picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
26 Jul 2024 at 01:35
HITS:
4287
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jul 2024 at 01:35 Created: 

Wolbachia

WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-07-23

Henry LP, Fernandez M, Wolf S, et al (2024)

Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment.

Ecology and evolution, 14(7):e70004.

The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.

RevDate: 2024-07-20

Lombardi G, Lampazzi E, M Calvitti (2024)

Incompatible insect technique: insights on potential outcomes of releasing contaminant females: a proof of concept under semi-field conditions.

Pest management science [Epub ahead of print].

BACKGROUND: Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release. Here, we present the results of semi-field experiments comparing the impact of minimal female co-release on two IIT modes: unidirectional CI-based (UnCI IIT) and bidirectional CI-based (BiCI IIT), specifically targeting Ae. albopictus.

RESULTS: The contamination of 'wPip' infected females (2%) during male releases significantly weakened the overall effectiveness of IIT, emphasizing the need for thorough sex separation. Specifically, with UnCI IIT, despite the low rate of co-released females, there was a gradual rise in 'wPip' infection frequency, resulting in more compatible mating and subsequently higher rates of egg hatching. Conversely, this pattern was effectively mitigated in BiCI IIT owing to the reciprocal sterility between the wild-type and the 'wPip' infected populations.

CONCLUSION: Through an experimental approach, conducted in a semi-field setting, we have contributed to advancing scientific understanding regarding the potential outcomes of implementing the IIT strategy in the absence of a complete sexing system. The results suggest that safety measures for mitigating the potential impacts of co-released females can be tailored according to the specific type of IIT being utilized. © 2024 Society of Chemical Industry.

RevDate: 2024-07-19

Mathimaran A, Nagarajan H, Mathimaran A, et al (2024)

Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches.

International journal of biological macromolecules pii:S0141-8130(24)04782-2 [Epub ahead of print].

The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP[+] induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP[+] does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.

RevDate: 2024-07-17

Danielle Duarte Santana T, Magalhães T, de Araujo Andrade L, et al (2024)

Three picorna-like viruses found associated with the spider mite, Tetranychus truncatus (Acari: Tetranychidae).

Journal of invertebrate pathology pii:S0022-2011(24)00112-5 [Epub ahead of print].

Herbivorous arthropods, such as mites and insects, host a variety of microorganisms that significantly influence their ecology and evolution. While insect viruses have been extensively studied, our understanding of the diversity and composition of mite viromes and the interactions with mite hosts remains limited. The Asian spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae), a major agricultural pest, has not yet been reported to harbor any viruses. Here, using publicly available RNA-Seq data, we identified and characterized three picorna-like viruses associated with T. truncatus: Tetranychus truncatus-associated iflavirus 1 (TtAIV-1), Tetranychus truncatus-associated picorna-like virus 1 (TtAV-1), and Tetranychus truncatus-associated picorna-like virus 2 (TtAV-2). TtAIV-1 has a typical Iflaviridae genome structure with a single ORF, representing the first iflavirus associated with the Tetranychus genus. TtAV-1 and TtAV-2 exhibit bicistronic arrangements similar to dicistroviruses and other picorna-like viruses, with complex secondary structures in their non-coding regions. Phylogenetic analysis places TtAIV-1 within Iflaviridae, possibly as a new species, while TtAV-1 and TtAV-2 form distinct clades within unclassified picorna-like viruses, suggesting new families within Picornavirales. We analyzed in silico the presence and abundance of these viruses in T. truncatus across four bioproject SRAs, mostly finding them co-associated, with viral reads reaching up to 30% of total reads. Their presence and abundance varied by mite treatment and origin, with no significant impact from Wolbachia infection or abamectin exposure, although TtAV-2 was absent in abamectin-treated mites. Temperature influenced virus abundance, and variations were observed among Chinese mite populations based on geography and host plant association. Our findings offer insights into picorna-like virus diversity and dynamics in T. truncatus, revealing potential roles in mite biology and suggesting applications for mite population control, thereby enhancing agricultural productivity and food security.

RevDate: 2024-07-15

Power RI, Doyle SR, J Šlapeta (2024)

Whole genome amplification and sequencing of individual Dirofilaria immitis microfilariae.

Experimental parasitology pii:S0014-4894(24)00109-7 [Epub ahead of print].

Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.

RevDate: 2024-07-14

Tischer M, C Bleidorn (2024)

Further evidence of low infection frequencies of Wolbachia in soil arthropod communities.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases pii:S1567-1348(24)00092-3 [Epub ahead of print].

Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.

RevDate: 2024-07-12

Lau MJ, Nie S, Ross PA, et al (2024)

Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction.

Journal of insect physiology pii:S0022-1910(24)00062-3 [Epub ahead of print].

Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.

RevDate: 2024-07-11

Klimov PB, Hubert J, Erban T, et al (2024)

Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q).

International journal for parasitology pii:S0020-7519(24)00138-3 [Epub ahead of print].

Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.

RevDate: 2024-07-10
CmpDate: 2024-07-10

Hoffmann G, Lukarska M, Clare RH, et al (2024)

Targeting a microbiota Wolbachian aminoacyl-tRNA synthetase to block its pathogenic host.

Science advances, 10(28):eado1453.

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.

RevDate: 2024-07-09

Du CH, Xiang R, Bie SS, et al (2024)

Genetic diversity and prevalence of emerging Rickettsiales in Yunnan Province: a large-scale study.

Infectious diseases of poverty, 13(1):54.

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province.

METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters.

RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified.

CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.

RevDate: 2024-07-08

Lau MJ, Valdez AR, Jones MJ, et al (2024)

The effect of repeat feeding on dengue virus transmission potential in Wolbachia-infected Aedes aegypti following extended egg quiescence.

PLoS neglected tropical diseases, 18(7):e0012305 pii:PNTD-D-24-00403 [Epub ahead of print].

As Wolbachia pipientis is more widely being released into field populations of Aedes aegypti for disease control, the ability to select the appropriate strain for differing environments is increasingly important. A previous study revealed that longer-term quiescence in the egg phase reduced the fertility of mosquitoes, especially those harboring the wAlbB Wolbachia strain. This infertility was also associated with a greater biting rate. Here, we attempt to quantify the effect of this heightened biting behavior on the transmission potential of the dengue virus using a combination of assays for fitness, probing behavior, and vector competence, allowing repeat feeding, and incorporate these effects in a model of R0. We show that Wolbachia-infected infertile mosquitoes are more interested in feeding almost immediately after an initial blood meal relative to wild type and Wolbachia-infected fertile mosquitoes and that these differences continue for up to 8 days over the period we measured. As a result, the infertile Wolbachia mosquitoes have higher virus prevalence and loads than Wolbachia-fertile mosquitoes. We saw limited evidence of Wolbachia-mediated blocking in the disseminated tissue (legs) in terms of prevalence but did see reduced viral loads. Using a previously published estimate of the extrinsic incubation period, we demonstrate that the effect of repeat feeding/infertility is insufficient to overcome the effects of Wolbachia-mediated blocking on R0. These estimates are very conservative, however, and we posit that future studies should empirically measure EIP under a repeat feeding model. Our findings echo previous work where periods of extensive egg quiescence affected the reproductive success of Wolbachia-infected Ae. aegypti. Additionally, we show that increased biting behavior in association with this infertility in Wolbachia-infected mosquitoes may drive greater vector competence. These relationships require further exploration, given their ability to affect the success of field releases of Wolbachia for human disease reduction in drier climates where longer egg quiescence periods are expected.

RevDate: 2024-07-06
CmpDate: 2024-07-06

Mosi FA, Rutha I, Velez R, et al (2024)

Effects of a blood-free mosquito diet on fitness and gonotrophic cycle parameters of laboratory reared Anopheles gambiae sensu stricto.

Parasites & vectors, 17(1):289.

BACKGROUND: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood.

METHODS: The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations.

RESULTS: While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups.

CONCLUSIONS: This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.

RevDate: 2024-07-06

Shannon DM, Richardson N, Lahondère C, et al (2024)

Mosquito Floral Visitation and Pollination.

Current opinion in insect science pii:S2214-5745(24)00072-5 [Epub ahead of print].

We often consider mosquitoes through an 'anthropocentric lens' that disregards their interactions with non-human and non-pathogenic organisms, even though these interactions can be harnessed for mosquito control. Mosquitoes have been recognized as floral visitors, and pollinators, for more than a century. However, we know relatively little about mosquito-plant interactions, excepting some nutrition and chemical ecology-related topics, compared to mosquito-host interactions, and frequently use flawed methodology when investigating them. Recent work demonstrates mosquitoes use multimodal sensory cues to locate flowers, including ultraviolet visual cues, and we may underestimate mosquito pollination. This review focuses on current knowledge of how mosquitoes locate flowers, floral visitation assay methodology, mosquito pollination, and implications for technologies such as sterile male mosquito release through genetic control programs or Wolbachia infection.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Zhang Y, Wang H, Du J, et al (2024)

Population genetic structure of Culex tritaeniorhynchus in different types of climatic zones in China.

BMC genomics, 25(1):673.

BACKGROUND: Culex tritaeniorhynchus is widely distributed in China, from Hainan Island in the south to Heilongjiang in the north, covering tropical, subtropical, and temperate climate zones. Culex tritaeniorhynchus carries 19 types of arboviruses. It is the main vector of the Japanese encephalitis virus (JEV), posing a serious threat to human health. Understanding the effects of environmental factors on Culex tritaeniorhynchus can provide important insights into its population structure or isolation patterns, which is currently unclear.

RESULTS: In total, 138 COI haplotypes were detected in the 552 amplified sequences, and the haplotype diversity (Hd) value increased from temperate (0.534) to tropical (0.979) regions. The haplotype phylogeny analysis revealed that the haplotypes were divided into two high-support evolutionary branches. Temperate populations were predominantly distributed in evolutionary branch II, showing some genetic isolation from tropical/subtropical populations and less gene flow between groups. The neutral test results of HNQH (Qionghai) and HNHK(Haikou) populations were negative (P < 0.05), indicating many low-frequency mutations in the populations and that the populations might be in the process of expansion. Moreover, Wolbachia infection was detected only in SDJN (Jining) (2.24%), and all Wolbachia genotypes belonged to supergroup B. To understand the influence of environmental factors on mosquito-borne viruses, we examined the prevalence of Culex tritaeniorhynchus infection in three ecological environments in Shandong Province. We discovered that the incidence of JEV infection was notably greater in Culex tritaeniorhynchus from lotus ponds compared to those from irrigation canal regions. In this study, the overall JEV infection rate was 15.27 per 1000, suggesting the current risk of Japanese encephalitis outbreaks in Shandong Province.

CONCLUSIONS: Tropical and subtropical populations of Culex tritaeniorhynchus showed higher genetic diversity and those climatic conditions provide great advantages for the establishment and expansion of Culex tritaeniorhynchus. There are differences in JEV infection rates in wild populations of Culex tritaeniorhynchus under different ecological conditions. Our results suggest a complex interplay of genetic differentiation, population structure, and environmental factors in shaping the dynamics of Culex tritaeniorhynchus. The low prevalence of Wolbachia in wild populations may reflect the recent presence of Wolbachia invasion in Culex tritaeniorhynchus.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Jia H, Tan S, Cai Y, et al (2024)

Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes.

Nature communications, 15(1):5644.

Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement (> 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.

RevDate: 2024-07-03

Ross PA, AA Hoffmann (2024)

Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects.

Ecology and evolution, 14(7):e11670.

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

RevDate: 2024-07-02

de Mello VVC, de Oliveira LB, Coelho TFSB, et al (2024)

Diversity of Ehrlichia spp., Anaplasma spp. and Neorickettsia spp. in vampire bats.

Current research in parasitology & vector-borne diseases, 5:100182.

Although bats (Mammalia: Chiroptera) act as natural reservoirs for many zoonotic pathogens around the world, few studies have investigated the occurrence of Anaplasmataceae agents in bats, especially vampire bats. The family Anaplasmataceae (order Rickettsiales) encompasses obligate intracellular bacteria of the genera Anaplasma, Ehrlichia, Neorickettsia, Neoehrlichia, Wolbachia, and Allocryptoplasma. The present study aimed to investigate, using molecular techniques, the presence of species of Anaplasma, Ehrlichia, and Neorickettsia in vampire bats sampled in northern Brazil. Between 2017 and 2019, spleen samples were collected from vampire bats belonging to two species, Desmodus rotundus (n = 228) from the states of Pará (n = 207), Amazonas (n = 1), Roraima (n = 18) and Amapá (n = 3), and Diaemus youngii (n = 1) from Pará. Positivity rates of 5.2% (12/229), 3% (7/229), and 10.9% (25/229) were found in PCR assays for Anaplasma spp. (16S rRNA gene), Ehrlichia spp. (dsb gene) and Neorickettsia spp. (16S rRNA gene), respectively. The present study revealed, for the first time, the occurrence of Anaplasma spp. and different genotypes of Ehrlichia spp. in vampire bats from Brazil. While phylogenetic analyses based on the dsb and ftsZ genes of Ehrlichia and 16S rRNA of Anaplasma spp. revealed phylogenetic proximity of the genotypes detected in vampire bats with Anaplasmataceae agents associated with domestic ruminants, phylogenetic inferences based on the gltA and groEL genes evidenced the occurrence of genotypes apparently exclusive to bats. Neorickettsia sp. phylogenetically associated with N. risticii was also detected in vampire bats sampled in northern Brazil.

RevDate: 2024-07-01

Jacobs J, Nakamoto A, Mastoras M, et al (2024)

Complete de novo assembly of Wolbachia endosymbiont of Drosophila willistoni using long-read genome sequencing.

Research square pii:rs.3.rs-4510571.

Wolbachia is an obligate intracellular 𝛼-proteobacterium which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in many hosts and modulate host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The w Wil strain from the neotropical fruit fly, Drosophila willistoni , exhibits a remarkably high affinity for host germline-derived cells relative to the soma. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the w Wil strain isolated from host cell culture cells. Here, we present the first high quality nanopore assembly of w Wil, the Wolbachia endosymbiont of D. willistoni . Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel strain from Drosophila melanogaster .

RevDate: 2024-06-28

Hrdina A, Serra Canales M, Arias-Rojas A, et al (2024)

The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization.

mBio [Epub ahead of print].

UNLABELLED: Facultative endosymbiotic bacteria, such as Wolbachia and Spiroplasma species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized. Here, we utilized the fruit fly Drosophila melanogaster and its facultative endosymbiont Spiroplasma poulsonii to characterize the mechanisms underlying symbiont-mediated host protection against bacterial and fungal pathogens. Our results indicate a variable effect of S. poulsonii on infection outcome, with endosymbiont-harboring flies being more resistant to Rhyzopus oryzae, Staphylococcus aureus, and Providencia alcalifaciens but more sensitive or as sensitive as endosymbiont-free flies to the infections with Pseudomonas species. Further focusing on the protective effect, we identified Transferrin-mediated iron sequestration induced by Spiroplasma as being crucial for the defense against R. oryzae and P. alcalifaciens. In the case of S. aureus, enhanced melanization in Spiroplasma-harboring flies plays a major role in protection. Both iron sequestration and melanization induced by Spiroplasma require the host immune sensor protease Persephone, suggesting a role of proteases secreted by the symbiont in the activation of host defense reactions. Hence, our work reveals a broader defensive range of Spiroplasma than previously appreciated and adds nutritional immunity and melanization to the defensive arsenal of symbionts.

IMPORTANCE: Defensive endosymbiotic bacteria conferring protection to their hosts against parasites and pathogens are widespread in insect populations. However, the mechanisms by which most symbionts confer protection are not fully understood. Here, we studied the mechanisms of protection against bacterial and fungal pathogens mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. We demonstrate that besides the previously described protection against wasps and nematodes, Spiroplasma also confers increased resistance to pathogenic bacteria and fungi. We identified Spiroplasma-induced iron sequestration and melanization as key defense mechanisms. Our work broadens the known defense spectrum of Spiroplasma and reveals a previously unappreciated role of melanization and iron sequestration in endosymbiont-mediated host protection. We propose that the mechanisms we have identified here may be of broader significance and could apply to other endosymbionts, particularly to Wolbachia, and potentially explain their protective properties.

RevDate: 2024-06-28

Pan Q, Yu SJ, Lei S, et al (2024)

Bacterial Symbionts Contribute to Insecticide Susceptibility of Diaphorina citri via Changing the Expression Level of Host Detoxifying Genes.

Journal of agricultural and food chemistry [Epub ahead of print].

Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.

RevDate: 2024-06-27

Amini S, Fathipour Y, Hoffmann A, et al (2024)

Wolbachia affect female mate preference and offspring fitness in a parasitoid wasp.

Pest management science [Epub ahead of print].

BACKGROUND: Wolbachia are widespread intracellular bacteria in insects that often have high rates of spread due to their impact on insect reproduction. These bacteria may also affect the mating behavior of their host with impacts on the fitness of host progeny. In this study, we investigated the impact of Wolbachia on a preference for mating with young or old males in the parasitoid wasp Habrobracon hebetor.

RESULTS: Our results showed that uninfected females from a tetracycline-treated line preferred to mate with young males, whereas Wolbachia-infected females had no preference. Time to mating was relatively shorter in the infected lines. Regardless of Wolbachia infection status, progeny resulting from matings with young males showed higher fitness than those from crosses with old males, and infected females crossed with infected young males showed the highest performance.

CONCLUSION: These results suggest an impact of Wolbachia on female mate preference and offspring fitness although it is unclear how this phenomenon increases Wolbachia transmission of infected wasps. © 2024 Society of Chemical Industry.

RevDate: 2024-06-27

Mendel BM, Asselin AK, Johnson KN, et al (2024)

Effects of spontaneous mutations on survival and reproduction of Drosophila serrata infected with Drosophila C virus.

Evolution; international journal of organic evolution pii:7700164 [Epub ahead of print].

The impact of selection on host immune function genes has been widely documented. However, it remains essentially unknown how mutation influences the quantitative immune traits that selection acts on. Applying a classical mutation accumulation (MA) experimental design in Drosophila serrata, we found the mutational variation in susceptibility (median time of death, LT50) to Drosophila C virus (DCV) was of similar magnitude to that reported for intrinsic survival traits. Mean LT50 did not change as mutations accumulated, suggesting no directional bias in mutational effects. Maintenance of genetic variance in immune function is hypothesised to be influenced by pleiotropic effects on immunity and other traits that contribute to fitness. To investigate this, we assayed female reproductive output for a subset of MA lines with relatively long or short survival times under DCV infection. Longer survival time tended to be associated with lower reproductive output, suggesting that mutations affecting susceptibility to DCV had pleiotropic effects on investment in reproductive fitness. Further studies are needed to uncover the general patterns of mutational effect on immune responses and other fitness traits, and to determine how selection might typically act on new mutations via their direct and pleiotropic effects.

RevDate: 2024-06-26

Devereux G, Bula M, Tripp K, et al (2024)

A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Trial of AWZ1066S, an Anti-Wolbachia Candidate Macrofilaricide.

Clinical pharmacology in drug development [Epub ahead of print].

AWZ1066S has been developed as a potential treatment for the neglected tropical diseases lymphatic filariasis and onchocerciasis. AWZ1066S targets the Wolbachia bacterial endosymbiont present in the causative nematode parasites. This phase 1, first-in-human study aimed to assess the safety and pharmacokinetics of AWZ1066S in healthy human participants. In a randomized double-blind, placebo-controlled, single ascending dose study, healthy adults received a single oral dose of AWZ1066S (or placebo) and were followed up for 10 days. The planned single doses of AWZ1066S ranged from 100 to 1600 mg, and each dose was administered to a cohort of 8 participants (6 AWZ1066S and 2 placebo). In total 30 people participated, 18 (60%) female, median age 30.0 years (minimum 20, maximum 61). The cohorts administered 100, 200, 300, and 400 mg of AWZ1066S progressed unremarkably. After single 700-mg doses all 4 participants developed symptoms of acute gastritis and transient increases in liver enzymes. The severity of these adverse events ranged from mild to severe, with 1 participant needing hospital admission. Pharmacokinetic analysis indicated that AWZ1066S is rapidly absorbed with predictable pharmacokinetics. In conclusion, safety concerns prevented this study from reaching the human exposures needed for AWZ1066S to be clinically effective against lymphatic filariasis and onchocerciasis.

RevDate: 2024-06-26

Pratelli A, Riparbelli MG, G Callaini (2024)

Axonemal tubules in the distal sperm tail of Wolbachia-infected Drosophila simulans males contain ring-like intraluminal structures that persist after axoneme fragmentation.

Cytoskeleton (Hoboken, N.J.) [Epub ahead of print].

Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.

RevDate: 2024-06-25

Trouche B, Schrieke H, Duron O, et al (2024)

Wolbachia populations across organs of individual Culex pipiens: highly conserved intra-individual core pangenome with inter-individual polymorphisms.

ISME communications, 4(1):ycae078.

Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.

RevDate: 2024-06-24

Zimmermann IR, Alves Fernandes RR, Santos da Costa MG, et al (2024)

Simulation-based economic evaluation of the Wolbachia method in Brazil: a cost-effective strategy for dengue control.

Lancet regional health. Americas, 35:100783.

BACKGROUND: Dengue virus (DENV) is an arbovirus transmitted by Aedes aegypti mosquitoes, which can cause severe conditions such as hemorrhagic fever and dengue shock syndrome. These conditions are associated with adverse social, clinical, and economic consequences in Brazil. Herein, the Wolbachia mosquito replacement method is a promising dengue control strategy.

METHODS: We estimated the economic impact of implementing the Wolbachia mosquito replacement method in seven Brazilian cities. A mathematical microsimulation model tracked nearly 23 million inhabitants over a 20-year period, considering the transitions between five different health states (susceptible, inapparent, outpatient, hospitalised and death). Direct costs included local dengue control programs, Wolbachia implementation and dengue care. Indirect costs related to death and productivity loss, as well as disability-adjusted life-years (DALY) averted were also considered.

FINDINGS: Without Wolbachia, the model projected 1,762,688 reported dengue cases over 20 years. Implementing the Wolbachia method would avert at least 1,295,566 dengue cases, resulting in lower costs and greater effectiveness in all simulated cities. On average, for every 1000 inhabitants followed for 20 years, the Wolbachia method yielded a cost difference of USD 538,233.68 (BRL 2,691,168.40) and averted 5.56 DALYs. Net monetary benefits (NMB) were positive in all seven cities, ranging from USD 110.72 (BRL 553.59) to USD 1399.19 (BRL 6995.95) per inhabitant. Alternative scenarios have also shown a favourable return on investment with a positive benefit-cost ratio (BCR).

INTERPRETATION: Wolbachia is likely a cost-effective strategy in the Brazilian context, consistent with international studies. Sensitivity analysis and alternative scenarios confirmed the robustness of the results.

FUNDING: This study was funded by the Wellcome Trust under a grant (224459/Z/21/Z).

RevDate: 2024-06-22

Schinkel M, Bousema T, RP van Rij (2024)

Tripartite interactions between viruses, parasites, and mosquitoes.

Current opinion in insect science pii:S2214-5745(24)00064-6 [Epub ahead of print].

Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect transmission of the malaria causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.

RevDate: 2024-06-21

Tafesh-Edwards G, Kyza Karavioti M, Markollari K, et al (2024)

Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner.

Frontiers in microbiology, 15:1380647.

Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.

RevDate: 2024-06-20

Lim JT, Mailepessov D, Chong CS, et al (2024)

Update to: Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore.

Trials, 25(1):400.

BACKGROUND: This trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Singapore, with the aim of measuring the efficacy of male Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting with all four dengue serotypes in circulation. The trial commenced in July 2022 and is expected to conclude in September 2024. The original study protocol was published in December 2022. Here, we describe amendments that have been made to the study protocol since commencement of the trial.

METHODS: The key protocol amendments are (1) addition of an explicit definition of Wolbachia exposure for residents residing in intervention sites based on the duration of Wolbachia exposure at point of testing, (2) incorporation of a high-dimensional set of anthropogenic and environmental characteristics in the analysis plan to adjust for baseline risk factors of dengue transmission, and (3) addition of alternative statistical analyses for endpoints to control for post hoc imbalance in cluster-based environmental and anthropogenic characteristics.

DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of releasing male-Wolbachia infected mosquitoes to reduce dengue incidence in a cluster-randomised controlled trial. The trial will conclude in 2024 and results will be reported shortly thereafter.

TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT05505682. Registered on 16 August 2022. Retrospectively registered. Last updated 11 November 2023.

RevDate: 2024-06-20

Laifi-Necibi N, Amor N, Merella P, et al (2024)

DNA barcoding reveals cryptic species in the sea slater Ligia italica (Crustacea, Isopoda) from Tunisia.

Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis [Epub ahead of print].

Barcoding studies have provided significant insights into phylogenetic relationships among species belonging to the genus Ligia (Crustacea, Isopoda). Herein the diversity of the Italian sea slater Ligia italica from Tunisia is studied for the first time. Samples were collected from 18 localities in Tunisia, and the analysis included previously published sequences from Italy and Greece available in GenBank. Bayesian and Maximum Likelihood phylogenetic analyses were carried out using a fragment of the mitochondrial COI gene. Putative cryptic species were explored using the 'barcode gap' approach in the software ASAP. A genetic landscape shape analysis was carried out using the program Alleles in Space. The analyses revealed highly divergent and well-supported clades of L. italica dispersed across Tunisia (Clades A1 and A2), Greece (Clade B) and Italy (Clades C1 and C2). High genetic dissimilarity among clades suggested that L. italica constitute a cryptic species complex. Divergence among different L. italica lineages (Clades A, B and C) occurred around 7-4.5 Ma. The detected high genetic distances among clades did not result from atypical mitochondrial DNAs or intracellular infection by Wolbachia bacteria. The complex history of the Mediterranean Sea appears to have played a significant role in shaping the phylogeographic pattern of Ligia italica. Additional morphological and molecular studies are needed to confirm the existence of cryptic species in Ligia italica in Mediterranean.

RevDate: 2024-06-17

She L, Shi M, Cao T, et al (2024)

Wolbachia mediates crosstalk between miRNA and Toll pathways to enhance resistance to dengue virus in Aedes aegypti.

PLoS pathogens, 20(6):e1012296 pii:PPATHOGENS-D-23-02189 [Epub ahead of print].

The obligate endosymbiont Wolbachia induces pathogen interference in the primary disease vector Aedes aegypti, facilitating the utilization of Wolbachia-based mosquito control for arbovirus prevention, particularly against dengue virus (DENV). However, the mechanisms underlying Wolbachia-mediated virus blockade have not been fully elucidated. Here, we report that Wolbachia activates the host cytoplasmic miRNA biogenesis pathway to suppress DENV infection. Through the suppression of the long noncoding RNA aae-lnc-2268 by Wolbachia wAlbB, aae-miR-34-3p, a miRNA upregulated by the Wolbachia strains wAlbB and wMelPop, promoted the expression of the antiviral effector defensin and cecropin genes through the Toll pathway regulator MyD88. Notably, anti-DENV resistance induced by Wolbachia can be further enhanced, with the potential to achieve complete virus blockade by increasing the expression of aae-miR-34-3p in Ae. aegypti. Furthermore, the downregulation of aae-miR-34-3p compromised Wolbachia-mediated virus blockade. These findings reveal a novel mechanism by which Wolbachia establishes crosstalk between the cytoplasmic miRNA pathway and the Toll pathway via aae-miR-34-3p to strengthen antiviral immune responses against DENV. Our results will aid in the advancement of Wolbachia for arbovirus control by enhancing its virus-blocking efficiency.

RevDate: 2024-06-17
CmpDate: 2024-06-17

Taglialegna A (2024)

A mosquito symbiont controls flaviviruses.

Nature reviews. Microbiology, 22(7):387.

RevDate: 2024-06-14
CmpDate: 2024-06-14

Hague MTJ, Wheeler TB, BS Cooper (2024)

Comparative analysis of Wolbachia maternal transmission and localization in host ovaries.

Communications biology, 7(1):727.

Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.

RevDate: 2024-06-13

Taprogge M, S Grath (2024)

Modelling suggests Wolbachia-induced cytoplasmic incompatibility in oak gall wasps with cyclical parthenogenesis.

Journal of evolutionary biology pii:7692848 [Epub ahead of print].

Oak gall wasps typically exhibit a life cycle with one sexual and one asexual generation each year. These wasps can carry various endosymbionts, one of which is the maternally inherited bacterium Wolbachia that can induce several reproductive manipulations on its host. Cytoplasmic incompatibility (CI) has been described as the most prominent of these manipulations. CI leads to embryonic mortality in the hosts' offspring when infected males mate with either uninfected females or with females that harbour different Wolbachia strains. It has been hypothesized that Wolbachia can induce CI in oak gall wasps. To address this hypothesis, we derived a mathematical model to investigate the spread of a bacterial infection in naive populations and to determine the plausibility of CI occurrence. To validate our model, we used published data from Wolbachia-infected Belonocnema treatae populations in two approaches. Our first approach uses measurements of infection frequencies and maternal transmission in the sexual generation. For the second approach, we extended the model to compare predictions to estimates of mtDNA-haplotypes, which, like Wolbachia, are maternally inherited, and can therefore be associated with the infection. Both approaches indicate that CI is present in these populations. Our model can be generalized to investigate the occurrence of CI not only for oak gall wasps but also for other species.

RevDate: 2024-06-11

Naseri-Karimi N, Vatandoost H, Mehdi Sedaghat M, et al (2023)

Drosophila melanogaster Laboratory Rearing for Wolbachia-Based Control Programs, a Component of Dengue Control.

Journal of arthropod-borne diseases, 17(3):214-228.

BACKGROUND: Drosophila melanogaster flies are smooth, low upkeep and safe model organisms, they can be effortlessly used in different fields of life sciences like genomics, biotechnology, genetics, disease model, and Wolbachia-based approaches to fight vectors and the pathogens they transmit.

METHODS: Fruit fly specimens were collected in 25 districts (14 provinces) of Iran and their morphological recognition was proven by molecular analysis based on sequence homology of mitochondrial COI barcode region. Essential information and specific requirements were provided for laboratory rearing of D. melanogaster.

RESULTS: Drosophila melanogaster colonies were found in 23 out of 25 districts. Also, five related species coincident with D. melanogaster were reported in this study including D. ananassae/D. parapallidosa, D. hydei, D. repleta, Zaprionus indianus (Diptera: Drosophilidae), and Megaselia scalaris (Diptera: Phoridae). The Iranian D. melanogaster molecular signature and their rearing techniques have been described here. The complete life cycle, from (egg to adult), takes approximately 8 days at 25 °C. Some biological points have been presented with highlighting capturing, rearing, culturing, and embryo collection along with primitive recognition and segregation between females and males have been presented. A recipe for culture media and the quantity of various ingredients have been provided.

CONCLUSION: This is the first report on the D. repleta and D. ananassae/D. parapallidosa species for the country. Results of this study provide efficient and effective rearing procedures which are requirement for both small-scale for facilitating entomological research and large-scale use in justifiable vector control management such as disease model or Dengue control.

RevDate: 2024-06-10

Kumar T, Maitra S, Rai R, et al (2024)

The dichotomy between probiotic lactic acid bacteria and Plasmodium: a promising therapeutic avenue.

Acta tropica pii:S0001-706X(24)00166-9 [Epub ahead of print].

Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.

RevDate: 2024-06-10
CmpDate: 2024-06-10

Mulio SÅ, Zwolińska A, Klejdysz T, et al (2024)

Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae).

Environmental microbiology reports, 16(3):e13279.

Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.

RevDate: 2024-06-04
CmpDate: 2024-06-04

Engl T (2024)

Reproductive manipulation: Wolbachia induce host parthenogenesis using a stolen transformer.

Current biology : CB, 34(11):R547-R549.

The Wolbachia strain that infects the parasitoid wasp Encarsia formosa induces female-producing parthenogenesis. A new study shows that a Wolbachia-encoded gene has replaced the use of the ancestral wasp homologue that normally controls sexual reproduction, resulting in parthenogenesis.

RevDate: 2024-06-04

Guo W, Zhu W, Jia L, et al (2024)

Unique microbial communities of parasitic fleas on wild animals from the Qinghai-Tibet Plateau.

Environmental science and pollution research international [Epub ahead of print].

Fleas, one of the most significant ectoparasites, play a crucial role as vectors in spreading zoonotic diseases globally. The Qinghai Province, as part of the Qinghai-Tibet Plateau, is one of the provinces in China with the largest number of flea species. In this study, we characterized the microbial communities of eighty-five adult fleas, belonging to nineteen species within four families (Ceratophyllidae, Ctenophthalmidae, Leptopsyllidae, and Pulicidae). We identified a total of 1162 unique operational taxonomic units at the genus level, with flea-borne pathogens such as Wolbachia, Bartonella, Rickettsia being the members of top abundant taxa. Except for comparison between Ctenophthalmidae and Leptopsyllidae families, the analyses of both alpha- and beta- diversity indicators suggested that bacterial diversity varied among flea families. This could be attributed to flea phylogeny, which also influenced by their geographical sites and animal hosts. Results of Linear discriminant analysis effect size (LEfSe) indicated that 29 genera in Ceratophylloidea, 11 genera in Ctenophthalmidae, 15 genera in Leptopsyllidae, and 22 genera in Pulicidae were significantly responsible for explaining the differences among the four flea families (linear discriminant analysis score > 2, P < 0.05). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analyses showed that the functional pathways varied significantly across flea families, which was supported by the significant correlation between the functional pathways and the microbial communities.

RevDate: 2024-06-04

Chen J, Lin G, Ma K, et al (2024)

A specific innate immune response silences the virulence of Pseudomonas aeruginosa in a latent infection model in the Drosophila melanogaster host.

PLoS pathogens, 20(6):e1012252 pii:PPATHOGENS-D-24-00400 [Epub ahead of print].

Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infections by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.

RevDate: 2024-06-04

Cantin LJ, Gregory V, Blum LN, et al (2024)

Dual RNA-seq in filarial nematodes and Wolbachia endosymbionts using RNase H based ribosomal RNA depletion.

Frontiers in microbiology, 15:1418032.

Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.

RevDate: 2024-06-03

Turner HC (2024)

Cost-effectiveness of a Wolbachia-based replacement strategy for dengue control in Brazil.

Lancet regional health. Americas, 35:100789.

RevDate: 2024-05-27

Jeffries CL, Tantely LM, Kadriaj P, et al (2024)

Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range.

Wellcome open research, 9:18.

BACKGROUND: Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV).

METHODS: In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 (CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia.

RESULTS: Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST.

CONCLUSIONS: This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.

RevDate: 2024-05-25
CmpDate: 2024-05-25

Wijegunawardana NDAD, Gunawardene YINS, Abeyewickreme W, et al (2024)

Diversity of Wolbachia infections in Sri Lankan mosquitoes with a new record of Wolbachia Supergroup B infecting Aedes aegypti vector populations.

Scientific reports, 14(1):11966.

Wolbachia bacteria are common endosymbionts of insects and have recently been applied for controlling arboviral vectors, especially Aedes aegypti mosquito populations. However, several medically important mosquito species in Sri Lanka were present with limited information for the Wolbachia infection status. Therefore, the screening of Wolbachia in indigenous mosquitoes is required prior to a successful application of Wolbachia-based vector control strategy. In this study, screening of 78 mosquito species collected from various parts of the country revealed that 13 species were positive for Wolbachia infection, giving ~ 17% infection frequency of Wolbachia among the Sri Lankan mosquitoes. Twelve Wolbachia-positive mosquito species were selected for downstream Wolbachia strain genotyping using Multi Locus Sequencing Type (MLST), wsp gene, and 16S rRNA gene-based approaches. Results showed that these Wolbachia strains clustered together with the present Wolbachia phylogeny of world mosquito populations with some variations. Almost 90% of the mosquito populations were infected with supergroup B while the remaining were infected with supergroup A. A new record of Wolbachia supergroup B infection in Ae. aegypti, the main vectors of dengue, was highlighted. This finding was further confirmed by real-time qPCR, revealing Wolbachia density variations between Ae. aegypti and Ae. albopictus (p = 0.001), and between males and females (p < 0.05). The evidence of natural Wolbachia infections in Ae. aegypti populations in Sri Lanka is an extremely rare incident that has the potential to be used for arboviral vector control.

RevDate: 2024-05-25

Moerbeck L, Parreira R, Szczotko M, et al (2024)

Ticks and Tick-Borne Pathogens Circulating in Peri-Domestic Areas in Mainland Portugal.

Microorganisms, 12(5): pii:microorganisms12051006.

Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and reemerging zoonoses. In this sense, ticks, which are obligate hematophagous ectoparasites, have a key role in maintaining and transmitting TBPs among humans and animals. The aim of this study was to assess the prevalence of neglected TBPs in mainland Portugal, namely Anaplasma spp., Babesia spp., Ehrlichia spp. and Neoehrlichia mikurensis. DNA fragments were detected in questing ticks collected from five different ecological areas under investigation. To the best of the authors' knowledge, this study reports new worldwide findings, including B. bigemina infecting Ixodes frontalis, Ixodes ricinus and Rhipicephalus sanguineus sensu lato. Additionally, it presents new findings in Portugal of N. mikurensis infecting I. ricinus and of presumably Wolbachia endosymbionts being detected in I. ricinus. Overall, there were 208 tick samples that were negative for all screened TBPs. The results herein obtained raise concerns about the circulation of neglected TBPs in mainland Portugal, especially in anthropophilic ticks, highlighting the importance of adopting a One Health perspective.

RevDate: 2024-05-24

Löckener I, Behrmann LV, Reuter J, et al (2024)

The MraY Inhibitor Muraymycin D2 and Its Derivatives Induce Enlarged Cells in Obligate Intracellular Chlamydia and Wolbachia and Break the Persistence Phenotype in Chlamydia.

Antibiotics (Basel, Switzerland), 13(5): pii:antibiotics13050421.

Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.

RevDate: 2024-05-24

Frontiers Production Office (2024)

Erratum: Genetic diversity of endosymbiotic bacteria Wolbachia infecting two mosquito species of the genus Eretmapodites occurring in sympatry in the Comoros archipelago.

Frontiers in microbiology, 15:1425304.

[This corrects the article DOI: 10.3389/fmicb.2024.1343917.].

RevDate: 2024-05-22
CmpDate: 2024-05-22

Khosravi G, Akbarzadeh K, Karimian F, et al (2024)

A survey of Wolbachia infection in brachyceran flies from Iran.

PloS one, 19(5):e0301274 pii:PONE-D-23-40726.

Wolbachia is a maternally inherited intracellular bacterium that is considered to be the most plentiful endosymbiont found in arthropods. It reproductively manipulates its host to increase the chances of being transmitted to the insect progeny; and it is currently used as a means of suppressing disease vector populations or controlling vector-borne diseases. Studies of the dissemination and prevalence of Wolbachia among its arthropod hosts are important for its possible use as a biological control agent. The molecular identification of Wolbachia relies on different primers sets due to Wolbachia strain variation. Here, we screened for the presence of Wolbachia in a broad range of Brachycera fly species (Diptera), collected from different regions of Iran, using nine genetic markers (wsp, ftsZ, fbpA, gatB, CoxA, gltA, GroEL dnaA, and 16s rRNA), for detecting, assessing the sensitivity of primers for detection, and phylogeny of this bacterium. The overall incidence of Wolbachia among 22 species from six families was 27.3%. The most commonly positive fly species were Pollenia sp. and Hydrotaea armipes. However, the bacterium was not found in the most medically important flies or in potential human disease vectors, including Musca domestica, Sarcophaga spp., Calliphora vicinia, Lucilia sericata, and Chrysomya albiceps. The primer sets of 16s rRNA with 53.0% and gatB with 52.0% were the most sensitive primers for detecting Wolbachia. Blast search, phylogenetic, and MLST analysis of the different locus sequences of Wolbachia show that all the six distantly related fly species likely belonging to supergroup A. Our study showed some primer sets generated false negatives in many of the samples, emphasizing the importance of using different loci in detecting Wolbachia. The study provides the groundwork for future studies of a Wolbachia-based program for control of flies.

RevDate: 2024-05-22

Poulain M, Rosinski E, Henri H, et al (2024)

Development, feeding, and sex shape the relative quantity of the nutritional obligatory symbiont Wolbachia in bed bugs.

Frontiers in microbiology, 15:1386458.

The common bed bug, Cimex lectularius, is a hemipteran insect that feeds only on blood, and whose bites cause public health issues. Due to globalization and resistance to insecticides, this pest has undergone a significant and global resurgence in recent decades. Blood is an unbalanced diet, lacking notably sufficient B vitamins. Like all strict hematophagous arthropods, bed bugs host a nutritional symbiont supplying B vitamins. In C. lectularius, this nutritional symbiont is the intracellular bacterium Wolbachia (wCle). It is located in specific symbiotic organs, the bacteriomes, as well as in ovaries. Experimental depletion of wCle has been shown to result in longer nymphal development and lower fecundity. These phenotypes were rescued by B vitamin supplementation. Understanding the interaction between wCle and the bed bug may help to develop new pest control methods targeting the disruption of this symbiotic interaction. The objective of this work was thus to quantify accurately the density of wCle over the life cycle of the host and to describe potential associated morphological changes in the bacteriome. We also sought to determine the impact of sex, feeding status, and aging on the bacterial population dynamics. We showed that the relative quantity of wCle continuously increases during bed bug development, while the relative size of the bacteriome remains stable. We also showed that adult females harbor more wCle than males and that wCle relative quantity decreases slightly in adults with age, except in weekly-fed males. These results are discussed in the context of bed bug ecology and will help to define critical points of the symbiotic interaction during the bed bug life cycle.

RevDate: 2024-05-21

Connolly JB, Burt A, Christophides G, et al (2024)

Considerations for first field trials of low-threshold gene drive for malaria vector control.

Malaria journal, 23(1):156.

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Miyata M, Nomura M, D Kageyama (2024)

Rapid spread of a vertically transmitted symbiont induces drastic shifts in butterfly sex ratio.

Current biology : CB, 34(10):R490-R492.

The causes and consequences of sex-ratio dynamics constitutes a pivotal subject in evolutionary biology[1]. Under conditions of evolutionary equilibrium, the male-to-female ratio tends to be approximately 1:1; however, this equilibrium is susceptible to distortion by selfish genetic elements exemplified by driving sex chromosomes and cytoplasmic elements[2][,][3]. Although previous studies have documented instances of these genetic elements distorting the sex ratio, studies specifically tracking the process with which these distorters spread within populations, leading to a transition from balanced parity to a skewed, female-biased state, are notably lacking. Herein, we present compelling evidence documenting the rapid spread of the cytoplasmic endosymbiont Wolbachia within a localized population of the pierid butterfly Eurema hecabe (Figure 1A). This spread resulted in a shift in the sex ratio from near parity to an exceedingly skewed state overwhelmingly biased toward females, reaching 93.1% within a remarkably brief period of 4 years.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Maleki-Ravasan N, Ghafari SM, Najafzadeh N, et al (2024)

Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: A neglected component of sand fly infectious inoculums.

PLoS neglected tropical diseases, 18(5):e0012165 pii:PNTD-D-23-01610.

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.

RevDate: 2024-05-20

Muharromah AF, Carvajal TM, Regilme MAF, et al (2024)

Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines.

Parasites & vectors, 17(1):233.

BACKGROUND: The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines.

METHODS: We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays.

RESULTS: We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales.

CONCLUSIONS: Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.

RevDate: 2024-05-17

Bell-Sakyi L, Haines LR, Petrucci G, et al (2024)

Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans.

Parasites & vectors, 17(1):231.

BACKGROUND: Insect cell lines play a vital role in many aspects of research on disease vectors and agricultural pests. The tsetse fly Glossina morsitans morsitans is an important vector of salivarian trypanosomes in sub-Saharan Africa and, as such, is a major constraint on human health and agricultural development in the region.

METHODS: Here, we report establishment and partial characterisation of a cell line, GMA/LULS61, derived from tissues of adult female G. m. morsitans. GMA/LULS61 cells, grown at 28 °C in L-15 (Leibovitz) medium supplemented with foetal bovine serum and tryptose phosphate broth, have been taken through 23 passages to date and can be split 1:1 at 2-week intervals. Karyotyping at passage 17 revealed a predominantly haploid chromosome complement. Species origin and absence of contaminating bacteria were confirmed by PCR amplification and sequencing of fragments of the COI gene and pan-bacterial 16S rRNA gene respectively. However, PCR screening of RNA extracted from GMA/LULS61 cells confirmed presence of the recently described Glossina morsitans morsitans iflavirus and Glossina morsitans morsitans negevirus, but absence of Glossina pallipides salivary gland hypertrophy virus. GMA/LULS61 cells supported infection and growth of 6/7 different insect-derived strains of the intracellular bacterial symbiont Wolbachia.

CONCLUSIONS: The GMA/LULS61 cell line has potential for application in a variety of studies investigating the biology of G. m. morsitans and its associated pathogenic and symbiotic microorganisms.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Dufault SM, Tanamas SK, Indriani C, et al (2024)

Reanalysis of cluster randomised trial data to account for exposure misclassification using a per-protocol and complier-restricted approach.

Scientific reports, 14(1):11207.

The intention-to-treat (ITT) analysis of the Applying Wolbachia to Eliminate Dengue (AWED) trial estimated a protective efficacy of 77.1% for participants resident in areas randomised to receive releases of wMel-infected Aedes aegypti mosquitoes, an emerging dengue preventive intervention. The limiting assumptions of ITT analyses in cluster randomised trials and the mobility of mosquitoes and humans across cluster boundaries indicate the primary analysis is likely to underestimate the full public health benefit. Using spatiotemporally-resolved data on the distribution of Wolbachia mosquitoes and on the mobility of AWED participants (n = 6306), we perform complier-restricted and per-protocol re-examinations of the efficacy of the Wolbachia intervention. Increased intervention efficacy was estimated in all analyses by the refined exposure measures. The complier-restricted analysis returned an estimated efficacy of 80.7% (95% CI 65.9, 89.0) and the per-protocol analysis estimated 82.7% (71.7, 88.4) efficacy when comparing participants with an estimated wMel exposure of ≥ 80% compared to those with <20%. These reanalyses demonstrate how human and mosquito movement can lead to underestimation of intervention effects in trials of vector interventions and indicate that the protective efficacy of Wolbachia is even higher than reported in the primary trial results.

RevDate: 2024-05-16

Idro R, Ogwang R, Anguzu R, et al (2024)

Doxycycline for the treatment of nodding syndrome: a randomised, placebo-controlled, phase 2 trial.

The Lancet. Global health pii:S2214-109X(24)00102-5 [Epub ahead of print].

BACKGROUND: Nodding syndrome is a poorly understood neurological disorder that predominantly occurs in Africa. We hypothesised that nodding syndrome is a neuroinflammatory disorder, induced by antibodies to Onchocerca volvulus or its Wolbachia symbiont, cross-reacting with host neuronal proteins (HNPs), and that doxycycline can be used as treatment.

METHODS: In this randomised, double-blind, placebo-controlled, phase 2 trial, we recruited participants from districts affected by nodding syndrome in northern Uganda. We included children and adolescents aged 8-18 years with nodding syndrome, as defined by WHO consensus criteria. Participants were randomly assigned (1:1) to receive either 100 mg doxycycline daily or placebo for 6 weeks via a computer-generated schedule stratified by skin microscopy results, and all parties were masked to group assignment. Diagnoses of O volvulus and antibodies to HNPs were made using luciferase immunoprecipitation system assays and immunohistochemistry. The primary outcome was change in the proportion with antibodies to HNPs, assessed at 24 months. All participants were included in safety analyses, and surviving participants (those with samples at 24 months) were included in primary analyses. Secondary outcomes were: change in concentrations of antibodies to HNPs at 24 months compared with baseline; proportion of participants testing positive for antibodies to O volvulus-specific proteins and concentrations of Ov16 or OVOC3261 antibodies at 24 months compared with baseline; change in seizure burden, proportion achieving seizure freedom, and the proportions with interictal epileptiform discharges on the diagnostic EEG; overall quality of life; disease severity at 24 months; and incidence of all-cause adverse events, serious adverse events, and seizure-related mortality by 24 months. This trial is registered with ClinicalTrials.gov, NCT02850913.

FINDINGS: Between Sept 1, 2016, and Aug 31, 2018, 329 children and adolescents were screened, of whom 240 were included in the study. 140 (58%) participants were boys and 100 (42%) were girls. 120 (50%) participants were allocated to receive doxycycline and 120 (50%) to receive placebo. At recruitment, the median duration of symptoms was 9 years (IQR 6-10); 232 (97%) participants had O volvulus-specific antibodies and 157 (65%) had autoantibodies to HNPs. The most common plasma autoantibodies were to human protein deglycase DJ-1 (85 [35%] participants) and leiomodin-1 (77 [32%] participants) and, in cerebrospinal fluid (CSF), to human DJ-1 (27 [11%] participants) and leiomodin-1 (14 [6%] participants). On immunohistochemistry, 46 (19%) participants had CSF autoantibodies to HNPs, including leiomodin-1 (26 [11%]), γ-aminobutyric acid B receptors (two [<1%]), CASPR2 (one [<1%]), or unknown targets (28 [12%]). At 24 months, 161 (72%) of 225 participants had antibodies to HNPs compared with 157 (65%) of 240 at baseline. 6 weeks of doxycycline did not affect the concentration of autoantibodies to HNPs, seizure control, disease severity, or quality of life at the 24-month follow-up but substantially decreased Ov16 antibody concentrations; the median plasma signal-to-noise Ov16 ratio was 16·4 (95% CI 6·4-38·4), compared with 27·9 (8·2-65·8; p=0·033) for placebo. 14 (6%) participants died and, other than one traffic death, all deaths were seizure-related. Acute seizure-related hospitalisations (rate ratio [RR] 0·43 [95% CI 0·20-0·94], p=0·028) and deaths (RR 0·46 [0·24-0·89], p=0·028) were significantly lower in the doxycycline group. At 24 months, 96 (84%) of 114 participants who received doxycycline tested positive for antibodies to Ov16, compared with 97 (87%) of 111 on placebo (p=0·50), and 74 (65%) participants on doxycycline tested positive for antibodies to OVOC3261, compared with 57 (51%) on placebo (p=0·039). Doxycycline was safe; there was no difference in the incidence of grade 3-5 adverse events across the two groups.

INTERPRETATION: Nodding syndrome is strongly associated with O volvulus and the pathogenesis is probably mediated through an O volvulus induced autoantibody response to multiple proteins. Although it did not reverse disease symptoms, doxycycline or another prophylactic antibiotic could be considered as adjunct therapy to antiseizure medication, as it might reduce fatal complications from acute seizures and status epilepticus induced by febrile infections.

FUNDING: Medical Research Council (UK).

TRANSLATION: For the Luo translation of the abstract see Supplementary Materials section.

RevDate: 2024-05-14

De Coninck L, Soto A, Wang L, et al (2024)

Lack of abundant core virome in Culex mosquitoes from a temperate climate region despite a mosquito species-specific virome.

mSystems [Epub ahead of print].

In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.

RevDate: 2024-05-11
CmpDate: 2024-05-11

Zhang J, Liu Q, Dai L, et al (2024)

Pan-Genome Analysis of Wolbachia, Endosymbiont of Diaphorina citri, Reveals Independent Origin in Asia and North America.

International journal of molecular sciences, 25(9): pii:ijms25094851.

Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).

RevDate: 2024-05-10

Setegn A, Amare GA, Y Mihret (2024)

Wolbachia and Lymphatic Filarial Nematodes and Their Implications in the Pathogenesis of the Disease.

Journal of parasitology research, 2024:3476951.

Lymphatic filariasis (LF) is an infection of three closely related filarial worms such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. These worms can cause a devastating disease that involves acute and chronic lymphoedema of the extremities, which can cause elephantiasis in both sexes and hydroceles in males. These important public health nematodes were found to have a mutualistic relationship with intracellular bacteria of the genus Wolbachia, which is essential for the development and survival of the nematode. The host's inflammatory response to parasites and possibly also to the Wolbachia endosymbiont is the cause of lymphatic damage and disease pathogenesis. This review tried to describe and highlight the mutualistic associations between Wolbachia and lymphatic filarial nematodes and the role of bacteria in the pathogenesis of lymphatic filariasis. Articles for this review were searched from PubMed, Google Scholar, and other databases. Article searching was not restricted by publication year; however, only English version full-text articles were included.

RevDate: 2024-05-08
CmpDate: 2024-05-08

Mushtaq I, Sarwar MS, Chaudhry A, et al (2024)

Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions.

Frontiers in cellular and infection microbiology, 14:1330475.

The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.

RevDate: 2024-05-05
CmpDate: 2024-05-05

Łukasik P, MR Kolasa (2024)

With a little help from my friends: the roles of microbial symbionts in insect populations and communities.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 379(1904):20230122.

To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.

RevDate: 2024-05-03

Roldán EL, Stelinski LL, KS Pelz-Stelinski (2024)

Reduction of Wolbachia in Diaphorina citri (Hemiptera: Liviidae) increases phytopathogen acquisition and decreases fitness.

Journal of economic entomology pii:7664344 [Epub ahead of print].

Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.

RevDate: 2024-05-01

Li C, Li CQ, Chen ZB, et al (2024)

Wolbachia symbionts control sex in a parasitoid wasp using a horizontally acquired gene.

Current biology : CB pii:S0960-9822(24)00475-5 [Epub ahead of print].

Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.

RevDate: 2024-05-01
CmpDate: 2024-05-01

Tokash-Peters AG, Niyonzima JD, Kayirangwa M, et al (2024)

Mosquito Microbiomes of Rwanda: Characterizing Mosquito Host and Microbial Communities in the Land of a Thousand Hills.

Microbial ecology, 87(1):64.

Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.

RevDate: 2024-04-29
CmpDate: 2024-04-29

Hernández AM, Alcaraz LD, Hernández-Álvarez C, et al (2024)

Revealing the microbiome diversity and biocontrol potential of field Aedes ssp.: Implications for disease vector management.

PloS one, 19(4):e0302328 pii:PONE-D-23-29285.

The mosquito Aedes spp. holds important relevance for human and animal health, as it serves as a vector for transmitting multiple diseases, including dengue and Zika virus. The microbiome's impact on its host's health and fitness is well known. However, most studies on mosquito microbiomes have been conducted in laboratory settings. We explored the mixed microbial communities within Aedes spp., utilizing the 16S rRNA gene for diversity analysis and shotgun metagenomics for functional genomics. Our samples, which included Ae. aegypti and Ae. albopictus, spanned various developmental stages-eggs, larvae, and adults-gathered from five semiurban areas in Mexico. Our findings revealed a substantial diversity of 8,346 operational taxonomic units (OTUs), representing 967 bacterial genera and 126,366 annotated proteins. The host developmental stage was identified as the primary factor associated with variations in the microbiome composition. Subsequently, we searched for genes and species involved in mosquito biocontrol. Wolbachia accounted for 9.6% of the 16S gene sequences. We observed a high diversity (203 OTUs) of Wolbachia strains commonly associated with mosquitoes, such as wAlb, with a noticeable increase in abundance during the adult stages. Notably, we detected the presence of the cifA and cifB genes, which are associated with Wolbachia's cytoplasmic incompatibility, a biocontrol mechanism. Additionally, we identified 221 OTUs related to Bacillus, including strains linked to B. thuringiensis. Furthermore, we discovered multiple genes encoding insecticidal toxins, such as Cry, Mcf, Vip, and Vpp. Overall, our study contributes to the understanding of mosquito microbiome biodiversity and metabolic capabilities, which are essential for developing effective biocontrol strategies against this disease vector.

RevDate: 2024-04-29

Junsiri W, Kamkong P, Phojun A, et al (2024)

Unveiling zoonotic threats: molecular identification of Brugia sp. infection in a lion.

Frontiers in veterinary science, 11:1376208.

Brugia malayi and B. pahangi, potential zoonotic pathogens transmitted by mosquitoes, are believed to primarily infect dogs and cats as reservoir hosts. Although previous studies have indicated nematode infections in lions, particularly in zoo environments where human contact with these reservoirs is possible, limited documentation exists regarding Brugia sp. infections in lions in Thailand. This study aims to investigate a case of Brugia infection in a lion from a zoo in Thailand. The blood sample was collected and examined from a female lion, using staining methods to morphologically identify microfilaria at the genus level. Subsequently, the PCR was employed targeting specific genes, including mitochondrial 12S rDNA, 18S rDNA, cytochrome oxidase I (COI) and Wolbachia surface protein (wsp), to confirm the species of the filarial nematode parasite. The genetic sequencing results revealed a high similarity (99-100%) to B. malayi for the 12S rDNA, 18S rDNA, COI and wsp genes. Phylogenetic analysis based on nucleotide sequences from the 12S rDNA, 18S rDNA, COI and wsp genes showed that the sequences from this study belong to different clusters. This marks the inaugural documentation of molecular identification of Brugia infection in a lion, signifying that lions could function as reservoirs for this parasite and present a potential public health risk in the region. Our research underscores the effectiveness of molecular techniques and phylogenetic analysis in discerning and comprehending the evolution of filarial parasites. Additionally, it emphasizes the significance of these methods in enhancing the diagnosis, control, and prevention of zoonotic filarial nematode infections.

RevDate: 2024-04-29

Andreenkova OV, Adonyeva NV, Efimov VM, et al (2024)

Fertility differences between two wild-type Drosophila melanogaster lines correlate with differences in the expression of the Jheh1 gene, which codes for an enzyme degrading juvenile hormone.

Vavilovskii zhurnal genetiki i selektsii, 28(2):185-189.

Juvenile hormone plays a "status quo" role in Drosophila melanogaster larvae, preventing the untimely metamorphosis, and performs a gonadotropic function in imagoes, ensuring the ovaries' preparedness for vitellogenesis. The decreased level of juvenile hormone results in reproductive disorders in D. melanogaster females including a delay in the oviposition onset and a fertility decrease. Another factor that can affect the insect reproduction is an infection with the maternally inherited symbiotic α-proteobacterium Wolbachia. The present study is devoted to the analysis of the expression of two juvenile hormone metabolism genes encoding enzymes of its synthesis and degradation, juvenile hormone acid O-methyltransferase (jhamt) and juvenile hormone epoxide hydrase (Jheh1), respectively, in four wild-type D. melanogaster lines, two of them being infected with Wolbachia. Lines w153 and Bi90 were both derived from an individual wild-caught females infected with Wolbachia, while lines w153T and Bi90T were derived from them by tetracycline treatment and are free of infection. Line Bi90 is known to be infected with the Wolbachia strain wMel, and line w153, with the Wolbachia strain wMelPlus belonging to the wMelCS genotype. It was found that infection with either Wolbachia strain does not affect the expression of the studied genes. At the same time, it was shown that the w153 and w153T lines differ from the Bi90 and Bi90T lines by an increased level of the Jheh1 gene expression and do not differ in the jhamt gene expression level. Analysis of the fertility of these four lines showed that it does not depend on Wolbachia infection either, but differs between lines with different nuclear genotypes: in w153 and w153T, it is significantly lower than in lines Bi90 and Bi90T. The data obtained allow us to reasonably propose that the inter-line D. melanogaster polymorphism in the metabolism of the juvenile hormone is determined by its degradation (not by its synthesis) and correlates with the fertility level.

RevDate: 2024-04-27
CmpDate: 2024-04-27

Wan H, Wu Y, Fan G, et al (2024)

Wolbachia invasion dynamics of a random mosquito population model with imperfect maternal transmission and incomplete CI.

Journal of mathematical biology, 88(6):72.

In this work, we formulate a random Wolbachia invasion model incorporating the effects of imperfect maternal transmission and incomplete cytoplasmic incompatibility (CI). Under constant environments, we obtain the following results: Firstly, the complete invasion equilibrium of Wolbachia does not exist, and thus the population replacement is not achievable in the case of imperfect maternal transmission; Secondly, imperfect maternal transmission or incomplete CI may obliterate bistability and backward bifurcation, which leads to the failure of Wolbachia invasion, no matter how many infected mosquitoes would be released; Thirdly, the threshold number of the infected mosquitoes to be released would increase with the decrease of the maternal transmission rate or the intensity of CI effect. In random environments, we investigate in detail the Wolbachia invasion dynamics of the random mosquito population model and establish the initial release threshold of infected mosquitoes for successful invasion of Wolbachia into the wild mosquito population. In particular, the existence and stability of invariant probability measures for the establishment and extinction of Wolbachia are determined.

RevDate: 2024-04-27

Tuñon A, García J, Carrera LC, et al (2024)

Chemical control of medically important arthropods in Panama: A systematic literature review of historical efforts.

Acta tropica pii:S0001-706X(24)00100-1 [Epub ahead of print].

Vector-borne diseases are a major source of morbidity in Panama. Herein, we describe historical usage patterns of synthetic insecticides to control arthropod disease vectors in this country. We examine the influence of interventions by vector control programs on the emergence of insecticide resistance. Chemical control has traditionally focused on two mosquito species: Anopheles albimanus, a major regional malaria vector, and Aedes aegypti, a historical vector of yellow fever, and current vector of dengue, chikungunya, and Zika. Countrywide populations of An. albimanus depict hyperirritability to organochlorine insecticides administered by indoor residual spraying, although they appear susceptible to these insecticides in bioassays settings, as well as to organophosphate and carbamate insecticides in field tests. Populations of Ae. aegypti show resistance to pyrethroids, particularly in areas near Panama City, but the spread of resistance remains unknown in Ae. aegypti and Aedes albopictus. A One Health approach is needed in Panama to pinpoint the insecticide resistance mechanisms including the frequency of knockdown mutations and behavioral plasticity in populations of Anopheles and Aedes mosquitoes. This information is necessary to guide the sustainable implementation of chemical control strategies and the use of modern vector control technologies such as genetically modified mosquitoes, and endosymbiont Wolbachia-based biological control.

RevDate: 2024-04-26

Liu Y, Zhang L, Cai X, et al (2024)

The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda.

Insects, 15(4): pii:insects15040217.

Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.

RevDate: 2024-04-22

Ng IK (2024)

Wastewater surveillance and Wolbachia-aedes method to combat Zika virus outbreaks in tropical countries.

Tropical doctor [Epub ahead of print].

RevDate: 2024-04-22

Penunuri G, Wang P, Corbett-Detig R, et al (2024)

A Structural Proteome Screen Identifies Protein Mimicry in Host-Microbe Systems.

bioRxiv : the preprint server for biology pii:2024.04.10.588793.

Host-microbe systems are evolutionary niches that produce coevolved biological interactions and are a key component of global health. However, these systems have historically been a difficult field of biological research due to their experimental intractability. Impactful advances in global health will be obtained by leveraging in silico screens to identify genes involved in mediating interspecific interactions. These predictions will progress our understanding of these systems and lay the groundwork for future in vitro and in vivo experiments and bioengineering projects. A driver of host-manipulation and intracellular survival utilized by host-associated microbes is molecular mimicry, a critical mechanism that can occur at any level from DNA to protein structures. We applied protein structure prediction and alignment tools to explore host-associated bacterial structural proteomes for examples of protein structure mimicry. By leveraging the Legionella pneumophila proteome and its many known structural mimics, we developed and validated a screen that can be applied to virtually any host-microbe system to uncover signals of protein mimicry. These mimics represent candidate proteins that mediate host interactions in microbial proteomes. We successfully applied this screen to other microbes with demonstrated effects on global health, Helicobacter pylori and Wolbachia , identifying protein mimic candidates in each proteome. We discuss the roles these candidates may play in important Wolbachia -induced phenotypes and show that Wobachia infection can partially rescue the loss of one of these factors. This work demonstrates how a genome-wide screen for candidates of host-manipulation and intracellular survival offers an opportunity to identify functionally important genes in host-microbe systems.

RevDate: 2024-04-21

Pardinilla LM, Aljaberi S, Procter M, et al (2024)

The prevalence of selected vector-borne diseases in dromedary camels (Camelus dromedarius) in the United Arab Emirates.

Veterinary parasitology, regional studies and reports, 50:101006.

Vector-borne diseases (VBDs) affecting dromedary camels (Camelus dromedarius) have considerable importance in the United Arab Emirates (UAE) because of the consequences associated with production decline and economic losses. Our study aimed to determine the prevalence of selected VBDs in camels in the UAE and identify risk factors. This research is currently affected by the low number of epidemiological molecular surveys addressing this issue. Blood samples were obtained from 425 dromedary camels from different locations across the UAE. Whole genomic DNA was isolated, and PCR screening was done to detect piroplasmids (Babesia/Theileria spp.), Trypanosoma spp., and Anaplasmataceae spp. (Anaplasma, Ehrlichia, Neorickettsia and Wolbachia spp.). Amplicons were sequenced, and phylogenetic trees were constructed. Trypanosoma sequences were identified as T. brucei evansi, whereas Anaplasmataceae sequences were identified as A. platys-like. All camels were negative for Babesia/Theileria spp. (0%); however, 18 camels were positive for T. b. evansi (4%) and 52 were positive for A. platys-like (12%). Mixed infection with T. b. evansi and A. platys-like was found in one camel. Statistical analyses revealed that camels with a brown coat colour were significantly more prone to acquire the A. platys-like strain compared with those having a clearer coat. A similar finding was observed when comparing urban moving camels with desert indoor and urban indoor camels. Continuous disease surveillance is required to ensure and maintain the good health status of the camels in the UAE. Nonetheless, the risk of disease outbreak remains if the misuse of drugs continues.

RevDate: 2024-04-20

Salje H, FM Jiggins (2024)

Risks of releasing imperfect Wolbachia strains for arbovirus control.

The Lancet. Microbe pii:S2666-5247(24)00072-7 [Epub ahead of print].

RevDate: 2024-04-18

Wei X, Zhu J, Hoffmann AA, et al (2024)

Wolbachia infection status and molecular diversity in the species of tribe Tagiadini Mabille, 1878 (Lepidoptera: Hesperiidae) collected in China.

Ecology and evolution, 14(4):e11279.

Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.

RevDate: 2024-04-17

Orozco-Gonzales JL, Dos Santos Benedito A, Cardona-Salgado D, et al (2024)

Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes.

Mathematical biosciences pii:S0025-5564(24)00050-6 [Epub ahead of print].

This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model's parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures.

RevDate: 2024-04-17

Alkathiry HA, Alghamdi SQ, Sinha A, et al (2024)

Microbiome and mitogenomics of the chigger mite Pentidionis agamae: potential role as an Orientia vector and associations with divergent clades of Wolbachia and Borrelia.

BMC genomics, 25(1):380.

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear.

RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin.

CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.

RevDate: 2024-04-17

Durrance-Bagale A, Hoe N, Lai J, et al (2024)

Dengue vector control in high-income, city settings: A scoping review of approaches and methods.

PLoS neglected tropical diseases, 18(4):e0012081 pii:PNTD-D-23-00729.

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities.

METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings.

RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact.

CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.

RevDate: 2024-04-17

Scussel S, Gaudillat B, Esnault J, et al (2024)

Combining transinfected Wolbachia and a genetic sexing strain to control Aedes albopictus in laboratory-controlled conditions.

Proceedings. Biological sciences, 291(2021):20240429.

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.

RevDate: 2024-04-12

Mowery MA, Rosenwald LC, Chapman E, et al (2024)

Endosymbiont diversity across native and invasive brown widow spider populations.

Scientific reports, 14(1):8556.

The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread in multiple locations around the world and, along with it, brought associated organisms such as endosymbionts. We investigated endosymbiont diversity and prevalence across putative native and invasive populations of this spider, predicting lower endosymbiont diversity across the invasive range compared to the native range. First, we characterized the microbial community in the putative native (South Africa) and invasive (Israel and the United States) ranges via high throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs, indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at lower overall prevalence (14%) and was represented in all countries, but not all populations. In addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and Wolbachia was geographically clustered in both Israel and South Africa. Characterizing endosymbiont prevalence and diversity is a first step in understanding their function inside the host and may shed light on the process of spread and population variability in cosmopolitan invasive species.

RevDate: 2024-04-12

Akintola AA, UW Hwang (2024)

Microbiome Profile of South Korean Vector Mosquitoes.

Acta tropica pii:S0001-706X(24)00096-2 [Epub ahead of print].

This research offers a comprehensive exploration of the microbial communities associated with vector mosquitoes from South Korea. Aedes albopictus, Anopheles sinensis, and Culex molestus are vectors of pathogens, and understanding the intricacies of their microbiome profile is paramount for unraveling their roles in disease transmission dynamics. In this study, we characterized the microbiome of the midguts of adult female vector mosquitoes collected from different locations in South Korea. After DNA extraction from dissected mosquito midguts, we used the Illumina MiSeq next-generation sequencing to obtain sequences spanning the V4 hypervariable region of the bacteria 16S rRNA. Morphological and molecular characterization using 506-bp mitochondrial 16S rRNA was used to identify the mosquito species before amplicon sequencing. Across the three vector mosquitoes surveyed, 21 bacteria genera belonging to 20 families and 5 phyla were discovered. Proteobacteria and Bacteriodota were the major phyla of bacteria associated with the three mosquito species. There were significant differences in the gut microbiome genera composition between the species and little variation in the gut microbiome between individuals of the same mosquito species. Wolbachia is the most dominant genus in Aedes while Aeromonas, Acinetobacter, and unassigned taxa are the most common in An. sinensis. In addition to that, Chromobacterium, Chryseobacterium, and Aeromonas are dominant in Cx. molestus. This study sheds light on the complex interactions between mosquitoes and their microbiome, revealing potential implications for vector competence, disease transmission, and vector control strategies.

RevDate: 2024-04-11

Lei J, Lü W, Wang W, et al (2024)

[Comparison of the microbiota diversity between autogenous and anautogenous Culex pipiens pallens].

Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control, 36(1):52-58.

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens.

METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe).

RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05).

CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.

RevDate: 2024-04-11

Song G, Shin D, J Su Kim (2024)

Microbiome changes in Akanthomyces attenuatus JEF-147-infected two-spotted spider mites.

Journal of invertebrate pathology pii:S0022-2011(24)00045-4 [Epub ahead of print].

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.

RevDate: 2024-04-11

Gomard Y, Hafsia S, Lebon C, et al (2024)

Genetic diversity of endosymbiotic bacteria Wolbachia infecting two mosquito species of the genus Eretmapodites occurring in sympatry in the Comoros archipelago.

Frontiers in microbiology, 15:1343917.

INTRODUCTION: The influence of Wolbachia on mosquito reproduction and vector competence has led to renewed interest in studying the genetic diversity of these bacteria and the phenotypes they induced in mosquito vectors. In this study, we focused on two species of Eretmapodites, namely Eretmapodites quinquevittatus and Eretmapodites subsimplicipes, from three islands in the Comoros archipelago (in the Southwestern Indian Ocean).

METHODS: Using the COI gene, we examined the mitochondrial genetic diversity of 879 Eretmapodites individuals from 54 sites. Additionally, we investigated the presence and genetic diversity of Wolbachia using the wsp marker and the diversity of five housekeeping genes commonly used for genotyping through Multiple Locus Sequence Typing (MLST).

RESULTS AND DISCUSSION: Overall, Er. quinquevittatus was the most abundant species in the three surveyed islands and both mosquito species occurred in sympatry in most of the investigated sites. We detected a higher mitochondrial genetic diversity in Er. quinquevittatus with 35 reported haplotypes (N = 615 specimens, Hd = 0.481 and π = 0.002) while 13 haplotypes were found in Er. subsimplicipes (N = 205 specimens, Hd = 0.338 and π = 0.001), this difference is likely due to the bias in sampling size between the two species. We report for the first time the presence of Wolbachia in these two Eretmapodites species. The prevalence of Wolbachia infection varied significantly between species, with a low prevalence recorded in Er. quinquevittatus (0.8%, N = 5/627) while infection was close to fixation in Er. subsimplicipes (87.7%, N = 221/252). Both male and female individuals of the two mosquito species appeared to be infected. The analysis of MLST genes revealed the presence of two Wolbachia strains corresponding to two new strain types (STs) within the supergroups A and B, which have been named wEretA and wEretB. These strains were found as mono-infections and are closely related, phylogenetically, to Wolbachia strains previously reported in Drosophila species. Finally, we demonstrate that maternal transmission of Wolbachia is imperfect in Er. subsimplicipes, which could explain the presence of a minority of uninfected individuals in the field.

RevDate: 2024-04-10

Vandana V, Dong S, Sheth T, et al (2024)

Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi.

PLoS pathogens, 20(4):e1012145 pii:PPATHOGENS-D-24-00022 [Epub ahead of print].

Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.

RevDate: 2024-04-10

Fox T, Sguassero Y, Chaplin M, et al (2024)

Wolbachia-carrying Aedes mosquitoes for preventing dengue infection.

The Cochrane database of systematic reviews, 4:CD015636.

BACKGROUND: Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated.

OBJECTIVES: To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection.

SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024.

SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy.

DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE.

MAIN RESULTS: One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events.

AUTHORS' CONCLUSIONS: The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.

RevDate: 2024-04-09

Machado FN, Draper ADK, Monteiro Fernandes A, et al (2024)

The first confirmed outbreak of chikungunya reported in Timor-Leste, 2024.

Communicable diseases intelligence (2018), 48:.

Timor-Leste is a mountainous, half-island nation with a population of 1.3 million, which shares a land border with Indonesia and is 550 km from Darwin, Australia. Since independence in 2002, Timor-Leste has achieved significant development; however, high levels of poverty remain. Chikungunya virus (CHIKV) is endemic in over 100 countries in Africa, Asia, Europe and in the Americas. It is transmitted by the bite of infected Aedes aegypti or Ae. albopictus mosquitoes, which are present in Timor-Leste and which contribute to annual rainy-season dengue virus (DENV) outbreaks. Symptomatic people typically suffer from acute onset of fever, usually accompanied by severe arthritis or arthralgia. Joint pain can be debilitating for several days, and may sometimes last for weeks, months or years. Unlike DENV infection which has significant mortality, most people recover completely. Between 2002 and 2023, there were 26 cases of CHIKV notified in Australia who acquired their infection in Timor-Leste; however, laboratory testing capability for CHIKV in Timor-Leste only became available in 2021 using polymerase chain reaction (PCR). The first locally diagnosed case was notified in November 2023. In January 2024, an outbreak of CHIKV was recognised in Timor-Leste for the first time, with 195 outbreak cases reported during 1-31 January 2024; all were PCR positive. There were no cases hospitalised, and no deaths. The median age of cases was 17 years (range 1-76 years); 51% were males. Cases were reported across the country; most (88/195) were from Dili, although the highest incidence was seen in the neighbouring municipality of Ermera (monthly incidence rate of 58.8 cases per 100,000 population). This first reported outbreak of CHIKV in Timor-Leste highlights the need for improved mosquito-borne illness control and response strategies, including minimising breeding sites and promoting early presentation for treatment and differential diagnosis from DENV, and consideration of the deployment of Wolbachia-infected mosquitoes, particularly as they have shown to reduce the transmission of CHIKV, DENV and Zika virus, all of which pose threats in Timor-Leste.

RevDate: 2024-04-09

Machado FN, Draper ADK, Dos Santos FBA, et al (2024)

A brief description of the epidemiology of dengue in Dili, Timor-Leste, 2018-2022.

Communicable diseases intelligence (2018), 48:.

Dengue virus (DENV) infection causes 390 million infections per year and 40,000 deaths globally. It is endemic in many countries in Asia, Africa, the Americas, the Caribbean, and Oceania. Dengue is endemic in Timor-Leste year-round, but peak transmission occurs during the rainy season. We briefly describe the epidemiology of DENV in the Municipality of Dili between 2018 and 2022. There were 6,234 cases notified, with a mean annual incidence rate of 330 cases per 100,000 population. There were 55 deaths (case fatality rate 0.9%). The peak annual incidence (3,904 cases) occurred in 2022 after an outbreak was declared in January of that year; this outbreak included 760 cases of dengue haemorrhagic fever and 35 deaths. The number of outbreak cases requiring hospital treatment exceeded the usual capacity, but facilities established for coronavirus disease 2019 (COVID-19) isolation and treatment were repurposed to meet this demand. Existing strategies of vector control, minimising breeding sites and promoting early presentation for treatment should continue, as should the utilisation of surveillance systems and treatment facilities established during the COVID-19 pandemic. However, dengue incidence remains high, and other dengue control strategies-including the deployment of Wolbachia-infected mosquitoes-should be considered in Timor-Leste.

RevDate: 2024-04-09

Sharmin Z, Samarah H, Aldaya Bourricaudy R, et al (2024)

Cross-validation of chemical and genetic disruption approaches to inform host cellular effects on Wolbachia abundance in Drosophila.

Frontiers in microbiology, 15:1364009.

INTRODUCTION: Endosymbiotic Wolbachia bacteria are widespread in nature, present in half of all insect species. The success of Wolbachia is supported by a commensal lifestyle. Unlike bacterial pathogens that overreplicate and harm host cells, Wolbachia infections have a relatively innocuous intracellular lifestyle. This raises important questions about how Wolbachia infection is regulated. Little is known about how Wolbachia abundance is controlled at an organismal scale.

METHODS: This study demonstrates methodology for rigorous identification of cellular processes that affect whole-body Wolbachia abundance, as indicated by absolute counts of the Wolbachia surface protein (wsp) gene.

RESULTS: Candidate pathways, associated with well-described infection scenarios, were identified. Wolbachia-infected fruit flies were exposed to small molecule inhibitors known for targeting those same pathways. Sequential tests in D. melanogaster and D. simulans yielded a subset of chemical inhibitors that significantly affected whole-body Wolbachia abundance, including the Wnt pathway disruptor, IWR-1 and the mTOR pathway inhibitor, Rapamycin. The implicated pathways were genetically retested for effects in D. melanogaster, using inducible RNAi expression driven by constitutive as well as chemically-induced somatic GAL4 expression. Genetic disruptions of armadillo, tor, and ATG6 significantly affected whole-body Wolbachia abundance.

DISCUSSION: As such, the data corroborate reagent targeting and pathway relevance to whole-body Wolbachia infection. The results also implicate Wnt and mTOR regulation of autophagy as important for regulation of Wolbachia titer.

RevDate: 2024-04-08

Nascimento da Silva J, Conceição CC, Ramos de Brito GC, et al (2024)

Immunometabolic crosstalk in Aedes fluviatilis Wolbachia pipientis symbiosis.

The Journal of biological chemistry pii:S0021-9258(24)01773-3 [Epub ahead of print].

Wolbachia pipientis is a maternally transmitted symbiotic bacterium that mainly colonizes arthropods, potentially affecting different aspects of the host's physiology, e.g. reproduction, immunity, and metabolism. It has been shown that Wolbachia modulates glycogen metabolism in mosquito Aedes fluviatilis (Ae. fluviatilis). Glycogen synthesis is controlled by the enzyme GSK3, which is also involved in immune responses in both vertebrate and invertebrate organisms. Here we investigated the mechanisms behind immune changes mediated by GSK3β in the symbiosis between Ae. fluviatilis and Wolbachia pipientis using a GSK3β inhibitor or RNAi-mediated gene silencing. GSK3β inhibition or knockdown increased glycogen content and Wolbachia population, together with a reduction in Relish2 (REL2) and gambicin transcripts. Furthermore, knockdown of REL2 or Caspar revealed that the Imd pathway acts to control Wolbachia numbers in the host. In conclusion, we describe for the first time the involvement of GSK3β in Ae. fluviatillis immune response, acting to control the Wolbachia endosymbiotic population.

RevDate: 2024-04-08

Mirchandani C, Wang P, Jacobs J, et al (2024)

Mixed Wolbachia infections resolve rapidly during in vitro evolution.

bioRxiv : the preprint server for biology pii:2024.03.27.586911.

UNLABELLED: The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful w Mel strain from Drosophila melanogaster and the promiscuous w Ri strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with w Mel and w Ri revealed that wMel outcompetes w Ri quickly and reproducibly. Furthermore, w Mel was able to competitively exclude w Ri even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wM el's native D. melanogaster cell background, as w Mel also outgrew w Ri in D. simulans cells. Overall, w Ri is less adept at i n vitro growth and survival than w Mel and its in vivo state, revealing differences between cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species, tissues, and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.

AUTHOR SUMMARY: Wolbachia pipientis is one of the most common bacterial endosymbionts due to its ability to manipulate host reproduction, and it has become a useful biological control tool for mosquito populations. Wolbachia is passed from mother to offspring, however the bacterium can also "jump" to new hosts via horizontal transmission. When a Wolbachia strain successfully infects a new host, it often encounters a resident strain that it must either replace or co-exist with as a superinfection. Here, we use a Drosophila melanogaster cell culture system to study the dynamics of mixed Wolbachia infections consisting of the high-fidelity w Mel and promiscuous w Ri strains. The w Mel strain consistently outcompetes the w Ri strain, regardless of w Mel's initial frequency in D. melanogaster cells. This competitive advantage is independent of host species. While both strains significantly impede host cell division, only the w Mel strain is able to rapidly expand into uninfected cells. Our results suggest that the w Ri strain is pathogenic in nature and a poor cellular symbiont, and it is retained in natural infections because cell lineages are not expendable or replaceable in development. These findings provide insights into mixed infection outcomes, which are crucial for the use of the bacteria in biological control.

RevDate: 2024-04-04

Fisher AM, Knell RJ, Price TAR, et al (2024)

Sex ratio distorting microbes exacerbate arthropod extinction risk in variable environments.

Ecology and evolution, 14(4):e11216.

Maternally-inherited sex ratio distorting microbes (SRDMs) are common among arthropod species. Typically, these microbes cause female-biased sex ratios in host broods, either by; killing male offspring, feminising male offspring, or inducing parthenogenesis. As a result, infected populations can experience drastic ecological and evolutionary change. The mechanism by which SRDMs operate is likely to alter their impact on host evolutionary ecology; despite this, the current literature is heavily biased towards a single mechanism of sex ratio distortion, male-killing. Furthermore, amidst the growing concerns surrounding the loss of arthropod diversity, research into the impact of SRDMs on the viability of arthropod populations is generally lacking. In this study, using a theoretical approach, we model the epidemiology of an understudied mechanism of microbially-induced sex ratio distortion-feminisation-to ask an understudied question-how do SRDMs impact extinction risk in a changing environment? We constructed an individual-based model and measured host population extinction risk under various environmental and epidemiological scenarios. We also used our model to identify the precise mechanism modulating extinction. We find that the presence of feminisers increases host population extinction risk, an effect that is exacerbated in highly variable environments. We also identified transmission rate as the dominant epidemiological trait responsible for driving extinction. Finally, our model shows that sex ratio skew is the mechanism driving extinction. We highlight feminisers and, more broadly, SRDMs as important determinants of the resilience of arthropod populations to environmental change.

RevDate: 2024-04-03

Amala M, Nagarajan H, Ahila M, et al (2024)

Unveiling the intricacies of allosteric regulation in aspartate kinase from the Wolbachia endosymbiont of Brugia Malayi: Mechanistic and therapeutic insights.

International journal of biological macromolecules pii:S0141-8130(24)02131-7 [Epub ahead of print].

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.

RevDate: 2024-04-03

Rawle DJ, Hugo LE, Cox AL, et al (2024)

Generating prophylactic immunity against arboviruses in vertebrates and invertebrates.

Nature reviews. Immunology [Epub ahead of print].

The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.

RevDate: 2024-04-02

Reyes JIL, Suzuki T, Suzuki Y, et al (2024)

Detection and quantification of natural Wolbachia in Aedes aegypti in Metropolitan Manila, Philippines using locally designed primers.

Frontiers in cellular and infection microbiology, 14:1360438.

BACKGROUND: The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density.

METHODS: Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0.

RESULTS: Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains.

CONCLUSION: Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.

RevDate: 2024-04-01

Ferguson LF, Ross PA, B van Heerwaarden (2024)

Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner.

Environmental microbiology, 26(4):e16609.

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.

RevDate: 2024-03-30

Konecka E, P Szymkowiak (2024)

Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria.

Scientific reports, 14(1):7486.

Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.

RevDate: 2024-03-28

Martin M, López-Madrigal S, ILG Newton (2024)

The Wolbachia WalE1 effector alters Drosophila endocytosis.

PLoS pathogens, 20(3):e1011245 pii:PPATHOGENS-D-23-00368 [Epub ahead of print].

The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.

RevDate: 2024-03-28

Kaur R, Meier CJ, McGraw EA, et al (2024)

The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-bearing Aedes aegypti mosquitoes deployed for arbovirus control.

PLoS biology, 22(3):e3002573 pii:PBIOLOGY-D-23-03084 [Epub ahead of print].

The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins CifA and CifB target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirms the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.

RevDate: 2024-03-28

Ilbeigi Khamseh Nejad M, Cappelli A, Damiani C, et al (2024)

Wolbachia and Asaia Distribution among Different Mosquito Vectors Is Affected by Tissue Localization and Host Species.

Microorganisms, 12(3): pii:microorganisms12030545.

Microbial communities play an important role in the fitness of mosquito hosts. However, the factors shaping microbial communities in wild populations, with regard to interactions among microbial species, are still largely unknown. Previous research has demonstrated that two of the most studied mosquito symbionts, the bacteria Wolbachia and Asaia, seem to compete or not compete, depending on the genetic background of the reference mosquito host. The large diversity of Wolbachia-Asaia strain combinations that infect natural populations of mosquitoes may offer a relevant opportunity to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction. We surveyed Wolbachia and Asaia in 44 mosquito populations belonging to 11 different species of the genera Anopheles, Aedes, and Culex using qualitative PCR. Through quantitative PCR, the amounts of both bacteria were assessed in different mosquito organs, and through metagenomics, we determined the microbiota compositions in some selected mosquito populations. We show that variation in microbial community structure is likely associated with the species/strain of mosquito, its geographical position, and tissue localization. Together, our results shed light on the interactions among different bacterial species in the microbial communities of mosquito vectors, and this can aid the development and/or improvement of methods for symbiotic control of insect vectors.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )