective and affordable strategy for the discovery of rare mutations in a large sodium azide-induced rice population. However, this strategy has the potential for further optimization. Here, we describe an improved multiplex semi-nested PCR target-enrichment strategy with simplified processing procedures, reduced false-positive rates and increased mutation detection frequency (1 mutation/73 Kb).

RevDate: 2020-07-07
CmpDate: 2020-07-07

Halpern J, O'Hara SE, Doxzen KW, et al (2019)

Societal and Ethical Impacts of Germline Genome Editing: How Can We Secure Human Rights?.

The CRISPR journal, 2(5):293-298.

Genome editing has opened up the possibility of heritable alteration of the human germline. The potential of this powerful tool has spurred a call for establishing robust regulatory frameworks to outline permissible uses of genome editing and to map a rational and ethical course. In response, major national scientific bodies and international organizations have convened and released comprehensive reports outlining recommendations for ethical regulatory frameworks. Significantly, these include an emphasis on public participation and the development of principles to guide future applications of genome editing. While essential, public input and principles are not sufficient to ensure ethical uses of this technology. We propose an approach that relies not only on agreed-upon principles and a democratic process but requires a Human Rights Impact Assessment to evaluate the potential burdens that such biomedical interventions may place on human rights.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Wilson RC, D Carroll (2019)

The Daunting Economics of Therapeutic Genome Editing.

The CRISPR journal, 2(5):280-284.

There is no shortage of enthusiasm for the clinical potential of CRISPR-based genome editing: many life-changing cures appear to be just around the corner. However, as mature genetic therapies reach the market, it seems that million-dollar price tags are the new normal. Several factors contribute to the extreme pricing of next-generation medicines, including the need to recoup development costs, the undeniable value of these powerful therapies, and the inherent technical challenges of manufacture and delivery. CRISPR technology has been hailed as a great leveler and a democratizing force in biomedicine. But for this principle to hold true in clinical contexts, therapeutic genome editing must avoid several pitfalls that could substantially limit access to its transformative potential, especially in the developing world.

RevDate: 2020-07-07
CmpDate: 2020-07-07

So D (2019)

The Use and Misuse of Brave New World in the CRISPR Debate.

The CRISPR journal, 2(5):316-323.

When writing about CRISPR and similar technologies, many bioethicists use science-fiction references to help readers picture the ramifications of germline gene editing. By a large margin, the most frequently referenced novel in this debate is Aldous Huxley's 1932 dystopia Brave New World. Despite its iconic status and effectiveness at communicating specific ethical issues, Brave New World provides relatively poor examples of interventions such as gene therapy or enhancement. In addition, the eugenic tropes that Huxley promotes in much of his work make Brave New World an uncomfortable choice for authors who oppose the use of CRISPR for illiberal purposes. Ethicists should consider bringing a wider variety of fiction references into the discourse on genome editing, especially stories that can complement Brave New World with insights about the ethical issues left undeveloped in Huxley's novel.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Macintosh KL (2019)

Heritable Genome Editing and the Downsides of a Global Moratorium.

The CRISPR journal, 2(5):272-279.

In 2018, Dr. He Jiankui reported that he had edited human embryos and transferred them to a woman, causing her to give birth to twin girls with modified genomes. An international group of scientists and ethicists responded by proposing a global moratorium on heritable genome editing (HGE). In this article, I oppose this proposal on several grounds. A global moratorium might encourage participating nations to ban HGE or postpone access to it indefinitely. It might also deter or delay basic research that could lead to safe and effective HGE. Lastly, a global moratorium might induce participating nations to adopt or maintain laws and regulations that stigmatize children born with modified genomes. As an alternative, I argue that nations should regulate HGE for safety and efficacy only and without distinguishing between therapeutic and enhancing modifications.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Knoppers BM, E Kleiderman (2019)

Heritable Genome Editing: Who Speaks for "Future" Children?.

The CRISPR journal, 2(5):285-292.

Approximately 80% of rare and often incurable and serious conditions affect newborns and children, and roughly half of all rare diseases are considered to have an onset in childhood. Somatic gene therapies are already in clinical trials for spinal muscular atrophy, beta thalassemia, and macular degeneration. If proven to be safe and effective, could heritable genome editing be seen as a form of preventive personalized medicine and as fostering the right to health of the child? The latest calls for global moratoria on clinical applications of heritable genome editing are troubling in that they may create an illusion of control over rogue science and stifle the necessary international debate surrounding an ethically responsible translational path forward. Children are people with distinct rights and interests. An arbitrary moratorium neither fosters their best interests or health nor respects their right to benefit from the advancements of science.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Sherkow JS (2019)

Controlling CRISPR Through Law: Legal Regimes as Precautionary Principles.

The CRISPR journal, 2(5):299-303.

Since its advent in 2012, CRISPR has spawned a cottage industry of bioethics literature. One principal criticism of the technology is its virtually instant widespread adoption prior to deliberative bodies conducting a meaningful ethical review of its harms and benefits-a violation, to some, of bioethics' "precautionary principle." This view poorly considers, however, the role that the law can play-and does, in fact, play-in policing the introduction of ethically problematic uses of the technology. This Perspective recounts these legal regimes, including regulatory agencies and premarket approval, tort law and deterrence, patents and ethical licenses, funding agencies and review boards, as well as local politics. Identifying these legal regimes and connecting them to the precautionary principle should be instructive for bioethicists and policy makers who wish to conduct ethical reviews of new applications of CRISPR prior to their introduction.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Davies K, BM Knoppers (2019)

From Poetry to Policy: An Interview with Bartha Maria Knoppers.

The CRISPR journal, 2(5):249-252.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Barrangou R (2019)

Thinking About CRISPR: The Ethics of Human Genome Editing.

The CRISPR journal, 2(5):247-248.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Li L, Li S, Wu N, et al (2019)

HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation.

ACS synthetic biology, 8(10):2228-2237.

The next-generation CRISPR-based molecular diagnostics has the merits of rapidness, accuracy, and portability. We discovered the Cas12a trans-cleavage activity against collateral single-stranded DNA (ssDNA) and employed the activity to develop a rapid nucleic acid detection system, namely HOLMES (one-hour low-cost multipurpose highly efficient system). Here, with the employment of thermophilic CRISPR-Cas12b, we create HOLMESv2 for four different applications: (1) specifically discriminating single nucleotide polymorphism (SNP); (2) simply detecting virus RNA, human cell mRNA and circular RNA; (3) conveniently quantitating target nucleic acids with a one-step system combined with LAMP amplification in a constant temperature, thus avoiding cross-contamination; (4) accurately quantitating target DNA methylation degree with the combination of Cas12b detection and bisulfite treatment. These results highlight the potential of HOLMESv2 as a promising platform for both molecular diagnostics and epigenetics applications.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Lin Y, Zou X, Zheng Y, et al (2019)

Improving Chromosome Synthesis with a Semiquantitative Phenotypic Assay and Refined Assembly Strategy.

ACS synthetic biology, 8(10):2203-2211.

Recent advances in DNA synthesis technology have made it possible to rewrite the entire genome of an organism. The major hurdles in this process are efficiently identifying and fixing the defect-inducing sequences (or "bugs") during rewriting. Here, we describe a high-throughput, semiquantitative phenotype assay for evaluating the fitness of synthetic yeast and identifying potential bugs. Growth curves were measured under a carefully chosen set of testing conditions. Statistical analysis revealed strains with subtle defects relative to the wild type, which were targeted for debugging. The effectiveness of the assay was demonstrated by phenotypic profiling of all intermediate synthetic strains of the synthetic yeast chromosome XII. Subsequently, the assay was applied during the process of constructing another synthetic chromosome. Furthermore, we designed an efficient chromosome assembly strategy that integrates iterative megachunk construction with CRISPR/Cas9-mediated assembly of synthetic segments. Together, the semiquantitative assay and refined assembly strategy could greatly facilitate synthetic genomics projects by improving efficiency during both debugging and construction.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Hogan AM, Rahman ASMZ, Lightly TJ, et al (2019)

A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in Burkholderia.

ACS synthetic biology, 8(10):2372-2384.

Genetic tools are critical to dissecting the mechanisms governing cellular processes, from fundamental physiology to pathogenesis. Members of the genus Burkholderia have potential for biotechnological applications but can also cause disease in humans with a debilitated immune system. The lack of suitable genetic tools to edit Burkholderia GC-rich genomes has hampered the exploration of useful capacities and the understanding of pathogenic features. To address this, we have developed CRISPR interference (CRISPRi) technology for gene silencing in Burkholderia, testing it in B. cenocepacia, B. multivorans, and B. thailandensis. Tunable expression was provided by placing a codon-optimized dcas9 from Streptococcus pyogenes under control of a rhamnose-inducible promoter. As a proof of concept, the paaABCDE operon controlling genes necessary for phenylacetic acid degradation was targeted by plasmid-borne gRNAs, resulting in near complete inhibition of growth on phenylacetic acid as the sole carbon source. This was supported by reductions in paaA mRNA expression. The utility of CRISPRi to probe other functions at the single cell level was demonstrated by knocking down phbC and fliF, which dramatically reduces polyhydroxybutyrate granule accumulation and motility, respectively. As a hallmark of the mini-CTX system is the broad host-range of integration, we putatively identified 67 genera of Proteobacteria that might be amenable to modification with our CRISPRi toolkit. Our CRISPRi toolkit provides a simple and rapid way to silence gene expression to produce an observable phenotype. Linking genes to functions with CRISPRi will facilitate genome editing with the goal of enhancing biotechnological capabilities while reducing Burkholderia's pathogenic arsenal.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Patil A, Manzano M, E Gottwein (2019)

Genome-wide CRISPR screens reveal genetic mediators of cereblon modulator toxicity in primary effusion lymphoma.

Blood advances, 3(14):2105-2117.

Genome-wide CRISPR/Cas9 screens represent a powerful approach to studying mechanisms of drug action and resistance. Cereblon modulating agents (CMs) have recently emerged as candidates for therapeutic intervention in primary effusion lymphoma (PEL), a highly aggressive cancer caused by Kaposi's sarcoma-associated herpesvirus. CMs bind to cereblon (CRBN), the substrate receptor of the cullin-RING type E3 ubiquitin ligase CRL4CRBN, and thereby trigger the acquisition and proteasomal degradation of neosubstrates. Downstream mechanisms of CM toxicity are incompletely understood, however. To identify novel CM effectors and mechanisms of CM resistance, we performed positive selection CRISPR screens using 3 CMs with increasing toxicity in PEL: lenalidomide (LEN), pomalidomide (POM), and CC-122. Results identified several novel modulators of the activity of CRL4CRBN The number of genes whose inactivation confers resistance decreases with increasing CM efficacy. Only inactivation of CRBN conferred complete resistance to CC-122. Inactivation of the E2 ubiquitin conjugating enzyme UBE2G1 also conferred robust resistance against LEN and POM. Inactivation of additional genes, including the Nedd8-specific protease SENP8, conferred resistance to only LEN. SENP8 inactivation indirectly increased levels of unneddylated CUL4A/B, which limits CRL4CRBN activity in a dominant negative manner. Accordingly, sensitivity of SENP8-inactivated cells to LEN is restored by overexpression of CRBN. In sum, our screens identify several novel players in CRL4CRBN function and define pathways to CM resistance in PEL. These results provide rationale for increasing CM efficacy on patient relapse from a less-efficient CM. Identified genes could finally be developed as biomarkers to predict CM efficacy in PEL and other cancers.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Lou K, Steri V, Ge AY, et al (2019)

KRASG12C inhibition produces a driver-limited state revealing collateral dependencies.

Science signaling, 12(583):.

Inhibitors targeting KRASG12C, a mutant form of the guanosine triphosphatase (GTPase) KRAS, are a promising new class of oncogene-specific therapeutics for the treatment of tumors driven by the mutant protein. These inhibitors react with the mutant cysteine residue by binding covalently to the switch-II pocket (S-IIP) that is present only in the inactive guanosine diphosphate (GDP)-bound form of KRASG12C, sparing the wild-type protein. We used a genome-scale CRISPR interference (CRISPRi) functional genomics platform to systematically identify genetic interactions with a KRASG12C inhibitor in cellular models of KRASG12C mutant lung and pancreatic cancer. Our data revealed genes that were selectively essential in this oncogenic driver-limited cell state, meaning that their loss enhanced cellular susceptibility to direct KRASG12C inhibition. We termed such genes "collateral dependencies" (CDs) and identified two classes of combination therapies targeting these CDs that increased KRASG12C target engagement or blocked residual survival pathways in cells and in vivo. From our findings, we propose a framework for assessing genetic dependencies induced by oncogene inhibition.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Simeonov DR, A Marson (2019)

CRISPR-Based Tools in Immunity.

Annual review of immunology, 37:571-597.

CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.

RevDate: 2020-07-06

Wilson SK, Heckendorn J, Martorelli Di Genova B, et al (2020)

A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion.

PLoS pathogens, 16(7):e1008650 pii:PPATHOGENS-D-19-01550 [Epub ahead of print].

Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Liu X, Wu D, Shan T, et al (2020)

The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice.

Plant molecular biology, 103(4-5):545-560.

KEY MESSAGE: OsGTγ-2, a trihelix transcription factor, is a positive regulator of rice responses to salt stress by regulating the expression of ion transporters. Salinity stress seriously restricts rice growth and yield. Trihelix transcription factors (GT factors) specifically bind to GT elements and play a diverse role in plant morphological development and responses to abiotic stresses. In our previous study, we found that the GT-1 element (GAAAAA) is a key element in the salinity-induced OsRAV2 promoter. Here, we identified a rice OsGTγ family member, OsGTγ-2, which directly interacted with the GT-1 element in the OsRAV2 promoter. OsGTγ-2 specifically targeted the nucleus, was mainly expressed in roots, sheathes, stems and seeds, and was induced by salinity, osmotic and oxidative stresses and abscisic acid (ABA). The seed germination rate, seedling growth and survival rate under salinity stress was improved in OsGTγ-2 overexpressing lines (PZmUbi::OsGTγ-2). In contrast, CRISPR/Cas9-mediated OsGTγ-2 knockout lines (osgtγ-2) showed salt-hypersensitive phenotypes. In response to salt stress, different Na+ and K+ acclamation patterns were observed in PZmUbi::OsGTγ-2 lines and osgtγ-2 plants were observed. The molecular mechanism of OsGTγ-2 in rice salt adaptation was also investigated. Several major genes responsible for ion transporting, such as the OsHKT2; 1, OsHKT1; 3 and OsNHX1 were transcriptionally regulated by OsGTγ-2. A subsequent yeast one-hybrid assay and EMSA indicated that OsGTγ-2 directly interacted with the promoters of OsHKT2; 1, OsNHX1 and OsHKT1; 3. Taken together, these results suggest that OsGTγ-2 is an important positive regulator involved in rice responses to salt stress and suggest a potential role for OsGTγ-2 in regulating salinity adaptation in rice.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Gisler S, Maia ARR, Chandrasekaran G, et al (2020)

A genome-wide enrichment screen identifies NUMA1-loss as a resistance mechanism against mitotic cell-death induced by BMI1 inhibition.

PloS one, 15(4):e0227592.

BMI1 is a core protein of the polycomb repressive complex 1 (PRC1) that is overexpressed in several cancer types, making it a promising target for cancer therapies. However, the underlying mechanisms and interactions associated with BMI1-induced tumorigenesis are often context-dependent and complex. Here, we performed a drug resistance screen on mutagenized human haploid HAP1 cells treated with BMI1 inhibitor PTC-318 to find new genetic and mechanistic features associated with BMI1-dependent cancer cell proliferation. Our screen identified NUMA1-mutations as the most significant inducer of PTC-318 cell death resistance. Independent validations on NUMA1-proficient HAP1 and non-small cell lung cancer cell lines exposed to BMI1 inhibition by PTC-318 or BMI1 knockdown resulted in cell death following mitotic arrest. Interestingly, cells with CRISPR-Cas9 derived NUMA1 knockout also showed a mitotic arrest phenotype following BMI1 inhibition but, contrary to cells with wildtype NUMA1, these cells were resistant to BMI1-dependent cell death. The current study brings new insights to BMI1 inhibition-induced mitotic lethality in cancer cells and presents a previously unknown role of NUMA1 in this process.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Gee P, Lung MSY, Okuzaki Y, et al (2020)

Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping.

Nature communications, 11(1):1334.

Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Kulcsár PI, Tálas A, Tóth E, et al (2020)

Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5'G-extended sgRNAs.

Nature communications, 11(1):1223.

Increased fidelity mutants of the SpCas9 nuclease constitute the most promising approach to mitigating its off-target effects. However, these variants are effective only in a restricted target space, and many of them are reported to work less efficiently when applied in clinically relevant, pre-assembled, ribonucleoprotein forms. The low tolerance to 5'-extended, 21G-sgRNAs contributes, to a great extent, to their decreased performance. Here, we report the generation of Blackjack SpCas9 variant that shows increased fidelity yet remain effective with 21G-sgRNAs. Introducing Blackjack mutations into previously reported increased fidelity variants make them effective with 21G-sgRNAs and increases their fidelity. Two "Blackjack" nucleases, eSpCas9-plus and SpCas9-HF1-plus are superior variants of eSpCas9 and SpCas9-HF1, respectively, possessing matching on-target activity and fidelity but retaining activity with 21G-sgRNAs. They facilitate the use of existing pooled sgRNA libraries with higher specificity and show similar activities whether delivered as plasmids or as pre-assembled ribonucleoproteins.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Ivanov IE, Wright AV, Cofsky JC, et al (2020)

Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.

Proceedings of the National Academy of Sciences of the United States of America, 117(11):5853-5860.

The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.

RevDate: 2020-07-06
CmpDate: 2020-07-06

NandyMazumdar M, Yin S, Paranjapye A, et al (2020)

Looping of upstream cis-regulatory elements is required for CFTR expression in human airway epithelial cells.

Nucleic acids research, 48(7):3513-3524.

The CFTR gene lies within an invariant topologically associated domain (TAD) demarcated by CTCF and cohesin, but shows cell-type specific control mechanisms utilizing different cis-regulatory elements (CRE) within the TAD. Within the respiratory epithelium, more than one cell type expresses CFTR and the molecular mechanisms controlling its transcription are likely divergent between them. Here, we determine how two extragenic CREs that are prominent in epithelial cells in the lung, regulate expression of the gene. We showed earlier that these CREs, located at -44 and -35 kb upstream of the promoter, have strong cell-type-selective enhancer function. They are also responsive to inflammatory mediators and to oxidative stress, consistent with a key role in CF lung disease. Here, we use CRISPR/Cas9 technology to remove these CREs from the endogenous locus in human bronchial epithelial cells. Loss of either site extinguished CFTR expression and abolished long-range interactions between these sites and the gene promoter, suggesting non-redundant enhancers. The deletions also greatly reduced promoter interactions with the 5' TAD boundary. We show substantial recruitment of RNAPII to the -35 kb element and identify CEBPβ as a key activator of airway expression of CFTR, likely through occupancy at this CRE and the gene promoter.

RevDate: 2020-07-06
CmpDate: 2020-07-06

DiNapoli SE, Martinez-McFaline R, Gribbin CK, et al (2020)

Synthetic CRISPR/Cas9 reagents facilitate genome editing and homology directed repair.

Nucleic acids research, 48(7):e38.

CRISPR/Cas9 has become a powerful tool for genome editing in zebrafish that permits the rapid generation of loss of function mutations and the knock-in of specific alleles using DNA templates and homology directed repair (HDR). We examined the efficiency of synthetic, chemically modified gRNAs and demonstrate induction of indels and large genomic deletions in combination with recombinant Cas9 protein. We developed an in vivo genetic assay to measure HDR efficiency and we utilized this assay to test the effect of altering template design on HDR. Utilizing synthetic gRNAs and linear dsDNA templates, we successfully performed knock-in of fluorophores at multiple genomic loci and demonstrate transmission through the germline at high efficiency. We demonstrate that synthetic HDR templates can be used to knock-in bacterial nitroreductase (ntr) to facilitate lineage ablation of specific cell types. Collectively, our data demonstrate the utility of combining synthetic gRNAs and dsDNA templates to perform homology directed repair and genome editing in vivo.

RevDate: 2020-07-06
CmpDate: 2020-07-06

van der Horst SEM, Cravo J, Woollard A, et al (2019)

C. elegans Runx/CBFβ suppresses POP-1 TCF to convert asymmetric to proliferative division of stem cell-like seam cells.

Development (Cambridge, England), 146(22):.

A correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight into the mechanisms involved, we studied the stem cell-like seam cells in the Caenorhabditis elegans epidermis. Seam cells go through a reproducible pattern of asymmetric divisions, instructed by divergent canonical Wnt/β-catenin signaling, and symmetric divisions that increase the seam cell number. Using time-lapse fluorescence microscopy we observed that symmetric cell divisions maintain asymmetric localization of Wnt/β-catenin pathway components. Our observations, based on lineage-specific knockout and GFP-tagging of endogenous pop-1, support the model that POP-1TCF induces differentiation at a high nuclear level, whereas low nuclear POP-1 promotes seam cell self-renewal. Before symmetric division, the transcriptional regulator RNT-1Runx and cofactor BRO-1CBFβ temporarily bypass Wnt/β-catenin asymmetry by downregulating pop-1 expression. Thereby, RNT-1/BRO-1 appears to render POP-1 below the level required for its repressor function, which converts differentiation into self-renewal. Thus, we found that conserved Runx/CBFβ-type stem cell regulators switch asymmetric to proliferative cell division by opposing TCF-related transcriptional repression.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Trimidal SG, Benjamin R, Bae JE, et al (2019)

Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?.

BioEssays : news and reviews in molecular, cellular and developmental biology, 41(12):e1900126.

Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Yang L, Li Y, Wu Y, et al (2020)

Rln3a is a prerequisite for spermatogenesis and fertility in male fish.

The Journal of steroid biochemistry and molecular biology, 197:105517.

The essential roles of Relaxin3 (RLN3) in energy homeostasis had been well investigated, while the mechanisms of RLN3 regulating reproduction remain to be elusive in mammals. Although two rln3 paralogues have been characterized in several teleosts, their functions still remain largely unknown. In this study, two paralogous rln3 genes, represented as rln3a and rln3b, were identified from the testis of Nile tilapia (Oreochromis niloticus). Rln3a was dominantly expressed in testis, while the most abundant rln3b expression was in brain. In situ hybridization demonstrated that rln3a is abundantly expressed in the Leydig cells of the testis. To understand the role of Rln3 in the testicular development, homologous null-rln3a gene mutant line was constructed by CRISPR/Cas9 technology. Morphological observation demonstrated that null mutation of rln3a gene caused testicular hypertrophy and a significant increase of GSI. However, a significant decrease of spermatogenic cells at different phases, i.e. spermatogonia, spermatocytes, spermatids and sperms was found. Silencing of rln3a gene repressed the expression of key genes in germ cell and Leydig cell. Deficiency of Rln3a led to the significant decrease of 11-KT production, which stimulated the up-regulation of both FSH and LH production in the pituitary via a negative feedback manner possibly. Mutation of rln3a in XY fish led to the hypogonadism with sperm deformation, significant decrease of fertility, and sperm motility, revealing as the high mortality of the offspring obtained by crossing the wild type female and rln3a-/- XY fish. Interestingly, recombinant human RLN3 injection significantly enhanced the sperm motility in rln3a-/- XY fish. Moreover, hCG treatment stimulated the expression of steroidogenic enzyme genes and 11-KT production, which were repressed by rln3a mutation in XY fish. Taken together, this study, for the first time by using a gene knockout model, proved that Rln3a is an indispensable mediator for androgen production in testis via HPG axis, and plays an essential role in spermatogenesis, sperm motility and male fertility in fish.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Sano S, Wang Y, Evans MA, et al (2019)

Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models.

Journal of visualized experiments : JoVE.

Manipulating genes in hematopoietic stem cells using conventional transgenesis approaches can be time-consuming, expensive, and challenging. Benefiting from advances in genome editing technology and lentivirus-mediated transgene delivery systems, an efficient and economical method is described here that establishes mice in which genes are manipulated specifically in hematopoietic stem cells. Lentiviruses are used to transduce Cas9-expressing lineage-negative bone marrow cells with a guide RNA (gRNA) targeting specific genes and a red fluorescence reporter gene (RFP), then these cells are transplanted into lethally-irradiated C57BL/6 mice. Mice transplanted with lentivirus expressing non-targeting gRNA are used as controls. Engraftment of transduced hematopoietic stem cells are evaluated by flow cytometric analysis of RFP-positive leukocytes of peripheral blood. Using this method, ~90% transduction of myeloid cells and ~70% of lymphoid cells at 4 weeks after transplantation can be achieved. Genomic DNA is isolated from RFP-positive blood cells, and portions of the targeted site DNA are amplified by PCR to validate the genome editing. This protocol provides a high-throughput evaluation of hematopoiesis-regulatory genes and can be extended to a variety of mouse disease models with hematopoietic cell involvement.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Decaestecker W, Buono RA, Pfeiffer ML, et al (2019)

CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis.

The Plant cell, 31(12):2868-2887.

Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Corts AD, Thomason LC, Gill RT, et al (2019)

Efficient and Precise Genome Editing in Shewanella with Recombineering and CRISPR/Cas9-Mediated Counter-Selection.

ACS synthetic biology, 8(8):1877-1889.

Dissimilatory metal-reducing bacteria, particularly those from the genus Shewanella, are of importance for bioremediation of metal contaminated sites and sustainable energy production. However, studies on this species have suffered from a lack of effective genetic tools for precise and high throughput genome manipulation. Here we report the development of a highly efficient system based on single-stranded DNA oligonucleotide recombineering coupled with CRISPR/Cas9-mediated counter-selection. Our system uses two plasmids: a sgRNA targeting vector and an editing vector, the latter harboring both Cas9 and the phage recombinase W3 Beta. Following the experimental analysis of Cas9 activity, we demonstrate the ability of this system to efficiently and precisely engineer different Shewanella strains with an average efficiency of >90% among total transformed cells, compared to ≃5% by recombineering alone, and regardless of the gene modified. We also show that different genetic changes can be introduced: mismatches, deletions, and small insertions. Surprisingly, we found that use of CRISPR/Cas9 alone allows selection of recombinase-independent S. oneidensis mutations, albeit at lower efficiency and frequency. With synthesized single-stranded DNA as substrates for homologous recombination and Cas9 as a counter-selectable marker, this new system provides a rapid, scalable, versatile, and scarless tool that will accelerate progress in Shewanella genomic engineering.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Zuo F, Zeng Z, Hammarström L, et al (2019)

Inducible Plasmid Self-Destruction (IPSD) Assisted Genome Engineering in Lactobacilli and Bifidobacteria.

ACS synthetic biology, 8(8):1723-1729.

Genome engineering is essential for application of synthetic biology in probiotics including lactobacilli and bifidobacteria. Several homologous recombination system-based mutagenesis tools have been developed for these bacteria, but still have many limitations in different species or strains. Here we developed a genome engineering method based on an inducible self-destruction plasmid delivering homologous DNA into bacteria. Excision of the replicon by induced recombinase facilitates selection of homologous recombination events. This new genome editing tool called inducible plasmid self-destruction (IPSD) was successfully used to perform gene knockout and knock-in in lactobacilli and bifidobacteria. Due to its simplicity and universality, the IPSD strategy may provide a general approach for genetic engineering of various bacterial species.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Yazawa R, Nishida Y, Aoyama S, et al (2019)

Establishment of a system for screening autophagic flux regulators using a modified fluorescent reporter and CRISPR/Cas9.

Biochemical and biophysical research communications, 516(3):686-692.

Autophagy is a mechanism of bulk protein degradation that plays an important role in regulating homeostasis in many organisms. Among several methods for evaluating its activity, a fluorescent reporter GFP-LC3-RFP-LC3ΔG, in which GFP-LC3 is cleaved by ATG4 following autophagic induction and degraded in lysosome, has been used for monitoring autophagic flux, which is the amount of lysosomal protein degradation. In this study, we modified this reporter by exchanging GFP for pHluorin, which is more sensitive to low pH, and RFP to mCherry, to construct pHluorin-LC3-mCherry reporter. Following starvation or mTOR inhibition, the increase of autophagic flux was detected by a decrease of the fluorescent ratio of pHluorin to mCherry; our reporter was also more sensitive to autophagy-inducing stimuli than the previous one. To establish monitoring cells for mouse genome-wide screening of regulators of autophagic flux based on CRISPR/Cas9 system, after evaluating knockout efficiency of clones of Cas9-expressing MEFs, we co-expressed our reporter and confirmed that autophagic flux was impaired in gRNA-mediated knockout of canonical autophagy genes. Finally, we performed genome-wide gRNA screening for genes inhibiting starvation-mediated autophagic flux and identified previously reported genes such as Atgs. Thus, we have successfully established a system for screening of genes regulating autophagic flux with our pHluorin-LC3-mCherry reporter in mice.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Chen ZJ, Rong L, Huang D, et al (2019)

Targeting cullin 3 by miR-601 activates Nrf2 signaling to protect retinal pigment epithelium cells from hydrogen peroxide.

Biochemical and biophysical research communications, 515(4):679-687.

Activation of Nrf2 cascade can protect retinal pigment epithelium (RPE) cells from hydrogen peroxide (H2O2) and other oxidative injury. The current study identified microRNA-601 (miR-601) as a novel cullin 3 (Cul3)-targeting miRNA that activates Nrf2 cascade. In ARPE-19 cells and primary human RPE cells, forced overexpression of miR-601 significantly inhibited Cul3 3'-UTR activity and downregulated Cul3 mRNA/protein expression, leading to Nrf2 protein stabilization and its nuclear translocation as well as expression of anti-oxidant response elements (ARE)-dependent genes (HO1, NQO1 and GCLC). H2O2 treatment increased miR-601 levels in RPE cells. Significantly, ectopic miR-601 overexpression attenuated H2O2-induced oxidative injury and apoptosis in RPE cells. In contrast, miR-601 inhibition promoted Cul3 expression, lowered basal Nrf2 activation, and enhanced H2O2-induced oxidative stress and apoptosis in RPE cells. In ARPE-19 cells, CRISPC/Cas9-mediated knockout (KO) of Cul3 or Keap1 not only mimicked, but also nullified, miR-601-inudced anti-H2O2 actions. Furthermore, Nrf2 silencing by targeted shRNAs abolished miR-601-inudced cytoprotection in H2O2-treated ARPE-19 cells. Taken together, we show that miR-601 activates Nrf2 signaling to protect RPE cells from H2O2 by targeting Cul3.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Maeoka Y, Okamoto T, Wu Y, et al (2019)

Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5.

Biochemical and biophysical research communications, 514(2):436-442.

Nuclear factor of activated T-cells 5 (NFAT5) directly binds to the promoter of the RING finger protein 183 (RNF183) gene and induces its transcription under hypertonic conditions in mouse inner-medullary collecting duct (mIMCD-3) cells. However, there is no specific anti-RNF183 antibody for immunostaining; therefore, it is unclear whether NFAT5 regulates RNF183 expression in vivo and where RNF183 is localized in the kidney. This study investigated NFAT5-regulated in vivo RNF183 expression and localization using CRISPR/Cas9-mediated RNF183-green fluorescent protein (RNF183-GFP) knock-in mice. GFP with linker sequences was introduced upstream of an RNF183 open reading frame in exon 3 by homologous recombination through a donor plasmid. Immunofluorescence staining using GFP antibody revealed that GFP signals gradually increase from the outer medulla down to the inner medulla and colocalize with aquaporin-2. Furosemide treatment dramatically decreased RNF183 expression in the renal medulla, consistent with the decrease in NFAT5 protein and target gene mRNA expression. Furosemide treatment of mIMCD-3 cells did not affect mRNA expression and RNF183 promoter activities. These results indicated that RNF183 is predominantly expressed in the renal medullary collecting ducts, and that decreased renal medullary tonicity by furosemide treatment decreases RNF183 expression by NFAT5 downregulation.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Sambandam V, Frederick MJ, Shen L, et al (2019)

PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition.

Clinical cancer research : an official journal of the American Association for Cancer Research, 25(11):3329-3340.

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is driven largely by the loss of tumor suppressor genes, including NOTCH1, but lacks a biomarker-driven targeted therapy. Although the PI3K/mTOR pathway is frequently altered in HNSCC, the disease has modest clinical response rates to PI3K/mTOR inhibitors and lacks validated biomarkers of response. We tested the hypothesis that an unbiased pharmacogenomics approach to PI3K/mTOR pathway inhibitors would identify novel, clinically relevant molecular vulnerabilities in HNSCC with loss of tumor suppressor function.Experimental Design: We assessed the degree to which responses to PI3K/mTOR inhibitors are associated with gene mutations in 59 HNSCC cell lines. Apoptosis in drug-sensitive cell lines was confirmed in vitro and in vivo. NOTCH1 pathway components and PDK1 were manipulated with drugs, gene editing, knockdown, and overexpression.

RESULTS: PI3K/mTOR inhibition caused apoptosis and decreased colony numbers in HNSCC cell lines harboring NOTCH1 loss-of-function mutations (NOTCH1MUT) and reduced tumor size in subcutaneous and orthotopic xenograft models. In all cell lines, NOTCH1MUT was strongly associated with sensitivity to six PI3K/mTOR inhibitors. NOTCH1 inhibition or knockout increased NOTCH1WT HNSCC sensitivity to PI3K/mTOR inhibition. PDK1 levels dropped following PI3K/mTOR inhibition in NOTCH1MUT but not NOTCH1WT HNSCC, and PDK1 overexpression rescued apoptosis in NOTCH1MUT cells. PDK1 and AKT inhibitors together caused apoptosis in NOTCH1WT HNSCC but had little effect as single agents.

CONCLUSIONS: Our findings suggest that NOTCH1MUT predicts response to PI3K/mTOR inhibitors, which may lead to the first biomarker-driven targeted therapy for HNSCC, and that targeting PDK1 sensitizes NOTCH1WT HNSCC to PI3K/mTOR pathway inhibitors.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Wang L, Wang H, Liu H, et al (2019)

Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing.

Biotechnology and bioengineering, 116(6):1463-1474.

As the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a (previously known as Cpf1) system cleaves double-stranded DNA and produces a sticky end, it could serve as a useful tool for DNA assembly/editing. To broaden its application, a variety of engineered FnCas12a proteins are generated with expanded protospacer adjacent motif (PAM) requirements. Two variants (FnCas12a-EP15 and EP16) increased the targeting range of FnCas12a by approximately fourfold. They can efficiently recognize a broad range of PAM sequences including YN (Y = C or T), TAC and CAA. Meanwhile, based on our demonstration that FnCas12a is active from 16 to 60°C, we developed an "improved CRISPR-Cas12a-assisted one-pot DNA editing" (iCOPE) method to facilitate DNA editing by combining the crRNA transcription, digestion, and ligation in one pot. By applying iCOPE, the editing efficiency reached 72-100% for two DNA fragment assemblies, and for the 21 kb large DNA construct modification, the editing efficiency can reach 100%. Thanks to the advantages of Cas12a, iCOPE with only one digestion enzyme could replace current a variety of restriction enzymes to perform the cloning in one pot with almost no sequence constraints. Taken together, this study offers an expanded DNA targeting scope of CRISPR systems and could serve as an efficient seamless one-pot DNA editing tool.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Lin CY, Nozawa T, Minowa-Nozawa A, et al (2019)

LAMTOR2/LAMTOR1 complex is required for TAX1BP1-mediated xenophagy.

Cellular microbiology, 21(4):e12981.

Xenophagy, also known as antibacterial autophagy, plays a role in host defence against invading pathogens such as Group A Streptococcus (GAS) and Salmonella. In xenophagy, autophagy receptors are used in the recognition of invading pathogens and in autophagosome maturation and autolysosome formation. However, the mechanism by which autophagy receptors are regulated during bacterial infection remains poorly elucidated. In this study, we identified LAMTOR2 and LAMTOR1, also named p14 and p18, respectively, as previously unrecognised xenophagy regulators that modulate the autophagy receptor TAX1BP1 in response to GAS and Salmonella invasion. LAMTOR1 was localized to bacterium-containing endosomes, and LAMTOR2 was recruited to bacterium-containing damaged endosomes in a LAMTOR1-dependent manner. LAMTOR2 was dispensable for the formation of autophagosomes targeting damaged membrane debris surrounding cytosolic bacteria, but it was critical for autolysosome formation, and LAMTOR2 interacted with the autophagy receptors NBR1, TAX1BP1, and p62 and was necessary for TAX1BP1 recruitment to pathogen-containing autophagosomes. Notably, knockout of TAX1BP1 caused a reduction in autolysosome formation and subsequent bacterial degradation. Collectively, our findings demonstrated that the LAMTOR1/2 complex is required for recruiting TAX1BP1 to autophagosomes and thereby facilitating autolysosome formation during bacterial infection.

RevDate: 2020-07-04

Liu L, Zhao D, Ye L, et al (2020)

A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3).

Microbial cell factories, 19(1):136 pii:10.1186/s12934-020-01393-2.

Escherichia coli BL21 is arguably the most popular host for industrial production of proteins, and industrial fermentations are often plagued by phage infections. The CRISPR/Cas system is guided by a gRNA to cleave a specific DNA cassette, which can be developed into a highly efficient programable phage defense system. In this work, we constructed a CRISPR/Cas system targeting multiple positions on the genome of T7 phage and found that the system increased the BL21's defense ability against phage infection. Furthermore, the targeted loci on phage genome played a critical role. For better control of expression of CRISPR/Cas9, various modes were tested, and the OD of the optimized strain BL21(pT7cas9, pT7-3gRNA, prfp) after 4 h of phage infection was significantly improved, reaching 2.0, which was similar to the control culture without phage infection. Although at later time points, the defensive ability of CRISPR/Cas9 systems were not as obvious as that at early time points. The viable cell count of the engineered strain in the presence of phage was only one order of magnitude lower than that of the strain with no infection, which further demonstrated the effectiveness of the CRISPR/Cas9 phage defense system. Finally, the engineered BL21 strain under phage attack expressed RFP protein at about 60% of the un-infected control, which was significantly higher than the parent BL21. In this work, we successfully constructed a programable CRISPR/Cas9 system to increase the ability of E. coli BL21's to defend against phage infection, and created a resistant protein expression host. This work provides a simple and feasible strategy for protecting industrial E. coli strains against phage infection.

RevDate: 2020-07-03

Clement K, Hsu JY, Canver MC, et al (2020)

Technologies and Computational Analysis Strategies for CRISPR Applications.

Molecular cell, 79(1):11-29.

The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.

RevDate: 2020-07-03

Yang L, J Chen (2020)

A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing.

Trends in biochemical sciences pii:S0968-0004(20)30150-X [Epub ahead of print].

Two major moieties in genome editing are required for precise genetic changes: the locator moiety for target binding and the effector moiety for genetic engineering. By taking advantage of CRISPR/Cas, which consists of different modules for independent target binding and cleavage, a spectrum of precise and versatile genome editing technologies have been developed for broad applications in biomedical research, biotechnology, and therapeutics. Here, we briefly summarize the progress of genome editing systems from a view of both locator and effector moieties and highlight the advance of newly reported CRISPR-conjugated base editing and prime editing systems. We also underscore distinct mechanisms of off-target effects in CRISPR-conjugated systems and further discuss possible strategies to reduce off-target mutations in the future.

RevDate: 2020-07-03
CmpDate: 2020-07-03

Ledford H (2020)

CRISPR gene editing in human embryos wreaks chromosomal mayhem.

Nature, 583(7814):17-18.

RevDate: 2020-07-02

Yu J, Cho E, Choi YG, et al (2020)

Purification of an Intact Human Protein Overexpressed from Its Endogenous Locus via Direct Genome Engineering.

ACS synthetic biology [Epub ahead of print].

The overproduction and purification of human proteins is a requisite of both basic and medical research. Although many recombinant human proteins have been purified, current protein production methods have several limitations; recombinant proteins are frequently truncated, fail to fold properly, and/or lack appropriate post-translational modifications. In addition, such methods require subcloning of the target gene into relevant plasmids, which can be difficult for long proteins with repeated domains. Here we devised a novel method for target protein production by introduction of a strong promoter for overexpression and an epitope tag for purification in front of the endogenous human gene, in a sense performing molecular cloning directly in the human genome, which does not require cloning of the target gene. As a proof of concept, we successfully purified intact human Reelin protein, which is lengthy (3460 amino acids) and contains repeating domains, and confirmed that it was biologically functional.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Yang J, Li J, Wang J, et al (2020)

Crystal structure of Cas1 in complex with branched DNA.

Science China. Life sciences, 63(4):516-528.

Cas1 is a key component of the CRISPR adaptation complex, which captures and integrates foreign DNA into the CRISPR array, resulting in the generation of new spacers. We have determined crystal structures of Thermus thermophilus Cas1 involved in new spacer acquisition both in complex with branched DNA and in the free state. Cas1 forms an asymmetric dimer without DNA. Conversely, two asymmetrical dimers bound to two branched DNAs result in the formation of a DNA-mediated tetramer, dimer of structurally asymmetrical dimers, in which the two subunits markedly present different conformations. In the DNA binding complex, the N-terminal domain adopts different orientations with respect to the C-terminal domain in the two monomers that form the dimer. Substrate binding triggers a conformational change in the loop 164-177 segment. This loop is also involved in the 3' fork arm and 5' fork arm strand recognition in monomer A and B, respectively. This study provides important insights into the molecular mechanism of new spacer adaptation.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Kostyusheva A, Brezgin S, Bayurova E, et al (2019)

ATM and ATR Expression Potentiates HBV Replication and Contributes to Reactivation of HBV Infection upon DNA Damage.

Viruses, 11(11):.

Chronic hepatitis B virus infection (CHB) caused by the hepatitis B virus (HBV) is one of the most common viral infections in the world. Reactivation of HBV infection is a life-threatening condition observed in patients with CHB receiving chemotherapy or other medications. Although HBV reactivation is commonly attributed to immune suppression, other factors have long been suspected to play a role, including intracellular signaling activated in response to DNA damage. We investigated the effects of DNA-damaging factors (doxorubicin and hydrogen peroxide) on HBV reactivation/replication and the consequent DNA-damage response. Dose-dependent activation of HBV replication was observed in response to doxorubicin and hydrogen peroxide which was associated with a marked elevation in the mRNA levels of ataxia-telangiectasia mutated (ATM) and ATM- and RAD3-related (ATR) kinases. Downregulation of ATM or ATR expression by shRNAs substantially reduced the levels of HBV RNAs and DNA. In contrast, transcriptional activation of ATM or ATR using CRISPRa significantly increased HBV replication. We conclude that ATM and ATR are essential for HBV replication. Furthermore, DNA damage leading to the activation of ATM and ATR transcription, results in the reactivation of HBV replication.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Winter J, P Perez-Pinera (2019)

Directed Evolution of CRISPR-Cas9 Base Editors.

Trends in biotechnology, 37(11):1151-1153.

A recent publication by Thuronyi et al. described a directed evolution system called phage-assisted continuous evolution (PACE) that was used to generate improved variants of CRISPR-Cas9 base editors. These evolved base editors overcome some of the inherent limitations of the technology such as sequence context preferences, restricted editing windows, and large construct sizes.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Tao W, Chen L, Zhao C, et al (2019)

In Vitro Packaging Mediated One-Step Targeted Cloning of Natural Product Pathway.

ACS synthetic biology, 8(9):1991-1997.

Direct cloning of natural product pathways for efficient refactoring and heterologous expression has become an important strategy for microbial natural product research and discovery, especially for those kept silent or poorly expressed in the original strains. Accordingly, the development of convenient and efficient cloning approaches is becoming increasingly necessary. Here we presented an in vitro packaging mediated cloning approach that combines CRISPR/Cas9 system with in vitro λ packaging system, for targeted cloning of natural product pathways. In such a scheme, pathways of Tü3010 (27.4 kb) and sisomicin (40.7 kb) were respectively cloned, and stuR was further depicted to positively regulate Tü3010 production. In vitro packaging mediated approach not only enables to activate cryptic pathways, but also facilitates refactoring or interrogating the pathways in conjunction with various gene editing systems. This approach features an expedited, convenient, and generic manner, and it is conceivable that it may be widely adopted for targeted cloning of the natural product pathways.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Jiang C, Lin X, Z Zhao (2019)

Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer.

Trends in molecular medicine, 25(11):1039-1049.

Since its emergence, the application of CRISPR-associated nuclease 9 (Cas9) technology in cancer research has accelerated studies to investigate many aspects of treatment approaches for lung cancer, including the identification of target genes, construction of animal tumor models, and identification of drug resistance-related genes. Moreover, CRISPR/Cas9 can be used in gene therapy for lung cancer, specifically involving molecular targeted drugs and inhibitors. This article reviews the current landscape of CRISPR/Cas9 applications for lung cancer treatment as a basis for further studies. Given its promising performance, in-depth and systematic research on the application of CRISPR/Cas9 in lung cancer treatment will be necessary in future studies for its successful implementation in clinical practice.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Velázquez E, Lorenzo V, Y Al-Ramahi (2019)

Recombination-Independent Genome Editing through CRISPR/Cas9-Enhanced TargeTron Delivery.

ACS synthetic biology, 8(9):2186-2193.

Group II introns were developed some time ago as tools for the construction of knockout mutants in a wide range of organisms, ranging from Gram-positive and Gram-negative bacteria to human cells. Utilizing these introns is advantageous because they are independent of the host's DNA recombination machinery, they can carry heterologous sequences (and thus be used as vehicles for gene delivery), and they can be easily retargeted for subsequent insertions of additional genes at the user's will. Alas, the use of this platform has been limited, as insertion efficiencies greatly change depending on the target sites and cannot be predicted a priori. Moreover, the ability of introns to perform their own splicing and integration is compromised when they carry foreign sequences. To overcome these limitations, we merged the group II intron-based TargeTron system with CRISPR/Cas9 counterselection. To this end, we first engineered a new group-II intron by replacing the retrotransposition-activated selectable marker (RAM) with ura3 and retargeting it to a new site in the lacZ gene of E. coli. Then, we showed that directing CRISPR/Cas9 toward the wild-type sequences dramatically increased the chances of finding clones that integrated the retrointron into the target lacZ sequence. The CRISPR-Cas9 counterselection strategy presented herein thus overcomes a major limitation that has prevented the use of group II introns as devices for gene delivery and genome editing at large in a recombination-independent fashion.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Martella A, Firth M, Taylor BJM, et al (2019)

Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System.

ACS synthetic biology, 8(9):1998-2006.

The ability to manipulate the expression of mammalian genes using synthetic transcription factors is highly desirable in both fields of basic research and industry for diverse applications, including stem cell reprogramming and differentiation, tissue engineering, and drug discovery. Orthogonal CRISPR systems can be used for simultaneous transcriptional upregulation of a subset of target genes while downregulating another subset, thus gaining control of gene regulatory networks, signaling pathways, and cellular processes whose activity depends on the expression of multiple genes. We have used a rapid and efficient modular cloning system to build and test in parallel diverse CRISPRa and CRISPRi systems and develop an efficient orthogonal gene regulation system for multiplexed and simultaneous up- and downregulation of endogenous target genes.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Shin J, Kang S, Song Y, et al (2019)

Genome Engineering of Eubacterium limosum Using Expanded Genetic Tools and the CRISPR-Cas9 System.

ACS synthetic biology, 8(9):2059-2068.

Eubacterium limosum is one of the important bacteria in C1 feedstock utilization as well as in human gut microbiota. Although E. limosum has recently garnered much attention and investigation on a genome-wide scale, a bottleneck for systematic engineering in E. limosum is the lack of available genetic tools and an efficient genome editing platform. To overcome this limitation, we here report expanded genetic tools and the CRISPR-Cas9 system. We have developed an inducible promoter system that enables implementation of the CRISPR-Cas9 system to precisely manipulate target genes of the Wood-Ljungdahl pathway with 100% efficiency. Furthermore, we exploited the effectiveness of CRISPR interference to reduce the expression of target genes, exhibiting substantial repression of several genes in the Wood-Ljungdahl pathway and fructose-PTS system. These expanded genetic tools and CRISPR-Cas9 system comprise powerful and widely applicable genetic tools to accelerate functional genomic study and genome engineering in E. limosum.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Xiong K, Marquart KF, la Cour Karottki KJ, et al (2019)

Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference.

Biotechnology and bioengineering, 116(7):1813-1819.

Chinese hamster ovary (CHO) cells are widely used for biopharmaceutical protein production. One challenge limiting CHO cell productivity is apoptosis stemming from cellular stress during protein production. Here we applied CRISPR interference (CRISPRi) to downregulate the endogenous expression of apoptotic genes Bak, Bax, and Casp3 in CHO cells. In addition to reduced apoptosis, mitochondrial membrane integrity was improved and the caspase activity was reduced. Moreover, we optimized the CRISPRi system to enhance the gene repression efficiency in CHO cells by testing different repressor fusion types. An improved Cas9 repressor has been identified by applying C-terminal fusion of a bipartite repressor domain, KRAB-MeCP2, to nuclease-deficient Cas9. These results collectively demonstrate that CHO cells can be rescued from cell apoptosis by targeted gene repression using the CRISPRi system.

RevDate: 2020-07-01

Xia PF, Casini I, Schulz S, et al (2020)

Reprogramming acetogenic bacteria with CRISPR-targeted base editing via deamination.

ACS synthetic biology [Epub ahead of print].

Acetogenic bacteria are rising in popularity as chassis microbes in biotechnology due to their capability of converting inorganic one-carbon (C1) gases to organic chemicals. To fully uncover the potential of acetogenic bacteria, synthetic-biology tools are imperative to either engineer designed functions or to interrogate the physiology. Here, we report a genome-editing tool at a one-nucleotide resolution, namely base editing, for acetogenic bacteria based on CRISPR-targeted deamination. This tool combines nuclease deactivated Cas9 with activation-induced cytidine deaminase to enable cytosine-to-thymine substitution without DNA cleavage, homology-directed repair, and donor DNA, which are generally the bottlenecks for applying conventional CRISPR-Cas systems in bacteria. We designed and validated a modularized base-editing tool in the model acetogenic bacterium Clostridium ljungdahlii. The editing principles were investigated, and an in-silico analysis revealed the capability of base editing across the genome and the potential for off-target events. Moreover, genes related to acetate and ethanol production were disrupted individually by installing premature STOP codons to reprogram carbon flux towards improved acetate production. This resulted in engineered C. ljungdahlii strains with the desired phenotypes and stable genotypes. Our base-editing tool promotes the application and research in acetogenic bacteria and provides a blueprint to upgrade CRISPR-Cas-based genome editing in bacteria in general.

RevDate: 2020-07-01

Kuo J, Yuan R, Sánchez C, et al (2020)

Toward a translationally independent RNA-based synthetic oscillator using deactivated CRISPR-Cas.

Nucleic acids research pii:5866101 [Epub ahead of print].

In synthetic circuits, CRISPR-Cas systems have been used effectively for endpoint changes from an initial state to a final state, such as in logic gates. Here, we use deactivated Cas9 (dCas9) and deactivated Cas12a (dCas12a) to construct dynamic RNA ring oscillators that cycle continuously between states over time in bacterial cells. While our dCas9 circuits using 103-nt guide RNAs showed irregular fluctuations with a wide distribution of peak-to-peak period lengths averaging approximately nine generations, a dCas12a oscillator design with 40-nt CRISPR RNAs performed much better, having a strongly repressed off-state, distinct autocorrelation function peaks, and an average peak-to-peak period length of ∼7.5 generations. Along with free-running oscillator circuits, we measure repression response times in open-loop systems with inducible RNA steps to compare with oscillator period times. We track thousands of cells for 24+ h at the single-cell level using a microfluidic device. In creating a circuit with nearly translationally independent behavior, as the RNAs control each others' transcription, we present the possibility for a synthetic oscillator generalizable across many organisms and readily linkable for transcriptional control.

RevDate: 2020-07-01

Wang G, Song G, Y Xu (2020)

Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae.

Infection and drug resistance, 13:1929-1935 pii:253380.

Background: Klebsiella pneumoniae is a common opportunistic pathogen and its production of extended-spectrum β-lactamases (ESBL) and carbapenemases leads to drug resistance. Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (Cas) are widespread in the genome of many bacteria and are a defense mechanism against foreign invaders such as plasmids and viruses.

Purpose: To investigate the prevalence of the CRISPR/Cas system in wild type strains of K. pneumoniae in the hospital and its association with drug resistance.

Materials and Methods: A total of 136 strains were collected and characterized their susceptibility to antimicrobial agents. The prevalence of CRISPR/Cas system was detected by PCR and DNA sequencing was analyzed by CRISPRFinder. The statistical analysis of the results was performed by SPSS.

Results: We found that 50/136 (37%) isolates produced ESBL and 30/136 (22%) isolates were resistant to carbapenems. These isolates were liable to be multidrug resistant against β-lactams, quinolones, and aminoglycosides. Among the carbapenem-resistant isolates, blaKPC was the main drug resistance-associated gene and different types of ESBL and AmpC genes were present. Resistance to β-lactams, quinolones, aminoglycosides, tetracyclines, and β-lactams/enzyme inhibitor were higher in absence of the CRISPR/Cas system. Eighteen spacers within the CRISPR arrays matched with the genomes of plasmids or phages, some of which carried drug resistance genes.

Conclusion: ESBL-producing and carbapenem-resistant K. pneumoniae are more likely to develop multidrug resistance and show an inverse correlation between drug resistance and CRISPR/Cas system. Absence of CRISPR/Cas modules allow for the acquisition of external drug resistance genes.

RevDate: 2020-07-01
CmpDate: 2020-07-01

McCarty NS, Graham AE, Studená L, et al (2020)

Multiplexed CRISPR technologies for gene editing and transcriptional regulation.

Nature communications, 11(1):1281.

Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing and transcriptional regulation. In this review, we discuss multiplexed CRISPR technologies and describe methods for the assembly, expression and processing of synthetic guide RNA arrays in vivo. Applications that benefit from multiplexed CRISPR technologies, including cellular recorders, genetic circuits, biosensors, combinatorial genetic perturbations, large-scale genome engineering and the rewiring of metabolic pathways, are highlighted. We also offer a glimpse of emerging challenges and emphasize experimental considerations for future studies.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Sybirna A, Tang WWC, Pierson Smela M, et al (2020)

A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons.

Nature communications, 11(1):1282.

PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Wang Q, Xie F, Tong Y, et al (2020)

Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes.

Applied microbiology and biotechnology, 104(1):225-239.

Actinobacteria are one of the most important sources of pharmaceutically valuable and industrially relevant secondary metabolites. Modern genome mining reveals that the potential for secondary metabolite production of actinomycetes has been underestimated. Recently, the establishment of CRISPR/Cas9-based genetic manipulation approaches in actinomycetes opened a new era for genome engineering of this type of organism. Compared with the traditional methods, the application of CRISPR/Cas9 shows several advantages in actinomycetes including higher efficiency and ease of operation. However, the screening process for the correctly edited mutants and the plasmid curing are still time- and labor-intensive. To address this problem, we developed an updated version of the CRISPR/Cas9 genome editing system for actinomycetes, based on two chromogenic reporter systems (GusA and IdgS). Our system facilitates both processes of positive clone screening and plasmid curing. Here, we demonstrate by three case studies in both model actinomycetes and non-model actinomycetes that this system is faster and more efficient. We performed the deletion of one single gene, actIORFI (SCO5087 of the actinorhodin gene cluster) in Streptomyces coelicolor M145, one small-size (5.5 kb) gene cluster (orange-pigmented carotenoid gene cluster), and one relatively large-size (61 kb) gene cluster (abyssomicin gene cluster) in Verrucosispora sp. MS100137. The results presented in this study indicate that this updated CRISPR/Cas9 system employing chromogenic reporters is versatile and broadly applicable in genome engineering of actinomycetes, not only for the largest genus Streptomyces.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Xie L, Huang J, Li X, et al (2019)

Generation of a homozygous HDAC6 knockout human embryonic stem cell line by CRISPR/Cas9 editing.

Stem cell research, 41:101610.

Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme in the HDAC family. The HDAC6 has been shown to play important roles in several biological processes. Meanwhile, it is also an attractive therapeutic target for a variety of diseases. However, the mechanism of HDAC6 function is not fully understood yet, and it is still lacking highly specific targeted drugs. Here, we generated a homozygous HDAC6 knockout human embryonic stem cell (hESC) line, WAe009-A-21 by the CRISPR/Cas9-based gene editing method. The WAe009-A-21 cell line does not express HDAC6 protein, while maintaining normal 46, XX karyotype, pluripotency, and trilineage differentiation potential.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Zhan Y, Xu Y, Zheng P, et al (2020)

Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis.

Applied microbiology and biotechnology, 104(1):391-403.

Bacillus licheniformis has been regarded as an outstanding microbial cell factory for the production of biochemicals and enzymes. Due to lack of genetic tools to repress gene expression, metabolic engineering and gene function elucidation are limited in this microbe. In this study, an integrated CRISPR interference (CRISPRi) system was constructed in B. licheniformis. Several endogenous genes, including yvmC, cypX, alsD, pta, ldh, and essential gene rpsC, were severed as the targets to test this CRISPRi system, and the repression efficiencies were ranged from 45.02 to 94.00%. Moreover, the multiple genes were simultaneously repressed with high efficiency using this CRISPRi system. As a case study, the genes involved in by-product synthetic and L-valine degradation pathways were selected as the silence targets to redivert metabolic flux toward L-valine synthesis. Repression of acetolactate decarboxylase (alsD) and leucine dehydrogenase (bcd) led to 90.48% and 80.09 % increases in L-valine titer, respectively. Compared with the control strain DW9i△leuA (1.47 g/L and 1.79 g/L), the L-valine titers of combinatorial strain DW9i△leuA/pHYi-alsD-bcd were increased by 1.27-fold and 2.89-fold, respectively, in flask and bioreactor. Collectively, this work provides a feasible approach for multiplex metabolic engineering and functional genome studies of B. licheniformis.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Sommer F, Torraca V, Kamel SM, et al (2020)

Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish.

Journal of leukocyte biology, 107(2):185-203.

The CXCR3-CXCL11 chemokine-signaling axis plays an essential role in infection and inflammation by orchestrating leukocyte trafficking in human and animal models, including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental regulatory function in signaling networks by shaping chemokine gradients through their ligand scavenging function, while being unable to signal in the classic G-protein-dependent manner. Two copies of the CXCR3 gene in zebrafish, cxcr3.2 and cxcr3.3, are expressed on macrophages and share a highly conserved ligand-binding site. However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand-scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3 receptor because it is required for macrophage motility and recruitment to sites of mycobacterial infection. In this study, we generated a cxcr3.3 CRISPR-mutant to functionally dissect the antagonistic interplay among the cxcr3 paralogs in the immune response. We observed that cxcr3.3 mutants are more susceptible to mycobacterial infection, whereas cxcr3.2 mutants are more resistant. Furthermore, macrophages in the cxcr3.3 mutant are more motile, show higher activation status, and are recruited more efficiently to sites of infection or injury. Our results suggest that Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous regulatory mechanism appears to have evolved after the cxcr3 gene duplication event, through diversification of conventional and atypical receptor variants.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Li X, Sun T, Wang X, et al (2019)

Restore natural fertility of Kitw/Kitwv mouse with nonobstructive azoospermia through gene editing on SSCs mediated by CRISPR-Cas9.

Stem cell research & therapy, 10(1):271.

BACKGROUND: Male infertility is a serious social problem in modern society. Nonobstructive azoospermia (NOA) caused by germ cell gene defects is an important reason for male infertility, but effective clinical treatment for this disease has not been established.

METHODS: We choose Kitw/Kitwv mouse as a research model and try to develop a new treatment strategy and "cure" its infertility. Mutant spermatogonial stem cells (SSCs) were isolated from one single unilateral testis of a 14-day-old Kitw/Kitwv mouse and propagated in vitro. The C to T point mutation on Kitwv site of these SSCs was corrected through CRISPR-Cas9-mediated homology-directed repair (HDR) in vitro. Then, the repaired SSCs were screened out, proliferated, and transplanted into the remaining testis, and complete spermatogenesis was established in the recipient testis.

RESULTS: Healthy offsprings with wild type Kit gene or Kitw mutation were obtained through natural mating 4 months after SSC transplantation.

CONCLUSION: In this study, we established an effective new treatment strategy for NOA caused by germ cell gene defects through a combination of SSC isolation, CRISPR-Cas9-mediated gene editing, and SSC transplantation, which brought hope for these NOA patients to restore their natural fertility.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Zhang X, Xia L, Day BA, et al (2019)

CRISPR/Cas9 Initiated Transgenic Silkworms as a Natural Spinner of Spider Silk.

Biomacromolecules, 20(6):2252-2264.

Using transgenic silkworms with their natural spinning apparatus has proven to be a promising way to spin spider silk-like fibers. The challenges are incorporating native-size spider silk proteins and achieving an inheritable transgenic silkworm strain. In this study, a CRISPR/Cas9 initiated fixed-point strategy was used to successfully incorporate spider silk protein genes into the Bombyx mori genome. Native-size spider silk genes (up to 10 kb) were inserted into an intron of the fibroin heavy or light chain (FibH or FibL) ensuring that any sequence changes induced by the CRISPR/Cas9 would not impact protein production. The resulting fibers are as strong as native spider silks (1.2 GPa tensile strength). The transgenic silkworms have been tracked for several generations with normal inheritance of the transgenes. This strategy demonstrates the feasibility of using silkworms as a natural spider silk spinner for industrial production of high-performance fibers.

RevDate: 2020-06-30

Yu W, Z Wu (2020)

Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases.

Advanced drug delivery reviews pii:S0169-409X(20)30057-0 [Epub ahead of print].

A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.

RevDate: 2020-06-30

Zhang Y, I Karakikes (2020)

Translating Genomic Insights into Cardiovascular Medicines: Opportunities and Challenges of CRISPR-Cas9.

Trends in cardiovascular medicine pii:S1050-1738(20)30087-6 [Epub ahead of print].

The growing appreciation of human genetics and genomics in cardiovascular disease (CVD) accompanied by the technological breakthroughs in genome editing, particularly the CRISPR-Cas9 technologies, has presented an unprecedented opportunity to explore the application of genome editing tools in cardiovascular medicine. The ever-growing genome-editing toolbox includes an assortment of CRISPR-Cas systems with increasing efficiency, precision, flexibility, and targeting capacity. Over the past decade, the advent of large-scale genotyping technologies and genome-wide association studies (GWAS) has provided powerful tools to identify genotype-phenotype associations for diseases with complex traits. Notably, a growing number of loss-of-function mutations have been associated with favorable CVD risk-factor profiles that may confer protection. Combining the newly gained insights into human genetics with recent breakthrough technologies, such as the CRISPR technology, holds great promise in elucidating novel disease mechanisms and transforming genes into medicines. Nonetheless, translating genetic insights into novel therapeutic avenues remains challenging, and applications of "in body" genome editing for CVD treatment and engineering cardioprotection remain mostly theoretical. Here we highlight the recent advances of the CRISPR-based genome editing toolbox and discuss the potential and challenges of CRISPR-based technologies for translating GWAS findings into genomic medicines.

RevDate: 2020-06-30

Wang S, Zong Y, Lin Q, et al (2020)

Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9.

Nature biotechnology pii:10.1038/s41587-020-0566-4 [Epub ahead of print].

Short insertions and deletions can be produced in plant genomes using CRISPR-Cas editors, but reliable production of larger deletions in specific target sites has proven difficult to achieve. We report the development of a series of APOBEC-Cas9 fusion-induced deletion systems (AFIDs) that combine Cas9 with human APOBEC3A (A3A), uracil DNA-glucosidase and apurinic or apyrimidinic site lyase. In rice and wheat, AFID-3 generated deletions from 5'-deaminated C bases to the Cas9-cleavage site. Approximately one-third of deletions produced using AFID-3 in rice and wheat protoplasts (30.2%) and regenerated plants (34.8%) were predictable. We show that eAFID-3, in which the A3A in AFID-3 is replaced with truncated APOBEC3B (A3Bctd), produced more uniform deletions from the preferred TC motif to the double-strand break. AFIDs could be applied to study regulatory regions and protein domains to improve crop plants.

RevDate: 2020-06-30

Ma X, Zhang X, Liu H, et al (2020)

Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9.

Nature plants pii:10.1038/s41477-020-0704-5 [Epub ahead of print].

Genome-editing technologies using CRISPR-Cas nucleases have revolutionized plant science and hold enormous promise in crop improvement. Conventional transgene-mediated CRISPR-Cas reagent delivery methods may be associated with unanticipated genome changes or damage1,2, with prolonged breeding cycles involving foreign DNA segregation and with regulatory restrictions regarding transgenesis3. Therefore, DNA-free delivery has been developed by transfecting preassembled CRISPR-Cas9 ribonucleoproteins into protoplasts4 or in vitro fertilized zygotes5. However, technical difficulties in regeneration from these wall-less cells make impractical a general adaption of these approaches to most crop species. Alternatively, CRISPR-Cas ribonucleoproteins or RNA transcripts have been biolistically bombarded into immature embryo cells or calli to yield highly specific genome editing, albeit at low frequency6-9. Here we report the engineering of a plant negative-strand RNA virus-based vector for DNA-free in planta delivery of the entire CRISPR-Cas9 cassette to achieve single, multiplex mutagenesis and chromosome deletions at high frequency in a model allotetraploid tobacco host. Over 90% of plants regenerated from virus-infected tissues without selection contained targeted mutations, among which up to 57% carried tetra-allelic, inheritable mutations. The viral vector remained stable even after mechanical transmission, and can readily be eliminated from mutated plants during regeneration or after seed setting. Despite high on-target activities, off-target effects, if any, are minimal. Our study provides a convenient, highly efficient and cost-effective approach for CRISPR-Cas9 gene editing in plants through virus infection.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Click to Order from Amazon


By delivering the Cas9 nuclease, complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be precisely cut at any desired location, allowing existing genes to be removed and/or new ones added. That is, the CRISPR-Cas system provides a tool for the cut-and-paste editing of genomes. Welcome to the brave new world of genome editing. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )