About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

14 Nov 2022 at 02:06
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 14 Nov 2022 at 02:06 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-11-07

Turelli M, Katznelson A, PS Ginsberg (2022)

Why Wolbachia-induced cytoplasmic incompatibility is so common.

Proceedings of the National Academy of Sciences of the United States of America, 119(47):e2211637119.

Cytoplasmic incompatibility (CI) is the most common reproductive manipulation produced by Wolbachia, obligately intracellular alphaproteobacteria that infect approximately half of all insect species. Once infection frequencies within host populations approach 10%, intense CI can drive Wolbachia to near fixation within 10 generations. However, natural selection among Wolbachia variants within individual host populations does not favor enhanced CI. Indeed, variants that do not cause CI but increase host fitness or are more reliably maternally transmitted are expected to spread if infected females remain protected from CI. Nevertheless, approximately half of analyzed Wolbachia infections cause detectable CI. Why? The frequency and persistence of CI are more plausibly explained by preferential spread to new host species (clade selection) rather than by natural selection among variants within host populations. CI-causing Wolbachia lineages preferentially spread into new host species because 1) CI increases equilibrium Wolbachia frequencies within host populations, and 2) CI-causing variants can remain at high frequencies within populations even when conditions change so that initially beneficial Wolbachia infections become harmful. An epidemiological model describing Wolbachia acquisition and loss by host species and the loss of CI-induction within Wolbachia lineages yields simple expressions for the incidence of Wolbachia infections and the fraction of those infections causing CI. Supporting a determinative role for differential interspecific spread in maintaining CI, many Wolbachia infections were recently acquired by their host species, many show evidence for contemporary spatial spread or retreat, and rapid evolution of CI-inducing loci, especially degradation, is common.

RevDate: 2022-11-05

Cain JL, Norris JK, Ripley NE, et al (2022)

The microbial community associated with Parascaris spp. infecting juvenile horses.

Parasites & vectors, 15(1):408.

BACKGROUND: Parasitic nematodes, including large roundworms colloquially known as ascarids, affect the health and well-being of livestock animals worldwide. The equine ascarids, Parascaris spp., are important parasites of juvenile horses and the first ascarids to develop widespread anthelmintic resistance. The microbiota has been shown to be an important factor in the fitness of many organisms, including parasitic nematodes, where endosymbiotic Wolbachia have been exploited for treatment of filariasis in humans.

METHODS: This study used short-read 16S rRNA sequences and Illumina sequencing to characterize and compare microbiota of whole worm small intestinal stages and microbiota of male and female intestines and gonads. Diversity metrics including alpha and beta diversity, and the differential abundance analyses DESeq2, ANCOM-BC, corncob, and metagenomeSeq were used for comparisons.

RESULTS: Alpha and beta diversity of whole worm microbiota did not differ significantly between groups, but Simpson alpha diversity was significantly different between female intestine (FI) and male gonad (MG) (P= 0.0018), and Shannon alpha diversity was significantly different between female and male gonads (P = 0.0130), FI and horse jejunum (HJ) (P = 0.0383), and FI and MG (P= 0.0001). Beta diversity (Fig. 2B) was significantly different between female and male gonads (P = 0.0006), male intestine (MI) and FG (P = 0.0093), and MG and FI (P = 0.0041). When comparing organs, Veillonella was differentially abundant for DESeq2 and ANCOM-BC (p < 0.0001), corncob (P = 0.0008), and metagenomeSeq (P = 0.0118), and Sarcina was differentially abundant across four methods (P < 0.0001). Finally, the microbiota of all individual Parascaris spp. specimens were compared to establish shared microbiota between groups.

CONCLUSIONS: Overall, this study provided important information regarding the Parascaris spp. microbiota and provides a first step towards determining whether the microbiota may be a viable target for future parasite control options.

RevDate: 2022-11-01

Martinez J, Ross PA, Gu X, et al (2022)

Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB.

Applied and environmental microbiology [Epub ahead of print].

The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.

RevDate: 2022-11-01

Jin-Cheng Z, Dan S, Shi-Meng L, et al (2022)

Wolbachia infected Trichogramma dendrolini is outcompeted by its uninfected counterpart in superparsitism but does not have developmental delay.

Pest management science [Epub ahead of print].

BACKGROUND: Wolbachia infection increases the superparasitism frequency of Trichogramma females and provides an opportunity for horizontal intraspecific transmission. However, superparasitism may lead to inter-strain competition between Wolbachia-infected Trichogramma offspring and their uninfected counter parts. This study investigated the outcome of inter-strain intrinsic competition between Wolbachia-infected thelytokous strain (W) and uninfected bisexual strain (B) of Trichogramma dendrolimi. To determine the developmental rate of both strains, the size of immature stages of T. dendrolimi offspring at different times after parasitization was measured in single parasitism and superparasitism conditions.

RESULTS: The results reflect the increased superparasitism by Wolbachia-infected females compared to uninfected females; Trichogramma females did not discriminate between host eggs previously parasitized by either B or W females. When the first oviposition was performed by B females, the B offspring outcompeted W offspring deposited later. However, although when W offspring was deposited 8 h earlier than the B offspring, it gained no advantage over B offspring. Regardless of parasitism conditions, the differences in development rate between W and B offspring were not significant.

CONCLUSION: The results reconfirmed that albeit W females presented a higher tendency of superparasitism than B females, and showed that B offspring outcompeted W offspring even when the latter was deposited 8 h earlier. The inferiority of Wolbachia-infected Trichogramma to their uninfected counterparts is not due to the developmental delay. This study provide insights into the effects of intrinsic competition on the control efficacy of Wolbachia infected Trichogramma against pests in biological control programs. This article is protected by copyright. All rights reserved.

RevDate: 2022-11-01

Manvell C, Berman H, Callahan B, et al (2022)

Identification of microbial taxa present in Ctenocephalides felis (cat flea) reveals widespread co-infection and associations with vector phylogeny.

Parasites & vectors, 15(1):398.

BACKGROUND: Ctenocephalides felis, the cat flea, is the most common ectoparasite of cats and dogs worldwide. As a cause of flea allergy dermatitis and a vector for two genera of zoonotic pathogens (Bartonella and Rickettsia spp.), the effect of the C. felis microbiome on pathogen transmission and vector survival is of substantial medical importance to both human and veterinary medicine. The aim of this study was to assay the pathogenic and commensal eubacterial microbial communities of individual C. felis from multiple geographic locations and analyze these findings by location, qPCR pathogen prevalence, and flea genetic diversity.

METHODS: 16S Next Generation Sequencing (NGS) was utilized to sequence the microbiome of fleas collected from free-roaming cats, and the cox1 gene was used for flea phylogenetic analysis. NGS data were analyzed for 168 individual fleas from seven locations within the US and UK. Given inconsistency in the genera historically reported to constitute the C. felis microbiome, we utilized the decontam prevalence method followed by literature review to separate contaminants from true microbiome members.

RESULTS: NGS identified a single dominant and cosmopolitan amplicon sequence variant (ASV) from Rickettsia and Wolbachia while identifying one dominant Bartonella clarridgeiae and one dominant Bartonella henselae/Bartonella koehlerae ASV. Multiple less common ASVs from these genera were detected within restricted geographical ranges. Co-detection of two or more genera (Bartonella, Rickettsia, and/or Wolbachia) or multiple ASVs from a single genus in a single flea was common. Achromobacter, Peptoniphilus, and Rhodococcus were identified as additional candidate members of the C. felis microbiome on the basis of decontam analysis and literature review. Ctenocephalides felis phylogenetic diversity as assessed by the cox1 gene fell within currently characterized clades while identifying seven novel haplotypes. NGS sensitivity and specificity for Bartonella and Rickettsia spp. DNA detection were compared to targeted qPCR.

CONCLUSIONS: Our findings confirm the widespread coinfection of fleas with multiple bacterial genera and strains, proposing three additional microbiome members. The presence of minor Bartonella, Rickettsia, and Wolbachia ASVs was found to vary by location and flea haplotype. These findings have important implications for flea-borne pathogen transmission and control.

RevDate: 2022-10-31

Roslan MA, Ngui R, Vythilingam I, et al (2022)

Community surveillance of Aedes albopictus associated with Wolbachia detection in low-rise residential areas in Selangor, Malaysia.

Journal of vector ecology : journal of the Society for Vector Ecology, 47(2):142-152.

The study assessed the distribution of Malaysian Ae. albopictus adults associated with Wolbachia detection in low-rise residential areas using a modified sticky ovitrap (MSO). The relationship between Ae. albopictus and climatological parameters were also determined. Fifty-two weeks of surveillance using 273 MSOs were conducted in four installation areas of eleven sampling sites. Specimens were subjected to PCR using wsp-specific primers for Wolbachia detection. The relationship between climatological parameters and Ae. albopictus captured were analyzed using Spearman rank correlation coefficient test. The majority of Ae. albopictus were captured in residential houses (87%), followed by playgrounds or parks (11.5%), guardhouses (1%), and community halls (0.5%). Most of the specimens (92%) were superinfected with wAlbA and wAlbB strains. A positive correlation with no significant association was found for rainfall (r = 0.015, P = 0.072), relative humidity (r = 0.005, P = 0.526), minimum temperature (r = 0.005, P = 0.516), and mean temperature (r = 0.003, P = 0.689). MSO effectively captured a high number of Ae. albopictus that was determined to be the predominant mosquito species found in low-rise residential areas. The adult collection is not only influenced by climatological parameters but also by other factors, including environmental conditions and general sanitation status.

RevDate: 2022-10-31

Ryabinin AS, Shishkina OD, Ilinsky YY, et al (2022)

Rare Wolbachia genotypes in laboratory Drosophila melanogaster strains.

Vavilovskii zhurnal genetiki i selektsii, 26(6):553-559.

Symbiotic bacteria of the genus Wolbachia are widespread in Drosophila melanogaster populations. Based on the polymorphism of the Wolbachia genome, the symbionts' diversity in D. melanogaster is presented by two groups: MEL (wMel, wMel2, wMel3 and wMel4) and CS (wMelCS and wMelCS2). The wMel genotype is predominant in natural D. melanogaster populations and is distributed all over the world. The CS genotypes, on the other hand, are of particular interest because it is unclear how they are maintained in the fruit f ly populations since they should have been eliminated from them due to their low frequency and genetic drift or been replaced by the wMel genotype. However, this is not what is really observed, which means these genotypes are supported by selection. It is known that the wMelPlus strain of the wMelCS genotype can increase the lifespan of infected f lies at high temperatures. The same genotype also increases the intensity of dopamine metabolism in Drosophila compared to the MEL-group genotypes. In the present study, we searched for the rare Wolbachia wMelCS and wMelCS2 genotypes, as well as for new genotypes in wild-type D. melanogaster strains and in several mutant laboratory strains. The symbiont was found in all populations, in 200 out of 385 wild-type strains and in 83 out of 170 mutant strains. Wolbachia diversity in D. melanogaster wild-type strains was represented by the wMel, wMelCS and wMelCS2 genotypes. More than 90 % of the infected strains carried wMel; 9 %, wMelCS2; and only two strains were found to carry wMelCS. No new Wolbachia genotypes were found. The northernmost point reported for the wMelCS2 genotype was Izhevsk city (Udmurtia, Russia). For the f irst time the wMelCS2 genotype was detected in D. melanogaster from the Sakhalin Island, and wMelCS, in the f lies from Nalchik (the North Caucasus). A comparison of Wolbachia genetic diversity between the wild-type laboratory strains and previously obtained data on mutant laboratory strains demonstrated differences in the frequencies of rare CS genotypes, which were more prevalent in mutant strains, apparently due to the breeding history of these Drosophila strains.

RevDate: 2022-10-29

Ritchie IT, Needles KT, Leigh BA, et al (2022)

Transgenic cytoplasmic incompatibility persists across age and temperature variation in Drosophila melanogaster.

iScience, 25(11):105327.

Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensitivity of CI, we exposed transgenic male flies to low and high temperatures as well as aging treatments. Our results indicate that transgenic cif expression induces nearly complete CI regardless of temperature and aging, despite severe weakening of Wolbachia-based wild-type CI. Strong CI levels correlate with higher levels of cif transgene expression in young males. Altogether, our results highlight that transgenic CI persists against common environmental pressures and may be relevant for future control applications involving the cifA and cifB transgenes.

RevDate: 2022-10-27

Kache PA, Santos-Vega M, Stewart-Ibarra AM, et al (2022)

Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases.

Nature ecology & evolution [Epub ahead of print].

The prevalence of diseases borne by mosquitoes, particularly in the genus Aedes, is rising worldwide. This has been attributed, in part, to the dramatic rates of contemporary urbanization. While Aedes-borne disease risk varies within and between cities, few investigations use urban science-based approaches to examine how city structure and function contribute to vector or pathogen introduction and maintenance. Here, we integrate theories from complex adaptive systems, landscape ecology and urban geography to develop an urban systems framework for understanding Aedes-borne diseases. The framework establishes that cities comprise hierarchically structured patches of different land uses and characteristics. Properties of the patches (that is, composition) determine localized disease risk, while configuration and connectivity drive emergent patterns of pathogen spread. Complexity is added by incorporating individual and collective human social structures, considering how feedbacks among social actors and with the landscape drive risk and transmission. We discuss how these concepts apply to case studies of Aedes-borne disease from around the world. Ultimately, the framework strengthens existing theoretical and mixed qualitative-quantitative approaches, and advances considerations of how interventions including urban planning (for example, piped water provisioning) and emerging vector control strategies (for example, Wolbachia-infected mosquitoes) can be implemented to prevent and control the rising threat of Aedes-borne diseases.

RevDate: 2022-10-27

Hargitai D, Kenéz L, Al-Lami M, et al (2022)

Autophagy controls Wolbachia infection upon bacterial damage and in aging Drosophila.

Frontiers in cell and developmental biology, 10:976882 pii:976882.

Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time.

RevDate: 2022-10-27

Ibrahim YE, Paredes-Montero JR, Al-Saleh MA, et al (2022)

Characterization of the Asian Citrus Psyllid-'Candidatus Liberibacter Asiaticus' Pathosystem in Saudi Arabia Reveals Two Predominant CLas Lineages and One Asian Citrus Psyllid Vector Haplotype.

Microorganisms, 10(10): pii:microorganisms10101991.

In Saudi Arabia (SA), the citrus greening disease is caused by 'Candidatus Liberibacter asiaticus' (CLas) transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The origin and route(s) of the ACP-CLas pathosystem invasion in SA have not been studied. Adult ACP were collected from citrus trees in SA and differentiated by analysis of the mitochondrial cytochrome oxidase I (mtCOI) and nuclear copper transporting protein (atox1) genes. A phylogenetic analysis of the Wolbachia spp. surface protein (wsp) gene was used to identify the ACP-associated Wolbachia spp. A phylogenetic analysis of the atox1 and mtCOI gene sequences revealed one predominant ACP haplotype most closely related to the Indian subcontinent founder populations. The detection and identification of CLas in citrus trees were carried out by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA gene. The CLas-integrated prophage genomes were sequenced, annotated, and used to differentiate CLas populations. The ML and ASTRAL trees reconstructed with prophages type 1 and 2 genome sequences, separately and concatenated, resolved two major lineages, CLas-1 and -2. The CLas-1 clade, reported here for the first time, consisted of isolates from SA isolates and Pakistan. The CLas-2 sequences formed two groups, CLas-2-1 and -2-2, previously the 'Asiatic' and 'Floridian' strains, respectively. Members of CLas-2-1 originated from Southeast Asia, the USA, and other worldwide locations, while CLas-2-2 was identified only in Florida. This study provides the first snapshot into the status of the ACP-CLas pathosystem in SA. In addition, the results provide new insights into the pathosystem coevolution and global invasion histories of two ACP-CLas lineages with a predicted center of origin in South and Southeast Asia, respectively.

RevDate: 2022-10-27

Ngnindji-Youdje Y, Diarra AZ, Lontsi-Demano M, et al (2022)

Detection of Tick-Borne Pathogens in Ticks from Cattle in Western Highlands of Cameroon.

Microorganisms, 10(10): pii:microorganisms10101957.

This study aimed to detect and identify microorganisms in ticks collected in the Western Highlands of Cameroon. Quantitative real-time and standard PCR assays, coupled with sequencing, were used. A total of 944 ticks collected from cattle in five distinct sites in Cameroon were selected for the analyses. They belonged to five genera (Amblyomma, Hyalomma, Rhipicephalus, Haemaphysalis, and Ixodes) and twelve species. Real-time PCR revealed that 23% (n = 218) of the ticks were positive for Rickettsia spp., 15% (n = 141) for bacteria of the Anaplasmataceae family, 3% (n = 29) for Piroplasmida, 0.5% (n = 5) for Coxiella burnetii, 0.4% (n = 4) for Borrelia spp., and 0.2% (n = 2) for Bartonella spp. The co-infection rate (3.4%, n = 32) involved mainly Rickettsia spp. and Anaplasmataceae. Of the Rickettsia spp. positive ticks, the targeted PCR and sequencing yielded Rickettsia africae (78.9%), Rickettsia aeschlimannii (6.4%), Rickettsia massiliae (7.8%), Candidatus Rickettsia barbariae (0.9%), and Rickettsia sp. (0.9%). Anaplasmataceae included Anaplasma marginale (4.3%), Anaplasma platys (1.4%), Anaplasma centrale (0.7%), Ehrlichia ruminantium (0.7%), Wolbachia sp., Candidatus Ehrlichia rustica (13.5%), Candidatus Ehrlichia urmitei (7%), and an uncultured Ehrlichia sp. (4.2%). Borrelia theileri was identified in one Rhipicephalus microplus tick. Unfortunately, Piroplasmida could not be identified to the species level. This study demonstrates that in Cameroon, ticks harbour a wide variety of microorganisms and present a risk of zoonotic diseases.

RevDate: 2022-10-27

Pagendam D, Elfekih S, Nassar MS, et al (2022)

Spatio-Temporal Modelling Informing Wolbachia Replacement Releases in a Low Rainfall Climate.

Insects, 13(10): pii:insects13100949.

Releases of Aedes aegypti carrying Wolbachia bacteria are known to suppress arbovirus transmission and reduce the incidence of vector-borne diseases. In planning for Wolbachia releases in the arid environment of Jeddah, Saudi Arabia, we collected entomological data with ovitraps across a 7-month period in four locations. Herein, we show that mosquito presence in basements does not differ from that of non-basement areas of buildings. In modelling mosquito presence across the study sites, we found the spatial structure to be statistically significant in one of the four sites, while a significant spatial structure was found for egg production data across three of the four sites. The length scales of the spatial covariance functions fitted to the egg production data ranged from 143 m to 574 m, indicating that high productivity regions can be extensive in size. Rank-correlation analyses indicated that mosquito presence tended to persist from the dry to wet season, but that egg production ranks at locations could reverse. The data suggest that, in Jeddah, the quality of the local environment for breeding can vary over time. The data support the feasibility of dry season releases but with release numbers needing to be flexible depending on local rates of invasion.

RevDate: 2022-10-27

Buchori D, Mawan A, Nurhayati I, et al (2022)

Risk Assessment on the Release of Wolbachia-Infected Aedes aegypti in Yogyakarta, Indonesia.

Insects, 13(10): pii:insects13100924.

Wolbachia-infected Aedes aegypti is the latest technology that was developed to eliminate dengue fever. The Ministry of Research and Technology of the Republic of Indonesia (Kemenristekdikti) established an expert group to identify future potential risks that may occur over a period of 30 years associated with the release of Wolbachia-infected Ae. aegypti. The risk assessment consisted of identifying different hazards that may have impacts on humans and the environment. From the consensus among the experts, there were 56 hazards identified and categorized into 4 components, namely, ecological matters, efficacy in mosquito management, economic and sociocultural issues, and public health standards. There were 19 hazards in the ecological group. The overall likelihood in the ecology of the mosquito is very low (0.05), with moderate consequence (0.74), which resulted in negligible risk. For the efficacy in mosquito management group, there were 12 hazards that resulted in very low likelihood (0.11) with high consequence (0.85). The overall risk for mosquito management efficacy was very low (0.09). There were 14 hazards identified in the public health standard with very low likelihood (0.07), moderate consequence (0.50) and negligible risk (0.04). Lastly, 13 hazards were identified in the economic and sociocultural group with low likelihood (0.01) but of moderate consequence (0.5), which resulted in a very low risk (0.09). The risk severity level of the four components leading to the endpoint risk of "cause more harm" due to releasing Wolbachia-infected Ae. aegypti is negligible (0.01).

RevDate: 2022-10-21

Fallon AM (2022)

Mitotically inactivated mosquito cells support robust Wolbachia infection and replication.

In vitro cellular & developmental biology. Animal [Epub ahead of print].

Wolbachia is an obligate intracellular bacterium that infects many species of insects, and has been of particular interest in recent efforts to reduce disease transmission by mosquitoes. Two aspects of Wolbachia biology underlie its applications for insect control: first, the bacterium behaves as a natural gene drive agent and, second, when introduced into mosquitoes that do not harbor Wolbachia in nature, infection reduces survival of pathogens. These properties support efforts to explore the basic biology of Wolbachia in insect cell lines, which can produce sufficient infectious material for microbiological studies and microinjection into novel hosts. When introduced into naïve C7-10 Aedes albopictus mosquito cells, the yield of Wolbachia strain wStri improves, roughly in proportion to the size of the inoculum, as exponential growth of the host cell ceases. Wolbachia yields also increase when persistently infected C/wStri1 cells or naive, newly infected cells are treated with 20-hydroxyecdysone (20E), which inhibits growth in the G1 phase of the cell cycle. These observations suggest that Wolbachia infection and replication are independent of exponential growth and mitosis of host cells. To explore yields of infectious bacteria in cells arrested prior to infection, I tested host cells pre-treated with mitomycin C, an agent that crosslinks DNA and prevents cell division that is used to produce "feeder layers" with mammalian cells. Yields of wStri per plate increased by about 50-fold relative to exponentially growing cells, and the multiplicity of infection necessary for a robust infection was reduced to a single bacterium per cell. These results suggest that Wolbachia infection and replication are supported by mitotically arrested cells and provide new insights into biological processes that influence maintenance of a widespread obligate intracellular bacterium.

RevDate: 2022-10-21

Araújo IM, Cordeiro MD, Soares RFP, et al (2022)

Survey of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil.

Ticks and tick-borne diseases, 13(6):102037 pii:S1877-959X(22)00139-X [Epub ahead of print].

This study evaluates the presence of bacterial and protozoan agents in ticks and fleas found on wild animals in the state of Rio de Janeiro, Brazil. These ectoparasites were collected on mammal species Hydrochoerus hydrochaeris, Tapirus terrestris, Dicotyles tajacu, Didelphis aurita, Cuniculus paca, Cerdocyon thous, and Coendou prehensilis, and on the terrestrial bird Dromaius novaehollandiae. Ticks and fleas were identified morphologically using specific taxonomic keys. A total of 396 ticks and 54 fleas were tested via polymerase chain reaction (PCR) for the presence of Rickettsia spp., Borrelia spp., microorganisms of the order Piroplasmida and Anaplasmataceae family. This total is distributed among nine tick species of the genus Amblyomma and one flea species. Rickettsia bellii was detected in Amblyomma dubitatum and Amblyomma pacae; Rickettsia sp. strain AL was found in Amblyomma longirostre; Rickettsia parkeri strain Atlantic rainforest was found in Amblyomma ovale; and "Candidatus Rickettsia senegalensis" and Rickettsia felis were detected in Ctenocephalides felis felis. Wolbachia sp. was detected in C. f. felis, and Borrelia sp. was detected in Amblyomma calcaratum (here named Borrelia sp. strain Acalc110). All tested samples were negative for Ehrlichia spp. and microorganisms of the Piroplasmida order. This study detected a new bacterial strain, Borrelia sp. strain Acalc 110 (which is genetically close to B. miyamotoi and B. venezuelensis) and the Rickettsia sp. strain 19P, which is 100% similar to "Ca. R. senegalensis", a bacterium recently discovered and now being reported for the first time in Brazil.

RevDate: 2022-10-17

Huggins LG, Colella V, Atapattu U, et al (2022)

Nanopore Sequencing Using the Full-Length 16S rRNA Gene for Detection of Blood-Borne Bacteria in Dogs Reveals a Novel Species of Hemotropic Mycoplasma.

Microbiology spectrum [Epub ahead of print].

Dogs across the globe are afflicted by diverse blood- and vector-borne bacteria (VBB), many of which cause severe disease and can be fatal. Diagnosis of VBB infections can be challenging due to the low concentration of bacteria in the blood, the frequent occurrence of coinfections, and the wide range of known, emerging, and potentially novel VBB species encounterable. Therefore, there is a need for diagnostics that address these challenges by being both sensitive and capable of detecting all VBB simultaneously. We detail the first employment of a nanopore-based sequencing methodology conducted on the Oxford Nanopore Technologies (ONT) MinION device to accurately elucidate the "hemobacteriome" from canine blood through sequencing of the full-length 16S rRNA gene. We detected a diverse range of important canine VBB, including Ehrlichia canis, Anaplasma platys, Mycoplasma haemocanis, Bartonella clarridgeiae, "Candidatus Mycoplasma haematoparvum", a novel species of hemotropic mycoplasma, and Wolbachia endosymbionts of filarial worms, indicative of filariasis. Our nanopore-based protocol was equivalent in sensitivity to both quantitative PCR (qPCR) and Illumina sequencing when benchmarked against these methods, achieving high agreement as defined by the kappa statistics (k > 0.81) for three key VBB. Utilizing the ability of the ONT' MinION device to sequence long read lengths provides an excellent alternative diagnostic method by which the hemobacteriome can be accurately characterized to the species level in a way previously unachievable using short reads. We envision our method to be translatable to multiple contexts, such as the detection of VBB in other vertebrate hosts, including humans, while the small size of the MinION device is highly amenable to field use. IMPORTANCE Blood- and vector-borne bacteria (VBB) can cause severe pathology and even be lethal for dogs in many regions across the globe. Accurate characterization of all the bacterial pathogens infecting a canine host is critical, as coinfections are common and emerging and novel pathogens that may go undetected by traditional diagnostics frequently arise. Deep sequencing using devices from Oxford Nanopore Technologies (ONT) provides a solution, as the long read lengths achievable provide species-level taxonomic identification of pathogens that previous short-read technologies could not accomplish. We developed a protocol using ONT' MinION sequencer to accurately detect and classify a wide spectrum of VBB from canine blood at a sensitivity comparable to that of regularly used diagnostics, such as qPCR. This protocol demonstrates great potential for use in biosurveillance and biosecurity operations for the detection of VBB in a range of vertebrate hosts, while the MinION sequencer's portability allows this method to be used easily in the field.

RevDate: 2022-10-19

Tomaru M, Takano-Shimizu-Kouno T, H Wakada (2022)

No Wolbachia infection was detected in Drosophila elegans collected from the wild in the Ryukyu Islands, Japan.

microPublication biology, 2022:.

Flower breeding, tropical and subtropical Drosophila elegans is distributed in the Ryukyu Islands and Taiwan (black morph) and in southern China, Philippines, Indonesia, and New Guinea (brown morph). Although reproductive and behavioral manipulations by Wolbachia are reported in many insect taxa, Wolbachia infection in D. elegans is unclear. There is only a report of no Wolbachia detected in a laboratory strain of brown morph. This PCR diagnosis study revealed no Wolbachia infection in D. elegans males collected from the wild in the Ryukyu Islands. We concluded that D. elegans black morph in the Ryukyu Islands is not infected with Wolbachia .

RevDate: 2022-10-19

Djoukzoumka S, Mahamat Hassane H, Khan Payne V, et al (2022)

Sodalis glossinidius and Wolbachia infections in wild population of Glossina morsitans submorsitans caught in the area of Lake Iro in the south of Chad.

Journal of invertebrate pathology, 195:107835 pii:S0022-2011(22)00121-5 [Epub ahead of print].

Investigations on the bacterial fauna and their association with trypanosome infections in tsetse fly have revealed contrasting results. This study aimed to detect Wolbachia and S. glossinidius in wild populations of G. m. submorsistans and subsequently, understand the influence that these bacteria may have on the vectorial competence of this tsetse species. Tsetse flies were captured in the area of Lake Iro in the south of Chad using biconical traps. After DNA extraction from each tsetse fly, Sodalis glossinidius and Wolbachia were detected using specific primers. Sodalis glossinidius and Wolbachia infection rates were compared and association studies involving trypanosome infections and S. glossinidius or Wolbachia were performed. From 345 G. m. submorsitans analyzed, 9.0% and 14.5% were respectively infected with S. glossinidius and Wolbachia. Only 2.31% of all tsetse flies were co-infected by the 2 bacteria. Of all trypanosome-infected flies, 7.1% and 9.8% harbored, respectively, S. glossinidius and Wolbachia. No association was observed between Wolbachia and trypanosome infections while a significant association (r = 4.992; P = 0.025) was found between S. glossinidius and the presence of trypanosomes. A significant association (r = 3.147; P = 0.043) was also observed between S. glossinidius and T. simiae; and none with T. congolense or T. godfreyi. This study revealed S. glossinidius and Wolbachia in G. m. submorsitans of the area of lake Iro. It showed that co-infections between Wolbachia and S. glossinidius are rare in wild populations of G. m. submorsitans and that the tripartite associations vary according to trypanosome species as well as symbiotic mricroorganisms.

RevDate: 2022-10-17
CmpDate: 2022-10-17

Hugo LE, Rašić G, Maynard AJ, et al (2022)

Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background.

PLoS neglected tropical diseases, 16(10):e0010786.

Biological control of mosquito vectors using the endosymbiotic bacteria Wolbachia is an emerging strategy for the management of human arboviral diseases. We recently described the development of a strain of Aedes aegypti infected with the Wolbachia strain wAlbB (referred to as the wAlbB2-F4 strain) through simple backcrossing of wild type Australian mosquitoes with a wAlbB infected Ae. aegypti strain from the USA. Field releases of male wAlbB2-F4 mosquitoes resulted in the successful suppression of wild populations of mosquitoes in the trial sites by exploiting the strain's Wolbachia-induced cytoplasmic incompatibility. We now demonstrate that the strain is resistant to infection by dengue and Zika viruses and is genetically similar to endemic Queensland populations. There was a fourfold reduction in the proportion of wAlbB2-F4 mosquitoes that became infected following a blood meal containing dengue 2 virus (16.7%) compared to wild type mosquitoes (69.2%) and a 6-7 fold reduction in the proportion of wAlbB2-F4 mosquitoes producing virus in saliva following a blood meal containing an epidemic strain of Zika virus (8.7% in comparison to 58.3% in wild type mosquitoes). Restriction-site Associated DNA (RAD) sequencing revealed that wAlbB2-F4 mosquitoes have > 98% Australian ancestry, confirming the successful introduction of the wAlbB2 infection into the Australian genomic background through backcrossing. Genotypic and phenotypic analyses showed the wAlbB2-F4 strain retains the insecticide susceptible phenotype and genotype of native Australian mosquitoes. We demonstrate that the Wolbachia wAlbB2-F4, in addition to being suitable for population suppression programs, can also be effective in population replacement programs given its inhibition of virus infection in mosquitoes. The ease at which a target mosquito population can be transfected with wAlbB2, while retaining the genotypes and phenotypes of the target population, shows the utility of this strain for controlling the Ae. aegypti mosquitoes and the pathogens they transmit.

RevDate: 2022-10-10

Zhou JC, Zhao X, Huo LX, et al (2022)

Wolbachia-Driven Memory Loss in a Parasitic Wasp Increases Superparasitism to Enhance Horizontal Transmission.

mBio [Epub ahead of print].

Horizontal transmission of the endosymbiont, Wolbachia, may occur during superparasitism when parasitoid females deposit a second clutch of eggs on a host. Wolbachia may increase the superparasitism tendency of Trichogramma wasps by depriving their memory. To test this hypothesis, we investigated the effects of conditioning experience and memory inhibitors (actinomycin D [ACD] and anisomycin [ANI]) on memory capacity, and expressions of memory-related genes (CREB1 and PKA), and superparasitism frequency of Wolbachia-infected (TDW) and uninfected (TD) lines of Trichogramma dendrolimi after conditioning with lemon or peppermint odor. We detected the presence of Wolbachia in eggs, larvae, pre-pupae, pupae, and adults of Trichogramma by using fluorescence in situ hybridization. The results showed that TDW females had a more reduced memory capacity than TD females after conditioning. Compared with TD females, TDW females showed a higher proportion of superparasitism and a downregulation of CREB1 and PKA genes after conditioning. TD females fed ACD or ANI showed a higher tendency for superparasitism and a downregulation of CREB1 and PKA, along with memory loss after conditioning than TD females fed honey solution only. The presence of Wolbachia was detected in the anterior region of the larva, pre-pupa, and pupa, but was not found in the head of the adult. The results provide evidence of host behavioral manipulation of Wolbachia by depriving memory of host Trichogramma wasps based on Poulin' s criteria. These host behavioral changes led by Wolbachia may be caused by the virulence of Wolbachia on the nervous system of the host. IMPORTANCE The endosymbiotic bacteria, Wolbachia, live widely within cells of arthropods. Wolbachia are not only transmitted vertically from host mother to offspring, but are also transmitted horizontally among host individuals. Horizontal transmission is expected to occur during superparasitism when host parasitoid females deposit a clutch of eggs on a host previously parasitized by the same parasitoid species. Thus, a question is proposed regarding whether superparasitism behavior is a behavior modification induced by the symbiont to favor symbiont transmission. This study highlights behavioral mechanisms of Wolbachia-induced superparasitism in Trichogramma wasps and the manipulation of symbionts on host parasitoids.

RevDate: 2022-10-08

Ant TH, Mancini MV, McNamara CJ, et al (2022)

Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes.

Pathogens and global health [Epub ahead of print].

Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.

RevDate: 2022-10-06

Kiefer JST, Schmidt G, Krüsemer R, et al (2022)

Wolbachia causes cytoplasmic incompatibility, but not male-killing in a grain pest beetle.

Molecular ecology [Epub ahead of print].

The endosymbiotic Wolbachia is one of the most common intracellular bacteria known in arthropods and nematodes. Its ability for reproductive manipulation can cause unequal inheritance to male and female offspring, allowing the manipulator to spread, but potentially also impact evolutionary dynamics of infected hosts. Estimated to be present in up to 66% of insect species, little is known about the phenotypic impact of Wolbachia within the order Coleoptera. Here, we describe the reproductive manipulation by the Wolbachia strain wSur harboured by the sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera, Silvanidae), through a combination of genomics approaches and bioassays. The Wolbachia strain wSur belongs to supergroup B that contains well described reproductive manipulators of insects and encodes a pair of cytoplasmic incompatibility factor (cif) genes, as well as multiple homologues of the WO-mediated killing (wmk) gene. A phylogenetic comparison with wmk homologues of wMel of Drosophila melanogaster identified 18 wmk copies in wSur, including one that is closely related to the wMel male-killing homologue. However, further analysis of this particular wmk gene revealed an eight nucleotide deletion leading to a stop-codon and subsequent reading frame shift mid-sequence, likely rendering it non-functional. Concordantly, utilizing a Wolbachia deprived O. surinamensis population and controlled mating pairs of wSur infected and non-infected partners, we found no experimental evidence for male-killing. However, a significant ~50% reduction of hatching rates in hybrid crosses of uninfected females with infected males indicates that wSur is causing cytoplasmic incompatibility. Thus, Wolbachia also represents an important determinant of host fitness in Coleoptera.

RevDate: 2022-10-18

Ross PA, AA Hoffmann (2022)

Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes.

Environmental microbiology [Epub ahead of print].

Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavourable conditions. A. aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection.

RevDate: 2022-10-07
CmpDate: 2022-10-05

Štarhová Serbina L, Gajski D, Malenovský I, et al (2022)

Wolbachia infection dynamics in a natural population of the pear psyllid Cacopsylla pyri (Hemiptera: Psylloidea) across its seasonal generations.

Scientific reports, 12(1):16502.

Wolbachia is one of the most abundant intracellular symbionts of arthropods and has profound effects on host biology. Wolbachia transmission and host phenotypes often depend on its density within the host, which can be affected by multiple biotic and abiotic factors. However, very few studies measured Wolbachia density in natural host populations. Here, we describe Wolbachia in the pear psyllid Cacopsylla pyri from three populations in the Czech Republic. Using phylogenetic analyses based on wsp and multilocus sequence typing genes, we demonstrate that C. pyri harbours three new Wolbachia strains from supergroup B. A fourth Wolbachia strain from supergroup A was also detected in parasitised immatures of C. pyri, but likely came from a hymenopteran parasitoid. To obtain insights into natural Wolbachia infection dynamics, we quantified Wolbachia in psyllid individuals from the locality with the highest prevalence across an entire year, spanning several seasonal generations of the host. All tested females were infected and Wolbachia density remained stable across the entire period, suggesting a highly efficient vertical transmission and little influence from the environment and different host generations. In contrast, we observed a tendency towards reduced Wolbachia density in males which may suggest sex-related differences in Wolbachia-psyllid interactions.

RevDate: 2022-10-01

Ooi EE, A Wilder-Smith (2022)

Externalities modulate the effectiveness of the Wolbachia release programme.

The Lancet. Infectious diseases pii:S1473-3099(22)00497-2 [Epub ahead of print].

RevDate: 2022-10-01

Ribeiro Dos Santos G, Durovni B, Saraceni V, et al (2022)

Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study.

The Lancet. Infectious diseases pii:S1473-3099(22)00436-4 [Epub ahead of print].

BACKGROUND: Introgression of genetic material from species of the insect bacteria Wolbachia into populations of Aedes aegypti mosquitoes has been shown in randomised and non-randomised trials to reduce the incidence of dengue; however, evidence for the real-world effectiveness of large-scale deployments of Wolbachia-infected mosquitoes for arboviral disease control in endemic settings is still scarce. A large Wolbachia (wMel strain) release programme was implemented in 2017 in Rio de Janeiro, Brazil. We aimed to assess the effect of this programme on the incidence of dengue and chikungunya in the city.

METHODS: 67 million wMel-infected mosquitoes were released across 28 489 locations over an area of 86·8 km2 in Rio de Janeiro between Aug 29, 2017 and Dec 27, 2019. Following releases, mosquitoes were trapped and the presence of wMel was recorded. In this spatiotemporal modelling study, we assessed the effect of the release programme on the incidence of dengue and chikungunya. We used spatiotemporally explicit mathematical models applied to geocoded dengue cases (N=283 270) from 2010 to 2019 and chikungunya cases (N=57 705) from 2016 to 2019.

FINDINGS: On average, 32% of mosquitoes collected from the release zones between 1 month and 29 months after the initial release tested positive for wMel. Reduced wMel introgression occurred in locations and seasonal periods in which cases of dengue and chikungunya were historically high, with a decrease to 25% of mosquitoes testing positive for wMel during months in which disease incidence was at its highest. Despite incomplete introgression, we found that the releases were associated with a 38% (95% CI 32-44) reduction in the incidence of dengue and a 10% (4-16) reduction in the incidence of chikungunya.

INTERPRETATION: Stable establishment of wMel in the geographically diverse, urban setting of Rio de Janeiro seems to be more complicated than has been observed elsewhere. However, even intermediate levels of wMel seem to reduce the incidence of disease caused by two arboviruses. These findings will help to guide future release programmes.

FUNDING: Bill & Melinda Gates Foundation and the European Research Council.

RevDate: 2022-09-30

Tiwary A, Babu R, Sen R, et al (2022)

Bacterial supergroup-specific "cost" of Wolbachia infections in Nasonia vitripennis.

Ecology and evolution, 12(9):e9219.

The maternally inherited endosymbiont, Wolbachia, is known to alter the reproductive biology of its arthropod hosts for its own benefit and can induce both positive and negative fitness effects in many hosts. Here, we describe the effects of the maintenance of two distinct Wolbachia infections, one each from supergroups A and B, on the parasitoid host Nasonia vitripennis. We compare the effect of Wolbachia infections on various traits between the uninfected, single A-infected, single B-infected, and double-infected lines with their cured versions. Contrary to some previous reports, our results suggest that there is a significant cost associated with the maintenance of Wolbachia infections where traits such as family size, fecundity, longevity, and rates of male copulation are compromised in Wolbachia-infected lines. The double Wolbachia infection has the most detrimental impact on the host as compared to single infections. Moreover, there is a supergroup-specific negative impact on these wasps as the supergroup B infection elicits the most pronounced negative effects. These negative effects can be attributed to a higher Wolbachia titer seen in the double and the single supergroup B infection lines when compared to supergroup A. Our findings raise important questions on the mechanism of survival and maintenance of these reproductive parasites in arthropod hosts.

RevDate: 2022-09-30
CmpDate: 2022-09-30

Favoreto AL, Carvalho VR, Domingues MM, et al (2022)

Wolbachia pipientis: first detection in populations of Glycaspis brimblecombei (Hemiptera: Aphalaridae) and Psyllaephagus bliteus (Hymenoptera: Encyrtidae) in Brazil.

Brazilian journal of biology = Revista brasleira de biologia, 82:e264475 pii:S1519-69842022000100732.

The sucking insect, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is originally from Australia and reduces the productivity of Eucalyptus crops. The parasitoid Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is the main agent used in the integrated management of G. brimblecombei. Endosymbionts, in insects, are important in the adaptation and protection of their hosts to the environment. The intracellular symbionts Wolbachia, induces reproductive changes such as cytoplasmic incompatibility, feminization, male death and parthenogenesis. The objective of this study was to report the first record of Wolbachia pipientis in populations of G. brimblecombei and of its parasitoid P. bliteus in the field in Brazil. Branches with adults of G. brimblecombei and P. bliteus were collected from eucalyptus trees in commercial farms in six Brazilian states and, after emergence, the insects obtained were frozen at -20 °C. Polymerase chain reaction (PCR) was performed to detect the Wolbachia endosymbiont. Wolbachia pipientis was identified in individuals of G. brimblecombei and its parasitoid P. bliteus from populations of the counties of Agudos and Mogi-Guaçu (São Paulo State), Itamarandiba (Minas Gerais State) and São Jerônimo da Serra (Paraná State) in Brazil.

RevDate: 2022-10-19
CmpDate: 2022-09-29

Dudzic JP, Curtis CI, Gowen BE, et al (2022)

A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode.

Proceedings. Biological sciences, 289(1983):20221518.

Wolbachia symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of Wolbachia in an insect-parasitic tylenchid nematode, Howardula sp., in a nematode clade that has not previously been known to harbour Wolbachia. While this nematode is 100% infected with Wolbachia, we did not detect it in related species. We sequenced the Howardula symbiont (wHow) genome and found that it is highly reduced, comprising only 550 kilobase pairs of DNA, approximately 35% smaller than the smallest Wolbachia nematode symbiont genomes. The wHow genome is a subset of all other Wolbachia genomes and has not acquired any new genetic information. While it has lost many genes, including genes involved in cell wall synthesis and cell division, it has retained the entire haem biosynthesis pathway, suggesting that haem supplementation is critical. wHow provides key insights into our understanding of what are the lower limits of Wolbachia cells, as well as the role of Wolbachia symbionts in the biology and convergent evolution of diverse parasitic nematodes.

RevDate: 2022-09-27

Hussain M, Bradshaw T, Lee M, et al (2022)

The Involvement of Atlastin in Dengue Virus and Wolbachia Infection in Aedes aegypti and Its Regulation by aae-miR-989.

Microbiology spectrum [Epub ahead of print].

Endoplasmic reticulum (ER)-shaping atlastin proteins (ATLs) have been demonstrated to play a functional role during flavivirus replication in mammalian cells. For dengue virus (DENV), atlastin is required in the formation of the replication organelles and RNA replication, virion assembly, production of the infectious virus particles, and trafficking or directing the association of vesicle packets with furin. Here, we investigated the involvement of atlastin in DENV replication in the mosquito Aedes aegypti and explored the possibility of its manipulation by the endosymbiotic bacterium Wolbachia to interfere with DENV replication. Results showed the expression of Ae. aegypti atlastin gene (AaATL) was upregulated in DENV-infected Aag2 cells, and its silencing led to reduced DENV replication. Contrary to our assumption that AaATL could be downregulated by Wolbachia, we did not find evidence for that in Wolbachia-infected cell lines, but this was the case in mosquitoes. Further, silencing AaATL did not have any effect on Wolbachia density. Our results also suggest that aae-miR-989 miRNA negatively regulates AaATL. The oversupply of the miRNA mimic led to reduced DENV replication consistent with the positive role of AaATL in DENV replication. Overall, the results favor AaATL's involvement in DENV replication; however, there is no support that the protein is involved in Wolbachia-mediated DENV inhibition. In addition, the results contribute to discerning further possible overlapping functions of ATLs in mosquitoes and mammalian cells. IMPORTANCE Atlastin is a protein associated with the endoplasmic reticulum and has been shown to play a role in replication of flaviviruses in mammalian cells. This study aimed to investigate the role of mosquito Aedes aegypti atlastin (AaATL) in dengue virus replication and maintenance of Wolbachia, an endosymbiotic bacterium, in the mosquito. Our results suggest that AaATL facilitates dengue virus replication in mosquito cells, considering silencing the gene led to reductions in virus replication and virion production. Further, AaATL was found to be regulated by a mosquito microRNA, aae-miR-989. Despite an effect on dengue virus, AaATL silencing did not affect Wolbachia replication and maintenance in mosquito cells. The results shed light on the role of atlastins in mosquito-pathogen interactions and their overlapping roles in mosquito and mammalian cells.

RevDate: 2022-10-05

Bing XL, Xia CB, Ye QT, et al (2022)

Wolbachia manipulates reproduction of spider mites by influencing herbivore salivary proteins.

Pest management science [Epub ahead of print].

BACKGROUND: The endosymbiont Wolbachia is known for manipulating host reproduction. Wolbachia also can affect host fitness by mediating interactions between plant and herbivores. However, it remains unclear whether saliva proteins are involved in this process.

RESULTS: We found that Wolbachia infection decreased the number of deposited eggs but increased the egg hatching rate in the spider mite Tetranychus urticae Koch (Acari: Tetranychidae), a cosmopolitan pest that infects >1000 species of plants. Transcriptomic and proteomic analyses revealed that Wolbachia-infected mites upregulated the gene expression levels of many T. urticae salivary proteins including a cluster of Tetranychidae-specific, functionally uncharacterized SHOT1s (secreted host-responsive proteins of Tetranychidae). The SHOT1 genes were expressed more in the feeding stages (nymphs and adults) of mites than in eggs and highly enriched in the proterosomas. RNA interference experiments showed that knockdown of SHOT1s significantly decreased Wolbachia density, increased the number of deposited eggs and decreased the egg hatching rate.

CONCLUSION: Together, these results indicate that SHOT1s are positively correlated with Wolbachia density and account for Wolbachia-mediated phenotypes. Our results provide new evidence that herbivore salivary proteins are related to Wolbachia-mediated manipulations of host performance on plants. © 2022 Society of Chemical Industry.

RevDate: 2022-09-29
CmpDate: 2022-09-28

Warecki B, Titen SWA, Alam MS, et al (2022)

Wolbachia action in the sperm produces developmentally deferred chromosome segregation defects during the Drosophila mid-blastula transition.

eLife, 11:.

Wolbachia, a vertically transmitted endosymbiont infecting many insects, spreads rapidly through uninfected populations by a mechanism known as cytoplasmic incompatibility (CI). In CI, a paternally delivered modification of the sperm leads to chromatin defects and lethality during and after the first mitosis of embryonic development in multiple species. However, whether CI-induced defects in later stage embryos are a consequence of the first division errors or caused by independent defects remains unresolved. To address this question, we focused on ~1/3 of embryos from CI crosses in Drosophila simulans that develop apparently normally through the first and subsequent pre-blastoderm divisions before exhibiting mitotic errors during the mid-blastula transition and gastrulation. We performed single embryo PCR and whole genome sequencing to find a large percentage of these developed CI-derived embryos bypass the first division defect. Using fluorescence in situ hybridization, we find increased chromosome segregation errors in gastrulating CI-derived embryos that had avoided the first division defect. Thus, Wolbachia action in the sperm induces developmentally deferred defects that are not a consequence of the first division errors. Like the immediate defect, the delayed defect is rescued through crosses to infected females. These studies inform current models on the molecular and cellular basis of CI.

RevDate: 2022-09-24

Guo L, Tang C, Gao C, et al (2022)

Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuata from China.

Frontiers in microbiology, 13:964735.

The hemp flea beetle Psylliodes attenuata (Coleoptera: Chrysomelidae: Psylliodes) is a common pest of Cannabis sativa, including cultivars of both medicinal marijuana and industrial hemp. Both the larval and adult stages of this beetle can cause significant damages to C. sativa, resulting in substantial crop losses. At present, little is known about the bacterial and fungal community diversity among populations of this pest insect. In the present study, we obtained P. attenuata samples from nine field sites representing broad industrial hemp productions in China and analyzed their microbial communities using DNA metabarcoding. Bacterial sequences of all the samples were assigned to 3728 OTUs, which belonged to 45 phyla, 1058 genera and 1960 known species. The most common genera were Rickettsia, Wolbachia, and Candidatus_Brownia. Fungal sequences of all the samples were assigned to 910 OTUs, which belonged to 9 phyla, 308 genera and 464 known species. The most common fungal genera were Cladosporium, Cutaneotrichosporon, and Aspergillus. Principal coordinate analysis revealed a significant difference in the bacterial and fungal community structure among the nine P. attenuata populations. Understanding the microbial symbionts may provide clues to help develop potential biocontrol techniques against this pest.

RevDate: 2022-09-24

Liu YH, Ma YM, Tian HO, et al (2022)

First determination of DNA virus and some additional bacteria from Melophagus ovinus (sheep ked) in Tibet, China.

Frontiers in microbiology, 13:988136.

Melophagus ovinus (sheep ked) is one of the common ectoparasites in sheep. In addition to causing direct damage to the host through biting and sucking blood, sheep ked is a potential vector of helminths, protozoa, bacteria, and viruses. Sheep M. ovinus samples from three regions in Tibet were selected for DNA extraction. The 16S rDNA V3-V4 hypervariable region was amplified, after genomic DNA fragmentation, Illumina Hiseq libraries were constructed. The 16S rRNA sequencing and viral metagenomics sequencing were separately conducted on the Illumina Novaseq 6000 platform and molecular biology software and platforms were employed to analyze the sequencing data. Illumina PE250 sequencing results demonstrated that the dominant bacteria phylum in M. ovinus from Tibet, China was Proteobacteria, where 29 bacteria genera were annotated. The dominant bacterial genera were Bartonella, Wolbachia, and Arsenophonus; Bartonella chomelii, Wolbachia spp., and Arsenophonus spp. were the dominant bacterial species in M. ovinus from Tibet, China. We also detected Kluyvera intermedia, Corynebacterium maris DSM 45190, Planomicrobium okeanokoites, and Rhodococcus erythropolis, of which the relative abundance of Kluyvera intermedia was high. Illumina Hiseq sequencing results demonstrated that 4 virus orders were detected in M. ovinus from Tibet, China, and 3 samples were annotated into 29 families, 30 families, and 28 families of viruses, respectively. Virus families related to vertebrates and insects mainly included Mimiviridae, Marseilleviridae, Poxviridae, Ascoviridae, Iridoviridae, Baculoviridae, Hytrosaviridae, Nudiviridae, Polydnaviridae, Adomaviridae, Asfarviridae, Hepeviridae, Herpesviridae, and Retroviridae; at the species level, the relative abundance of Tupanvirus_soda_lake, Klosneuvirus_KNV1, and Indivirus_ILV1 was higher. African swine fever virus and many poxviruses from the family Poxviridae were detected, albeit their relative abundance was low. The dominant bacterial phylum of M. ovinus from Tibet, China was Proteobacteria, and the dominant bacterial genera were Bartonella, Wolbachia, and Arsenophonus, where 23 out of 29 annotated bacteria genera were first reported in M. ovinus. Kluyvera intermedia, Corynebacterium maris DSM 45190, Planomicrobium okeanokoites, and Rhodococcus erythropolis were detected for the first time. All DNA viruses detected in this study have been reported in M. ovinus for the first time.

RevDate: 2022-09-22

Liu Q, Zhang H, X Huang (2022)

Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect.

Microbial ecology [Epub ahead of print].

The relationships between symbionts and insects are complex, and symbionts usually have diverse ecological and evolutionary effects on their hosts. The phloem sap-sucking aphids are good models to study the interactions between insects and symbiotic microorganisms. Although aphids usually exhibit remarkable life cycle complexity, most previous studies on symbiotic diversity sampled only apterous viviparous adult females or very few morphs. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the symbiotic bacterial communities of eleven morphs or developmental stages of the social aphid Pseudoregma bambucicola. We found there were significant differences in bacterial composition in response to different morphs and developmental stages, and for the first time, we revealed male aphids hosted very different symbiotic composition featured with low abundance of dominant symbionts but high diversity of total symbionts. The relative abundance of Pectobacterium showed relatively stable across different types of samples, while that of Wolbachia fluctuated greatly, indicating the former may have a consistent function in this species and the latter may provide specific function for certain morphs or developmental stages. Our study presents new evidence of complexity of symbiotic associations and indicates strong linkage between symbiotic bacterial community and host age and morph.

RevDate: 2022-09-28

Andrianto E, A Kasai (2022)

Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex.

Insects, 13(9):.

Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochondrial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are genetically different but morphologically indistinctive. However, little is known about the Wolbachia infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex. A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae. The rapid evolution of wAlec was also found to occur through a high recombination event, which produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompatibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and host expansion have been recorded among these species. This study also identified a parasitoid wasp belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.

RevDate: 2022-10-01

Brinker P, Chen F, Chehida YB, et al (2022)

Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia.

Molecular ecology [Epub ahead of print].

The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.

RevDate: 2022-09-27
CmpDate: 2022-09-22

Chinnathambi R, FA Rihan (2022)

Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia.

Mathematical biosciences and engineering : MBE, 19(11):11154-11171.

Combining Sterile and Incompatible Insect techniques can significantly reduce mosquito populations and prevent the transmission of diseases between insects and humans. This paper describes impulsive differential equations for the control of a mosquito with Wolbachia. Several interesting conditions are created when sterile male mosquitoes are released impulsively, ensuring both open- and closed-loop control. To determine the wild mosquito population size in real-time, we propose an open-loop control system, which uses impulsive and constant releases of sterile male mosquitoes. A closed-loop control scheme is also being investigated, which specifies the release of sterile mosquitoes according to the size of the wild mosquito population. To eliminate or reduce a mosquito population below a certain threshold, the Sterile insect technique involves mass releases of sterile insects. Numerical simulations verify the theoretical results.

RevDate: 2022-10-17
CmpDate: 2022-10-17

Martinez J, Ant TH, Murdochy SM, et al (2022)

Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common.

PLoS genetics, 18(9):e1010406.

Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host's reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts.

RevDate: 2022-09-20

Power NR, Rugman-Jones PF, Stouthamer R, et al (2022)

High temperature mortality of Wolbachia impacts the sex ratio of the parasitoid Ooencyrtus mirus (Hymenoptera: Encyrtidae).

PeerJ, 10:e13912.

Background: Wolbachia bacteria are estimated to occur in more than half of all insect species. In Hymenoptera, Wolbachia often manipulates its host's reproduction to its own advantage. Wolbachia is likely the reason that males are rare in the uniparental Ooencyrtus mirus Triapitsyn & Power (Hymenoptera: Encyrtidae). The likelihood of producing male offspring can be increased by giving mothers a continuous supply of Bagrada hilaris (Burmeister) (Heteroptera: Pentatomidae) host eggs to parasitize for 2-3 weeks, by feeding the parents antibiotics, or by rearing parent wasps at high temperatures; all variables that have been shown to correlate with depleting Wolbachia titers in other organisms. The purpose of the current study was to determine whether thelytoky in O. mirus is due to Wolbachia, and if so, at what time in development the sex change occurs. We also wished to determine if Wolbachia removal results in the production of intersexes, as in some other hymenopterans. Finally, mating behavior was observed to see if and where it breaks down as a result of the species becoming thelytokous.

Methods: Females were collected from parental lines of O. mirus reared at 26, 30, 31, 32, 33, 34, and 36 °C. The offspring of these females were reared at 26 °C, and their sex-ratio was determined. In a subsequent experiment, the parental generation was switched between 26 °C and 36 °C during development to narrow down the critical period at which changes occurred that subsequently affected the sex-ratio of their offspring.

Results: The sex ratio was male biased in the offspring of O. mirus parents reared at 34 °C and 36 °C (high temperatures), even if the offspring themselves were reared at 26 °C. The constant temperature at which the percentage of males started to increase after two generations was 31 °C (10% males), rising to 39% males at 33 °C, and 100% males at 34 °C and 36 °C. Lasting more than 2 days, the critical period for the change toward a male biased sex ratio was during the second half of the parent's development. Molecular diagnostic assays confirmed that O. mirus females contain Wolbachia and males do not. Examination of preserved males and male-female pairs under a dissecting microscope showed no signs of intersex characters. Observation of the mating behavior of live O. mirus showed that males initiate courtship by drumming their antennae on a female's antennae, but after a few seconds, the females typically turn and walk away. However, a few instances of possible copulation were noted.

Conclusions: As hypothesized, the results indicated that thelytoky in O. mirus is likely mediated by Wolbachia bacteria. To maximize the population growth rate without generating males, the best temperature for mass rearing this species is 30 °C.

RevDate: 2022-09-17

Li J, He P, He P, et al (2022)

Potential of citrus endophyte Bacillus subtilis L1-21 in the control of Candidatus Liberibacter asiaticus in Asian citrus psyllid, Diaphorina citri.

Pest management science [Epub ahead of print].

BACKGROUND: Asian citrus psyllid (ACP), also known as Diaphorina citri, is the natural vector of Candidatus Liberibacter asiaticus (CLas), which is responsible for Huanglongbing (HLB), a devastating citrus disease. Previously, the pathogen was successfully excluded from diseased citrus plants by using the indigenous endophyte Bacillus subtilis L1-21. However, the pathogen elimination and colonization potential of B. subtilis L1-21 in the carrier vector ACP, as well as the recruitment of native microbial communities of psyllid in the presence of endophytes, are still unknown.

RESULTS: Initially, we suggested that endophyte L1-21 reduced the CLas copies in ACP from 6.58 × 106 to 5.04 × 104 per insect after 48 h, however, the pathogen copies remained stable in the negative control. The endophyte was stable for 48 h after application. Among the bacterial genera those highlighted in ACP were Candidatus Liberibacter, Pseudomonas, Candidatus Profftella, Methylobacterium-Methylorubrum, Pantoea, Curtobacterium, Wolbachia, Actinomycetospora, and Bacillus. Interestingly, B. subtilis L1-21 easily colonizes the midgut of ACP but cannot be detected in eggs. When ACP with endophyte L1-21 was allowed to feed on new citrus leaves, the highest colonization was observed. We also found that psyllids carrying endophyte L1-21 after feeding on citrus leaves reduced the CLas copies in leaves on the 0, 3rd and 5th day from 8.18 × 10,4 2.6 × 10,3 and 0 pathogen copies/g fresh midvein, respectively.

CONCLUSIONS: We propose that B. subtilis L1-21 is a native endophyte in citrus and psyllid, which efficiently reduces the CLas pathogen in both citrus and psyllids, provides a more protective effect by increasing the number of cultivable endophytes, and successfully colonizes the midgut of ACP.

RevDate: 2022-10-04
CmpDate: 2022-09-20

Liu Y, Yu J, J Li (2022)

A Mosquito Population Suppression Model by Releasing Wolbachia-Infected Males.

Bulletin of mathematical biology, 84(11):121.

Due to the role of cytoplasmic incompatibility (CI), releasing Wolbachia-infected male mosquitoes into the wild becomes a very promising strategy to suppress the wild mosquito population. When developing a mosquito suppression strategy, our main concerns are how often, and in what amount, should Wolbachia-infected mosquitoes be released under different CI intensity conditions, so that the suppression is most effective and cost efficient. In this paper, we propose a mosquito population suppression model that incorporates suppression and self-recovery under different CI intensity conditions. We adopt the new modeling idea that only sexually active Wolbachia-infected male mosquitoes are considered in the model and assume the releases of Wolbachia-infected male mosquitoes are impulsive and periodic with period T. We particularly study the case where the release period is greater than the sexual lifespan of the Wolbachia-infected male mosquitoes. We define the CI intensity threshold, mosquito release thresholds, and the release period threshold to characterize the model dynamics. The global and local asymptotic stability of the origin and the existence and stability of T-periodic solutions are investigated. Our findings provide useful guidance in designing practical release strategies to control wild mosquitoes.

RevDate: 2022-09-17

Zhang HD, Gao J, Xing D, et al (2022)

Fine-scale genetic structure and wolbachia infection of aedes albopictus (Diptera: Culicidae) in Nanjing city, China.

Frontiers in genetics, 13:827655.

Background: Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Wolbachia is a gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Compared with research on the dispersion of Ae. albopictus at the macrospatial level (mainly at the country or continent level), little is known about its variation and Wolbachia infection at the microspatial level, which is essential for its management. Meanwhile, no local cases of dengue fever have been recorded in the history of Nanjing, which implies that few adulticides have been applied in the city. Thus, the present study examines how the Ae. albopictus population varies and the Wolbachia infection status of each population among microspatial regions of Nanjing City. Methods: The genetic structure of 17 Aedes albopictus populations collected from urban, urban fringe, and rural regions of Nanjing City was investigated based on 9 microsatellite loci and the mitochondrial coxI gene. The Wolbachia infection status of each population was also assessed with Wolbachia A- and Wolbachia B-specific primers. Results: Nine out of 58 tested pairs of microsatellite markers were highly polymorphic, with a mean PIC value of 0.560, and these markers were therefore chosen for microsatellite genotyping analysis. The Na value of each Ae. albopictus population was very high, and the urban area populations (7.353 ± 4.975) showed a lower mean value than the urban fringe region populations (7.866 ± 5.010). A total of 19 coxI haplotypes were observed among 329 Ae. albopictus individuals via haplotype genotyping, with the highest diversity observed among the urban fringe Ae. albopictus populations (Hd = 0.456) and the lowest among the urban populations (Hd = 0.277). Each Ae. albopictus population showed significant departure from HWE, and significant population expansion was observed in only three populations from the urban (ZSL), urban fringe (HAJY), and rural areas (HSZY) (p < 0.05). Combined with DAPC analysis, all the Ae. albopictus populations were adequately allocated to two clades with significant genetic differences according to population structure analysis, and the best K value was equal to two. AMOVA results showed that most (96.18%) of the genetic variation detected in Ae. albopictus occurred within individuals (FIT = 0.22238, p < 0.0001), while no significant positive correlation was observed via isolation by distance (IBD) analysis (R 2 = 0.03262, p = 0.584). The TCS network of all haplotypes showed that haplotype 1 (H1) and haplotype 4 (H4) were the most frequent haplotypes among all populations, and the haplotype frequency significantly increased from urban regions (36.84%) to rural regions (68.42%). Frequent migration was observed among Ae. albopictus populations from rural to urban regions via the urban fringe region, with four direct migration routes between rural and urban regions. Furthermore, Wolbachia genotyping results showed that most of the individuals of each population were coinfected with Wolbachia A and Wolbachia B. The independent infection rate of Wolbachia A was slightly higher than that of Wolbachia B, and no significant differences were observed among different regions. Conclusion: In the microspatial environment of Nanjing City, the urban fringe region is an important region for the dispersion of Ae. albopictus populations between rural and urban areas, and Wolbachia A and Wolbachia B coinfection is the most common Wolbachia infection status in all Ae. albopictus populations among different regions.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Bishop C, Hussain M, Hugo LE, et al (2022)

Analysis of Aedes aegypti microRNAs in response to Wolbachia wAlbB infection and their potential role in mosquito longevity.

Scientific reports, 12(1):15245.

The mosquito Aedes aegypti is the primary vector of a range of medically important viruses including dengue, Zika, West Nile, yellow fever, and chikungunya viruses. The endosymbiotic bacterium Wolbachia pipientis wAlbB strain is a promising biocontrol agent for blocking viral transmission by Ae. aegypti. To predict the long-term efficacy of field applications, a thorough understanding of the interactions between symbiont, host, and pathogen is required. Wolbachia influences host physiology in a variety of ways including reproduction, immunity, metabolism, and longevity. MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that regulate gene expression in eukaryotes and viruses. Several miRNAs are known to regulate biological processes in Drosophila and mosquitoes, including facilitating Wolbachia maintenance. We generated the first chromosomal map of Ae. aegypti miRNAs, and compared miRNA expression profiles between a wAlbB-transinfected Ae. aegypti mosquito line and a tetracycline cleared derivative, using deep small RNA-sequencing. We found limited modulation of miRNAs in response to wAlbB infection. Several miRNAs were modulated in response to age, some of which showed greater upregulation in wAlbB-infected mosquitoes than in tetracycline cleared ones. By selectively inhibiting some differentially expressed miRNAs, we identified miR-2946-3p and miR-317-3p as effecting mosquito longevity in Wolbachia-infected mosquitoes.

RevDate: 2022-09-06
CmpDate: 2022-09-02

Twort VG, Blande D, A Duplouy (2022)

One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts.

BMC microbiology, 22(1):209.

BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis.

RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here.

CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.

RevDate: 2022-09-14
CmpDate: 2022-09-02

Conjard S, Meyer DF, Aprelon R, et al (2022)

Evidence of new strains of Wolbachia symbiont colonising semiaquatic bugs (Hemiptera: Gerroidea) in mangrove environment of the Lesser Antilles.

PloS one, 17(8):e0273668.

Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.

RevDate: 2022-09-02
CmpDate: 2022-08-31

Formisano G, Iodice L, Cascone P, et al (2022)

Wolbachia infection and genetic diversity of Italian populations of Philaenus spumarius, the main vector of Xylella fastidiosa in Europe.

PloS one, 17(8):e0272028.

Philaenus spumarius is a cosmopolitan species that has become a major threat to European agriculture being recognized as the main vector of the introduced plant pathogen Xylella fastidiosa, the agent of the "olive quick decline syndrome", a disease which is devastating olive orchards in southern Italy. Wolbachia are bacterial symbionts of many insects, frequently as reproductive parasites, sometime by establishing mutualistic relationships, able to spread within host populations. Philaenus spumarius harbors Wolbachia, but the role played by this symbiont is unknown and data on the infection prevalence within host populations are limited. Here, the Wolbachia infection rate was analyzed in relation to the geographic distribution and the genetic diversity of the Italian populations of P. spumarius. Analysis of the COI gene sequences revealed a geographically structured distribution of the three main mitochondrial lineages of P. spumarius. Wolbachia was detected in half of the populations sampled in northern Italy where most individuals belonged to the western-Mediterranean lineage. All populations sampled in southern and central Italy, where the individuals of the eastern-Mediterranean lineage were largely prevalent, were uninfected. Individuals of the north-eastern lineage were found only in populations from the Alps in the northernmost part of Italy, at high altitudes. In this area, Wolbachia infection reached the highest prevalence, with no difference between north-eastern and western-Mediterranean lineage. Analysis of molecular diversity of COI sequences suggested no significant effect of Wolbachia on population genetics of P. spumarius. Using the MLST approach, six new Wolbachia sequence types were identified. Using FISH, Wolbachia were observed within the host's reproductive tissues and salivary glands. Results obtained led us to discuss the role of Wolbachia in P. spumarius, the factors influencing the geographic distribution of the infection, and the exploitation of Wolbachia for the control of the vector insect to reduce the spread of X. fastidiosa.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Zong Q, Mao B, Zhang HB, et al (2022)

Comparative Ubiquitome Analysis Reveals Deubiquitinating Effects Induced by Wolbachia Infection in Drosophila melanogaster.

International journal of molecular sciences, 23(16):.

The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI) in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways. Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1% DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them, Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host interactions and male fertility.

RevDate: 2022-08-30

Suo P, Wang K, Yu H, et al (2022)

Seasonal Variation of Midgut Bacterial Diversity in Culexquinquefasciatus Populations in Haikou City, Hainan Province, China.

Biology, 11(8):.

Culex quinquefasciatus, one of the most significant mosquito vectors in the world, is widespread in most parts of southern China. A variety of diseases including Bancroft's filariasis, West Nile disease, and St. Louis encephalitis could be transmitted by the vector. Mosquitoes have been shown to host diverse bacterial communities that vary depending on environmental factors such as temperature and rainfall. In this work, 16S rDNA sequencing was used to analyze the seasonal variation of midgut bacterial diversity of Cx. Quinquefasciatus in Haikou City, Hainan Province, China. Proteobacteria was the dominant phylum, accounting for 79.7% (autumn), 73% (winter), 80.4% (spring), and 84.5% (summer). The abundance of Bacteroidetes in autumn and winter was higher than in others. Interestingly, Epsilonbacteraeota, which only exists in autumn and winter, was discovered accidentally in the midgut. We speculated that this might participate in the nutritional supply of adult mosquitoes when temperatures drop. Wolbachia is the most abundant in autumn, accounting for 31.6% of bacteria. The content of Pantoea was highest in the summer group, which might be related to the enhancement of the ability of mosquitoes as temperatures increased. Pseudomonas is carried out as the highest level in winter. On the contrary, in spring and summer, the genus in highest abundance is Enterobacter. Acinetobacter enriches in the spring when it turns from cold to hot. By studying the diversity of midgut bacteria of Cx. quinquefasciatus, we can further understand the co-evolution of mosquitoes and their symbiotic microbes. This is necessary to discuss the seasonal variation of microorganisms and ultimately provide a new perspective for the control of Cx. quinquefasciatus to reduce the spread of the diseases which have notably vital practical significance for the effective prevention of Cx. quinquefasciatus.

RevDate: 2022-08-28

Fallon AM (2022)

From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman's Career in Insect Biology.

Insects, 13(8):.

In anautogenous mosquitoes, synchronous development of terminal ovarian follicles after a blood meal provides an important model for studies on insect reproduction. Removal and implantation of ovaries, in vitro culture of dissected tissues and immunological assays for vitellogenin synthesis by the fat body showed that the Aedes aegypti (L.) (Diptera, Culicidae) mosquito ovary produces a factor essential for egg production. The discovery that the ovarian factor was the insect steroid hormone, ecdysone, provided a model for co-option of the larval hormones as reproductive hormones in adult insects. In later work on cultured mosquito cells, ecdysone was shown to arrest the cell cycle, resulting in an accumulation of diploid cells in G1, prior to initiation of DNA synthesis. Some mosquito species, such as Culex pipiens L. (Diptera, Culicidae), harbor the obligate intracellular bacterium, Wolbachia pipientis Hertig (Rickettsiales, Anaplasmataceae), in their reproductive tissues. When maintained in mosquito cell lines, Wolbachia abundance increases in ecdysone-arrested cells. This observation facilitated the recovery of high levels of Wolbachia from cultured cells for microinjection and genetic manipulation. In female Culex pipiens, it will be of interest to explore how hormonal cues that support initiation and progression of the vitellogenic cycle influence Wolbachia replication and transmission to subsequent generations via infected eggs.

RevDate: 2022-08-28

Kyritsis GA, Koskinioti P, Bourtzis K, et al (2022)

Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata.

Insects, 13(8):.

Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.

RevDate: 2022-08-26

Sharma M, V Kumar (2022)

Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs -advancements, challenges, and possibilities.

Current research in insect science, 2:100028.

The increasing global burden of mosquito-borne diseases require targeted, environmentally friendly, and sustainable approaches for effective vector control without endangering the non-target beneficial insect population. Biological interventions such as biopesticides, Wolbachia-mediated biological controls, or sterile insect techniques are used worldwide. Here we review Binary or BinAB toxin-the mosquito-larvicidal component of WHO-recognized Lysinibacillus sphaericus bacterium employed in mosquito control programs. Binary (BinAB) toxin is primarily responsible for the larvicidal effect of the bacterium. BinAB is a single-receptor-specific toxin and is effective against larvae of Culex and Anopheles, but not against Aedes aegypti. The receptor in Culex, the Cqm1 protein, has been extensively studied. It is a GPI-anchored amylomaltase and is located apically in the lipid rafts of the larval-midgut epithelium. The interaction of the toxin components with the receptor is crucial for the mosquito larvicidal activity of the BinAB toxin. Here we extend support for the pore formation model of BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. BinAB is phylogenetically safe for humans, as Cqm1-like protein is not expected in the human proteome. This review aims to initiate targeted R&D efforts, such as applying fusion technologies (chimera of BinA, chemical modification of BinA), for efficient mosquito control interventions. In addition, the review also examines other areas such as bioremediation and cancer therapeutics, in which L. sphaericus is proving useful and showing potential for further development.

RevDate: 2022-08-26

Davies OK, Dorey JB, Stevens MI, et al (2022)

Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus.

Current research in insect science, 2:100036.

Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.

RevDate: 2022-08-23

Ma TC, Guo WJ, JB Wen (2022)

Effects of feeding on different parts of Ailanthus altissima on the intestinal microbiota of Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti (Coleoptera: Curculionidae).

Frontiers in microbiology, 13:899313.

Eucryptorrhynchus brandti and Eucryptorrhynchus scrobiculatus (Coleoptera: Curculionidae) are two monophagous weevil pests that feed on Ailanthus altissima (Mill.) Swingle but differ in their diet niche. In the field, adults of E. brandti prefer to feed on the trunk of A. altissima, whereas adults of E. scrobiculatus prefer to feed on the tender parts. We conducted Illumina sequencing of 16S rRNA to examine changes in bacterial diversity in the adults of these two weevil species after they fed on different parts of A. altissima (trunk, 2-3-year-old branches, annual branches, and petioles). Proteobacteria, Tenericutes, and Firmicutes were the dominant phyla in E. brandti (relative abundance was 50.64, 41.56, and 5.63%, respectively) and E. scrobiculatus (relative abundance was 78.63, 11.91, and 7.41%, respectively). At the genus level, Spiroplasma, endosymbionts2, Unclassified Enterobacteriaceae, and Lactococcus were dominant in E. brandti, and Unclassified Enterobacteriaceae, Wolbachia and Spiroplasma, and endosymbionts2 were dominant in E. scrobiculatus. Linear discriminant analysis effect size analysis revealed microbial biomarkers in the different treatment group of adults of both weevil species. Adults of E. brandti may require the trunk, and adults of E. scrobiculatus may require the petioles and annual branches to maintain the high diversity of their gut microbes. The results of this study indicate that feeding on different parts of A. altissima affects the composition and function of the microbes of E. brandti and the microbial composition of E. scrobiculatus. Variation in the abundance of Wolbachia and Spiroplasma in E. brandti and E. scrobiculatus is associated with dietary niche changes, and this might explain the evolution of reproductive isolation between these two sibling weevil species.

RevDate: 2022-08-23

Sadanandane C, Gunasekaran K, Panneer D, et al (2022)

Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines.

Frontiers in microbiology, 13:947857.

Wolbachia, an intracellular maternally transmitted endosymbiont, has been shown to interfere with the replication of dengue virus in Aedes aegypti mosquitoes. The Wolbachia-transinfected Ae. aegypti has been currently released in many countries to test its effectiveness in preventing the transmission of dengue virus. ICMR-Vector Control Research Centre in collaboration with World Mosquito Program Monash University, Australia, has generated two new Wolbachia-introgressed Ae. aegypti Puducherry (Pud) lines via backcrossing Ae. aegypti females of Australian (Aus) strains, infected with wMel and wAlbB Wolbachia with wild-type Ae. aegypti Puducherry (Pud) males. Wolbachia infections are known to induce a fitness cost and confer benefit on the host mosquito populations that will influence spread of the Wolbachia into native wild mosquito populations during the field release. Hence, the induced fitness cost or benefit/advantage in the two newly generated Ae. aegypti (Pud) lines was assessed in the laboratory in comparison with the wild-type Ae. aegypti (Pud) strain. In addition, maternal transmission (MT) efficiency, induced cytoplasmic incompatibility (CI), and insecticide resistance status of the two (Pud) lines were determined to assess the likely frequency of wMel and wAlbB infections in the native wild population after field invasion. The study shows that wMel and wAlbB infections did not induce any fitness cost on the two newly generated (Pud) lines. Rather, in terms of wing length, fecundity, egg hatch rate, and adult survival, the Wolbachia introgression conferred fitness benefits on the (Pud) lines compared to uninfected Wolbachia free wild Ae. aegypti population. wMel and wAlbB exhibited a high maternal transmission (99-100%) and induced nearly complete (98-100%) cytoplasmic incompatibility. Both the (Pud) lines were resistant to deltamethrin, malathion, DDT, and temephos, and the level of resistance was almost the same between the two lines as in the wild type. Overall, the stable association of wMel and wAlbB established with Ae. aegypti and the reproductive advantages of the (Pud) lines encourage a pilot release in the field for population replacement potential.

RevDate: 2022-10-12
CmpDate: 2022-10-04

Shastry V, Bell KL, Buerkle CA, et al (2022)

A continental-scale survey of Wolbachia infections in blue butterflies reveals evidence of interspecific transfer and invasion dynamics.

G3 (Bethesda, Md.), 12(10):.

Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.

RevDate: 2022-09-24

Shropshire JD, Hamant E, Conner WR, et al (2022)

cifB-transcript levels largely explain cytoplasmic incompatibility variation across divergent Wolbachia.

PNAS nexus, 1(3):pgac099.

Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts, due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-infected males. Closely related infections in females rescue CI, providing a relative fitness advantage that drives Wolbachia to high frequencies. One prophage-associated gene (cifA) governs rescue, and two contribute to CI (cifA and cifB), but CI strength ranges from very strong to very weak for unknown reasons. Here, we investigate CI-strength variation and its mechanistic underpinnings in a phylogenetic context across 20 million years (MY) of Wolbachia evolution in Drosophila hosts diverged up to 50 MY. These Wolbachia encode diverse Cif proteins (100% to 7.4% pairwise similarity), and AlphaFold structural analyses suggest that CifB sequence similarities do not predict structural similarities. We demonstrate that cifB-transcript levels in testes explain CI strength across all but two focal systems. Despite phylogenetic discordance among cifs and the bulk of the Wolbachia genome, closely related Wolbachia tend to cause similar CI strengths and transcribe cifB at similar levels. This indicates that other non-cif regions of the Wolbachia genome modulate cif-transcript levels. CI strength also increases with the length of the host's larval life stage, presumably due to prolonged cif action. Our findings reveal that cifB-transcript levels largely explain CI strength, while highlighting other covariates. Elucidating CI's mechanism contributes to our understanding of Wolbachia spread in natural systems and to improving the efficacy of CI-based biocontrol of arboviruses and agricultural pests globally.

RevDate: 2022-08-11

PLOS Neglected Tropical Diseases Editors (2022)

Retraction: Wolbachia Transcription Elongation Factor "Wol GreA" Interacts with α2ββ'σ Subunits of RNA Polymerase through Its Dimeric C-Terminal Domain.

PLoS neglected tropical diseases, 16(8):e0010694.

RevDate: 2022-08-08
CmpDate: 2022-08-08

Denton JA, Joubert DA, Goundar AA, et al (2022)

International shipments of Wolbachia-infected mosquito eggs: towards the scaling-up of World Mosquito Program operations.

Revue scientifique et technique (International Office of Epizootics), 41(1):91-99.

The Wolbachia insect control method, employed by the World Mosquito Program (WMP), relies on introgressing Wolbachia through target Aedes aegypti populations to reduce the incidence of dengue. Since 2010, the WMP has been producing Wolbachia-infected mosquitoes at numerous sites across the globe for release in 11 countries. As the technology has matured, greater focus has been placed on mosquito production at larger central facilities for transport to remote release sites, both domestically and internationally. Of particular note is the production of Wolbachia-infected mosquitoes at the WMP's Australian production facility for successful international deployments in Fiji, Vanuatu, Kiribati and Sri Lanka. This requires careful management of both production and supply-chain processes to ensure that the quality of the mosquito eggs, specifically the hatch rate and Wolbachia infection rate, is maintained. To ensure the cost-effectiveness and scalability of the Wolbachia method, these processes will be further refined to facilitate deployment from large centralised production facilities.

RevDate: 2022-08-05

Tibbs-Cortes LE, Tibbs-Cortes BW, S Schmitz-Esser (2022)

Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens.

Frontiers in microbiology, 13:866930.

The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.

RevDate: 2022-09-20

Dereeper A, Summo M, DF Meyer (2022)

PanExplorer: A web-based tool for exploratory analysis and visualization of bacterial pan-genomes.

Bioinformatics (Oxford, England) [Epub ahead of print].

MOTIVATION: As pan-genome approaches are largely employed for bacterial comparative genomics and evolution analyses, but still difficult to be carried out by non-bioinformatician biologists, there is a need for an innovative tool facilitating the exploration of bacterial pan-genomes.

RESULTS: PanExplorer is a web application providing various genomic analyses and reports, giving intuitive views that enable a better understanding of bacterial pan-genomes. As an example, we produced the pan-genome for 121 Anaplasmataceae strains (including 30 Ehrlichia, 15 Anaplasma, 68 Wolbachia).

PanExplorer is written in Perl CGI and relies on several JavaScript libraries for visualization (hotmap.js, MauveViewer, CircosJS). It is freely available at http://panexplorer.southgreen.fr. The source code has been released in a GitHub repository https://github.com/SouthGreenPlatform/PanExplorer. A documentation section is available on PanExplorer website.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Wang J, Gou QY, Luo GY, et al (2022)

Total RNA sequencing of Phlebotomus chinensis sandflies in China revealed viral, bacterial, and eukaryotic microbes potentially pathogenic to humans.

Emerging microbes & infections, 11(1):2080-2092.

Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the "total microbiome", of several sandfly populations in China. Strikingly, "microbiome" made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Rosário AAD, Dias-Lima AG, Lambert SM, et al (2022)

Identification and molecular characterization of Wolbachia strains and natural infection for Leishmania sp. in neotropical Phlebotominae (Diptera: Psychodidae) species, leishmaniasis vectors.

Acta tropica, 235:106624.

Recently, Wolbachia infection has been described in leishmaniasis vector sandflies. This endosymbiont bacterium is present in 60% of insects, and has been suggested as a mechanism of biological control of vector insects, because it causes a series of changes in the invertebrate host. In addition, recent studies have shown that this bacterium can prevent the development of parasites in vector insects. In this context, the present study aims to molecularly characterize the circulating strain of this bacterium in sandflies in the State of Bahia, Brazil, as well as the natural infection rate of Leishmania sp., and to evaluate the coinfection between Wolbachia and Leishmania. Seven hundred and forty-five (745) specimens of sandflies were collected in nine municipalities of Bahia, belonging to two species, Lutzomyia longipalpis (Lutz and Neiva, 1912) and Nyssomyia whitmani (Antunes and Coutinho, 1939). The results confirm infection by the protozoan Leishmania infantum and Wolbachia in both species collected. The identified strain of Wolbachia in sandflies was wStv MI, known to lead to a phenotype of cytoplasmic incompatibility in vector insects.

RevDate: 2022-08-29
CmpDate: 2022-08-03

Su Y, Zheng B, X Zou (2022)

Wolbachia Dynamics in Mosquitoes with Incomplete CI and Imperfect Maternal Transmission by a DDE System.

Bulletin of mathematical biology, 84(9):95.

In this paper, we propose a delay differential equation model to describe the Wolbachia infection dynamics in mosquitoes in which the key factor of cytoplasmic incompactibility (CI) is incorporated in a more natural way than those in the literature. By analyzing the dynamics of the model, we are able to obtain some information on the impact of four important parameters: the competition capabilities of the wild mosquitoes and infected mosquitoes, the maternal transmission level and the CI level. The analytic results show that there are ranges of parameters that support competition exclusion principle, and there are also ranges of parameters that allow co-persistence for both wild and infected mosquitoes. These ranges account for the scenarios of failure of invasion, invasion and suppressing the wild mosquitoes, and invasion and replacing the wild mosquitoes. We also discuss some possible future problems both in mathematics and in modeling.

RevDate: 2022-08-03
CmpDate: 2022-07-29

Calle-Tobón A, Pérez-Pérez J, Forero-Pineda N, et al (2022)

Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus.

PloS one, 17(7):e0263143.

Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito's virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.

RevDate: 2022-10-06

Guo Y, Guo J, Y Li (2022)

Wolbachia wPip Blocks Zika Virus Transovarial Transmission in Aedes albopictus.

Microbiology spectrum [Epub ahead of print].

Wolbachia is being developed as a biological tool to suppress mosquito populations and/or interfere with their transmitted viruses. Adult males with an artificial Wolbachia infection have been released, successfully yielding population suppression in multiple field trials. The main characteristic of the artificial Wolbachia-infected mosquitoes used in the suppression program is the lower vector competence than that in native infected/uninfected mosquitoes in horizontal and vertical transmission. Our previous studies have demonstrated that the Aedes albopictus HC line infected with a trio of Wolbachia strains exhibited almost complete blockade of dengue virus (DENV) and Zika virus (ZIKV) in horizontal and vertical transmission. However, the extent to which Wolbachia inhibits virus transovarial transmission is unknown since no studies have been performed to determine whether Wolbachia protects ovarian cells against viral infection. Here, we employed ovarian cells of the Ae. albopictus GUA (a wild-type mosquito line superinfected with two native Wolbachia strains, wAlbA and wAlbB), HC, and GT lines (tetracycline-cured, Wolbachia-uninfected mosquitoes), which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed that the infection rate of adult GT progeny was significantly higher than that of GUA progeny during the first and second gonotrophic cycles. In contrast, the infection rates of adult GT and GUA progeny were not significantly different during the third gonotrophic cycle. All examined adult HC progeny from three gonotrophic cycles were negative for ZIKV infection. A strong negative linear correlation existed between Wolbachia density and ZIKV load in the ovaries of mosquitoes. Although there is no obvious coexistence area in the ovaries for Wolbachia and ZIKV, host immune responses may play a role in Wolbachia blocking ZIKV expansion and maintenance in the ovaries of Ae. albopictus. These results will aid in understanding Wolbachia-ZIKV interactions in mosquitoes. IMPORTANCE Area-wide application of Wolbachia to suppress mosquito populations and their transmitted viruses has achieved success in multiple countries. However, the mass release of Wolbachia-infected male mosquitoes involves a potential risk of accidentally releasing fertile females. In this study, we employed ovarian cells of the Ae. albopictus GUA, HC, and GT lines, which exhibit key traits, and compared them to better understand how Wolbachia inhibits ZIKV transovarial transmission. Our results showed an almost complete blockade of ZIKV transmission in HC female mosquitoes. Wolbachia in natively infected GUA mosquitoes negative affected ZIKV, and this interference was shown by slightly lower loads than those in HC mosquitoes. Overall, our work helps show how Wolbachia blocks ZIKV expansion and maintenance in the ovaries of Ae. albopictus and aids in understanding Wolbachia-ZIKV interactions in mosquitoes.

RevDate: 2022-10-20
CmpDate: 2022-10-19

Schuler H, Dittmer J, Borruso L, et al (2022)

Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma.

Environmental microbiology, 24(10):4771-4786.

Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.

RevDate: 2022-08-22
CmpDate: 2022-08-16

Sawadogo SP, Kabore DA, Tibiri EB, et al (2022)

Lack of robust evidence for a Wolbachia infection in Anopheles gambiae from Burkina Faso.

Medical and veterinary entomology, 36(3):301-308.

The endosymbiont Wolbachia can have major effects on the reproductive fitness, and vectorial capacity of host insects and may provide new avenues to control mosquito-borne pathogens. Anopheles gambiae s.l is the major vector of malaria in Africa but the use of Wolbachia in this species has been limited by challenges in establishing stable transinfected lines and uncertainty around native infections. High frequencies of infection of Wolbachia have been previously reported in An. gambiae collected from the Valle du Kou region of Burkina Faso in 2011 and 2014. Here, we re-evaluated the occurrence of Wolbachia in natural samples, collected from Valle du Kou over a 12-year time span, and in addition, expanded sampling to other sites in Burkina Faso. Our results showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An. gambiae. From 5341 samples analysed, only 29 were positive for Wolbachia by nested PCR representing 0.54% of prevalence. No positive samples were found with regular PCR. Phylogenetic analysis of 16S rRNA gene amplicons clustered across supergroup B, with some having similarity to sequences previously found in Anopheles from Burkina Faso. However, we cannot discount the possibility that the amplicon positive samples we detected were due to environmental contamination or were false positives. Regardless, the lack of a prominent native infection in An. gambiae s.l. is encouraging for applications utilizing Wolbachia transinfected mosquitoes for malaria control.

RevDate: 2022-07-26

Chun SJ, Cui Y, Yoo SH, et al (2022)

Organic Connection of Holobiont Components and the Essential Roles of Core Microbes in the Holobiont Formation of Feral Brassica napus.

Frontiers in microbiology, 13:920759.

Brassica napus (Rapeseed) is an econfomically important oil-producing crop. The microbial interactions in the plant holobiont are fundamental to the understanding of plant growth and health. To investigate the microbial dynamics in the holobiont of feral B. napus, a total of 215 holobiont samples, comprised of bulk soil, primary root, lateral root, dead leaf, caulosphere, basal leaf, apical leaf, carposphere, and anthosphere, were collected from five different grassland sites in South Korea. The soil properties differed in different sampling sites, but prokaryotic communities were segregated according to plant holobiont components. The structures of the site-specific SparCC networks were similar across the regions. Recurrent patterns were found in the plant holobionts in the recurrent network. Ralstonia sp., Massilia sp., and Rhizobium clusters were observed consistently and were identified as core taxa in the phyllosphere, dead leaf microbiome, and rhizosphere, respectively. Arthropod-related microbes, such as Wolbachia sp., Gilliamella sp., and Corynebacteriales amplicon sequence variants, were found in the anthosphere. PICRUSt2 analysis revealed that microbes also possessed specific functions related to holobiont components, such as functions related to degradation pathways in the dead leaf microbiome. Structural equation modeling analysis showed the organic connections among holobiont components and the essential roles of the core microbes in the holobiont formations in natural ecosystem. Microbes coexisting in a specific plant showed relatively stable community structures, even though the regions and soil characteristics were different. Microbes in each plant component were organically connected to form their own plant holobiont. In addition, plant-related microbes, especially core microbes in each holobiont, showed recurrent interaction patterns that are essential to an understanding of the survival and coexistence of plant microbes in natural ecosystems.

RevDate: 2022-08-09
CmpDate: 2022-07-26

Ramos LFC, Martins M, Murillo JR, et al (2022)

Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia.

Frontiers in cellular and infection microbiology, 12:900608.

Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism's infection.

RevDate: 2022-10-01
CmpDate: 2022-09-30

Mejia AJ, Jimenez L, Dutra HLC, et al (2022)

Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities.

Heredity, 129(4):215-224.

Wolbachia is an insect endosymbiont being used for biological control in the mosquito Aedes aegypti because it causes cytoplasmic incompatibility (CI) and limits viral replication of dengue, chikungunya, and Zika viruses. While the genetic mechanism of pathogen blocking (PB) is not fully understood, the strength of both CI and PB are positively correlated with Wolbachia densities in the host. Wolbachia densities are determined by a combination of Wolbachia strain and insect genotype, as well as interactions with the environment. We employed both artificial selection and inbreeding with the goal of creating lines of Ae. aegypti with heritable and distinct Wolbachia densities so that we might better dissect the mechanism underlying PB. We were unable to shift the mean relative Wolbachia density in Ae. aegypti lines by either strategy, with relative densities instead tending to cycle over a narrow range. In lieu of this, we used Wolbachia densities in mosquito legs as predictors of relative densities in the remaining individual's carcass. Because we worked with outbred mosquitoes, our findings indicate either a lack of genetic variation in the mosquito for controlling relative density, natural selection against extreme densities, or a predominance of environmental factors affecting densities. Our study reveals that there are moderating forces acting on relative Wolbachia densities that may help to stabilize density phenotypes post field release. We also show a means to accurately bin vector carcasses into high and low categories for non-DNA omics-based studies of Wolbachia-mediated traits.

RevDate: 2022-09-22
CmpDate: 2022-09-22

Sugimoto TN, Watanabe K, Akiduki G, et al (2022)

A new continuous cell line from the pest insect, Anomala cuprea (Coleoptera; Scarabaeidae): emergence of contractile cells.

In vitro cellular & developmental biology. Animal, 58(7):610-618.

Insect contractile cells frequently appear at an early phase of cell culture, but in most cases, they disappear before a continuous cell line is established, so the cell line ceases to contract. Continuous contractile insect cell lines are currently available from only one species each of Hymenoptera and Diptera. Here, we obtained a new cell line that contracted long after being established as a continuous cell line. The cell line contracted for a short period at an early phase of insect cell culture before a continuous cell line was established, but then did not contract again for several years. After this cell line entered the continuous growth phase, it produced spontaneously contractile tissues for about 4 mo but stopped contracting again. This is the first instance of a cell line that contracted after its establishment as a non-contractile continuous cell line. It is unclear whether the contractile cells survive or die after contraction ceases at an early phase of cell culture, and our results indicate that potential contractile cells survive for years after they stop to contract. The cells of this line sometimes produced complex contractile structures, such as sheet-like tissues. Only a few continuous cell lines have been derived from scarabaeid beetles. The new continuous cell line was derived from the culture of the fat bodies of the scarab beetle Anomala cuprea, which is a pest in the agriculture and forestry of Japan. The population doubling time of the new cell line was 2.5 d and thus it grows very rapidly among coleopteran continuous cell lines. Our new cell line will facilitate research on the physiology and pathology of Coleoptera, including scarab beetles, and may also contribute to research on invertebrate muscles.

RevDate: 2022-10-03
CmpDate: 2022-09-02

Voronin D, BL Makepeace (2022)

Symbionts on the Brain: How Wolbachia Is Strictly Corralled in Some Neotropical Drosophila spp.

mBio, 13(4):e0118222.

Wolbachia is a heritable alphaproteobacterial symbiont of arthropods and nematodes, famous for its repertoire of host manipulations, including cytoplasmic incompatibility. To be vertically transmitted, Wolbachia must efficiently colonize the female germ line, although somatic tissues outside the gonads are also infected. In Drosophila spp., Wolbachia is usually distributed systemically in multiple regions of the adult fly, but in some neotropical hosts, Wolbachia's only somatic niches are cerebral bacteriocyte-like structures and the ovarian follicle cells. In their recent article, Strunov and colleagues (A. Strunov, K. Schmidt, M. Kapun, and W. J. Miller. mBio 13:e03863-21, 2022, https://doi.org/10.1128/mbio.03863-21) compared the development of Drosophila spp. with systemic or restricted infections and demonstrated that the restricted pattern is determined in early embryogenesis by an apparently novel autophagic process, involving intimate interactions of Wolbachia with the endoplasmic reticulum. This work has implications not only for the evolution of neotropical Drosophila spp. but also for our understanding of how Wolbachia infections are controlled in other native or artificial hosts.

RevDate: 2022-10-20
CmpDate: 2022-10-19

Wang W, Cui W, H Yang (2022)

Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility.

Environmental microbiology, 24(10):4519-4532.

Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.

RevDate: 2022-08-18
CmpDate: 2022-08-17

Rau J, Werner D, Beer M, et al (2022)

The microbial RNA metagenome of Aedes albopictus (Diptera: Culicidae) from Germany.

Parasitology research, 121(9):2587-2599.

Aedes albopictus is a highly invasive mosquito species that has become widespread across the globe. In addition, it is an efficient vector of numerous pathogens of medical and veterinary importance, including dengue, chikungunya and Zika viruses. Among others, the vector potential of mosquitoes is influenced by their microbiome. However, this influence is very dynamic and can vary between individuals and life stages. To obtain a rough overview on the microbiome of Ae. albopictus populations in Germany, pooled female and pooled male individuals from seven German locations were investigated by total RNA sequencing. The mosquito specimens had been collected as larvae in the field and processed immediately after adult emergence, i.e. without females having fed on blood. RNA fragments with high degrees of identity to a large number of viruses and microorganisms were identified, including, for example, Wolbachia pipientis and Acinetobacter baumannii, with differences between male and female mosquitoes. Knowledge about the natural occurrence of microorganisms in mosquitoes may be translated into new approaches to vector control, for example W. pipientis can be exploited to manipulate mosquito reproduction and vector competence. The study results show how diverse the microbiome of Ae. albopictus can be, and the more so needs to be adequately analysed and interpreted.

RevDate: 2022-08-16
CmpDate: 2022-08-02

Karimian F, Koosha M, Choubdar N, et al (2022)

Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity.

PLoS neglected tropical diseases, 16(7):e0010609.

The development of Leishmania parasites within sand fly vectors occurs entirely in the insect gut lumen, in the presence of symbiotic and commensal bacteria. The impacts of host species and environment on the gut microbiome are currently poorly understood. We employed MiSeq sequencing of the V3-16S rRNA gene amplicons to characterize and compare the gut microbiota of field-collected populations of Phlebotomus kandelakii, P. perfiliewi, P. alexandri, and P. major, the primary or secondary vectors of zoonotic visceral leishmaniasis (ZVL) in three distinct regions of Iran where ZVL is endemic. In total, 160,550 quality-filtered reads of the V3 region yielded a total of 72 operational taxonomic units (OTUs), belonging to 23 phyla, 47 classes, 91 orders, 131 families, and 335 genera. More than 50% of the bacteria identified were Proteobacteria, followed by Firmicutes (22%), Deinococcus-Thermus (9%), Actinobacteria (6%), and Bacteroidetes (5%). The core microbiome was dominated by eight genera: Acinetobacter, Streptococcus, Enterococcus, Staphylococcus, Bacillus, Propionibacterium, Kocuria, and Corynebacterium. Wolbachia were found in P. alexandri and P. perfiliewi, while Asaia sp. was reported in P. perfiliewi. Substantial variations in the gut bacterial composition were found between geographically distinct populations of the same sand fly species, as well as between different species at the same location, suggesting that sand fly gut microbiota is shaped by both the host species and geographical location. Phlebotomus kandelakii and P. perfiliewi in the northwest, and P. alexandri in the south, the major ZVL vectors, harbor the highest bacterial diversity, suggesting a possible relationship between microbiome diversity and the capacity for parasite transmission. In addition, large numbers of gram-positive human or animal pathogens were found, suggesting that sand fly vectors of ZVL could pose a potential additional threat to livestock and humans in the region studied. The presence of Bacillus subtilis, Enterobacter cloacae, and Asaia sp suggests that these bacteria could be promising candidates for a paratransgenesis approach to the fight against Leishmaniasis.

RevDate: 2022-10-02
CmpDate: 2022-09-16

Chaves EB, Nascimento-Pereira AC, Pinto JLM, et al (2022)

Detection of Wolbachia in Mosquitoes (Diptera: Culicidae) in the State of Maranhão, Brazil.

Journal of medical entomology, 59(5):1831-1836.

Recently, the endobacteria Wolbachia has emerged as a biological tool for the control of arboviruses. Thus, we investigated the rate of natural infection by Wolbachia in Culicidae species from Maranhão, Brazil. For this, we amplified the Wolbachia surface protein gene (wsp) from mosquitoes collected in six localities of Maranhão, and positive samples were subjected to new analysis using group-specific primers. In total, 448 specimens comprising 6 genera and 18 species of mosquitoes were analyzed. Wolbachia DNA was PCR-detected in 7 species, three of which are new records: Aedes scapularis (Rondani, 1848), Coquillettidia juxtamansonia (Chagas, 1907) and Cq. venezuelensis (Theobald, 1912), in addition to Ae. albopictus (Skuse, 1894) and Culex quinquefasciatus Say, 1823, which are commonly described as permissive to maintain this bacterium in natural environments, and two species of the subgenera Anopheles (Nyssorhynchus) Blanchard, 1902 and Culex (Melanoconion) Theobald, 1903 which could not be identified at species level. The infection rate of all species ranged from 0 to 80%, and the average value was 16.5%. This study increases the knowledge about the prevalence of Wolbachia in the culicid fauna and may help in selecting strains for biological control purposes.

RevDate: 2022-07-15

Hubert J, Nesvorna M, Bostlova M, et al (2022)

The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae.

Microbial ecology [Epub ahead of print].

Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.

RevDate: 2022-07-27
CmpDate: 2022-07-15

Wang D, Zhang Y, Xu M, et al (2022)

Dietary Bacillus licheniformis improves the effect of Astragalus membranaceus extract on blood glucose by regulating antioxidation activity and intestinal microbiota in InR[E19]/TM2 Drosophila melanogaster.

PloS one, 17(7):e0271177.

BACKGROUND: The diabetes mellitus prevalence is rapidly increasing in most parts of the world and has become a vital health problem. Probiotic and herbal foods are valuable in the treatment of diabetes.

METHODS AND PERFORMANCE: In this study, Bacillus licheniformis (BL) and Astragalus membranaceus extract (AE) were given with food to InR[E19]/TM2 Drosophila melanogaster, and the blood glucose, antioxidation activity and intestinal microbiota were investigated. The obtained results showed that BA (BL and AE combination) supplementation markedly decreased the blood glucose concentration compared with the standard diet control group, accompanied by significantly increased enzymatic activities of catalase (CAT), decreased MDA levels and prolonged lifespan of InR[E19]/TM2 D. melanogaster. The treatments with BL, AE and BA also ameliorated intestinal microbiota equilibrium by increasing the population of Lactobacillus and significantly decreasing the abundance of Wolbachia. In addition, clearly different evolutionary clusters were found among the control, BL, AE and BA-supplemented diets, and the beneficial microbiota, Lactobacillaceae and Acetobacter, were found to be significantly increased in male flies that were fed BA. These results indicated that dietary supplementation with AE combined with BL not only decreased blood glucose but also extended the lifespan, with CAT increasing, MDA decreasing, and intestinal microbiota improving in InR[E19]/TM2 D. melanogaster.

CONCLUSION: The obtained results showed that dietary supplementation with BL and AE, under the synergistic effect of BL and AE, not only prolonged the lifespan of InR[E19]/TM2 D. melanogaster, increased body weight, and improved the body's antiaging enzyme activity but also effectively improved the types and quantities of beneficial bacteria in the intestinal flora of InR[E19]/TM2 D. melanogaster to improve the characteristics of diabetes symptoms. This study provides scientific evidence for a safe and effective dietary therapeutic method for diabetes mellitus.

RevDate: 2022-07-16

Barman M, Samanta S, Upadhyaya G, et al (2022)

Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes.

Frontiers in microbiology, 13:901793.

Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC50 = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field.

RevDate: 2022-07-08

Rocha FP, Ronque MUV, Lyra ML, et al (2022)

Habitat and Host Species Drive the Structure of Bacterial Communities of Two Neotropical Trap-Jaw Odontomachus Ants : Habitat and Host Species Drive the Structure of Bacterial Communities of Two Neotropical Trap-Jaw Odontomachus Ants.

Microbial ecology [Epub ahead of print].

Ants have long been known for their associations with other taxa, including macroscopic fungi and symbiotic bacteria. Recently, many ant species have had the composition and function of their bacterial communities investigated. Due to its behavioral and ecological diversity, the subfamily Ponerinae deserves more attention regarding its associated microbiota. Here, we used the V4 region of the 16S rRNA gene to characterize the bacterial communities of Odontomachus chelifer (ground-nesting) and Odontomachus hastatus (arboreal), two ponerine trap-jaw species commonly found in the Brazilian savanna ("Cerrado") and Atlantic rainforest. We investigated habitat effects (O. chelifer in the Cerrado and the Atlantic rainforest) and species-specific effects (both species in the Atlantic rainforest) on the bacterial communities' structure (composition and abundance) in two different body parts: cuticle and gaster. Bacterial communities differed in all populations studied. Cuticular communities were more diverse, while gaster communities presented variants common to other ants, including Wolbachia and Candidatus Tokpelaia hoelldoblerii. Odontomachus chelifer populations presented different communities in both body parts, highlighting the influence of habitat type. In the Atlantic rainforest, the outcome depended on the body part targeted. Cuticular communities were similar between species, reinforcing the habitat effect on bacterial communities, which are mainly composed of environmentally acquired taxa. Gaster communities, however, differed between the two Odontomachus species, suggesting species-specific effects and selective filters. Unclassified Firmicutes and uncultured Rhizobiales variants are the main components accounting for the observed differences. Our study indicates that both host species and habitat act synergistically, but to different degrees, to shape the bacterial communities in these Odontomachus species.

RevDate: 2022-07-16
CmpDate: 2022-07-11

Gharabigloozare Y, C Bleidorn (2022)

Effect of high temperature on Wolbachia density and impact on cytoplasmic incompatibility in confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae).

BMC research notes, 15(1):240.

OBJECTIVES: Environmental constraints, especially temperature, have been identified as a key in understanding host-symbiont relationships, as they can directly impact the fitness of the symbiont population and the host development. Here we investigated the effect of temperature during the host development on the density of intracellular bacteria of the Wolbachia, wTcon strain within the confused flour beetle, Tribolium confusum. The wTcon can induce a complete cytoplasmic incompatibility (CI) in T. confusum beetles; therefore, we observed the effect of heat stress on the symbiont-mediated CI.

RESULTS: The density of CI inducing Wolbachia in the Tribolium confusum is temperature-specific. Our observation of the beetles reared in five different temperatures (30-34 °C) measured the highest Wolbachia density at 30-31 °C and lowest at 34 °C within a single insect generation. In this species, changes in the density of Wolbachia related to higher temperature did not influence CI. However, the fertility of beetles reared in higher temperatures showed a substantial decrease in the number of laid and hatched eggs. Thus, we can confirm the effect of high temperature on lowering the wTcon density and no impact on induction of cytoplasmic incompatibility (CI) in T. confusum beetles.

RevDate: 2022-07-16

Wybouw N, Mortier F, D Bonte (2022)

Interacting host modifier systems control Wolbachia-induced cytoplasmic incompatibility in a haplodiploid mite.

Evolution letters, 6(3):255-265.

Reproductive parasites such as Wolbachia spread within host populations by inducing cytoplasmic incompatibility (CI). CI occurs when parasite-modified sperm fertilizes uninfected eggs and is typified by great variation in strength across biological systems. In haplodiploid hosts, CI has different phenotypic outcomes depending on whether the fertilized eggs die or develop into males. Genetic conflict theories predict the evolution of host modulation of CI, which in turn influences the stability of reproductive parasitism. However, despite the ubiquity of CI-inducing parasites in nature, there is scarce evidence for intraspecific host modulation of CI strength and phenotype. Here, we tested for intraspecific host modulation of Wolbachia-induced CI in haplodiploid Tetranychus urticae mites. Using a single CI-inducing Wolbachia variant and mitochondrion, a nuclear panel was created that consisted of infected and cured near-isogenic lines. We performed a highly replicated age-synchronized full diallel cross composed of incompatible and compatible control crosses. We uncovered host modifier systems that cause striking variation in CI strength when carried by infected T. urticae males. We observed a continuum of CI phenotypes in our crosses and identified strong intraspecific female modulation of the CI phenotype. Crosses established a recessive genetic basis for the maternal effect and were consistent with polygenic Mendelian inheritance. Both male and female modulation interacted with the genotype of the mating partner. Our findings identify spermatogenesis as an important target of selection for host modulation of CI strength and underscore the importance of maternal genetic effects for the CI phenotype. Our findings reveal that intraspecific host modulation of CI is underpinned by complex genetic architectures and confirm that the evolution of reproductive parasitism is contingent on host genetics.

RevDate: 2022-07-01
CmpDate: 2022-07-01

Hong YH, Mai ZH, Li CJ, et al (2022)

Microbial Diversity Analyses of Fertilized Thitarodes Eggs and Soil Provide New Clues About the Occurrence of Chinese Cordyceps.

Current microbiology, 79(8):229.

Chinese cordyceps is a well-known fungus-larva complex with medicinal and economic importance. At present the occurrence of Chinese cordyceps has not been fully illuminated. In this study, the microbial diversities of fertilized Thitarodes eggs from sites A (high occurrence rates of Chinese cordyceps), B (low occurrence rates), and C (no Chinese cordyceps) were analyzed using 16S rRNA and ITS gene-sequencing technique. The previous sequencing data of soil from the same sites were conjointly analyzed. The results showed that bacterial communities among the eggs were significantly different. The bacterial diversity and evenness were much higher on site A. Wolbachia was overwhelmingly predominant in the eggs of sites B and C, while Spiroplasma showed preference on site A. The fungal between-group differences in the eggs were not as significant as that of bacteria. Purpureocillium in Cordyceps-related families showed preference on site A. Wolbachia, Spiroplasma, and Purpureocillium were inferred to be closely related to Chinese cordyceps occurrence. Intra-kingdom and inter-kingdom network analyses suggest that closer correlations of microbial communities (especially closer fungal positive correlations) in fertilized eggs might promote Chinese cordyceps occurrence. Besides, metabolic pathway analysis showed that in fertilized eggs or soil the number of bacterial metabolic pathways with significant differences in every comparison between two sites was greater than that of fungi. Collectively, this study provides novel information about the occurrence of Chinese cordyceps, contributing to the large-scale artificial cultivation of Chinese cordyceps.

RevDate: 2022-07-18
CmpDate: 2022-06-30

Weiland SO, Detcharoen M, Schlick-Steiner BC, et al (2022)

Analyses of locomotion, wing morphology, and microbiome in Drosophila nigrosparsa after recovery from antibiotics.

MicrobiologyOpen, 11(3):e1291.

Antibiotics, such as tetracycline, have been frequently used to cure arthropods of Wolbachia endosymbionts. After the symbionts have been removed, the hosts must recover for some generations from the side effects of the antibiotics. However, most studies do not assess the direct and indirect longer-term effects of antibiotics used to remove Wolbachia, which may question the exact contribution of this endosymbiont to the effects observed. Here, we used the fly Drosophila nigrosparsa treated or not with tetracycline for three generations followed by two generations of recovery to investigate the effects of this antibiotic on the fly locomotion, wing morphology, and the gut microbiome. We found that antibiotic treatment did not affect fly locomotion two generations after being treated with the antibiotic. In addition, gut-microbiome restoration was tested as a more efficient solution to reduce the potential side effects of tetracycline on the microbiome. There was no significant difference in alpha diversity between gut restoration and other treatments, but the abundance of some bacterial taxa differed significantly between the gut-restoration treatment and the control. We conclude that in D. nigrosparsa the recovery period of two generations after being treated with the antibiotic is sufficient for locomotion, and suggest a general assessment of direct and indirect effects of antibiotics after a particular recovery time.

RevDate: 2022-07-22
CmpDate: 2022-06-27

Soh S, Ho SH, Ong J, et al (2022)

Strategies to Mitigate Establishment under the Wolbachia Incompatible Insect Technique.

Viruses, 14(6):.

The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.

RevDate: 2022-07-16

Beld L, Jung H, Bulman CA, et al (2022)

Aspartyl Protease Inhibitors as Anti-Filarial Drugs.

Pathogens (Basel, Switzerland), 11(6):.

The current treatments for lymphatic filariasis and onchocerciasis do not effectively kill the adult parasitic nematodes, allowing these chronic and debilitating diseases to persist in millions of people. Thus, the discovery of new drugs with macrofilaricidal potential to treat these filarial diseases is critical. To facilitate this need, we first investigated the effects of three aspartyl protease inhibitors (APIs) that are FDA-approved as HIV antiretroviral drugs on the adult filarial nematode, Brugia malayi and the endosymbiotic bacteria, Wolbachia. From the three hits, nelfinavir had the best potency with an IC50 value of 7.78 µM, followed by ritonavir and lopinavir with IC50 values of 14.3 µM and 16.9 µM, respectively. The three APIs have a direct effect on killing adult B. malayi after 6 days of exposure in vitro and did not affect the Wolbachia titers. Sequence conservation and stage-specific gene expression analysis identified Bm8660 as the most likely primary aspartic protease target for these drug(s). Immunolocalization using antibodies raised against the Bm8660 ortholog of Onchocerca volvulus showed it is strongly expressed in female B. malayi, especially in metabolically active tissues such as lateral and dorsal/ventral chords, hypodermis, and uterus tissue. Global transcriptional response analysis using adult female B. pahangi treated with APIs identified four additional aspartic proteases differentially regulated by the three effective drugs, as well as significant enrichment of various pathways including ubiquitin mediated proteolysis, protein kinases, and MAPK/AMPK/FoxO signaling. In vitro testing against the adult gastro-intestinal nematode Trichuris muris suggested broad-spectrum potential for these APIs. This study suggests that APIs may serve as new leads to be further explored for drug discovery to treat parasitic nematode infections.

RevDate: 2022-07-26
CmpDate: 2022-06-27

Morrison AC, Reiner RC, Elson WH, et al (2022)

Efficacy of a spatial repellent for control of Aedes-borne virus transmission: A cluster-randomized trial in Iquitos, Peru.

Proceedings of the National Academy of Sciences of the United States of America, 119(26):e2118283119.

Over half the world's population is at risk for viruses transmitted by Aedes mosquitoes, such as dengue and Zika. The primary vector, Aedes aegypti, thrives in urban environments. Despite decades of effort, cases and geographic range of Aedes-borne viruses (ABVs) continue to expand. Rigorously proven vector control interventions that measure protective efficacy against ABV diseases are limited to Wolbachia in a single trial in Indonesia and do not include any chemical intervention. Spatial repellents, a new option for efficient deployment, are designed to decrease human exposure to ABVs by releasing active ingredients into the air that disrupt mosquito-human contact. A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru, to quantify the impact of a transfluthrin-based spatial repellent on human ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Adult mosquito collections were conducted to compare Ae. aegypti abundance, blood-fed rate, and parity status through mixed-effect difference-in-difference analyses. The spatial repellent significantly reduced ABV infection by 34.1% (one-sided 95% CI lower limit, 6.9%; one-sided P value = 0.0236, z = 1.98). Aedes aegypti abundance and blood-fed rates were significantly reduced by 28.6 (95% CI 24.1%, ∞); z = -9.11) and 12.4% (95% CI 4.2%, ∞); z = -2.43), respectively. Our trial provides conclusive statistical evidence from an appropriately powered, preplanned cluster-randomized controlled clinical trial of the impact of a chemical intervention, in this case a spatial repellent, to reduce the risk of ABV transmission compared to a placebo.

RevDate: 2022-07-16

Nian X, Tao X, Xiao Z, et al (2022)

Effects of Sublethal Concentrations of Tetracycline Hydrochloride on the Biological Characteristics and Wolbachia Titer in Parthenogenesis Trichogramma pretiosum.

Insects, 13(6):.

Trichogramma pretiosum Riley is an important natural enemy and biological control agent of lepidopteran pests. Wolbachia is an intracellular endosymbiont that induces parthenogenesis in the parasitoid T. pretiosum. In this paper, the sublethal effects of the antibiotic tetracycline hydrochloride on the development and reproduction of T. pretiosum were studied. Emerged females were fed with sublethal concentrations (LC5, LC15, and LC35) of tetracycline for ten generations. The biological parameters (longevity, parasitized eggs, and fecundity) of treated females significantly reduced compared with the control Moreover, the percentage of female offspring in the treatments significantly reduced, but the percentage of male offspring significantly increased. In addition, the Wolbachia titer sharply reduced after two generations of antibiotic treatments, but it could still be detected even after ten successive generations of antibiotic treatments, which indicated that Wolbachia was not completely removed by sublethal concentrations of tetracycline. The control lines with higher Wolbachia titers produced more female offspring than the tetracycline treatments with lower Wolbachia titers, indicating that the Wolbachia titer affected the sex determination of T. pretiosum. Our results show that sublethal concentrations of tetracycline had adverse effects on the development of T. pretiosum, and Wolbachia titers affected the sexual development of T. pretiosum eggs.

RevDate: 2022-07-16

Yan ZC, Qi GY, Yao TY, et al (2022)

Mitochondrial Genomes of Two Asexual Trichogramma (Hymenoptera: Trichogrammatidae) Strains and Comparison with Their Sexual Relatives.

Insects, 13(6):.

Despite its substantial costs, sexual reproduction dominates in animals. One popular explanation for the paradox of sex is that asexual reproduction is more likely to accumulate deleterious mutations than sexual reproduction. To test this hypothesis, we compared the mitogenomes of two asexual wasp strains, Trichogramma cacoeciae and T. pretiosum, to their sexual relatives. These two asexual strains represent two different transition mechanisms in Trichogramma from sexual to asexual reproduction. Asexual T. pretiosum is induced by Wolbachia, while T. cacoeciae presumably originated from interspecific hybridization. We sequenced and assembled complete mitochondrial genomes of asexual T. cacoeciae and T. pretiosum. Compared to four sexual relatives, we found no evidence of higher mutation accumulation in asexual Trichogramma mitogenomes than in their sexual relatives. We also did not detect any relaxed selection in asexual Trichogramma mitogenomes. In contrast, the intensified selection was detected in Nad1 and Nad4 of the asexual T. pretiosum mitogenome, suggesting more purifying selection. In summary, no higher mitochondrial mutation accumulation was detected in these two asexual Trichogramma strains. This study provides a basis for further investigating mitochondrial evolution and asexual reproduction in Trichogramma.

RevDate: 2022-07-16
CmpDate: 2022-06-24

da Silva H, Oliveira TMP, Sabino EC, et al (2022)

Bacterial diversity in Haemagogus leucocelaenus (Diptera: Culicidae) from Vale do Ribeira, São Paulo, Brazil.

BMC microbiology, 22(1):161.

INTRODUCTION: Mosquitoes (Diptera: Culicidae) are vectors that transmit numerous pathogens to humans and other vertebrates. Haemagogus leucocelaenus is a mosquito associated with transmission of yellow fever virus. The insect gut harbors a variety of microorganisms that can live and multiply within it, thus contributing to digestion, nutrition, and development of its host. The composition of bacterial communities in mosquitoes can be influenced by both biotic and abiotic factors. The goal of this study was to investigate the bacterial diversity of Hg. leucocelaenus and verify the differences between the bacterial communities in Hg. leucocelaenus from three different locations in the Atlantic tropical rain forest and southeastern state of São Paulo State, Brazil.

RESULTS: The phylum Proteobacteria was found in mosquitoes collected from the three selected study sites. More than 50% of the contigs belong to Wolbachia, followed by 5% Swaminathania, and 3% Acinetobacter. The genus Serratia was found in samples from two locations.

CONCLUSIONS: Wolbachia was reported for the first time in this species and may indicates that the vector competence of the populations of the species can vary along its geographical distribution area. The presence of Serratia might facilitate viral invasion caused by the disruption of the midgut barrier via action of the SmEnhancin protein, which digests the mucins present in the intestinal epithelium.

RevDate: 2022-08-03

Jones MW, Fricke LC, Thorpe CJ, et al (2022)

Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development.

Applied and environmental microbiology, 88(13):e0052922.

One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains ("wHa" and "wNo") in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities. IMPORTANCE Wolbachia is a maternally transmitted intracellular bacterium that manipulates the reproduction and physiology of arthropods, resulting in drastic effects on the fitness, evolution, and even speciation of its hosts. Some hosts naturally harbor multiple strains of Wolbachia that are stably transmitted across generations, but almost nothing is known about the factors that limit or promote these coinfections, which can have profound effects on the host's biology and evolution and are under consideration as an insect-management tool. Here, we define the infection dynamics of a known stably transmitted double infection in Drosophila simulans with an eye toward understanding the patterns of infection that might facilitate compatibility between the two microbes. We find that a combination of sex, tissue, and development all contributes to infection dynamics of the coinfection.

RevDate: 2022-09-26
CmpDate: 2022-09-23

Krome AK, Becker T, Kehraus S, et al (2022)

Corallopyronin A: antimicrobial discovery to preclinical development.

Natural product reports, 39(9):1705-1720.

Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics. Thus, identifying new antibiotics and their further development is once again a priority of natural product research. The antibiotic corallopyronin A was discovered in the 1980s in the culture broth of the Myxobacterium Corallococcus coralloides and serves, in the context of this review, as a show case for the development of a naturally occurring antibiotic compound. The review demonstrates how a hard to obtain, barely water soluble and unstable compound such as corallopyronin A can be developed making use of sophisticated production and formulation approaches. Corallopyronin A is a bacterial DNA-dependent RNA polymerase inhibitor with a new target site and one of the few representatives of this class currently in preclinical development. Efficacy against Gram-positive and Gram-negative pathogens, e.g., Chlamydia trachomatis, Orientia tsutsugamushi, Staphylococcus aureus, and Wolbachia has been demonstrated. Due to its highly effective in vivo depletion of Wolbachia, which are essential endobacteria of most filarial nematode species, and its robust macrofilaricidal efficacy, corallopyronin A was selected as a preclinical candidate for the treatment of human filarial infections. This review highlights the discovery and production optimization approaches for corallopyronin A, as well as, recent preclinical efficacy results demonstrating a robust macrofilaricidal effect of the anti-Wolbachia candidate, and the solid formulation strategy which enhances the stability as well as the bioavailability of corallopyronin A.

RevDate: 2022-07-16
CmpDate: 2022-06-23

Gunasekaran K, Sadanandane C, Panneer D, et al (2022)

Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development.

Parasites & vectors, 15(1):221.

BACKGROUND: ICMR-Vector Control Research Centre, Puducherry, India, developed two colonies of Aedes aegypti infected with wMel and wAlbB Wolbacia strains called Ae. aegypti (Pud) lines for dengue control. The sensitivity of wMel and wAlbB strains in Ae. aegypti (Pud) lines to heat stress was studied.

METHODS: wMel and wAlbB infected and uninfected Ae. aegypti larvae (first to fourth instars) were reared in the laboratory to adults at 26 °C, 30 °C, 36 °C and 40 °C constant temperatures and also 26-30 °C, 26-36 °C and 26-40 °C diurnal cyclic temperatures. The adults were tested for Wolbachia infection. Experiments were also carried out rearing the larvae under simulated field conditions in summer (April and June) under sunlight using fully open and half open bowls and also under sunlight and natural shade.

RESULTS: At 36 °C and 40 °C constant temperatures, complete larval mortality was observed. At 30 °C and 26 °C, no larval mortality occurred, but Wolbachia density was relatively low in wMel infected males compared to control (maintained at 26 ± 1 °C). At diurnal cyclic temperature of 26-40 °C, Wolbachia density was reduced in males of both the (Pud) lines, but not in females. At 26-36 °C, reduction in Wolbachia density was observed in wMel males but not in wAlbB males. At 26-30 °C, no significant reduction in Wolbachia density was observed with wMel and wAlbB strains. In simulated field conditions (April), under sunlight, the daytime water temperature reached a maximum of 35.7 °C in both full and half open bowls. No larval mortality occurred. Wolbachia frequency and density was reduced in wMel-infected Ae. aegypti (Pud) males from both type of bowls and in females from full open bowls, and in wAlbB males from half open bowls. In June, rearing of larvae under sunlight, the first-instar larvae experienced a maximum daytime water temperature of > 38 °C that caused complete mortality. No larval mortality was observed in bowls kept under shade (< 32 °C).

CONCLUSIONS: Exposure of larvae to higher rearing temperatures in the laboratory and simulated-field conditions reduced the densities of wMel and wAlbB strains particularly in males, but the impact was more pronounced for wMel strain. The actual effect of heat stress on the stability of these two Wolbachia strains needs to be tested under natural field conditions.

RevDate: 2022-10-06
CmpDate: 2022-09-08

Dzul-Rosado K, Maldonado-Borges JI, Puerto-Manzano FI, et al (2022)

First exploratory study of bacterial pathogens and endosymbionts in head lice from a Mayan community in southern Mexico.

Zoonoses and public health, 69(6):729-736.

Lice represent one of the most neglected group of vectors worldwide, particularly in Latin America. Records of bacterial agents related to head lice are non-existent in this region of the continent. Many of these communities often do not have adequate access to public services and/or health protection. The normalization of this condition prevents them from manifesting discomfort, such as bites and itching, which further aggravates the situation, as they can be vectors of important diseases. For this reason, the aim of this work was to identify the richness of bacterial pathogens (Acinetobacter, Bartonella, and Rickettsia) and endosymbionts (Wolbachia) in head lice of paediatric patients from the indigenous municipality of Hoctun, Yucatan, Mexico. DNA extraction was performed using the QIAamp DNA Mini Kit. For the detection of bacterial pathogens, fragments of the gltA, rpoB, and 16S rDNA genes were amplified. For the detection of Wolbachia, the wsp gene was amplified. Of the 28 lice analysed, the presence of two genera of bacterial pathogens was detected Acinetobacter (42.9% = 12/28) and Bartonella (7.14% = 2/28). We also detected the endosymbiont Wolbachia (71.42% = 20/28). Our results showed that DNA from three bacteria species (Acinetobacter baumannii, Bartonella quintana, and Wolbachia pipientis) was present with frequencies ranging from 3.57% to 71.42%. This work represents the first exploratory study of the diversity of agents associated with head lice (Pediculus humanus capitis) in Mexico and Latin America. Due to the findings generated in the present study, it is important to perform surveillance of head lice populations to identify the degree of spread of these pathogens and their impact on populations in the region.

RevDate: 2022-06-20

Faulk C (2022)

De novo sequencing, diploid assembly, and annotation of the black carpenter ant, Camponotus pennsylvanicus, and its symbionts by one person for $1000, using nanopore sequencing.

Nucleic acids research pii:6611042 [Epub ahead of print].

The black carpenter ant (Camponotus pennsylvanicus) is a pest species found widely throughout North America. From a single individual I used long-read nanopore sequencing to assemble a phased diploid genome of 306 Mb and 60X coverage, with quality assessed by a 97.0% BUSCO score, improving upon other ant assemblies. The mitochondrial genome reveals minor rearrangements from other ants. The reads also allowed assembly of parasitic and symbiont genomes. I include a complete Wolbachia bacterial assembly with a size of 1.2 Mb, as well as a commensal symbiont Blochmannia pennsylvanicus, at 791 kb. DNA methylation and hydroxymethylation were measured at base-pair resolution level from the same reads and confirmed extremely low levels seen in the Formicidae family. There was moderate heterozygosity, with 0.16% of bases being biallelic from the parental haplotypes. Protein prediction yielded 14 415 amino acid sequences with 95.8% BUSCO score and 86% matching to previously known proteins. All assemblies were derived from a single MinION flow cell generating 20 Gb of sequence for a cost of $1047 including consumable reagents. Adding fixed costs for equipment brings the total for an ant-sized genome to less than $5000. All analyses were performed in 1 week on a single desktop computer.

RevDate: 2022-07-24
CmpDate: 2022-06-22

Chen L, Xiao Q, Shi M, et al (2022)

Detecting Wolbachia Strain wAlbB in Aedes albopictus Cell Lines.

Journal of visualized experiments : JoVE.

As a maternally harbored endosymbiont, Wolbachia infects large proportions of insect populations. Studies have recently reported the successful regulation of RNA virus transmission using Wolbachia-transfected mosquitoes. Key strategies to control viruses include the manipulation of host reproduction via cytoplasmic incompatibility and the inhibition of viral transcripts via immune priming and competition for host-derived resources. However, the underlying mechanisms of the responses of Wolbachia-transfected mosquitoes to viral infection are poorly understood. This paper presents a protocol for the in vitro identification of Wolbachia infection at the nucleic acid and protein levels in Aedes albopictus (Diptera: Culicidae) Aa23 cells to enhance the understanding of the interactions between Wolbachia and its insect vectors. Through the combined use of polymerase chain reaction (PCR), quantitative PCR, western blot, and immunological analytical methods, a standard morphologic protocol has been described for the detection of Wolbachia-infected cells that is more accurate than the use of a single method. This approach may also be applied to the detection of Wolbachia infection in other insect taxa.

RevDate: 2022-08-19
CmpDate: 2022-06-21

Hickin ML, Kakumanu ML, C Schal (2022)

Effects of Wolbachia elimination and B-vitamin supplementation on bed bug development and reproduction.

Scientific reports, 12(1):10270.

Obligate blood feeders, such as Cimex lectularius (common bed bug), have symbiotic associations with nutritional endosymbionts that produce B-vitamins. To quantify the symbiont's contribution to host fitness in these obligate mutualisms, the symbiont must be eliminated and its absence rigorously confirmed. We developed and validated procedures for complete elimination of Wolbachia (Wb) in bed bugs and quantified development and reproduction in bed bugs with and without Wb and with and without B-vitamins supplementation. Aposymbiotic bed bugs had slower nymphal development, reduced adult survivorship, smaller adult size, fewer eggs per female, and lower hatch rate than bed bugs that harbored Wb. In aposymbiotic bed bugs that were fed B-vitamins-supplemented blood, nymph development time, adult survivorship and hatch rate recovered to control levels, but adult size and egg number only partially recovered. These results underscore the nutritional dependence of bed bugs on their Wb symbiont and suggest that Wb may provide additional nutritional benefits beyond the B-vitamin mix that we investigated.

RevDate: 2022-07-23

Ettinger CL, Byrne FJ, Redak RA, et al (2022)

Metagenome-Assembled Genomes of Bacterial Symbionts Associated with Insecticide-Resistant and -Susceptible Individuals of the Glassy-Winged Sharpshooter (Homalodisca vitripennis).

Microbiology resource announcements, 11(7):e0050622.

The role of microbes in insecticide resistance is an emerging question. Here, we describe six metagenome-assembled genomes (MAGs) associated with the glassy-winged sharpshooter (Homalodisca vitripennis [Germar, 1821]) (Hemiptera, Cicadellidae). MAGs representing the obligate symbionts Candidatus Sulcia muelleri and Candidatus Baumannia cicadellinicola and the facultative symbiont Wolbachia were obtained from imidacloprid-resistant and imidacloprid-susceptible sharpshooters.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )