Other Sites:
Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About: RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE
RJR: Recommended Bibliography 30 Mar 2023 at 02:00 Created:
Wolbachia
WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.
Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion
Citations The Papers (from PubMed®)
RevDate: 2023-03-29
Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia.
PLoS neglected tropical diseases, 17(3):e0011222 pii:PNTD-D-22-01377 [Epub ahead of print].
Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.
Additional Links: PMID-36989319
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36989319,
year = {2023},
author = {Wimalasiri-Yapa, BMCR and Huang, B and Ross, PA and Hoffmann, AA and Ritchie, SA and Frentiu, FD and Warrilow, D and van den Hurk, AF},
title = {Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia.},
journal = {PLoS neglected tropical diseases},
volume = {17},
number = {3},
pages = {e0011222},
doi = {10.1371/journal.pntd.0011222},
pmid = {36989319},
issn = {1935-2735},
abstract = {Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.},
}
RevDate: 2023-03-29
Feeding on a Bartonella henselae Infected Host Triggers Temporary Changes in the Ctenocephalides felis Microbiome.
Pathogens (Basel, Switzerland), 12(3): pii:pathogens12030366.
The effect of Bartonella henselae on the microbiome of its vector, Ctenocephalides felis (the cat flea) is largely unknown, as the majority of C. felis microbiome studies have utilized wild-caught pooled fleas. We surveyed the microbiome of laboratory-origin C. felis fed on B. henselae-infected cats for 24 h or 9 days to identify changes to microbiome diversity and microbe prevalence compared to unfed fleas, and fleas fed on uninfected cats. Utilizing Next Generation Sequencing (NGS) on the Illumina platform, we documented an increase in microbial diversity in C. felis fed on Bartonella-infected cats for 24 h. These changes returned to baseline (unfed fleas or fleas fed on uninfected cats) after 9 days on the host. Increased diversity in the C. felis microbiome when fed on B. henselae-infected cats may be related to the mammalian, flea, or endosymbiont response. Poor B. henselae acquisition was documented with only one of four infected flea pools having B. henselae detected by NGS. We hypothesize this is due to the use of adult fleas, flea genetic variation, or lack of co-feeding with B. henselae-infected fleas. Future studies are necessary to fully characterize the effect of endosymbionts and C. felis diversity on B. henselae acquisition.
Additional Links: PMID-36986288
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36986288,
year = {2023},
author = {Moore, C and Lashnits, E and Neupane, P and Herrin, BH and Lappin, M and André, MR and Breitschwerdt, EB},
title = {Feeding on a Bartonella henselae Infected Host Triggers Temporary Changes in the Ctenocephalides felis Microbiome.},
journal = {Pathogens (Basel, Switzerland)},
volume = {12},
number = {3},
pages = {},
doi = {10.3390/pathogens12030366},
pmid = {36986288},
issn = {2076-0817},
abstract = {The effect of Bartonella henselae on the microbiome of its vector, Ctenocephalides felis (the cat flea) is largely unknown, as the majority of C. felis microbiome studies have utilized wild-caught pooled fleas. We surveyed the microbiome of laboratory-origin C. felis fed on B. henselae-infected cats for 24 h or 9 days to identify changes to microbiome diversity and microbe prevalence compared to unfed fleas, and fleas fed on uninfected cats. Utilizing Next Generation Sequencing (NGS) on the Illumina platform, we documented an increase in microbial diversity in C. felis fed on Bartonella-infected cats for 24 h. These changes returned to baseline (unfed fleas or fleas fed on uninfected cats) after 9 days on the host. Increased diversity in the C. felis microbiome when fed on B. henselae-infected cats may be related to the mammalian, flea, or endosymbiont response. Poor B. henselae acquisition was documented with only one of four infected flea pools having B. henselae detected by NGS. We hypothesize this is due to the use of adult fleas, flea genetic variation, or lack of co-feeding with B. henselae-infected fleas. Future studies are necessary to fully characterize the effect of endosymbionts and C. felis diversity on B. henselae acquisition.},
}
RevDate: 2023-03-29
Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco.
Microorganisms, 11(3): pii:microorganisms11030797.
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Additional Links: PMID-36985370
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36985370,
year = {2023},
author = {Remmal, I and Bel Mokhtar, N and Maurady, A and Reda Britel, M and El Fakhouri, K and Asimakis, E and Tsiamis, G and Stathopoulou, P},
title = {Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco.},
journal = {Microorganisms},
volume = {11},
number = {3},
pages = {},
doi = {10.3390/microorganisms11030797},
pmid = {36985370},
issn = {2076-2607},
abstract = {Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.},
}
RevDate: 2023-03-29
Identification of Vietnamese Flea Species and Their Associated Microorganisms Using Morphological, Molecular, and Protein Profiling.
Microorganisms, 11(3): pii:microorganisms11030716.
Fleas are obligatory blood-sucking ectoparasites of medical and veterinary importance. The identification of fleas and associated flea-borne microorganisms, therefore, plays an important role in controlling and managing these vectors. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been reported as an innovative and effective approach to the identification of arthropods, including fleas. This study aims to use this technology to identify ethanol-preserved fleas collected in Vietnam and to use molecular biology to search for microorganisms associated with these fleas. A total of 502 fleas were collected from wild and domestic animals in four provinces in Vietnam. Morphological identification led to the recognition of five flea species, namely Xenopsylla cheopis, Xenopsylla astia, Pulex irritans, Ctenocephalides canis, and Ctenocephalides felis. The cephalothoraxes of 300 individual, randomly selected fleas were tested using MALDI-TOF MS and molecular analysis for the identification and detection of microorganisms. A total of 257/300 (85.7%) of the obtained spectra from the cephalothoraxes of each species were of good enough quality to be used for our analyses. Our laboratory MALDI-TOF MS reference database was upgraded with spectra achieved from five randomly selected fleas for every species of Ctenocephalides canis and Ctenocephalides felis. The remaining spectra were then queried against the upgraded MALDI-TOF MS database, which showed 100% correspondence between morphology and MALDI-TOF MS identification for two flea species (Ctenocephalides canis and Ctenocephalides felis). The MS spectra of the remaining species (three P. irritans, five X. astia, and two X. cheopis) were visually generated low-intensity MS profiles with high background noise that could not be used to update our database. Bartonella and Wolbachia spp. were detected in 300 fleas from Vietnam using PCR and sequencing with primers derived from the gltA gene for Bartonella and the 16S rRNA gene for Wolbachia, including 3 Bartonella clarridgeiae (1%), 3 Bartonella rochalimae (1%), 1 Bartonella coopersplainsensis (0.3%), and 174 Wolbachia spp. endosymbionts (58%).
Additional Links: PMID-36985289
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36985289,
year = {2023},
author = {Huynh, LN and Diarra, AZ and Pham, QL and Berenger, JM and Ho, VH and Nguyen, XQ and Parola, P},
title = {Identification of Vietnamese Flea Species and Their Associated Microorganisms Using Morphological, Molecular, and Protein Profiling.},
journal = {Microorganisms},
volume = {11},
number = {3},
pages = {},
doi = {10.3390/microorganisms11030716},
pmid = {36985289},
issn = {2076-2607},
abstract = {Fleas are obligatory blood-sucking ectoparasites of medical and veterinary importance. The identification of fleas and associated flea-borne microorganisms, therefore, plays an important role in controlling and managing these vectors. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been reported as an innovative and effective approach to the identification of arthropods, including fleas. This study aims to use this technology to identify ethanol-preserved fleas collected in Vietnam and to use molecular biology to search for microorganisms associated with these fleas. A total of 502 fleas were collected from wild and domestic animals in four provinces in Vietnam. Morphological identification led to the recognition of five flea species, namely Xenopsylla cheopis, Xenopsylla astia, Pulex irritans, Ctenocephalides canis, and Ctenocephalides felis. The cephalothoraxes of 300 individual, randomly selected fleas were tested using MALDI-TOF MS and molecular analysis for the identification and detection of microorganisms. A total of 257/300 (85.7%) of the obtained spectra from the cephalothoraxes of each species were of good enough quality to be used for our analyses. Our laboratory MALDI-TOF MS reference database was upgraded with spectra achieved from five randomly selected fleas for every species of Ctenocephalides canis and Ctenocephalides felis. The remaining spectra were then queried against the upgraded MALDI-TOF MS database, which showed 100% correspondence between morphology and MALDI-TOF MS identification for two flea species (Ctenocephalides canis and Ctenocephalides felis). The MS spectra of the remaining species (three P. irritans, five X. astia, and two X. cheopis) were visually generated low-intensity MS profiles with high background noise that could not be used to update our database. Bartonella and Wolbachia spp. were detected in 300 fleas from Vietnam using PCR and sequencing with primers derived from the gltA gene for Bartonella and the 16S rRNA gene for Wolbachia, including 3 Bartonella clarridgeiae (1%), 3 Bartonella rochalimae (1%), 1 Bartonella coopersplainsensis (0.3%), and 174 Wolbachia spp. endosymbionts (58%).},
}
RevDate: 2023-03-28
Modeling Sustained Transmission of Wolbachia among Anopheles Mosquitoes: Implications for Malaria Control in Haiti.
Tropical medicine and infectious disease, 8(3): pii:tropicalmed8030162.
Wolbachia infection in Anopheles albimanus mosquitoes can render mosquitoes less capable of spreading malaria. We developed and analyzed a mechanistic compartmental ordinary differential equation model to evaluate the effectiveness of Wolbachia-based vector control strategies among wild Anopheles mosquitoes in Haiti. The model tracks the mosquito life stages, including egg, larva, and adult (male and female). It also accounts for critical biological effects, such as the maternal transmission of Wolbachia through infected females and cytoplasmic incompatibility, which effectively sterilizes uninfected females when they mate with infected males. We derive and interpret dimensionless numbers, including the basic reproductive number and next-generation numbers. The proposed system presents a backward bifurcation, which indicates a threshold infection that needs to be exceeded to establish a stable Wolbachia infection. The sensitivity analysis ranks the relative importance of the epidemiological parameters at baseline. We simulate different intervention scenarios, including prerelease mitigation using larviciding and thermal fogging before the release, multiple releases of infected populations, and different release times of the year. Our simulations show that the most efficient approach to establishing Wolbachia is to release all the infected mosquitoes immediately after the prerelease mitigation process. Moreover, the model predicts that it is more efficient to release during the dry season than the wet season.
Additional Links: PMID-36977163
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36977163,
year = {2023},
author = {Florez, D and Young, AJ and Bernabé, KJ and Hyman, JM and Qu, Z},
title = {Modeling Sustained Transmission of Wolbachia among Anopheles Mosquitoes: Implications for Malaria Control in Haiti.},
journal = {Tropical medicine and infectious disease},
volume = {8},
number = {3},
pages = {},
doi = {10.3390/tropicalmed8030162},
pmid = {36977163},
issn = {2414-6366},
abstract = {Wolbachia infection in Anopheles albimanus mosquitoes can render mosquitoes less capable of spreading malaria. We developed and analyzed a mechanistic compartmental ordinary differential equation model to evaluate the effectiveness of Wolbachia-based vector control strategies among wild Anopheles mosquitoes in Haiti. The model tracks the mosquito life stages, including egg, larva, and adult (male and female). It also accounts for critical biological effects, such as the maternal transmission of Wolbachia through infected females and cytoplasmic incompatibility, which effectively sterilizes uninfected females when they mate with infected males. We derive and interpret dimensionless numbers, including the basic reproductive number and next-generation numbers. The proposed system presents a backward bifurcation, which indicates a threshold infection that needs to be exceeded to establish a stable Wolbachia infection. The sensitivity analysis ranks the relative importance of the epidemiological parameters at baseline. We simulate different intervention scenarios, including prerelease mitigation using larviciding and thermal fogging before the release, multiple releases of infected populations, and different release times of the year. Our simulations show that the most efficient approach to establishing Wolbachia is to release all the infected mosquitoes immediately after the prerelease mitigation process. Moreover, the model predicts that it is more efficient to release during the dry season than the wet season.},
}
RevDate: 2023-03-28
Environmental Factors Affect the Bacterial Community in Diaphorina citri, an Important Vector of "Candidatus Liberibacter asiaticus".
Microbiology spectrum [Epub ahead of print].
Insects are associated with diverse microbial communities that can have substantial effects on hosts. Here, we characterized the bacterial communities in the Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), a major vector of the devastating pathogen "Candidatus Liberibacter asiaticus," which causes citrus Huanglongbing (HLB). In total, 256 ACP individuals across 15 field sites and one laboratory population in China were sequenced. The results showed that the bacterial community diversity was the highest in the Guilin population (average Shannon index, 1.27), and the highest value for richness was found in the Chenzhou population (average Chao1 index, 298). The bacterial community structures of the field-collected populations were significantly different, and all of them harbored Wolbachia, which was assigned to strain ST-173. Structural equation models revealed that the dominant Wolbachia strain had a significantly negative correlation with the annual mean temperature. In addition, the results obtained with populations infected with "Ca. Liberibacter asiaticus" indicated that in total, 140 bacteria could be involved in interactions with this bacterium. The ACP field populations harbored a more diverse bacterial community than the laboratory population, and the relative occurrences of some symbionts differed significantly. However, the bacterial community of the ACP laboratory colony was connected in a more complex network structure (average degree, 54.83) than that of the field populations (average degree, 10.62). Our results provide evidence that environmental factors can influence the bacterial community structure and bacterial relative abundance in ACP populations. This is likely due to the adaptation of ACPs to local environments. IMPORTANCE The Asian citrus psyllid (ACP) is an important vector of the HLB pathogen, which is a major threat to citrus production around the world. Bacterial communities harbored by insects could be affected by different environmental factors. Understanding these factors that affect the bacterial community of the ACP could be important for the better management of HLB transmission. This work surveyed ACP field populations in mainland China in order to explore the bacterial community diversity of different populations and the potential relationships between environmental factors and predominant symbionts. We have assessed the differences in ACP bacterial communities and identified the prevalent Wolbachia strains in the field. In addition, we compared the bacterial communities of ACP field-collected and laboratory populations. Comparing populations subjected to contrasting conditions could help us to better understand how the ACP adapts to local environmental conditions. Our study provides new insights into how environmental factors influence the bacterial community of the ACP.
Additional Links: PMID-36975996
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36975996,
year = {2023},
author = {Jiang, RX and Shang, F and Jiang, HB and Dou, W and Cernava, T and Wang, JJ},
title = {Environmental Factors Affect the Bacterial Community in Diaphorina citri, an Important Vector of "Candidatus Liberibacter asiaticus".},
journal = {Microbiology spectrum},
volume = {},
number = {},
pages = {e0529822},
doi = {10.1128/spectrum.05298-22},
pmid = {36975996},
issn = {2165-0497},
abstract = {Insects are associated with diverse microbial communities that can have substantial effects on hosts. Here, we characterized the bacterial communities in the Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), a major vector of the devastating pathogen "Candidatus Liberibacter asiaticus," which causes citrus Huanglongbing (HLB). In total, 256 ACP individuals across 15 field sites and one laboratory population in China were sequenced. The results showed that the bacterial community diversity was the highest in the Guilin population (average Shannon index, 1.27), and the highest value for richness was found in the Chenzhou population (average Chao1 index, 298). The bacterial community structures of the field-collected populations were significantly different, and all of them harbored Wolbachia, which was assigned to strain ST-173. Structural equation models revealed that the dominant Wolbachia strain had a significantly negative correlation with the annual mean temperature. In addition, the results obtained with populations infected with "Ca. Liberibacter asiaticus" indicated that in total, 140 bacteria could be involved in interactions with this bacterium. The ACP field populations harbored a more diverse bacterial community than the laboratory population, and the relative occurrences of some symbionts differed significantly. However, the bacterial community of the ACP laboratory colony was connected in a more complex network structure (average degree, 54.83) than that of the field populations (average degree, 10.62). Our results provide evidence that environmental factors can influence the bacterial community structure and bacterial relative abundance in ACP populations. This is likely due to the adaptation of ACPs to local environments. IMPORTANCE The Asian citrus psyllid (ACP) is an important vector of the HLB pathogen, which is a major threat to citrus production around the world. Bacterial communities harbored by insects could be affected by different environmental factors. Understanding these factors that affect the bacterial community of the ACP could be important for the better management of HLB transmission. This work surveyed ACP field populations in mainland China in order to explore the bacterial community diversity of different populations and the potential relationships between environmental factors and predominant symbionts. We have assessed the differences in ACP bacterial communities and identified the prevalent Wolbachia strains in the field. In addition, we compared the bacterial communities of ACP field-collected and laboratory populations. Comparing populations subjected to contrasting conditions could help us to better understand how the ACP adapts to local environmental conditions. Our study provides new insights into how environmental factors influence the bacterial community of the ACP.},
}
RevDate: 2023-03-24
Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions.
PLOS global public health, 1(10):e0000024 pii:PGPH-D-21-00400.
The release of Wolbachia-infected mosquitoes is a promising disease intervention strategy that aims to control dengue and other arboviral infections. While early field trials and modelling studies suggest promising epidemiological and entomological outcomes, the overall cost effectiveness of the technology is not well studied in a resource rich setting nor under the suppression approach that aims to suppress the wild-type mosquito population through the release of Wolbachia-infected males. We used economical and epidemiological data from 2010 to 2020 to first ascertain the economic and health costs of dengue in Singapore, a high income nation where dengue is hyper-endemic. The hypothetical cost effectiveness of a national Wolbachia suppression program was then evaluated historically from 2010 to 2020. We estimated that the average economic impact of dengue in Singapore from 2010 to 2020 in constant 2010US$ ranged from $1.014 to $2.265 Billion. Using empirically derived disability weights, we estimated a disease burden of 7,645-21,262 DALYs from 2010-2020. Under an assumed steady-state running cost of a national Wolbachia suppression program in Singapore, we conservatively estimate that Wolbachia would cost an estimated $50,453-$100,907 per DALYs averted and would lead to an estimated $329.40 Million saved in economic costs over 2010 to 2020 under 40% intervention efficacy. Wolbachia releases in Singapore are expected to be highly cost-effective and its rollout must be prioritised to reduce the onward spread of dengue.
Additional Links: PMID-36962069
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36962069,
year = {2021},
author = {Soh, S and Ho, SH and Seah, A and Ong, J and Dickens, BS and Tan, KW and Koo, JR and Cook, AR and Tan, KB and Sim, S and Ng, LC and Lim, JT},
title = {Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions.},
journal = {PLOS global public health},
volume = {1},
number = {10},
pages = {e0000024},
doi = {10.1371/journal.pgph.0000024},
pmid = {36962069},
issn = {2767-3375},
abstract = {The release of Wolbachia-infected mosquitoes is a promising disease intervention strategy that aims to control dengue and other arboviral infections. While early field trials and modelling studies suggest promising epidemiological and entomological outcomes, the overall cost effectiveness of the technology is not well studied in a resource rich setting nor under the suppression approach that aims to suppress the wild-type mosquito population through the release of Wolbachia-infected males. We used economical and epidemiological data from 2010 to 2020 to first ascertain the economic and health costs of dengue in Singapore, a high income nation where dengue is hyper-endemic. The hypothetical cost effectiveness of a national Wolbachia suppression program was then evaluated historically from 2010 to 2020. We estimated that the average economic impact of dengue in Singapore from 2010 to 2020 in constant 2010US$ ranged from $1.014 to $2.265 Billion. Using empirically derived disability weights, we estimated a disease burden of 7,645-21,262 DALYs from 2010-2020. Under an assumed steady-state running cost of a national Wolbachia suppression program in Singapore, we conservatively estimate that Wolbachia would cost an estimated $50,453-$100,907 per DALYs averted and would lead to an estimated $329.40 Million saved in economic costs over 2010 to 2020 under 40% intervention efficacy. Wolbachia releases in Singapore are expected to be highly cost-effective and its rollout must be prioritised to reduce the onward spread of dengue.},
}
RevDate: 2023-03-23
Wolbachia endosymbiotic bacteria alter the gut microbiome in the fly Drosophila nigrosparsa.
Journal of invertebrate pathology pii:S0022-2011(23)00032-0 [Epub ahead of print].
Wolbachia are known to cause reproductive manipulations and in some arthropod species, Wolbachia were reported to cause changes in gut microbiome. However, the effects of Wolbachia bacteria on the microbiomes of their hosts, including Drosophila flies, have not been fully accessed. Here, we checked the bacterial microbiome in guts of Wolbachia-uninfected and of Wolbachia-infected Drosophila nigrosparsa, both separated into a bleach-only (embryos bleached) and a gnotobiotic (embryos bleached and inoculated with bacteria) treatment. We observed a clear separation between the Wolbachia-infected and the Wolbachia-uninfected samples, and the infected samples had higher variation in alpha diversity than the uninfected ones. There were reductions in the abundances of Proteobacteria (Pseudomonadota), especially Acetobacter, in the infected samples of both treatments. These findings highlight that Wolbachia change the gut microbiome in D. nigrosparsa as well as that the interactions between Wolbachia and bacteria like Acetobacter need to be investigated.
Additional Links: PMID-36958642
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36958642,
year = {2023},
author = {Detcharoen, M and Jiggins, FM and Schlick-Steiner, BC and Steiner, FM},
title = {Wolbachia endosymbiotic bacteria alter the gut microbiome in the fly Drosophila nigrosparsa.},
journal = {Journal of invertebrate pathology},
volume = {},
number = {},
pages = {107915},
doi = {10.1016/j.jip.2023.107915},
pmid = {36958642},
issn = {1096-0805},
abstract = {Wolbachia are known to cause reproductive manipulations and in some arthropod species, Wolbachia were reported to cause changes in gut microbiome. However, the effects of Wolbachia bacteria on the microbiomes of their hosts, including Drosophila flies, have not been fully accessed. Here, we checked the bacterial microbiome in guts of Wolbachia-uninfected and of Wolbachia-infected Drosophila nigrosparsa, both separated into a bleach-only (embryos bleached) and a gnotobiotic (embryos bleached and inoculated with bacteria) treatment. We observed a clear separation between the Wolbachia-infected and the Wolbachia-uninfected samples, and the infected samples had higher variation in alpha diversity than the uninfected ones. There were reductions in the abundances of Proteobacteria (Pseudomonadota), especially Acetobacter, in the infected samples of both treatments. These findings highlight that Wolbachia change the gut microbiome in D. nigrosparsa as well as that the interactions between Wolbachia and bacteria like Acetobacter need to be investigated.},
}
RevDate: 2023-03-23
The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection.
Frontiers in microbiology, 14:1137059.
Surveillance of the fleas and flea-borne pathogens infecting cats is important for both human and animal health. Multiple zoonotic Bartonella and Rickettsia species are known to infect the most common flea infesting cats and dogs worldwide: Ctenocephalides felis, the cat flea. The ability of other flea species to transmit pathogens is relatively unexplored. We aimed to determine cat host and flea factors independently associated with flea Bartonella and Rickettsia infection. We also assessed flea and cat infection by flea-host pair and location. To accomplish these aims, we performed qPCR for the detection of Bartonella, hemotropic Mycoplasma, Rickettsia, and Wolbachia DNA using paired cat and flea samples obtained from free-roaming cats presenting for spay or neuter across four locations in the United States. A logistic regression model was employed to identify the effect of cat (sex, body weight, geographic location, and Bartonella, hemotropic Mycoplasma, and Rickettsia spp., infection) and flea (clade and Rickettsia and Wolbachia infection) factors on C. felis Bartonella clarridgeiae infection. From 189 free roaming cats, we collected 84 fleas: Ctenocephalides felis (78/84), Cediopsylla simplex (4/84), Orchopeas howardi (1/84), and Nosopsyllus fasciatus (1/84). Ctenocephalides felis were phylogenetically assigned to Clades 1, 4, and 6 by cox1 gene amplification. Rickettsia asembonensis (52/84) and B. clarridgeiae (16/84) were the most common pathogenic bacteria detected in fleas. Our model identified host cat sex and weight as independently associated with B. clarridgeiae infection in fleas. Rickettsia asembonensis (52/84), Rickettsia felis (7/84) and Bartonella henselae (7/84) were detected in specific clades: R. felis was detected only in Clades 1 and 6 while B. henselae and R. asembonensis were detected only in Clade 4. Wolbachia spp., also displayed clade specificity with strains other than Wolbachia wCfeT only infecting fleas from Clade 6. There was poor flea and host agreement for Bartonella spp., infection; however, there was agreement in the Bartonella species detected in cats and fleas by geographic location. These findings reinforce the importance of considering reservoir host attributes and vector phylogenetic diversity in epidemiological studies of flea-borne pathogens. Widespread sampling is necessary to identify the factors driving flea-borne pathogen presence and transmission.
Additional Links: PMID-36950155
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36950155,
year = {2023},
author = {Moore, C and Breitschwerdt, EB and Kim, L and Li, Y and Ferris, K and Maggi, R and Lashnits, E},
title = {The association of host and vector characteristics with Ctenocephalides felis pathogen and endosymbiont infection.},
journal = {Frontiers in microbiology},
volume = {14},
number = {},
pages = {1137059},
pmid = {36950155},
issn = {1664-302X},
abstract = {Surveillance of the fleas and flea-borne pathogens infecting cats is important for both human and animal health. Multiple zoonotic Bartonella and Rickettsia species are known to infect the most common flea infesting cats and dogs worldwide: Ctenocephalides felis, the cat flea. The ability of other flea species to transmit pathogens is relatively unexplored. We aimed to determine cat host and flea factors independently associated with flea Bartonella and Rickettsia infection. We also assessed flea and cat infection by flea-host pair and location. To accomplish these aims, we performed qPCR for the detection of Bartonella, hemotropic Mycoplasma, Rickettsia, and Wolbachia DNA using paired cat and flea samples obtained from free-roaming cats presenting for spay or neuter across four locations in the United States. A logistic regression model was employed to identify the effect of cat (sex, body weight, geographic location, and Bartonella, hemotropic Mycoplasma, and Rickettsia spp., infection) and flea (clade and Rickettsia and Wolbachia infection) factors on C. felis Bartonella clarridgeiae infection. From 189 free roaming cats, we collected 84 fleas: Ctenocephalides felis (78/84), Cediopsylla simplex (4/84), Orchopeas howardi (1/84), and Nosopsyllus fasciatus (1/84). Ctenocephalides felis were phylogenetically assigned to Clades 1, 4, and 6 by cox1 gene amplification. Rickettsia asembonensis (52/84) and B. clarridgeiae (16/84) were the most common pathogenic bacteria detected in fleas. Our model identified host cat sex and weight as independently associated with B. clarridgeiae infection in fleas. Rickettsia asembonensis (52/84), Rickettsia felis (7/84) and Bartonella henselae (7/84) were detected in specific clades: R. felis was detected only in Clades 1 and 6 while B. henselae and R. asembonensis were detected only in Clade 4. Wolbachia spp., also displayed clade specificity with strains other than Wolbachia wCfeT only infecting fleas from Clade 6. There was poor flea and host agreement for Bartonella spp., infection; however, there was agreement in the Bartonella species detected in cats and fleas by geographic location. These findings reinforce the importance of considering reservoir host attributes and vector phylogenetic diversity in epidemiological studies of flea-borne pathogens. Widespread sampling is necessary to identify the factors driving flea-borne pathogen presence and transmission.},
}
RevDate: 2023-03-23
The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid.
Frontiers in cellular and infection microbiology, 13:1121186.
BACKGROUND: Wolbachia is the most abundant bacterial endosymbiont among insects. It can play a prominent role in the development, reproduction and immunity of its given insect host. To date, Wolbachia presence is well studied within aphids, whiteflies and planthoppers, but relatively few studies have investigated its presence in psyllids.
METHODS: Here, the infection status of Wolbachia in five species of psyllid, including Asian citrus psyllid Diaphorina citri and longan psyllid Cornegenapsylla sinica was investigated. The phylogenetic relationships of different Wolbachia lines and their infection density and patterns in D. citri and C. sinica from different countries was also examined.
RESULTS: The infection rates of Wolbachia in D. citri and C. sinica were both 100%, and their sequencing types are ST173 and ST532 respectively. Phylogenetic analysis revealed that the Wolbachia lines in D. citri and C. sinica both belong to the Con subgroup of Wolbachia supergroup B. In addition, Wolbachia displayed a scattered localization pattern in the 5th instar nymphs and in the reproductive organs of both D. citri and C. sinica but differed in other tissues; it was highest in the midgut, lowest in the salivary glands and medium in both the testes and ovaries.
CONCLUSION: Our findings assist in further understanding the coevolution of Wolbachia and its psyllid hosts. Given that Wolbachia could play an important role in insect pest control and pathogen transmission inhibition, our findings may also provide new insights for development of control strategies for D. citri and C. sinica.
Additional Links: PMID-36949814
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36949814,
year = {2023},
author = {Ou, D and Qiu, JH and Su, ZQ and Wang, L and Qiu, BL},
title = {The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid.},
journal = {Frontiers in cellular and infection microbiology},
volume = {13},
number = {},
pages = {1121186},
pmid = {36949814},
issn = {2235-2988},
abstract = {BACKGROUND: Wolbachia is the most abundant bacterial endosymbiont among insects. It can play a prominent role in the development, reproduction and immunity of its given insect host. To date, Wolbachia presence is well studied within aphids, whiteflies and planthoppers, but relatively few studies have investigated its presence in psyllids.
METHODS: Here, the infection status of Wolbachia in five species of psyllid, including Asian citrus psyllid Diaphorina citri and longan psyllid Cornegenapsylla sinica was investigated. The phylogenetic relationships of different Wolbachia lines and their infection density and patterns in D. citri and C. sinica from different countries was also examined.
RESULTS: The infection rates of Wolbachia in D. citri and C. sinica were both 100%, and their sequencing types are ST173 and ST532 respectively. Phylogenetic analysis revealed that the Wolbachia lines in D. citri and C. sinica both belong to the Con subgroup of Wolbachia supergroup B. In addition, Wolbachia displayed a scattered localization pattern in the 5th instar nymphs and in the reproductive organs of both D. citri and C. sinica but differed in other tissues; it was highest in the midgut, lowest in the salivary glands and medium in both the testes and ovaries.
CONCLUSION: Our findings assist in further understanding the coevolution of Wolbachia and its psyllid hosts. Given that Wolbachia could play an important role in insect pest control and pathogen transmission inhibition, our findings may also provide new insights for development of control strategies for D. citri and C. sinica.},
}
RevDate: 2023-03-22
Parasitism causes changes in caterpillar odours and associated bacterial communities with consequences for host-location by a hyperparasitoid.
PLoS pathogens, 19(3):e1011262 pii:PPATHOGENS-D-22-01701 [Epub ahead of print].
Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.
Additional Links: PMID-36947551
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36947551,
year = {2023},
author = {Bourne, ME and Gloder, G and Weldegergis, BT and Slingerland, M and Ceribelli, A and Crauwels, S and Lievens, B and Jacquemyn, H and Dicke, M and Poelman, EH},
title = {Parasitism causes changes in caterpillar odours and associated bacterial communities with consequences for host-location by a hyperparasitoid.},
journal = {PLoS pathogens},
volume = {19},
number = {3},
pages = {e1011262},
doi = {10.1371/journal.ppat.1011262},
pmid = {36947551},
issn = {1553-7374},
abstract = {Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.},
}
RevDate: 2023-03-22
A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor.
PLoS biology, 21(3):e3001879 pii:PBIOLOGY-D-22-02180 [Epub ahead of print].
Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.
Additional Links: PMID-36947547
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36947547,
year = {2023},
author = {Richardson, KM and Ross, PA and Cooper, BS and Conner, WR and Schmidt, T and Hoffmann, AA},
title = {A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor.},
journal = {PLoS biology},
volume = {21},
number = {3},
pages = {e3001879},
doi = {10.1371/journal.pbio.3001879},
pmid = {36947547},
issn = {1545-7885},
abstract = {Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.},
}
RevDate: 2023-03-21
Bird Louse Flies Ornithomya spp. (Diptera: Hippoboscidae) as Potential Vectors of Mammalian Babesia and Other Pathogens.
Vector borne and zoonotic diseases (Larchmont, N.Y.) [Epub ahead of print].
Background: Birds and mammals share various ectoparasites, which are responsible for the transmission of a wide range of pathogens. The louse flies (family Hippoboscidae) are ectoparasitic dipterans feeding strictly on the blood of mammals and birds. Both sexes of the louse flies are obligatory hematophagous and are known to act as the vectors of infectious agents. Materials and Methods: A total of 20 specimens of Ornithomya sp. were collected by hand on birds caught in nets or by hand from humans in two localities in Eastern Slovakia in 2021. The DNA samples were individually screened by species-specific PCRs for the presence of selected vector-borne pathogens. Results: Taxonomic identification folowed by molecular analyses revealed two louse fly species of Ornithomya spp. (O. avicularia and O. biloba). The molecular screening provided negative PCR results for Anaplasma phagocytophilum, Borrelia burgdorferi s.l., Rickettsia spp., Bartonella spp., and Hepatozoon canis. In contrast, positive PCR results were obtained for Babesia spp., Wolbachia spp., and Trypanosoma corvi. Conclusions: Of epidemiological importance is that the louse flies can presumably spread Babesia and other pathogens by host switching which facilitates the transmission and spread of numerous pathogens.
Additional Links: PMID-36944122
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36944122,
year = {2023},
author = {Čisovská Bazsalovicsová, E and Víchová, B and Oboňa, J and Radačovská, A and Blažeková, V and Králová-Hromadová, I},
title = {Bird Louse Flies Ornithomya spp. (Diptera: Hippoboscidae) as Potential Vectors of Mammalian Babesia and Other Pathogens.},
journal = {Vector borne and zoonotic diseases (Larchmont, N.Y.)},
volume = {},
number = {},
pages = {},
doi = {10.1089/vbz.2022.0088},
pmid = {36944122},
issn = {1557-7759},
abstract = {Background: Birds and mammals share various ectoparasites, which are responsible for the transmission of a wide range of pathogens. The louse flies (family Hippoboscidae) are ectoparasitic dipterans feeding strictly on the blood of mammals and birds. Both sexes of the louse flies are obligatory hematophagous and are known to act as the vectors of infectious agents. Materials and Methods: A total of 20 specimens of Ornithomya sp. were collected by hand on birds caught in nets or by hand from humans in two localities in Eastern Slovakia in 2021. The DNA samples were individually screened by species-specific PCRs for the presence of selected vector-borne pathogens. Results: Taxonomic identification folowed by molecular analyses revealed two louse fly species of Ornithomya spp. (O. avicularia and O. biloba). The molecular screening provided negative PCR results for Anaplasma phagocytophilum, Borrelia burgdorferi s.l., Rickettsia spp., Bartonella spp., and Hepatozoon canis. In contrast, positive PCR results were obtained for Babesia spp., Wolbachia spp., and Trypanosoma corvi. Conclusions: Of epidemiological importance is that the louse flies can presumably spread Babesia and other pathogens by host switching which facilitates the transmission and spread of numerous pathogens.},
}
RevDate: 2023-03-19
Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases.
Parasites & vectors, 16(1):108.
BACKGROUND: Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression.
METHODS: We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment.
RESULTS: Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C.
CONCLUSIONS: We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.
Additional Links: PMID-36934294
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36934294,
year = {2023},
author = {Allman, MJ and Lin, YH and Joubert, DA and Addley-Cook, J and Mejía-Torres, MC and Simmons, CP and Flores, HA and Fraser, JE},
title = {Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases.},
journal = {Parasites & vectors},
volume = {16},
number = {1},
pages = {108},
pmid = {36934294},
issn = {1756-3305},
abstract = {BACKGROUND: Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression.
METHODS: We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment.
RESULTS: Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C.
CONCLUSIONS: We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.},
}
RevDate: 2023-03-18
Convergent Aedes and Drosophila CidB interactomes suggest cytoplasmic incompatibility targets are conserved.
Insect biochemistry and molecular biology pii:S0965-1748(23)00025-5 [Epub ahead of print].
Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.
Additional Links: PMID-36933571
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36933571,
year = {2023},
author = {Oladipupo, SO and Carroll, JD and Beckmann, JF},
title = {Convergent Aedes and Drosophila CidB interactomes suggest cytoplasmic incompatibility targets are conserved.},
journal = {Insect biochemistry and molecular biology},
volume = {},
number = {},
pages = {103931},
doi = {10.1016/j.ibmb.2023.103931},
pmid = {36933571},
issn = {1879-0240},
abstract = {Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.},
}
RevDate: 2023-03-17
Effects of Wolbachia on transposable element expression vary between Drosophila melanogaster host genotypes.
Genome biology and evolution pii:7059559 [Epub ahead of print].
Transposable elements (TEs) are repetitive DNA sequences capable of changing position in host genomes, thereby causing mutations. TE insertions typically have deleterious effects but they can also be beneficial. Increasing evidence of the contribution of TEs to adaptive evolution further raises interest in understanding what factors impact TE activity. Based on previous studies associating the bacterial endosymbiont Wolbachia to changes in the abundance of piRNAs, a mechanism for TE repression, and to transposition of specific TEs, we hypothesized that Wolbachia infection would interfere with TE activity. We tested this hypothesis by studying expression of 14 TEs in a panel of 25 Drosophila melanogaster host genotypes, naturally infected with Wolbachia and annotated for TE insertions. The host genotypes differed significantly in Wolbachia titers inside individual flies, with broad-sense heritability around 20%, and in the number of TE insertions, which depended greatly on TE identity. By removing Wolbachia from the target host genotypes, we generated a panel of 25 pairs of Wolbachia-positive and Wolbachia-negative lines in which we quantified transcription levels our target TEs. We found variation in TE expression that was dependent on Wolbachia status, TE identity, and host genotype. Comparing between pairs of Wolbachia-positive and Wolbachia-negative flies, we found that Wolbachia removal affected TE expression in 21.1% of the TE-genotype combinations tested, with up to 2.3 times differences in median level of transcript. Our data shows that Wolbachia can impact TE activity in host genomes, underscoring the importance this endosymbiont can have in the generation of genetic novelty in hosts.
Additional Links: PMID-36929176
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36929176,
year = {2023},
author = {Eugénio, AT and Marialva, MSP and Beldade, P},
title = {Effects of Wolbachia on transposable element expression vary between Drosophila melanogaster host genotypes.},
journal = {Genome biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/gbe/evad036},
pmid = {36929176},
issn = {1759-6653},
abstract = {Transposable elements (TEs) are repetitive DNA sequences capable of changing position in host genomes, thereby causing mutations. TE insertions typically have deleterious effects but they can also be beneficial. Increasing evidence of the contribution of TEs to adaptive evolution further raises interest in understanding what factors impact TE activity. Based on previous studies associating the bacterial endosymbiont Wolbachia to changes in the abundance of piRNAs, a mechanism for TE repression, and to transposition of specific TEs, we hypothesized that Wolbachia infection would interfere with TE activity. We tested this hypothesis by studying expression of 14 TEs in a panel of 25 Drosophila melanogaster host genotypes, naturally infected with Wolbachia and annotated for TE insertions. The host genotypes differed significantly in Wolbachia titers inside individual flies, with broad-sense heritability around 20%, and in the number of TE insertions, which depended greatly on TE identity. By removing Wolbachia from the target host genotypes, we generated a panel of 25 pairs of Wolbachia-positive and Wolbachia-negative lines in which we quantified transcription levels our target TEs. We found variation in TE expression that was dependent on Wolbachia status, TE identity, and host genotype. Comparing between pairs of Wolbachia-positive and Wolbachia-negative flies, we found that Wolbachia removal affected TE expression in 21.1% of the TE-genotype combinations tested, with up to 2.3 times differences in median level of transcript. Our data shows that Wolbachia can impact TE activity in host genomes, underscoring the importance this endosymbiont can have in the generation of genetic novelty in hosts.},
}
RevDate: 2023-03-17
Functional analysis of Wolbachia Cid effectors unravels cooperative interactions to target host chromatin during replication.
PLoS pathogens, 19(3):e1011211 pii:PPATHOGENS-D-22-01532 [Epub ahead of print].
Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.
Additional Links: PMID-36928089
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36928089,
year = {2023},
author = {Terretaz, K and Horard, B and Weill, M and Loppin, B and Landmann, F},
title = {Functional analysis of Wolbachia Cid effectors unravels cooperative interactions to target host chromatin during replication.},
journal = {PLoS pathogens},
volume = {19},
number = {3},
pages = {e1011211},
doi = {10.1371/journal.ppat.1011211},
pmid = {36928089},
issn = {1553-7374},
abstract = {Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.},
}
RevDate: 2023-03-14
A male-killing gene encoded by a symbiotic virus of Drosophila.
Nature communications, 14(1):1357.
In most eukaryotes, biparentally inherited nuclear genomes and maternally inherited cytoplasmic genomes have different evolutionary interests. Strongly female-biased sex ratios that are repeatedly observed in various arthropods often result from the male-specific lethality (male-killing) induced by maternally inherited symbiotic bacteria such as Spiroplasma and Wolbachia. However, despite some plausible case reports wherein viruses are raised as male-killers, it is not well understood how viruses, having much smaller genomes than bacteria, are capable of inducing male-killing. Here we show that a maternally inherited double-stranded RNA (dsRNA) virus belonging to the family Partitiviridae (designated DbMKPV1) induces male-killing in Drosophila. DbMKPV1 localizes in the cytoplasm and possesses only four genes, i.e., one gene in each of the four genomic segments (dsRNA1-dsRNA4), in contrast to ca. 1000 or more genes possessed by Spiroplasma or Wolbachia. We also show that a protein (designated PVMKp1; 330 amino acids in size), encoded by a gene on the dsRNA4 segment, is necessary and sufficient for inducing male-killing. Our results imply that male-killing genes can be easily acquired by symbiotic viruses through reassortment and that symbiotic viruses are hidden players in arthropod evolution. We anticipate that host-manipulating genes possessed by symbiotic viruses can be utilized for controlling arthropods.
Additional Links: PMID-36914655
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36914655,
year = {2023},
author = {Kageyama, D and Harumoto, T and Nagamine, K and Fujiwara, A and Sugimoto, TN and Jouraku, A and Tamura, M and Katoh, TK and Watada, M},
title = {A male-killing gene encoded by a symbiotic virus of Drosophila.},
journal = {Nature communications},
volume = {14},
number = {1},
pages = {1357},
pmid = {36914655},
issn = {2041-1723},
abstract = {In most eukaryotes, biparentally inherited nuclear genomes and maternally inherited cytoplasmic genomes have different evolutionary interests. Strongly female-biased sex ratios that are repeatedly observed in various arthropods often result from the male-specific lethality (male-killing) induced by maternally inherited symbiotic bacteria such as Spiroplasma and Wolbachia. However, despite some plausible case reports wherein viruses are raised as male-killers, it is not well understood how viruses, having much smaller genomes than bacteria, are capable of inducing male-killing. Here we show that a maternally inherited double-stranded RNA (dsRNA) virus belonging to the family Partitiviridae (designated DbMKPV1) induces male-killing in Drosophila. DbMKPV1 localizes in the cytoplasm and possesses only four genes, i.e., one gene in each of the four genomic segments (dsRNA1-dsRNA4), in contrast to ca. 1000 or more genes possessed by Spiroplasma or Wolbachia. We also show that a protein (designated PVMKp1; 330 amino acids in size), encoded by a gene on the dsRNA4 segment, is necessary and sufficient for inducing male-killing. Our results imply that male-killing genes can be easily acquired by symbiotic viruses through reassortment and that symbiotic viruses are hidden players in arthropod evolution. We anticipate that host-manipulating genes possessed by symbiotic viruses can be utilized for controlling arthropods.},
}
RevDate: 2023-03-13
Molecular identification and genetic diversity of equine ocular setariasis in Thailand based on the COI, 12S rDNA, and ITS1 regions.
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases pii:S1567-1348(23)00023-0 [Epub ahead of print].
Equine ocular setariasis is mainly caused by Setaria digitata, and the identification of this filarial nematode is based on morphology. However, morphological characterization alone is insufficient for the detection and differentiation of S. digitata from its congeners. In Thailand, the molecular detection of S. digitata is lacking and its genetic diversity is still unknown. This study aimed to phylogenetically characterize equine S. digitata from Thailand based on sequences derived from the mitochondrial cytochrome c oxidase subunit 1 (COI), the mitochondrial small subunit ribosomal DNA (12S rDNA), the nuclear internal transcribed spacer 1 (ITS1) and Wolbachia surface protein (wsp). Five samples of S. digitata were characterized, submitted to the NCBI database, and used for phylogenetic analysis as well as the assessment of similarity, entropy, and haplotype diversity. Phylogenetic analyses revealed that the S. digitata Thai strain was similar to S. digitata from China and Sri Lanka, with 99 to 100% similarity. The entropy and haplotype diversity indicated that the S. digitata Thai isolate was conserved and closely related to S. digitata worldwide. This is the first report on the molecular detection of equine ocular setariasis caused by S. digitata in Thailand.
Additional Links: PMID-36913994
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36913994,
year = {2023},
author = {Junsiri, W and Kamkong, P and Chinkangsadarn, T and Ouisuwan, S and Taweethavonsawat, P},
title = {Molecular identification and genetic diversity of equine ocular setariasis in Thailand based on the COI, 12S rDNA, and ITS1 regions.},
journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases},
volume = {},
number = {},
pages = {105425},
doi = {10.1016/j.meegid.2023.105425},
pmid = {36913994},
issn = {1567-7257},
abstract = {Equine ocular setariasis is mainly caused by Setaria digitata, and the identification of this filarial nematode is based on morphology. However, morphological characterization alone is insufficient for the detection and differentiation of S. digitata from its congeners. In Thailand, the molecular detection of S. digitata is lacking and its genetic diversity is still unknown. This study aimed to phylogenetically characterize equine S. digitata from Thailand based on sequences derived from the mitochondrial cytochrome c oxidase subunit 1 (COI), the mitochondrial small subunit ribosomal DNA (12S rDNA), the nuclear internal transcribed spacer 1 (ITS1) and Wolbachia surface protein (wsp). Five samples of S. digitata were characterized, submitted to the NCBI database, and used for phylogenetic analysis as well as the assessment of similarity, entropy, and haplotype diversity. Phylogenetic analyses revealed that the S. digitata Thai strain was similar to S. digitata from China and Sri Lanka, with 99 to 100% similarity. The entropy and haplotype diversity indicated that the S. digitata Thai isolate was conserved and closely related to S. digitata worldwide. This is the first report on the molecular detection of equine ocular setariasis caused by S. digitata in Thailand.},
}
RevDate: 2023-03-13
Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission.
Genetics pii:7076391 [Epub ahead of print].
A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity and routes underlying this transmission strategy. Here we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed three Wolbachia distribution patterns: 1) a tight clustering at the posterior pole plasm (the site of germline formation); 2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; 3) and a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that one Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on one of two distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.
Additional Links: PMID-36911919
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36911919,
year = {2023},
author = {Radousky, YA and Hague, MTJ and Fowler, S and Paneru, E and Codina, A and Rugamas, C and Hartzog, G and Cooper, BS and Sullivan, W},
title = {Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission.},
journal = {Genetics},
volume = {},
number = {},
pages = {},
doi = {10.1093/genetics/iyad038},
pmid = {36911919},
issn = {1943-2631},
abstract = {A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity and routes underlying this transmission strategy. Here we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed three Wolbachia distribution patterns: 1) a tight clustering at the posterior pole plasm (the site of germline formation); 2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; 3) and a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that one Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on one of two distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.},
}
RevDate: 2023-03-13
The Wolbachia WalE1 effector alters Drosophila endocytosis.
bioRxiv : the preprint server for biology pii:2023.02.26.530160.
The most common intracellular bacterial infection is Wolbachia pipientis , a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector â€" WalE1, which encodes a synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates, separate from Wolbachia cells. We next show that WalE1 co-immunoprecipitates with the host protein Past1 and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO 3 , a hallmark of endocytosis defects. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between a Wolbachia secreted effector and a host protein and point to yet another important host cell process impinged upon by Wolbachia .
Additional Links: PMID-36909520
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36909520,
year = {2023},
author = {Martin, M and Newton, ILG},
title = {The Wolbachia WalE1 effector alters Drosophila endocytosis.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
doi = {10.1101/2023.02.26.530160},
pmid = {36909520},
abstract = {The most common intracellular bacterial infection is Wolbachia pipientis , a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector â€" WalE1, which encodes a synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates, separate from Wolbachia cells. We next show that WalE1 co-immunoprecipitates with the host protein Past1 and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO 3 , a hallmark of endocytosis defects. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between a Wolbachia secreted effector and a host protein and point to yet another important host cell process impinged upon by Wolbachia .},
}
RevDate: 2023-03-12
First report of natural Wolbachia infections in mosquitoes from Cuba.
Acta tropica pii:S0001-706X(23)00078-5 [Epub ahead of print].
Mosquitoes are extensively responsible for the transmission of pathogens. Novel strategies using Wolbachia could transform that scenario, since these bacteria manipulate mosquito reproduction, and can confer a pathogen transmission-blocking phenotype in culicids. Here, we screened the Wolbachia surface protein region by PCR in eight Cuban mosquito species. We confirmed the natural infections by sequencing and assessed the phylogenetic relationships among the Wolbachia strains detected. We identified four Wolbachia hosts: Aedes albopictus, Culex quinquefasciatus, Mansonia titillans, and Aedes mediovittatus (first report worldwide). Knowledge of Wolbachia strains and their natural hosts is essential for future operationalization of this vector control strategy in Cuba.
Additional Links: PMID-36907292
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36907292,
year = {2023},
author = {Ruiz, A and Gutiérrez-Bugallo, G and Rodríguez-Roche, R and Pérez, L and González-Broche, R and Piedra, LA and Martínez, LC and Menéndez, Z and Vega-Rúa, A and Bisset, JA},
title = {First report of natural Wolbachia infections in mosquitoes from Cuba.},
journal = {Acta tropica},
volume = {},
number = {},
pages = {106891},
doi = {10.1016/j.actatropica.2023.106891},
pmid = {36907292},
issn = {1873-6254},
abstract = {Mosquitoes are extensively responsible for the transmission of pathogens. Novel strategies using Wolbachia could transform that scenario, since these bacteria manipulate mosquito reproduction, and can confer a pathogen transmission-blocking phenotype in culicids. Here, we screened the Wolbachia surface protein region by PCR in eight Cuban mosquito species. We confirmed the natural infections by sequencing and assessed the phylogenetic relationships among the Wolbachia strains detected. We identified four Wolbachia hosts: Aedes albopictus, Culex quinquefasciatus, Mansonia titillans, and Aedes mediovittatus (first report worldwide). Knowledge of Wolbachia strains and their natural hosts is essential for future operationalization of this vector control strategy in Cuba.},
}
RevDate: 2023-03-08
Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella.
Molecular phylogenetics and evolution pii:S1055-7903(23)00051-9 [Epub ahead of print].
Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.
Additional Links: PMID-36889655
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36889655,
year = {2023},
author = {Zhu, X and Liu, T and He, A and Zhang, L and Li, J and Li, T and Miao, X and You, M and You, S},
title = {Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella.},
journal = {Molecular phylogenetics and evolution},
volume = {},
number = {},
pages = {107751},
doi = {10.1016/j.ympev.2023.107751},
pmid = {36889655},
issn = {1095-9513},
abstract = {Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.},
}
RevDate: 2023-03-08
Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia.
Virology, 581:48-55 pii:S0042-6822(23)00048-X [Epub ahead of print].
Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.
Additional Links: PMID-36889142
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36889142,
year = {2023},
author = {Hussain, M and Etebari, K and Asgari, S},
title = {Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia.},
journal = {Virology},
volume = {581},
number = {},
pages = {48-55},
doi = {10.1016/j.virol.2023.02.017},
pmid = {36889142},
issn = {1096-0341},
abstract = {Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.},
}
RevDate: 2023-03-08
[Wolbachia pipientis infections in populations of Aedes albopictus in the city of València (Spain): implications for mosquito control].
Revista espanola de salud publica, 97: pii:e202303017.
OBJECTIVE: The presence of Aedes albopictus, of high sanitary and social impact, was first reported in Valencia (Eastern Spain) in 2015. Innovative tools for its control include the use of the endosymbiotic bacterium Wolbachia pipientis. The release of mosquito males infected with the wPip strain, has proven very promising for large-scale Incompatible Insect Technique (IIT) applications. Before this strategy can be implemented in Valencia, it is important to know whether the natural local mosquito populations are Wolbachia-infected and, if so, identifying the infecting strains/supergroups, these being the objectives of the present work.
METHODS: Eggs were collected from the 19 districts of the València city between May and October 2019. A total of 50 lab-reared adult Ae. albopictus individuals were processed and analyzed for Wolbachia detection and molecular characterization. These actions took place within the framework of a collaboration established with the Department of Health and Consumer Affairs of the city council of Valencia. Fisher's exact test was used to detect the statistical significance of the differences between groups.
RESULTS: Our study revealed that 94% of the analyzed samples were naturally infected with Wolbachia. Both wAlbA and wAlbB supergroups were identified, with most samples (72% of the infected ones) carrying co-infections.
CONCLUSIONS: These data provide the first characterization of the Wolbachia presence in natural populations of Ae. albopictus in the Mediterranean area of Spain. This information is relevant to evaluate the potential use of Wolbachia strains in order to achieve the suppression of the Asian tiger mosquito populations through massive release of artificially-infected males.
Additional Links: PMID-36883556
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36883556,
year = {2023},
author = {Bueno-Marí, R and Domínguez-Santos, R and Trelis, M and Garrote-Sánchez, E and Cholvi, M and Quero de Lera, F and Khoubbane, M and Marcilla, A and Gil, R},
title = {[Wolbachia pipientis infections in populations of Aedes albopictus in the city of València (Spain): implications for mosquito control].},
journal = {Revista espanola de salud publica},
volume = {97},
number = {},
pages = {},
pmid = {36883556},
issn = {2173-9110},
abstract = {OBJECTIVE: The presence of Aedes albopictus, of high sanitary and social impact, was first reported in Valencia (Eastern Spain) in 2015. Innovative tools for its control include the use of the endosymbiotic bacterium Wolbachia pipientis. The release of mosquito males infected with the wPip strain, has proven very promising for large-scale Incompatible Insect Technique (IIT) applications. Before this strategy can be implemented in Valencia, it is important to know whether the natural local mosquito populations are Wolbachia-infected and, if so, identifying the infecting strains/supergroups, these being the objectives of the present work.
METHODS: Eggs were collected from the 19 districts of the València city between May and October 2019. A total of 50 lab-reared adult Ae. albopictus individuals were processed and analyzed for Wolbachia detection and molecular characterization. These actions took place within the framework of a collaboration established with the Department of Health and Consumer Affairs of the city council of Valencia. Fisher's exact test was used to detect the statistical significance of the differences between groups.
RESULTS: Our study revealed that 94% of the analyzed samples were naturally infected with Wolbachia. Both wAlbA and wAlbB supergroups were identified, with most samples (72% of the infected ones) carrying co-infections.
CONCLUSIONS: These data provide the first characterization of the Wolbachia presence in natural populations of Ae. albopictus in the Mediterranean area of Spain. This information is relevant to evaluate the potential use of Wolbachia strains in order to achieve the suppression of the Asian tiger mosquito populations through massive release of artificially-infected males.},
}
RevDate: 2023-03-06
A mosquito population suppression model with a saturated Wolbachia release strategy in seasonal succession.
Journal of mathematical biology, 86(4):51.
Releasing Wolbachia-infected male mosquitoes to suppress wild female mosquitoes through cytoplasmic incompatibility has shown great promise in controlling and preventing mosquito-borne diseases. To make the release logistically and economically feasible, we propose a saturated release strategy, which is only implemented during the epidemic season of mosquito-borne diseases. Under this assumption, the model becomes a seasonally switching ordinary differential equation model. The seasonal switch brings rich dynamics, including the existence of a unique periodic solution or exactly two periodic solutions, which are proved by using the qualitative property of the Poincaré map. Sufficient conditions are also obtained for determining the stability of the periodic solutions.
Additional Links: PMID-36877376
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36877376,
year = {2023},
author = {Zhang, Z and Chang, L and Huang, Q and Yan, R and Zheng, B},
title = {A mosquito population suppression model with a saturated Wolbachia release strategy in seasonal succession.},
journal = {Journal of mathematical biology},
volume = {86},
number = {4},
pages = {51},
pmid = {36877376},
issn = {1432-1416},
abstract = {Releasing Wolbachia-infected male mosquitoes to suppress wild female mosquitoes through cytoplasmic incompatibility has shown great promise in controlling and preventing mosquito-borne diseases. To make the release logistically and economically feasible, we propose a saturated release strategy, which is only implemented during the epidemic season of mosquito-borne diseases. Under this assumption, the model becomes a seasonally switching ordinary differential equation model. The seasonal switch brings rich dynamics, including the existence of a unique periodic solution or exactly two periodic solutions, which are proved by using the qualitative property of the Poincaré map. Sufficient conditions are also obtained for determining the stability of the periodic solutions.},
}
RevDate: 2023-03-04
Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas.
Environmental entomology pii:7069634 [Epub ahead of print].
Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.
Additional Links: PMID-36869841
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36869841,
year = {2023},
author = {Cooper, WR and Walker, WB and Angelella, GM and Swisher Grimm, KD and Foutz, JJ and Harper, SJ and Nottingham, LB and Northfield, TD and Wohleb, CH and Strausbaugh, CA},
title = {Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas.},
journal = {Environmental entomology},
volume = {},
number = {},
pages = {},
doi = {10.1093/ee/nvad015},
pmid = {36869841},
issn = {1938-2936},
abstract = {Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.},
}
RevDate: 2023-03-02
Singapore's Dengue Outbreak Amidst the COVID-19 Pandemic: Challenges, Responses, and Lessons.
Infection and drug resistance, 16:1081-1085.
Dengue outbreaks have been documented in Singapore since 1901, occurring almost annually in the 1960s and disproportionately affecting the paediatric population. In January 2020, virological surveillance detected a shift from DENV-2, which was the previous dominant strain, to DENV-3. As of 20 September 2022, 27,283 cases have been reported in 2022. Singapore is currently also responding to the COVID-19 pandemic, overcoming another wave of infections with 281,977 cases recorded in the past two months as of 19 September 2022. While Singapore has adopted several policies and interventions to combat dengue, primarily through environmental control but also innovations such as the Wolbachia mosquito programme, there is a need for further efforts to deal with the dual threat of dengue and COVID-19. Drawing lessons from Singapore's experience, countries facing such dual epidemics should enact clear policy responses, including establishing a multisectoral dengue action committee and action plan prior to potential outbreaks. Key indicators should be agreed upon and tracked at all healthcare levels as part of dengue surveillance and incorporated into the national health information system. Digitizing dengue monitoring systems and implementing telemedicine solutions are innovative measures that would facilitate the response to dengue in the context of restrictions during the COVID-19 pandemic that hinder the detection and response to new cases. There is a need for greater international collaboration in reducing or eradicating dengue in endemic countries. Further research is also required on how best to establish integrated early warning systems and extend our knowledge of the effects of COVID-19 on dengue transmission in affected countries.
Additional Links: PMID-36861014
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36861014,
year = {2023},
author = {Cheema, HA and Mujtaba, RS and Siddiqui, A and Vohra, LI and Shahid, A and Shah, J and Nashwan, AJ and Howard, N},
title = {Singapore's Dengue Outbreak Amidst the COVID-19 Pandemic: Challenges, Responses, and Lessons.},
journal = {Infection and drug resistance},
volume = {16},
number = {},
pages = {1081-1085},
pmid = {36861014},
issn = {1178-6973},
abstract = {Dengue outbreaks have been documented in Singapore since 1901, occurring almost annually in the 1960s and disproportionately affecting the paediatric population. In January 2020, virological surveillance detected a shift from DENV-2, which was the previous dominant strain, to DENV-3. As of 20 September 2022, 27,283 cases have been reported in 2022. Singapore is currently also responding to the COVID-19 pandemic, overcoming another wave of infections with 281,977 cases recorded in the past two months as of 19 September 2022. While Singapore has adopted several policies and interventions to combat dengue, primarily through environmental control but also innovations such as the Wolbachia mosquito programme, there is a need for further efforts to deal with the dual threat of dengue and COVID-19. Drawing lessons from Singapore's experience, countries facing such dual epidemics should enact clear policy responses, including establishing a multisectoral dengue action committee and action plan prior to potential outbreaks. Key indicators should be agreed upon and tracked at all healthcare levels as part of dengue surveillance and incorporated into the national health information system. Digitizing dengue monitoring systems and implementing telemedicine solutions are innovative measures that would facilitate the response to dengue in the context of restrictions during the COVID-19 pandemic that hinder the detection and response to new cases. There is a need for greater international collaboration in reducing or eradicating dengue in endemic countries. Further research is also required on how best to establish integrated early warning systems and extend our knowledge of the effects of COVID-19 on dengue transmission in affected countries.},
}
RevDate: 2023-03-01
Ovarian Transcriptional Response to Wolbachia Infection in D. melanogaster in the Context of Between-Genotype Variation in Gene Expression.
G3 (Bethesda, Md.) pii:7061302 [Epub ahead of print].
Wolbachia is a maternally-transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus host genotype on gene expression is unknown. Here we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of four strains of D. melanogaster infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation, and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.
Additional Links: PMID-36857313
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36857313,
year = {2023},
author = {Frantz, SI and Small, CM and Cresko, WA and Singh, ND},
title = {Ovarian Transcriptional Response to Wolbachia Infection in D. melanogaster in the Context of Between-Genotype Variation in Gene Expression.},
journal = {G3 (Bethesda, Md.)},
volume = {},
number = {},
pages = {},
doi = {10.1093/g3journal/jkad047},
pmid = {36857313},
issn = {2160-1836},
abstract = {Wolbachia is a maternally-transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus host genotype on gene expression is unknown. Here we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of four strains of D. melanogaster infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation, and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.},
}
RevDate: 2023-02-28
Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs.
Parasites & vectors, 16(1):77.
BACKGROUND: Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum.
METHODS: To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti-L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test.
RESULTS: Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2.
CONCLUSION: Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models.
Additional Links: PMID-36850014
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36850014,
year = {2023},
author = {Latrofa, MS and Varotto-Boccazzi, I and Louzada-Flores, VN and Iatta, R and Mendoza-Roldan, JA and Roura, X and Zatelli, A and Epis, S and Bandi, C and Otranto, D},
title = {Interaction between Wolbachia pipientis and Leishmania infantum in heartworm infected dogs.},
journal = {Parasites & vectors},
volume = {16},
number = {1},
pages = {77},
pmid = {36850014},
issn = {1756-3305},
abstract = {BACKGROUND: Wolbachia is a Gram-negative endosymbiont associated with several species of arthropods and filarioid nematodes, including Dirofilaria immitis. This endosymbiont may elicit a Th1 response, which is a component of the immunity against Leishmania infantum.
METHODS: To investigate the interactions between Wolbachia of D. immitis and L. infantum in naturally infected dogs and cytokine circulation, dogs without clinical signs (n = 187) were selected. Dogs were tested for microfilariae (mfs) by Knott, for female antigens of D. immitis by SNAP, and for anti-L. infantum antibodies by IFAT and assigned to four groups. Dogs of group 1 (G1) and 2 (G2) were positive for D. immitis and positive or negative to L. infantum, respectively. Dogs of group 3 (G3) and 4 (G4) were negative to D. immitis and positive or negative to L. infantum, respectively. Wolbachia and L. infantum DNA was quantified by real-time PCR (qPCR) in dog blood samples. A subset of dogs (n = 65) was examined to assess pro- and anti-inflammatory cytokine production using an ELISA test.
RESULTS: Of 93 dogs positive to D. immitis with circulating mfs, 85% were positive to Wolbachia, with the highest amount of DNA detected in G1 and the lowest in dogs with low mfs load in G1 and G2. Among dogs positive to L. infantum, 66% from G1 showed low antibody titer, while 48.9% from G3 had the highest antibody titer. Of 37 dogs positive to Wolbachia from G1, 26 (70.3%) had low antibody titers to L. infantum (1:160). Among cytokines, TNFα showed the highest mean concentration in G1 (246.5 pg/ml), IFNγ being the one most represented (64.3%). IL-10 (1809.5 pg/ml) and IL-6 (123.5 pg/ml) showed the highest mean concentration in dogs from G1. A lower percentage of dogs producing IL-4 was observed in all groups examined, with the highest mean concentration (2794 pg/ml) recorded in G2.
CONCLUSION: Results show the association of D. immitis and Wolbachia with the lower antibody titers of L. infantum in co-infected dogs, suggesting the hypothesis that the endosymbiont may affect the development of the patent leishmaniosis. However, due to the limitations associated with the heterogeneity of naturally infected dogs in field conditions, results should be validated by investigation on experimental models.},
}
RevDate: 2023-02-27
Biological comparative study between Wolbachia-infected Aedes aegypti mosquito and Wolbachia-uninfected strain, Jeddah city, Saudi Arabia.
Saudi journal of biological sciences, 30(3):103581.
In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.
Additional Links: PMID-36844640
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36844640,
year = {2023},
author = {Algamdi, AG and Shaher, FM and Mahyoub, JA},
title = {Biological comparative study between Wolbachia-infected Aedes aegypti mosquito and Wolbachia-uninfected strain, Jeddah city, Saudi Arabia.},
journal = {Saudi journal of biological sciences},
volume = {30},
number = {3},
pages = {103581},
pmid = {36844640},
issn = {1319-562X},
abstract = {In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.},
}
RevDate: 2023-02-27
Population dynamics of migrant wheat aphids in China's main wheat production region and their interactions with bacterial symbionts.
Frontiers in plant science, 14:1103236.
Sitobion miscanthi, Rhopalosiphum padi, and Schizaphis graminum are the three main pests in Chinese wheat-producing regions. In 2020, they are classified into the Chinese Class I list of agricultural diseases and pests, due to their severe harm to wheat plantings. S. miscanthi, R. padi, and S. graminum are migrant pests, and understanding their migration patterns and simulating their migration trajectories would improve forecasting and controlling them. Furthermore, the bacterial community of the migrant wheat aphid is also less known. In this study, we employed a suction trap to uncover the migration patterns of the three wheat aphid species in Yuanyang county, Henan province, during 2018 to 2020. And then the migration trajectories of S. miscanthi and R. padi were simulated using the NOAA HYSPLIT model. The interactions between wheat aphids and bacteria were further revealed by specific PCR and 16S rRNA amplicon sequencing. The results showed that the population dynamics of migrant wheat aphids was varied. Most of the trapped samples were identified to be R. padi, and S. graminum was the least collected sample. Typically, R. padi had two migration peaks in the 3 years, whereas S. miscanthi and S. graminum only exhibited one migration peak in 2018 and 2019. Moreover, the aphid migration trajectories varied over the years. Generally, the aphids originated from the south and migrated to the north. Herein, the infections of three main aphid facultative bacterial symbionts, Serratia symbiotica, Hamiltonella defensa, and Regiella insercticola, were detected in S. miscanthi and R. padi with specific PCR. Rickettsiella, Arsenophonus, Rickettsia, and Wolbachia were further identified with 16S rRNA amplicon sequencing. Biomarker searching indicated that Arsenophonus was significantly enriched in R. padi. Furthermore, diversity analyses showed that the bacterial community of R. padi had a higher richness and evenness than that of S. miscanthi. In conclusion, this study expands our knowledge about the migration patterns of aphids in the main wheat plant region of China and reveals the interactions between bacterial symbionts and migrant aphids.
Additional Links: PMID-36844098
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36844098,
year = {2023},
author = {Li, T and Yang, G and Li, Q and Jiang, Y and Kang, D and Fan, Z and Gong, Z and Lu, R and Zhou, G and Wu, Y and Lu, C},
title = {Population dynamics of migrant wheat aphids in China's main wheat production region and their interactions with bacterial symbionts.},
journal = {Frontiers in plant science},
volume = {14},
number = {},
pages = {1103236},
pmid = {36844098},
issn = {1664-462X},
abstract = {Sitobion miscanthi, Rhopalosiphum padi, and Schizaphis graminum are the three main pests in Chinese wheat-producing regions. In 2020, they are classified into the Chinese Class I list of agricultural diseases and pests, due to their severe harm to wheat plantings. S. miscanthi, R. padi, and S. graminum are migrant pests, and understanding their migration patterns and simulating their migration trajectories would improve forecasting and controlling them. Furthermore, the bacterial community of the migrant wheat aphid is also less known. In this study, we employed a suction trap to uncover the migration patterns of the three wheat aphid species in Yuanyang county, Henan province, during 2018 to 2020. And then the migration trajectories of S. miscanthi and R. padi were simulated using the NOAA HYSPLIT model. The interactions between wheat aphids and bacteria were further revealed by specific PCR and 16S rRNA amplicon sequencing. The results showed that the population dynamics of migrant wheat aphids was varied. Most of the trapped samples were identified to be R. padi, and S. graminum was the least collected sample. Typically, R. padi had two migration peaks in the 3 years, whereas S. miscanthi and S. graminum only exhibited one migration peak in 2018 and 2019. Moreover, the aphid migration trajectories varied over the years. Generally, the aphids originated from the south and migrated to the north. Herein, the infections of three main aphid facultative bacterial symbionts, Serratia symbiotica, Hamiltonella defensa, and Regiella insercticola, were detected in S. miscanthi and R. padi with specific PCR. Rickettsiella, Arsenophonus, Rickettsia, and Wolbachia were further identified with 16S rRNA amplicon sequencing. Biomarker searching indicated that Arsenophonus was significantly enriched in R. padi. Furthermore, diversity analyses showed that the bacterial community of R. padi had a higher richness and evenness than that of S. miscanthi. In conclusion, this study expands our knowledge about the migration patterns of aphids in the main wheat plant region of China and reveals the interactions between bacterial symbionts and migrant aphids.},
}
RevDate: 2023-02-25
Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area.
Insects, 14(2): pii:insects14020184.
Bacterial content in mosquito larvae and adults is altered by dynamic interactions during life and varies substantially in variety and composition depending on mosquito biology and ecology. This study aimed to identify the microbiota in Aedes aegypti and Aedes albopictus and in water from their breeding sites in northeastern Thailand, a dengue-endemic area. Bacterial diversity in field-collected aquatic larvae and subsequently emerged adults of both species from several locations were examined. The microbiota was characterized based on analysis of DNA sequences from the V3-V4 region of the 16S rRNA gene and exhibited changes during development, from the mosquito larval stage to the adult stage. Aedes aegypti contained a significantly higher number of bacterial genera than did Ae. albopictus, except for the genus Wolbachia, which was present at significantly higher frequencies in male Ae. albopictus (p < 0.05). Our findings also indicate likely transstadial transmission from larva to adult and give better understanding of the microbial diversity in these mosquitoes, informing future control programs against mosquito-borne diseases.
Additional Links: PMID-36835753
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36835753,
year = {2023},
author = {Rodpai, R and Boonroumkaew, P and Sadaow, L and Sanpool, O and Janwan, P and Thanchomnang, T and Intapan, PM and Maleewong, W},
title = {Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area.},
journal = {Insects},
volume = {14},
number = {2},
pages = {},
doi = {10.3390/insects14020184},
pmid = {36835753},
issn = {2075-4450},
abstract = {Bacterial content in mosquito larvae and adults is altered by dynamic interactions during life and varies substantially in variety and composition depending on mosquito biology and ecology. This study aimed to identify the microbiota in Aedes aegypti and Aedes albopictus and in water from their breeding sites in northeastern Thailand, a dengue-endemic area. Bacterial diversity in field-collected aquatic larvae and subsequently emerged adults of both species from several locations were examined. The microbiota was characterized based on analysis of DNA sequences from the V3-V4 region of the 16S rRNA gene and exhibited changes during development, from the mosquito larval stage to the adult stage. Aedes aegypti contained a significantly higher number of bacterial genera than did Ae. albopictus, except for the genus Wolbachia, which was present at significantly higher frequencies in male Ae. albopictus (p < 0.05). Our findings also indicate likely transstadial transmission from larva to adult and give better understanding of the microbial diversity in these mosquitoes, informing future control programs against mosquito-borne diseases.},
}
RevDate: 2023-02-24
Candidatus Liberibacter asiaticus: An important factor affecting bacterial community composition and Wolbachia titers in Asian citrus psyllid.
Frontiers in microbiology, 14:1109803.
Endosymbionts play crucial roles in various physiological activities within insect hosts. The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important vector for Candidatus Liberibacter asiaticus (CLas), a fatal pathogenic bacterial agent causing the disease Huanglongbing in the citrus industry. This study combines high-throughput sequencing of 16S ribosomal RNA amplicons to explore how CLas affects the bacterial community in different color morphs (blue, gray), genders, and tissues (cuticle, gut, mycetome, Malpighian tubule, ovary, and testis) of ACP. We found that there was no significant differences in the bacterial community diversity and CLas acquired ratio between the different color morphs and genders of ACP adults. However, acquiring CLas could promote the adult bacterial community's diversity and richness more than in the uninfected condition. The presence of CLas could increase the Wolbachia and unclassified_Enterobacteriaceae proportions more than in the uninfected condition. The bacterial community diversity in the CLas infected tissues of ovary and cuticle, was lower than the uninfected condition, but the richness of all tissues was not different between the infected and uninfected conditions. CLas could also change the bacterial structure in different tissues and make the bacterial relationship network simpler than it is in an uninfected condition. Furthermore, we used quantitative real-time PCR to assess the dynamic changes of Wolbachia in CLas uninfected and infected color morphs and tissues of ACP. The results showed that Wolbachia titers were significantly higher in CLas infected adults than in uninfected adults. In different tissues, the Wolbachia titers in the testis, ovary, and Malpighian tubule were higher than their uninfected counterparts. Our results provide essential knowledge for understanding the symbionts of the ACP and how CLas affects the bacterial community of the ACP.
Additional Links: PMID-36825089
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36825089,
year = {2023},
author = {Jiang, RX and Shang, F and Jiang, HB and Dou, W and Cernava, T and Wang, JJ},
title = {Candidatus Liberibacter asiaticus: An important factor affecting bacterial community composition and Wolbachia titers in Asian citrus psyllid.},
journal = {Frontiers in microbiology},
volume = {14},
number = {},
pages = {1109803},
doi = {10.3389/fmicb.2023.1109803},
pmid = {36825089},
issn = {1664-302X},
abstract = {Endosymbionts play crucial roles in various physiological activities within insect hosts. The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important vector for Candidatus Liberibacter asiaticus (CLas), a fatal pathogenic bacterial agent causing the disease Huanglongbing in the citrus industry. This study combines high-throughput sequencing of 16S ribosomal RNA amplicons to explore how CLas affects the bacterial community in different color morphs (blue, gray), genders, and tissues (cuticle, gut, mycetome, Malpighian tubule, ovary, and testis) of ACP. We found that there was no significant differences in the bacterial community diversity and CLas acquired ratio between the different color morphs and genders of ACP adults. However, acquiring CLas could promote the adult bacterial community's diversity and richness more than in the uninfected condition. The presence of CLas could increase the Wolbachia and unclassified_Enterobacteriaceae proportions more than in the uninfected condition. The bacterial community diversity in the CLas infected tissues of ovary and cuticle, was lower than the uninfected condition, but the richness of all tissues was not different between the infected and uninfected conditions. CLas could also change the bacterial structure in different tissues and make the bacterial relationship network simpler than it is in an uninfected condition. Furthermore, we used quantitative real-time PCR to assess the dynamic changes of Wolbachia in CLas uninfected and infected color morphs and tissues of ACP. The results showed that Wolbachia titers were significantly higher in CLas infected adults than in uninfected adults. In different tissues, the Wolbachia titers in the testis, ovary, and Malpighian tubule were higher than their uninfected counterparts. Our results provide essential knowledge for understanding the symbionts of the ACP and how CLas affects the bacterial community of the ACP.},
}
RevDate: 2023-02-23
Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes.
Frontiers in microbiology, 14:1084839.
INTRODUCTION: The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level.
METHODS: Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection.
RESULTS: Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains.
DISCUSSION: This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Additional Links: PMID-36819029
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36819029,
year = {2023},
author = {Liu, B and Ren, YS and Su, CY and Abe, Y and Zhu, DH},
title = {Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes.},
journal = {Frontiers in microbiology},
volume = {14},
number = {},
pages = {1084839},
pmid = {36819029},
issn = {1664-302X},
abstract = {INTRODUCTION: The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level.
METHODS: Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection.
RESULTS: Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains.
DISCUSSION: This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.},
}
RevDate: 2023-02-23
Histopathological evaluation of Onchocerca volvulus nodules by microscopy and by digital image analysis for the study of macrofilaricidal drug efficacy.
Frontiers in medicine, 10:1099926.
BACKGROUND: Novel drugs or drug combinations that kill or permanently sterilize adult Onchocerca volvulus worms would be very helpful for treatment and elimination of onchocerciasis. In absence of a reliable biomarker for viable adult worms, histopathological assessment of worms within onchocercal nodules is a standard method to determine macrofilaricidal activity. The goal of the present study was to determine the agreement between two independent experts in the analysis of nodule sections and to assess the value of digital imaging as a means of standardizing the analysis.
MATERIAL AND METHODS: Two expert microscopists independently assessed 605 nodules by direct microscopy. At least two sections with two different stains hematoxylin & eosin (H&E, APR immunostain) of paraffin-embedded, ethanol-fixed whole-nodule cross-sections were analyzed. After variables were identified prone to observer discrepancies, we performed a second study to compare consolidated results for 100 nodules obtained by the two readers by microscopy and by analysis of scanned, high resolution digital images (20x magnification). The last data set analyzed was a quality panel of 100 nodules that has been previously examined by microscopy, and included additional immunostains for Wolbachia endobacteria. These slides were digitalized, read by the two assessors and results were compared with original microscopy results.
RESULTS: The degree of agreement between assessors varied for different parameters. Agreement for female worm counts in nodules was approximately 80%, while agreement regarding female worm viability was 98%. There were no major differences observed between results obtained by microscopy or digital images. Good agreement for important parameters was also observed for the nodules of the quality panel.
CONCLUSION: Nodule analysis by experienced microscopists was reproducible with regard to important parameters such as identification of living female worms or detection of normal embryogenesis. Assessments varied more for other parameters, and we recommend continued use of two independent readers for detailed analyzes. Analysis of scanned images provided similar results to direct microscopy. This facilitates training and comparison of nodule findings by readers in different locations. Analysis of high quality digital images that can be viewed remotely should improve the quality and availability of nodule assessments that are primary endpoints for onchocerciasis clinical trials.
Additional Links: PMID-36817770
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36817770,
year = {2023},
author = {Fischer, K and Dubben, B and Debrah, LB and Kuehlwein, JM and Ricchiuto, A and Debrah, AY and Hoerauf, A and Weil, GJ and Fischer, PU and Klarmann-Schulz, U},
title = {Histopathological evaluation of Onchocerca volvulus nodules by microscopy and by digital image analysis for the study of macrofilaricidal drug efficacy.},
journal = {Frontiers in medicine},
volume = {10},
number = {},
pages = {1099926},
pmid = {36817770},
issn = {2296-858X},
abstract = {BACKGROUND: Novel drugs or drug combinations that kill or permanently sterilize adult Onchocerca volvulus worms would be very helpful for treatment and elimination of onchocerciasis. In absence of a reliable biomarker for viable adult worms, histopathological assessment of worms within onchocercal nodules is a standard method to determine macrofilaricidal activity. The goal of the present study was to determine the agreement between two independent experts in the analysis of nodule sections and to assess the value of digital imaging as a means of standardizing the analysis.
MATERIAL AND METHODS: Two expert microscopists independently assessed 605 nodules by direct microscopy. At least two sections with two different stains hematoxylin & eosin (H&E, APR immunostain) of paraffin-embedded, ethanol-fixed whole-nodule cross-sections were analyzed. After variables were identified prone to observer discrepancies, we performed a second study to compare consolidated results for 100 nodules obtained by the two readers by microscopy and by analysis of scanned, high resolution digital images (20x magnification). The last data set analyzed was a quality panel of 100 nodules that has been previously examined by microscopy, and included additional immunostains for Wolbachia endobacteria. These slides were digitalized, read by the two assessors and results were compared with original microscopy results.
RESULTS: The degree of agreement between assessors varied for different parameters. Agreement for female worm counts in nodules was approximately 80%, while agreement regarding female worm viability was 98%. There were no major differences observed between results obtained by microscopy or digital images. Good agreement for important parameters was also observed for the nodules of the quality panel.
CONCLUSION: Nodule analysis by experienced microscopists was reproducible with regard to important parameters such as identification of living female worms or detection of normal embryogenesis. Assessments varied more for other parameters, and we recommend continued use of two independent readers for detailed analyzes. Analysis of scanned images provided similar results to direct microscopy. This facilitates training and comparison of nodule findings by readers in different locations. Analysis of high quality digital images that can be viewed remotely should improve the quality and availability of nodule assessments that are primary endpoints for onchocerciasis clinical trials.},
}
RevDate: 2023-02-22
In vitro maintenance of the endosymbiont Wolbachia of Dirofilaria immitis.
Parasitology research [Epub ahead of print].
Wolbachia has an obligatory mutualistic relationship with many onchocercid nematodes of the subfamilies Dirofilariinae and Onchocercinae. Till date, no attempts have been made for the in vitro cultivation of this intracellular bacterium from the filarioid host. Hence, the current study attempted cell co-culture method using embryonic Drosophila S2 and the LD cell lines to cultivate Wolbachia from Dirofilaria immitis microfilariae (mfs) harvested from infected dogs. Microfilariae (mfs = 1500) were inoculated in shell vials supplemented with Schneider medium using both cell lines. The establishment and multiplication of the bacterium were observed during the initial inoculation, at day 0 and before every medium change (from days 14 to 115). An aliquot (50 µl) from each time point was tested by quantitative real-time PCR (qPCR). Comparing the average of Ct values, obtained by the tested parameters (i.e., LD/S2 cell lines and mfs with/without treatment), the S2 cell line without mechanical disruption of mfs provided the highest Wolbachia cell count by qPCR. Despite the maintenance of Wolbachia within both S2 and LD-based cell co-culture models for up to 115 days, a definitive conclusion is still far. Further trials using fluorescent microscopy and viable staining will help to demonstrate the cell line infection and viability of Wolbachia. Use of considerable amount of untreated mfs to inoculate the Drosophilia S2 cell lines, as well as the supplementation of the culture media with growth stimulants or pre-treated cells to increase their susceptibility for the infection and development of a filarioid-based cell line system are recommended for the future trials.
Additional Links: PMID-36810669
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36810669,
year = {2023},
author = {Manoj, RRS and Latrofa, MS and Louni, M and Laidoudi, Y and Fenollar, F and Otranto, D and Mediannikov, O},
title = {In vitro maintenance of the endosymbiont Wolbachia of Dirofilaria immitis.},
journal = {Parasitology research},
volume = {},
number = {},
pages = {},
pmid = {36810669},
issn = {1432-1955},
abstract = {Wolbachia has an obligatory mutualistic relationship with many onchocercid nematodes of the subfamilies Dirofilariinae and Onchocercinae. Till date, no attempts have been made for the in vitro cultivation of this intracellular bacterium from the filarioid host. Hence, the current study attempted cell co-culture method using embryonic Drosophila S2 and the LD cell lines to cultivate Wolbachia from Dirofilaria immitis microfilariae (mfs) harvested from infected dogs. Microfilariae (mfs = 1500) were inoculated in shell vials supplemented with Schneider medium using both cell lines. The establishment and multiplication of the bacterium were observed during the initial inoculation, at day 0 and before every medium change (from days 14 to 115). An aliquot (50 µl) from each time point was tested by quantitative real-time PCR (qPCR). Comparing the average of Ct values, obtained by the tested parameters (i.e., LD/S2 cell lines and mfs with/without treatment), the S2 cell line without mechanical disruption of mfs provided the highest Wolbachia cell count by qPCR. Despite the maintenance of Wolbachia within both S2 and LD-based cell co-culture models for up to 115 days, a definitive conclusion is still far. Further trials using fluorescent microscopy and viable staining will help to demonstrate the cell line infection and viability of Wolbachia. Use of considerable amount of untreated mfs to inoculate the Drosophilia S2 cell lines, as well as the supplementation of the culture media with growth stimulants or pre-treated cells to increase their susceptibility for the infection and development of a filarioid-based cell line system are recommended for the future trials.},
}
RevDate: 2023-02-22
Two Complete Genomes of Male-Killing Wolbachia Infecting Ostrinia Moth Species Illuminate Their Evolutionary Dynamics and Association with Hosts.
Microbial ecology [Epub ahead of print].
Wolbachia is an extremely widespread intracellular symbiont which causes reproductive manipulation on various arthropod hosts. Male progenies are killed in Wolbachia-infected lineages of the Japanese Ostrinia moth population. While the mechanism of male killing and the evolutionary interaction between host and symbiont are significant concerns for this system, the absence of Wolbachia genomic information has limited approaches to these issues. We determined the complete genome sequences of wFur and wSca, the male-killing Wolbachia of Ostrinia furnacalis and Ostrinia scapulalis. The two genomes shared an extremely high degree of homology, with over 95% of the predicted protein sequences being identical. A comparison of these two genomes revealed nearly minimal genome evolution, with a strong emphasis on the frequent genome rearrangements and the rapid evolution of ankyrin repeat-containing proteins. Additionally, we determined the mitochondrial genomes of both species' infected lineages and performed phylogenetic analyses to deduce the evolutionary dynamics of Wolbachia infection in the Ostrinia clade. According to the inferred phylogenetic relationship, two possible scenarios were proposed: (1) Wolbachia infection was established in the Ostrinia clade prior to the speciation of related species such as O. furnacalis and O. scapulalis, or (2) Wolbachia infection in these species was introgressively transferred from a currently unidentified relative. Simultaneously, the relatively high homology of mitochondrial genomes suggested recent Wolbachia introgression between infected Ostrinia species. The findings of this study collectively shed light on the host-symbiont interaction from an evolutionary standpoint.
Additional Links: PMID-36810610
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36810610,
year = {2023},
author = {Muro, T and Hikida, H and Fujii, T and Kiuchi, T and Katsuma, S},
title = {Two Complete Genomes of Male-Killing Wolbachia Infecting Ostrinia Moth Species Illuminate Their Evolutionary Dynamics and Association with Hosts.},
journal = {Microbial ecology},
volume = {},
number = {},
pages = {},
pmid = {36810610},
issn = {1432-184X},
abstract = {Wolbachia is an extremely widespread intracellular symbiont which causes reproductive manipulation on various arthropod hosts. Male progenies are killed in Wolbachia-infected lineages of the Japanese Ostrinia moth population. While the mechanism of male killing and the evolutionary interaction between host and symbiont are significant concerns for this system, the absence of Wolbachia genomic information has limited approaches to these issues. We determined the complete genome sequences of wFur and wSca, the male-killing Wolbachia of Ostrinia furnacalis and Ostrinia scapulalis. The two genomes shared an extremely high degree of homology, with over 95% of the predicted protein sequences being identical. A comparison of these two genomes revealed nearly minimal genome evolution, with a strong emphasis on the frequent genome rearrangements and the rapid evolution of ankyrin repeat-containing proteins. Additionally, we determined the mitochondrial genomes of both species' infected lineages and performed phylogenetic analyses to deduce the evolutionary dynamics of Wolbachia infection in the Ostrinia clade. According to the inferred phylogenetic relationship, two possible scenarios were proposed: (1) Wolbachia infection was established in the Ostrinia clade prior to the speciation of related species such as O. furnacalis and O. scapulalis, or (2) Wolbachia infection in these species was introgressively transferred from a currently unidentified relative. Simultaneously, the relatively high homology of mitochondrial genomes suggested recent Wolbachia introgression between infected Ostrinia species. The findings of this study collectively shed light on the host-symbiont interaction from an evolutionary standpoint.},
}
RevDate: 2023-02-17
Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics.
PLoS pathogens, 19(2):e1010777 pii:PPATHOGENS-D-22-01328 [Epub ahead of print].
Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.
Additional Links: PMID-36800397
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36800397,
year = {2023},
author = {Mills, MK and McCabe, LG and Rodrigue, EM and Lechtreck, KF and Starai, VJ},
title = {Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics.},
journal = {PLoS pathogens},
volume = {19},
number = {2},
pages = {e1010777},
doi = {10.1371/journal.ppat.1010777},
pmid = {36800397},
issn = {1553-7374},
abstract = {Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.},
}
RevDate: 2023-02-14
Metatranscriptomic Sequencing Reveals Host Species as an Important Factor Shaping the Mosquito Virome.
Microbiology spectrum [Epub ahead of print].
Mosquitoes are important vector hosts for numerous viral pathogens and harbor a large number of mosquito-specific viruses as well as human-infecting viruses. Previous studies have mainly focused on the discovery of mosquito viruses, and our understanding of major ecological factors associated with virome structure in mosquitoes remains limited. We utilized metatranscriptomic sequencing to characterize the viromes of five mosquito species sampled across eight locations in Yunnan Province, China. This revealed the presence of 52 viral species, of which 19 were novel, belonging to 15 viral families/clades. Of particular note was Culex hepacivirus 1, clustering within the avian clade of hepaciviruses. Notably, both the viromic diversity and abundance of Aedes genus mosquitoes were significantly higher than those of the Culex genus, while Aedes albopictus mosquitoes harbored a higher diversity than Aedes aegypti mosquitoes. Our findings thus point to discernible differences in viromic structure between mosquito genera and even between mosquito species within the same genus. Importantly, such differences were not attributable to differences in sampling between geographical location. Our study also revealed the ubiquitous presence of the endosymbiont bacterium Wolbachia, with the genetic diversity and abundance also varying between mosquito species. In conclusion, our results suggested that the mosquito host species play an important role in shaping the virome's structure. IMPORTANCE This study revealed the huge capability of mosquitoes in harboring a rich diversity of RNA viruses, although relevant studies have characterized the intensively unparalleled diversity of RNA viruses previously. Furthermore, our findings showed discernible differences not only in viromic structure between mosquito genera and even between mosquito species within the same genus but also in the genetic diversity and abundance of Wolbachia between different mosquito populations. These findings emphasize the importance of host genetic background in shaping the virome composition of mosquitoes.
Additional Links: PMID-36786616
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36786616,
year = {2023},
author = {Li, C and Liu, S and Zhou, H and Zhu, W and Cui, M and Li, J and Wang, J and Liu, J and Zhu, J and Li, W and Bi, Y and Carr, MJ and Holmes, EC and Shi, W},
title = {Metatranscriptomic Sequencing Reveals Host Species as an Important Factor Shaping the Mosquito Virome.},
journal = {Microbiology spectrum},
volume = {},
number = {},
pages = {e0465522},
doi = {10.1128/spectrum.04655-22},
pmid = {36786616},
issn = {2165-0497},
abstract = {Mosquitoes are important vector hosts for numerous viral pathogens and harbor a large number of mosquito-specific viruses as well as human-infecting viruses. Previous studies have mainly focused on the discovery of mosquito viruses, and our understanding of major ecological factors associated with virome structure in mosquitoes remains limited. We utilized metatranscriptomic sequencing to characterize the viromes of five mosquito species sampled across eight locations in Yunnan Province, China. This revealed the presence of 52 viral species, of which 19 were novel, belonging to 15 viral families/clades. Of particular note was Culex hepacivirus 1, clustering within the avian clade of hepaciviruses. Notably, both the viromic diversity and abundance of Aedes genus mosquitoes were significantly higher than those of the Culex genus, while Aedes albopictus mosquitoes harbored a higher diversity than Aedes aegypti mosquitoes. Our findings thus point to discernible differences in viromic structure between mosquito genera and even between mosquito species within the same genus. Importantly, such differences were not attributable to differences in sampling between geographical location. Our study also revealed the ubiquitous presence of the endosymbiont bacterium Wolbachia, with the genetic diversity and abundance also varying between mosquito species. In conclusion, our results suggested that the mosquito host species play an important role in shaping the virome's structure. IMPORTANCE This study revealed the huge capability of mosquitoes in harboring a rich diversity of RNA viruses, although relevant studies have characterized the intensively unparalleled diversity of RNA viruses previously. Furthermore, our findings showed discernible differences not only in viromic structure between mosquito genera and even between mosquito species within the same genus but also in the genetic diversity and abundance of Wolbachia between different mosquito populations. These findings emphasize the importance of host genetic background in shaping the virome composition of mosquitoes.},
}
RevDate: 2023-02-14
Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects.
Molecular ecology [Epub ahead of print].
Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well-suited to studying host shifts. Using Illumina multi-target amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a Generalised Additive Mixed Model (GAMM) to our data to estimate the influence of host phylogeny and the geographic distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps, and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.
Additional Links: PMID-36785954
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36785954,
year = {2023},
author = {Sanaei, E and Albery, GF and Yeoh, YK and Lin, YP and Cook, LG and Engelstädter, J},
title = {Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects.},
journal = {Molecular ecology},
volume = {},
number = {},
pages = {},
doi = {10.1111/mec.16883},
pmid = {36785954},
issn = {1365-294X},
abstract = {Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well-suited to studying host shifts. Using Illumina multi-target amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a Generalised Additive Mixed Model (GAMM) to our data to estimate the influence of host phylogeny and the geographic distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps, and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.},
}
RevDate: 2023-02-13
The Method of Eliminating the Wolbachia Endosymbiont Genomes from Insect Samples Prior to a Long-Read Sequencing.
Methods in molecular biology (Clifton, N.J.), 2632:101-112.
When extracting DNA of invertebrates for long-read sequencing, not only enough quantity and size of the DNA but, depending on the species, elimination of contamination of endosymbiotic Wolbachia genome also has to be achieved. These requirements become troublesome, especially in small-sized species with a limited number of individuals available for the experiment. In this chapter, using tiny parasitoid wasps (Reclinervellus nielseni) parasitizing spiders as hosts, we developed a method of eliminating the Wolbachia genomes by means of an antibiotic administration to adult wasps via honey solution. Twenty days of rifampicin treatment since their emergence from cocoons resulted in a significant decrease in the Wolbachia genomes while keeping good DNA conditions for nanopore sequencing. An adequate quantity of DNA was then gained by pooling several individuals. The method could be applied to other insects or invertebrates that can be maintained by laboratory feeding with liquid food.
Additional Links: PMID-36781724
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36781724,
year = {2023},
author = {Takasuka, K and Arakawa, K},
title = {The Method of Eliminating the Wolbachia Endosymbiont Genomes from Insect Samples Prior to a Long-Read Sequencing.},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2632},
number = {},
pages = {101-112},
pmid = {36781724},
issn = {1940-6029},
abstract = {When extracting DNA of invertebrates for long-read sequencing, not only enough quantity and size of the DNA but, depending on the species, elimination of contamination of endosymbiotic Wolbachia genome also has to be achieved. These requirements become troublesome, especially in small-sized species with a limited number of individuals available for the experiment. In this chapter, using tiny parasitoid wasps (Reclinervellus nielseni) parasitizing spiders as hosts, we developed a method of eliminating the Wolbachia genomes by means of an antibiotic administration to adult wasps via honey solution. Twenty days of rifampicin treatment since their emergence from cocoons resulted in a significant decrease in the Wolbachia genomes while keeping good DNA conditions for nanopore sequencing. An adequate quantity of DNA was then gained by pooling several individuals. The method could be applied to other insects or invertebrates that can be maintained by laboratory feeding with liquid food.},
}
RevDate: 2023-02-13
Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome.
Current genomics, 23(2):126-136.
Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).
Additional Links: PMID-36778977
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36778977,
year = {2022},
author = {Sinha, DK and Gupta, A and Padmakumari, AP and Bentur, JS and Nair, S},
title = {Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome.},
journal = {Current genomics},
volume = {23},
number = {2},
pages = {126-136},
pmid = {36778977},
issn = {1389-2029},
abstract = {Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).},
}
RevDate: 2023-02-10
A new species of Andricus Hartig, 1840 (Hymenoptera, Cynipidae) from China, with references to DNA taxonomy and Wolbachia infection.
ZooKeys, 1134:52-73.
In the present paper, a new species of cynipid gall wasp, Andricuselodeoides Liu & Pang, is described from several provinces in southern China. The new species is closely related to the recently redescribed A.mairei (Kieffer, 1906). In addition to differences in adult and gall morphology, the new species is also readily separated by COI sequences, with a 6.2-8.9% genetic distance between populations of the new species and those of A.mairei. A contrasting difference in sex ratios was also observed between the two species, with A.elodeoides extremely female-biased (95.5-97.8% female) while A.mairei male-biased to more balanced (5.4-43.5% female). PCR screening for Wolbachia infection further revealed contrasting infection rates between populations of A.elodeoides and A.mairei: the Wolbachia infection rate was 0% in A.elodeoides and 100% in A.mairei. Cytoplasmic incompatibility induced by Wolbachia is proposed as a potential mechanism of speciation of the sympatric A.elodeoides and A.mairei.
Additional Links: PMID-36761111
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36761111,
year = {2022},
author = {Pang, Y and Su, CY and Zhu, JQ and Yang, XH and Zhong, JL and Zhu, DH and Liu, Z},
title = {A new species of Andricus Hartig, 1840 (Hymenoptera, Cynipidae) from China, with references to DNA taxonomy and Wolbachia infection.},
journal = {ZooKeys},
volume = {1134},
number = {},
pages = {52-73},
pmid = {36761111},
issn = {1313-2989},
abstract = {In the present paper, a new species of cynipid gall wasp, Andricuselodeoides Liu & Pang, is described from several provinces in southern China. The new species is closely related to the recently redescribed A.mairei (Kieffer, 1906). In addition to differences in adult and gall morphology, the new species is also readily separated by COI sequences, with a 6.2-8.9% genetic distance between populations of the new species and those of A.mairei. A contrasting difference in sex ratios was also observed between the two species, with A.elodeoides extremely female-biased (95.5-97.8% female) while A.mairei male-biased to more balanced (5.4-43.5% female). PCR screening for Wolbachia infection further revealed contrasting infection rates between populations of A.elodeoides and A.mairei: the Wolbachia infection rate was 0% in A.elodeoides and 100% in A.mairei. Cytoplasmic incompatibility induced by Wolbachia is proposed as a potential mechanism of speciation of the sympatric A.elodeoides and A.mairei.},
}
RevDate: 2023-02-10
Intersexuality in a natural population of the terrestrial isopod Porcellioscaber.
ZooKeys, 1101:183-190.
Intersex phenotypes are rarely observed in natural isopod populations and their expression is typically associated with infection of Wolbachia, a reproductive parasite that manipulates arthropod reproduction. During an intensive sampling effort of a natural population of the isopod Porcellioscaber, an adult individual was isolated that expressed both male and female traits. The intersex individual exhibited clearly developed external male genitalia and carried multiple eggs in its brood pouch. No Wolbachia infection could be identified in this individual, a result that needs to be approached with caution due to suboptimal DNA preservation for diagnostic PCR assays. Wolbachia were, however, detected in two adult females of the same population, and appear closely related to isolates that infect other terrestrial isopod species. This is the first demonstration that intersex phenotypes can arise under natural conditions in P.scaber.
Additional Links: PMID-36760975
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36760975,
year = {2022},
author = {Zarka, J and Parmentier, T and Wybouw, N},
title = {Intersexuality in a natural population of the terrestrial isopod Porcellioscaber.},
journal = {ZooKeys},
volume = {1101},
number = {},
pages = {183-190},
pmid = {36760975},
issn = {1313-2989},
abstract = {Intersex phenotypes are rarely observed in natural isopod populations and their expression is typically associated with infection of Wolbachia, a reproductive parasite that manipulates arthropod reproduction. During an intensive sampling effort of a natural population of the isopod Porcellioscaber, an adult individual was isolated that expressed both male and female traits. The intersex individual exhibited clearly developed external male genitalia and carried multiple eggs in its brood pouch. No Wolbachia infection could be identified in this individual, a result that needs to be approached with caution due to suboptimal DNA preservation for diagnostic PCR assays. Wolbachia were, however, detected in two adult females of the same population, and appear closely related to isolates that infect other terrestrial isopod species. This is the first demonstration that intersex phenotypes can arise under natural conditions in P.scaber.},
}
RevDate: 2023-02-09
One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus.
Microbial genomics, 9(2):.
Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.
Additional Links: PMID-36757767
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36757767,
year = {2023},
author = {Halter, T and Köstlbacher, S and Rattei, T and Hendrickx, F and Manzano-Marín, A and Horn, M},
title = {One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus.},
journal = {Microbial genomics},
volume = {9},
number = {2},
pages = {},
doi = {10.1099/mgen.0.000943},
pmid = {36757767},
issn = {2057-5858},
abstract = {Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.},
}
RevDate: 2023-02-08
Investigating Wolbachia symbiont-mediated host protection against a bacterial pathogen using a natural Wolbachia nuclear insert.
Journal of invertebrate pathology pii:S0022-2011(23)00010-1 [Epub ahead of print].
Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.
Additional Links: PMID-36754115
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36754115,
year = {2023},
author = {Prigot-Maurice, C and Lheraud, B and Guéritault, S and Beltran-Bech, S and Cordaux, R and Peccoud, J and Braquart-Varnier, C},
title = {Investigating Wolbachia symbiont-mediated host protection against a bacterial pathogen using a natural Wolbachia nuclear insert.},
journal = {Journal of invertebrate pathology},
volume = {},
number = {},
pages = {107893},
doi = {10.1016/j.jip.2023.107893},
pmid = {36754115},
issn = {1096-0805},
abstract = {Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.},
}
RevDate: 2023-02-08
Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts.
Microbiome, 11(1):22 pii:10.1186/s40168-023-01462-9.
BACKGROUND: Wolbachia belong to highly abundant bacteria which are frequently found in invertebrate microbiomes and manifest by a broad spectrum of lifestyles from parasitism to mutualism. Wolbachia supergroup F is a particularly interesting clade as it gave rise to symbionts of both arthropods and nematodes, and some of its members are obligate mutualists. Investigations on evolutionary transitions among the different symbiotic stages have been hampered by a lack of the known diversity and genomic data for the supergroup F members.
RESULTS: Based on amplicon screening, short- and long-read WGS approaches, and laser confocal microscopy, we characterize five new supergroup F Wolbachia strains from four chewing lice species. These strains reached different evolutionary stages and represent two remarkably different types of symbiont genomes. Three of the genomes resemble other known members of Wolbachia F supergroup, while the other two show typical signs of ongoing gene inactivation and removal (genome size, coding density, low number of pseudogenes). Particularly, wMeur1, a symbiont fixed in microbiomes of Menacanthus eurysternus across four continents, possesses a highly reduced genome of 733,850 bp. The horizontally acquired capacity for pantothenate synthesis and localization in specialized bacteriocytes suggest its obligate nutritional role.
CONCLUSIONS: The genome of wMeur1 strain, from the M. eurysternus microbiome, represents the smallest currently known Wolbachia genome and the first example of Wolbachia which has completed genomic streamlining as known from the typical obligate symbionts. This points out that despite the large amount and great diversity of the known Wolbachia strains, evolutionary potential of these bacteria still remains underexplored. The diversity of the four chewing lice microbiomes indicates that this vast parasitic group may provide suitable models for further investigations. Video Abstract.
Additional Links: PMID-36750860
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36750860,
year = {2023},
author = {Mahmood, S and Nováková, E and Martinů, J and Sychra, O and Hypša, V},
title = {Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts.},
journal = {Microbiome},
volume = {11},
number = {1},
pages = {22},
doi = {10.1186/s40168-023-01462-9},
pmid = {36750860},
issn = {2049-2618},
abstract = {BACKGROUND: Wolbachia belong to highly abundant bacteria which are frequently found in invertebrate microbiomes and manifest by a broad spectrum of lifestyles from parasitism to mutualism. Wolbachia supergroup F is a particularly interesting clade as it gave rise to symbionts of both arthropods and nematodes, and some of its members are obligate mutualists. Investigations on evolutionary transitions among the different symbiotic stages have been hampered by a lack of the known diversity and genomic data for the supergroup F members.
RESULTS: Based on amplicon screening, short- and long-read WGS approaches, and laser confocal microscopy, we characterize five new supergroup F Wolbachia strains from four chewing lice species. These strains reached different evolutionary stages and represent two remarkably different types of symbiont genomes. Three of the genomes resemble other known members of Wolbachia F supergroup, while the other two show typical signs of ongoing gene inactivation and removal (genome size, coding density, low number of pseudogenes). Particularly, wMeur1, a symbiont fixed in microbiomes of Menacanthus eurysternus across four continents, possesses a highly reduced genome of 733,850 bp. The horizontally acquired capacity for pantothenate synthesis and localization in specialized bacteriocytes suggest its obligate nutritional role.
CONCLUSIONS: The genome of wMeur1 strain, from the M. eurysternus microbiome, represents the smallest currently known Wolbachia genome and the first example of Wolbachia which has completed genomic streamlining as known from the typical obligate symbionts. This points out that despite the large amount and great diversity of the known Wolbachia strains, evolutionary potential of these bacteria still remains underexplored. The diversity of the four chewing lice microbiomes indicates that this vast parasitic group may provide suitable models for further investigations. Video Abstract.},
}
RevDate: 2023-02-07
Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae).
The Journal of general virology, 103(12):.
Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.
Additional Links: PMID-36748430
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36748430,
year = {2022},
author = {Izraeli, Y and Lepetit, D and Atias, S and Mozes-Daube, N and Wodowski, G and Lachman, O and Luria, N and Steinberg, S and Varaldi, J and Zchori-Fein, E and Chiel, E},
title = {Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae).},
journal = {The Journal of general virology},
volume = {103},
number = {12},
pages = {},
doi = {10.1099/jgv.0.001810},
pmid = {36748430},
issn = {1465-2099},
abstract = {Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.},
}
RevDate: 2023-02-06
NDUFA8 potentially rescues Wolbachia-induced cytoplasmic incompatibility in Laodelphax striatellus.
Insect science [Epub ahead of print].
The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected (WI) males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNAi of seven Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these seven genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-like) by RNAi significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of WI females re-created CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target. This article is protected by copyright. All rights reserved.
Additional Links: PMID-36744754
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36744754,
year = {2023},
author = {Chen, J and Wang, MK and Xie, QX and Bing, XL and Li, TP and Hong, XY},
title = {NDUFA8 potentially rescues Wolbachia-induced cytoplasmic incompatibility in Laodelphax striatellus.},
journal = {Insect science},
volume = {},
number = {},
pages = {},
doi = {10.1111/1744-7917.13182},
pmid = {36744754},
issn = {1744-7917},
abstract = {The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected (WI) males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNAi of seven Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these seven genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8-like) by RNAi significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of WI females re-created CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target. This article is protected by copyright. All rights reserved.},
}
RevDate: 2023-01-31
Developing Wolbachia-based disease interventions for an extreme environment.
PLoS pathogens, 19(1):e1011117 pii:PPATHOGENS-D-22-01392 [Epub ahead of print].
Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.
Additional Links: PMID-36719928
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36719928,
year = {2023},
author = {Ross, PA and Elfekih, S and Collier, S and Klein, MJ and Lee, SS and Dunn, M and Jackson, S and Zhang, Y and Axford, JK and Gu, X and Home, JL and Nassar, MS and Paradkar, PN and Tawfik, EA and Jiggins, FM and Almalik, AM and Al-Fageeh, MB and Hoffmann, AA},
title = {Developing Wolbachia-based disease interventions for an extreme environment.},
journal = {PLoS pathogens},
volume = {19},
number = {1},
pages = {e1011117},
doi = {10.1371/journal.ppat.1011117},
pmid = {36719928},
issn = {1553-7374},
abstract = {Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.},
}
RevDate: 2023-01-30
Detection and Assessment of Wolbachia pipientis Infection.
Methods in molecular biology (Clifton, N.J.), 2626:291-307.
Wolbachia pipientis is a widespread vertically transmitted intracellular bacterium naturally present in the model organism Drosophila melanogaster. As Wolbachia is present in a large number of Drosophila lines, it is critical for researchers to be able to identify which of their stocks maintain this infection to avoid any potential confounding variables. Here, we describe methods for detecting the bacterium and assessing the infection, including polymerase chain reaction (PCR) of DNA, multi-locus sequence typing (MLST) to identify strains, western blotting for protein detection, and immunohistochemistry and fluorescence in situ hybridization (FISH) of Drosophila ovaries to visually detect Wolbachia by fluorescence microscopy.
Additional Links: PMID-36715911
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36715911,
year = {2023},
author = {Nevalainen, LBM and Newton, ILG},
title = {Detection and Assessment of Wolbachia pipientis Infection.},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2626},
number = {},
pages = {291-307},
pmid = {36715911},
issn = {1940-6029},
abstract = {Wolbachia pipientis is a widespread vertically transmitted intracellular bacterium naturally present in the model organism Drosophila melanogaster. As Wolbachia is present in a large number of Drosophila lines, it is critical for researchers to be able to identify which of their stocks maintain this infection to avoid any potential confounding variables. Here, we describe methods for detecting the bacterium and assessing the infection, including polymerase chain reaction (PCR) of DNA, multi-locus sequence typing (MLST) to identify strains, western blotting for protein detection, and immunohistochemistry and fluorescence in situ hybridization (FISH) of Drosophila ovaries to visually detect Wolbachia by fluorescence microscopy.},
}
RevDate: 2023-01-30
Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking.
PNAS nexus, 1(4):pgac203.
The ability of the maternally transmitted endosymbiotic bacterium Wolbachia to induce cytoplasmic incompatibility (CI) and virus blocking makes it a promising weapon for combatting mosquito-borne diseases through either suppression or replacement of wild-type populations. Recent field trials show that both approaches significantly reduce the incidence of dengue fever in humans. However, new questions emerge about how Wolbachia-mosquito associations will co-evolve over time and whether Wolbachia-mediated virus blocking will be affected by the genetic diversity of mosquitoes and arboviruses in the real world. Here, we have compared the Wolbachia density and CI expression of two wAlbB-infected Aedes aegypti lines transinfected 15 years apart. We have also assessed wAlbB-mediated virus blocking against dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) viruses and examined whether host genetic backgrounds modulate viral blocking effects by comparing ZIKV infection in mosquitoes with a Mexican genetic background to those with a Singaporean background. Our results show that over 15 years, wAlbB maintained the capacity to form a stable association with Ae. aegypti in terms of both density and CI expression. There were variations in wAlbB-induced virus blocking against CHIKV, DENV, and ZIKV, and higher inhibitory effects on ZIKV in mosquitoes on the Singaporean genetic background than on the Mexican background. These results provide important information concerning the robustness and long-term stability of Wolbachia as a biocontrol agent for arbovirus disease control.
Additional Links: PMID-36714832
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36714832,
year = {2022},
author = {Liang, X and Tan, CH and Sun, Q and Zhang, M and Wong, PSJ and Li, MI and Mak, KW and Martín-Park, A and Contreras-Perera, Y and Puerta-Guardo, H and Manrique-Saide, P and Ng, LC and Xi, Z},
title = {Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking.},
journal = {PNAS nexus},
volume = {1},
number = {4},
pages = {pgac203},
pmid = {36714832},
issn = {2752-6542},
abstract = {The ability of the maternally transmitted endosymbiotic bacterium Wolbachia to induce cytoplasmic incompatibility (CI) and virus blocking makes it a promising weapon for combatting mosquito-borne diseases through either suppression or replacement of wild-type populations. Recent field trials show that both approaches significantly reduce the incidence of dengue fever in humans. However, new questions emerge about how Wolbachia-mosquito associations will co-evolve over time and whether Wolbachia-mediated virus blocking will be affected by the genetic diversity of mosquitoes and arboviruses in the real world. Here, we have compared the Wolbachia density and CI expression of two wAlbB-infected Aedes aegypti lines transinfected 15 years apart. We have also assessed wAlbB-mediated virus blocking against dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) viruses and examined whether host genetic backgrounds modulate viral blocking effects by comparing ZIKV infection in mosquitoes with a Mexican genetic background to those with a Singaporean background. Our results show that over 15 years, wAlbB maintained the capacity to form a stable association with Ae. aegypti in terms of both density and CI expression. There were variations in wAlbB-induced virus blocking against CHIKV, DENV, and ZIKV, and higher inhibitory effects on ZIKV in mosquitoes on the Singaporean genetic background than on the Mexican background. These results provide important information concerning the robustness and long-term stability of Wolbachia as a biocontrol agent for arbovirus disease control.},
}
RevDate: 2023-01-30
Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Bemisia tabaci (Asia-I).
Frontiers in physiology, 13:1097459.
The sweet potato whitefly, Bemisia tabaci (Gennadius), is one of the several species complexes of whitefly that are currently significant agricultural pests. Bemisia tabaci infests more than 600 plant species and thrives under a wide range of temperature conditions. In addition to the direct damage caused by sucking plant sap, it vectors several plant viruses. Heat-shock proteins play a pivotal role in enabling the insect to extend its geographical location, survival, and reproduction under different stress conditions. B. tabaci harbours several endosymbionts under the genera Portiera, Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium, and Fritschea that directly or indirectly affect its fitness. By accelerating cuticle biosynthesis and sclerotisation, symbiotic microbes can reduce or enhance tolerance to extreme temperatures and detoxify heavy metals. Thus, symbionts or microbial communities can expand or constrain the abiotic niche space of their host and affect its ability to adapt to changing conditions. The present study delineates the effect of thermal stress on the expression of heat-shock genes and endosymbionts in B. tabaci. Studies of the expression level of heat-shock proteins with the help of quantitative real-time polymerase chain reaction (qRT-PCR) showed that heat- and cold-shock treatment fuels the increased expression of heat-shock proteins (Hsp40 and Hsp70). However, Hsp90 was not induced by a heat- and cold-shock treatment. A significant decrease in the relative titre of secondary endosymbionts, such as Rickettsia, Arsenophonus, and Wolbachia, were recorded in B. tabaci upon heat treatment. However, the titre of the primary symbiont, C. Portiera, was relatively unaffected by both cold and heat treatments. These results are indicative of the fact that Hsp genes and endosymbionts in B. tabaci are modulated in response to thermal stress, and this might be responsible for the adaptation of whitefly under changing climatic scenario.
Additional Links: PMID-36714306
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36714306,
year = {2022},
author = {Barman, M and Samanta, S and Ahmed, B and Dey, S and Chakraborty, S and Deeksha, MG and Dutta, S and Samanta, A and Tarafdar, J and Roy, D},
title = {Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Bemisia tabaci (Asia-I).},
journal = {Frontiers in physiology},
volume = {13},
number = {},
pages = {1097459},
pmid = {36714306},
issn = {1664-042X},
abstract = {The sweet potato whitefly, Bemisia tabaci (Gennadius), is one of the several species complexes of whitefly that are currently significant agricultural pests. Bemisia tabaci infests more than 600 plant species and thrives under a wide range of temperature conditions. In addition to the direct damage caused by sucking plant sap, it vectors several plant viruses. Heat-shock proteins play a pivotal role in enabling the insect to extend its geographical location, survival, and reproduction under different stress conditions. B. tabaci harbours several endosymbionts under the genera Portiera, Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium, and Fritschea that directly or indirectly affect its fitness. By accelerating cuticle biosynthesis and sclerotisation, symbiotic microbes can reduce or enhance tolerance to extreme temperatures and detoxify heavy metals. Thus, symbionts or microbial communities can expand or constrain the abiotic niche space of their host and affect its ability to adapt to changing conditions. The present study delineates the effect of thermal stress on the expression of heat-shock genes and endosymbionts in B. tabaci. Studies of the expression level of heat-shock proteins with the help of quantitative real-time polymerase chain reaction (qRT-PCR) showed that heat- and cold-shock treatment fuels the increased expression of heat-shock proteins (Hsp40 and Hsp70). However, Hsp90 was not induced by a heat- and cold-shock treatment. A significant decrease in the relative titre of secondary endosymbionts, such as Rickettsia, Arsenophonus, and Wolbachia, were recorded in B. tabaci upon heat treatment. However, the titre of the primary symbiont, C. Portiera, was relatively unaffected by both cold and heat treatments. These results are indicative of the fact that Hsp genes and endosymbionts in B. tabaci are modulated in response to thermal stress, and this might be responsible for the adaptation of whitefly under changing climatic scenario.},
}
RevDate: 2023-01-30
Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia.
PNAS nexus, 2(1):pgac293.
Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (Osdsx[F]) while suppressing the male-specific variant (Osdsx[M]), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.
Additional Links: PMID-36712932
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36712932,
year = {2023},
author = {Herran, B and Sugimoto, TN and Watanabe, K and Imanishi, S and Tsuchida, T and Matsuo, T and Ishikawa, Y and Kageyama, D},
title = {Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia.},
journal = {PNAS nexus},
volume = {2},
number = {1},
pages = {pgac293},
pmid = {36712932},
issn = {2752-6542},
abstract = {Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (Osdsx[F]) while suppressing the male-specific variant (Osdsx[M]), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.},
}
RevDate: 2023-01-30
Variable effects of Wolbachia on alphavirus infection in Aedes aegypti.
bioRxiv : the preprint server for biology pii:2023.01.20.524939.
UNLABELLED: Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (w AlbB and w Mel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti . We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both w AlbB- and w Mel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with w AlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; w Mel strongly blocked MAYV infections and suppressed viral titers, while w AlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
IMPACT STATEMENT: In recent years, wild populations of Aedes aegypti mosquitoes have been deliberately infected with Wolbachia -a bacterium that helps to curb the spread of some pathogens including dengue virus. But how does Wolbachia affect the ability of mosquitoes to become infected with and spread the many different viruses they encounter in nature? Here, we characterize the effects of Wolbachia on three alphaviruses that cause illness in humans- Sindbis virus, O'nyong-nyong virus, and Mayaro virus. We find Wolbachia has variable effects on these pathogens, including significant enhancement of Sindbis virus infections. Our research has important implications for the design of vector control strategies, and suggests further research is needed to understand how Wolbachia shapes the replication and transmission of diverse viruses.
DATA SUMMARY: 3.All data in the study are available in the Figures and supplementary material.
Additional Links: PMID-36711723
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36711723,
year = {2023},
author = {Dodson, BL and Pujhari, S and Brustolin, M and Metz, HC and Rasgon, JL},
title = {Variable effects of Wolbachia on alphavirus infection in Aedes aegypti.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
doi = {10.1101/2023.01.20.524939},
pmid = {36711723},
abstract = {UNLABELLED: Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (w AlbB and w Mel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti . We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both w AlbB- and w Mel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with w AlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; w Mel strongly blocked MAYV infections and suppressed viral titers, while w AlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
IMPACT STATEMENT: In recent years, wild populations of Aedes aegypti mosquitoes have been deliberately infected with Wolbachia -a bacterium that helps to curb the spread of some pathogens including dengue virus. But how does Wolbachia affect the ability of mosquitoes to become infected with and spread the many different viruses they encounter in nature? Here, we characterize the effects of Wolbachia on three alphaviruses that cause illness in humans- Sindbis virus, O'nyong-nyong virus, and Mayaro virus. We find Wolbachia has variable effects on these pathogens, including significant enhancement of Sindbis virus infections. Our research has important implications for the design of vector control strategies, and suggests further research is needed to understand how Wolbachia shapes the replication and transmission of diverse viruses.
DATA SUMMARY: 3.All data in the study are available in the Figures and supplementary material.},
}
RevDate: 2023-01-30
Wolbachia is a nutritional symbiont.
bioRxiv : the preprint server for biology pii:2023.01.20.524972.
UNLABELLED: Approximately a quarter of eukaryotes are infected with the bacterium Wolbachia . Its broad success as a vertically transmitted infection has been historically difficult to explain given the myriad of parasitic impacts characterized across Wolbachia 's host range. Using the Drosophila model and their natively associated Wolbachia , we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia -free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for insect growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement insect development and increase host fitness: a selective advantage that could contribute to its high frequency in nature.
SIGNIFICANCE STATEMENT: Wolbachia is a bacterial symbiont of ∼1/4 of all eukaryotic species on earth, often deemed a "parasite" due to selfish manipulations of arthropod reproduction. However, many have theorized there must be more to this symbiosis: parasitic and reproductive impacts alone cannot explain the success and ubiquity of this bacterium. Here, we use Drosophila and their native Wolbachia infections to show that Wolbachia supports fly development and significantly buffers flies against nutritional stress. Additionally, we show that this advantage is likely mediated by pyrimidines: a biosynthetic pathway that all Wolbachia lineages encode for. These developmental advantages might help explain the ubiquity of Wolbachia infections.
Additional Links: PMID-36711506
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36711506,
year = {2023},
author = {Lindsey, AR and Parish, AJ and Newton, IL and Tennessen, JM and Jones, MW and Stark, N},
title = {Wolbachia is a nutritional symbiont.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
doi = {10.1101/2023.01.20.524972},
pmid = {36711506},
abstract = {UNLABELLED: Approximately a quarter of eukaryotes are infected with the bacterium Wolbachia . Its broad success as a vertically transmitted infection has been historically difficult to explain given the myriad of parasitic impacts characterized across Wolbachia 's host range. Using the Drosophila model and their natively associated Wolbachia , we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia -free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for insect growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement insect development and increase host fitness: a selective advantage that could contribute to its high frequency in nature.
SIGNIFICANCE STATEMENT: Wolbachia is a bacterial symbiont of ∼1/4 of all eukaryotic species on earth, often deemed a "parasite" due to selfish manipulations of arthropod reproduction. However, many have theorized there must be more to this symbiosis: parasitic and reproductive impacts alone cannot explain the success and ubiquity of this bacterium. Here, we use Drosophila and their native Wolbachia infections to show that Wolbachia supports fly development and significantly buffers flies against nutritional stress. Additionally, we show that this advantage is likely mediated by pyrimidines: a biosynthetic pathway that all Wolbachia lineages encode for. These developmental advantages might help explain the ubiquity of Wolbachia infections.},
}
RevDate: 2023-01-28
Diet modulation of the microbiome of the pest storage mite Tyrophagus putrescentiae.
FEMS microbiology ecology pii:7008491 [Epub ahead of print].
Storage mites colonize a wide spectrum of food commodities and adaptations to diets have been suggested as mechanisms enabling successful colonization. We characterized the response of seven unique Tyrophagus putrescentiae cultures (5K, 5L, 5N, 5P, 5Pi, 5S and 5Tk) with different baseline microbiomes to different diets. The offered diets included a rearing diet, protein-enriched diet, oat flakes and sunflower seeds. Microbiome characterization was performed using 16S ribosomal RNA (rRNA) gene amplicon sequencing and 16S rRNA gene quantitative PCR. The mite culture microbiomes were classified into four groups: (i) Sodalis-dominated (5Pi); (ii) Wolbachia-dominated (5N and 5P); (iii) Cardinium-dominated (5L and 5S); and (iv) Asymbiontic (5K and 5Tk) mites dominated by Bacillus and Bartonella. Mite growth rates were most strongly affected by nutrients in the diet, while respiration and microbial community profiles were largely influenced by mite culture. While growth rate was not directly explained by microbiome composition, microbiomes strongly influenced mite fitness as measured by respiration. While diet significantly influenced microbial profiles in all cultures, the effect of diet differed in impact between cultures (5Pi>5S>5N>5K>5Tk>5L>5P). Furthermore, no new bacterial taxa were acquired by mites after dietary changes. Bacteria from the taxa Bacillus, Bartonella-like, Solitalea-like, Kocuria and Sodalis-like contributed most strongly to differentiating mite-associated microbiomes.
Additional Links: PMID-36708161
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36708161,
year = {2023},
author = {Hubert, J and Nesvorna, M and Sopko, B and Green, SJ},
title = {Diet modulation of the microbiome of the pest storage mite Tyrophagus putrescentiae.},
journal = {FEMS microbiology ecology},
volume = {},
number = {},
pages = {},
doi = {10.1093/femsec/fiad011},
pmid = {36708161},
issn = {1574-6941},
abstract = {Storage mites colonize a wide spectrum of food commodities and adaptations to diets have been suggested as mechanisms enabling successful colonization. We characterized the response of seven unique Tyrophagus putrescentiae cultures (5K, 5L, 5N, 5P, 5Pi, 5S and 5Tk) with different baseline microbiomes to different diets. The offered diets included a rearing diet, protein-enriched diet, oat flakes and sunflower seeds. Microbiome characterization was performed using 16S ribosomal RNA (rRNA) gene amplicon sequencing and 16S rRNA gene quantitative PCR. The mite culture microbiomes were classified into four groups: (i) Sodalis-dominated (5Pi); (ii) Wolbachia-dominated (5N and 5P); (iii) Cardinium-dominated (5L and 5S); and (iv) Asymbiontic (5K and 5Tk) mites dominated by Bacillus and Bartonella. Mite growth rates were most strongly affected by nutrients in the diet, while respiration and microbial community profiles were largely influenced by mite culture. While growth rate was not directly explained by microbiome composition, microbiomes strongly influenced mite fitness as measured by respiration. While diet significantly influenced microbial profiles in all cultures, the effect of diet differed in impact between cultures (5Pi>5S>5N>5K>5Tk>5L>5P). Furthermore, no new bacterial taxa were acquired by mites after dietary changes. Bacteria from the taxa Bacillus, Bartonella-like, Solitalea-like, Kocuria and Sodalis-like contributed most strongly to differentiating mite-associated microbiomes.},
}
RevDate: 2023-01-28
Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus.
Ecotoxicology and environmental safety, 252:114579 pii:S0147-6513(23)00083-0 [Epub ahead of print].
Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.
Additional Links: PMID-36706527
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36706527,
year = {2023},
author = {Wei, X and Peng, H and Li, Y and Meng, B and Wang, S and Bi, S and Zhao, X},
title = {Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus.},
journal = {Ecotoxicology and environmental safety},
volume = {252},
number = {},
pages = {114579},
doi = {10.1016/j.ecoenv.2023.114579},
pmid = {36706527},
issn = {1090-2414},
abstract = {Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.},
}
RevDate: 2023-01-26
Impact of randomised wmel Wolbachia deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City.
Global health action, 16(1):2166650.
BACKGROUND: Releases of Wolbachia (wMel)-infected Aedes aegypti mosquitoes significantly reduced the incidence of virologically confirmed dengue in a previous cluster randomised trial in Yogyakarta City, Indonesia. Following the trial, wMel releases were extended to the untreated control areas, to achieve city-wide coverage of Wolbachia.
OBJECTIVE: In this predefined analysis, we evaluated the impact of the wMel deployments in Yogyakarta on dengue hemorrhagic fever (DHF) case notifications and on the frequency of perifocal insecticide spraying by public health teams.
METHODS: Monthly counts of DHF cases notified to the Yogyakarta District Health Office between January 2006 and May 2022 were modelled as a function of time-varying local wMel treatment status (fully- and partially-treated vs untreated, and by quintile of wMel prevalence). The frequency of insecticide fogging in wMel-treated and untreated areas was analysed using negative binomial regression.
RESULTS: Notified DHF incidence was 83% lower in fully treated vs untreated periods (IRR 0.17 [95% CI 0.14, 0.20]), and 78% lower in areas with 80-100% wMel prevalence compared to areas with 0-20% wMel (IRR 0.23 [0.17, 0.30]). A similar intervention effect was observed at 60-80% wMel prevalence as at 80-100% prevalence (76% vs 78% efficacy, respectively). Pre-intervention, insecticide fogging occurred at similar frequencies in areas later randomised to wMel-treated and untreated arms of the trial. After wMel deployment, fogging occurred significantly less frequently in treated areas (IRR 0.17 [0.10, 0.30]).
CONCLUSIONS: Deployments of wMel-infected Aedes aegypti mosquitoes resulted in an 83% reduction in the application of perifocal insecticide spraying, consistent with lower dengue case notifications in wMel-treated areas. These results show that the Wolbachia intervention effect demonstrated previously in a cluster randomised trial was also measurable from routine surveillance data.
Additional Links: PMID-36700745
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36700745,
year = {2023},
author = {Indriani, C and Tanamas, SK and Khasanah, U and Ansari, MR and Rubangi, and Tantowijoyo, W and Ahmad, RA and Dufault, SM and Jewell, NP and Utarini, A and Simmons, CP and Anders, KL},
title = {Impact of randomised wmel Wolbachia deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City.},
journal = {Global health action},
volume = {16},
number = {1},
pages = {2166650},
doi = {10.1080/16549716.2023.2166650},
pmid = {36700745},
issn = {1654-9880},
abstract = {BACKGROUND: Releases of Wolbachia (wMel)-infected Aedes aegypti mosquitoes significantly reduced the incidence of virologically confirmed dengue in a previous cluster randomised trial in Yogyakarta City, Indonesia. Following the trial, wMel releases were extended to the untreated control areas, to achieve city-wide coverage of Wolbachia.
OBJECTIVE: In this predefined analysis, we evaluated the impact of the wMel deployments in Yogyakarta on dengue hemorrhagic fever (DHF) case notifications and on the frequency of perifocal insecticide spraying by public health teams.
METHODS: Monthly counts of DHF cases notified to the Yogyakarta District Health Office between January 2006 and May 2022 were modelled as a function of time-varying local wMel treatment status (fully- and partially-treated vs untreated, and by quintile of wMel prevalence). The frequency of insecticide fogging in wMel-treated and untreated areas was analysed using negative binomial regression.
RESULTS: Notified DHF incidence was 83% lower in fully treated vs untreated periods (IRR 0.17 [95% CI 0.14, 0.20]), and 78% lower in areas with 80-100% wMel prevalence compared to areas with 0-20% wMel (IRR 0.23 [0.17, 0.30]). A similar intervention effect was observed at 60-80% wMel prevalence as at 80-100% prevalence (76% vs 78% efficacy, respectively). Pre-intervention, insecticide fogging occurred at similar frequencies in areas later randomised to wMel-treated and untreated arms of the trial. After wMel deployment, fogging occurred significantly less frequently in treated areas (IRR 0.17 [0.10, 0.30]).
CONCLUSIONS: Deployments of wMel-infected Aedes aegypti mosquitoes resulted in an 83% reduction in the application of perifocal insecticide spraying, consistent with lower dengue case notifications in wMel-treated areas. These results show that the Wolbachia intervention effect demonstrated previously in a cluster randomised trial was also measurable from routine surveillance data.},
}
RevDate: 2023-01-24
Acquisition and transmission of "Candidatus Liberibacter solanacearum" differs among Wolbachia-infected and -uninfected haplotypes of Bactericera cockerelli.
Plant disease [Epub ahead of print].
"Candidatus Liberibacter solanacearum" (Lso) causes disease symptoms and economic losses in potato, tomato, and other solanaceous crops in North America. Lso is transmitted to plants by potato psyllid, Bactericera cockerelli, which occurs as distinct haplotypes named western, central, and northwestern that differ in presence or absence of the bacterial endosymbiont, Wolbachia. Previous work showed that all three vector haplotypes can transmit Lso, but it was not clear whether acquisition and transmission rates of Lso were equal among the haplotypes. The goal of our study was to compare Lso infection rates among psyllids of the western, central, and northwestern haplotypes. Using data collected from several years of periodic testing of Lso infection of laboratory-reared potato psyllid colonies, we showed that psyllids of the western and central haplotypes are more likely to harbor Lso than are psyllids of the northwestern haplotype. We then used greenhouse assays to demonstrate that psyllids of the northwestern haplotype are less likely to acquire and transmit Lso compared with those of the western haplotype. Lso infection rates corresponded with Wolbachia infection among the three psyllid haplotypes. The Wolbachia-infected central and western haplotypes were more likely to harbor and transmit Lso compared with the Wolbachia-free northwestern haplotype. Results demonstrate that potato psyllids of the western and central haplotypes pose a greater risk for spread of Lso in crops and suggest a pattern between infection with Lso and Wolbachia in potato psyllid.
Additional Links: PMID-36691279
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36691279,
year = {2023},
author = {Cooper, W and Swisher Grimm, K and Angelella, G and Mustafa, T},
title = {Acquisition and transmission of "Candidatus Liberibacter solanacearum" differs among Wolbachia-infected and -uninfected haplotypes of Bactericera cockerelli.},
journal = {Plant disease},
volume = {},
number = {},
pages = {},
doi = {10.1094/PDIS-11-22-2701-RE},
pmid = {36691279},
issn = {0191-2917},
abstract = {"Candidatus Liberibacter solanacearum" (Lso) causes disease symptoms and economic losses in potato, tomato, and other solanaceous crops in North America. Lso is transmitted to plants by potato psyllid, Bactericera cockerelli, which occurs as distinct haplotypes named western, central, and northwestern that differ in presence or absence of the bacterial endosymbiont, Wolbachia. Previous work showed that all three vector haplotypes can transmit Lso, but it was not clear whether acquisition and transmission rates of Lso were equal among the haplotypes. The goal of our study was to compare Lso infection rates among psyllids of the western, central, and northwestern haplotypes. Using data collected from several years of periodic testing of Lso infection of laboratory-reared potato psyllid colonies, we showed that psyllids of the western and central haplotypes are more likely to harbor Lso than are psyllids of the northwestern haplotype. We then used greenhouse assays to demonstrate that psyllids of the northwestern haplotype are less likely to acquire and transmit Lso compared with those of the western haplotype. Lso infection rates corresponded with Wolbachia infection among the three psyllid haplotypes. The Wolbachia-infected central and western haplotypes were more likely to harbor and transmit Lso compared with the Wolbachia-free northwestern haplotype. Results demonstrate that potato psyllids of the western and central haplotypes pose a greater risk for spread of Lso in crops and suggest a pattern between infection with Lso and Wolbachia in potato psyllid.},
}
RevDate: 2023-01-23
Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project.
PLoS biology, 21(1):e3001972 pii:PBIOLOGY-D-22-02172 [Epub ahead of print].
The Darwin Tree of Life (DToL) project aims to sequence all described terrestrial and aquatic eukaryotic species found in Britain and Ireland. Reference genome sequences are generated from single individuals for each target species. In addition to the target genome, sequenced samples often contain genetic material from microbiomes, endosymbionts, parasites, and other cobionts. Wolbachia endosymbiotic bacteria are found in a diversity of terrestrial arthropods and nematodes, with supergroups A and B the most common in insects. We identified and assembled 110 complete Wolbachia genomes from 93 host species spanning 92 families by filtering data from 368 insect species generated by the DToL project. From 15 infected species, we assembled more than one Wolbachia genome, including cases where individuals carried simultaneous supergroup A and B infections. Different insect orders had distinct patterns of infection, with Lepidopteran hosts mostly infected with supergroup B, while infections in Diptera and Hymenoptera were dominated by A-type Wolbachia. Other than these large-scale order-level associations, host and Wolbachia phylogenies revealed no (or very limited) cophylogeny. This points to the occurrence of frequent host switching events, including between insect orders, in the evolutionary history of the Wolbachia pandemic. While supergroup A and B genomes had distinct GC% and GC skew, and B genomes had a larger core gene set and tended to be longer, it was the abundance of copies of bacteriophage WO who was a strong determinant of Wolbachia genome size. Mining raw genome data generated for reference genome assemblies is a robust way of identifying and analysing cobiont genomes and giving greater ecological context for their hosts.
Additional Links: PMID-36689552
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36689552,
year = {2023},
author = {Vancaester, E and Blaxter, M},
title = {Phylogenomic analysis of Wolbachia genomes from the Darwin Tree of Life biodiversity genomics project.},
journal = {PLoS biology},
volume = {21},
number = {1},
pages = {e3001972},
doi = {10.1371/journal.pbio.3001972},
pmid = {36689552},
issn = {1545-7885},
abstract = {The Darwin Tree of Life (DToL) project aims to sequence all described terrestrial and aquatic eukaryotic species found in Britain and Ireland. Reference genome sequences are generated from single individuals for each target species. In addition to the target genome, sequenced samples often contain genetic material from microbiomes, endosymbionts, parasites, and other cobionts. Wolbachia endosymbiotic bacteria are found in a diversity of terrestrial arthropods and nematodes, with supergroups A and B the most common in insects. We identified and assembled 110 complete Wolbachia genomes from 93 host species spanning 92 families by filtering data from 368 insect species generated by the DToL project. From 15 infected species, we assembled more than one Wolbachia genome, including cases where individuals carried simultaneous supergroup A and B infections. Different insect orders had distinct patterns of infection, with Lepidopteran hosts mostly infected with supergroup B, while infections in Diptera and Hymenoptera were dominated by A-type Wolbachia. Other than these large-scale order-level associations, host and Wolbachia phylogenies revealed no (or very limited) cophylogeny. This points to the occurrence of frequent host switching events, including between insect orders, in the evolutionary history of the Wolbachia pandemic. While supergroup A and B genomes had distinct GC% and GC skew, and B genomes had a larger core gene set and tended to be longer, it was the abundance of copies of bacteriophage WO who was a strong determinant of Wolbachia genome size. Mining raw genome data generated for reference genome assemblies is a robust way of identifying and analysing cobiont genomes and giving greater ecological context for their hosts.},
}
RevDate: 2023-01-23
Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study.
PLoS genetics, 19(1):e1010591 pii:PGENETICS-D-22-01086 [Epub ahead of print].
Wolbachia are maternally-inherited bacteria, which can spread rapidly in populations by manipulating reproduction. cifA and cifB are genes found in Wolbachia phage that are responsible for cytoplasmic incompatibility, the most common type of Wolbachia reproductive interference. In this phenomenon, no viable offspring are produced when a male with both cifA and cifB (or just cifB in some systems) mates with a female lacking cifA. Utilizing this feature, we propose new types of toxin-antidote gene drives that can be constructed with only these two genes in an insect genome, instead of the whole Wolbachia bacteria. By using both mathematical and simulation models, we found that a drive containing cifA and cifB together creates a confined drive with a moderate to high introduction threshold. When introduced separately, they act as a self-limiting drive. We observed that the performance of these drives is substantially influenced by various ecological parameters and drive characteristics. Extending our models to continuous space, we found that the drive individual release distribution has a critical impact on drive persistence. Our results suggest that these new types of drives based on Wolbachia transgenes are safe and flexible candidates for genetic modification of populations.
Additional Links: PMID-36689491
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36689491,
year = {2023},
author = {Li, J and Champer, J},
title = {Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study.},
journal = {PLoS genetics},
volume = {19},
number = {1},
pages = {e1010591},
doi = {10.1371/journal.pgen.1010591},
pmid = {36689491},
issn = {1553-7404},
abstract = {Wolbachia are maternally-inherited bacteria, which can spread rapidly in populations by manipulating reproduction. cifA and cifB are genes found in Wolbachia phage that are responsible for cytoplasmic incompatibility, the most common type of Wolbachia reproductive interference. In this phenomenon, no viable offspring are produced when a male with both cifA and cifB (or just cifB in some systems) mates with a female lacking cifA. Utilizing this feature, we propose new types of toxin-antidote gene drives that can be constructed with only these two genes in an insect genome, instead of the whole Wolbachia bacteria. By using both mathematical and simulation models, we found that a drive containing cifA and cifB together creates a confined drive with a moderate to high introduction threshold. When introduced separately, they act as a self-limiting drive. We observed that the performance of these drives is substantially influenced by various ecological parameters and drive characteristics. Extending our models to continuous space, we found that the drive individual release distribution has a critical impact on drive persistence. Our results suggest that these new types of drives based on Wolbachia transgenes are safe and flexible candidates for genetic modification of populations.},
}
RevDate: 2023-01-23
Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies.
Frontiers in cellular and infection microbiology, 12:1077494.
Intracellular bacterial endosymbionts of arthropods are mainly transmitted vertically from mother to offspring, but phylogenetically distant insect hosts often harbor identical endosymbionts, indicating that horizontal transmission from one species to another occurs in nature. Here, we investigated the parasitoid Encarsia formosa-mediated horizontal transmission of the endosymbiont Rickettsia between different populations of whitefly Bemisia tabaci MEAM1. Rickettsia was successfully transmitted from the positive MEAM1 nymphs (R [+]) into E. formosa and retained at least for 48 h in E. formosa adults. Fluorescence in situ hybridization (FISH) visualization results revealed that the ovipositors, mouthparts, and digestive tract of parasitoid adults get contaminated with Rickettsia. Random non-lethal probing of Rickettisia-negative (R[-]) MEAM1 nymphs by these Rickettsia-carrying E. formosa resulted in newly infected MEAM1 nymphs, and the vertical transmission of Rickettsia within the recipient females can remain at least up to F3 generation. Further phylogenetic analyses revealed that Rickettsia had high fidelity during the horizontal transmission in whiteflies and parasitoids. Our findings may help to explain why Rickettsia bacteria are so abundant in arthropods and suggest that, in some insect species that shared the same parasitoids, Rickettsia may be maintained in populations by horizontal transmission.
Additional Links: PMID-36683703
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36683703,
year = {2022},
author = {Liu, Y and He, ZQ and Wen, Q and Peng, J and Zhou, YT and Mandour, N and McKenzie, CL and Ahmed, MZ and Qiu, BL},
title = {Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies.},
journal = {Frontiers in cellular and infection microbiology},
volume = {12},
number = {},
pages = {1077494},
pmid = {36683703},
issn = {2235-2988},
abstract = {Intracellular bacterial endosymbionts of arthropods are mainly transmitted vertically from mother to offspring, but phylogenetically distant insect hosts often harbor identical endosymbionts, indicating that horizontal transmission from one species to another occurs in nature. Here, we investigated the parasitoid Encarsia formosa-mediated horizontal transmission of the endosymbiont Rickettsia between different populations of whitefly Bemisia tabaci MEAM1. Rickettsia was successfully transmitted from the positive MEAM1 nymphs (R [+]) into E. formosa and retained at least for 48 h in E. formosa adults. Fluorescence in situ hybridization (FISH) visualization results revealed that the ovipositors, mouthparts, and digestive tract of parasitoid adults get contaminated with Rickettsia. Random non-lethal probing of Rickettisia-negative (R[-]) MEAM1 nymphs by these Rickettsia-carrying E. formosa resulted in newly infected MEAM1 nymphs, and the vertical transmission of Rickettsia within the recipient females can remain at least up to F3 generation. Further phylogenetic analyses revealed that Rickettsia had high fidelity during the horizontal transmission in whiteflies and parasitoids. Our findings may help to explain why Rickettsia bacteria are so abundant in arthropods and suggest that, in some insect species that shared the same parasitoids, Rickettsia may be maintained in populations by horizontal transmission.},
}
RevDate: 2023-01-21
A Systematic Review of Mathematical Models of Dengue Transmission and Vector Control: 2010-2020.
Viruses, 15(1): pii:v15010254.
Vector control methods are considered effective in averting dengue transmission. However, several factors may modify their impact. Of these controls, chemical methods, in the long run, may increase mosquitoes' resistance to chemicides, thereby decreasing control efficacy. The biological methods, which may be self-sustaining and very effective, could be hampered by seasonality or heatwaves (resulting in, e.g., loss of Wolbachia infection). The environmental methods that could be more effective than the chemical methods are under-investigated. In this study, a systematic review is conducted to explore the present understanding of the effectiveness of vector control approaches via dengue transmission models.
Additional Links: PMID-36680294
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36680294,
year = {2023},
author = {Ogunlade, ST and Meehan, MT and Adekunle, AI and McBryde, ES},
title = {A Systematic Review of Mathematical Models of Dengue Transmission and Vector Control: 2010-2020.},
journal = {Viruses},
volume = {15},
number = {1},
pages = {},
doi = {10.3390/v15010254},
pmid = {36680294},
issn = {1999-4915},
abstract = {Vector control methods are considered effective in averting dengue transmission. However, several factors may modify their impact. Of these controls, chemical methods, in the long run, may increase mosquitoes' resistance to chemicides, thereby decreasing control efficacy. The biological methods, which may be self-sustaining and very effective, could be hampered by seasonality or heatwaves (resulting in, e.g., loss of Wolbachia infection). The environmental methods that could be more effective than the chemical methods are under-investigated. In this study, a systematic review is conducted to explore the present understanding of the effectiveness of vector control approaches via dengue transmission models.},
}
RevDate: 2023-01-21
Co-Infection of Potential Tick-Borne Pathogens of the Order Rickettsiales and Borrelia burgdorferi s. l. and Their Link to Season and Area in Germany.
Microorganisms, 11(1): pii:microorganisms11010157.
The prevalence of potential human pathogenic members of the order Rickettsiales differs between Borrelia burgdorferi sensu lato-positive and -negative tick microbiomes. Here, co-infection of members of the order Rickettsiales, such as Rickettsia spp., Anaplasma phagocytophilum, Wolbachia pipientis, and Neoehrlichia mikurensis as well as B. burgdorferi s.l. in the tick microbiome was addressed. This study used conventional PCRs to investigate the diversity and prevalence of the before-mentioned bacteria in 760 nucleic acid extracts of I. ricinus ticks detached from humans, which were previously tested for B. burgdorferi s.l.. A gltA gene-based amplicon sequencing approach was performed to identify Rickettsia species. The prevalence of Rickettsia spp. (16.7%, n = 127) and W. pipientis (15.9%, n = 121) were similar, while A. phagocytophilum was found in 2.8% (n = 21) and N. mikurensis in 0.1% (n = 1) of all ticks. Co-infection of B. burgdorferi s. l. with Rickettsia spp. was most frequent. The gltA gene sequencing indicated that Rickettsia helvetica was the dominant Rickettsia species in tick microbiomes. Moreover, R, monacensis and R. raoultii were correlated with autumn and area south, respectively, and a negative B. burgdorferi s. l. finding. Almost every fifth tick carried DNA of at least two of the human pathogenic bacteria studied here.
Additional Links: PMID-36677449
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36677449,
year = {2023},
author = {Hoffmann, A and Müller, T and Fingerle, V and Silaghi, C and Noll, M},
title = {Co-Infection of Potential Tick-Borne Pathogens of the Order Rickettsiales and Borrelia burgdorferi s. l. and Their Link to Season and Area in Germany.},
journal = {Microorganisms},
volume = {11},
number = {1},
pages = {},
doi = {10.3390/microorganisms11010157},
pmid = {36677449},
issn = {2076-2607},
abstract = {The prevalence of potential human pathogenic members of the order Rickettsiales differs between Borrelia burgdorferi sensu lato-positive and -negative tick microbiomes. Here, co-infection of members of the order Rickettsiales, such as Rickettsia spp., Anaplasma phagocytophilum, Wolbachia pipientis, and Neoehrlichia mikurensis as well as B. burgdorferi s.l. in the tick microbiome was addressed. This study used conventional PCRs to investigate the diversity and prevalence of the before-mentioned bacteria in 760 nucleic acid extracts of I. ricinus ticks detached from humans, which were previously tested for B. burgdorferi s.l.. A gltA gene-based amplicon sequencing approach was performed to identify Rickettsia species. The prevalence of Rickettsia spp. (16.7%, n = 127) and W. pipientis (15.9%, n = 121) were similar, while A. phagocytophilum was found in 2.8% (n = 21) and N. mikurensis in 0.1% (n = 1) of all ticks. Co-infection of B. burgdorferi s. l. with Rickettsia spp. was most frequent. The gltA gene sequencing indicated that Rickettsia helvetica was the dominant Rickettsia species in tick microbiomes. Moreover, R, monacensis and R. raoultii were correlated with autumn and area south, respectively, and a negative B. burgdorferi s. l. finding. Almost every fifth tick carried DNA of at least two of the human pathogenic bacteria studied here.},
}
RevDate: 2023-01-20
The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome.
Microbiome, 11(1):11.
BACKGROUND: Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea.
RESULTS: The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines.
CONCLUSIONS: The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.
Additional Links: PMID-36670494
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36670494,
year = {2023},
author = {Chamankar, B and Maleki-Ravasan, N and Karami, M and Forouzan, E and Karimian, F and Naeimi, S and Choobdar, N},
title = {The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome.},
journal = {Microbiome},
volume = {11},
number = {1},
pages = {11},
pmid = {36670494},
issn = {2049-2618},
abstract = {BACKGROUND: Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea.
RESULTS: The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines.
CONCLUSIONS: The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.},
}
RevDate: 2023-01-20
Infection patterns of Harmonia axyridis (Coleoptera: Coccinellidae) by ectoparasitic microfungi and endosymbiotic bacteria.
Journal of invertebrate pathology pii:S0022-2011(23)00004-6 [Epub ahead of print].
The invasive alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) hosts a wide range of natural enemies. Many observations have been done in nature but experimental studies of interactions of multiple enemies on Ha. axyridis are rare. In light of this knowledge gap, we tested whether the host phenotype and presence of bacterial endosymbionts Spiroplasma and Wolbachia affected parasitism of Ha. axyridis by the ectoparasitic fungus Hesperomyces harmoniae (Ascomycota: Laboulbeniales). We collected 379 Ha. axyridis in the Czech Republic, processed specimens, including screening for He. harmoniae and a molecular assessment for bacteria, and calculated fecundity and hatchability of females. We found that high hatchability rate (71%) was conditioned by high fecundity (20 eggs daily or more). The average parasite prevalence of He. harmoniae was 53%, while the infection rate of Spiroplasma was 73% in ladybirds that survived in winter conditions. Wolbachia was only present in 2% of the analyzed ladybirds. Infection by either He. harmoniae or Spiroplasma did not differ among host color morphs. In the novemdecimsignata morph, younger individuals (with orange elytra) were more heavily parasitized compared to old ones (with red elytra). Fecundity and hatchability rate of females were unaffected by infection with either He. harmoniae or Spiroplasma. However, female ladybirds co-infected with He. harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont.
Additional Links: PMID-36669676
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36669676,
year = {2023},
author = {Awad, M and Piálková, R and Haelewaters, D and Nedvěd, O},
title = {Infection patterns of Harmonia axyridis (Coleoptera: Coccinellidae) by ectoparasitic microfungi and endosymbiotic bacteria.},
journal = {Journal of invertebrate pathology},
volume = {},
number = {},
pages = {107887},
doi = {10.1016/j.jip.2023.107887},
pmid = {36669676},
issn = {1096-0805},
abstract = {The invasive alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) hosts a wide range of natural enemies. Many observations have been done in nature but experimental studies of interactions of multiple enemies on Ha. axyridis are rare. In light of this knowledge gap, we tested whether the host phenotype and presence of bacterial endosymbionts Spiroplasma and Wolbachia affected parasitism of Ha. axyridis by the ectoparasitic fungus Hesperomyces harmoniae (Ascomycota: Laboulbeniales). We collected 379 Ha. axyridis in the Czech Republic, processed specimens, including screening for He. harmoniae and a molecular assessment for bacteria, and calculated fecundity and hatchability of females. We found that high hatchability rate (71%) was conditioned by high fecundity (20 eggs daily or more). The average parasite prevalence of He. harmoniae was 53%, while the infection rate of Spiroplasma was 73% in ladybirds that survived in winter conditions. Wolbachia was only present in 2% of the analyzed ladybirds. Infection by either He. harmoniae or Spiroplasma did not differ among host color morphs. In the novemdecimsignata morph, younger individuals (with orange elytra) were more heavily parasitized compared to old ones (with red elytra). Fecundity and hatchability rate of females were unaffected by infection with either He. harmoniae or Spiroplasma. However, female ladybirds co-infected with He. harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont.},
}
RevDate: 2023-01-20
Detection of Arthropod-Borne Bacteria and Assessment of MALDI-TOF MS for the Identification of Field-Collected Immature Bed Bugs from Mauritania.
Insects, 14(1): pii:insects14010069.
Human infestations by bed bugs have upsurged globally in recent decades, including in African countries, where recent reports pointed out an increase in infestation. Sympatric dwelling has been described for two species of bed bug parasitizing humans: Cimex hemipterus (the tropical bed bug) and C. lectularius. Identification of these two species is based on morphological characteristics, and gene sequencing, and may also rely on Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). The present work aimed to assess whether MALDI-TOF MS was applicable for species level identification of immature stages of Cimex. Arthropods were collected in domestic settings in Nouakchott, Mauritania. Identification used morphological keys and MALDI-TOF MS identification was assessed for immature stages. Quantitative PCR and sequencing assays were used to detect arthropod-associated bacteria in each specimen. A total of 92 arthropods were collected, all morphologically identified as C. hemipterus (32 males, 14 females and 45 immature stages). A total of 35/45 specimens produced good quality MALDI-TOF MS spectra. Analysis allowed species level identification of all immature C. hemipterus after their spectra were entered into our in-house MALDI-TOF MS arthropod spectra database. Molecular screening allowed detection of Wolbachia DNA in each specimen. These results suggested that MALDI-TOF MS is a reliable tool for species level identification of Cimex specimens, including immature specimens. Future studies should assess this approach on larger panels of immature specimens for different Cimex species and focus on the precise staging of their different immature developmental stages.
Additional Links: PMID-36661997
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36661997,
year = {2023},
author = {Sevestre, J and Lemrabott, MAO and Bérenger, JM and Zan Diarra, A and Ould Mohamed Salem Boukhary, A and Parola, P},
title = {Detection of Arthropod-Borne Bacteria and Assessment of MALDI-TOF MS for the Identification of Field-Collected Immature Bed Bugs from Mauritania.},
journal = {Insects},
volume = {14},
number = {1},
pages = {},
doi = {10.3390/insects14010069},
pmid = {36661997},
issn = {2075-4450},
abstract = {Human infestations by bed bugs have upsurged globally in recent decades, including in African countries, where recent reports pointed out an increase in infestation. Sympatric dwelling has been described for two species of bed bug parasitizing humans: Cimex hemipterus (the tropical bed bug) and C. lectularius. Identification of these two species is based on morphological characteristics, and gene sequencing, and may also rely on Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). The present work aimed to assess whether MALDI-TOF MS was applicable for species level identification of immature stages of Cimex. Arthropods were collected in domestic settings in Nouakchott, Mauritania. Identification used morphological keys and MALDI-TOF MS identification was assessed for immature stages. Quantitative PCR and sequencing assays were used to detect arthropod-associated bacteria in each specimen. A total of 92 arthropods were collected, all morphologically identified as C. hemipterus (32 males, 14 females and 45 immature stages). A total of 35/45 specimens produced good quality MALDI-TOF MS spectra. Analysis allowed species level identification of all immature C. hemipterus after their spectra were entered into our in-house MALDI-TOF MS arthropod spectra database. Molecular screening allowed detection of Wolbachia DNA in each specimen. These results suggested that MALDI-TOF MS is a reliable tool for species level identification of Cimex specimens, including immature specimens. Future studies should assess this approach on larger panels of immature specimens for different Cimex species and focus on the precise staging of their different immature developmental stages.},
}
RevDate: 2023-01-18
Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations.
Mathematical biosciences and engineering : MBE, 20(1):1148-1175.
In this paper, we propose a simplified bidimensional Wolbachia infestation model in a population of Aedes aegypti mosquitoes, preserving the main features associated with the biology of this species that can be found in higher-dimensional models. Namely, our model represents the maternal transmission of the Wolbachia symbiont, expresses the reproductive phenotype of cytoplasmic incompatibility, accounts for different fecundities and mortalities of infected and wild insects, and exhibits the bistable nature leading to the so-called principle of competitive exclusion. Using tools borrowed from monotone dynamical system theory, in the proposed model, we prove the existence of an invariant threshold manifold that allows us to provide practical recommendations for performing single and periodic releases of Wolbachia-carrying mosquitoes, seeking the eventual elimination of wild insects that are capable of transmitting infections to humans. We illustrate these findings with numerical simulations using parameter values corresponding to the wMelPop strain of Wolbachia that is considered the best virus blocker but induces fitness loss in its carriers. In these tests, we considered multiple scenarios contrasting a periodic release strategy against a strategy with a single inundative release, comparing their effectiveness. Our study is presented as an expository and mathematically accessible tool to study the use of Wolbachia-based biocontrol versus more complex models.
Additional Links: PMID-36650806
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36650806,
year = {2023},
author = {Vicencio, D and Vasilieva, O and Gajardo, P},
title = {Monotonicity properties arising in a simple model of Wolbachia invasion for wild mosquito populations.},
journal = {Mathematical biosciences and engineering : MBE},
volume = {20},
number = {1},
pages = {1148-1175},
doi = {10.3934/mbe.2023053},
pmid = {36650806},
issn = {1551-0018},
abstract = {In this paper, we propose a simplified bidimensional Wolbachia infestation model in a population of Aedes aegypti mosquitoes, preserving the main features associated with the biology of this species that can be found in higher-dimensional models. Namely, our model represents the maternal transmission of the Wolbachia symbiont, expresses the reproductive phenotype of cytoplasmic incompatibility, accounts for different fecundities and mortalities of infected and wild insects, and exhibits the bistable nature leading to the so-called principle of competitive exclusion. Using tools borrowed from monotone dynamical system theory, in the proposed model, we prove the existence of an invariant threshold manifold that allows us to provide practical recommendations for performing single and periodic releases of Wolbachia-carrying mosquitoes, seeking the eventual elimination of wild insects that are capable of transmitting infections to humans. We illustrate these findings with numerical simulations using parameter values corresponding to the wMelPop strain of Wolbachia that is considered the best virus blocker but induces fitness loss in its carriers. In these tests, we considered multiple scenarios contrasting a periodic release strategy against a strategy with a single inundative release, comparing their effectiveness. Our study is presented as an expository and mathematically accessible tool to study the use of Wolbachia-based biocontrol versus more complex models.},
}
RevDate: 2023-01-18
Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures.
Mathematical biosciences and engineering : MBE, 20(1):775-806.
It is well-known that mosquito control is one of the effective methods to reduce and prevent the transmission of mosquito-borne diseases. In this paper, we formulate a reaction-diffusion impulsive hybrid model incorporating Wolbachia, impulsively spraying of insecticides, spatial heterogeneity, and seasonality to investigate the control of mosquito population. The sufficient conditions for mosquito extinction or successful Wolbachia persistence in a population of natural mosquitoes are derived. More importantly, we give the estimations of the spraying times of insecticides during a period for achieving the mosquito extinction and population replacement in a special case. A global attractivity of the positive periodic solution is analyzed under appropriate conditions. Numerical simulations disclose that spatial heterogeneity and seasonality have significant impacts on the design of mosquitoes control strategies. It is suggested to combine biological control and chemical pulse control under certain situations to reduce the natural mosquitoes. Further, our results reveal that the establishment of a higher level of population replacement depends on the strain type of the Wolbachia and the high initial occupancy of the Wolbachia-infected mosquitoes.
Additional Links: PMID-36650789
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36650789,
year = {2023},
author = {Li, Y and Zhao, H and Wang, K},
title = {Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures.},
journal = {Mathematical biosciences and engineering : MBE},
volume = {20},
number = {1},
pages = {775-806},
doi = {10.3934/mbe.2023036},
pmid = {36650789},
issn = {1551-0018},
abstract = {It is well-known that mosquito control is one of the effective methods to reduce and prevent the transmission of mosquito-borne diseases. In this paper, we formulate a reaction-diffusion impulsive hybrid model incorporating Wolbachia, impulsively spraying of insecticides, spatial heterogeneity, and seasonality to investigate the control of mosquito population. The sufficient conditions for mosquito extinction or successful Wolbachia persistence in a population of natural mosquitoes are derived. More importantly, we give the estimations of the spraying times of insecticides during a period for achieving the mosquito extinction and population replacement in a special case. A global attractivity of the positive periodic solution is analyzed under appropriate conditions. Numerical simulations disclose that spatial heterogeneity and seasonality have significant impacts on the design of mosquitoes control strategies. It is suggested to combine biological control and chemical pulse control under certain situations to reduce the natural mosquitoes. Further, our results reveal that the establishment of a higher level of population replacement depends on the strain type of the Wolbachia and the high initial occupancy of the Wolbachia-infected mosquitoes.},
}
RevDate: 2023-01-17
Complicated expansion trajectories of insertion sequences and potential association with horizontal transfer of Wolbachia DNA.
Zoological research, 44(2):275-277.
Additional Links: PMID-36650067
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36650067,
year = {2023},
author = {Miao, YH and Huang, DW and Xiao, JH},
title = {Complicated expansion trajectories of insertion sequences and potential association with horizontal transfer of Wolbachia DNA.},
journal = {Zoological research},
volume = {44},
number = {2},
pages = {275-277},
doi = {10.24272/j.issn.2095-8137.2022.315},
pmid = {36650067},
issn = {2095-8137},
}
RevDate: 2023-01-17
Wolbachia Promotes Its Own Uptake by Host Cells.
Infection and immunity [Epub ahead of print].
Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.
Additional Links: PMID-36648231
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36648231,
year = {2023},
author = {Nevalainen, LB and Layton, EM and Newton, ILG},
title = {Wolbachia Promotes Its Own Uptake by Host Cells.},
journal = {Infection and immunity},
volume = {},
number = {},
pages = {e0055722},
doi = {10.1128/iai.00557-22},
pmid = {36648231},
issn = {1098-5522},
abstract = {Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.},
}
RevDate: 2023-01-16
[Bacterial community diversity in Dermatophagoides farinae using high-throughput sequencing].
Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control, 34(6):630-634.
OBJECTIVE: To investigate the bacterial community diversity in Dermatophagoides farinae.
METHODS: Laboratory-cultured D. farinae was collected, and the composition of microbial communities was determined by sequence analyses of the V4 region in the bacterial 16S ribosomal RNA (16S rRNA) gene on an Illumina PE250 high-throughput sequencing platform. Following quality control and filtering of the raw sequence files, valid reads were obtained and subjected to operational taxonomic units (OTU) clustering and analysis of the composition of microbial communities and alpha diversity index using the Usearch software, Silva database, and Mothur software.
RESULTS: A total of 187 616 valid reads were obtained, and 469 OTUs were clustered based on a sequence similarity of more than 97%. OTU annotation showed that the bacteria in D. farinae belonged to 26 phyla, 43 classes, 100 orders, 167 families and 284 genera. The bacteria in D. farinae were mainly annotated to five phyla of Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, and Acidobacteriota, with Proteobacteria as the dominant phylum, and mainly annotated to five dominant genera of Ralstonia, norank-f-Mitochondria, Staphylococcus and Sphingomonas, with Wolbachia identified in the non-dominant genus.
CONCLUSIONS: A high diversity is identified in the composition of the bacterial community in D. farinae, and there are differences in bacterial community diversity and abundance among D. farinae.
Additional Links: PMID-36642905
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36642905,
year = {2022},
author = {Zhou, XQ and Ma, J and Wang, RY and Wang, RH and Wu, YQ and Yang, XY and Chen, YJ and Tang, XN and Sun, ET},
title = {[Bacterial community diversity in Dermatophagoides farinae using high-throughput sequencing].},
journal = {Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control},
volume = {34},
number = {6},
pages = {630-634},
doi = {10.16250/j.32.1374.2022105},
pmid = {36642905},
issn = {1005-6661},
abstract = {OBJECTIVE: To investigate the bacterial community diversity in Dermatophagoides farinae.
METHODS: Laboratory-cultured D. farinae was collected, and the composition of microbial communities was determined by sequence analyses of the V4 region in the bacterial 16S ribosomal RNA (16S rRNA) gene on an Illumina PE250 high-throughput sequencing platform. Following quality control and filtering of the raw sequence files, valid reads were obtained and subjected to operational taxonomic units (OTU) clustering and analysis of the composition of microbial communities and alpha diversity index using the Usearch software, Silva database, and Mothur software.
RESULTS: A total of 187 616 valid reads were obtained, and 469 OTUs were clustered based on a sequence similarity of more than 97%. OTU annotation showed that the bacteria in D. farinae belonged to 26 phyla, 43 classes, 100 orders, 167 families and 284 genera. The bacteria in D. farinae were mainly annotated to five phyla of Proteobacteria, Firmicutes, Bacteroidota, Actinobacteriota, and Acidobacteriota, with Proteobacteria as the dominant phylum, and mainly annotated to five dominant genera of Ralstonia, norank-f-Mitochondria, Staphylococcus and Sphingomonas, with Wolbachia identified in the non-dominant genus.
CONCLUSIONS: A high diversity is identified in the composition of the bacterial community in D. farinae, and there are differences in bacterial community diversity and abundance among D. farinae.},
}
RevDate: 2023-01-13
Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti.
iScience, 26(1):105836.
The endosymbiotic bacterium Wolbachia pipientis blocks replication of several arboviruses in transinfected Aedes aegypti mosquitoes. However, the mechanism of virus blocking remains poorly understood. Here, we characterized an RNase HI gene from Wolbachia, which is rapidly induced in response to dengue virus (DENV) infection. Knocking down w RNase HI using antisense RNA in Wolbachia-transinfected mosquito cell lines and A. aegypti mosquitoes led to increased DENV replication. Furthermore, overexpression of wRNase HI, in the absence of Wolbachia, led to reduced replication of a positive sense RNA virus, but had no effect on a negative sense RNA virus, a familiar scenario in Wolbachia-infected cells. Altogether, our results provide compelling evidence for the missing link between early Wolbachia-mediated virus blocking and degradation of viral RNA. These findings and the successful pioneered knockdown of Wolbachia genes using antisense RNA in cell line and mosquitoes enable new ways to manipulate and study the complex endosymbiont-host interactions.
Additional Links: PMID-36636344
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36636344,
year = {2023},
author = {Hussain, M and Zhang, G and Leitner, M and Hedges, LM and Asgari, S},
title = {Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti.},
journal = {iScience},
volume = {26},
number = {1},
pages = {105836},
pmid = {36636344},
issn = {2589-0042},
abstract = {The endosymbiotic bacterium Wolbachia pipientis blocks replication of several arboviruses in transinfected Aedes aegypti mosquitoes. However, the mechanism of virus blocking remains poorly understood. Here, we characterized an RNase HI gene from Wolbachia, which is rapidly induced in response to dengue virus (DENV) infection. Knocking down w RNase HI using antisense RNA in Wolbachia-transinfected mosquito cell lines and A. aegypti mosquitoes led to increased DENV replication. Furthermore, overexpression of wRNase HI, in the absence of Wolbachia, led to reduced replication of a positive sense RNA virus, but had no effect on a negative sense RNA virus, a familiar scenario in Wolbachia-infected cells. Altogether, our results provide compelling evidence for the missing link between early Wolbachia-mediated virus blocking and degradation of viral RNA. These findings and the successful pioneered knockdown of Wolbachia genes using antisense RNA in cell line and mosquitoes enable new ways to manipulate and study the complex endosymbiont-host interactions.},
}
RevDate: 2023-01-11
Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis.
Proceedings. Biological sciences, 290(1990):20221963.
Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.
Additional Links: PMID-36629101
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36629101,
year = {2023},
author = {Dou, W and Sun, B and Miao, Y and Huang, D and Xiao, J},
title = {Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis.},
journal = {Proceedings. Biological sciences},
volume = {290},
number = {1990},
pages = {20221963},
doi = {10.1098/rspb.2022.1963},
pmid = {36629101},
issn = {1471-2954},
abstract = {Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.},
}
RevDate: 2023-01-11
Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare.
Biology letters, 19(1):20220457.
In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.
Additional Links: PMID-36628964
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36628964,
year = {2023},
author = {Durand, S and Lheraud, B and Giraud, I and Bech, N and Grandjean, F and Rigaud, T and Peccoud, J and Cordaux, R},
title = {Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare.},
journal = {Biology letters},
volume = {19},
number = {1},
pages = {20220457},
doi = {10.1098/rsbl.2022.0457},
pmid = {36628964},
issn = {1744-957X},
abstract = {In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.},
}
RevDate: 2023-01-02
Description and molecular characterisation of Pelecitus copsychi Uni, Mat Udin & Martin n. sp. (Nematoda: Onchocercidae) from the white-rumped shama Copsychus malabaricus (Scopoli) (Passeriformes: Muscicapidae) of Pahang, Malaysia.
Current research in parasitology & vector-borne diseases, 2:100078.
Species of the genus Pelecitus Railliet & Henry, 1910 the most widely distributed avian filariae in Africa and South America. Zoonotic cases in humans were reported in South America. While investigating the filarial fauna of wild animals in Malaysia, we discovered an undescribed filaria from the swollen footpad of the left leg of Copsychus malabaricus (Scopoli) in Pahang, Peninsular Malaysia. Adults of both sexes have a corkscrew-shaped body. Based on comparison of their morphological characteristics (i.e. pre-oesophageal cuticular ring distinct, oesophagus divided, vulva protuberant and situated at the level of anterior half of oesophagus, spicules strongly sclerotized and left spicule with broad blade) with other Pelecitus species, they are here described as Pelecitus copsychi Uni, Mat Udin & Martin n. sp. Multi-locus sequence analyses based on seven genes (12S rDNA, cox1, 18S rDNA, 28S rDNA, MyoHC, rbp1 and hsp70) were performed to determine the phylogenetic position of the new species. The calculated p-distance between the cox1 gene sequences for P. copsychi n. sp. and Pelecitus fulicaeatrae (Diesing, 1861) was 14.1%. Intraspecific genetic variation between two individuals of the new species was 0.4%. In both the Bayesian inference and maximum-likelihood trees, P. copsychi n. sp. was positioned in the second clade of ONC5, containing three genera of the subfamily Dirofilariinae (Foleyella Seurat, 1917, Pelecitus and Loa Stiles, 1905). Immunostaining and molecular analyses remained negative for the presence of Wolbachia endosymbionts. Our findings corroborate the division of the subfamily Dirofilariinae into ONC3 with Dirofilaria Railliet & Henry, 1911 and ONC5 with Pelecitus.
Additional Links: PMID-36589876
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36589876,
year = {2022},
author = {Uni, S and Mat Udin, AS and Tan, PE and Rodrigues, J and Martin, C and Junker, K and Agatsuma, T and Low, VL and Lim, YA and Saijuntha, W and Omar, H and Zainuri, NA and Fukuda, M and Kimura, D and Matsubayashi, M and Uga, S and Takaoka, H and Azirun, MS and Ramli, R},
title = {Description and molecular characterisation of Pelecitus copsychi Uni, Mat Udin & Martin n. sp. (Nematoda: Onchocercidae) from the white-rumped shama Copsychus malabaricus (Scopoli) (Passeriformes: Muscicapidae) of Pahang, Malaysia.},
journal = {Current research in parasitology & vector-borne diseases},
volume = {2},
number = {},
pages = {100078},
pmid = {36589876},
issn = {2667-114X},
abstract = {Species of the genus Pelecitus Railliet & Henry, 1910 the most widely distributed avian filariae in Africa and South America. Zoonotic cases in humans were reported in South America. While investigating the filarial fauna of wild animals in Malaysia, we discovered an undescribed filaria from the swollen footpad of the left leg of Copsychus malabaricus (Scopoli) in Pahang, Peninsular Malaysia. Adults of both sexes have a corkscrew-shaped body. Based on comparison of their morphological characteristics (i.e. pre-oesophageal cuticular ring distinct, oesophagus divided, vulva protuberant and situated at the level of anterior half of oesophagus, spicules strongly sclerotized and left spicule with broad blade) with other Pelecitus species, they are here described as Pelecitus copsychi Uni, Mat Udin & Martin n. sp. Multi-locus sequence analyses based on seven genes (12S rDNA, cox1, 18S rDNA, 28S rDNA, MyoHC, rbp1 and hsp70) were performed to determine the phylogenetic position of the new species. The calculated p-distance between the cox1 gene sequences for P. copsychi n. sp. and Pelecitus fulicaeatrae (Diesing, 1861) was 14.1%. Intraspecific genetic variation between two individuals of the new species was 0.4%. In both the Bayesian inference and maximum-likelihood trees, P. copsychi n. sp. was positioned in the second clade of ONC5, containing three genera of the subfamily Dirofilariinae (Foleyella Seurat, 1917, Pelecitus and Loa Stiles, 1905). Immunostaining and molecular analyses remained negative for the presence of Wolbachia endosymbionts. Our findings corroborate the division of the subfamily Dirofilariinae into ONC3 with Dirofilaria Railliet & Henry, 1911 and ONC5 with Pelecitus.},
}
RevDate: 2022-12-29
Educational intervention for the control of Aedes aegypti with Wolbachia in Yucatan, Mexico.
Evaluation and program planning, 97:102205 pii:S0149-7189(22)00159-8 [Epub ahead of print].
UNLABELLED: The implementation of new control strategies for Aedes aegypti (Ae. Aegpyti), a vector of dengue, chikungunya, and Zika viruses, requires communities to adopt specific behaviors to achieve the success of these innovations.
AIM: We evaluated the effect of an educational intervention based on the Precede-Proceed Model (PPM) and the Diffusion of Innovations Theory (DIT) for the control and prevention of diseases transmitted by Ae. aegypti through release of male mosquitoes infected with Wolbachia bacteria in a suburban town in Yucatan, Mexico.
MATERIAL AND METHODS: From July 2019 to February 2020, a quasi-experimental study was carried out through an educational intervention (pre- and post-measurements) using quantitative-qualitative techniques, in a Yucatan suburban town where male mosquitoes with Wolbachia were released for the suppression of Ae. aegypti populations. Eleven educational workshops were attended by heads of household (n = 19) and schoolchildren (n = 11). Other 136 heads of household not attending the workshops received information individually.
RESULTS: The educational intervention had a significant effect on the mean scores of the contributing and behavioral factors for adoption of innovation (p < 0.05) in the pre- and post-intervention measurements.
CONCLUSION: Innovative methods for the control and prevention of diseases related to Aedes aegypti can be strengthened through educational interventions supported by sound methodologies.
DESCRIPTORS: Community health education, Aedes aegypti, Wolbachia, Mexico.
Additional Links: PMID-36580820
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36580820,
year = {2022},
author = {Martinez-Cruz, C and Arenas-Monreal, L and Gomez-Dantes, H and Villegas-Chim, J and Barrera-Fuentes Gloria, A and Toledo-Romani Maria, E and Pavia-Ruz, N and Che-Mendoza, A and Manrique-Saide, P},
title = {Educational intervention for the control of Aedes aegypti with Wolbachia in Yucatan, Mexico.},
journal = {Evaluation and program planning},
volume = {97},
number = {},
pages = {102205},
doi = {10.1016/j.evalprogplan.2022.102205},
pmid = {36580820},
issn = {1873-7870},
abstract = {UNLABELLED: The implementation of new control strategies for Aedes aegypti (Ae. Aegpyti), a vector of dengue, chikungunya, and Zika viruses, requires communities to adopt specific behaviors to achieve the success of these innovations.
AIM: We evaluated the effect of an educational intervention based on the Precede-Proceed Model (PPM) and the Diffusion of Innovations Theory (DIT) for the control and prevention of diseases transmitted by Ae. aegypti through release of male mosquitoes infected with Wolbachia bacteria in a suburban town in Yucatan, Mexico.
MATERIAL AND METHODS: From July 2019 to February 2020, a quasi-experimental study was carried out through an educational intervention (pre- and post-measurements) using quantitative-qualitative techniques, in a Yucatan suburban town where male mosquitoes with Wolbachia were released for the suppression of Ae. aegypti populations. Eleven educational workshops were attended by heads of household (n = 19) and schoolchildren (n = 11). Other 136 heads of household not attending the workshops received information individually.
RESULTS: The educational intervention had a significant effect on the mean scores of the contributing and behavioral factors for adoption of innovation (p < 0.05) in the pre- and post-intervention measurements.
CONCLUSION: Innovative methods for the control and prevention of diseases related to Aedes aegypti can be strengthened through educational interventions supported by sound methodologies.
DESCRIPTORS: Community health education, Aedes aegypti, Wolbachia, Mexico.},
}
RevDate: 2022-12-28
The small brown planthopper (Laodelphaxstriatellus) as a vector of the rice stripe virus.
Archives of insect biochemistry and physiology [Epub ahead of print].
The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.
Additional Links: PMID-36575628
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36575628,
year = {2022},
author = {Kil, EJ and Kim, D},
title = {The small brown planthopper (Laodelphaxstriatellus) as a vector of the rice stripe virus.},
journal = {Archives of insect biochemistry and physiology},
volume = {},
number = {},
pages = {e21992},
doi = {10.1002/arch.21992},
pmid = {36575628},
issn = {1520-6327},
abstract = {The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.},
}
RevDate: 2022-12-27
A standalone incompatible insect technique enables mosquito suppression in the urban subtropics.
Communications biology, 5(1):1419.
The strong suppression of Aedes albopictus on two Guangzhou islands in China has been successfully achieved by releasing males with an artificial triple-Wolbachia infection. However, it requires the use of radiation to sterilize residual females to prevent population replacement. To develop a highly effective tool for dengue control, we tested a standalone incompatible insect technique (IIT) to control A. albopictus in the urban area of Changsha, an inland city where dengue recently emerged. Male mosquitoes were produced in a mass rearing facility in Guangzhou and transported over 670 km under low temperature to the release site. After a once-per-week release with high numbers of males (phase I) and a subsequent twice-per-week release with low numbers of males (phase II), the average numbers of hatched eggs and female adults collected weekly per trap were reduced by 97% and 85%, respectively. The population suppression caused a 94% decrease in mosquito biting at the release site compared to the control site. Remarkably, this strong suppression was achieved using only 28% of the number of males released in a previous trial. Despite the lack of irradiation to sterilize residual females, no triple-infected mosquitoes were detected in the field post release based on the monitoring of adult and larval A. albopictus populations for two years, indicating that population replacement was prevented. Our results support the feasibility of implementing a standalone IIT for dengue control in urban areas.
Additional Links: PMID-36575240
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36575240,
year = {2022},
author = {Zeng, Q and She, L and Yuan, H and Luo, Y and Wang, R and Mao, W and Wang, W and She, Y and Wang, C and Shi, M and Cao, T and Gan, R and Li, Y and Zhou, J and Qian, W and Hu, S and Wang, Y and Zheng, X and Li, K and Bai, L and Pan, X and Xi, Z},
title = {A standalone incompatible insect technique enables mosquito suppression in the urban subtropics.},
journal = {Communications biology},
volume = {5},
number = {1},
pages = {1419},
pmid = {36575240},
issn = {2399-3642},
abstract = {The strong suppression of Aedes albopictus on two Guangzhou islands in China has been successfully achieved by releasing males with an artificial triple-Wolbachia infection. However, it requires the use of radiation to sterilize residual females to prevent population replacement. To develop a highly effective tool for dengue control, we tested a standalone incompatible insect technique (IIT) to control A. albopictus in the urban area of Changsha, an inland city where dengue recently emerged. Male mosquitoes were produced in a mass rearing facility in Guangzhou and transported over 670 km under low temperature to the release site. After a once-per-week release with high numbers of males (phase I) and a subsequent twice-per-week release with low numbers of males (phase II), the average numbers of hatched eggs and female adults collected weekly per trap were reduced by 97% and 85%, respectively. The population suppression caused a 94% decrease in mosquito biting at the release site compared to the control site. Remarkably, this strong suppression was achieved using only 28% of the number of males released in a previous trial. Despite the lack of irradiation to sterilize residual females, no triple-infected mosquitoes were detected in the field post release based on the monitoring of adult and larval A. albopictus populations for two years, indicating that population replacement was prevented. Our results support the feasibility of implementing a standalone IIT for dengue control in urban areas.},
}
RevDate: 2022-12-23
New Wolbachia pipientis Genotype Increasing Heat Stress Resistance of Drosophila melanogaster Host Is Characterized by a Large Chromosomal Inversion.
International journal of molecular sciences, 23(24):.
The maternally transmitted endocellular bacteria Wolbachia is a well-known symbiont of insects, demonstrating both negative and positive effects on host fitness. The previously found Wolbachia strain wMelPlus is characterized by a positive effect on the stress-resistance of its host Drosophila melanogaster, under heat stress conditions. This investigation is dedicated to studying the genomic underpinnings of such an effect. We sequenced two closely related Wolbachia strains, wMelPlus and wMelCS[112], assembled their complete genomes, and performed comparative genomic analysis engaging available Wolbachia genomes from the wMel and wMelCS groups. Despite the two strains under study sharing very close gene-composition, we discovered a large (>1/6 of total genome) chromosomal inversion in wMelPlus, spanning through the region that includes the area of the inversion earlier found in the wMel group of Wolbachia genotypes. A number of genes in unique inversion blocks of wMelPlus were identified that might be involved in the induction of a stress-resistant phenotype in the host. We hypothesize that such an inversion could rearrange established genetic regulatory-networks, causing the observed effects of such a complex fly phenotype as a modulation of heat stress resistance. Based on our findings, we propose that wMelPlus be distinguished as a separate genotype of the wMelCS group, named wMelCS3.
Additional Links: PMID-36555851
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36555851,
year = {2022},
author = {Korenskaia, AE and Shishkina, OD and Klimenko, AI and Andreenkova, OV and Bobrovskikh, MA and Shatskaya, NV and Vasiliev, GV and Gruntenko, NE},
title = {New Wolbachia pipientis Genotype Increasing Heat Stress Resistance of Drosophila melanogaster Host Is Characterized by a Large Chromosomal Inversion.},
journal = {International journal of molecular sciences},
volume = {23},
number = {24},
pages = {},
pmid = {36555851},
issn = {1422-0067},
abstract = {The maternally transmitted endocellular bacteria Wolbachia is a well-known symbiont of insects, demonstrating both negative and positive effects on host fitness. The previously found Wolbachia strain wMelPlus is characterized by a positive effect on the stress-resistance of its host Drosophila melanogaster, under heat stress conditions. This investigation is dedicated to studying the genomic underpinnings of such an effect. We sequenced two closely related Wolbachia strains, wMelPlus and wMelCS[112], assembled their complete genomes, and performed comparative genomic analysis engaging available Wolbachia genomes from the wMel and wMelCS groups. Despite the two strains under study sharing very close gene-composition, we discovered a large (>1/6 of total genome) chromosomal inversion in wMelPlus, spanning through the region that includes the area of the inversion earlier found in the wMel group of Wolbachia genotypes. A number of genes in unique inversion blocks of wMelPlus were identified that might be involved in the induction of a stress-resistant phenotype in the host. We hypothesize that such an inversion could rearrange established genetic regulatory-networks, causing the observed effects of such a complex fly phenotype as a modulation of heat stress resistance. Based on our findings, we propose that wMelPlus be distinguished as a separate genotype of the wMelCS group, named wMelCS3.},
}
RevDate: 2022-12-23
Microbiome of the Aphid Genus Dysaphis Börner (Hemiptera: Aphidinae) and Its Relation to Ant Attendance.
Insects, 13(12):.
Among mutualistic relationships of aphids with other organisms, there are two that seem to be of major importance: trophobiosis with ants and endosymbiosis of bacteria. While the former is well studied, the latter is the subject of an increasing amount of research constantly revealing new aspects of this symbiosis. Here, we studied the possible influence of ant attendance on the composition of aphid microbiota on primary and secondary hosts exploited by the aphid genus Dysaphis. The microbiome of 44 samples representing 12 aphid species was studied using an Illumina HiSeq 4000 with the V3-V4 region of 16S rRNA. The results showed a higher abundance of common facultative symbionts (Serratia, Regiella, Fukatsuia) in aphid species unattended by ants, but also on secondary hosts. However, in colonies attended by ants, the general species composition of bacterial symbionts was more rich in genera than in unattended colonies (Wolbachia, Gilliamella, Spiroplasma, Sphingomonas, Pelomonas). The results indicate a huge variability of facultative symbionts without clear correlation with ant attendance or aphid species. The possibility of multiple routes of bacterial infection mediated by ant-made environmental conditions is discussed.
Additional Links: PMID-36554999
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36554999,
year = {2022},
author = {Kaszyca-Taszakowska, N and Depa, Ł},
title = {Microbiome of the Aphid Genus Dysaphis Börner (Hemiptera: Aphidinae) and Its Relation to Ant Attendance.},
journal = {Insects},
volume = {13},
number = {12},
pages = {},
pmid = {36554999},
issn = {2075-4450},
abstract = {Among mutualistic relationships of aphids with other organisms, there are two that seem to be of major importance: trophobiosis with ants and endosymbiosis of bacteria. While the former is well studied, the latter is the subject of an increasing amount of research constantly revealing new aspects of this symbiosis. Here, we studied the possible influence of ant attendance on the composition of aphid microbiota on primary and secondary hosts exploited by the aphid genus Dysaphis. The microbiome of 44 samples representing 12 aphid species was studied using an Illumina HiSeq 4000 with the V3-V4 region of 16S rRNA. The results showed a higher abundance of common facultative symbionts (Serratia, Regiella, Fukatsuia) in aphid species unattended by ants, but also on secondary hosts. However, in colonies attended by ants, the general species composition of bacterial symbionts was more rich in genera than in unattended colonies (Wolbachia, Gilliamella, Spiroplasma, Sphingomonas, Pelomonas). The results indicate a huge variability of facultative symbionts without clear correlation with ant attendance or aphid species. The possibility of multiple routes of bacterial infection mediated by ant-made environmental conditions is discussed.},
}
RevDate: 2022-12-19
Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China.
Frontiers in cellular and infection microbiology, 12:1082809.
BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.
METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.
RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.
CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Additional Links: PMID-36530420
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36530420,
year = {2022},
author = {Zhang, H and Gao, J and Ma, Z and Liu, Y and Wang, G and Liu, Q and Du, Y and Xing, D and Li, C and Zhao, T and Jiang, Y and Dong, Y and Guo, X and Zhao, T},
title = {Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China.},
journal = {Frontiers in cellular and infection microbiology},
volume = {12},
number = {},
pages = {1082809},
pmid = {36530420},
issn = {2235-2988},
abstract = {BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.
METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.
RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.
CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.},
}
RevDate: 2022-12-17
Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial.
Trials, 23(1):1023.
BACKGROUND: Dengue is a severe environmental public health challenge in tropical and subtropical regions. In Singapore, decreasing seroprevalence and herd immunity due to successful vector control has paradoxically led to increased transmission potential of the dengue virus. We have previously demonstrated that incompatible insect technique coupled with sterile insect technique (IIT-SIT), which involves the release of X-ray-irradiated male Wolbachia-infected mosquitoes, reduced the Aedes aegypti population by 98% and dengue incidence by 88%. This novel vector control tool is expected to be able to complement current vector control to mitigate the increasing threat of dengue on a larger scale. We propose a multi-site protocol to study the efficacy of IIT-SIT at reducing dengue incidence.
METHODS/DESIGN: The study is designed as a parallel, two-arm, non-blinded cluster-randomized (CR) controlled trial to be conducted in high-rise public housing estates in Singapore, an equatorial city-state. The aim is to determine whether large-scale deployment of male Wolbachia-infected Ae. aegypti mosquitoes can significantly reduce dengue incidence in intervention clusters. We will use the CR design, with the study area comprising 15 clusters with a total area of 10.9 km[2], covering approximately 722,204 residents in 1713 apartment blocks. Eight clusters will be randomly selected to receive the intervention, while the other seven will serve as non-intervention clusters. Intervention efficacy will be estimated through two primary endpoints: (1) odds ratio of Wolbachia exposure distribution (i.e., probability of living in an intervention cluster) among laboratory-confirmed reported dengue cases compared to test-negative controls and (2) laboratory-confirmed reported dengue counts normalized by population size in intervention versus non-intervention clusters.
DISCUSSION: This study will provide evidence from a multi-site, randomized controlled trial for the efficacy of IIT-SIT in reducing dengue incidence. The trial will provide valuable information to estimate intervention efficacy for this novel vector control approach and guide plans for integration into national vector control programs in dengue-endemic settings.
TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682 . Registered on 16 August 2022. Retrospectively registered.
Additional Links: PMID-36528590
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36528590,
year = {2022},
author = {Ong, J and Ho, SH and Soh, SXH and Wong, Y and Ng, Y and Vasquez, K and Lai, YL and Setoh, YX and Chong, CS and Lee, V and Wong, JCC and Tan, CH and Sim, S and Ng, LC and Lim, JT},
title = {Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial.},
journal = {Trials},
volume = {23},
number = {1},
pages = {1023},
pmid = {36528590},
issn = {1745-6215},
abstract = {BACKGROUND: Dengue is a severe environmental public health challenge in tropical and subtropical regions. In Singapore, decreasing seroprevalence and herd immunity due to successful vector control has paradoxically led to increased transmission potential of the dengue virus. We have previously demonstrated that incompatible insect technique coupled with sterile insect technique (IIT-SIT), which involves the release of X-ray-irradiated male Wolbachia-infected mosquitoes, reduced the Aedes aegypti population by 98% and dengue incidence by 88%. This novel vector control tool is expected to be able to complement current vector control to mitigate the increasing threat of dengue on a larger scale. We propose a multi-site protocol to study the efficacy of IIT-SIT at reducing dengue incidence.
METHODS/DESIGN: The study is designed as a parallel, two-arm, non-blinded cluster-randomized (CR) controlled trial to be conducted in high-rise public housing estates in Singapore, an equatorial city-state. The aim is to determine whether large-scale deployment of male Wolbachia-infected Ae. aegypti mosquitoes can significantly reduce dengue incidence in intervention clusters. We will use the CR design, with the study area comprising 15 clusters with a total area of 10.9 km[2], covering approximately 722,204 residents in 1713 apartment blocks. Eight clusters will be randomly selected to receive the intervention, while the other seven will serve as non-intervention clusters. Intervention efficacy will be estimated through two primary endpoints: (1) odds ratio of Wolbachia exposure distribution (i.e., probability of living in an intervention cluster) among laboratory-confirmed reported dengue cases compared to test-negative controls and (2) laboratory-confirmed reported dengue counts normalized by population size in intervention versus non-intervention clusters.
DISCUSSION: This study will provide evidence from a multi-site, randomized controlled trial for the efficacy of IIT-SIT in reducing dengue incidence. The trial will provide valuable information to estimate intervention efficacy for this novel vector control approach and guide plans for integration into national vector control programs in dengue-endemic settings.
TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682 . Registered on 16 August 2022. Retrospectively registered.},
}
RevDate: 2022-12-16
Close Kin Dyads Indicate Intergenerational Dispersal and Barriers.
The American naturalist, 201(1):65-77.
AbstractThe movement of individuals through continuous space is typically constrained by dispersal ability and dispersal barriers. A range of approaches have been developed to investigate these. Kindisperse is a new approach that infers recent intergenerational dispersal (σ) from close kin dyads and appears particularly useful for investigating taxa that are difficult to observe individually. This study, focusing on the mosquito Aedes aegypti, shows how the same close kin data can also be used for barrier detection. We empirically demonstrate this new extension of the method using genome-wide sequence data from 266 Ae. aegypti. First, we use the spatial distribution of full-sib dyads collected within one generation to infer past movements of ovipositing female mosquitoes. These dyads indicated the relative barrier strengths of two roads and performed favorably against alternative genetic methods for detecting barriers. We then use Kindisperse to quantify recent intergenerational dispersal (σ=81.5-197.1 m generation[-1/2]) from the difference in variance between the sib and the first cousin spatial distributions and, from this, estimate effective population density (ρ=833-4,864 km[-2]). Dispersal estimates showed general agreement with those from mark-release-recapture studies. Barriers, σ, ρ, and neighborhood size (331-526) can inform forthcoming releases of dengue-suppressing Wolbachia bacteria into this mosquito population.
Additional Links: PMID-36524932
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36524932,
year = {2023},
author = {Schmidt, TL and Elfekih, S and Cao, LJ and Wei, SJ and Al-Fageeh, MB and Nassar, M and Al-Malik, A and Hoffmann, AA},
title = {Close Kin Dyads Indicate Intergenerational Dispersal and Barriers.},
journal = {The American naturalist},
volume = {201},
number = {1},
pages = {65-77},
doi = {10.1086/722175},
pmid = {36524932},
issn = {1537-5323},
abstract = {AbstractThe movement of individuals through continuous space is typically constrained by dispersal ability and dispersal barriers. A range of approaches have been developed to investigate these. Kindisperse is a new approach that infers recent intergenerational dispersal (σ) from close kin dyads and appears particularly useful for investigating taxa that are difficult to observe individually. This study, focusing on the mosquito Aedes aegypti, shows how the same close kin data can also be used for barrier detection. We empirically demonstrate this new extension of the method using genome-wide sequence data from 266 Ae. aegypti. First, we use the spatial distribution of full-sib dyads collected within one generation to infer past movements of ovipositing female mosquitoes. These dyads indicated the relative barrier strengths of two roads and performed favorably against alternative genetic methods for detecting barriers. We then use Kindisperse to quantify recent intergenerational dispersal (σ=81.5-197.1 m generation[-1/2]) from the difference in variance between the sib and the first cousin spatial distributions and, from this, estimate effective population density (ρ=833-4,864 km[-2]). Dispersal estimates showed general agreement with those from mark-release-recapture studies. Barriers, σ, ρ, and neighborhood size (331-526) can inform forthcoming releases of dengue-suppressing Wolbachia bacteria into this mosquito population.},
}
RevDate: 2022-12-12
Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem.
Microbial pathogenesis pii:S0882-4010(22)00505-8 [Epub ahead of print].
Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.
Additional Links: PMID-36502993
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36502993,
year = {2022},
author = {V Venkataravanappa, and Kodandaram, MH and Prasanna, HC and Reddy, MK and Reddy, CNL},
title = {Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem.},
journal = {Microbial pathogenesis},
volume = {},
number = {},
pages = {105892},
doi = {10.1016/j.micpath.2022.105892},
pmid = {36502993},
issn = {1096-1208},
abstract = {Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.},
}
RevDate: 2022-12-11
Easy and Effective Method for Extracting and Purifying Wolbachia Genomic DNA.
International journal of molecular sciences, 23(23): pii:ijms232315315.
A number of methods for extracting the DNA of maternally inherited obligate intracellular bacteria Wolbachia from an insect host and its subsequent purification have been described in previous scholarship. As Wolbachia is present in the hosts' organisms in rather low quantities, these techniques used to be quite labor-intensive. For this paper, we analyzed them in detail, searched for a possibility to simplify and accelerate the protocol, and proposed an easy and effective method for isolating Wolbachia DNA from Drosophila melanogaster with a purity sufficient for genomic sequencing. Our method involves the centrifugation of homogenized flies or just their ovaries, as the most Wolbachia-enriched tissue, followed by the filtration of homogenate and extraction of DNA using a modified version of the Livak buffer protocol. The proportion of Wolbachia DNA in the total DNA was quantified based on the results of sequencing with the use of the Illumina MiSeq platform and a pipeline of bioinformatic analysis. For the two analyzed D. melanogaster lines infected with two different Wolbachia strains, the proportion was at least 68 and 94%, respectively.
Additional Links: PMID-36499640
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36499640,
year = {2022},
author = {Andreenkova, OV and Shishkina, OD and Klimenko, AI and Korenskaia, AE and Bobrovskikh, MA and Shatskaya, NV and Vasiliev, GV and Gruntenko, NE},
title = {Easy and Effective Method for Extracting and Purifying Wolbachia Genomic DNA.},
journal = {International journal of molecular sciences},
volume = {23},
number = {23},
pages = {},
doi = {10.3390/ijms232315315},
pmid = {36499640},
issn = {1422-0067},
abstract = {A number of methods for extracting the DNA of maternally inherited obligate intracellular bacteria Wolbachia from an insect host and its subsequent purification have been described in previous scholarship. As Wolbachia is present in the hosts' organisms in rather low quantities, these techniques used to be quite labor-intensive. For this paper, we analyzed them in detail, searched for a possibility to simplify and accelerate the protocol, and proposed an easy and effective method for isolating Wolbachia DNA from Drosophila melanogaster with a purity sufficient for genomic sequencing. Our method involves the centrifugation of homogenized flies or just their ovaries, as the most Wolbachia-enriched tissue, followed by the filtration of homogenate and extraction of DNA using a modified version of the Livak buffer protocol. The proportion of Wolbachia DNA in the total DNA was quantified based on the results of sequencing with the use of the Illumina MiSeq platform and a pipeline of bioinformatic analysis. For the two analyzed D. melanogaster lines infected with two different Wolbachia strains, the proportion was at least 68 and 94%, respectively.},
}
RevDate: 2022-12-10
Nasonia-microbiome associations: a model for evolutionary hologenomics research.
Trends in parasitology pii:S1471-4922(22)00278-1 [Epub ahead of print].
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.
Additional Links: PMID-36496327
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36496327,
year = {2022},
author = {Zhu, Z and Liu, Y and Hu, H and Wang, GH},
title = {Nasonia-microbiome associations: a model for evolutionary hologenomics research.},
journal = {Trends in parasitology},
volume = {},
number = {},
pages = {},
doi = {10.1016/j.pt.2022.11.005},
pmid = {36496327},
issn = {1471-5007},
abstract = {In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.},
}
RevDate: 2022-12-08
High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O.
Microbes and environments, 37(4):.
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.
Additional Links: PMID-36476840
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36476840,
year = {2022},
author = {Nakabachi, A and Inoue, H and Hirose, Y},
title = {High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O.},
journal = {Microbes and environments},
volume = {37},
number = {4},
pages = {},
doi = {10.1264/jsme2.ME22078},
pmid = {36476840},
issn = {1347-4405},
abstract = {Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.},
}
RevDate: 2022-12-06
CmpDate: 2022-12-06
The filarial and the antibiotics: Single or combination therapy using antibiotics for filariasis.
Frontiers in cellular and infection microbiology, 12:1044412.
Filarial infections caused by nematodes are one of the major neglected tropical diseases with public health concern. Although there is significant decrease in microfilariae (mf) prevalence following mass drug administration (IVM/DEC/ALB administration), this is transient, in that there is reported microfilaria repopulation 6-12 months after treatment. Wolbachia bacteria have been recommended as a novel target presenting antibiotic-based treatment for filarial disease. Potency of antibiotics against filarial diseases is undoubtful, however, the duration for treatment remains a hurdle yet to be overcome in filarial disease treatment.
Additional Links: PMID-36467729
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36467729,
year = {2022},
author = {Fordjour, FA and Kwarteng, A},
title = {The filarial and the antibiotics: Single or combination therapy using antibiotics for filariasis.},
journal = {Frontiers in cellular and infection microbiology},
volume = {12},
number = {},
pages = {1044412},
pmid = {36467729},
issn = {2235-2988},
mesh = {Humans ; Anti-Bacterial Agents/therapeutic use ; *Filariasis/drug therapy ; *Nematode Infections ; Combined Modality Therapy ; *Wolbachia ; },
abstract = {Filarial infections caused by nematodes are one of the major neglected tropical diseases with public health concern. Although there is significant decrease in microfilariae (mf) prevalence following mass drug administration (IVM/DEC/ALB administration), this is transient, in that there is reported microfilaria repopulation 6-12 months after treatment. Wolbachia bacteria have been recommended as a novel target presenting antibiotic-based treatment for filarial disease. Potency of antibiotics against filarial diseases is undoubtful, however, the duration for treatment remains a hurdle yet to be overcome in filarial disease treatment.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Anti-Bacterial Agents/therapeutic use
*Filariasis/drug therapy
*Nematode Infections
Combined Modality Therapy
*Wolbachia
RevDate: 2022-12-06
CmpDate: 2022-12-06
What do we know about the microbiome of I. ricinus?.
Frontiers in cellular and infection microbiology, 12:990889.
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Additional Links: PMID-36467722
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36467722,
year = {2022},
author = {Hodosi, R and Kazimirova, M and Soltys, K},
title = {What do we know about the microbiome of I. ricinus?.},
journal = {Frontiers in cellular and infection microbiology},
volume = {12},
number = {},
pages = {990889},
pmid = {36467722},
issn = {2235-2988},
mesh = {Animals ; *Ixodes ; *Microbiota ; Coxiella ; Symbiosis ; *Rickettsia ; *Francisella tularensis ; },
abstract = {I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Ixodes
*Microbiota
Coxiella
Symbiosis
*Rickettsia
*Francisella tularensis
RevDate: 2022-12-06
Spatio-temporal changes in endosymbiont diversity and composition in the African cassava whitefly, Bemisia tabaci SSA1.
Frontiers in microbiology, 13:986226.
Sap-sucking insects, including whiteflies, are amongst the most devastating and widely distributed organisms on the planet. They are often highly invasive and endosymbiont communities within these insects help them adapt to new or changing environments. Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) whitefly species are vectors of more than 500 known plant-viruses and harbour highly diverse endosymbionts communities. To date, however, whitefly-endosymbiont interactions, community structure and their spatio-temporal changes are still poorly understood. In this study, we investigated the spatio-temporal changes in the composition and diversity of bacterial endosymbionts in the agricultural crop pest whitefly species, Bemisia tabaci sub-Saharan Africa 1-subgroup 1 and 2 (SSA1-SG1 and SSA1-SG2). 16S rRNA amplicon sequencing analysis was carried out to characterise endosymbiont compositionsin field-collected SSA1 (SSA1-SG1 and SSA1-SG2) populations infesting cassava in Uganda in 1997 and 2017. We detected Portiera, Arsenophonus, Wolbachia, Hamiltonella and Hemipteriphilus, with Arsenophonus and Wolbachia infections being predominant. Hemipteriphilus and Hamiltonella frequencies were very low and were detected in seven and two samples, respectively. Bacterial diversity based on three independent parameters including Simpson index, number of haplotypes and Bray-Curtis dissimilarity matrix was significantly higher in 1997 than in 2017. This period also coincided with the advent of super-abundant cassava-whitefly populations on cassava crops in Uganda. We discuss how endosymbionts may influence the biology and behaviour of whiteflies leading to population explosions.
Additional Links: PMID-36466669
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36466669,
year = {2022},
author = {El Hamss, H and Maruthi, MN and Ally, HM and Omongo, CA and Wang, HL and van Brunschot, S and Colvin, J and Delatte, H},
title = {Spatio-temporal changes in endosymbiont diversity and composition in the African cassava whitefly, Bemisia tabaci SSA1.},
journal = {Frontiers in microbiology},
volume = {13},
number = {},
pages = {986226},
pmid = {36466669},
issn = {1664-302X},
abstract = {Sap-sucking insects, including whiteflies, are amongst the most devastating and widely distributed organisms on the planet. They are often highly invasive and endosymbiont communities within these insects help them adapt to new or changing environments. Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) whitefly species are vectors of more than 500 known plant-viruses and harbour highly diverse endosymbionts communities. To date, however, whitefly-endosymbiont interactions, community structure and their spatio-temporal changes are still poorly understood. In this study, we investigated the spatio-temporal changes in the composition and diversity of bacterial endosymbionts in the agricultural crop pest whitefly species, Bemisia tabaci sub-Saharan Africa 1-subgroup 1 and 2 (SSA1-SG1 and SSA1-SG2). 16S rRNA amplicon sequencing analysis was carried out to characterise endosymbiont compositionsin field-collected SSA1 (SSA1-SG1 and SSA1-SG2) populations infesting cassava in Uganda in 1997 and 2017. We detected Portiera, Arsenophonus, Wolbachia, Hamiltonella and Hemipteriphilus, with Arsenophonus and Wolbachia infections being predominant. Hemipteriphilus and Hamiltonella frequencies were very low and were detected in seven and two samples, respectively. Bacterial diversity based on three independent parameters including Simpson index, number of haplotypes and Bray-Curtis dissimilarity matrix was significantly higher in 1997 than in 2017. This period also coincided with the advent of super-abundant cassava-whitefly populations on cassava crops in Uganda. We discuss how endosymbionts may influence the biology and behaviour of whiteflies leading to population explosions.},
}
RevDate: 2022-12-06
CmpDate: 2022-12-06
Modelling the ecological dynamics of mosquito populations with multiple co-circulating Wolbachia strains.
Scientific reports, 12(1):20826.
Wolbachia intracellular bacteria successfully reduce the transmissibility of arthropod-borne viruses (arboviruses) when introduced into virus-carrying vectors such as mosquitoes. Despite the progress made by introducing Wolbachia bacteria into the Aedes aegypti wild-type population to control arboviral infections, reports suggest that heat-induced loss-of-Wolbachia-infection as a result of climate change may reverse these gains. Novel, supplemental Wolbachia strains that are more resilient to increased temperatures may circumvent these concerns, and could potentially act synergistically with existing variants. In this article, we model the ecological dynamics among three distinct mosquito (sub)populations: a wild-type population free of any Wolbachia infection; an invading population infected with a particular Wolbachia strain; and a second invading population infected with a distinct Wolbachia strain from that of the first invader. We explore how the range of possible characteristics of each Wolbachia strain impacts mosquito prevalence. Further, we analyse the differential system governing the mosquito populations and the Wolbachia infection dynamics by computing the full set of basic and invasive reproduction numbers and use these to establish stability of identified equilibria. Our results show that releasing mosquitoes with two different strains of Wolbachia did not increase their prevalence, compared with a single-strain Wolbachia-infected mosquito introduction and only delayed Wolbachia dominance.
Additional Links: PMID-36460676
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36460676,
year = {2022},
author = {Ogunlade, ST and Adekunle, AI and McBryde, ES and Meehan, MT},
title = {Modelling the ecological dynamics of mosquito populations with multiple co-circulating Wolbachia strains.},
journal = {Scientific reports},
volume = {12},
number = {1},
pages = {20826},
pmid = {36460676},
issn = {2045-2322},
mesh = {Animals ; *Wolbachia ; Mosquito Vectors ; *Aedes ; Body Temperature Regulation ; Climate Change ; },
abstract = {Wolbachia intracellular bacteria successfully reduce the transmissibility of arthropod-borne viruses (arboviruses) when introduced into virus-carrying vectors such as mosquitoes. Despite the progress made by introducing Wolbachia bacteria into the Aedes aegypti wild-type population to control arboviral infections, reports suggest that heat-induced loss-of-Wolbachia-infection as a result of climate change may reverse these gains. Novel, supplemental Wolbachia strains that are more resilient to increased temperatures may circumvent these concerns, and could potentially act synergistically with existing variants. In this article, we model the ecological dynamics among three distinct mosquito (sub)populations: a wild-type population free of any Wolbachia infection; an invading population infected with a particular Wolbachia strain; and a second invading population infected with a distinct Wolbachia strain from that of the first invader. We explore how the range of possible characteristics of each Wolbachia strain impacts mosquito prevalence. Further, we analyse the differential system governing the mosquito populations and the Wolbachia infection dynamics by computing the full set of basic and invasive reproduction numbers and use these to establish stability of identified equilibria. Our results show that releasing mosquitoes with two different strains of Wolbachia did not increase their prevalence, compared with a single-strain Wolbachia-infected mosquito introduction and only delayed Wolbachia dominance.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Wolbachia
Mosquito Vectors
*Aedes
Body Temperature Regulation
Climate Change
RevDate: 2022-12-03
CmpDate: 2022-12-02
Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula.
Scientific reports, 12(1):20682.
The Asian tiger mosquito, Aedes albopictus, is one of the most invasive species in the world. Native to the tropical forests of Southeast Asia, over the past 30 years it has rapidly spread throughout tropical and temperate regions of the world. Its dramatic expansion has resulted in public health concerns as a consequence of its vector competence for at least 16 viruses. Previous studies showed that Ae. albopictus spread has been facilitated by human-mediated transportation, but much remains unknown about how this has affected its genetic attributes. Here we examined the factors that contributed to shaping the current genetic constitution of Ae. albopictus in the Iberian Peninsula, where the species was first found in 2004, by combining population genetics and Bayesian modelling. We found that both mitochondrial and nuclear DNA markers showed a lack of genetic structure and the presence of worldwide dominant haplotypes, suggesting regular introductions from abroad. Mitochondrial DNA showed little genetic diversity compared to nuclear DNA, likely explained by infection with maternally transmitted bacteria of the genus Wolbachia. Multilevel models revealed that greater mosquito fluxes (estimated from commuting patterns and tiger mosquito population distribution) and spatial proximity between sampling sites were associated with lower nuclear genetic distance, suggesting that rapid short- and medium-distance dispersal is facilitated by humans through vehicular traffic. This study highlights the significant role of human transportation in shaping the genetic attributes of Ae. albopictus and promoting regional gene flow, and underscores the need for a territorially integrated surveillance across scales of this disease-carrying mosquito.
Additional Links: PMID-36450768
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36450768,
year = {2022},
author = {Lucati, F and Delacour, S and Palmer, JRB and Caner, J and Oltra, A and Paredes-Esquivel, C and Mariani, S and Escartin, S and Roiz, D and Collantes, F and Bengoa, M and Montalvo, T and Delgado, JA and Eritja, R and Lucientes, J and Albó Timor, A and Bartumeus, F and Ventura, M},
title = {Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula.},
journal = {Scientific reports},
volume = {12},
number = {1},
pages = {20682},
pmid = {36450768},
issn = {2045-2322},
mesh = {Animals ; Humans ; *Wolbachia/genetics ; *Aedes/genetics ; Bayes Theorem ; Mosquito Vectors/genetics ; Disease Vectors ; Hydrolases ; },
abstract = {The Asian tiger mosquito, Aedes albopictus, is one of the most invasive species in the world. Native to the tropical forests of Southeast Asia, over the past 30 years it has rapidly spread throughout tropical and temperate regions of the world. Its dramatic expansion has resulted in public health concerns as a consequence of its vector competence for at least 16 viruses. Previous studies showed that Ae. albopictus spread has been facilitated by human-mediated transportation, but much remains unknown about how this has affected its genetic attributes. Here we examined the factors that contributed to shaping the current genetic constitution of Ae. albopictus in the Iberian Peninsula, where the species was first found in 2004, by combining population genetics and Bayesian modelling. We found that both mitochondrial and nuclear DNA markers showed a lack of genetic structure and the presence of worldwide dominant haplotypes, suggesting regular introductions from abroad. Mitochondrial DNA showed little genetic diversity compared to nuclear DNA, likely explained by infection with maternally transmitted bacteria of the genus Wolbachia. Multilevel models revealed that greater mosquito fluxes (estimated from commuting patterns and tiger mosquito population distribution) and spatial proximity between sampling sites were associated with lower nuclear genetic distance, suggesting that rapid short- and medium-distance dispersal is facilitated by humans through vehicular traffic. This study highlights the significant role of human transportation in shaping the genetic attributes of Ae. albopictus and promoting regional gene flow, and underscores the need for a territorially integrated surveillance across scales of this disease-carrying mosquito.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Humans
*Wolbachia/genetics
*Aedes/genetics
Bayes Theorem
Mosquito Vectors/genetics
Disease Vectors
Hydrolases
RevDate: 2022-12-01
CmpDate: 2022-12-01
Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations.
Parasites & vectors, 15(1):447.
BACKGROUND: Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host.
METHODS: In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR.
RESULTS: The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 10[3.31] seem to be absent when Wolbachia infection is present at high density (> 10[7.36]), suggesting a potential protective role of Wolbachia against GpSGHV.
CONCLUSION: The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Additional Links: PMID-36447246
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36447246,
year = {2022},
author = {Dieng, MM and Augustinos, AA and Demirbas-Uzel, G and Doudoumis, V and Parker, AG and Tsiamis, G and Mach, RL and Bourtzis, K and Abd-Alla, AMM},
title = {Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations.},
journal = {Parasites & vectors},
volume = {15},
number = {1},
pages = {447},
pmid = {36447246},
issn = {1756-3305},
mesh = {Animals ; Cytomegalovirus ; *Tsetse Flies ; *Coinfection ; *Glossinidae ; Hypertrophy ; *Infertility ; Salivary Glands ; },
abstract = {BACKGROUND: Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host.
METHODS: In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR.
RESULTS: The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 10[3.31] seem to be absent when Wolbachia infection is present at high density (> 10[7.36]), suggesting a potential protective role of Wolbachia against GpSGHV.
CONCLUSION: The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cytomegalovirus
*Tsetse Flies
*Coinfection
*Glossinidae
Hypertrophy
*Infertility
Salivary Glands
RevDate: 2022-12-01
CmpDate: 2022-12-01
Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila).
Current microbiology, 80(1):6.
Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.
Additional Links: PMID-36445499
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36445499,
year = {2022},
author = {Ramirez, P and Leavitt, JC and Gill, JJ and Mateos, M},
title = {Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila).},
journal = {Current microbiology},
volume = {80},
number = {1},
pages = {6},
pmid = {36445499},
issn = {1432-0991},
mesh = {Male ; Animals ; Drosophila ; *Bacteriophages/genetics ; Drosophila melanogaster ; *Spiroplasma/genetics ; },
abstract = {Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Male
Animals
Drosophila
*Bacteriophages/genetics
Drosophila melanogaster
*Spiroplasma/genetics
RevDate: 2022-11-29
CmpDate: 2022-11-29
First data on bacteria associated with bat ectoparasites collected in Kharkiv oblast, Northeastern Ukraine.
Parasites & vectors, 15(1):443.
BACKGROUND: Bats (Mammalia: Chiroptera) serve as natural reservoirs for many zoonotic pathogens worldwide, including vector-borne pathogens. However, bat-associated parasitic arthropods and their microbiota are thus far not thoroughly described in many regions across the globe, nor is their role in the spillover of pathogens to other vertebrate species well understood. Basic epidemiological research is needed to disentangle the complex ecological interactions among bats, their specific ectoparasites and microorganisms they harbor. Some countries, such as Ukraine, are particularly data-deficient in this respect as the ectoparasitic fauna is poorly documented there and has never been screened for the presence of medically important microorganisms. Therefore, the aims of this study were to provide first data on this topic.
METHODS: A total of 239 arthropod specimens were collected from bats. They belonged to several major groups of external parasites, including soft ticks, fleas, and nycteribiid flies from six chiropteran species in Northeastern Ukraine. The ectoparasites were individually screened for the presence of DNA of Rickettsia spp., Anaplasma/Ehrlichia spp., Bartonella spp., Borrelia spp., and Babesia spp. with conventional PCRs. Positive samples were amplified at several loci, sequenced for species identification, and subjected to phylogenetic analysis.
RESULTS: Rickettsia DNA was detected exclusively in specimens of the soft tick, Carios vespertilionis (7 out of 43 or 16.3%). Sequencing and phylogenetic analysis revealed high similarity to sequences from Rickettsia parkeri and several other Rickettsia species. Bacteria from the family Anaplasmataceae were detected in all groups of the ectoparasites (51%, 122/239 samples), belonging to the genera Anaplasma, Ehrlichia, and Wolbachia. The detection of Bartonella spp. was successful only in fleas (Nycteridopsylla eusarca) and bat flies (Nycteribia koleantii, N. pedicularia), representing 12.1% (29/239) of the collected ectoparasites. No DNA of Babesia or Borrelia species was identified in the samples.
CONCLUSIONS: We report for the first time in Ukraine the molecular detection of several bacterial agents in bat ectoparasites collected from six species of bats. The data presented extend the knowledge on the distribution of ectoparasite species in bats and their involvement in potentially circulating agents pathogenic for humans and vertebrate animals.
Additional Links: PMID-36434644
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36434644,
year = {2022},
author = {Vlaschenko, A and Răileanu, C and Tauchmann, O and Muzyka, D and Bohodist, V and Filatov, S and Rodenko, O and Tovstukha, I and Silaghi, C},
title = {First data on bacteria associated with bat ectoparasites collected in Kharkiv oblast, Northeastern Ukraine.},
journal = {Parasites & vectors},
volume = {15},
number = {1},
pages = {443},
pmid = {36434644},
issn = {1756-3305},
mesh = {Animals ; Humans ; Phylogeny ; Ukraine/epidemiology ; *Argas/genetics ; *Bartonella/genetics ; Ehrlichia/genetics ; Anaplasma/genetics ; *Borrelia ; *Argasidae ; *Flea Infestations ; *Siphonaptera ; *Babesia/genetics ; },
abstract = {BACKGROUND: Bats (Mammalia: Chiroptera) serve as natural reservoirs for many zoonotic pathogens worldwide, including vector-borne pathogens. However, bat-associated parasitic arthropods and their microbiota are thus far not thoroughly described in many regions across the globe, nor is their role in the spillover of pathogens to other vertebrate species well understood. Basic epidemiological research is needed to disentangle the complex ecological interactions among bats, their specific ectoparasites and microorganisms they harbor. Some countries, such as Ukraine, are particularly data-deficient in this respect as the ectoparasitic fauna is poorly documented there and has never been screened for the presence of medically important microorganisms. Therefore, the aims of this study were to provide first data on this topic.
METHODS: A total of 239 arthropod specimens were collected from bats. They belonged to several major groups of external parasites, including soft ticks, fleas, and nycteribiid flies from six chiropteran species in Northeastern Ukraine. The ectoparasites were individually screened for the presence of DNA of Rickettsia spp., Anaplasma/Ehrlichia spp., Bartonella spp., Borrelia spp., and Babesia spp. with conventional PCRs. Positive samples were amplified at several loci, sequenced for species identification, and subjected to phylogenetic analysis.
RESULTS: Rickettsia DNA was detected exclusively in specimens of the soft tick, Carios vespertilionis (7 out of 43 or 16.3%). Sequencing and phylogenetic analysis revealed high similarity to sequences from Rickettsia parkeri and several other Rickettsia species. Bacteria from the family Anaplasmataceae were detected in all groups of the ectoparasites (51%, 122/239 samples), belonging to the genera Anaplasma, Ehrlichia, and Wolbachia. The detection of Bartonella spp. was successful only in fleas (Nycteridopsylla eusarca) and bat flies (Nycteribia koleantii, N. pedicularia), representing 12.1% (29/239) of the collected ectoparasites. No DNA of Babesia or Borrelia species was identified in the samples.
CONCLUSIONS: We report for the first time in Ukraine the molecular detection of several bacterial agents in bat ectoparasites collected from six species of bats. The data presented extend the knowledge on the distribution of ectoparasite species in bats and their involvement in potentially circulating agents pathogenic for humans and vertebrate animals.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Humans
Phylogeny
Ukraine/epidemiology
*Argas/genetics
*Bartonella/genetics
Ehrlichia/genetics
Anaplasma/genetics
*Borrelia
*Argasidae
*Flea Infestations
*Siphonaptera
*Babesia/genetics
RevDate: 2022-11-26
Data set on the diversity and core members of bacterial community associated with two specialist fruit flies Bactrocera melastomatos and B. umbrosa (Insecta, Tephritidae).
Data in brief, 45:108727.
Bactrocera melastomatos Drew & Hancock and Bactrocera umbrosa (Fabricius) are fruit flies of the subfamily Dacinae under the family Tephritidae [1]. B. melastomatos occurs in India (Andaman Island), Thailand, Peninsular Malaysia, Singapore, and Indonesia (Sumatra, Kalimantan, Java) [1] while B. umbrosa is distributed from southern Thailand and Malaysia to New Guinea and New Caledonia [2]. The adult male flies of B. melastomatos are attracted to Cue lure while the adult male flies of B. umbrosa are attracted to methyl eugenol [3]. Fruit flies of Bactrocera melastomatos infest Melastomataceae while those of B. umbrosa infest Moraceae. We compare the diversity of microbiota associated with the wild adult males of these two specialist fruit flies infesting different families of host plants. Targeted 16S rRNA gene (V3-V4 region) was sequenced using the Illumina MiSeq platform. Six bacterial phyla (Actinobacteria, Armatimonadetes, Bacteroidetes, Cyanobacteria/Melainabacteria group, Firmicutes, Proteobacteria) were detected at 97% similarity clustering and 0.001% abundance filtering. Four phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were present in all the specimens studied. Proteobacteria was the predominant phylum in both B. melastomatos and B. umbrosa. Enterobacteriaceae was the predominant family in UM B. melastomatos and B. umbrosa, and Orbaceae was the predominant family in Awana B. melastomatos. Klebsiella was the predominant genus in B. umbrosa, Citrobacter in UM B. melastomatos, and Orbus in Awana B. melastomatos. Double Wolbachia infections were present in UM B. melastomatos. In general, the bacterial diversity and richness varied within and between the samples of B. melastomatos and B. umbrosa.
Additional Links: PMID-36425974
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36425974,
year = {2022},
author = {Song, SL and Yong, HS and Chua, KO and Lim, PE and Eamsobhana, P},
title = {Data set on the diversity and core members of bacterial community associated with two specialist fruit flies Bactrocera melastomatos and B. umbrosa (Insecta, Tephritidae).},
journal = {Data in brief},
volume = {45},
number = {},
pages = {108727},
pmid = {36425974},
issn = {2352-3409},
abstract = {Bactrocera melastomatos Drew & Hancock and Bactrocera umbrosa (Fabricius) are fruit flies of the subfamily Dacinae under the family Tephritidae [1]. B. melastomatos occurs in India (Andaman Island), Thailand, Peninsular Malaysia, Singapore, and Indonesia (Sumatra, Kalimantan, Java) [1] while B. umbrosa is distributed from southern Thailand and Malaysia to New Guinea and New Caledonia [2]. The adult male flies of B. melastomatos are attracted to Cue lure while the adult male flies of B. umbrosa are attracted to methyl eugenol [3]. Fruit flies of Bactrocera melastomatos infest Melastomataceae while those of B. umbrosa infest Moraceae. We compare the diversity of microbiota associated with the wild adult males of these two specialist fruit flies infesting different families of host plants. Targeted 16S rRNA gene (V3-V4 region) was sequenced using the Illumina MiSeq platform. Six bacterial phyla (Actinobacteria, Armatimonadetes, Bacteroidetes, Cyanobacteria/Melainabacteria group, Firmicutes, Proteobacteria) were detected at 97% similarity clustering and 0.001% abundance filtering. Four phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were present in all the specimens studied. Proteobacteria was the predominant phylum in both B. melastomatos and B. umbrosa. Enterobacteriaceae was the predominant family in UM B. melastomatos and B. umbrosa, and Orbaceae was the predominant family in Awana B. melastomatos. Klebsiella was the predominant genus in B. umbrosa, Citrobacter in UM B. melastomatos, and Orbus in Awana B. melastomatos. Double Wolbachia infections were present in UM B. melastomatos. In general, the bacterial diversity and richness varied within and between the samples of B. melastomatos and B. umbrosa.},
}
RevDate: 2022-11-26
Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae.
Frontiers in microbiology, 13:1031535.
The poultry red mite Dermanyssus gallinae poses a significant threat to the health of hens and poultry production. A comprehensive understanding of D. gallinae is necessary to develop sustainable and efficacious control methods. Here we examined 144 D. gallinae collected from 18 poultry farms throughout the Japanese Archipelago for their genetic variations based on mitochondrial cytochrome c oxidase subunit I (COI) sequences, and microbiome variations based on amplicon sequencing of the 16S ribosomal RNA gene. According to COI sequencing, the Japanese samples were categorized into three haplogroups, which did not reflect the geographical distribution. Microbiome analyses found that the major bacteria associated with D. gallinae were Bartonella, Cardinium, Wolbachia, and Tsukamurella, with Bartonella being most predominant. Among 144 individual mites, all possessed one of the two major types of Bartonella (Bartonella sp. A), while 140 mites possessed the other type (Bartonella sp. B). The presence of the two strains of Bartonella was also confirmed by a single copy gene, rpoB. The presence of Bartonella in laid eggs suggested transovarial vertical transmission. Given that obligate blood-feeding arthropods generally require a supply of B vitamins from symbiotic bacteria, Bartonella may play an important role in mite survival. Rickettsiella, a major symbiont in European D. gallinae populations, and suggested to be an important symbiont by genomic data, was rarely found in Japanese populations. Cardinium detected from D. gallinae fell into a major clade found widely in arthropods, whereas Wolbachia detected in Japanese D. gallinae appear to be a new lineage, located at the base of Wolbachia phylogeny. Of the mitochondrial phylogeny, infection patterns of Cardinium and Wolbachia were strongly correlated, possibly suggesting one or both of the symbionts induce reproductive manipulations and increase spread in the host populations.
Additional Links: PMID-36425043
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36425043,
year = {2022},
author = {Nishide, Y and Sugimoto, TN and Watanabe, K and Egami, H and Kageyama, D},
title = {Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae.},
journal = {Frontiers in microbiology},
volume = {13},
number = {},
pages = {1031535},
pmid = {36425043},
issn = {1664-302X},
abstract = {The poultry red mite Dermanyssus gallinae poses a significant threat to the health of hens and poultry production. A comprehensive understanding of D. gallinae is necessary to develop sustainable and efficacious control methods. Here we examined 144 D. gallinae collected from 18 poultry farms throughout the Japanese Archipelago for their genetic variations based on mitochondrial cytochrome c oxidase subunit I (COI) sequences, and microbiome variations based on amplicon sequencing of the 16S ribosomal RNA gene. According to COI sequencing, the Japanese samples were categorized into three haplogroups, which did not reflect the geographical distribution. Microbiome analyses found that the major bacteria associated with D. gallinae were Bartonella, Cardinium, Wolbachia, and Tsukamurella, with Bartonella being most predominant. Among 144 individual mites, all possessed one of the two major types of Bartonella (Bartonella sp. A), while 140 mites possessed the other type (Bartonella sp. B). The presence of the two strains of Bartonella was also confirmed by a single copy gene, rpoB. The presence of Bartonella in laid eggs suggested transovarial vertical transmission. Given that obligate blood-feeding arthropods generally require a supply of B vitamins from symbiotic bacteria, Bartonella may play an important role in mite survival. Rickettsiella, a major symbiont in European D. gallinae populations, and suggested to be an important symbiont by genomic data, was rarely found in Japanese populations. Cardinium detected from D. gallinae fell into a major clade found widely in arthropods, whereas Wolbachia detected in Japanese D. gallinae appear to be a new lineage, located at the base of Wolbachia phylogeny. Of the mitochondrial phylogeny, infection patterns of Cardinium and Wolbachia were strongly correlated, possibly suggesting one or both of the symbionts induce reproductive manipulations and increase spread in the host populations.},
}
▼ ▼ LOAD NEXT 100 CITATIONS
RJR Experience and Expertise
Researcher
Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.
Educator
Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.
Administrator
Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.
Technologist
Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.
Publisher
While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.
Speaker
Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.
Facilitator
Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.
Designer
Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.
RJR Picks from Around the Web (updated 11 MAY 2018 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Paleontology
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.
Big Data & Informatics
Big Data: Buzzword or Big Deal?
Hacking the genome: Identifying anonymized human subjects using publicly available data.