About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

19 Apr 2021 at 01:36
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 19 Apr 2021 at 01:36 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-04-15

Walker T, Quek S, Jeffries CL, et al (2021)

Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes.

Current biology : CB pii:S0960-9822(21)00429-2 [Epub ahead of print].

Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An.moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria.

RevDate: 2021-04-15

Edenborough KM, Flores HA, Simmons CP, et al (2021)

Using Wolbachia to eliminate dengue - will the virus fight back?.

Journal of virology pii:JVI.02203-20 [Epub ahead of print].

Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium, Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures that dengue virus might adapt to in order to be effectively transmitted by Ae. aegypti that carry Wolbachia Whilst there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.

RevDate: 2021-04-13

Hu L, Yang C, Hui Y, et al (2021)

Mosquito Control Based on Pesticides and Endosymbiotic Bacterium Wolbachia.

Bulletin of mathematical biology, 83(5):58.

Mosquito-borne diseases, such as dengue fever and Zika, have posed a serious threat to human health around the world. Controlling vector mosquitoes is an effective method to prevent these diseases. Spraying pesticides has been the main approach of reducing mosquito population, but it is not a sustainable solution due to the growing insecticide resistance. One promising complementary method is the release of Wolbachia-infected mosquitoes into wild mosquito populations, which has been proven to be a novel and environment-friendly way for mosquito control. In this paper, we incorporate consideration of releasing infected sterile mosquitoes and spraying pesticides to aim to reduce wild mosquito populations based on the population replacement model. We present the estimations for the number of wild mosquitoes or infection density in a normal environment and then discuss how to offset the effect of the heatwave, which can cause infected mosquitoes to lose Wolbachia infection. Finally, we give the waiting time to suppress wild mosquito population to a given threshold size by numerical simulations.

RevDate: 2021-04-09

Wei Y, Wang J, Wei YH, et al (2021)

Vector Competence for DENV-2 Among Aedes albopictus (Diptera: Culicidae) Populations in China.

Frontiers in cellular and infection microbiology, 11:649975.

Aedes albopictus is a vector of over 20 arboviruses that has spread throughout the world, mainly in the second half of the twentieth century. Approximately 50-100 million people are infected with dengue virus (DENV) transmitted by Aedes mosquitoes each year, leading to heavy economic burdens for both governments and individuals, among countless other negative consequences. Understanding the vector competence of vector species is critical for effectively preventing and controlling vector-borne diseases. Accordingly, in this study, vector competence was evaluated by quantitative analysis of DENV-2 loads in mosquito tissues (midguts, heads, and salivary glands) and whole mosquitoes through real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Wolbachia and the expression of immune-associated genes (Rel1, Rel2, Dicer2, and STAT) in mosquitoes were also detected by RT-qPCR to explore their impact on vector competence. The amount of DENV-2 in the mosquito midguts, heads, and salivary glands from southern-western China were found to be lower than those from eastern-central-northern China. The DENV-2 loads in whole mosquitoes showed a negative correlation with Rel1 gene (r = -0.285, P = 0.011) and STAT gene expression levels (r = -0.289, P = 0.009). In terms of Wolbachia strains, the density of the wAlbB strain was found to be significantly higher than that of the wAlbA strain in the eight Ae. albopictus populations, and the relative density of the wAlbB strain in mosquitoes from southern-western China was higher than those from eastern-central-northern China. The relative density of the wAlbB strain showed a negative correlation with the mean loads of DENV-2 in the heads (r = -0.729, P = 0.040), salivary glands (r = -0.785, P = 0.021), and whole mosquitoes (r = -0.909, P = 0.002). Thus, there are lower DENV-2 loads in the mosquitoes from southern-western China, which may be related to the innate immunity of mosquitoes as affected by Rel1 in the Toll pathway, STAT in the JAK-STAT pathway, and the relative density of the wAlbB strain.

RevDate: 2021-04-07
CmpDate: 2021-04-07

Pietri JE, D Liang (2020)

Insecticidal Activity of Doxycycline against the Common Bedbug.

Antimicrobial agents and chemotherapy, 64(5):.

There is an ongoing need for safe and effective anti-bedbug compounds. Here, we tested the toxicity of three antimicrobial agents against bedbugs when administered orally. We reveal that doxycycline has direct insecticidal activity at 250 μg/ml (0.025%) that is particularly strong against immature bedbugs and appears to be independent of antimicrobial activity. Future studies to determine the mechanisms behind this property could be useful for the development of orally active insecticides or anti-bedbug therapeutics.

RevDate: 2021-04-06

Che-Mendoza A, Martin-Park A, Chávez-Trava JM, et al (2021)

Abundance and Seasonality of Aedes aegypti (Diptera: Culicidae) in Two Suburban Localities of South Mexico, With Implications for Wolbachia (Rickettsiales: Rickettsiaceae)-Carrying Male Releases for Population Suppression.

Journal of medical entomology pii:6208904 [Epub ahead of print].

We conducted a baseline characterization of the abundance and seasonality of Aedes aegypti (Linnaeus, 1762)-a vector of dengue, chikungunya, and Zika-in two suburban localities of Yucatan, Mexico, as the first step in the implementation of an integrated vector management (IVM) plan combining 'traditional Aedes control' (source reduction/truck-mounted ultra-low volume [ULV] spraying) and incompatible insect technique/sterile insect technique for population suppression in Yucatan, Mexico. Weekly entomological collections with ovitraps and BG-sentinel traps were performed in 1-ha quadrants of both localities for 1 yr. Three distinct periods/phases were identified, closely associated with precipitation: 1) a phase of low population abundance during the dry season (weekly average of Aedes eggs per ovitrap and adults per BG trap = 15.51 ± 0.71 and 10.07 ± 0.88, respectively); 2) a phase of population growth and greatest abundance of Aedes (49.03 ± 1.48 eggs and 25.69 ± 1.31 adults) during the rainy season; and finally 3) a phase of decline among populations (20.91 ± 0.97 eggs and 3.24 ± 0.21 adults) after the peak of the rainy season. Seasonal abundance and dynamics of Ae. aegypti populations suggest that it is feasible to develop and implement time-specific actions as part of an IVM approach incorporating integrating novel technologies (such as rear-and-release of Wolbachia-infected males) with classic (insecticide-based) approaches implemented routinely for vector control. In agreement with the local vector control program, we propose a pilot IVM strategy structured in a preparation phase, an attack phase with traditional vector control, and a suppression phase with inundative releases, which are described in this paper.

RevDate: 2021-04-02

Jiang N, Xue DY, Han HX, et al (2021)

Estimating hybridization as a consequence of climatic fluctuations: a case study of two Geometridae species.

Molecular phylogenetics and evolution pii:S1055-7903(21)00101-9 [Epub ahead of print].

In some cases, the phylogenetic analysis based on the mitochondrial DNA (mtDNA) and the nuclear DNA (ncDNA) are discordant. There are three major causes of the discordance within insects, including hybridization, incomplete lineage sorting (ILS) and infection by Wolbachia. In this study, we used a combination of multilocus and coalescent analyses to explore these processes occurred during the evolutionary history of Limbatochlamys rosthorni Rothschild, 1894 and Limbatochlamys pararosthorni Han and Xue, 2005. The ncDNA phylogenetic tree supported two reciprocally monophyletic species, whereas the mtDNA results failed to reveal such a structure and revealed an extensive level of admixture between two species. Because of very low Wolbachia infection rates (<20%), we firstly excluded this reason for the discordance. The fixed nucleotide differences and large genetic distances (1.5-2.5%) at the ncDNA genes suggested that the lineage sorting process between these two species is nearly complete and two species have experienced a prolonged period of independent evolution. Thus, we secondly excluded ILS. Sharing haplotypes, mtDNA gene flow occurring and the transitional samples with morphological features supported hybridization. The distribution contraction during glaciations and postglacial distribution expansion might have facilitated hybridization. Taken together, our study indicates that the current genetic structure of L. rosthorni and L. pararosthorni is the results of contraction and fragmentation into separated refugia during glaciations, followed by postglacial expansion and admixture.

RevDate: 2021-04-01

Konecka E, Z Olszanowski (2021)

Wolbachia supergroup E found in Hypochthonius rufulus (Acari: Oribatida) in Poland.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases pii:S1567-1348(21)00126-X [Epub ahead of print].

Data on the spread of intracellular bacteria in oribatid mites (Acari: Oribatida) are scarce. Our work fills a gap in the research on endosymbionts in this group of invertebrates and provides information on Wolbachia infection in Hypochthionus rufulus (Acari: Oribatida) from soil, litter and moss samples collected in south-eastern Poland. This is the first report of Wolbachia in H. rufulus. Phylogeny based on the analysis of the 16S rRNA, gatB, fbpA, gltA, ftsZ and hcpA gene sequences revealed that Wolbachia from H. rufulus represented supergroup E and was related to bacterial endosymbionts of Collembola. The unique sequence within Wolbachia supergroup E was detected for the 16S rRNA gene of the bacteria from H. rufulus. The sequences of Wolbachia 16S rRNA and housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies.

RevDate: 2021-03-29

Flatau R, Segoli M, H Hawlena (2021)

Wolbachia Endosymbionts of Fleas Occur in All Females but Rarely in Males and Do Not Show Evidence of Obligatory Relationships, Fitness Effects, or Sex-Distorting Manipulations.

Frontiers in microbiology, 12:649248.

The widespread temporal and spatial persistence of endosymbionts in arthropod host populations, despite potential conflicts with their hosts and fluctuating environmental conditions, is puzzling. Here, we disentangled three main mechanisms that are commonly proposed to explain such persistence, namely, obligatory relationships, in which the host is fully dependent on its endosymbiont, fitness advantages conferred by the endosymbiont, and reproductive manipulations imposed by the endosymbiont. Our model system reflects an extreme case, in which the Wolbachia endosymbiont persists in all female flea hosts but rarely in male ones. We cured fleas of both sexes of Wolbachia but found no indications for either lower reproduction, offspring survival, or a change in the offspring sex ratio, compared to Wolbacia-infected fleas. These results do not support any of the suggested mechanisms. We highlight future directions to advance our understanding of endosymbiont persistence in fleas, as well as in other model systems, with extreme sex-differences in endosymbiont persistence. Insights from such studies are predicted to shed light on the evolution and ecology of arthropod-endosymbiont interactions in nature.

RevDate: 2021-03-25

Pilgrim J, Thongprem P, Davison HR, et al (2021)

Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis.

GigaScience, 10(3):.

BACKGROUND: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.

RESULTS: This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects.

CONCLUSIONS: This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.

RevDate: 2021-03-24

Abrun P, Ashouri A, Duplouy A, et al (2021)

Wolbachia impairs post-eclosion host preference in a parasitoid wasp.

Die Naturwissenschaften, 108(2):13.

Host preference behavior can result in adaptive advantages with important consequences for the fitness of individuals. Hopkin's host-selection principle (HHSP) suggests that organisms at higher trophic levels demonstrate a preference for the host species on which they developed during their own larval stage. Although investigated in many herbivorous and predatory insects, the HHSP has, to our knowledge, never been tested in the context of insects hosting selfish endosymbiotic passengers. Here, we investigated the effect of infection with the facultative bacterial symbiont Wolbachia on post-eclosion host preference in the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae). We compared host preference in Wolbachia-infected individuals and uninfected adult female parasitoids after rearing them on two different Lepidopteran hosts, namely the flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) or the grain moth Sitotroga cerealella (Lepidoptera: Gelechiidae) in choice and no choice experimental design (n = 120 wasps per each choice/no choice experiments). We showed that in T. brassicae, Wolbachia affects the post-eclosion host preference of female wasps. Wolbachia-infected wasps did not show any host preference and more frequently switched hosts in the laboratory, while uninfected wasps significantly preferred to lay eggs on the host species they developed on. Additionally, Wolbachia significantly improved the emergence rate of infected wasps when reared on new hosts. Altogether, our results revealed that the wasp's infection with Wolbachia may lead to impairment of post-eclosion host preference and facilitates growing up on different host species. The impairment of host preference by Wolbachia may allow T. brassicae to shift between hosts, a behavior that might have important evolutionary consequences for the wasp and its symbiont.

RevDate: 2021-03-15

Wang YT, Shen RX, Xing D, et al (2021)

Metagenome Sequencing Reveals the Midgut Microbiota Makeup of Culex pipiens quinquefasciatus and Its Possible Relationship With Insecticide Resistance.

Frontiers in microbiology, 12:625539.

Midgut microbiota can participate in the detoxification and metabolism processes in insects, but there are few reports on the relationship between midgut microbiota and insecticide resistance in mosquitoes. In this study, we performed metagenomic sequencing on a susceptible strain (SS), a field-collected Hainan strain (HN), and a deltamethrin-resistant strain (RR) of Culex pipiens quinquefasciatus to understand the diversity and functions of their midgut microbiota. The results revealed differences in midgut microbiota among the three strains of Cx. pipiens quinquefasciatus. At the phylum level, Proteobacteria was the most prominent, accounting for nearly 70% of their midgut microbes. At the genus level, Aeromonas made up the highest proportion. In addition, Aeromonas, Morganella, Elizabethkingia, Enterobacter, Cedecea, and Thorsellia showed significant differences between strains. At the species level, Bacillus cereus, Enterobacter cloacae complex sp. 4DZ3-17B2, Streptomyces sp. CNQ329, and some species of Pseudomonas and Wolbachia were more abundant in the two resistant strains. Principal component analysis (PCA) showed that the SS strain had significantly different metagenomic functions than the two deltamethrin-resistant strains (HN and RR strain). The HN and RR strains differed from the SS strain in more than 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The analysis of species abundance and functional diversity can provide directions for future studies.

RevDate: 2021-03-15

Martins M, Ramos LFC, Murillo JR, et al (2021)

Comprehensive Quantitative Proteome Analysis of Aedes aegypti Identifies Proteins and Pathways Involved in Wolbachia pipientis and Zika Virus Interference Phenomenon.

Frontiers in physiology, 12:642237.

Zika virus (ZIKV) is a global public health emergency due to its association with microcephaly, Guillain-Barré syndrome, neuropathy, and myelitis in children and adults. A total of 87 countries have had evidence of autochthonous mosquito-borne transmission of ZIKV, distributed across four continents, and no antivirus therapy or vaccines are available. Therefore, several strategies have been developed to target the main mosquito vector, Aedes aegypti, to reduce the burden of different arboviruses. Among such strategies, the use of the maternally-inherited endosymbiont Wolbachia pipientis has been applied successfully to reduce virus susceptibility and decrease transmission. However, the mechanisms by which Wolbachia orchestrate resistance to ZIKV infection remain to be elucidated. In this study, we apply isobaric labeling quantitative mass spectrometry (MS)-based proteomics to quantify proteins and identify pathways altered during ZIKV infection; Wolbachia infection; co-infection with Wolbachia/ZIKV in the A. aegypti heads and salivary glands. We show that Wolbachia regulates proteins involved in reactive oxygen species production, regulates humoral immune response, and antioxidant production. The reduction of ZIKV polyprotein in the presence of Wolbachia in mosquitoes was determined by MS and corroborates the idea that Wolbachia helps to block ZIKV infections in A. aegypti. The present study offers a rich resource of data that may help to elucidate mechanisms by which Wolbachia orchestrate resistance to ZIKV infection in A. aegypti, and represents a step further on the development of new targeted methods to detect and quantify ZIKV and Wolbachia directly in complex tissues.

RevDate: 2021-03-11

Dobson SL (2021)

When More is Less: Mosquito Population Suppression Using Sterile, Incompatible and Genetically Modified Male Mosquitoes.

Journal of medical entomology pii:6168294 [Epub ahead of print].

The current review of the Sterile Insect Technique (SIT) is motivated by new technologies and the recent renaissance of male release field trials, which is driving an evolution in mosquito control and regulation. Practitioners that are releasing male mosquitoes would do well to learn from past successes and failures, including political and public engagement complications. With examples that include nuanced integrations of the different technologies, e.g., combinations of Wolbachia and irradiation, it is critical that scientists understand and communicate accurately about the technologies, including their evolving management by different regulatory agencies in the USA. Some male release approaches are considered 'pesticides' and regulated by federal and state agencies, while other male release approaches are unregulated. It is important to consider how the new technologies fit with the more 'traditional' chemical applications of adulticides and larvicides. The economics of male release programs are substantially different from traditional control costs, which can be a challenge to their adoption by abatement districts. However, there is substantial need to overcome these complications and challenges, because the problem with invasive mosquitoes grows ever worse with factors that include insecticide resistance, globalization and climate change.

RevDate: 2021-03-08

Shropshire JD, Rosenberg R, SR Bordenstein (2021)

The impacts of cytoplasmic incompatibility factor (cifA and cifB) genetic variation on phenotypes.

Genetics, 217(1):1-13.

Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI's genetic basis, phenotypic variation patterns, and mechanism.

RevDate: 2021-03-06

Zheng Z, Hu X, Xu Y, et al (2021)

Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr.

Insects, 12(2): pii:insects12020176.

Ponerine ants are generalist predators feeding on a variety of small arthropods, annelids, and isopods; however, knowledge of their bacterial communities is rather limited. This study investigated the bacterial composition and diversity in the digestive tract (different gut sections and the infrabuccal pockets (IBPs)) of two ponerine ant species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) distributed in northwestern China using high-throughput sequencing. We found that several dominant bacteria that exist in other predatory ants were also detected in these two ponerine ant species, including Wolbachia, Mesoplasma, and Spiroplasma. Bacterial communities of these two ant species were differed significantly from each other, and significant differences were also observed across their colonies, showing distinctive inter-colony characteristics. Moreover, bacterial communities between the gut sections (crops, midguts, and hindguts) of workers were highly similar within colony, but they were clearly different from those in IBPs. Further, bacterial communities in the larvae of O. monticola were similar to those in the IBPs of workers, but significantly different from those in gut sections. We presume that the bacterial composition and diversity in ponerine ants are related to their social behavior and feeding habits, and bacterial communities in the IBPs may play a potential role in their social life.

RevDate: 2021-03-05

Ma YJ, He HP, Zhao HM, et al (2021)

Microbiome diversity of cotton aphids (Aphis gossypii) is associated with host alternation.

Scientific reports, 11(1):5260.

Aphids are infected by a series of bacteria that can help them survive on specific host plants. However, the associations between aphids and these bacteria are not clear, and the bacterial communities in many aphid species are poorly characterized. Here, we investigated the bacterial communities of cotton aphids (Aphis gossypii) on 2 representative winter host plants and transferred to 3 summer host plants by 16S rDNA sequencing using the Illumina MiSeq platform. Our results revealed that the bacterial communities varied among cotton aphids on hibiscus, cotton aphids on pomegranate, cotton aphids on cotton transferred from hibiscus, cotton aphids on muskmelon transferred from hibiscus, cotton aphids on cucumber transferred from hibiscus,. The diversity and richness of the bacterial communities were significantly higher in aphids on muskmelon and aphids on cucumber than in the other treatments. There were two main factors influencing the distribution of internal bacterial OTUs revealed by principal component analysis, including the differences among Punicaceae, Malvaceae and Cucurbitaceae. There were 28 bacterial communities with significant differences between two arbitrary treatments, which could be grouped into 6 main clusters depending on relative abundance. Moreover, our results indicated that in addition to the obligate endosymbiont Buchnera, with a dominant position (> 52%), A. gossypii also harbored 3 facultative endosymbiotic bacteria (Serratia, Arsenophonus, and Wolbachia) and 3 possibly symbiotic bacteria (Acinetobacter, Pantoea, and Flavobacterium). There were several correspondences between the symbiotic bacteria in cotton aphids and the specific host plants of the aphids. This study provides a better understanding of the interactions among symbiotic bacteria, aphids and host plants, suggesting that the selection pressure on aphid bacterial communities is likely to be exerted by the species of host plants.

RevDate: 2021-03-04

Romanov DA, Zakharov IA, EV Shaikevich (2020)

Wolbachia, Spiroplasma, and Rickettsia symbiotic bacteria in aphids (Aphidoidea).

Vavilovskii zhurnal genetiki i selektsii, 24(6):673-682.

Aphids are a diverse family of crop pests. Aphids formed a complex relationship with intracellular bacteria. Depending on the region of study, the species composition of both aphids and their facultative endosymbionts varies. The aim of the work was to determine the occurrence and genetic diversity of Wolbachia, Spiroplasma and Rickettsia symbionts in aphids collected in 2018-2019 in Moscow. For these purposes, 578 aphids from 32 collection sites were tested by PCR using specific primers. At least 21 species of aphids from 14 genera and four families were identified by barcoding method, of which 11 species were infected with endosymbionts. Rickettsia was found in six species, Wolbachia in two species, Spiroplasma in one species. The presence of Rickettsia in Impatientinum asiaticum, Myzus cerasi, Hyalopterus pruni, Eucallipterus tiliae, Chaitophorus tremulae and Wolbachia in Aphis pomi and C. tremulae has been described for the first time. A double infection with Rickettsia and Spiroplasma was detected in a half of pea aphid (Acyrthosiphon pisum) individuals. For the first time was found that six species of aphids are infected with Rickettsia that are genetically different from previously known. It was first discovered that A. pomi is infected with two Wolbachia strains, one of which belongs to supergroup B and is genetically close to Wolbachia from C. tremulae. The second Wolbachia strain from A. pomi belongs to the supergroup M, recently described in aphid species. Spiroplasma, which we observed in A. pisum, is genetically close to male killing Spiroplasma from aphids, ladybirds and moths. Both maternal inheritance and horizontal transmission are the pathways for the distribution of facultative endosymbiotic bacteria in aphids.

RevDate: 2021-03-01

Wangkeeree J, Sanit P, Roddee J, et al (2021)

Phylogeny and Strain Typing of Wolbachia from Yamatotettix flavovittatus Matsumura Leafhoppers.

Current microbiology [Epub ahead of print].

Wolbachia is a maternally inherited bacterium of insects that can alter the reproduction, biology, and fitness of the hosts. It was detected in natural populations of the Yamatotettix flavovittatus Matsumura leafhoppers, the vector of phytoplasma, which is responsible for sugarcane white leaf disease. Wolbachia infection prolongs the longevity of female leafhoppers and promotes a strong reproductive incompatibility; importantly, highly maternal transmission rate was observed. However, limited data on the diversity or strain typing of Wolbachia in Y. flavovittatus are available. We aimed here to detect the presence of Wolbachia in different populations by amplification of the wsp gene, which was then sequenced. Multilocus sequence typing (MLST) was also performed to explore the diversity of the Wolbachia strains. Based on the wsp sequences, Wolbachia in the Y. flavovittatus leafhoppers belonged to supergroup B, and formed a distinct evolutionary lineage; therefore, we designated this new specific strain as wYfla. The MLST profiles revealed ten potential new sequence types (STs) in different leafhopper populations. Multiple STs were detected in individual leafhoppers, among which the ST-wYfla1 strain was predominant. Furthermore, we obtained congruent results for the phylogenetic analyses using the wsp gene and MLST loci. To the best of our knowledge, this is the first study characterizing Wolbachia strains in Y. flavovittatus. Our results reveal a novel strain and multiple STs of Wolbachia, and these data may prove useful in the exploitation of Wolbachia as a biological Y. flavovittatus control agent.

RevDate: 2021-03-01

Burdina EV, Bykov RA, Menshanov PN, et al (2021)

Unique Wolbachia strain wMelPlus increases heat stress resistance in Drosophila melanogaster.

Archives of insect biochemistry and physiology [Epub ahead of print].

Maternally inherited endosymbiotic bacterium Wolbachia infects Drosophila melanogaster populations worldwide. Its genetic diversity includes several closely related genotypes, which can be attributed to two main genotype groups: wMel and wMelCS. Here, we studied eight D. melanogaster lines carrying the nuclear background of wild type interbred Bi90 line and cytoplasmic backgrounds with or without Wolbachia of different origin, each of which belongs to wMelCS genotype group. We analyzed the effect these seven Wolbachia strains had on the heat stress resistance and dopamine metabolism in D. melanogaster females. Survival under heat stress (38°C, 3 h 30 min) was increased only in the line infected with bacteria of the wMelPlus strain. At the same time, the activity of alkaline phosphatase (an enzyme regulating the pool of dopamine precursor tyrosine) was increased under normal conditions in females infected with all strains under study and retained the response to heat stress typical for the uninfected line. Thus, we found the unique Wolbachia strain that provides an increase of the host stress resistance, and demonstrated that the mechanism of this resistance is not dopamine-mediated.

RevDate: 2021-02-25

Benedict MQ (2021)

Sterile Insect Technique: Lessons From the Past.

Journal of medical entomology pii:6149427 [Epub ahead of print].

When E.F. Knipling conceived of the release of sexually sterile insects to suppress wild populations, he laid down several fundamental qualities that characterized suitable target species-some of which mosquitoes generally violate-including high reproductive rates and large population numbers. Regardless of this, their global importance in public health has led numerous research teams to attempt to use the mosquito sterile insect technique against several species. Because of the degree of financial commitment required for suppression programs, most releases have consisted of preliminary investigations of male performance, population characteristics, and production methods. Those that have accomplished suppression provide important insights regarding the challenges of production, dispersal, and immigration. Insights gained from these studies remain relevant today, regardless of the genetic control technology being applied. In this article, I highlight studies that were notable for the insights that were gained, the intrinsic difficulties that mosquitoes present, and synthesize these into recommendations for successful applications of the sterile insect technique and newer technologies to mosquitoes.

RevDate: 2021-02-25

Bulman CA, Chappell L, Gunderson E, et al (2021)

The Eagle effect in the Wolbachia-worm symbiosis.

Parasites & vectors, 14(1):118.

BACKGROUND: Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two human neglected tropical diseases that cause major disabilities. Mass administration of drugs targeting the microfilarial stage has reduced transmission and eliminated these diseases in several countries but a macrofilaricidal drug that kills or sterilizes the adult worms is critically needed to eradicate the diseases. The causative agents of onchocerciasis and lymphatic filariasis are filarial worms that harbor the endosymbiotic bacterium Wolbachia. Because filarial worms depend on Wolbachia for reproduction and survival, drugs targeting Wolbachia hold great promise as a means to eliminate these diseases.

METHODS: To better understand the relationship between Wolbachia and its worm host, adult Brugia pahangi were exposed to varying concentrations of doxycycline, minocycline, tetracycline and rifampicin in vitro and assessed for Wolbachia numbers and worm motility. Worm motility was monitored using the Worminator system, and Wolbachia titers were assessed by qPCR of the single copy gene wsp from Wolbachia and gst from Brugia to calculate IC50s and in time course experiments. Confocal microscopy was also used to quantify Wolbachia located at the distal tip region of worm ovaries to assess the effects of antibiotic treatment in this region of the worm where Wolbachia are transmitted vertically to the microfilarial stage.

RESULTS: Worms treated with higher concentrations of antibiotics had higher Wolbachia titers, i.e. as antibiotic concentrations increased there was a corresponding increase in Wolbachia titers. As the concentration of antibiotic increased, worms stopped moving and never recovered despite maintaining Wolbachia titers comparable to controls. Thus, worms were rendered moribund by the higher concentrations of antibiotics but Wolbachia persisted suggesting that these antibiotics may act directly on the worms at high concentration. Surprisingly, in contrast to these results, antibiotics given at low concentrations reduced Wolbachia titers.

CONCLUSION: Wolbachia in B. pahangi display a counterintuitive dose response known as the "Eagle effect." This effect in Wolbachia suggests a common underlying mechanism that allows diverse bacterial and fungal species to persist despite exposure to high concentrations of antimicrobial compounds. To our knowledge this is the first report of this phenomenon occurring in an intracellular endosymbiont, Wolbachia, in its filarial host.

RevDate: 2021-02-21

Guo H, Wang N, Niu H, et al (2021)

Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens.

BMC ecology and evolution, 21(1):31.

BACKGROUND: Co-infection of endosymbionts in the same host is ubiquitous, and the interactions of the most common symbiont Wolbachia with other symbionts, including Spiroplasma, in invertebrate organisms have received increasing attention. However, the interactions between Wolbachia and Arsenophonus, another widely distributed symbiont in nature, are poorly understood. We tested the co-infection of Wolbachia and Arsenophonus in different populations of Nilaparvata lugens and investigated whether co-infection affected the population size of the symbionts in their host.

RESULTS: A significant difference was observed in the co-infection incidence of Wolbachia and Arsenophonus among 5 populations of N. lugens from China, with nearly half of the individuals in the Zhenjiang population harbouring the two symbionts simultaneously, and the rate of occurrence was significantly higher than that of the other 4 populations. The Arsenophonus density in the superinfection line was significantly higher only in the Maanshan population compared with that of the single-infection line. Differences in the density of Wolbachia and Arsenophonus were found in all the tested double-infection lines, and the dominant symbiont species varied with the population only in the Nanjing population, with Arsenophonus the overall dominant symbiont.

CONCLUSIONS: Wolbachia and Arsenophonus could coexist in N. lugens, and the co-infection incidence varied with the geographic populations. Antagonistic interactions were not observed between Arsenophonus and Wolbachia, and the latter was the dominant symbiont in most populations.

RevDate: 2021-02-19

Noor-Shazleen-Husnie MM, Emelia O, Ahmad-Firdaus MS, et al (2018)

Detection of Wolbachia in wild mosquito populations from selected areas in Peninsular Malaysia by loop-mediated isothermal amplification (LAMP) technique.

Tropical biomedicine, 35(2):330-346.

Wolbachia, a naturally endosymbiotic bacteria, has shown its potential as one of biological control agents for vector borne diseases. Due to large number of mosquitoes involved in Wolbachia screening, Loop-mediated isothermal amplification (LAMP) is recommended as a convenient and time-saving technique. This study aimed to evaluate a newly developed LAMP assay for detection of Wolbachia by targeting 16S rDNA gene in samples of wild mosquito populations. The LAMP products were confirmed by colorimetric detection using hydroxy naphthol blue (HNB), digestion with RsaI restriction enzyme and gel electrophoresis. The restriction enzyme digestion of PCR products was performed to differentiate between Wolbachia supergroups A and B. Out of 765 mosquito samples tested, 349 (45.6%) and 237 (31%) of the samples were positive for LAMP and PCR techniques respectively. The prevalence of Wolbachia detected in mosquitoes was significantly higher using LAMP as compared to PCR. There is significant association between numbers of mosquitoes positive with Wolbachia detected using LAMP and PCR (χ2=61.31; df=1; p < 0.05) with a kappa (κ) value of 0.27 and Phi value, 0.283. This study highlighted the potential of LAMP as a sensitive, specific and rapid tool for screening of Wolbachia in mosquitoes, thus it presents as an alternative to PCR-based assays.

RevDate: 2021-02-17

Vythilingam I, WS Wan-Yusoff (2017)

Dengue vector control in Malaysia: Are we moving in the right direction?.

Tropical biomedicine, 34(4):746-758.

Dengue is a major public health problem across more than 123 countries. Vector control has been the hallmark of the dengue control programme in many countries in Southeast Asia since there are no anti-dengue drugs available, and the most recent dengue vaccine is partly efficacious. House-to-house larval surveys, source reduction, larviciding, fogging, ULV which have been carried out since the inception of the dengue control programme in the 1970s are no longer practicable and need to be augmented by more targeted but less ambitious outbreak responses that focus on a few tools that might justify expense of deployment. However, according to recent reports these tools have not really been evaluated for their effectiveness in dengue control. Novel techniques such the release of genetically modified mosquitoes (RIDL) and the use of the bacterium Wolbachia to control the populations of the Ae. aegypti are still under trial. In this review proactive methods to detect epidemics have been suggested. Tools based on adult mosquitoes is an important strategy for dengue vector surveillance and control. The outbreak response may be more efficient when timely vector control measures are implemented after the immediate detection of an infected mosquito.

RevDate: 2021-02-17

Teo CHJ, Lim PKC, Voon K, et al (2017)

Detection of dengue viruses and Wolbachia in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia.

Tropical biomedicine, 34(3):583-597.

Dengue fever (DF) is currently one of the most important mosquito-borne diseases that affects humans. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by four serotypes of dengue viruses (DENV-1 to DENV-4). The main vector transmitting dengue is Aedes aegypti while Aedes albopictus acts as a secondary vector. As treatment is unavailable and the first dengue vaccine approved in Mexico, Dengvaxia® has yet to be accepted worldwide, prevention of the disease relies heavily on surveillance and control of mosquito vectors. A transgene driver, Wolbachia was found to limit the transmission of dengue virus in Aedes mosquitoes. Wolbachia alone was able to inhibit viral replication, dissemination and transmission in A. aeygpti mosquitoes in experimental studies. In A. albopictus, Wolbachia did not affect the replication of dengue virus but was able to reduce the viral infection of mosquito salivary glands and limit transmission. Studies on Wolbachia have all been carried out in adult Aedes mosquitoes, hence this study was conducted to determine the presence of dengue virus serotypes and Wolbachia in A. aegypti and A. albopictus larvae collected from ovitraps in four localities in Kuala Lumpur viz. Happy Gardens, IMU Bukit Jalil, Ampang and Taman Yarl. Another objective of this study was to determine the association between dengue virus serotypes and the presence of Wolbachia in A. aegypti and A. albopictus larvae. A total of 300 mosquito larvae was collected; 99 (Happy Gardens), 85 (Bukit Jalil), 73 (Ampang) and 43 (Taman Yarl). Out of 300 larvae collected, 284 were identified as A. albopictus and 16 others were identified as A. aegypti. Of the 284 A. albopictus larvae collected, 211 (74.3%) and 73 (25.7%) were found to be negative and positive for dengue virus respectively. The dengue serotypes detected were 2 DENV-2 (2.7%), 58 DENV-3 (79.5%) and 13 DENV-4 (17.8%). DENV-1 was not detected in any of the A. albopictus larvae. For A. aegypti, out of 16 A. aegypti larvae collected, 12 (75%) were found to be negative and 4 (25%) were positive for DENV-2. For the detection of Wolbachia in A. albopictus, 71 out of 284 (25%) and 213 (75%) larvae were found to be positive and negative for Wolbachia respectively. For A. aegypti, 4 (25%) and 12 (75%) out of 16 larvae were positive and negative for Wolbachia respectively. This is the first report of Wolbachia in A. albopictus and A. aegypti larvae in Malaysia. A chisquare test analysis to determine the association between dengue virus and Wolbachia in A. albopictus and A. aegypti larvae collected from the four localities in Kuala Lumpur showed that there was no association (χ2 = 3.080; df = 1; P > 0.05).

RevDate: 2021-02-16

Lau MJ, Ross PA, AA Hoffmann (2021)

Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics.

PLoS neglected tropical diseases, 15(2):e0009179 pii:PNTD-D-20-02099 [Epub ahead of print].

The endosymbiotic bacterium Wolbachia shows viral blocking in its mosquito host, leading to its use in arboviral disease control. Releases with Wolbachia strains wMel and wAlbB infecting Aedes aegypti have taken place in several countries. Mosquito egg survival is a key factor influencing population persistence and this trait is also important when eggs are stored prior to releases. We therefore tested the viability of mosquitoes derived from Wolbachia wMel and wAlbB-infected as well as uninfected eggs after long-term storage under diurnal temperature cycles of 11-19°C and 22-30°C. Eggs stored at 11-19°C had higher hatch proportions than those stored at 22-30°C. Adult Wolbachia density declined when they emerged from eggs stored for longer, which was associated with incomplete cytoplasmic incompatibility (CI) when wMel-infected males were crossed with uninfected females. Females from stored eggs at both temperatures continued to show perfect maternal transmission of Wolbachia, but storage reduced the fecundity of both wMel and wAlbB-infected females relative to uninfected mosquitoes. Furthermore, we found a very strong negative impact of the wAlbB infection on the fertility of females stored at 22-30°C, with almost 80% of females hatching after 11 weeks of storage being infertile. Our findings provide guidance for storing Wolbachia-infected A. aegypti eggs to ensure high fitness adult mosquitoes for release. Importantly, they also highlight the likely impact of egg quiescence on the population dynamics of Wolbachia-infected populations in the field, and the potential for Wolbachia to suppress mosquito populations through cumulative fitness costs across warm and dry periods, with expected effects on dengue transmission.

RevDate: 2021-02-16

Farnesi LC, Carvalho FD, Lacerda APC, et al (2021)

Correction to: The influence of different sources of blood meals on the physiology of Aedes aegypti harboring Wolbachia wMel: mouse blood as an alternative for mosquito rearing.

Parasites & vectors, 14(1):109.

RevDate: 2021-02-15

Pimentel AC, Cesar CS, Martins M, et al (2020)

The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects.

Frontiers in immunology, 11:626329.

Wolbachia is a maternally transmitted bacterium that lives inside arthropod cells. Historically, it was viewed primarily as a parasite that manipulates host reproduction, but more recently it was discovered that Wolbachia can also protect Drosophila species against infection by RNA viruses. Combined with Wolbachia's ability to invade insect populations due to reproductive manipulations, this provides a way to modify mosquito populations to prevent them transmitting viruses like dengue. In this review, we discuss the main advances in the field since Wolbachia's antiviral effect was discovered 12 years ago, identifying current research gaps and potential future developments. We discuss that the antiviral effect works against a broad range of RNA viruses and depends on the Wolbachia lineage. We describe what is known about the mechanisms behind viral protection, and that recent studies suggest two possible mechanisms: activation of host immunity or competition with virus for cellular resources. We also discuss how association with Wolbachia may influence the evolution of virus defense on the insect host genome. Finally, we investigate whether the antiviral effect occurs in wild insect populations and its ecological relevance as a major antiviral component in insects.

RevDate: 2021-02-15

Scolari F, Sandionigi A, Carlassara M, et al (2021)

Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults.

Frontiers in microbiology, 12:624170.

The mosquito body hosts highly diverse microbes, which influence different physiological traits of both larvae and adults. The composition of adult mosquito microbiota is tightly linked to that of larvae, which are aquatic and feed on organic detritus, algae and prokaryotic microorganisms present in their breeding sites. Unraveling the ecological features of larval habitats that shape the structure of bacterial communities and their interactions with the mosquito host is still a poorly investigated topic in the Asian tiger mosquito Aedes albopictus, a highly invasive species that is vector of numerous arboviruses, including Dengue, Chikungunya, and Zika viruses. In this study, we investigated the composition of the bacterial community present in the water from a natural larval breeding site in which we separately reared wild-collected larvae and hatched eggs of the Foshan reference laboratory strain. Using sequence analysis of bacterial 16S rRNA gene amplicons, we comparatively analyzed the microbiota of the larvae and that of adult mosquitoes, deriving information about the relative impact of the breeding site water on shaping mosquito microbiota. We observed a higher bacterial diversity in breeding site water than in larvae or adults, irrespective of the origin of the sample. Moreover, larvae displayed a significantly different and most diversified microbial community than newly emerged adults, which appeared to be dominated by Proteobacteria. The microbiota of breeding site water significantly increased its diversity over time, suggesting the presence of a dynamic interaction among bacterial communities, breeding sites and mosquito hosts. The analysis of Wolbachia prevalence in adults from Foshan and five additional strains with different geographic origins confirmed the described pattern of dual wAlbA and wAlbB strain infection. However, differences in Wolbachia prevalence were detected, with one strain from La Reunion Island showing up to 18% uninfected individuals. These findings contribute in further understanding the dynamic interactions between the ecology of larval habitats and the structure of host microbiota, as well as providing additional information relative to the patterns of Wolbachia infection.

RevDate: 2021-02-13

Kwarteng A, Sylverken A, Asiedu E, et al (2021)

Genome editing as control tool for filarial infections.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 137:111292 pii:S0753-3322(21)00077-9 [Epub ahead of print].

Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.

RevDate: 2021-02-13

Kapantaidaki DE, Antonatos S, Evangelou V, et al (2021)

Genetic and endosymbiotic diversity of Greek populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, vectors of Xylella fastidiosa.

Scientific reports, 11(1):3752.

The plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.

RevDate: 2021-02-12

Hou HX, Zhao D, Xiao JH, et al (2021)

Transcriptomic Analysis Reveals the Sexually Divergent Host-Wolbachia Interaction Patterns in a Fig Wasp.

Microorganisms, 9(2): pii:microorganisms9020288.

Wolbachia are widely distributed in arthropods and nematodes, acquiring nutrients from the hosts, and inducing remarkable reproductive modulations on the hosts. To investigate the interaction of Wolbachia and insects, Wolbachia are often artificially eliminated from Wolbachia-infected hosts, which may produce negative effects of antibiotics. In the present study, based on the transcriptomic data of a fig wasp species Ceratosolen solmsi with two sibling lineages, one natively infected and the other noninfected with Wolbachia, we investigated the expression patterns of genes. The comparison results of differently expressed genes (DEGs) between Wolbachia infected and noninfected samples show that males have many more DEGs than females. The male unique upregulated genes are enriched in biological processes mainly related to biosynthesis, transport, positive regulation of I-kappaB kinase/NF-kappaB signaling, MAPK cascade, and pathogenesis; the male unique downregulated genes are enriched in biological processes mainly related to transport, oxidation-reduction, cellular responses to oxidative stress, lipid oxidation, cytoskeleton organization, actin filament-based process, and localization. In addition, for the Wolbachia's gene expression, the number of genes up-regulated in males is higher than that in females. The results revealed divergent patterns of the host-Wolbachia interactions between males and females in the fig wasp species.

RevDate: 2021-02-10

Salje J (2021)

Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle.

Nature reviews. Microbiology [Epub ahead of print].

The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.

RevDate: 2021-02-11

Lindsey ARI, Bhattacharya T, Hardy RW, et al (2021)

Wolbachia and Virus Alter the Host Transcriptome at the Interface of Nucleotide Metabolism Pathways.

mBio, 12(1):.

Wolbachia is a maternally transmitted bacterium that manipulates arthropod and nematode biology in myriad ways. The Wolbachia strain colonizing Drosophila melanogaster creates sperm-egg incompatibilities and protects its host against RNA viruses, making it a promising tool for vector control. Despite successful trials using Wolbachia-transfected mosquitoes for dengue control, knowledge of how Wolbachia and viruses jointly affect insect biology remains limited. Using the Drosophila melanogaster model, transcriptomics and gene expression network analyses revealed pathways with altered expression and splicing due to Wolbachia colonization and virus infection. Included are metabolic pathways previously unknown to be important for Wolbachia-host interactions. Additionally, Wolbachia-colonized flies exhibit a dampened transcriptomic response to virus infection, consistent with early blocking of virus replication. Finally, using Drosophila genetics, we show that Wolbachia and expression of nucleotide metabolism genes have interactive effects on virus replication. Understanding the mechanisms of pathogen blocking will contribute to the effective development of Wolbachia-mediated vector control programs.IMPORTANCE Recently developed arbovirus control strategies leverage the symbiotic bacterium Wolbachia, which spreads in insect populations and blocks viruses from replicating. While this strategy has been successful, details of how this "pathogen blocking" works are limited. Here, we use a combination of virus infections, fly genetics, and transcriptomics to show that Wolbachia and virus interact at host nucleotide metabolism pathways.

RevDate: 2021-02-11

Sicard M, Namias A, Perriat-Sanguinet M, et al (2021)

Cytoplasmic Incompatibility Variations in Relation with Wolbachia cid Genes Divergence in Culex pipiens.

mBio, 12(1):.

In arthropods, Wolbachia endosymbionts induce conditional sterility, called cytoplasmic incompatibility (CI), resulting from embryonic lethality. CI penetrance (i.e., embryonic death rate) varies depending on host species and Wolbachia strains involved. All Culex pipiens mosquitoes are infected by the endosymbiotic alphaproteobacteria Wolbachia wPip. CI in Culex, characterized as a binary "compatible/incompatible" phenomenon, revealed an unparalleled diversity of patterns linked to the amplification-diversification of cidA and cidB genes. Here, we accurately studied CI penetrance variations in the light of cid genes divergence by generating a C. pipiens compatibility matrix between 11 lines hosting different phylogenetic wPip groups and exhibiting distinct cid gene repertoires. We showed, as expected, that crosses involving wPip from the same group were mostly compatible. In contrast, only 22% of the crosses involving different wPip groups were compatible, while 54% were fully incompatible. For the remaining 24% of the crosses, "intermediate" compatibilities were reported, and a cytological observation of the first zygotic division confirmed the occurrence of "canonical" CI phenotypes in a fraction of the eggs. Backcross experiments demonstrated that intermediate compatibilities were not linked to host genetic background but to the Wolbachia strains involved. This previously unstudied intermediate penetrance CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants markedly divergent from other wPip groups. Our data demonstrate that CI is not always a binary compatible/incompatible phenomenon in C. pipiens but that intermediate compatibilities putatively resulting from partial mismatch due to Cid proteins divergence exist in this species complex.IMPORTANCECulex pipiens mosquitoes are infected with wPip. These endosymbionts induce a conditional sterility called CI resulting from embryonic deaths, which constitutes a cornerstone for Wolbachia antivectorial methods. Recent studies revealed that (i) two genes, cidA and cidB, are central in Wolbachia-CI mechanisms, and (ii) compatibility versus incompatibility between mosquito lines depends on the wPip phylogenetic groups at play. Here, we studied CI variations in relation to wPip groups and cid genes divergence. We showed, as expected, that the crosses involving wPip from the same group were compatible. In contrast, 78% of the crosses involving different wPip groups were partially or fully incompatible. In such crosses, we reported defects during the first zygotic division, a hallmark of CI. We showed that CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants, which markedly diverge from those of other wPip groups.

RevDate: 2021-02-10

Moo-Llanes DA, López-Ordóñez T, Torres-Monzón JA, et al (2021)

Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México.

Insects, 12(2): pii:insects12020143.

The Asian tiger mosquito Aedes albopictus is currently the most invasive vector species, with a widespread global distribution. Aedes albopictus is the potential vector of diverse arboviruses, including Zika and dengue. This study updated the ecological niche model of Ae. albopictus and inferred the potential distribution of natural Wolbachia infections in Ae. albopictus in México. The ecological niche models were constructed based on diverse model settings to better estimate the potential distributions and uncertainty indices of both Ae. albopictus and its natural Wolbachia infections in México. The distribution of Ae. albopictus covered the states across Northern México, the Gulf of México, the Pacific Coast of México, Central México, and the southeast of México. The ecological niche model of the natural Wolbachia infections in Ae. albopictus populations anticipated the occurrence of natural Wolbachia infections in the southeast of México, the Chiapas border with Guatemala, and Veracruz. These results can be used to prioritize vector surveillance and control programs in México for strategic and future decision-making; however, it is still necessary to establish active surveillance programs to assess model predictions based on the independent sampling of Ae. albopictus from different invasion zones in México. Finally, vector surveillance should also screen the natural Wolbachia infections in Ae. albopictus to validate Wolbachia predictions across México, particularly in the southeast of México.

RevDate: 2021-02-08

Dou W, Miao Y, Xiao J, et al (2021)

Association of Wolbachia with Gene Expression in Drosophila Testes.

Microbial ecology [Epub ahead of print].

Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.

RevDate: 2021-02-08

Anonymous (2021)

Corrigendum: Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio-control agent of mealybugs.

RevDate: 2021-02-10

Sucháčková Bartoňová A, Konvička M, Marešová J, et al (2021)

Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies.

Scientific reports, 11(1):3019.

The bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host's mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.

RevDate: 2021-02-06

Sandoval-Mojica AF, Hunter WB, Aishwarya V, et al (2021)

Antibacterial FANA oligonucleotides as a novel approach for managing the Huanglongbing pathosystem.

Scientific reports, 11(1):2760.

Candidatus Liberibacter asiaticus (CLas), a bacterium transmitted by the Asian citrus psyllid, Diaphorina citri, is the causal agent of citrus greening disease, or Huanglongbng (HLB). Currently, vector population suppression with insecticides and tree removal are the most effective strategies for managing the HLB pathosystem. In this study, we assessed the bactericidal capabilities of 2'-deoxy-2'-fluoro-D-arabinonucleic acid antisense oligonucleotides (FANA ASO) both in vitro and in vivo by (1) confirming their capacity to penetrate insect cells, (2) silencing bacterial essential genes, and (3) quantifying reductions in bacterial titer and D. citri transmission. We confirmed that FANA ASO are able to penetrate insect cells without the use of a delivery agent. Expression of an essential gene in the D. citri endosymbiont, Wolbachia (wDi), significantly decreased by 30% following incubation with a wDi-specific FANA ASO. Viability of isolated wDi cells also decreased in response to the FANA ASO treatment. Delivery of a CLas-specific FANA ASO to infected adult D. citri in feeding assays resulted in significant silencing of a CLas essential gene. CLas relative density and transmission were significantly lower among D. citri fed FANA ASO in diet compared to untreated insects. Root infusions of a CLas-specific FANA ASO into infected Citrus trees significantly reduced CLas titer during a 30-day trial. Our results suggest that FANA ASO targeting insect-transmitted plant bacteria or insect endosymbionts may be useful tool for integrated management of agricultural pathogens.

RevDate: 2021-01-28

Fallon AM (2021)

DNA recombination and repair in Wolbachia: RecA and related proteins.

Molecular genetics and genomics : MGG [Epub ahead of print].

Wolbachia is an obligate intracellular bacterium that has undergone extensive genomic streamlining in its arthropod and nematode hosts. Because the gene encoding the bacterial DNA recombination/repair protein RecA is not essential in Escherichia coli, abundant expression of this protein in a mosquito cell line persistently infected with Wolbachia strain wStri was unexpected. However, RecA's role in the lytic cycle of bacteriophage lambda provides an explanation for retention of recA in strains known to encode lambda-like WO prophages. To examine DNA recombination/repair capacities in Wolbachia, a systematic examination of RecA and related proteins in complete or nearly complete Wolbachia genomes from supergroups A, B, C, D, E, F, J and S was undertaken. Genes encoding proteins including RecA, RecF, RecO, RecR, RecG and Holliday junction resolvases RuvA, RuvB and RuvC are uniformly absent from Wolbachia in supergroup C and have reduced representation in supergroups D and J, suggesting that recombination and repair activities are compromised in nematode-associated Wolbachia, relative to strains that infect arthropods. An exception is filarial Wolbachia strain wMhie, assigned to supergroup F, which occurs in a nematode host from a poikilothermic lizard. Genes encoding LexA and error-prone polymerases are absent from all Wolbachia genomes, suggesting that the SOS functions induced by RecA-mediated activation of LexA do not occur, despite retention of genes encoding a few proteins that respond to LexA induction in E. coli. Three independent E. coli accessions converge on a single Wolbachia UvrD helicase, which interacts with mismatch repair proteins MutS and MutL, encoded in nearly all Wolbachia genomes. With the exception of MutL, which has been mapped to a eukaryotic association module in Phage WO, proteins involved in recombination/repair are uniformly represented by single protein annotations. Putative phage-encoded MutL proteins are restricted to Wolbachia supergroups A and B and show higher amino acid identity than chromosomally encoded MutL orthologs. This analysis underscores differences between nematode and arthropod-associated Wolbachia and describes aspects of DNA metabolism that potentially impact development of procedures for transformation and genetic manipulation of Wolbachia.

RevDate: 2021-01-29

Zimmermann BL, Cardoso GM, Bouchon D, et al (2021)

Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites?.

Evolutionary ecology [Epub ahead of print].

Horizontal transmission between distantly related species has been used to explain how Wolbachia infect multiple species at astonishing rates despite the selection for resistance. Recently, a terrestrial isopod species was found to be infected by an unusual strain of supergroup F Wolbachia. However, only Wolbachia of supergroup B is typically found in isopods. One possibility is that these isopods acquired the infection because of their recurrent contact with termites-a group with strong evidence of infection by supergroup F Wolbachia. Thus, our goals were: (1) check if the infection was an isolated case in isopods, or if it revealed a broader pattern; (2) search for Wolbachia infection in the termites within Brazil; and (3) look for evidence consistent with horizontal transmission between isopods and termites. We collected Neotroponiscus terrestrial isopods and termites along the Brazilian coastal Atlantic forest. We sequenced and identified the Wolbachia strains found in these groups using coxA, dnaA, and fpbA genes. We constructed phylogenies for both bacteria and host taxa and tested for coevolution. We found the supergroup F Wolbachia in other species and populations of Neotroponiscus, and also in Nasutitermes and Procornitermes termites. The phylogenies showed that, despite the phylogenetic distance between isopods and termites, the Wolbachia strains clustered together. Furthermore, cophylogenetic analyses showed significant jumps of Wolbachia between terrestrial isopods and termites. Thus, our study suggests that the horizontal transmission of supergroup F Wolbachia between termites and terrestrial isopods is likely. Our study also helps understanding the success and worldwide distribution of this symbiont.

Supplementary information: The online version of this article (10.1007/s10682-021-10101-4) contains supplementary material, which is available to authorized users.

RevDate: 2021-02-12

Lozano-Sardaneta YN, Valderrama A, Sánchez-Montes S, et al (2021)

Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico.

Parasitology international, 82:102286 pii:S1383-5769(21)00005-2 [Epub ahead of print].

Phlebotomine sand flies are considered the main vectors of Leishmania, the causal agents of leishmaniasis, which is a serious emerging public health problem worldwide. The use of biological control alternatives, like endosymbiotic bacteria (Wolbachia and Rickettsia), have been proposed to decrease sand fly populations and reduce Leishmania transmissions, yet only few records on the detection of Wolbachia or Rickettsia in sand flies are available worldwide. The aim of this study was to perform the molecular detection of Rickettsial agents associated with sand flies from the last patch of a rainforest in south-eastern Mexico, where a high prevalence of Leishmania infantum has been reported. Sampling effort of sand flies covered 300 trap-nights between 2011 and 2013, and a total of 925 specimens from twelve species were morphologically identified. Using PCR techniques, we identified a new lineage of the endosymbionts Rickettsia in Psathyromyia aclydifera (prevalence of 19.54%), and Wolbachia in Psathyromyia shannoni and Lutzomyia sp. (prevalence of 25%). The detected Wolbachia lineage was similar to the wWhi strain found in Pa. shannoni from Colombia and Nyssomyia whitmani from Brazil; whereas the identified Rickettsia represents a new lineage worldwide. This is the first record of Rickettsial agents associated to sand flies from this region, yet it remains for analysed if these bacteria possibly play a role as vector control agents, capable of reducing the sand fly populations in Mexico.

RevDate: 2021-02-03
CmpDate: 2021-02-03

Yang K, Chen H, Bing XL, et al (2021)

Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus.

Experimental & applied acarology, 83(2):197-210.

The structures of arthropod bacterial communities are complex. These microbiotas usually provide many beneficial services to their hosts, whereas occasionally they may be parasitical. To date, little is known about the bacterial communities of Tetranychus truncatus and the factors contributing to the structure of its bacterial communities are unexplored yet. Here, we used four symbiont-infected T. truncatus strains-including one Wolbachia and Spiroplasma co-infected strain, two symbiont singly-infected strains and one symbiont uninfected strain-to investigate the influence of endosymbionts on the structure of the host mites' microbiota. Based on 16S rRNA genes sequencing analysis, we found Wolbachia and Spiroplasma were the two most abundant bacteria in T. truncatus and the presence of both symbionts could not change the diversity of bacterial communities (based on alpha-diversity indexes such as ACE, Chao1, Shannon and Simpson diversity index). Symbiont infection did alter the abundance of many other bacterial genera, such as Megamonas and Bacteroides. The structures of bacterial communities differed significantly among symbiont-infected strains. These results suggested a prominent effect of Wolbachia and Spiroplasma on bacterial communities of the host T. truncatus. These findings advance our understanding of T. truncatus microbiota and will be helpful for further study on bacterial communities of spider mites.

RevDate: 2021-01-20

Yoshida K, Sanada-Morimura S, Huang SH, et al (2021)

Silence of the killers: discovery of male-killing suppression in a rearing strain of the small brown planthopper, Laodelphax striatellus.

Proceedings. Biological sciences, 288(1943):20202125.

According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a 'late' male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 : 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.

RevDate: 2021-01-26

Dong S, G Dimopoulos (2021)

Antiviral Compounds for Blocking Arboviral Transmission in Mosquitoes.

Viruses, 13(1):.

Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.

RevDate: 2021-01-17

Takano SI, Gotoh Y, T Hayashi (2021)

"Candidatus Mesenet longicola": Novel Endosymbionts of Brontispa longissima that Induce Cytoplasmic Incompatibility.

Microbial ecology [Epub ahead of print].

Intracellular bacteria that are mainly transmitted maternally affect their arthropod hosts' biology in various ways. One such effect is known as cytoplasmic incompatibility (CI), and three bacterial species are known to induce CI: Wolbachia, Cardinium hertigii, and a recently found alphaproteobacterial symbiont. To clarify the taxonomic status and provide the foundation for future studies to reveal CI mechanisms and other phenotypes, we investigated genetic and morphological properties of the third CI inducer that we have previously reported inducing CI in the coconut beetle Brontispa longissima. The draft genome of the bacteria was obtained from the oocytes of two isofemale lines of B. longissima infected with the bacteria: one from Japan (GL2) and the other from Vietnam (L5). Genome features of the symbionts (sGL2 and sL5) were highly similar, showing 1.3 Mb in size, 32.1% GC content, and 99.83% average nucleotide sequence. A phylogenetic study based on 43 universal and single-copy phylogenetic marker genes indicates that they formed a distinct clade in the family Anaplasmataceae. 16S rRNA gene sequences indicate that they are different from the closest known relatives, at least at the genus level. Therefore, we propose a new genus and species, "Candidatus Mesenet longicola", for the symbionts of B. longissima. Morphological analyses showed that Ca. M. longicola is an intracellular bacterium that is ellipsoidal to rod-shaped and 0.94 ± 0.26 μm (mean ± SD) in length, and accumulated in the anterior part of the oocyte. Candidates for the Ca. M. longicola genes responsible for CI induction are also described.

RevDate: 2021-01-22

Santos LMB, Mutsaers M, Garcia GA, et al (2021)

High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance.

Communications biology, 4(1):67.

Deployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated the accuracy, sensitivity and specificity of the Near Infrared Spectroscopy (NIRS) in estimating the time post death, ZIKV-, CHIKV-, and Wolbachia-infection in trapped dead female Ae. aegypti mosquitoes over a period of 7 days. Regardless of the infection type, time post-death of mosquitoes was accurately predicted into four categories (fresh, 1 day old, 2-4 days old and 5-7 days old). Overall accuracies of 93.2, 97 and 90.3% were observed when NIRS was used to detect ZIKV, CHIKV and Wolbachia in dead Ae. aegypti female mosquitoes indicating NIRS could be potentially applied as a rapid and cost-effective arbovirus surveillance tool. However, field data is required to demonstrate the full capacity of NIRS for detecting these infections under field conditions.

RevDate: 2021-01-17

Díaz-Nieto LM, Gil MF, Lazarte JN, et al (2021)

Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria.

Scientific reports, 11(1):1094.

In an attempt to evaluate the susceptibility of the mosquito Culex quinquefasciatus to bacterial agents, a population naturally infected with a Wolbachia pipientis wPipSJ native strain was tested against the action of three bacterial mosquitocides, Bacillus thuringiensis subsp. israelensis, Bacillus wiedmannii biovar thuringiensis and Lysinibacillus sphaericus. Tests were carried out on mosquito larvae with and without Wolbachia (controls). Cx. quinquefasciatus naturally infected with the native wPipSJ strain proved to be more resistant to the pathogenic action of the three mosquitocidal bacterial strains. Additionally, wPipSJ was fully characterised using metagenome-assembled genomics, PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) and MLST (MultiLocus Sequence Typing) analyses. This Wolbachia strain wPipSJ belongs to haplotype I, group wPip-III and supergroup B, clustering with other mosquito wPip strains, such as wPip PEL, wPip JHB, wPip Mol, and wAlbB; showing the southernmost distribution in America. The cytoplasmic incompatibility phenotype of this strain was revealed via crosses between wildtype (Wolbachia+) and antibiotic treated mosquito populations. The results of the tests with the bacterial agents suggest that Cx. quinquefasciatus naturally infected with wPipSJ is less susceptible to the pathogenic action of mosquitocidal bacterial strains when compared with the antibiotic-treated mosquito isoline, and is more susceptible to B. thuringiensis subsp. israelensis than to the other two mosquitocidal agents.

RevDate: 2021-01-13

Chung M, Adkins RS, Mattick JSA, et al (2021)

FADU: a Quantification Tool for Prokaryotic Transcriptomic Analyses.

mSystems, 6(1):.

Quantification tools for RNA sequencing (RNA-Seq) analyses are often designed and tested using human transcriptomics data sets, in which full-length transcript sequences are well annotated. For prokaryotic transcriptomics experiments, full-length transcript sequences are seldom known, and coding sequences must instead be used for quantification steps in RNA-Seq analyses. However, operons confound accurate quantification of coding sequences since a single transcript does not necessarily equate to a single gene. Here, we introduce FADU (Feature Aggregate Depth Utility), a quantification tool designed specifically for prokaryotic RNA-Seq analyses. FADU assigns partial count values proportional to the length of the fragment overlapping the target feature. To assess the ability of FADU to quantify genes in prokaryotic transcriptomics analyses, we compared its performance to those of eXpress, featureCounts, HTSeq, kallisto, and Salmon across three paired-end read data sets of (i) Ehrlichia chaffeensis, (ii) Escherichia coli, and (iii) the Wolbachia endosymbiont wBm. Across each of the three data sets, we find that FADU can more accurately quantify operonic genes by deriving proportional counts for multigene fragments within operons. FADU is available at https://github.com/IGS/FADUIMPORTANCE Most currently available quantification tools for transcriptomics analyses have been designed for human data sets, in which full-length transcript sequences, including the untranslated regions, are well annotated. In most prokaryotic systems, full-length transcript sequences have yet to be characterized, leading to prokaryotic transcriptomics analyses being performed based on only the coding sequences. In contrast to eukaryotes, prokaryotes contain polycistronic transcripts, and when genes are quantified based on coding sequences instead of transcript sequences, this leads to an increased abundance of improperly assigned ambiguous multigene fragments, specifically those mapping to multiple genes in operons. Here, we describe FADU, a quantification tool for prokaryotic RNA-Seq analyses designed to assign proportional counts with the purpose of better quantifying operonic genes while minimizing the pitfalls associated with improperly assigning fragment counts from ambiguous transcripts.

RevDate: 2021-02-11

Deehan M, Lin W, Blum B, et al (2021)

Intracellular Density of Wolbachia Is Mediated by Host Autophagy and the Bacterial Cytoplasmic Incompatibility Gene cifB in a Cell Type-Dependent Manner in Drosophila melanogaster.

mBio, 12(1):.

Autophagy is an intracellular degradation pathway involved in innate immunity. Pathogenic bacteria have evolved several mechanisms to escape degradation or exploit autophagy to acquire host nutrients. In the case of endosymbionts, which often have commensal or mutualistic interactions with the host, autophagy is not well characterized. We utilized tissue-specific autophagy mutants to determine if Wolbachia, a vertically transmitted obligate endosymbiont of Drosophila melanogaster, is regulated by autophagy in somatic and germ line cell types. Our analysis revealed core autophagy proteins Atg1 and Atg8 and a selective autophagy-specific protein Ref(2)p negatively regulate Wolbachia in the hub, a male gonad somatic cell type. Furthermore, we determined that the Wolbachia effector protein, CifB, modulates autophagy-Wolbachia interactions, identifying a new host-related pathway which these bacterial proteins interact with. In the female germ line, the cell type necessary for inheritance of Wolbachia through vertical transmission, we discovered that bulk autophagy mediated by Atg1 and Atg8 positively regulates Wolbachia density, whereas Ref(2)p had no effect. Global metabolomics of fly ovaries deficient in germ line autophagy revealed reduced lipid and carbon metabolism, implicating metabolites from these pathways as positive regulators of Wolbachia Our work provides further understanding of how autophagy affects bacteria in a cell type-dependent manner.IMPORTANCE Autophagy is a eukaryotic intracellular degradation pathway which can act as an innate immune response to eliminate pathogens. Conversely, pathogens can evolve proteins which modulate the autophagy pathway to subvert degradation and establish an infection. Wolbachia, a vertically transmitted obligate endosymbiont which infects up to 40% of insect species, is negatively regulated by autophagy in whole animals, but the specific molecular mechanism and tissue which govern this interaction remain unknown. Our studies use cell type-specific autophagy mutants to reveal that Wolbachia is negatively regulated by selective autophagy in the soma, while nonselective autophagy positively regulates Wolbachia in the female germ line. These data provide evidence that cell type can drive different basal autophagy programs which modulate intracellular microbes differently. Additionally, we identified that the Wolbachia effector CifB acts in the selective autophagy pathway to aid in intracellular bacterial survival, providing a new function for CifB beyond its previously identified role in reproductive manipulation.

RevDate: 2021-01-26

Ogunlade ST, Meehan MT, Adekunle AI, et al (2021)

A Review: Aedes-Borne Arboviral Infections, Controls and Wolbachia-Based Strategies.

Vaccines, 9(1):.

Arthropod-borne viruses (Arboviruses) continue to generate significant health and economic burdens for people living in endemic regions. Of these viruses, some of the most important (e.g., dengue, Zika, chikungunya, and yellow fever virus), are transmitted mainly by Aedes mosquitoes. Over the years, viral infection control has targeted vector population reduction and inhibition of arboviral replication and transmission. This control includes the vector control methods which are classified into chemical, environmental, and biological methods. Some of these control methods may be largely experimental (both field and laboratory investigations) or widely practised. Perceptively, one of the biological methods of vector control, in particular, Wolbachia-based control, shows a promising control strategy for eradicating Aedes-borne arboviruses. This can either be through the artificial introduction of Wolbachia, a naturally present bacterium that impedes viral growth in mosquitoes into heterologous Aedes aegypti mosquito vectors (vectors that are not natural hosts of Wolbachia) thereby limiting arboviral transmission or via Aedes albopictus mosquitoes, which naturally harbour Wolbachia infection. These strategies are potentially undermined by the tendency of mosquitoes to lose Wolbachia infection in unfavourable weather conditions (e.g., high temperature) and the inhibitory competitive dynamics among co-circulating Wolbachia strains. The main objective of this review was to critically appraise published articles on vector control strategies and specifically highlight the use of Wolbachia-based control to suppress vector population growth or disrupt viral transmission. We retrieved studies on the control strategies for arboviral transmissions via arthropod vectors and discussed the use of Wolbachia control strategies for eradicating arboviral diseases to identify literature gaps that will be instrumental in developing models to estimate the impact of these control strategies and, in essence, the use of different Wolbachia strains and features.

RevDate: 2021-01-12

Thongprem P, Evison SEF, Hurst GDD, et al (2020)

Transmission, Tropism, and Biological Impacts of Torix Rickettsia in the Common Bed Bug Cimex lectularius (Hemiptera: Cimicidae).

Frontiers in microbiology, 11:608763.

The torix group of Rickettsia have been recorded from a wide assemblage of invertebrates, but details of transmission and biological impacts on the host have rarely been established. The common bed bug (Cimex lectularius) is a hemipteran insect which lives as an obligatory hematophagous pest of humans and is host to a primary Wolbachia symbiont and two facultative symbionts, a BEV-like symbiont, and a torix group Rickettsia. In this study, we first note the presence of a single Rickettsia strain in multiple laboratory bed bug isolates derived from Europe and Africa. Importantly, we discovered that the Rickettsia has segregated in two laboratory strains, providing infected and uninfected isogenic lines for study. Crosses with these lines established transmission was purely maternal. Fluorescence in-situ hybridization analysis indicates Rickettsia infection in oocytes, bacteriomes, and other somatic tissues. We found no evidence that Rickettsia infection was associated with sex ratio distortion activity, but Rickettsia infected individuals developed from first instar to adult more slowly. The impact of Rickettsia on fecundity and fertility resulted in infected females producing fewer fertile eggs. However, we could not find any evidence for cytoplasmic incompatibility associated with Rickettsia presence. These data imply the existence of an unknown benefit to C. lectularius carrying Rickettsia that awaits further research.

RevDate: 2021-01-12

Doremus MR, Stouthamer CM, Kelly SE, et al (2020)

Cardinium Localization During Its Parasitoid Wasp Host's Development Provides Insights Into Cytoplasmic Incompatibility.

Frontiers in microbiology, 11:606399.

Arthropods harbor heritable intracellular symbionts that may manipulate host reproduction to favor symbiont transmission. In cytoplasmic incompatibility (CI), the symbiont sabotages the reproduction of infected males such that high levels of offspring mortality result when they mate with uninfected females. In crosses with infected males and infected females, however (the "rescue" cross), normal numbers of offspring are produced. A common CI-inducing symbiont, Cardinium hertigii, causes variable levels of CI mortality in the parasitoid wasp, Encarsia suzannae. Previous work correlated CI-induced mortality with male development time in this system, although the timing of Cardinium CI-induction and the relationship between development time and CI mortality was not well understood. Here, using a combination of crosses, manipulation of development time, and fluorescence microscopy, we identify the localization and the timing of the CI-induction step in the Cardinium-E. suzannae system. Antibiotic treatment of adult Cardinium-infected males did not reduce the mortality associated with the CI phenotype, suggesting that CI-alteration occurs prior to adulthood. Our results suggest that the alteration step occurs during the pupal period, and is limited by the duration of pupal development: 1) Encarsia produces most sperm prior to adulthood, 2) FISH localization of Cardinium in testes showed an association with sperm nuclei throughout spermatogenesis but not with mature sperm, and 3) two methods of prolonging the pupal period (cool temperatures and the juvenile hormone analog methoprene) both caused greater CI mortality, suggesting the degree of alteration is limited by the duration of the pupal stage. Based on these results, we compare two models for potential mechanisms of Cardinium sperm modification in the context of what is known about analogous mechanisms of Wolbachia, a more extensively studied CI-inducing symbiont.

RevDate: 2021-01-26

Inácio da Silva LM, Dezordi FZ, Paiva MHS, et al (2021)

Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis.

Pathogens (Basel, Switzerland), 10(1):.

Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.

RevDate: 2021-01-11

Shults P, Cohnstaedt LW, Adelman ZN, et al (2021)

Next-generation tools to control biting midge populations and reduce pathogen transmission.

Parasites & vectors, 14(1):31.

Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.

RevDate: 2021-01-11

Farnesi LC, Carvalho FD, Lacerda APC, et al (2021)

The influence of different sources of blood meals on the physiology of Aedes aegypti harboring Wolbachia wMel: mouse blood as an alternative for mosquito rearing.

Parasites & vectors, 14(1):21.

BACKGROUND: Aedes aegypti control programs have failed to restrain mosquito population expansion and, consequently, the spread of diseases such as dengue, Zika, and Chikungunya. Wolbachia infection of mosquitoes is a new and promising complementary tool for the control of arbovirus transmission. The use of Wolbachia-infected mosquitoes, mass reared using human blood, is currently being tested in several countries. However, the use of human blood for mass rearing mosquitoes, and thus expansion of this strategy, is problematic. With the aim of overcoming this problem, we tested the effect of different types of blood source on the fitness parameters of female Ae. aegypti and the Wolbachia titer over generations to be able to guarantee the suitability of an alternative source to human blood for mass rearing Wolbachia-infected mosquitoes.

METHODS: We investigated and compared essential parameters of the vector capacity of laboratory strains of Ae. aegypti with and without Wolbachia that fed on blood of different types of host (human, guinea pig, and mouse). The parameters analyzed were fecundity, fertility, pupation dynamics, and adult survival. Also, we tested whether it is possible to maintain mosquitoes with Wolbachia on mouse blood over generations without losing the bacterium titer.

RESULTS: The average number of eggs per female, egg viability and pupation dynamics in the Wolbachia-infected mosquito (wMelBr) strain were similar, regardless of the blood source. The F1 progenies of females that fed on mouse blood or human blood were analyzed. The longevity of males was lower than that of females. F1 female survival differed depending on the presence of Wolbachia in the mother. In subsequent generations analyzed up until F35, the relative Wolbachia density was even higher when mosquitoes fed on mouse blood in comparison to human blood.

CONCLUSIONS: Taken together, our results provide no evidence that the different types of blood influenced the fitness of the Wolbachia-infected mosquitoes. The presence of the bacterium in the colonies of Wolbachia-infected Ae. aegypti after 35 generations under the conditions evaluated indicates that they can be maintained on mouse blood. Based on these results, we show that it is possible to use mouse blood to feed female mosquitoes when using human blood for this purpose is problematic.

RevDate: 2021-01-15

Chevignon G, Foray V, Pérez-Jiménez MM, et al (2021)

Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts.

PLoS neglected tropical diseases, 15(1):e0008935.

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.

RevDate: 2021-01-05

Shih CM, Ophine L, LL Chao (2021)

Molecular Detection and Genetic Identification of Wolbachia Endosymbiont in Wild-Caught Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes from Sumatera Utara, Indonesia.

Microbial ecology [Epub ahead of print].

The genetic identity of Wolbachia endosymbiont in wild-caught Culex quinquefasciatus was determined for the first time in Indonesia. A total of 314 Cx. quinquefasciatus were examined for Wolbachia by PCR assay targeting the Wolbachia surface protein (wsp) gene. The prevalence of Wolbachia infection was detected in 29.94% of Cx. specimens (45.86% female and 8.27% male). The group-specific infection was detected with an infection rate of 0.32%, 28.98%, and 0.64% in groups A, B, and A&B, respectively. Phylogenetic analysis revealed all Wolbachia strains from Indonesia were genetically affiliated to the supergroup A and B with the high sequence similarity of 97.9-100% and 99.7-100%, respectively. Phylogenetic relationships can be easily distinguished by neighbor-joining analysis and were congruent by maximum likelihood method. The genetic distance (GD) values of intra- and inter-group analysis indicated a lower level (GD < 0.007 for group A and GD < 0.003 for group B) within the Indonesia strains and a higher level (GD > 1.125 for group A and GD > 1.129 for group B) as compared with other Wolbachia strains. Our results provide the first genetic identification of Wolbachia endosymbiont in Cx. quinquefasciatus collected from Indonesia, and the phylogenetic analysis revealed a new discovery of group A Wolbachia in wild-caught Cx. quinquefasciatus mosquitoes.

RevDate: 2020-12-29

Driscoll TP, Verhoeve VI, Brockway C, et al (2020)

Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas.

PeerJ, 8:e10646.

Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.

RevDate: 2021-01-11

Leftwich PT, Spurgin LG, Harvey-Samuel T, et al (2021)

Genetic pest management and the background genetics of release strains.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1818):20190805.

Genetic pest management (GPM) methods involve releasing modified versions of a pest species to mate with wild pests in the target area. Proposed for a wide range of applications in public health, agriculture and conservation, most progress has been made with pest insects. Offspring of the released modified insects and wild pests carry the modification-which might be transgenes, artificially introduced Wolbachia or genetic damage from radiation, for example-but they also carry a complete haploid genome from their laboratory-reared parent, as well as one from their wild parent. Unless these F1 hybrids are completely unable to reproduce, further mating will lead to introgression of DNA sequences from the release strain into the wild population. We discuss issues around strain selection and the potential consequences of such introgression. We conclude that such introgression is probably harmless in almost all circumstances, and could, in theory, provide specific additional benefits to the release programme. We outline population monitoring approaches that could be used, going forward, to determine how background genetics may affect GPM. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.

RevDate: 2021-01-11

Ahmad NA, Mancini MV, Ant TH, et al (2021)

Wolbachia strain wAlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1818):20190809.

Aedes aegypti mosquitoes carrying the wAlbB Wolbachia strain show a reduced capacity to transmit dengue virus. wAlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that wAlbB releases can be an effective dengue control strategy, the long-term success depends on wAlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia-host coevolution in the field. Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected wAlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that wAlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti, and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.

RevDate: 2020-12-22

Sullivan W (2020)

Vector Control: Wolbachia Expands Its Protective Reach from Humans to Plants.

Current biology : CB, 30(24):R1489-R1491.

RNA viral titers are often suppressed in insects co-infected with the bacterial endosymbiont Wolbachia. This property has been used to suppress transmission of the ragged rice stunt virus from its insect host, the brown planthopper, to the rice plant.

RevDate: 2021-01-07

Bishop C, S Asgari (2020)

Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells.

Molecular microbiology [Epub ahead of print].

Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.

RevDate: 2021-01-29
CmpDate: 2021-01-29

Cardoso A, J Gómez-Zurita (2020)

Food Resource Sharing of Alder Leaf Beetle Specialists (Coleoptera: Chrysomelidae) as Potential Insect-Plant Interface for Horizontal Transmission of Endosymbionts.

Environmental entomology, 49(6):1402-1414.

Recent studies suggest that endosymbionts of herbivore insects can be horizontally transferred to other herbivores feeding on the same host plants, whereby the plant acts as an intermediate stage in the chain of transmission. If this mechanism operates, it is also expected that insect communities sharing the same host plant will have higher chances to share their endosymbionts. In this study, we use a high-throughput 16S rRNA metabarcoding approach to investigate the presence, diversity, and potential sharing of endosymbionts in several species of leaf beetles (Coleoptera: Chrysomelidae) of a local community specialized on an alder diet in North America. Rickettsia and Wolbachia were predominant in the sample, with strong evidence for each species having their own dominant infection, of either or both types of bacteria. However, all species shared a much lower proportion of a particular Wolbachia type, compatible with the same strain dominant in one of the species of leaf beetles. Crucially, the same 16S rRNA haplotype of Wolbachia was found on alder leaf extracts. The combined evidence and the absence of this strain in a syntopic species of leaf beetle feeding on a different host plant support the hypothesis that at least the initial stages of the mechanism that would allow horizontal transmission of endosymbionts across species feeding on the same plant is possible. The accessibility and characteristics of endosymbiont associations of this system make it suitable for deeper analyses of their diversity and transmission in natural conditions.

RevDate: 2020-12-13

Ding H, Yeo H, N Puniamoorthy (2020)

Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore.

Parasites & vectors, 13(1):612.

BACKGROUND: Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications.

METHODS: We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods-tanglegram, distance-based, and event-based methods-and by inferred instances of vertical transmission and host shifts.

RESULTS: Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed.

CONCLUSIONS: Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.

RevDate: 2020-12-22

Lefoulon E, Clark T, Guerrero R, et al (2020)

Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm.

Microbial genomics, 6(12):.

Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single Wolbachia-filarial nematode pattern of co-evolution or symbiotic relationship.

RevDate: 2020-12-10

Fu Z, Meier AR, Epstein B, et al (2020)

Host plants and Wolbachia shape the population genetics of sympatric herbivore populations.

Evolutionary applications, 13(10):2740-2753.

Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Šulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.

RevDate: 2020-12-10

Wöger R, Wöger R, M Nuss (2020)

DNA barcodes for Aotearoa New Zealand Pyraloidea (Lepidoptera).

Biodiversity data journal, 8:e58841.

Identification of pyraloid species is often hampered by highly similar external morphology requiring microscopic dissection of genitalia. This becomes especially obvious when mass samples from ecological studies or insect monitoring have to be analysed. DNA barcode sequences could accelerate identification, but are not available for most pyraloid species from New Zealand. Hence, we are presenting a first DNA-barcode library for this group, providing 440 COI barcodes (cytochrome C oxidase I sequences) for 73 morphologically-identified species, which is 29% of Pyraloidea known from New Zealand. Results are analysed using the Barcode Index Number system (BIN) of BOLD and the Automatic Barcode Gap Discovery method (ABGD). Using BIN, the 440 barcodes reveal 82 clusters. A perfect match between BIN assignment and morphological identification was found for 63 species (86.3%). Four species (5.5%) share BINs, each with two species in one BIN, of which Glaucocharis epiphaea and Glaucocharis harmonica even share the same barcode. In contrast, six species (8.2%) split into two or more BINs, with the highest number of five BINs for Orocrambus ramosellus. The interspecific variation of all collected specimens of New Zealand Pyraloidea averages 12.54%. There are deep intraspecific divergences (> 2%) in seven species, for instance Orocrambus vulgaris with up to 6.6% and Scoparia ustimacula with 5.5%. Using ABGD, the 440 barcodes reveal 71 or 88 operational taxonomic units (OTUs), depending on the preferred partition. A perfect match between OTU and morphological identification was found for 56 species (76.7%) or 62 species (84.9%). ABGD delivers four or seven species sharing OTUs and four or ten species split into more than one OTU. Morphological re-examination, as well as the analysis of a concatenated dataset of COI and the nuclear markers EF1α and GADPH for species split into more than one BIN or OTU, do not support a higher number of species. Likewise, there is no evidence for Wolbachia infection as a trigger for these sequence variations.

RevDate: 2021-02-11
CmpDate: 2021-02-11

Schiefer A, Hübner MP, Krome A, et al (2020)

Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

PLoS neglected tropical diseases, 14(12):e0008930.

Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.

RevDate: 2020-12-10

Wang X, Xiong X, Cao W, et al (2020)

Phylogenomic Analysis of Wolbachia Strains Reveals Patterns of Genome Evolution and Recombination.

Genome biology and evolution, 12(12):2508-2520.

Wolbachia are widespread intracellular bacteria that mediate many important biological processes in arthropod species. In this study, we identified 210 conserved single-copy genes in 33 genome-sequenced Wolbachia strains in the A-F supergroups. Phylogenomic analyses with these core genes indicate that all 33 Wolbachia strains maintain the supergroup relationship, which was classified previously based on the multilocus sequence typing (MLST) genes. Using an interclade recombination screening method, 14 inter-supergroup recombination events were discovered in six genes (2.9%) among 210 single-copy orthologs. This finding suggests a relatively low frequency of intergroup recombination. Interestingly, they have occurred not only between A and B supergroups (nine events) but also between A and E supergroups (five events). Maintenance of such transfers suggests possible roles in Wolbachia infection-related functions. Comparisons of strain divergence using the five genes of the MLST system show a high correlation (Pearson correlation coefficient r = 0.98) between MLST and whole-genome divergences, indicating that MLST is a reliable method for identifying related strains when whole-genome data are not available. The phylogenomic analysis and the identified core gene set in our study will serve as a valuable foundation for strain identification and the investigation of recombination and genome evolution in Wolbachia.

RevDate: 2020-12-08

Miao YH, Xiao JH, DW Huang (2020)

Distribution and Evolution of the Bacteriophage WO and Its Antagonism With Wolbachia.

Frontiers in microbiology, 11:595629.

The symbiosis system comprising eukaryotic hosts, intracellular bacterium Wolbachia, and temperate bacteriophages WO is widely spread through nearly half the number of arthropod species. The relationships between the three components of the system are extremely intricate. Even though the bacteriophage WO can have diverse influences on the ecology and evolution of Wolbachia, little is known about the distribution and evolution of the phages. To the best of our knowledge, this study is the first to report that in infected fig wasps (Ceratosolen solmsi, Kradibia gibbosae, and Wiebesia pumilae), the genomes of all the Wolbachia strains had only one cryptic WO prophage, which contained defects in the genomic structural modules. This phenomenon was contrary to the widely accepted understanding that Wolbachia with cryptic prophages usually possesses at least one intact WO prophage consisting of gene sequences of the head, baseplate, and tail modules, through which the prophage could form intact virions. In addition to the genetic structure features, the phylogenetic relationships of WO and Wolbachia also revealed that bacteriophage WO can horizontally spread among a certain genus or a group of insect hosts, nearly free from the restriction of the affiliation of Wolbachia. Combined with the vertical transmission along with Wolbachia, the wide spread of WO phages can be explained. Furthermore, the gender preference and functional module preference for transcriptional activity of the genes in cryptic WOs implied the antagonized coevolutionary pattern between WO prophages and their Wolbachia hosts.

RevDate: 2020-12-07

Yang C, Zheng Y, Tan S, et al (2020)

Efficient COI barcoding using high throughput single-end 400 bp sequencing.

BMC genomics, 21(1):862.

BACKGROUND: Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, the current high-throughput DNA barcoding methods cannot obtain full-length barcode sequences due to read length limitations (e.g. a maximum read length of 300 bp for the Illumina's MiSeq system), or are hindered by a relatively high cost or low sequencing output (e.g. a maximum number of eight million reads per cell for the PacBio's SEQUEL II system).

RESULTS: Pooled cytochrome c oxidase subunit I (COI) barcodes from individual specimens were sequenced on the MGISEQ-2000 platform using the single-end 400 bp (SE400) module. We present a bioinformatic pipeline, HIFI-SE, that takes reads generated from the 5' and 3' ends of the COI barcode region and assembles them into full-length barcodes. HIFI-SE is written in Python and includes four function modules of filter, assign, assembly and taxonomy. We applied the HIFI-SE to a set of 845 samples (30 marine invertebrates, 815 insects) and delivered a total of 747 fully assembled COI barcodes as well as 70 Wolbachia and fungi symbionts. Compared to their corresponding Sanger sequences (72 sequences available), nearly all samples (71/72) were correctly and accurately assembled, including 46 samples that had a similarity score of 100% and 25 of ca. 99%.

CONCLUSIONS: The HIFI-SE pipeline represents an efficient way to produce standard full-length barcodes, while the reasonable cost and high sensitivity of our method can contribute considerably more DNA barcodes under the same budget. Our method thereby advances DNA-based species identification from diverse ecosystems and increases the number of relevant applications.

RevDate: 2021-01-27
CmpDate: 2021-01-27

Attardo GM, Scolari F, A Malacrida (2020)

Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts.

Results and problems in cell differentiation, 69:497-536.

Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.

RevDate: 2021-01-27
CmpDate: 2021-01-27

Lefoulon E, Foster JM, Truchon A, et al (2020)

The Wolbachia Symbiont: Here, There and Everywhere.

Results and problems in cell differentiation, 69:423-451.

Wolbachia symbionts, first observed in the 1920s, are now known to be present in about 30-70% of tested arthropod species, in about half of tested filarial nematodes (including the majority of human filarial nematodes), and some plant-parasitic nematodes. In arthropods, they are generally viewed as parasites while in nematodes they appear to be mutualists although this demarcation is not absolute. Their presence in arthropods generally leads to reproductive anomalies, while in nematodes, they are generally required for worm development and reproduction. In mosquitos, Wolbachia inhibit RNA viral infections, leading to populational reductions in human RNA virus pathogens, whereas in filarial nematodes, their requirement for worm fertility and survival has been channeled into their use as drug targets for filariasis control. While much more research on these ubiquitous symbionts is needed, they are viewed as playing significant roles in biological processes, ranging from arthropod speciation to human health.

RevDate: 2021-01-27
CmpDate: 2021-01-27

Russell SL, JR Castillo (2020)

Trends in Symbiont-Induced Host Cellular Differentiation.

Results and problems in cell differentiation, 69:137-176.

Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.

RevDate: 2020-12-14
CmpDate: 2020-12-04

Souto-Maior C, King JG, Sartori LM, et al (2020)

Reply to: "Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported".

Nature communications, 11(1):6113.

RevDate: 2020-12-14
CmpDate: 2020-12-04

Ant TH, Mancini MV, Martinez J, et al (2020)

Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported.

Nature communications, 11(1):6111.

RevDate: 2020-12-10

Madhav M, Baker D, Morgan JAT, et al (2020)

Wolbachia: A tool for livestock ectoparasite control.

Veterinary parasitology, 288:109297.

Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.

RevDate: 2020-11-27

Momtaz AZ, Ahumada Sabagh AD, Gonzalez Amortegui JG, et al (2020)

A Role for Maternal Factors in Suppressing Cytoplasmic Incompatibility.

Frontiers in microbiology, 11:576844.

Wolbachia are maternally transmitted bacterial endosymbionts, carried by approximately half of all insect species. Wolbachia prevalence in nature stems from manipulation of host reproduction to favor the success of infected females. The best known reproductive modification induced by Wolbachia is referred to as sperm-egg Cytoplasmic Incompatibility (CI). In CI, the sperm of Wolbachia-infected males cause embryonic lethality, attributed to paternal chromatin segregation defects during early mitotic divisions. Remarkably, the embryos of Wolbachia-infected females "rescue" CI lethality, yielding egg hatch rates equivalent to uninfected female crosses. Several models have been discussed as the basis for Rescue, and functional evidence indicates a major contribution by Wolbachia CI factors. A role for host contributions to Rescue remains largely untested. In this study, we used a chemical feeding approach to test for CI suppression capabilities by Drosophila simulans. We found that uninfected females exhibited significantly higher CI egg hatch rates in response to seven chemical treatments that affect DNA integrity, cell cycle control, and protein turnover. Three of these treatments suppressed CI induced by endogenous wRi Wolbachia, as well as an ectopic wMel Wolbachia infection. The results implicate DNA integrity as a focal aspect of CI suppression for different Wolbachia strains. The framework presented here, applied to diverse CI models, will further enrich our understanding of host reproductive manipulation by insect endosymbionts.

RevDate: 2020-12-19

Pimentel AC, Beraldo CS, R Cogni (2020)

Host-shift as the cause of emerging infectious diseases: Experimental approaches using Drosophila-virus interactions.

Genetics and molecular biology, 44(1 Suppl 1):e20200197.

Host shifts, when a cross-species transmission of a pathogen can lead to successful infections, are the main cause of emerging infectious diseases, such as COVID-19. A complex challenge faced by the scientific community is to address the factors that determine whether the cross-species transmissions will result in spillover or sustained onwards infections. Here we review recent literature and present a perspective on current approaches we are using to understand the mechanisms underlying host shifts. We highlight the usefulness of the interactions between Drosophila species and viruses as an ideal study model. Additionally, we discuss how cross-infection experiments - when pathogens from a natural reservoir are intentionally injected in novel host species- can test the effect cross-species transmissions may have on the fitness of virus and host, and how the host phylogeny may influence this response. We also discuss experiments evaluating how cooccurrence with other viruses or the presence of the endosymbiont bacteria Wolbachia may affect the performance of new viruses in a novel host. Finally, we discuss the need of surveys of virus diversity in natural populations using next-generation sequencing technologies. In the long term, these approaches can contribute to a better understanding of the basic biology of host shifts.

RevDate: 2020-11-23

Amala M, Richard M, Saritha P, et al (2020)

Molecular evolution, binding site interpretation and functional divergence of aspartate semialdehyde dehydrogenase.

Journal of biomolecular structure & dynamics [Epub ahead of print].

Aspartate Semialdehyde Dehydrogenase (ASDH) is an important enzyme essential for the viability of pathogenic microorganisms. ASDH is mainly involved in amino acid and cell wall biosynthesis of microorganisms, hence it is considered to be a promising target for drug design. This enzyme depicts similar mechanistic function in all microorganisms; although, the kinetic efficiency of an enzyme differs according to their active site residual composition. Therefore, understanding the residual variation and kinetic efficiency of the enzyme would pave new insights in structure-based drug discovery and a novel drug molecule against ASDH. Here, ASDH from Wolbachia endosymbiont of Brugia malayi is used as a prime enzyme to execute evolutionary studies. The phylogenetic analysis was opted to classify 400 sequences of ASDH enzymes based on their structure and electrostatic surfaces. Analysis resulted in 37 monophyletic clades of diverse pathogenic and non-pathogenic organisms. The representative structures of 37 ASDHs from different clades were further deciphered to structural homologues. These enzymes exhibited presence of more positively charged surfaces than negatively charged surfaces in the active site pocket which restrains evolutionary significance. Docking studies of NADP+ with 37 enzymes reveals that site-specific residual variation in the active site pocket modulates the binding affinity (ranges of -13 to -9 kcal/mol). Type-I and Type-II divergence studies show, no significant functional divergence among ASDH, but residual changes were found among the enzyme that modulates the biochemical characteristics and catalytic efficiency. The present study not only explores residual alteration and catalytic variability, it also aids in the design of species-specific inhibitors. Communicated by Ramaswamy H. Sarma.

RevDate: 2021-02-06

Cormier A, Chebbi MA, Giraud I, et al (2020)

Comparative genomics of strictly vertically transmitted, feminizing microsporidia endosymbionts of amphipod crustaceans.

Genome biology and evolution [Epub ahead of print].

Microsporidia are obligate intracellular eukaryotic parasites of vertebrates and invertebrates. Microsporidia are usually pathogenic and undergo horizontal transmission or a mix of horizontal and vertical transmission. However, cases of non-pathogenic microsporidia, strictly vertically transmitted from mother to offspring, have been reported in amphipod crustaceans. Some of them further evolved the ability to feminize their non-transmitting male hosts into transmitting females. However, our understanding of the evolution of feminization in microsporidia is hindered by a lack of genomic resources. We report the sequencing and analysis of three strictly vertically-transmitted microsporidia species for which feminization induction has been demonstrated (Nosema granulosis) or is strongly suspected (Dictyocoela muelleri and Dictyocoela roeselum), along with a draft genome assembly of their host Gammarus roeselii. Contrary to horizontally transmitted microsporidia that form environmental spores that can be purified, feminizing microsporidia cannot be easily isolated from their host cells. Therefore, we co-sequenced symbiont and host genomic DNA and devised a computational strategy to obtain genome assemblies for the different partners. Genomic comparison with feminizing Wolbachia bacterial endosymbionts of isopod crustaceans indicated independent evolution of feminization in microsporidia and Wolbachia at the molecular genetic level. Feminization thus represents a remarkable evolutionary convergence of eukaryotic and prokaryotic microorganisms. Furthermore, a comparative genomics analysis of microsporidia allowed us to identify several candidate genes for feminization, involving functions such as DNA binding and membrane fusion. The genomic resources we generated contribute to establish G. roeselii and its microsporidia symbionts as a new model to study the evolution of symbiont-mediated feminization.

RevDate: 2020-11-20

Tongkrajang N, Ruenchit P, Tananchai C, et al (2020)

Molecular identification of native Wolbachia pipientis in Anopheles minimus in a low-malaria transmission area of Umphang Valley along the Thailand-Myanmar border.

Parasites & vectors, 13(1):579.

BACKGROUND: Wolbachia, obligate intracellular bacteria, infect the majority of arthropods, including many mosquito species of medical importance. Some Wolbachia strains interfere with the development of Plasmodium parasites in female Anopheles, a major vector of malaria. The use of Wolbachia as a means to block malaria transmission is an emerging vector control strategy in highly endemic areas. Hence, identification of native Wolbachia strains in areas where malaria transmission is low may uncover a particular Wolbachia strain capable of Plasmodium interference. This study aims to identify native Wolbachia strains in female Anopheles spp. that are predominant in a low-malaria transmission area in mainland Southeast Asia.

METHODS: Following a 2-year survey of malaria vectors in Umphang Valley of Tak Province, Thailand, DNA extracts of female An. minimus, An. peditaeniatus, and An. maculatus were subjected to amplification of the conserved region of the 16S rRNA-encoding gene. The DNA sequences of the amplicons were phylogenetically compared with those of known Wolbachia strains.

RESULTS: Among three Anopheles spp., amplification was detected in only the DNA samples from An. minimus. The DNA sequencing of amplicons revealed 100% similarity to Wolbachia pipientis, confirming the specificity of amplification. The Wolbachia-positive An. minimus samples were devoid of Plasmodium 18S rRNA amplification. The phylogenetic trees indicate a close relationship with Wolbachia strains in subgroup B.

CONCLUSION: To the best of our knowledge, the data presented herein provide the first molecular evidence of a Wolbachia strain in An. minimus, hereinafter named wAnmi, in a low-malaria transmission area in the Umphang Valley of western Thailand. Further biological characterization is required to examine its potential for malaria transmission control in the field.

RevDate: 2020-12-21
CmpDate: 2020-12-21

Chao LL, Castillo CT, CM Shih (2021)

Molecular detection and genetic identification of Wolbachia endosymbiont in Rhipicephalus sanguineus (Acari: Ixodidae) ticks of Taiwan.

Experimental & applied acarology, 83(1):115-130.

The genetic identity of Wolbachia endosymbiont in Rhipicephalus sanguineus ticks was determined for the first time in Taiwan. In total 1004 Rh. sanguineus ticks were examined for Wolbachia by polymerase chain reaction assay targeting the Wolbachia surface protein (wsp) gene. The prevalence of Wolbachia infection was detected in nymphs, females, and males with an infection rate of 55.8, 39.8, and 44%, respectively. The phylogenetic relationships were analyzed by comparing the sequences of wsp gene obtained from 60 strains of Wolbachia representing 11 strains of supergroup A and 10 strains of supergroup B. In general, seven major clades of supergroup A and six major clades of supergroup B can be easily distinguished by neighbour-joining analysis and were congruent by maximum likelihood method. All these Wolbachia strains of Taiwan were genetically affiliated to supergroups A and B with high sequence similarity of 98.3-100% and 98.6-100%, respectively. Intra- and inter-group analysis based on the genetic distance (GD) values indicated a lower level (GD < 0.017) within the group A strains of Taiwan compared with the group B (GD > 0.576) of other Wolbachia strains, as well as a lower level (GD < 0.062) within the group B strains of Taiwan compared with the group A (GD > 0.246) of other Wolbachia strains. Our results provide the first genetic identification of Wolbachia endosymbiont in Rh. sanguineus ticks collected from Taiwan, and detection of Wolbachia in male and nymphal ticks may imply the possible mechanism of transstadial transmission in Rh. sanguineus ticks.

RevDate: 2020-11-17

Salgueiro J, Pimper LE, Segura DF, et al (2020)

Gut Bacteriome Analysis of Anastrepha fraterculus sp. 1 During the Early Steps of Laboratory Colonization.

Frontiers in microbiology, 11:570960.

Microbial communities associated to insect species are involved in essential biological functions such as host nutrition, reproduction and survivability. Main factors have been described as modulators of gut bacterial community, such as diet, habit, developmental stage and taxonomy of the host. The present work focuses on the complex changes that gut microbial communities go through when wild insects are introduced to artificial rearing conditions. Specifically, we analyzed the effect of the laboratory colonization on the richness and diversity of the gut bacteriome hosted by the fruit fly pest Anastrepha fraterculus sp. 1. Bacterial profiles were studied by amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in gut samples of males and females, in teneral (1-day-old, unfed) and post-teneral (15-day-old, fed) flies. A total of 3,147,665 sequence reads were obtained and 32 bacterial operational taxonomic units (OTUs) were identified. Proteobacteria was the most abundant phylum (93.3% of the total reads) and, Wolbachia and Enterobacter were the most represented taxa at the genus level (29.9% and 27.7%, respectively, of the total read counts). Wild and laboratory flies showed highly significant differences in the relative abundances of bacteria. The analysis of the core bacteriome showed the presence of five OTUs in all samples grouped by origin, while nine and five OTUs were exclusively detected in laboratory and wild flies, respectively. Irrespective of fly origin or sex, a dominant presence of Wolbachia was observed in teneral flies, whereas Enterobacter was highly abundant in post-teneral individuals. We evidenced significant differences in bacterial richness and diversity among generations under laboratory colonization (F0, F1, F3 and F6) and compared to laboratory and wild flies, displaying also differential patterns between teneral and post-teneral flies. Laboratory and wild A. fraterculus sp. 1 harbor different gut bacterial communities. Laboratory colonization has an important effect on the microbiota, most likely associated to the combined effects of insect physiology and environmental conditions (e.g., diet and colony management).

RevDate: 2020-12-30
CmpDate: 2020-12-30

Wang YF, He K, Guo W, et al (2020)

[Genes associated with Wolbachia-induced cytoplasmic incompatibility in natural populations of Culex pipiens pallens: a preliminary study].

Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control, 32(5):517-521.

OBJECTIVE: To investigate the genes involved in Wolbachia-induced cytoplasmic incompatibility among three natural populations of Culex pipiens pallens in eastern China, so as to provide insights into the development of preventive and control measures for mosquito-borne diseases based on Wolbachia.

METHODS: The cytoplasmic incompatibility was tested among three natural populations of C. pipiens pallens collected from Nanjing and Wuxi of Jiangsu Province and Tangkou of Shandong Province using reciprocal crosses. Wolbachia infection was detected in C. pipiens pallens using a PCR assay, and the expression of Wolbachia wsp and WD0513 genes was quantified using a fluorescent quantitative real-time PCR (qPCR) assay.

RESULTS: Bidirectional compatibility was found between the natural populations of C. pipiens pallens collected from Nanjing and Wuxi of Jiangsu Province (t = 0.57 and 0.15, both P values > 0.05), while bidirectional incompatibility was seen between the natural populations of C. pipiens pallens collected from Tangkou of Shandong Province and Wuxi of Jiangsu Province (t = 63.81 and 43.51, both P values < 0.01), and between the natural populations of C. pipiens pallens collected from Nanjing of Jiangsu Province and Tangkou of Shandong Province (t = 39.62 and 43.12, both P values < 0.01). Wolbachia wsp gene was amplified in all three natural populations of C. pipiens pallens, and qPCR assay detected no significant difference in the Wolbachia wsp gene expression among the three natural populations of C. pipiens pallens (F = 2.15, P > 0.05). In addition, there was no significant difference in the WD0513 gene expression between the natural populations of C. pipiens pallens collected from Tangkou of Shandong Province and Nanjing of Jiangsu Province (q = 8.42, P < 0.05) or between the natural populations of C. pipiens pallens collected from Tangkou of Shandong Province and Wuxi of Jiangsu Province (q = 7.84, P < 0.05); however, there was a significant difference detected in the WD0513 gene expression between the natural populations of C. pipiens pallens collected from Nanjing and Wuxi of Jiangsu Province (q = 0.40, P > 0.05).

CONCLUSIONS: Different Wolbachia numbers are detected in natural populations of C. pipiens pallens collected from Nanjing and Wuxi of Jiangsu Province and Tangkou of Shandong Province, and WD0513 gene may be involved in the Wolbachia-induced cytoplasmic incompatibility among three natural populations of C. pipiens pallens.

RevDate: 2020-12-23
CmpDate: 2020-12-23

Arias-Giraldo LM, Muñoz M, Hernández C, et al (2020)

Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors.

PloS one, 15(11):e0240916.

Triatomines (Hemiptera: Reduviidae) are the insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. The gut bacterial communities affect the development of T. cruzi inside the vector, making the characterization of its composition important in the understanding of infection development. We collected 54 triatomine bugs corresponding to four genera in different departments of Colombia. DNA extraction and PCR were performed to evaluate T. cruzi presence and to determine the discrete typing unit (DTU) of the parasite. PCR products of the bacterial 16S rRNA gene were pooled and sequenced. Resulting reads were denoised and QIIME 2 was used for the identification of amplicon sequence variants (ASVs). Diversity (alpha and beta diversity) and richness analyses, Circos plots, and principal component analysis (PCA) were also performed. The overall T. cruzi infection frequency was 75.9%, with TcI being the predominant DTU. Approximately 500,000 sequences were analyzed and 27 bacterial phyla were identified. The most abundant phyla were Proteobacteria (33.9%), Actinobacteria (32.4%), Firmicutes (19.6%), and Bacteroidetes (7.6%), which together accounted for over 90% of the gut communities identified in this study. Genera were identified for these main bacterial phyla, revealing the presence of important bacteria such as Rhodococcus, Serratia, and Wolbachia. The composition of bacterial phyla in the gut of the insects was significantly different between triatomine species, whereas no significant difference was seen between the state of T. cruzi infection. We suggest further investigation with the evaluation of additional variables and a larger sample size. To our knowledge, this study is the first characterization of the gut bacterial structure of the main triatomine genera in Colombia.

RevDate: 2020-11-10

Onah IE, S Sumner (2020)

DNA barcodes and new primers for nature's pest controllers: the social wasps.

Genome [Epub ahead of print].

Globally, biodiversity is declining as a result of anthropogenic pressures, and this could lead to extinction of some species before they are discovered. The loss of insect taxa is of prime concern, given recent reports of significant declines in the populations of many taxa across the globe. Efforts to document biodiversity have met with several challenges, amongst which are the difficulties in using morphological features to discriminate species, especially in insects. DNA barcoding is a rapid and reliable method for species identification and discovery, but choosing appropriate primers to amplify the barcode region without coamplifying contaminants remains a key challenge. We developed and tested a set of primers for PCR amplification of the DNA barcode region of the COI gene in polistine wasps. We tested their efficacy in 36 species of vespid wasps, and the solitary wasp Zethus miniatus Saussure. Samples were obtained from Africa, Americas, Asia and Europe. The polistine-specific primers successfully amplified the barcode region for all polistines tested, without amplifying any Wolbachia present; they also worked with many species from the other Vespidae wasp subfamilies. The new primers are valuable for the discovery and accurate documentation of polistine wasps in the four continents.

RevDate: 2020-11-13

Torres R, Hernandez E, Flores V, et al (2020)

Wolbachia in mosquitoes from the Central Valley of California, USA.

Parasites & vectors, 13(1):558.

BACKGROUND: Wolbachia bacteria are widely distributed throughout terrestrial arthropod species. These bacteria can manipulate reproduction and influence the vector competence of their hosts. Recently, Wolbachia have been integrated into vector control programmes for mosquito management. A number of supergroups and strains exist for Wolbachia, and they have yet to be characterized for many mosquito species. In this study, we examined Wolbachia prevalence and their phylogenetic relationship to other Wolbachia, using mosquitoes collected in Merced County in the Central Valley of California.

METHODS: Adult mosquitoes were collected from 85 sites in Merced County, California in 2017 and 2018. Traditional and quantitative PCR were used to investigate the presence or absence and the density of Wolbachia, using Wolbachia-specific 16S rRNA and Wolbachia-surface protein (wsp) genes. The supergroup of Wolbachia was determined, and Multilocus Sequence Typing (MLST) by sequencing five housekeeping genes (coxA, gatB, ftsZ, hcpA and fbpA) was also used to determine Wolbachia supergroup as well as strain.

RESULTS: Over 7100 mosquitoes of 12 species were collected: Aedes melanimon, Ae. nigromaculis, Ae. vexans, Ae. aegypti, Culex pipiens, Cx. stigmatosoma, Cx. tarsalis, Anopheles franciscanus, An. freeborni, An. punctipennis, Culiseta incidens and Cs. inornata. Eight showed evidence of Wolbachia. To our knowledge, this study is the first to report detection of Wolbachia in five of these species (Ae. melanimon, Cx. stigmatosoma, Cx. tarsalis, Cs. incidens and Cs. inornata). Culex pipiens and Cx. stigmatosoma had a high frequency and density of Wolbachia infection, which grouped into supergroup B; Cs. inornata clustered with supergroup A. MLST comparisons identified Cx. pipiens and Cx. stigmatosoma as wPip strain type 9 supergroup B. Six species had moderate to low (< 14%) frequencies of Wolbachia. Four species were negative, Ae. nigromaculis, An. franciscanus, An. freeborni and Ae. aegypti.

CONCLUSIONS: New records of Wolbachia detection were found in mosquitoes from Merced County, California. Culex stigmatosoma and Cs. inornata were new records for Wolbachia supergroup B and A, respectively. Other species with Wolbachia occurred with low frequency and low density. Detection of Wolbachia in mosquitoes can be used to inform potential vector control applications. Future study of Wolbachia within Cx. stigmatosoma and Cs. inornata in California and through the range of these species could further explore Wolbachia infection in these two species.

RevDate: 2020-12-23

Varotto-Boccazzi I, Epis S, Arnoldi I, et al (2020)

Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans.

Pharmacological research, 161:105288.

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.

RevDate: 2020-12-23

Pagendam DE, Trewin BJ, Snoad N, et al (2020)

Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination.

BMC biology, 18(1):161.

BACKGROUND: The Wolbachia incompatible insect technique (IIT) shows promise as a method for eliminating populations of invasive mosquitoes such as Aedes aegypti (Linnaeus) (Diptera: Culicidae) and reducing the incidence of vector-borne diseases such as dengue, chikungunya and Zika. Successful implementation of this biological control strategy relies on high-fidelity separation of male from female insects in mass production systems for inundative release into landscapes. Processes for sex-separating mosquitoes are typically error-prone and laborious, and IIT programmes run the risk of releasing Wolbachia-infected females and replacing wild mosquito populations.

RESULTS: We introduce a simple Markov population process model for studying mosquito populations subjected to a Wolbachia-IIT programme which exhibit an unstable equilibrium threshold. The model is used to study, in silico, scenarios that are likely to yield a successful elimination result. Our results suggest that elimination is best achieved by releasing males at rates that adapt to the ever-decreasing wild population, thus reducing the risk of releasing Wolbachia-infected females while reducing costs.

CONCLUSIONS: While very high-fidelity sex separation is required to avoid establishment, release programmes tend to be robust to the release of a small number of Wolbachia-infected females. These findings will inform and enhance the next generation of Wolbachia-IIT population control strategies that are already showing great promise in field trials.

RevDate: 2020-12-01

Mugerwa H, Wang HL, Sseruwagi P, et al (2020)

Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies.

Insect science [Epub ahead of print].

In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.

RevDate: 2021-01-10
CmpDate: 2021-01-06

Diarra AZ, Kone AK, Doumbo Niare S, et al (2020)

Molecular Detection of Microorganisms Associated with Small Mammals and Their Ectoparasites in Mali.

The American journal of tropical medicine and hygiene, 103(6):2542-2551.

Small mammals are the natural reservoirs for many zoonotic pathogens. Using molecular tools, we assessed the prevalence of bacteria and protozoans in small mammals and their ectoparasites in Faladjè, Bougouni, and Bamoko, Mali. A total of 130 small mammals belonging to 10 different species were captured, of which 74 (56.9%) were infested by ectoparasites, including Laelaps echidnina, Xenopsylla cheopis, Amblyomma variegatum, Rhipicephalus sanguineus sensu lato, and Haemaphysalis spp. nymphs. DNA of Bartonella was found in 14/75 (18.7%), 6/48 (12.5%), and 3/7 (42.8%) small mammals from Faladjè, Bougouni, and Bamako, respectively. In Faladjè, Bartonella DNA was detected in 31/68 (45.6%) of L. echidnina and 14/22 (63.6%) of X. cheopis. In Bougouni, it was found in 2/26 (7.7%) of L. echidnina and 10/42 (23.8%) of X. cheopis. The sequences of Bartonella obtained from small mammals were close to those of Bartonella mastomydis, Bartonella elizabethae, and uncultured Bartonella spp. In Faladjè, Coxiella burnetii DNA was detected in 64.4% (29/45) of Haemaphysalis spp. ticks, 4.5% (2/44) of Mastomys erythroleucus, 12.5% (1/8) of Praomys daltoni, and 1.5% (1/68) of L. echidnina. We found DNA of Wolbachia in X. cheopis from Faladjè and DNA of Rickettsia africae and Ehrlichia ruminantium in Am. variegatum from Bougouni. The results of our study show that several small mammal species harbor and may serve as potential reservoirs of Bartonella spp., likely to play a major role in the maintenance, circulation, and potential transmission of bacteria in Mali. The pathogenicity of these bacteria for humans or animals remains to be demonstrated.

RevDate: 2020-11-06

DeVries ZC, Santangelo RG, Booth W, et al (2020)

Reproductive compatibility among populations and host-associated lineages of the common bed bug (Cimex lectularius L.).

Ecology and evolution, 10(20):11090-11099.

As populations differentiate across geographic or host-association barriers, interpopulation fertility is often a measure of the extent of incipient speciation. The bed bug, Cimex lectularius L., was recently found to form two host-associated lineages within Europe: one found with humans (human-associated, HA) and the other found with bats (bat-associated, BA). No unequivocal evidence of contemporary gene flow between these lineages has been found; however, it is unclear whether this is due to an inability to produce viable "hybrid" offspring. To address this question and determine the extent of compatibility between host-associated lineages, we set up mating crosses among populations of bed bugs based on both their host association (human-HA vs. bat-BA) and geographic origin (North America vs. Europe). Within-population fecundity was significantly higher for all HA populations (>1.7 eggs/day) than for BA populations (<1 egg/day). However, all within-population crosses, regardless of host association, had >92% egg hatch rates. Contrary to previous reports, in all interlineage crosses, successful matings occurred, fertile eggs were oviposited, and the F1 "hybrid" generation was found to be reproductively viable. In addition, we evaluated interpopulation genetic variation in Wolbachia among host-associated lineages. We did not find any clear patterns related to host association, nor did we observe a homogenization of Wolbachia lineages across populations that might explain a breakdown of reproductive incompatibility. These results indicate that while the HA and BA populations of C. lectularius represent genetically differentiated host-associated lineages, possibly undergoing sympatric speciation, this is in its incipient stage as they remain reproductively compatible. Other behavioral, physiological, and/or ecological factors likely maintain host-associated differentiation.

RevDate: 2020-11-14

Laidoudi Y, Levasseur A, Medkour H, et al (2020)

An Earliest Endosymbiont, Wolbachia massiliensis sp. nov., Strain PL13 from the Bed Bug (Cimex hemipterus), Type Strain of a New Supergroup T.

International journal of molecular sciences, 21(21):.

The symbiotic Wolbachia are the most sophisticated mutualistic bacterium among all insect-associated microbiota. Wolbachia-insect relationship fluctuates from the simple facultative/parasitic to an obligate nutritional-mutualistic association as it was the case of the bedbug-Wolbachia from Cimexlectularius. Understanding this association may help in the control of associated arthropods. Genomic data have proven to be reliable tools in resolving some aspects of these symbiotic associations. Although, Wolbachia appear to be fastidious or uncultivated bacteria which strongly limited their study. Here we proposed Drosophila S2 cell line for the isolation and culture model to study Wolbachia strains. We therefore isolated and characterized a novel Wolbachia strain associated with the bedbug Cimexhemipterus, designated as wChem strain PL13, and proposed Wolbachiamassiliensis sp. nov. strain wChem-PL13 a type strain of this new species from new supergroup T. Phylogenetically, T-supergroup was close to F and S-supergroups from insects and D-supergroup from filarial nematodes. We determined the 1,291,339-bp genome of wChem-PL13, which was the smallest insect-associated Wolbachia genomes. Overall, the wChem genome shared 50% of protein coding genes with the other insect-associated facultative Wolbachia strains. These findings highlight the diversity of Wolbachia genotypes as well as the Wolbachia-host relationship among Cimicinae subfamily. The wChem provides folate and riboflavin vitamins on which the host depends, while the bacteria had a limited translation mechanism suggesting its strong dependence to its hosts. However, the clear-cut distinction between mutualism and parasitism of the wChem in C. hemipterus cannot be yet ruled out.

RevDate: 2020-11-03

Savić S, Stosic MZ, Marcic D, et al (2020)

Seroepidemiological Study of Canine and Human Dirofilariasis in the Endemic Region of Northern Serbia.

Frontiers in veterinary science, 7:571.

Dirofilariasis is a vector-borne zoonotic disease caused mainly by Dirofilaria immitis and Dirofilaria repens that affect dogs and humans all over the world. Serbia is considered an endemic country to both forms of dirofilariasis, although most of the population is concentrated in the north of the country. The aims of this study were to show the prevalence of D. immitis and D. repens in dogs and the seroprevalence in humans compared to previous studies in Northern Serbia. In total, 346 dog sera samples and 265 human samples were analyzed. Dog blood samples were analyzed using the modified Knott's method to check whether there were Dirofilaria spp. microfilariae and serum samples were checked by a commercial D. immitis antigen test. Human serum samples were analyzed with a non-commercial ELISA for detection of specific anti-D. immitis, anti-D. repens, and anti-Wolbachia IgG antibodies, and confirmed by western blotting. The overall prevalence for Dirofilaria spp. in dogs was 29.19%. The overall prevalence for D. immitis was 26.30%. The percentages of D. immitis and D. repens microfilaremia in dogs were 25.72 and 1.45%, respectively, while D. immitis./D. repens microfilaremia co-infections were also 1.45%. The overall seroprevalence for Dirofilaria spp. in humans was 3.77%. The overall seroprevalence for D. immitis was 1.51, 1.13% for D. repens, and for D. immitis/D. repens co-infections was 1.13%. The results indicate that D. immitis and D. repens are present in dogs and humans in the province of Vojvodina, in the northern part of Serbia. It is most likely associated with the presence of many rivers, the climate, and presence of mosquitoes in the area, so there could be a real public health risk.

RevDate: 2020-11-03

Dacey DP, FJJ Chain (2020)

The Challenges of Microbial Control of Mosquito-Borne Diseases Due to the Gut Microbiome.

Frontiers in genetics, 11:504354.

Mosquitoes are one of the deadliest animals on earth because of their ability to transmit a wide range of human pathogens. Traditional mosquito control methods use chemical insecticides, but with dwindling long-term effectiveness and negative effects on the environment, microbial forms of control have become common alternatives. The insecticide Bacillus thuringiensis subspecies israelensis (Bti) is the most popular of these alternatives, although it can also have direct effects on lowering environmental biodiversity and indirect effects on food-web relationships in the ecosystems where it is deployed. In addition, microbial control agents that impede pathogen development or transmission from mosquito to human are under investigation, including Wolbachia and Asaia, but unexpected interactions with mosquito gut bacteria can hinder their effectiveness. Improved characterization of mosquito gut bacterial communities is needed to determine the taxa that interfere with microbial controls and their effectiveness in wild populations. This mini-review briefly discusses relationships between mosquito gut bacteria and microbial forms of control, and the challenges in ensuring their success.

RevDate: 2020-10-31

Sanaei E, Charlat S, J Engelstädter (2020)

Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences.

Biological reviews of the Cambridge Philosophical Society [Epub ahead of print].

Wolbachia is one of the most abundant endosymbionts on earth, with a wide distribution especially in arthropods. Effective maternal transmission and the induction of various phenotypes in their hosts are two key features of this bacterium. Here, we review our current understanding of another central aspect of Wolbachia's success: their ability to switch from one host species to another. We build on the proposal that Wolbachia host shifts occur in four main steps: (i) physical transfer to a new species; (ii) proliferation within that host; (iii) successful maternal transmission; and (iv) spread within the host species. Host shift can fail at each of these steps, and the likelihood of ultimate success is influenced by many factors. Some stem from traits of Wolbachia (different strains have different abilities for host switching), others on host features such as genetic resemblance (e.g. host shifting is likely to be easier between closely related species), ecological connections (the donor and recipient host need to interact), or the resident microbiota. Host shifts have enabled Wolbachia to reach its enormous current incidence and global distribution among arthropods in an epidemiological process shaped by loss and acquisition events across host species. The ability of Wolbachia to transfer between species also forms the basis of ongoing endeavours to control pests and disease vectors, following artificial introduction into uninfected hosts such as mosquitoes. Throughout, we emphasise the many knowledge gaps in our understanding of Wolbachia host shifts, and question the effectiveness of current methodology to detect these events. We conclude by discussing an apparent paradox: how can Wolbachia maintain its ability to undergo host shifts given that its biology seems dominated by vertical transmission?


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )