picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
21 Nov 2018 at 01:44
HITS:
2699
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 21 Nov 2018 at 01:44 Created: 

Wolbachia

WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-11-20

Schneider DI, Ehrman L, Engl T, et al (2018)

Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies.

Behavior genetics pii:10.1007/s10519-018-9937-8 [Epub ahead of print].

Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.

RevDate: 2018-11-19

Hamilton PT, Hodson CN, Curtis CI, et al (2018)

Genetics and Genomics of an Unusual Selfish Sex Ratio Distortion in an Insect.

Current biology : CB pii:S0960-9822(18)31364-2 [Epub ahead of print].

Diverse selfish genetic elements have evolved the ability to manipulate reproduction to increase their transmission, and this can result in highly distorted sex ratios [1]. Indeed, one of the major explanations for why sex determination systems are so dynamic is because they are shaped by ongoing coevolutionary arms races between sex-ratio-distorting elements and the rest of the genome [2]. Here, we use genetic crosses and genome analysis to describe an unusual sex ratio distortion with striking consequences on genome organization in a booklouse species, Liposcelis sp. (Insecta: Psocodea), in which two types of females coexist. Distorter females never produce sons but must mate with males (the sons of nondistorting females) to reproduce [3]. Although they are diploid and express the genes inherited from their fathers in somatic tissues, distorter females only ever transmit genes inherited from their mothers. As a result, distorter females have unusual chimeric genomes, with distorter-restricted chromosomes diverging from their nondistorting counterparts and exhibiting features of a giant non-recombining sex chromosome. The distorter-restricted genome has also acquired a gene from the bacterium Wolbachia, a well-known insect reproductive manipulator; we found that this gene has independently colonized the genomes of two other insect species with unusual reproductive systems, suggesting possible roles in sex ratio distortion in this remarkable genetic system.

RevDate: 2018-11-18

Hu L, Huang M, Tang M, et al (2018)

Wolbachia spread dynamics in multi-regimes of environmental conditions.

Journal of theoretical biology pii:S0022-5193(18)30562-9 [Epub ahead of print].

Mosquito-borne diseases such as dengue fever and Zika kill more than 700,000 people each year in the world. A novel strategy to control these diseases employs the bacterium Wolbachia whose infection in mosquitoes blocks virus replication. The prerequisite for this measure is to release Wolbachia -infected mosquitoes to replace wild population. Due to the fluctuation of environmental conditions for mosquito growth, we develop and analyze a model of differential equations with parameters randomly changing over multiple environmental regimes. By comparing the dynamics between the stochastic system and constructed auxiliary systems, combined with other techniques, we provide sharp estimates on the threshold releasing level for Wolbachia fixation. We define the alarm period of disease transmission to measure the risk of mosquito-borne diseases. Our numerical simulations suggest that more frequent inter-regime transitions help reduce the alarm period, and the disease transmission is more sensitive to the average climatic conditions than the number of sub-regimes over a given time period. Further numerical examples also indicate that the reduction in the waiting time to suppress 95% of wild population is more evident when the releasing amount is increased up to a double of the wild population.

RevDate: 2018-11-18

Herran B, Cerveau N, Houdelet C, et al (2018)

IGFBP-rP1, a strongly conserved member of the androgenic hormone signalling pathway in Isopoda.

General and comparative endocrinology pii:S0016-6480(18)30278-8 [Epub ahead of print].

The first protein which has been described to interact with the malacostracan Androgenic Gland Hormone (AGH) is a binding protein called IGFBP-rP1. It has been identified and studied in several species of decapods, in which its interaction with the masculinizing hormone and its expression patterns have been established in several ways. However, this protein remains uncharacterised to date in the other malacostracan orders, like Amphipoda and Isopoda, although they were historically the first ones in which the androgenic gland and the corresponding hormone were respectively described. In this article, we identified the IGFBP-rP1 of isopods and established its implication in the pathway of the AGH with a silencing approach in the model species Armadillidium vulgare. We also showed that this gene is expressed in all the tissues of males and females, with a similar pattern in animals infected with Wolbachia, a feminizing endosymbiont of several isopod species. The expression pattern did not differ during the development of uninfected and infected animals either. We finally studied the evolution of the IGFBP-rP1 in 68 isopod species, looking for conserved motifs and evidence of natural selection. Altogether, our results showed that this gene is constitutively expressed and strongly conserved in isopods, in which it likely constitutes a key element of the insulin/IGF signalling pathway. However, we also illustrated that IGFBP-rP1 is not sufficient on its own to explain the different developmental paths taken by the males and the females or feminized genetic males.

RevDate: 2018-11-15

Gomes FM, C Barillas-Mury (2018)

Infection of anopheline mosquitoes with Wolbachia: Implications for malaria control.

PLoS pathogens, 14(11):e1007333 pii:PPATHOGENS-D-18-01140.

RevDate: 2018-11-14

Mohanty I, Rath A, Swain SP, et al (2018)

Wolbachia Population in Vectors and Non-vectors: A Sustainable Approach Towards Dengue Control.

Current microbiology pii:10.1007/s00284-018-1596-8 [Epub ahead of print].

Wolbachia is gram negative obligate endosymbiont known for reproductive manipulation in the host. It is important to study the presence of natural Wolbachia in mosquitoes which can later help in understanding the effect of transfected strain on indigenous strain. With this view, the present study is undertaken to focus on the prevalence, diversity, infection frequencies, phylogeny and density of indigenous Wolbachia strains in wild mosquito species of Odisha. Our study confirms Wolbachia presence in Ae. albopictus, Cx. quinquefasciatus, Cx. vishnui, Cx. gelidus, Ar. subalbatus, Mn. uniformis, and Mn. indiana. Wolbachia in the above mosquitoes were separated into two supergroups (A and B). Ae. albopictus, the major vector of dengue and chikungungunya had both super-infection and mono-infection. The ovaries of Ae. albopictus were highest in density of Wolbachia as compared to midguts or salivary glands. wAlBA and wAlbB density were variable in mosquitoes of F1 generation for both the sex and at different age. We also found that Wolbachia super-infection in females tends to increase whereas wAlbA density reduced completely as compared to wAlbB in males when they grew old. Giemsa stained squashed ovaries revealed pink pleomorphic Wolbachia cells with different shapes and forms. This study is unique in its kind covering the major aspects of the endosymbiont Wolbachia and focusing on its potential as a biocontrol agent in arboviral outbreaks. Knowledge on potential of the indigenous strain and interactions between Wolbachia and viruses can be utilized further to reduce the global burden of vector borne diseases.

RevDate: 2018-11-14

Hubert J, Nesvorna M, Sopko B, et al (2018)

Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets.

Frontiers in microbiology, 9:2590.

Background:Tyrophagus putrescentiae is a ubiquitous mite species in soil, stored products and house dust and infests food and causes allergies in people. T. putrescentiae populations harbor different bacterial communities, including intracellular symbionts and gut bacteria. The spread of microorganisms via the fecal pellets of T. putrescentiae is a possibility that has not been studied in detail but may be an important means by which gut bacteria colonize subsequent generations of mites. Feces in soil may be a vector for the spread of microorganisms. Methods: Extracts from used mite culture medium (i.e., residual food, mite feces, and dead mite bodies) were used as a source of feces-inhabiting microorganisms as food for the mites. Two T. putrescentiae populations (L and P) were used for experiments, and they hosted the intracellular bacteria Cardinium and Wolbachia, respectively. The effects of the fecal fraction on respiration in a mite microcosm, mite nutrient contents, population growth and microbiome composition were evaluated. Results: Feces from the P population comprised more than 90% Bartonella-like sequences. Feces from the L population feces hosted Staphylococcus, Virgibacillus, Brevibacterium, Enterobacteriaceae, and Bacillus. The mites from the P population, but not the L population, exhibited increased bacterial respiration in the microcosms in comparison to no-mite controls. Both L- and P-feces extracts had an inhibitory effect on the respiration of the microcosms, indicating antagonistic interactions within feces-associated bacteria. The mite microbiomes were resistant to the acquisition of new bacterial species from the feces, but their bacterial profiles were affected. Feeding of P mites on P-feces-enriched diets resulted in an increase in Bartonella abundance from 6 to 20% of the total bacterial sequences and a decrease in Bacillus abundance. The population growth was fivefold accelerated on P-feces extracts in comparison to the control. Conclusion: The mite microbiome, to a certain extent, resists the acquisition of new bacteria when mites are fed on feces of the same species. However, a Bartonella-like bacteria-feces-enriched diet seems to be beneficial for mite populations with symbiotic Bartonella-like bacteria. Coprophagy on the feces of its own population may be a mechanism of bacterial acquisition in T. putrescentiae.

RevDate: 2018-11-13

Grobler Y, Yun CY, Kahler DJ, et al (2018)

Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation.

PLoS pathogens, 14(11):e1007445 pii:PPATHOGENS-D-18-01403 [Epub ahead of print].

Wolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.

RevDate: 2018-11-12

Treanor D, Pamminger T, WOH Hughes (2018)

The evolution of caste-biasing symbionts in the social hymenoptera.

Insectes sociaux, 65(4):513-519.

The separation of individuals into reproductive and worker castes is the defining feature of insect societies. However, caste determination is itself a complex phenomenon, dependent on interacting genetic and environmental factors. It has been suggested by some authors that widespread maternally transmitted symbionts such as Wolbachia may be selected to interfere with caste determination, whilst others have discounted this possibility on theoretical grounds. We argue that there are in fact three distinct evolutionary scenarios in which maternally transmitted symbionts might be selected to influence the process of caste determination in a social hymenopteran host. Each of these scenarios generate testable predictions which we outline here. Given the increasing recognition of the complexity and multi-faceted nature of caste determination in social insects, we argue that maternally transmitted symbionts should also be considered as possible factors influencing the development of social hymenopterans.

RevDate: 2018-11-10

Schuler H, Lopez JA, Doellman MM, et al (2019)

Target-Enriched Endosymbiont Sequencing (TEEseq): A New High-Throughput Sequencing Approach Applied to the Comprehensive Characterization of Endosymbionts.

Methods in molecular biology (Clifton, N.J.), 1858:195-212.

Intracellular bacteria are ubiquitous in the insect world, with perhaps the best-studied example being the alphaproteobacterium, Wolbachia. Like most endosymbionts, Wolbachia cannot be cultivated outside of its host cells, hindering traditional microbial characterization techniques. Furthermore, multiple Wolbachia strains can be present within a single host, and certain strains can be present in densities below the detection limit of current methods. To date, Wolbachia has most commonly been studied using polymerase chain reaction (PCR) amplification and Sanger DNA sequencing by targeting specific genes in the bacterium's genome. PCR amplification and Sanger sequencing of multiple Wolbachia strains requires analysis of individually cloned sequences, which is resource and labor intensive. To help mitigate these difficulties, we present a modified double digest restriction site associated DNA sequencing (ddRADseq) approach to target and sequence in parallel multiple genes by adding restriction enzyme recognition sites to gene-specific PCR primers. Adopting this strategy allows us to uniquely tag and sequence amplicons from multiple hosts simultaneously on an Illumina MiSeq platform. Our approach represents an efficient and cost-effective method to characterize multiple target genes in population surveys.

RevDate: 2018-11-07

Niang EHA, Bassene H, Makoundou P, et al (2018)

First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal.

Malaria journal, 17(1):408 pii:10.1186/s12936-018-2559-z.

BACKGROUND: Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anopheline species than previously thought.

RESULTS: Here, is reported the first discovery of natural Wolbachia infections in Anopheles funestus populations from Senegal, the second main malaria vector in Africa. Molecular phylogeny analysis based on the 16S rRNA gene revealed at least two Wolbachia genotypes which were named wAnfu-A and wAnfu-B, according to their close relatedness to the A and B supergroups. Furthermore, both wAnfu genotypes displayed high proximity with wAnga sequences previously described from the An. gambiae complex, with only few nucleotide differences. However, the low prevalence of infection, together with the difficulties encountered for detection, whatever method used, highlights the need to develop an effective and sensitive Wolbachia screening method dedicated to anopheline.

CONCLUSIONS: The discovery of natural Wolbachia infection in An. funestus, another major malaria vector, may overcome the main limitation of using a Wolbachia-based approach to control malaria through population suppression and/or replacement.

RevDate: 2018-11-07

Duneau D, Sun H, Revah J, et al (2018)

Signatures of Insecticide Selection in the Genome of Drosophila melanogaster.

G3 (Bethesda, Md.), 8(11):3469-3480 pii:g3.118.200537.

Resistance to insecticides has evolved in multiple insect species, leading to increased application rates and even control failures. Understanding the genetic basis of insecticide resistance is fundamental for mitigating its impact on crop production and disease control. We performed a GWAS approach with the Drosophila Genetic Reference Panel (DGRP) to identify the mutations involved in resistance to two widely used classes of insecticides: organophosphates (OPs, parathion) and pyrethroids (deltamethrin). Most variation in parathion resistance was associated with mutations in the target gene Ace, while most variation in deltamethrin resistance was associated with mutations in Cyp6a23, a gene encoding a detoxification enzyme never previously associated with resistance. A "nested GWAS" further revealed the contribution of other loci: Dscam1 and trpl were implicated in resistance to parathion, but only in lines lacking WolbachiaCyp6a17, the paralogous gene of Cyp6a23, and CG7627, an ATP-binding cassette transporter, were implicated in deltamethrin resistance. We observed signatures of recent selective sweeps at all of these resistance loci and confirmed that the soft sweep at Ace is indeed driven by the identified resistance mutations. Analysis of allele frequencies in additional population samples revealed that most resistance mutations are segregating across the globe, but that frequencies can vary substantially among populations. Altogether, our data reveal that the widely used OP and pyrethroid insecticides imposed a strong selection pressure on natural insect populations. However, it remains unclear why, in Drosophila, resistance evolved due to changes in the target site for OPs, but due to a detoxification enzyme for pyrethroids.

RevDate: 2018-11-06

Rakova VM (2016)

DIROFILARIASIS: CURRENT ASPECTS OF STUDIES.

Meditsinskaia parazitologiia i parazitarnye bolezni, 4(4):48-52.

The review touches upon the main directions and some of the most important results of an investigation of dirofilariasis the species of the genus Dirofilaria, their spread, and hosts. It describes cases of human infection with Candidatus Dirofilaria hongkongensis, a study of the prevalence of filariasis using a geographic information system, data on the contamination of Dirofilaria in Europe, and current views on the endosymbiotic relations of Dirofilaria with the Wolbachia bacterium.

RevDate: 2018-11-04

Konecka E, Z Olszanowski (2018)

A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida).

Molecular phylogenetics and evolution pii:S1055-7903(18)30340-3 [Epub ahead of print].

The understanding of the biology of arthropods requires an understanding of their bacterial associates. We determined the distribution of bacteria Wolbachia sp., Rickettsia sp., Cardinium sp., Spiroplasma sp., Arsenophonus sp., Hamiltonella sp., and Flavobacterium in oribatid mites (Acari: Oribatida). We identified Cardinium sp. in Achipteria coleoptrata. This is the first report of this bacterium in A. coleoptrata. Approximately 30% of the mite population was infected by Cardinium sp. The Cardinium 16S rDNA was examined for the presence of two sequences unique for this microorganism. One of them was noted in Cardinium sp. of A. coleoptrata. In the second sequence, we found nucleotide substitution in the 7th position: A instead of T. In our opinion, this demonstrated the unique nature of Cardinium sp. of A. coleoptrata. We also determined phylogenetic relationship between Cardinium sp., including the strain found in A. coleoptrata by studying the 16S rRNA and gyrB gene sequences. It revealed that Cardinium from A. coleoptrata did not cluster together with strains from groups A, B, C or D, and constituted a separate clade E. These observations make A. coleoptrata a unique Cardinium host in terms of the distinction of the strain.

RevDate: 2018-11-01

Rosso F, Tagliapietra V, Albanese D, et al (2018)

Reduced diversity of gut microbiota in two Aedes mosquitoes species in areas of recent invasion.

Scientific reports, 8(1):16091 pii:10.1038/s41598-018-34640-z.

Aedes mosquitoes are considered highly successful global invasive species and vectors of several pathogens of relevance for public health. Their midgut's microbiota can play an important role in affecting not only their vectorial competence but also their fitness, physiology, food digestion, metabolism, immunity and adaptation to new environmental conditions. Using high-throughput sequencing we compared the microbiota of Aedes albopictus collected in Italy with those reported in populations from France and Vietnam. We also analysed Aedes koreicus gut microbiota for the first time. We found remarkable individual difference along with common bacterial taxa in both species. Ae. albopictus collected in Italy had a lower richness and a different composition of microbiota in respect to specimens collected in France and Vietnam. It also showed a core microbiota formed mainly of bacteria of the genus Pseudomonas. Overall, the two Aedes species (Ae. albopictus and Ae. koreicus) collected in Italy, showed a large core microbiota with 75.98% of the identified Operational Taxonomic Units. Furthermore, Ae. albopictus had 2.5% prevalence of Wolbachia and 0.07% of Asaia spp, while Ae. koreicus had 14.42% of Asaia spp. and no Wolbachia. This study provides new informations on the spatial variation of the midgut bacterial communities in mosquitoes of medical relevance within areas of recent invasion and provide the basis for further studies aimed at assessing the effects of such variation on vectorial capacity for a range of pathogens.

RevDate: 2018-10-31

Strugarek M, Vauchelet N, JP Zubelli (2018)

Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model.

Mathematical biosciences and engineering : MBE, 15(4):961-991.

Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifespan, while highly reducing vector competence for the main arboviruses. We consider and answer the following questions: 1) what should be the initial condition (i.e. size of the initial mosquito population) to have invasion with one mosquito release source? We note that it is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol (e.g. unequal spacing among release points)? We build a framework based on existing reaction-diffusion models for the uncertainty quantification in this context,obtain both theoretical and numerical lower bounds for the probability of release successand give new quantitative results on the one dimensional case.

RevDate: 2018-10-30

Hashmi TR, Devi SR, Ahmad A, et al (2018)

Genetic Status and Endosymbionts Diversity of Bemisia tabaci (Gennadius) on Hosts Belonging to Family Malvaceae in India.

Neotropical entomology pii:10.1007/s13744-018-0639-y [Epub ahead of print].

A study was instigated to examine the genetic status and distribution of known endosymbionts namely Portiera, Rickettsia, Wolbachia, Cardinium, and Arsenophonus in the populations of Bemisia tabaci (Gennadius) from three host plants: cotton (Gossypium herbaceum), okra (Abelmoschus esculentus L.), and China rose (Hibiscus rosa-sinensis) belonging to the family Malvaceae. The presence of four secondary endosymbionts Rickettsia, Wolbachia, Cardinium, and Arsenophonus was checked in Bemisia tabaci populations. Phylogenetic analyses grounded on the mitochondrial cytochrome oxidase I gene (mtCO1) unveiled the presence of Asia 1, Asia II 1, and Asia II 7 genetic groups for Bemisia tabaci on abovementioned crops. Individuals were examined for symbiotic bacterial infection with specific primers amplifying the 16S rRNA gene for Portiera, Rickettsia, Cardinium, and Wolbachia, and the 23S rRNA gene for Arsenophonus. The results show that Portiera was present in all the Bemisia tabaci samples. However, variations were noted in the circulation frequencies of secondary endosymbionts among the Bemisia tabaci populations. A significant difference was noticed in the distribution frequency of Rickettsia between cotton and China rose or okra with their p values as 0.016 and 0.033 respectively. The uneven incidence of secondary endosymbionts ropes the assumption that each endosymbiotic bacterium not only has a role in the endurance but may contribute to the polyphagous nature of Bemisia tabaci. It also brings an uncomplicated evidence for progressive studies on control measures of this notorious insect pest.

RevDate: 2018-10-19

Morioka E, Oida M, Tsuchida T, et al (2018)

Nighttime activities and peripheral clock oscillations depend on Wolbachia endosymbionts in flies.

Scientific reports, 8(1):15432 pii:10.1038/s41598-018-33522-8.

Wolbachia are ubiquitous bacterial endosymbionts of arthropods and affect host gene expression. Although Wolbachia infections were suggested to modulate sleep in flies, their influence on the circadian clock remained obscure. Here, we screened bacterial symbionts in a laboratory Drosophila melanogaster colony, and observed widespread infections of wMel strain Wolbachia. We established a Wolbachia-free strain from a clock gene reporter strain, period-luciferase (per-luc). Temperature (19-29 °C)-compensated free-running periods were detected regardless of infections which may reflect the lack of wMel infections in central circadian pacemaker neurons. However, locomotor activity levels during the night or subjective night were significantly amplified in uninfected flies. Moreover, the behavioral phenotype of F1 offspring of an uninfected female and infected male resembled that of uninfected flies. This trait is consistent with maternal transmission of Wolbachia infection. Interestingly, per-luc activities in headless bodies, as an index of peripheral circadian oscillators, were severely damped in uninfected flies. Additionally, circadian amplitudes of PER immunoreactivities in Malpighian tubules were reduced in uninfected flies. These results demonstrate that Wolbachia boost fly peripheral clock oscillations and diurnal behavioral patterns. Genetic mechanisms underlying behavioral rhythms have been widely analyzed using mutant flies whereas screening of Wolbachia will be necessary for future studies.

RevDate: 2018-10-15

Bonneau M, Landmann F, Labbé P, et al (2018)

The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity.

PLoS pathogens, 14(10):e1007364 pii:PPATHOGENS-D-18-01398 [Epub ahead of print].

Wolbachia are maternally inherited endosymbiotic bacteria, widespread among arthropods thanks to host reproductive manipulations that increase their prevalence into host populations. The most commonly observed manipulation is cytoplasmic incompatibility (CI). CI leads to embryonic death in crosses between i) infected males and uninfected females and ii) individuals infected with incompatible Wolbachia strains. CI can be conceptualized as a toxin-antidote system where a toxin deposited by Wolbachia in the sperm would induce embryonic death unless countered by an antidote produced by Wolbachia present in the eggs. In Drosophila melanogaster, transgenic expression of Wolbachia effector cidB revealed its function of CI-inducing toxin. Moreover in Culex pipiens, the diversity of cidB variants present in wPip strains accounts for the diversity in crossing-types. We conducted cytological analyses to determine the CI mechanisms that lead to embryonic death in C. pipiens, and assess whether diversity in crossing-types could be based on variations in these mechanisms. We revealed that paternal chromatin condensation and segregation defects during the first embryonic division are always responsible for embryonic death. The strongest observed defects lead to an exclusion of the paternal chromatin from the first zygotic division, resulting in haploid embryos unable to hatch. The proportion of unhatched haploid embryos, developing with only maternal chromatin, which reflects the frequency of strong defects can be considered as a proxy of CI intensity at the cellular level. We thus studied the putative effect of variations in crossing types and cidB diversification on CI defects intensity. Incompatible crosses involving distinct wPip strains revealed that CI defects intensity depends on the Wolbachia strains hosted by the males and is linked to the diversity of cidB genes harbored in their genomes. These results support that, additionally to its implication in C. pipiens crossing type variability, cidB diversification also influences the strength of CI embryonic defects.

RevDate: 2018-10-15

Santos-Garcia D, Juravel K, Freilich S, et al (2018)

To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies.

Frontiers in microbiology, 9:2254.

Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Candidatus Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, many whitefly species harbor additional endosymbionts which may potentially further supplement their host's diet. To test this hypothesis, genomes of several endosymbionts of the whiteflies Aleurodicus dispersus, Aleurodicus floccissimus and Trialeurodes vaporariorum were analyzed. In addition to Portiera, all three species were found to harbor one Arsenophonus and one Wolbachia endosymbiont. A comparative analysis of Arsenophonus genomes revealed that although all three are capable of synthesizing B vitamins and cofactors, such as pyridoxal, riboflavin, or folate, their genomes and phylogenetic relationship vary greatly. Arsenophonus of A. floccissimus and T. vaporariorum belong to the same clade, and display characteristics of facultative endosymbionts, such as large genomes (3 Mb) with thousands of genes and pseudogenes, intermediate GC content, and mobile genetic elements. In contrast, Arsenophonus of A. dispersus belongs to a different lineage and displays the characteristics of a primary endosymbiont-a reduced genome (670 kb) with ~400 genes, 32% GC content, and no mobile genetic elements. However, the presence of 274 pseudogenes suggests that this symbiotic association is more recent than other reported primary endosymbionts of hemipterans. The gene repertoire of Arsenophonus of A. dispersus is completely integrated in the symbiotic consortia, and the biosynthesis of most vitamins occurs in shared pathways with its host. In addition, Wolbachia endosymbionts have also retained the ability to produce riboflavin, flavin adenine dinucleotide, and folate, and may make a nutritional contribution. Taken together, our results show that Arsenophonus hold a pivotal place in whitefly nutrition by their ability to produce B vitamins.

RevDate: 2018-10-13

Paris V, Cottingham E, Ross PA, et al (2018)

Effects of Alternative Blood Sources on Wolbachia Infected Aedes aegypti Females within and across Generations.

Insects, 9(4): pii:insects9040140.

Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.

RevDate: 2018-10-12

Taylor MJ, Bordenstein SR, B Slatko (2018)

Microbe Profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes.

Microbiology (Reading, England) [Epub ahead of print].

Fig. 1. A selection of the extensive array of Wolbachia's hosts surrounding an electron micrograph of Wolbachia from Brugia malayi and a summary of many of the parasitic and beneficial consequences of the diverse Wolbachia-host associations.Wolbachia is the most widespread genus of endosymbiotic bacteria in the animal world, infecting a diverse range of arthropods and nematodes. A broad spectrum of associations from parasitism to mutualism occur, with a tendency to drive reproductive manipulation or influence host fecundity to spread infection through host populations. These varied effects of Wolbachia are exploited for public health benefits. Notably, the protection of insect hosts from viruses is being tested as a potential control strategy for human arboviruses, and the mutualistic relationship with filarial nematodes makes Wolbachia a target for antibiotic therapy of human and veterinary nematode diseases.

RevDate: 2018-10-12

Zhu YX, Song YL, Hoffmann AA, et al (2018)

A change in the bacterial community of spider mites decreases fecundity on multiple host plants.

MicrobiologyOpen [Epub ahead of print].

Bacterial symbionts may influence the fitness of their herbivore hosts, but such effects have been poorly studied across most invertebrate groups. The spider mite, Tetranychus truncatus, is a polyphagous agricultural pest harboring various bacterial symbionts whose function is largely unknown. Here, by using a high-throughput 16S rRNA amplicon sequencing approach, we characterized the bacterial diversity and community composition of spider mites fed on five host plants after communities were modified following tetracycline exposure. We demonstrated that spider mite bacterial diversity and community composition were significantly affected by host plants and antibiotics. In particular, the abundance of the maternally inherited endosymbionts Wolbachia and Spiroplasma significantly differed among spider mites that were reared on different plant species and were completely removed by antibiotics. There was an overall tendency for daily fecundity to be lower in the mites with reduced bacterial diversity following the antibiotic treatment. Our data suggest that host plants and antibiotics can shape spider mite bacterial communities and that bacterial symbionts improve mite performance.

RevDate: 2018-10-11

Bakovic V, Schebeck M, Telschow A, et al (2018)

Correction to 'Spatial spread of Wolbachia in Rhagoletis cerasi populations'.

Biology letters, 14(10): pii:rsbl.2018.0683.

RevDate: 2018-10-04

Kageyama D, Ohno M, Sasaki T, et al (2017)

Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species.

Evolution letters, 1(5):232-244 pii:EVL328.

Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all-female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem-positive and wFem-negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem-infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem-positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem-negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic-treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem-infected larvae induced male-specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female-determining W chromosome in Z0 individuals is functionally compensated by Wolbachia-mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female-determining function and then cytoplasmically induced disruption of sex chromosome inheritance.

RevDate: 2018-10-02

de Moraes LA, Muller C, Bueno RCOF, et al (2018)

Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil.

Scientific reports, 8(1):14589 pii:10.1038/s41598-018-32913-1.

The Bemisia tabaci is a polyphagous insect and a successful vector of plant viruses. B. tabaci is a species complex and in Brazil native species from the New World (NW) group, as well as the invasive species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) were reported. For better understanding the distribution of the different species four years after the Mediterranean species invasion in Brazil, whiteflies were collected from 237 locations throughout the country between the years of 2013 and 2017, species were identified and the facultative endosymbionts detected. The survey revealed that MEAM1 was the prevalent species found on major crops across Brazil. It is the only species present in North, Northwestern and Central Brazil and was associated with virus-infected plants. MED was found in five States from Southeast to South regions, infesting mainly ornamental plants and was not associated with virus-infected plants. The prevalent endosymbionts identified in MEAM1 were Hamiltonella and Rickettsia; and the mtCOI analysis revealed low genetic diversity for MEAM1. In contrast, several different endosymbionts were identified in MED including Hamiltonella, Rickettsia, Wolbachia and Arsenophonus; and two distinct genetic groups were found based on the mtCOI analysis. Monitoring the distribution of the whiteflies species in Brazil is essential for proper management of this pest.

RevDate: 2018-10-02

van den Hurk AF (2018)

From Incriminating Stegomyia fasciata to Releasing Wolbachia pipientis: Australian Research on the Dengue Virus Vector, Aedes aegypti, and Development of Novel Strategies for Its Surveillance and Control.

Tropical medicine and infectious disease, 3(3): pii:tropicalmed3030071.

Globally, the dengue viruses (DENVs) infect approximately 300 million people annually. Australia has a history of epidemic dengue, with outbreaks in the early decades of the twentieth century responsible for tens of thousands of cases. Seminal experiments conducted by Australian scientists during these outbreaks were the first to incriminate Aedes aegypti as a major vector of dengue viruses. One hundred years later, Australian scientists are playing a lead role in the development of surveillance and suppression strategies that target this mosquito species. Surveillance of Ae. aegypti populations and their associated dengue risk was greatly improved by understanding the contribution of key premises, key containers, and cryptic larval habitats to mosquito productivity, and, more recently, the development of novel adult traps. In terms of mosquito control, targeted indoor residual pyrethroid spraying and community-based biological control utilizing predatory copepods can significantly reduce Ae. aegypti populations. The release of Ae. aegypti transinfected with the virus-blocking bacterium, Wolbachia, provides a promising strategy for limiting DENV transmission. These diverse strategies developed by Australian scientists have the potential to alleviate the burden of dengue in the future, whether it is at the local level or as part of a country-wide program.

RevDate: 2018-09-29

Pers D, JA Lynch (2018)

Ankyrin domain encoding genes from an ancient horizontal transfer are functionally integrated into Nasonia developmental gene regulatory networks.

Genome biology, 19(1):148 pii:10.1186/s13059-018-1526-x.

BACKGROUND: How regulatory networks incorporate additional components and how novel genes are functionally integrated into well-established developmental processes are two important and intertwined questions whose answers have major implications for understanding the evolution of development. We recently discovered a set of lineage-restricted genes with strong and specific expression patterns along the dorsal-ventral (DV) axis of the embryo of the wasp Nasonia that may serve as a powerful system for addressing these questions. We sought to both understand the evolutionary history of these genes and to determine their functions in the Nasonia DV patterning system.

RESULTS: We have found that the novel DV genes are part of a large family of rapidly duplicating and diverging ankyrin domain-encoding genes that originated most likely by horizontal transfer from a prokaryote in a common ancestor of the wasp superfamily Chalcidoidea. We tested the function of those ankyrin-encoding genes expressed along the DV axis and found that they participate in early embryonic DV patterning. We also developed a new wasp model system (Melittobia) and found that some functional integration of ankyrin genes have been preserved for over 90 million years.

CONCLUSIONS: Our results indicate that regulatory networks can incorporate novel genes that then become necessary for stable and repeatable outputs. Even a modest role in developmental networks may be enough to allow novel or duplicate genes to be maintained in the genome and become fully integrated network components.

RevDate: 2018-09-27

Carpinone EM, Li Z, Mills MK, et al (2018)

Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi.

PloS one, 13(9):e0204736 pii:PONE-D-18-12540.

Wolbachia is an unculturable, intracellular bacterium that persists within an extremely broad range of arthropod and parasitic nematode hosts, where it is transmitted maternally to offspring via vertical transmission. In the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis, Wolbachia is an endosymbiont, and its presence is essential for proper nematode development, survival, and pathogenesis. While the elucidation of Wolbachia:nematode interactions that promote the bacterium's intracellular persistence is of great importance, research has been hampered due to the fact that Wolbachia cannot be cultured in the absence of host cells. The Wolbachia endosymbiont of B. malayi (wBm) has an active Type IV secretion system (T4SS). Here, we have screened 47 putative T4SS effector proteins of wBm for their ability to modulate growth or the cell biology of a typical eukaryotic cell, Saccharomyces cerevisiae. Five candidates strongly inhibited yeast growth upon expression, and 6 additional proteins showed toxicity in the presence of zinc and caffeine. Studies on the uptake of an endocytic vacuole-specific fluorescent marker, FM4-64, identified 4 proteins (wBm0076 wBm00114, wBm0447 and wBm0152) involved in vacuole membrane dynamics. The WAS(p)-family protein, wBm0076, was found to colocalize with yeast cortical actin patches and disrupted actin cytoskeleton dynamics upon expression. Deletion of the Arp2/3-activating protein, Abp1p, provided resistance to wBm0076 expression, suggesting a role for wBm0076 in regulating eukaryotic actin dynamics and cortical actin patch formation. Furthermore, wBm0152 was found to strongly disrupt endosome:vacuole cargo trafficking in yeast. This study provides molecular insight into the potential role of the T4SS in the Wolbachia endosymbiont:nematode relationship.

RevDate: 2018-09-27

Kaczmarczyk A, Kucharczyk H, Kucharczyk M, et al (2018)

First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis.

Scientific reports, 8(1):14376 pii:10.1038/s41598-018-32747-x.

Insects' exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verification of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy-based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with different proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes.

RevDate: 2018-09-25

Hegde S, Khanipov K, Albayrak L, et al (2018)

Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors.

Frontiers in microbiology, 9:2160.

Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.

RevDate: 2018-09-24

Ritchie SA (2018)

Wolbachia and the near cessation of dengue outbreaks in Northern Australia despite continued dengue importations via travellers.

Journal of travel medicine pii:5106064 [Epub ahead of print].

RevDate: 2018-09-23

Schön I, Kamiya T, Van den Berghe T, et al (2018)

Novel Cardinium strains in non-marine ostracod (Crustacea) hosts from natural populations.

Molecular phylogenetics and evolution pii:S1055-7903(18)30351-8 [Epub ahead of print].

Endosymbiotic bacteria are known from many metazoan taxa, where they manipulate host biology and reproduction. Here, we used classic PCR amplification and direct DNA sequencing with universal primers for four different endosymbionts to test for their presence in more than 300 specimens of three recent non-marine ostracod superfamilies from different geographic areas and aquatic habitats. We verified these results with "high throughput" amplicon sequencing of 16S of nine selected specimens and evolutionary placement algorithms. The phylogenetic position of endosymbionts detected in ostracod hosts was compared to known endosymbionts from other metazoans. While Wolbachia, Spiroplasma and Ricketsia are absent, we find evidence for the general presence of Cardinium bacteria in natural populations of various non-marine ostracod species. Phylogenetic reconstructions based on Cardinium 16S data and estimates of genetic distances both indicate that Cardinium from ostracods are distantly related to Cardinium from Diptera and Nematoda but represent novel strains with a monophyletic origin. Cardinium bacteria from different ostracod hosts have genetic distances of up to 3.8%, providing evidence against recent and frequent horizontal transmissions amongst the three ostracod superfamilies. High throughput sequencing reveals more than 400 different 16S amplicon sequence variants in the investigated ostracods as well as the presence of different Cardinium strains within individual Eucypris virens and Heterocypris hosts. These results call for future, more in-depth investigations. Mapping Cardinium infections on COI trees of non-marine ostracod hosts shows that the occurrence of these endosymbionts is not linked to genetic species identity or phylogenetic host groups and, except for one ostracod morphospecies, prevalence never reaches 100%.

RevDate: 2018-09-21

Guégan M, Minard G, Tran FH, et al (2018)

Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota.

FEMS microbiology ecology pii:5101426 [Epub ahead of print].

Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.

RevDate: 2018-09-20

Guo Y, Hoffmann AA, Xu XQ, et al (2018)

Vertical Transmission of Wolbachia Is Associated With Host Vitellogenin in Laodelphax striatellus.

Frontiers in microbiology, 9:2016.

Wolbachia in host germ lines are essential for their vertical transmission to the next generation. It is unclear how the regulation of host oocyte development influences Wolbachia location and the mechanistic basis of transmission. Here, we investigated whether vitellogenin influences Wolbachia transmission in Laodelphax striatellus. Wolbachia increased in density and spread from the anterior tropharium to developing oocytes as ovaries developed. Microscopic observations indicated that Wolbachia invaded ovarioles from the tropharium of its anterior side rather than the pedicel side. Wolbachia utilized the host Vg transovarial transportation system to enter the ovaries and were transmitted from the tropharium into the developing oocytes through nutritive cords. These observations were supported by knocking down the Vg transcript, in which low Wolbachia titers were detected in ovaries and fewer Wolbachia were transmitted into oocytes. Our findings establish a link between the Vg-related mode of transovarial transmission and efficient maternal transmission of Wolbachia.

RevDate: 2018-09-20

Cheng YH, Lin YJ, Chen SC, et al (2018)

Assessing health burden risk and control effect on dengue fever infection in the southern region of Taiwan.

Infection and drug resistance, 11:1423-1435 pii:idr-11-1423.

Background: The high prevalence of dengue in Taiwan and the consecutive large dengue outbreaks in the period 2014-2015 suggest that current control interventions are suboptimal. Understanding the effect of control effort is crucial to inform future control strategies.

Objectives: We developed a framework to measure season-based health burden risk from 2001 to 2014. We reconstructed various intervention coverage to assess the attributable effect of dengue infection control efforts.

Materials and methods: A dengue-mosquito-human transmission dynamic was used to quantify the vector-host interactions and to estimate the disease epidemics. We used disability-adjusted life years (DALYs) to assess health burden risk. A temperature-basic reproduction number (R0)-DALYs relationship was constructed to examine the potential impacts of temperature on health burden. Finally, a health burden risk model linked a control measure model to evaluate the effect of dengue control interventions.

Results: We showed that R0 and DALYs peaked at 25°C with estimates of 2.37 and 1387, respectively. Results indicated that most dengue cases occurred in fall with estimated DALYs of 323 (267-379, 95% CI) at 50% risk probability. We found that repellent spray had by far the largest control effect with an effectiveness of ~71% in all seasons. Pesticide spray and container clean-up have both made important contributions to reducing prevalence/incidence. Repellent, pesticide spray, container clean-up together with Wolbachia infection suppress dengue outbreak by ~90%.

Conclusion: Our presented modeling framework provides a useful tool to measure dengue health burden risk and to quantify the effect of dengue control on dengue infection prevalence and disease incidence in the southern region of Taiwan.

RevDate: 2018-09-18

Indriani C, Ahmad RA, Wiratama BS, et al (2018)

Baseline Characterization of Dengue Epidemiology in Yogyakarta City, Indonesia, before a Randomized Controlled Trial of Wolbachia for Arboviral Disease Control.

The American journal of tropical medicine and hygiene [Epub ahead of print].

Dengue is endemic in Indonesia. Here, we describe the epidemiology of dengue in the city of Yogyakarta, Central Java, as a prelude to implementation of a cluster-randomized trial of Wolbachia for the biocontrol of arboviral transmission. Surveillance records from 2006 to 2016 demonstrate seasonal oscillations of dengue incidence with varying magnitude. Two lines of evidence demonstrate a high force of infection; the hospitalized case burden of patients diagnosed with dengue hemorrhagic fever or dengue shock syndrome over the last decade consisted predominantly of children/adolescents, and a serosurvey of 314 healthy children aged 1-10 years found 68% possessed dengue virus-neutralizing antibodies. Finally, a mobility survey indicated children aged 1-10 years, and particularly 1-5 year-olds, spent most of their daytime hours at home. These findings inform the design of clinical trials to measure the impact of novel vector control methods such as Wolbachia introgression into Aedes aegypti mosquitoes, by providing baseline data on disease incidence and identifying subpopulations for recruitment into prospective studies of dengue virus infection and disease. The mobility survey findings indicate that in cluster trials of interventions applied at the community level, young children can reasonably be expected to spend most of their exposure time, in epidemiological terms, within the treatment arm to which they were randomized.

RevDate: 2018-09-16

Zélé F, Santos JL, Godinho DP, et al (2018)

Wolbachia both aids and hampers the performance of spider mites on different host plants.

FEMS microbiology ecology pii:5097780 [Epub ahead of print].

In the last decades, many studies had revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivores populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host-plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on morning glory, tomato and zuchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for egg hatching rate on morning glory and zucchini, and led to a more female-biased sex ratio on morning glory and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.

RevDate: 2018-09-11

Pascar J, CH Chandler (2018)

A bioinformatics approach to identifying Wolbachia infections in arthropods.

PeerJ, 6:e5486 pii:5486.

Wolbachia is the most widespread endosymbiont, infecting >20% of arthropod species, and capable of drastically manipulating the host's reproductive mechanisms. Conventionally, diagnosis has relied on PCR amplification; however, PCR is not always a reliable diagnostic technique due to primer specificity, strain diversity, degree of infection and/or tissue sampled. Here, we look for evidence of Wolbachia infection across a wide array of arthropod species using a bioinformatic approach to detect the Wolbachia genes ftsZ, wsp, and the groE operon in next-generation sequencing samples available through the NCBI Sequence Read Archive. For samples showing signs of infection, we attempted to assemble entire Wolbachia genomes, and in order to better understand the relationships between hosts and symbionts, phylogenies were constructed using the assembled gene sequences. Out of the 34 species with positively identified infections, eight species of arthropod had not previously been recorded to harbor Wolbachia infection. All putative infections cluster with known representative strains belonging to supergroup A or B, which are known to only infect arthropods. This study presents an efficient bioinformatic approach for post-sequencing diagnosis and analysis of Wolbachia infection in arthropods.

RevDate: 2018-09-10

Liu Y, He B, Li F, et al (2018)

Molecular Identification of Bartonella melophagi and Wolbachia Supergroup F from Sheep Keds in Xinjiang, China.

The Korean journal of parasitology, 56(4):365-370.

To confirm that Bartonella and Wolbachia were carried by sheep keds (Melophagus ovinus) in southern Xinjiang of China, 17 M. ovinus samples, which were collected in Aksu Prefecture, Xinjiang, were randomly selected. In this study, the Bartonella gltA and Wolbachia 16S rRNA gene were amplified through conventional PCR and the sequence of those amplified products, were analyzed. The results demonstrated that Bartonella was carried by all of the 17 sheep keds and Wolbachia was carried by 15 out of them. Bartonella was identified as B. melophagi. Three strains of Wolbachia were supergroup F and 1 strain has not been confirmed yet. It is the first report about Wolbachia supergroup F was found in sheep keds and provided the molecular evidence that B. melophagi and Wolbachia supergroup F were carried by sheep keds in Aksu Prefecture of southern Xinjiang, China. The 2 pathogens were found in sheep keds around Taklimakan Desert for the first time.

RevDate: 2018-09-08

Lopez V, Marie Cortesero A, D Poinsot (2018)

Influence of the symbiont Wolbachia on life history traits of the cabbage root fly (Delia radicum).

Journal of invertebrate pathology pii:S0022-2011(18)30198-8 [Epub ahead of print].

Wolbachia is an endocellular bacteria infecting arthropods and nematodes and is only transmitted vertically by females via the cytoplasm of the egg. It is often a manipulator of host reproduction, causing cytoplasmic incompatibility, thelytokous parthenogenesis, feminization or male killing, which all increase the proportion of infected females in the population. However, Wolbachia can modify life history traits of the host without causing the above phenotypes and each species illustrates the variability of relationships between this remarkably versatile symbiont and its many hosts. We have measured maternal transmission and the impact of a natural Wolbachia infection in the cabbage root fly Delia radicum, a major agricultural pest. We used a population that is polymorphic for the infection to ensure similar genetic and microbiome backgrounds between groups. Maternal transmission of the infection was 100% in our sample. We found no evidence of cytoplasmic incompatibility, thelytokous parthenogenesis, feminization nor male killing. Wolbachia infection significantly reduced hatch rate in infected eggs (by 10%) but improved larvo-nymphal viability sufficiently so that infected eggs nevertheless yielded as many adults as uninfected ones, albeit with a 1.5% longer total development time. Starved and infected ovipositing females suffered significantly reduced viability (20% higher mortality during a 3-day oviposition period) than uninfected females, but mortality was not higher in starved virgin females nor in starved males, suggesting that the energetic cost of the infection is only revealed in extreme conditions. Wolbachia had no effect on egg hatch time or offspring size. The apparently 100% vertical transmission and the significant but mutually compensating effects found suggest that infection might be nearly benign in this host and might only drift slowly, which would explain why the infection rate has been stable in our laboratory (approximately 50% individuals infected) for at least 30 generations.

RevDate: 2018-09-07

Chung M, Teigen L, Liu H, et al (2018)

Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses.

Scientific reports, 8(1):13377 pii:10.1038/s41598-018-31420-7.

Enrichment methodologies enable the analysis of minor members in multi-species transcriptomic data. We compared the standard enrichment of bacterial and eukaryotic mRNA to a targeted enrichment using an Agilent SureSelect (AgSS) capture for Brugia malayi, Aspergillus fumigatus, and the Wolbachia endosymbiont of B. malayi (wBm). Without introducing significant systematic bias, the AgSS quantitatively enriched samples, resulting in more reads mapping to the target organism. The AgSS-enriched libraries consistently had a positive linear correlation with their unenriched counterparts (r2 = 0.559-0.867). Up to a 2,242-fold enrichment of RNA from the target organism was obtained following a power law (r2 = 0.90), with the greatest fold enrichment achieved in samples with the largest ratio difference between the major and minor members. While using a single total library for prokaryote and eukaryote enrichment from a single RNA sample could be beneficial for samples where RNA is limiting, we observed a decrease in reads mapping to protein coding genes and an increase in multi-mapping reads to rRNAs in AgSS enrichments from eukaryotic total RNA libraries compared to eukaryotic poly(A)-enriched libraries. Our results support a recommendation of using AgSS targeted enrichment on poly(A)-enriched libraries for eukaryotic captures, and total RNA libraries for prokaryotic captures, to increase the robustness of multi-species transcriptomic studies.

RevDate: 2018-09-07

Leftwich PT, Edgington MP, Harvey-Samuel T, et al (2018)

Recent advances in threshold-dependent gene drives for mosquitoes.

Biochemical Society transactions pii:BST20180076 [Epub ahead of print].

Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.

RevDate: 2018-09-03

Jeffries CL, Rogers ME, T Walker (2018)

Establishment of a method for Lutzomyia longipalpis sand fly embryo microinjection: The first step towards potential novel control strategies for leishmaniasis.

Wellcome open research, 3:55.

Leishmaniasis is a vector-borne parasitic disease transmitted by sand flies that affects 1.3 million people across 98 countries, with limited control strategies due to the lack of an available vaccine and the emergence of insecticide resistance. Novel control strategies that are being explored for mosquito-borne diseases, such as Wolbachia bacterial inhibition of pathogens and genetically modified insects (e.g. using CRISPR-Cas9 editing), rely on the ability to consistently inject embryos of the target species. Here we present a novel method to obtain and inject preblastoderm sand fly embryos of the genus Lutzomyia (Lu.)longipalpis, the principle vector of zoonotic visceral leishmaniasis in South America. The procedures required to obtain sufficiently young Lu. longipalpis colony embryos are described alongside a microinjection technique that permits rapid injection and minimal handling of small sand fly embryos post-injection. Using a strain of Wolbachia as a 'marker' for successful injection, our protocol produced early generation Wolbachia transinfected Lu. longipalpis lines, demonstrating its potential as the first step for use in novel applied strategies for sand fly control.

RevDate: 2018-08-30

Cevidanes A, Di Cataldo S, Vera F, et al (2018)

Molecular Detection of Vector-Borne Pathogens in Rural Dogs and Associated Ctenophalides felis Fleas (Siphonaptera: Pulicidae) in Easter Island (Chile).

Journal of medical entomology pii:5079313 [Epub ahead of print].

The presence of vector-borne pathogens of veterinary and public health interest have received little attention in Chile. In Easter Island, in particular, a Chilean territory in the southeastern Pacific Ocean, no information is available. To fill this gap, 153 rural dogs were inspected for ectoparasites during a sterilization campaign carried out in 2016. Fleas were observed in 46% of the dogs, and Ctenophalides felis (Bouché, 1835) was the only species present. Morphological identification of fleas was genetically confirmed using conventional polymerase chain reaction targeting the cox2 gene. No tick was observed in any dog. The presence of DNA of Rickettsia sp. (gltA and ompA fragment genes), Anaplasmataceae (16S rRNA), and Bartonella sp. (16S-23S ribosomal RNA intergenic spacer) was investigated in blood samples of 70 of the dogs and in 126 fleas analyzed in 68 pools that included 1-5 fleas. Rickettsial DNA was detected in 97% (n = 66) of the flea pools. Of these, 57 showed between 99 and 100% identity for both genes with published sequences of Candidatus Rickettsia asemboensis (CRa), six with Rickettsia felis, and one with Candidatus Rickettsia senegalensis. For two pools, gltA amplicons were identical to CRa but ompB amplicions showed 99-100% identity with R. felis. Anaplasmataceae DNA was detected in 16% (n = 11) pools. Sequenced amplicons showed highest identity with the endosymbiont Wolbachia pipientis. Bartonella DNA, showing 99% identity to Bartonella clarridgeiae, was detected in one pool (1.4%). No positive reaction was observed for any dog. This is the first detection of members of the 'R. felis-like' group other than R. felis in Chile.

RevDate: 2018-08-30

Bhadra S, Riedel TE, Saldaña MA, et al (2018)

Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone.

PLoS neglected tropical diseases, 12(8):e0006671 pii:PNTD-D-18-00489.

Manipulation of natural mosquito populations using the endosymbiotic bacteria Wolbachia is being investigated as a novel strategy to reduce the burden of mosquito-borne viruses. To evaluate the efficacy of these interventions, it will be critical to determine Wolbachia infection frequencies in Aedes aegypti mosquito populations. However, current diagnostic tools are not well-suited to fit this need. Morphological methods cannot identify Wolbachia, immunoassays often suffer from low sensitivity and poor throughput, while PCR and spectroscopy require complex instruments and technical expertise, which restrict their use to centralized laboratories. To address this unmet need, we have used loop-mediated isothermal amplification (LAMP) and oligonucleotide strand displacement (OSD) probes to create a one-pot sample-to-answer nucleic acid diagnostic platform for vector and symbiont surveillance. LAMP-OSD assays can directly amplify target nucleic acids from macerated mosquitoes without requiring nucleic acid purification and yield specific single endpoint yes/no fluorescence signals that are observable to eye or by cellphone camera. We demonstrate cellphone-imaged LAMP-OSD tests for two targets, the Aedes aegypti cytochrome oxidase I (coi) gene and the Wolbachia surface protein (wsp) gene, and show a limit of detection of 4 and 40 target DNA copies, respectively. In a blinded test of 90 field-caught mosquitoes, the coi LAMP-OSD assay demonstrated 98% specificity and 97% sensitivity in identifying Ae. aegypti mosquitoes even after 3 weeks of storage without desiccant at 37°C. Similarly, the wsp LAMP-OSD assay readily identified the wAlbB Wolbachia strain in field-collected Aedes albopictus mosquitoes without generating any false positive signals. Modest technology requirements, minimal execution steps, simple binary readout, and robust accuracy make the LAMP-OSD-to-cellphone assay platform well suited for field vector surveillance in austere or resource-limited conditions.

RevDate: 2018-08-29

Wenzel MA, Douglas A, SB Piertney (2018)

Microbiome composition within a sympatric species complex of intertidal isopods (Jaera albifrons).

PloS one, 13(8):e0202212 pii:PONE-D-18-05560.

The increasingly recognised effects of microbiomes on the eco-evolutionary dynamics of their hosts are promoting a view of the "hologenome" as an integral host-symbiont evolutionary entity. For example, sex-ratio distorting reproductive parasites such as Wolbachia are well-studied pivotal drivers of invertebrate reproductive processes, and more recent work is highlighting novel effects of microbiome assemblages on host mating behaviour and developmental incompatibilities that underpin or reinforce reproductive isolation processes. However, examining the hologenome and its eco-evolutionary effects in natural populations is challenging because microbiome composition is considerably influenced by environmental factors. Here we illustrate these challenges in a sympatric species complex of intertidal isopods (Jaera albifrons spp.) with pervasive sex-ratio distortion and ecological and behavioural reproductive isolation mechanisms. We deep-sequence the bacterial 16S rRNA gene among males and females collected in spring and summer from two coasts in north-east Scotland, and examine microbiome composition with a particular focus on reproductive parasites. Microbiomes of all species were diverse (overall 3,317 unique sequences among 3.8 million reads) and comprised mainly Proteobacteria and Bacteroidetes taxa typical of the marine intertidal zone, in particular Vibrio spp. However, we found little evidence of the reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium, suggesting alternative causes of sex-ratio distortion. Notwithstanding, a significant proportion of the variance in microbiome composition among samples was explained by sex (14.1 %), nested within geographic (26.9 %) and seasonal (39.6 %) variance components. The functional relevance of this sex signal was difficult to ascertain given the absence of reproductive parasites, the ephemeral nature of the species assemblages and substantial environmental variability. These results establish the Jaera albifrons species complex as an intriguing system for examining the effects of microbiomes on reproductive processes and speciation, and highlight the difficulties associated with snapshot assays of microbiome composition in dynamic and complex environments.

RevDate: 2018-08-28

Kostaropoulos T, Papageorgiou L, Tsaniras SC, et al (2018)

Carcinogenic Pesticide Control via Hijacking Endosymbiosis; The Paradigm of DSB-A from Wolbachia pipientis for the Management of Otiorhynchus singularis.

In vivo (Athens, Greece), 32(5):1051-1062.

BACKGROUND/AIM: Pesticides have little, if any specificity, to the pathogen they target in most cases. Wide spectrum toxic chemicals are being used to remove pestcides and salvage crops and economies linked to agriculture. The burden on the environment, public health and economy is huge. Traditional pestcide control is based on administering heavy loads of highly toxic compounds and elements that essentially strip all life from the field. Those chemicals are a leading cause of increased cancer related deaths in countryside. Herein, the Trojan horse of endosymbiosis was used, in an effort to control pests using high specificity compounds in reduced quantities.

MATERIALS AND METHODS: Our pipeline has been applied on the case of Otiorhynchus singularis, which is a very widespread pest, whose impact is devastating on a repertoire of crops. To date, there is no specific pesticide nor agent to control it. The deployed strategy involves the inhibition of the key DSB-A enzyme of its endosymbiotic Wolbachia pipientis bacterial strain.

RESULTS: Our methodology, provides the means to design, test and identify highly specific pestcide control substances that minimize the impact of toxic chemicals on health, economy and the environment.

CONCLUSION: All in all, in this study a radical computer-based pipeline is proposed that could be adopted under many other similar scenarios and pave the way for precision agriculture via optimized pest control.

RevDate: 2018-08-28

Brown AMV (2018)

Endosymbionts of Plant-Parasitic Nematodes.

Annual review of phytopathology, 56:225-242.

Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. Cardinium, reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. Xiphinematobacter occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. Wolbachia, reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.

RevDate: 2018-08-27

Cerutti F, Modesto P, Rizzo F, et al (2018)

The microbiota of hematophagous ectoparasites collected from migratory birds.

PloS one, 13(8):e0202270 pii:PONE-D-17-39408.

Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics.

RevDate: 2018-08-24

Richardson KM, Griffin PC, Lee SF, et al (2018)

A Wolbachia infection from Drosophila that causes cytoplasmic incompatibility despite low prevalence and densities in males.

Heredity pii:10.1038/s41437-018-0133-7 [Epub ahead of print].

Wolbachia bacteria are common insect endosymbionts transmitted maternally and capable of spreading through insect populations by cytoplasmic incompatibility (CI) when infected males cause embryo death after mating with uninfected females. Selection in the Wolbachia endosymbiont occurs on female hosts and is expected to favour strong maternal transmission to female offspring, even at the cost of reduced CI. With maternal leakage, nuclear genes are expected to be selected to suppress cytoplasmic incompatibility caused by males while also reducing any deleterious effects associated with the infection. Here we describe a new type of Wolbachia strain from Drosophila pseudotakahashii likely to have arisen from evolutionary processes on host and/or Wolbachia genomes. This strain is often absent from adult male offspring, but always transmitted to females. It leads to males with low or non-detectable Wolbachia that nevertheless show CI. When detected in adult males, the infection has a low density relative to that in females, a phenomenon not previously seen in Wolbachia infections of Drosophila. This Wolbachia strain is common in natural populations, and shows reduced CI when older (infected) males are crossed. These patterns highlight that endosymbionts can have strong sex-specific effects and that high frequency Wolbachia strains persist through effects on female reproduction. Female-limited Wolbachia infections may be of applied interest if the low level of Wolbachia in males reduces deleterious fitness effects on the host.

RevDate: 2018-08-20

Ali H, Muhammad A, Sanda Bala N, et al (2018)

The Endosymbiotic Wolbachia and Host COI Gene Enables to Distinguish Between Two Invasive Palm Pests; Coconut Leaf Beetle, Brontispa longissima and Hispid Leaf Beetle, Octodonta nipae.

Journal of economic entomology pii:5074054 [Epub ahead of print].

To elucidate taxonomic eminence of identical pest species is essential for many ecological and conservation studies. Without proficient skills, accurate molecular identification and characterization are laborious and time-consuming. The coconut leaf beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), is biologically and morphologically identical to hispid leaf beetle, Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), and is known as the most harming nuisances of palm cultivation worldwide. The present examination was to establish Wolbachia genotyping analysis along with host cytochrome oxidase subunit I (COI) gene for accurate identification between these individuals of the same family (Chrysomelidae). Here, we have cloned and sequenced a gene coding Wolbachia surface protein (wsp) and COI gene regions amplified from both species by polymerase chain reaction. The nucleotide sequences were directly determined (≈600 bp for wsp and ≈804 bp for COI) and aligned using the multiple alignment algorithms in the ESPript3 package and the MEGA5 program. Comparative sequence analysis indicated that the representative of wsp and COI sequences from these two beetles were highly variable. To ensure this bacterial variation, multilocus sequence typing (MLST) of bacterial genes was conducted, and the results vindicated the same trend of variations. Furthermore, the phylogenetic analysis also indicates that B. longissima and O. nipae being the two different species harbors two distinct Wolbachia Hertig and Burt (Rickettsiales: Anaplamataceae) supergroups B and A, respectively. The present outcomes quickly discriminate between these two species. Considering its simplicity and cost-effectiveness, it can be used as a diagnostic tool for discriminating such invasive species particularly B. longissima and O. nipae which has overlapping morphologic characters.

RevDate: 2018-08-16

Showler AJ, TB Nutman (2018)

Imported onchocerciasis in migrants and travelers.

Current opinion in infectious diseases [Epub ahead of print].

PURPOSE OF REVIEW: With increasing international travel and mass global population migration, clinicians in nonendemic countries must be familiar with imported neglected tropical diseases including onchocerciasis, which is commonly known as 'river blindness'.

RECENT FINDINGS: Imported onchocerciasis manifests differently in travelers compared with migrants from endemic areas and is likely underdiagnosed in both groups. Recent clinical studies confirm that eosinophilia is not a sensitive marker for Onchocerca volvulus, with one-third of patients having a normal eosinophil count. Novel diagnostics measuring antibodies to multiple recombinant O. volvulus antigens maintain a high sensitivity while improving specificity compared with conventional pan-filarial serologic testing. A 6-week course of doxycycline has macrofilaricidal activity through Wolbachia depletion and may be useful in nonendemic areas in addition to standard serial ivermectin.

SUMMARY: Recent studies characterizing distinct clinical presentations in travelers and migrants may enable clinicians to better recognize imported onchocerciasis. Although novel diagnostics have improved specificity, most remain restricted to tropical disease reference laboratories and to date there is no marker of cure. Prolonged doxycycline treatment may reduce the need for serial ivermectin, though more potent short-course macrofilaricidal drugs are being developed.

RevDate: 2018-08-15

Russell SL, Lemseffer N, WT Sullivan (2018)

Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.

PLoS pathogens, 14(8):e1007216 pii:PPATHOGENS-D-18-00975 [Epub ahead of print].

Widespread success of the intracellular bacterium Wolbachia across insects and nematodes is due to efficient vertical transmission and reproductive manipulations. Many strains, including wMel from Drosophila melanogaster, exhibit a specific concentration to the germplasm at the posterior pole of the mature oocyte, thereby ensuring high fidelity of parent-offspring transmission. Transport of Wolbachia to the pole relies on microtubules and the plus-end directed motor kinesin heavy chain (KHC). However, the mechanisms mediating Wolbachia's association with KHC remain unknown. Here we show that reduced levels of the host canonical linker protein KLC results in dramatically increased levels of Wolbachia at the oocyte's posterior, suggesting that KLC and some key associated host cargos outcompete Wolbachia for association with a limited amount of KHC motor proteins. Consistent with this interpretation, over-expression of KHC causes similarly increased levels of posteriorly localized Wolbachia. However, excess KHC has no effect on levels of Vasa, a germplasm component that also requires KHC for posterior localization. Thus, Wolbachia transport is uniquely KHC-limited because these bacteria are likely outcompeted for binding to KHC by some host cargo/linker complexes. These results reveal a novel host-symbiont interaction that underscores the precise regulation required for an intracellular bacterium to co-opt, but not disrupt, vital host processes.

RevDate: 2018-08-14

Flatau R, Segoli M, Khokhlova I, et al (2018)

Wolbachia's role in mediating its flea's reproductive success differs according to flea origin.

FEMS microbiology ecology pii:5068685 [Epub ahead of print].

Endosymbionts-microbes that live within and engage in prolonged and intimate associations with their hosts-are gaining recognition for their direct impact on plant and animal reproduction. Here we used the overlooked Wolbachia-flea system to explore the possibility that endosymbionts may also play a role as mediators in shaping the reproductive success of their hosts. We simultaneously quantified the Wolbachia density in field- and laboratory-originated fleas that fed and mated on rodents for either five or ten days and assessed their body size and current reproductive success. By combining multigroup analysis and model selection approaches, we teased apart the contribution of the direct effects of the flea's physiological age and body size and the mediation effect of its Wolbachia endosymbionts on flea reproductive success, and we showed that the latter was stronger than the former. However, interestingly, the mediation effect was manifested only in laboratory-originated fleas, for which the increase in Wolbachia with age translated into lower reproductive success. These results suggest that some well-supported phenomena, such as aging effects, may be driven by endosymbionts and show once again that the role of endosymbionts in shaping the reproductive success of their host depends on their selective environment.

RevDate: 2018-08-14

Kruse A, Ramsey JS, Johnson R, et al (2018)

'Candidatus Liberibacter asiaticus' minimally alters expression of immunity and metabolism proteins in the hemolymph of Diaphorina citri, the insect vector of Huanglongbing.

Journal of proteome research [Epub ahead of print].

Huanglongbing (HLB), also known as citrus greening disease, is the most serious disease of citrus plants. It is associated with the Gram-negative bacterium 'Candidatus Liberibacter asiaticus' (CLas), which is transmitted between host plants by the hemipteran insect vector Diaphorina citri in a circulative, propagative manner involving specific interactions with various insect tissues, including the hemolymph, fluid that occupies the body cavity akin to insect blood. High resolution quantitative mass spectrometry was performed to investigate the effect of CLas exposure on D. citri hemolymph at the proteome level. In contrast to the broad proteome effects on hundreds of proteins and a diverse array of metabolic pathways previously reported in gut and whole insect proteome analyses, the effect of CLas on the hemolymph was observed to be highly specific, restricted to key immunity and metabolism pathways, and lower in magnitude than that previously observed in the whole insect body and gut. Vitellogenins were abundantly expressed and CLas-responsive. Gene-specific RNA expression analysis suggests that these proteins are expressed in both male and female insects, and may have roles outside of reproductive vitellogenesis. Proteins for fatty acid synthesis were found to be up-regulated, along with metabolic proteins associated with energy production, supported at the organismal level by the previously published observation that D. citri individuals experience a higher level of hunger when reared on CLas-infected plants. Prediction of post-translational modifications identified hemolymph proteins with phosphorylation and acetylation upon CLas exposure. Proteins derived from the three most prominent bacterial endosymbionts of the psyllid were also detected in the hemolymph, and several of these have predicted secretion signals. A DNAK protein, the bacterial HSP70, detected in the hemolymph expressed from Wolbachia pipientis was predicted to encode a eukaryotic nuclear localization signal. Taken together, these data show specific changes to immunity and metabolism in D. citri hemolymph involving host and endosymbiont proteins. These data provide a novel context for proteomic changes seen in other D. citri tissues in response to CLas and align with organismal data on the effects of CLas on D. citri metabolism and reproduction.

RevDate: 2018-08-14

Mukherjee S, Joardar N, Mondal S, et al (2018)

Quinolone-fused cyclic sulfonamide as a novel benign antifilarial agent.

Scientific reports, 8(1):12073 pii:10.1038/s41598-018-30610-7.

Search of potent antifilarial drugs has been a major thrust area in tropical medicine research over the decades. Herein, we report 4,7-dimethyl-3,4,7,8-tetrahydro-3λ6-[1,2]thiazino[4,3-f]quinoline-3,3,8-trione (8l) as a new class of antifilarial agent which is extremely potent, with lethality against all the developmental stages (oocyte, microfilaria and adult) of the filarial parasite Setaria cervi. Molecular investigation on its mode of action revealed that 8l is a typical inducer of reactive oxygen species that triggers oxidative stress inside the filarid and further signals induction of apoptosis by activating both intrinsic and extrinsic pathways. Moreover, 8l is also active against Wolbachia, the essential endosymbiont of several human infectious filarids. Selective toxicity against filarial parasites and non-toxic nature in rat model were found as unique traits of 8l to be a future medicine. Taken en masse, this maiden report on a novel quinolone fused cyclic sulfonamide presents a promising therapeutic lead for lymphatic filariasis in future.

RevDate: 2018-08-09

Jiang W, Zhu J, Wu Y, et al (2018)

Influence of Wolbachia Infection on Mitochondrial DNA Variation in the Genus Polytremis (Lepidoptera: Hesperiidae).

Molecular phylogenetics and evolution pii:S1055-7903(18)30242-2 [Epub ahead of print].

The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods and can contribute to phylogenetically discordant patterns between mtDNA and nDNA. In this study, we tested for an association between mito-nuclear discordance in Polytremis and Wolbachia infection. Six of the 17 species of Polytremis were found to be infected with Wolbachia. Overall, 34% (70/204) of Polytremis specimens were Wolbachia positive and three strains of Wolbachia identified using a wsp marker were further characterized as six strains based on MLST markers. Wolbachia acquisition in Polytremis appears to occur mainly through horizontal transmission rather than codivergence based on comparison of the divergence times of Wolbachia and Polytremis species. At the intraspecific level, one of the Wolbachia infections (wNas1) is associated with reduced mtDNA polymorphism in the infected Polytremis population. At the interspecific level, there is one case of mito-nuclear discordance likely caused by introgression of P. fukia mtDNA into P. nascens driven by another Wolbachia strain (wNas3). Based on an absence of infected males, we suspect that one Wolbachia strain (wNas2) affects sex ratio, but the phenotypic effects of the other strains are unclear. These data reveal a dynamic interaction between Polytremis and Wolbachia endosymbionts affecting patterns of mtDNA variation.

RevDate: 2018-08-02

Johnson BJ, Rohde BB, Zeak N, et al (2018)

A low-cost, battery-powered acoustic trap for surveilling male Aedes aegypti during rear-and-release operations.

PloS one, 13(8):e0201709 pii:PONE-D-17-31754.

The Aedes aegypti mosquito is a primary vector of several serious arboviruses throughout the world and is therefore of great concern to many public health organizations. With vector control methodology pivoting towards rearing and releasing large numbers of genetically modified, sterilized, or Wolbachia-infected male mosquitoes to control vector populations, economical surveillance methods for release tracking becomes increasingly necessary. Previous work has identified that male Ae. aegypti are attracted to female wingbeat frequencies and can be captured through artificial playback of these frequencies, but the tested systems are cost-prohibitive for wide-scale monitoring. Thus, we have developed a simple, low-cost, battery-powered, microcontroller-based sound lure which mimics the wingbeat frequency of female Ae. aegypti, thereby attracting males. We then tested the efficacy of this lure in combination with a passive (non-powered) gravid Aedes trap (GAT) against the current gold-standard, the Biogents Sentinel (BGS) trap, which requires main power (household power) and costs several times what the GAT does. Capture rates of male Ae. aegypti in sound-baited GATs (Sound-GATs) in these field tests were comparable to that of the BGS with no inhibitory effects of sound playback on female capture. We conclude that the Sound-GAT is an effective replacement of the costly BGS for surveillance of male Ae. aegypti mosquitoes, particularly in the developing countries where funding is limited, and has the potential to be adapted to target males of other medically important species.

RevDate: 2018-08-02

Fallon AM (2018)

Strain-specific response to ampicillin in Wolbachia-infected mosquito cell lines.

In vitro cellular & developmental biology. Animal pii:10.1007/s11626-018-0279-x [Epub ahead of print].

Wolbachia pipientis (Rickettsiales; Anaplasmataceae) is an obligate intracellular alpha proteobacterium that occurs in arthropods and filarial worms. Some strains of Wolbachia can be maintained as persistent infections in insect cell lines. C/wStr1 cells from the mosquito Aedes albopictus maintain a robust infection with Wolbachia strain wStr, originally isolated from the planthopper, Laodelphax striatellus. To explore possible functions of penicillin-binding proteins expressed from the wStr genome, C/wStr1 cells were exposed to ampicillin. Absolute levels of Wolbachia increased 3.5-fold in ampicillin-treated cells and fivefold in naive cells newly infected with wStr. Because cell numbers were depressed by ampicillin treatment, Wolbachia yield on a per-cell basis increased by 15-fold. The absence of a similar effect on wAlbB in Aa23 host cells suggests that the Wolbachia strain, the presence/absence of genes encoding penicillin-binding proteins, or the interaction between wAlbB and its host cells may modulate the effects of ampicillin.

RevDate: 2018-08-02

Callahan AG, Ross PA, AA Hoffmann (2018)

Small females prefer small males: size assortative mating in Aedes aegypti mosquitoes.

Parasites & vectors, 11(1):445 pii:10.1186/s13071-018-3028-9.

BACKGROUND: With Aedes aegypti mosquitoes now being released in field programmes aimed at disease suppression, there is interest in identifying factors influencing the mating and invasion success of released mosquitoes. One factor that can increase release success is size: released males may benefit competitively from being larger than their field counterparts. However, there could be a risk in releasing only large males if small field females avoid these males and instead prefer small males. Here we investigate this risk by evaluating mating success for mosquitoes differing in size.

RESULTS: We measured mating success indirectly by coupling size with Wolbachia-infected or uninfected mosquitoes and scoring cytoplasmic incompatibility. Large females showed no evidence of a mating preference, whereas small males were relatively more successful than large males when mating with small females, exhibiting an advantage of around 20-25%.

CONCLUSIONS: Because field females typically encompass a wide range of sizes while laboratory reared (and released) males typically fall into a narrow size range of large mosquitoes, these patterns can influence the success of release programmes which rely on cytoplasmic incompatibility to suppress populations and initiate replacement invasions. Releases could include some small males generated under low food or crowded conditions to counter this issue, although this would need to be weighed against issues associated with costs of producing males of various size classes.

RevDate: 2018-08-01

Fukui T, Kiuchi T, Shoji K, et al (2018)

In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene.

Biochemical and biophysical research communications pii:S0006-291X(18)31612-7 [Epub ahead of print].

The Masculinizer gene (Masc) encodes a CCCH tandem zinc finger protein essential for masculinization and dosage compensation in the silkworm Bombyx mori. Previously we identified a Masc orthologue from the crambid Ostrinia furnacalis (OfMasc) and observed its masculinizing activity in the B. mori cultured cell line BmN-4. However, the role of OfMasc in masculinization of O. furnacalis has not been assessed. In this study, we unexpectedly discovered that all of the male larvae that escaped from Wolbachia-induced embryonic male-killing by OfMasc cRNA injection expressed the female-type splicing variants of O. furnacalis doublesex (Ofdsx). To clarify the role of OfMasc in the masculinization process in vivo, we established a system to monitor both sex chromosome- and dsx splicing-based sexes from a single O. furnacalis embryo. Using this system, we investigated the effects of OfMasc knockdown in early embryos on Ofdsx splicing and found that depletion of OfMasc mRNA in male embryos induced the production of the female-type splicing variants of Ofdsx. This result indicates that OfMasc is required for masculinization in O. furnacalis, and that the Masc protein possesses masculinizing activity in an insect species that is phylogenetically distant from Bombycidae.

RevDate: 2018-07-31

Fisher ML, Watson DW, Osborne JA, et al (2018)

Growth kinetics of endosymbiont Wolbachia in the common bed bug, Cimex lectularius.

Scientific reports, 8(1):11444 pii:10.1038/s41598-018-29682-2.

The common bed bug, Cimex lectularius harbors the endosymbiotic microorganism, Wolbachia (wCle), in a gonad-associated bacteriome as an obligate nutritional mutualist. The obligatory nature of this association suggests that all individuals in C. lectularius populations would be infected with wCle. However, studies spanning the past several decades have reported variation in both infection frequency and relative abundance of wCle in field-collected samples of bed bugs. Since the growth kinetics of wCle is poorly understood, the objective of this study was to quantify wCle over the life cycle of two strains of C. lectularius. Our results highlight that wCle is dynamic during bed bug development, changing relative to life stage, intermolt stage, and blood-fed status. These results suggest new hypotheses about the coordination of Wolbachia growth and regression with its host's physiology and endocrine events. The observed quantitative modulation of wCle during the bed bug life cycle and during periods of starvation may explain the disparities in wCle infections reported in field-collected C. lectularius.

RevDate: 2018-07-30

Gillespie JJ, Driscoll TP, Verhoeve VI, et al (2018)

A tangled web: origins of reproductive parasitism.

Genome biology and evolution pii:5060530 [Epub ahead of print].

While typically a flea parasite and opportunistic human pathogen, the presence of Rickettsia felis (strain LSU-Lb) in the non-blood-feeding, parthenogenetically-reproducing booklouse, Liposcelis bostrychophila, provides a system to ascertain factors governing not only host transitions but also obligate reproductive parasitism (RP). Analysis of plasmid pLbAR, unique to . felis str. LSU-Lb, revealed a toxin-antitoxin module with similar features to prophage-encoded toxin-antitoxin modules utilized by parasitic Wolbachia strains to induce another form of RP, cytoplasmic incompatibility, in their arthropod hosts. Curiously, multiple deubiquitinase and nuclease domains of the large (3841 aa) pLbAR toxin, as well the entire antitoxin, facilitated the detection of an assortment of related proteins from diverse intracellular bacteria, including other reproductive parasites. Our description of these remarkable components of the intracellular mobilome, including their presence in certain arthropod genomes, lends insight on the evolution of RP, while invigorating research on parasite-mediated biocontrol of arthropod-borne viral and bacterial pathogens.

RevDate: 2018-07-30

Xue L, Fang X, JM Hyman (2018)

Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika.

PLoS neglected tropical diseases, 12(7):e0006666 pii:PNTD-D-17-01575 [Epub ahead of print].

Once Aedes aegypti and Aedes albopictus mosquitoes that spread Chikungunya virus, dengue virus, and Zika virus are infected with Wolbachia, they have reduced egg laying rates, reduced transmission abilities, and shorter lifespans. Since most infected mosquitoes are only infectious in the last few days of their lives, shortening a mosquito's lifespan by a day or two can greatly reduce their abilities to spread mosquito-borne viral diseases, such as Chikungunya, dengue fever, and Zika. We developed a mathematical model to compare the effectiveness of the wMel and wAlbB strains of Wolbachia for controlling the spread of these viruses. The differences among the diseases, mosquitoes, and Wolbachia strains are captured by the model parameters for the mosquito-human transmission cycle. Moreover, the model accounts for the behavior changes of infectious population created by differences in the malaise caused by these viruses. We derived the effective and basic reproduction numbers for the model that are used to estimate the number of secondary infections from the infectious populations. In the same density of Wolbachia-free Aedes aegypti or Aedes albopictus mosquitoes, we observed that wMel and wAlbB strains of Wolbachia can reduce the transmission rates of these diseases effectively.

RevDate: 2018-07-29

Ciuca L, Simon F, Rinaldi L, et al (2018)

Seroepidemiological survey of human exposure to Dirofilaria spp. in Romania and Moldova.

Acta tropica pii:S0001-706X(17)31455-9 [Epub ahead of print].

The present study aimed to evaluate the extent of Dirofilaria immitis and D. repens exposure in humans from eastern and southern areas of Romania and central Moldova by serological methods. The serological screening was performed on a total of 450 serum samples (187 from Romania and 263 from Moldova). The sera were collected using a convenience sampling with the help of physicians from the hospitals of the study areas. All samples were analysed by a non-commercial ELISA test for the detection of IgG antibodies against adult somatic antigens of D. immitis and D. repens. The results showed a total of 49 (10.9%; 95% CI = 8.3-14.1%) individuals from Romania and Moldova with a positive response to IgG antibodies against both adult somatic antigens of D. immitis and D. repens. Specifically, 48 (10.7%; 95% CI = 8.0-14.0%) patients were positive for IgG-antibodies against adult somatic antigens of D. immitis, one (0.2%; 95% CI = 0.4-1.2%) against D. repens antigens, and four (0.9%; 95% CI = 0.4-3.3%). were positive for antigens of both parasites. At country level, out of 187 samples from Romania, 13 (6.9%; 95% CI = 4.1-11.5%) were positive for anti-D. immitis IgG with high exposure in the southern part of the country (Bucharest). Of the 263 people from Moldova, 36 (13.7%; 95% CI = 10.0-18.4%) were positive for D. immitis antigens from which three (1.1%, 95% CI = 0.4-3.3%) were positive for the antibodies against antigens of both parasites. Only one sample was found positive for anti-D. repens IgG. Positive IgG-ELISA results were confirmed by Western blot analysis. In addition, for further confirmation, a complementary ELISA was performed for anti-WSP IgG antibodies against Wolbachia endosymbionts. Our findings showed a noticeable exposure of humans from Romania and Moldova to Dirofilaria parasites. Serology can be useful for indicating exposure to Dirofilaria spp. in a healthy population in order to obtain useful data on the epidemiological scenario of human dirofilariosis in Eastern Europe.

RevDate: 2018-07-27

Shi M, White VL, Schlub T, et al (2018)

No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster.

Proceedings. Biological sciences, 285(1883): pii:rspb.2018.1165.

Wolbachia is an endosymbiotic bacterium that can block viral infections in arthropods, generating interest in its potential to control the spread of mosquito-borne disease. Drosophila melanogaster is model organism for Wolbachia infection, and the wMel strain of Wolbachia can improve host survival following viral infection. However, it is unclear whether wMel induces anti-viral blocking against the broader native virome of D. melanogaster, or whether the major effect of Wolbachia is a reduction in viral abundance rather than viral clearance. We examined the effect of Wolbachia on viral abundance by comparing the total transcriptome of wMel-positive and wMel-negative D. melanogaster populations sampled from six locations in Australia. In addition, we examined the impact of wMel on individual flies by obtaining transcriptome data from 20 wMel-positive and 20 wMel-negative D. melanogaster from the location (Melbourne) with highest density of wMel. These data revealed high viral abundance in both Wolbachia-positive and -negative populations and individuals. Notably, none of the viral species identified, representing RNA viruses from at least nine families/floating genera, showed evidence of protection by wMel. Although the viral loads of picorna-like viruses are reduced by wMel under experimental conditions, we observed no such effect here. These data show that D. melanogaster can harbour abundant RNA viruses regardless of its Wolbachia status and imply that the interaction between Wolbachia and viruses in nature is more complex than simple blocking.

RevDate: 2018-07-27

Ta-Tang TH, Crainey JL, Post RJ, et al (2018)

Mansonellosis: current perspectives.

Research and reports in tropical medicine, 9:9-24 pii:rrtm-9-009.

Mansonellosis is a filarial disease caused by three species of filarial (nematode) parasites (Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi) that use humans as their main definitive hosts. These parasites are transmitted from person to person by bloodsucking females from two families of flies (Diptera). Biting midges (Ceratopogonidae) transmit all three species of Mansonella, but blackflies (Simuliidae) are also known to play a role in the transmission of M. ozzardi in parts of Latin America. M. perstans and M. streptocerca are endemic in western, eastern, and central Africa, and M. perstans is also present in the neotropical region from equatorial Brazil to the Caribbean coast. M. ozzardi has a patchy distribution in Latin America and the Caribbean. Mansonellosis infections are thought to have little pathogenicity and to be almost always asymptomatic, but occasionally causing itching, joint pains, enlarged lymph glands, and vague abdominal symptoms. In Brazil, M. ozzardi infections are also associated with corneal lesions. Diagnosis is usually performed by detecting microfilariae in peripheral blood or skin without any periodicity. There is no standard treatment at present for mansonellosis. The combination therapy of diethylcarbamazine plus mebendazole for M. perstans microfilaremia is presently one of the most widely used, but the use of ivermectin has also been proven to be very effective against microfilariae. Recently, doxycycline has shown excellent efficacy and safety when used as an antimicrobial against endosymbiotic Wolbachia bacteria harbored by some strains of M. perstans and M. ozzardi. Diethylcarbamazine and ivermectin have been used effectively to treat M. streptocerca infection. There are at present no estimates of the disease burden caused by mansonellosis, and thus its importance to many global health professionals and policy makers is presently limited to how it can interfere with diagnostic tools used in modern filarial disease control and elimination programs aimed at other species of filariae.

RevDate: 2018-07-22

Ahmadi S, N Poorjavad (2018)

Behavioral and Biological Effects of Exposure to Tuta absoluta (Lepidoptera: Gelechiidae) Sex Pheromone on Several Trichogramma (Hymenoptera: Trichogrammatidae) Populations.

Journal of economic entomology pii:5055929 [Epub ahead of print].

Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most destructive pests of tomato worldwide. Biological control of the pest using Trichogramma (Hymenoptera: Trichogrammatidae) wasps can be combined with other practices such as use of synthetic sex pheromones for mating disruption or mass trapping programs. In this study, effects of T. absoluta sex pheromone on behavioral responses and fertility life table parameters of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae), Wolbachia-uninfected (W-) Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae), and Wolbachia-infected (W+) T. brassicae were investigated under laboratory conditions. Female wasps of T. evanescens and T. brassicae (W+) were attracted to the pest synthetic sex pheromone (around 62%) and calling virgin female moths (around 75%) and their responses were affected by the wasp age and temperature. Exposure to the host synthetic sex pheromone significantly reduced the percentage of adult emergence, longevity, and fecundity of female wasps, as well as the time spent to find a mate and duration of mating. However, tested populations were not affected similarly. Despite the laboratory tests, greenhouse experiments showed that the wasps were not caught in the traps baited with T. absoluta synthetic sex pheromone. Complementary studies are needed to precisely determine possible interference between pheromone application and releasing Trichogramma Westwood (Hymenoptera: Trichogrammatidae) wasps to achieve a successful integrated control of T. absoluta.

RevDate: 2018-07-20

Zheng B, J Yu (2018)

Characterization of Wolbachia enhancing domain in mosquitoes with imperfect maternal transmission.

Journal of biological dynamics, 12(1):596-610.

A novel method to reduce the burden of dengue is to seed wild mosquitoes with Wolbachia-infected mosquitoes in dengue-endemic areas. Concerns in current mathematical models are to locate the Wolbachia introduction threshold. Our recent findings manifest that the threshold is highly dependent on the initial population size once Wolbachia infection alters the logistic control death rate of infected females. However, counting mosquitoes is beyond the realms of possibility. A plausible method is to monitor the infection frequency. We propose the concept of Wolbachia enhancing domain in which the infection frequency keeps increasing. A detailed description of the domain is presented. Our results suggest that both the initial population size and the infection frequency should be taken into account for optimal release strategies. Both Wolbachia fixation and extinction permit the oscillation of the infection frequency.

RevDate: 2018-07-18

PLOS ONE Staff (2018)

Correction: First detection of Wolbachia in the New Zealand biota.

PloS one, 13(7):e0201151 pii:PONE-D-18-20597.

[This corrects the article DOI: 10.1371/journal.pone.0195517.].

RevDate: 2018-07-18

Moretti R, Yen PS, Houé V, et al (2018)

Combining Wolbachia-induced sterility and virus protection to fight Aedes albopictus-borne viruses.

PLoS neglected tropical diseases, 12(7):e0006626 pii:PNTD-D-18-00260 [Epub ahead of print].

Among the strategies targeting vector control, the exploitation of the endosymbiont Wolbachia to produce sterile males and/or invasive females with reduced vector competence seems to be promising. A new Aedes albopictus transinfection (ARwP-M) was generated by introducing wMel Wolbachia in the ARwP line which had been established previously by replacing wAlbA and wAlbB Wolbachia with the wPip strain. Various infection and fitness parameters were studied by comparing ARwP-M, ARwP and wild-type (SANG population) Ae. albopictus sharing the same genetic background. Moreover, the vector competence of ARwP-M related to chikungunya, dengue and zika viruses was evaluated in comparison with ARwP. ARwP-M showed a 100% rate of maternal inheritance of wMel and wPip Wolbachia. Survival, female fecundity and egg fertility did not show to differ between the three Ae. albopictus lines. Crosses between ARwP-M males and SANG females were fully unfertile regardless of male age while egg hatch in reverse crosses increased from 0 to about 17% with SANG males aging from 3 to 17 days. When competing with SANG males for SANG females, ARwP-M males induced a level of sterility significantly higher than that expected for an equal mating competitiveness (mean Fried index of 1.71 instead of 1). The overall Wolbachia density in ARwP-M females was about 15 fold higher than in ARwP, mostly due to the wMel infection. This feature corresponded to a strongly reduced vector competence for chikungunya and dengue viruses (in both cases, 5 and 0% rates of transmission at 14 and 21 days post infection) with respect to ARwP females. Results regarding Zika virus did not highlight significant differences between ARwP-M and ARwP. However, none of the tested ARwP-M females was capable at transmitting ZIKV. These findings are expected to promote the exploitation of Wolbachia to suppress the wild-type Ae. albopictus populations.

RevDate: 2018-07-17

Karatepe B, Aksoy S, M Karatepe (2018)

Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods.

Scientific reports, 8(1):10616 pii:10.1038/s41598-018-29031-3.

The aim of this study was to determine the presence of Wolbachia spp. and Spiroplasma spp. in natural populations of sand flies in Turkey by molecular methods. A total of 40 Phlebotomus specimens (19 female and 21 male) were used in this study. Genomic DNA from whole sand flies was isolated and Wolbachia spp. infection prevalence was investigated by using Wolbachia gene specific primer sets (wsp and GroEL). In addition, the DNA were analyzed for the presence of Spiroplasma infections utilizing bacterium specific 16 S rDNA PCR-amplification primers. Results of this analysis showed a Wolbachia infection prevalence of 70% (28/40). There was no sex-bias in infection prevalence, being 76% (16/21) and 63% (12/19) in males and females, respectively. Analysis of Spiroplasma infections indicated that 26% (5/19) of female sand flies were positive for infection, while none of the screened males (0/21) were positive. Of the 40 sand fly samples, only 2 were found to be positive for both Wolbachia spp. and Spiroplasma spp. The present study demonstrates the presence of Wolbachia and Spiroplasma infections in the natural sand fly populations in Turkey. This is the first report on Spiroplasma infection in the sand flies from Turkey.

RevDate: 2018-07-10

Guo Y, Hoffmann AA, Xu XQ, et al (2018)

Wolbachia-induced Apoptosis Associated with Increased Fecundity in Laodelphax striatellus (Hemiptera: Delphacidae).

Insect molecular biology [Epub ahead of print].

Wolbachia influence the fitness of their invertebrate hosts. They have effects on reproductive incompatibility and egg production. Although the former are well characterized, the mechanistic basis of the latter is unclear. Here, we investigate whether apoptosis, which has been implicated in fecundity in model insects, influences the interaction between fecundity and Wolbachia in the planthopper, Laodelphax striatellus. Wolbachia-infected females produced about 30% more eggs than uninfected females. We used TUNEL staining to visualize apoptosis. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained apoptotic nurse cells in both young and aged adult females. The frequency of apoptosis was much higher in the infected females. The increased fecundity appeared to be due to apoptosis of nurse cells, which provides nutrients to the growing oocytes. In addition, cell apoptosis inhibition by caspase mRNA interference (RNAi) in Wolbachia infected L. striatellus markedly decreased egg numbers. Together, these data suggest that wStri might enhance fecundity by increasing the number of apoptotic cells in the ovaries in a caspase-dependent manner. Our findings establish a link between Wolbachia-induced apoptosis and egg production effects mediated by Wolbachia, although the way that the endosymbiont influences caspase levels remains to be determined. This article is protected by copyright. All rights reserved.

RevDate: 2018-07-20

Ali H, Muhammad A, Bala NS, et al (2018)

Genomic evaluations of Wolbachia and mtDNA in the population of coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae).

Molecular phylogenetics and evolution pii:S1055-7903(18)30254-9 [Epub ahead of print].

Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including China's Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajima's D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.

RevDate: 2018-07-04

Truitt AM, Kapun M, Kaur R, et al (2018)

Wolbachia modifies thermal preference in Drosophila melanogaster.

Environmental microbiology [Epub ahead of print].

Environmental variation can have profound and direct effects on fitness, fecundity, and host-symbiont interactions. Replication rates of microbes within arthropod hosts, for example, are correlated with incubation temperature but less is known about the influence of host-symbiont dynamics on environmental preference. Hence, we conducted thermal preference (Tp) assays and tested if infection status and genetic variation in endosymbiont bacterium Wolbachia affected temperature choice of Drosophila melanogaster. We demonstrate that isogenic flies infected with Wolbachia preferred lower temperatures compared to uninfected Drosophila. Moreover, Tp varied with respect to three investigated Wolbachia variants (wMel, wMelCS and wMelPop). While uninfected individuals preferred 24.4°C, we found significant shifts of -1.2°C in wMel- and -4°C in flies infected either with wMelCS or wMelPop. We, therefore, postulate that Wolbachia-associated Tp variation within a host species might represent a behavioral accommodation to host-symbiont interactions and trigger behavioral self-medication and bacterial titer regulation by the host. This article is protected by copyright. All rights reserved.

RevDate: 2018-07-03

Yeap HL, Endersby-Harshman NM, AA Hoffmann (2018)

The Effect of Nonrandom Mating on Wolbachia Dynamics: Implications for Population Replacement and Sterile Releases in Aedes Mosquitoes.

The American journal of tropical medicine and hygiene [Epub ahead of print].

Wolbachia bacteria are known to cause deviations from random mating and affect sperm competition (SC) in some of their arthropod hosts. Because these effects could influence the effectiveness of Wolbachia in mosquito population replacement and suppression programs, we developed a theoretical framework to investigate them and we collected relevant data for the wMel infection in Aedes aegypti. Using incompatibility patterns as a measure of mating success of infected versus uninfected mosquitoes, we found some evidence that uninfected males sire more offspring than infected males. However, our theoretical framework suggests that this effect is unlikely to hamper Wolbachia invasion and has only minor effects on population suppression programs. Nevertheless, we suggest that mating effects and SC need to be monitored in an ongoing manner in release programs, given the possibility of ongoing selection for altered mating patterns.

RevDate: 2018-07-03

Nesvorna M, Bittner V, J Hubert (2018)

The Mite Tyrophagus putrescentiae Hosts Population-Specific Microbiomes That Respond Weakly to Starvation.

Microbial ecology pii:10.1007/s00248-018-1224-y [Epub ahead of print].

The effect of short-term nutrient deprivation was studied in five populations of the mite Tyrophagus putrescentiae with different microbiomes. The fresh weight, nutrient status, respiration, and population growth of the mites were observed for the five mite population-scale samples. The starvation caused the larvae and nymphs to be eliminated, resulting in a significant increase in the fresh weight of starved adult specimens. Three populations were negatively influenced by starvation, and the starved specimens were characterized by a decrease in nutrient status, respiration, and population growth. One population was not influenced or was slightly influenced by starvation, which had no effect on population growth or nutrient contents but caused a significant decrease in respiration. One population was positively influenced by starvation; the population growth increased in starved specimens, and starvation had no effect on respiration. Although starvation altered the bacterial profiles of the microbiomes, these differences were much smaller than those between the populations. The bacterial profiles of Staphylococcus, Bacillus, Kocuria, Brevibacterium, and unidentified Micrococcaceae and Enterobacteriaceae increased in starved specimens, whereas those of Bartonella and Solitalea-like genera were reduced in the starved mite populations. The profiles of the intracellular symbiont Cardinium decreased in the starved specimens, and the Wolbachia profile changes were dependent on the mite population. In mite populations, when the symbionts were rare, their profiles varied stochastically. Correlations between changes in the profiles of the bacterial taxa and mite fitness parameters, including nutrient status (lipids, proteins, saccharides, and glycogen contents), mite population growth, and respiration, were observed. Although the microbiomes were resistant to the perturbations caused by nutrition deficiency, the responses of the mites differed in terms of their population growth, respiration, and nutrient status.

RevDate: 2018-07-03

Ross PA, AA Hoffmann (2018)

Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection.

Insects, 9(3): pii:insects9030078.

Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being deployed to control the spread of arboviruses around the world through blockage of viral transmission. Blockage by Wolbachia in some scenarios may be affected by the susceptibility of wMel to cyclical heat stress during mosquito larval development. We therefore evaluated the potential to generate a heat-resistant strain of wMel in Ae. aegypti through artificial laboratory selection and through exposure to field temperatures across multiple generations. To generate an artificially selected strain, wMel-infected females reared under cyclical heat stress were crossed to wMel-infected males reared at 26 °C. The low proportion of larvae that hatched founded the next generation, and this process was repeated for eight generations. The wMel heat-selected strain (wMel-HS) was similar to wMel (unselected) in its ability to induce cytoplasmic incompatibility and restore compatibility when larvae were reared under cyclical heat stress, but wMel-HS adults exhibited reduced Wolbachia densities at 26 °C. To investigate the effects of field exposure, we compared the response of wMel-infected Ae. aegypti collected from Cairns, Australia where the infection has been established for seven years, to a wMel-infected population maintained in the laboratory for approximately 60 generations. Field and laboratory strains of wMel did not differ in their response to cyclical heat stress or in their phenotypic effects at 26 °C. The capacity for the wMel infection in Ae. aegypti to adapt to high temperatures therefore appears limited, and alternative strains may need to be considered for deployment in environments where high temperatures are regularly experienced in mosquito breeding sites.

RevDate: 2018-07-13

Ballesteros C, Geary JF, Mackenzie CD, et al (2018)

Characterization of Divalent Metal Transporter 1 (DMT1) in Brugia malayi suggests an intestinal-associated pathway for iron absorption.

International journal for parasitology. Drugs and drug resistance, 8(2):341-349.

Lymphatic filariasis and onchocerciasis are neglected parasitic diseases which pose a threat to public health in tropical and sub-tropical regions. Strategies for control and elimination of these diseases by mass drug administration (MDA) campaigns are designed to reduce symptoms of onchocerciasis and transmission of both parasites to eventually eliminate the burden on public health. Drugs used for MDA are predominantly microfilaricidal, and prolonged rounds of treatment are required for eradication. Understanding parasite biology is crucial to unravelling the complex processes involved in host-parasite interactions, disease transmission, parasite immune evasion, and the emergence of drug resistance. In nematode biology, large gaps still exist in our understanding of iron metabolism, iron-dependent processes and their regulation. The acquisition of iron from the host is a crucial determinant of the success of a parasitic infection. Here we identify a filarial ortholog of Divalent Metal Transporter 1 (DMT1), a member of a highly conserved family of NRAMP proteins that play an essential role in the transport of ferrous iron in many species. We cloned and expressed the B. malayi NRAMP ortholog in the iron-deficient fet3fet4 strain of Saccharomyces cerevisiae, performed qPCR to estimate stage-specific expression, and localized expression of this gene by immunohistochemistry. Results from functional iron uptake assays showed that expression of this gene in the iron transport-deficient yeast strain significantly rescued growth in low-iron medium. DMT1 was highly expressed in adult female and male B. malayi and Onchocerca volvulus. Immunolocalization revealed that DMT1 is expressed in the intestinal brush border, lateral chords, and reproductive tissues of males and females, areas also inhabited by Wolbachia. We hypothesize based on our results that DMT1 in B. malayi functions as an iron transporter. The presence of this transporter in the intestine supports the hypothesis that iron acquisition by adult females requires oral ingestion and suggests that the intestine plays a functional role in at least some aspects of nutrient uptake.

RevDate: 2018-06-28

Parry R, S Asgari (2018)

Aedes anphevirus (AeAV): an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and dengue virus infection in cells.

Journal of virology pii:JVI.00224-18 [Epub ahead of print].

Insect specific viruses (ISVs) of the yellow fever mosquito Aedes aegypti have been demonstrated to modulate transmission of arboviruses such as dengue virus (DENV) and West Nile virus by the mosquito. The diversity and composition of the virome of Ae. aegypti, however, remains poorly understood. In this study, we characterised Aedes anphevirus (AeAV), a negative-sense RNA virus from the order Mononegavirales AeAV identified from Aedes cell lines were infectious to both Ae. aegypti and Aedes albopictus cells, but not to three mammalian cell lines. To understand the incidence and genetic diversity of AeAV, we assembled 17 coding-complete and two partial genomes of AeAV from available RNA-Seq data. AeAV appears to transmit vertically and be present in laboratory colonies, wild-caught mosquitoes and cell lines worldwide. Phylogenetic analysis of AeAV strains indicates that as the Ae. aegypti mosquito has expanded into the Americas and Asia-Pacific, AeAV has evolved into monophyletic African, American and Asia-Pacific lineages. The endosymbiotic bacterium Wolbachia pipientis restricts positive-sense RNA viruses in Ae. aegypti Re-analysis of a small RNA library of Ae. aegypti cells co-infected with AeAV and Wolbachia produces an abundant RNAi response consistent with persistent virus replication. We found Wolbachia enhances replication of AeAV when compared to a tetracycline cleared cell line, and AeAV modestly reduces DENV replication in vitro The results from our study improve understanding of the diversity and evolution of the virome of Ae. aegypti and adds to previous evidence that shows Wolbachia does not restrict a range of negative strand RNA viruses.IMPORTANCE The mosquito Aedes aegypti transmits a number of arthropod-borne viruses (arboviruses) such as dengue virus and Zika virus. Mosquitoes also harbour insect-specific viruses that may affect replication of pathogenic arboviruses in their body. Currently, however, there are only a handful of insect-specific viruses described from Ae. aegypti in the literature. Here, we characterise a novel negative strand virus, Aedes anphevirus (AeAV). Meta-analysis of Ae. aegypti samples showed that it is present in Ae. aegypti mosquitoes worldwide and is vertically transmitted. Wolbachia transinfected mosquitoes are currently being used in biocontrol as they effectively block transmission of several positive sense RNA viruses in mosquitoes. Our results demonstrate that Wolbachia enhances the replication of AeAV and modestly reduces dengue virus replication in a cell line model. This study expands our understanding of the virome in Ae. aegypti as well as providing insight into the complexity of the Wolbachia virus restriction phenotype.

RevDate: 2018-06-27

Faria VG, Martins NE, Schlötterer C, et al (2018)

Re-adapting to DCV infection without Wolbachia: frequency changes of Drosophila anti-viral alleles can replace endosymbiont protection.

Genome biology and evolution pii:5045875 [Epub ahead of print].

There is now ample evidence that endosymbionts can contribute to host adaptation to environmental challenges. However, how endosymbiont presence affects the adaptive trajectory and outcome of the host is yet largely unexplored. In Drosophila, Wolbachia confers protection to RNA virus infection, an effect that differs between Wolbachia strains and can be targeted by selection. Adaptation to RNA virus infections is mediated by both Wolbachia and the host, raising the question of whether adaptive genetic changes in the host vary with the presence/absence of the endosymbiont. Here, we address this question using a polymorphic D. melanogaster population previously adapted to DCV infection for 35 generations in the presence of Wolbachia, from which we removed the endosymbiont and followed survival over the subsequent 20 generations of infection. After an initial severe drop, survival frequencies upon DCV selection increased significantly, as seen before in the presence of Wolbachia. Whole-genome sequencing, revealed that the major genes involved in the first selection experiment, pastrel and Ubc-E2H, continued to be selected in Wolbachia-free D. melanogaster, with the frequencies of protective alleles being closer to fixation in the absence of Wolbachia. Our results suggest that heterogeneity in Wolbachia infection status may be sufficient to maintain polymorphisms even in the absence of costs.

RevDate: 2018-06-27

Amuzu HE, Tsyganov K, Koh C, et al (2018)

Wolbachia enhances insect-specific flavivirus infection in Aedes aegypti mosquitoes.

Ecology and evolution, 8(11):5441-5454 pii:ECE34066.

Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect-specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co-infecting pathogens, including flaviviruses. Artificially created Wolbachia-infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild-caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia-infected mosquitoes compared to the Wolbachia-free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia-mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia-based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.

RevDate: 2018-06-22

Arai H, Hirano T, Akizuki N, et al (2018)

Multiple Infection and Reproductive Manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae).

Microbial ecology pii:10.1007/s00248-018-1210-4 [Epub ahead of print].

Endosymbiotic bacterium Wolbachia interacts with host in either a mutualistic or parasitic manner. Wolbachia is frequently identified in various arthropod species, and to date, Wolbachia infections have been detected in different insects. Here, we found a triple Wolbachia infection in Homona magnanima, a serious tea pest, and investigated the effects of three infecting Wolbachia strains (wHm-a, -b, and -c) on the host. Starting with the triple-infected host line (Wabc), which was collected in western Tokyo in 1999 and maintained in laboratory, we established an uninfected line (W-) and three singly infected lines (Wa, Wb, and Wc) using antibiotics. Mating experiments with the host lines revealed that only wHm-b induced cytoplasmic incompatibility (CI) in H. magnanima, with the intensities of CI different between the Wb and Wabc lines. Regarding mutualistic effects, wHm-c shortened larval development time and increased pupal weight in both the Wc and Wabc lines to the same extent, whereas no distinct phenotype was observed in lines singly infected with wHm-a. Based on quantitative PCR analysis, Wolbachia density in the Wa line was higher than in the other host lines (p < 0.01, n = 10). Wolbachia density in the Wb line was also higher than in the Wc and Wabc lines, while no difference was observed between the Wc and Wabc lines. These results indicate that the difference in the CI intensity between a single or multiple infection may be attributed to the difference in wHm-b density. However, no correlation was observed between mutualistic effects and Wolbachia density.

RevDate: 2018-07-03

Goindin D, Cannet A, Delannay C, et al (2018)

Screening of natural Wolbachia infection in Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies).

Acta tropica, 185:314-317 pii:S0001-706X(18)30269-9 [Epub ahead of print].

Guadeloupe islands are threatened by several mosquito-borne viruses such as Dengue, Chikungunya, Zika and West Nile virus. It appears essential to look for alternative mosquito control methods such as the incompatible insect technique (ITT) aiming at sterilizing wild females by inundative releases of incompatible males. Before considering the implementation of such a strategy, the characterization of genetic diversity of the endocellular bacterium Wolbachia regarding the local mosquito populations is a critical issue. Here, for the first time, we describe the prevalence and diversity of Wolbachia in natural populations of three mosquito species from Guadeloupe: Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus. The detection of Wolbachia in natural Ae. aegypti, Ae. taeniorhynchus and Cx. quinquefasciatus populations was conducted by studying Wolbachia 16S ribosomal RNA gene using a TaqMan quantitative real-time PCR and results were confirmed by conventional PCR and sequencing. In addition, molecular typing of wPip strains in Cx. quinquefasciatus was done by PCR-RFLP. We did not find Wolbachia infection in any of Ae. aegypti and Ae. taeniorhynchus studied populations. Natural Wolbachia infection was detected in Cx. quinquefasciatus with prevalence varying from 79.2% to 95.8%. In addition, no polymorphism was found between the Wolbachia strains infecting Cx. quinquefasciatus specimens, all carrying an infection from the same Wolbachia genetic wPip-I group. These results pave the way for the evaluation of the feasibility of IIT programs to fight against these medically-important mosquito species in Guadeloupe.

RevDate: 2018-06-14

Gloria-Soria A, Chiodo TG, JR Powell (2018)

Lack of Evidence for Natural Wolbachia Infections in Aedes aegypti (Diptera: Culicidae).

Journal of medical entomology pii:5026263 [Epub ahead of print].

Wolbachia is a genus of endosymbiotic bacteria that infects 66% of all insect species. Its major impact on insects is in reproduction: sterility, production of one sex, and/or parthenogenesis. Another effect was discovered when the disease-transmitting mosquito, Aedes aegypti Linnaeus (Diptera: Culicidae), was infected with Wolbachia isolated from Drosophila: infected female mosquitoes became less capable of transmitting diseases such as dengue fever and chikungunya. This has led to releases of Ae. aegypti carrying Wolbachia in an attempt to control disease. An open question is whether there are natural Wolbachia infections of this mosquito. We assayed DNA from 2,663 Ae. aegypti from 27 countries on six continents, 230 from laboratory strains, and 72 Aedes mascarensis MacGregor (Diptera: Culicidae) for presence of Wolbachia DNA. Within the limits of our polymerase chain reaction-based assay, we found no evidence of Wolbachia, suggesting that natural infections of this endosymbiont are unlikely to occur throughout the worldwide distribution of Ae. aegypti.

RevDate: 2018-06-13

Uribe-Alvarez C, Chiquete-Félix N, Morales-García L, et al (2018)

Wolbachia pipientis grows in Saccharomyces cerevisiae evoking early death of the host and deregulation of mitochondrial metabolism.

MicrobiologyOpen [Epub ahead of print].

Wolbachia sp. has colonized over 70% of insect species, successfully manipulating host fertility, protein expression, lifespan, and metabolism. Understanding and engineering the biochemistry and physiology of Wolbachia holds great promise for insect vector-borne disease eradication. Wolbachia is cultured in cell lines, which have long duplication times and are difficult to manipulate and study. The yeast strain Saccharomyces cerevisiae W303 was used successfully as an artificial host for Wolbachia wAlbB. As compared to controls, infected yeast lost viability early, probably as a result of an abnormally high mitochondrial oxidative phosphorylation activity observed at late stages of growth. No respiratory chain proteins from Wolbachia were detected, while several Wolbachia F1 F0 -ATPase subunits were revealed. After 5 days outside the cell, Wolbachia remained fully infective against insect cells.

RevDate: 2018-06-12

Vasconcelos EJR, Billeter SA, Jett LA, et al (2018)

Assessing Cat Flea Microbiomes in Northern and Southern California by 16S rRNA Next-Generation Sequencing.

Vector borne and zoonotic diseases (Larchmont, N.Y.) [Epub ahead of print].

Flea-borne diseases (FBDs) impact both human and animal health worldwide. Because adult fleas are obligately hematophagous and can harbor potential pathogens, fleas act as ectoparasites of vertebrates, as well as zoonotic disease vectors. Cat fleas (Ctenocephalides felis) are important vectors of two zoonotic bacterial genera listed as priority pathogens by the National Institute of Allergy and Infectious Diseases (NIAID-USA): Bartonella spp. and Rickettsia spp., causative agents of bartonelloses and rickettsioses, respectively. In this study, we introduce the first microbiome analysis of C. felis samples from California, determining the presence and abundance of relevant pathogenic genera by characterizing the cat flea microbiome through 16S rRNA next-generation sequencing (16S-NGS). Samples from both northern (NoCal) and southern (SoCal) California were assessed to expand current knowledge regarding FBDs in the state. We identified Rickettsia and Bartonella, as well as the endosymbiont Wolbachia, as the most abundant genera, followed by less abundant taxa. In comparison to our previous study screening Californian cat fleas for rickettsiae using PCR/digestion/sequencing of the ompB gene, the 16S-NGS approach applied herein showed a 95% level of agreement in detecting Rickettsia spp. There was no overall difference in microbiome diversity between NoCal and SoCal samples. Bacterial taxa identified by 16S-NGS in this study may help to improve epidemiological investigations, pathogen surveillance efforts, and clinical diagnostics of FBDs in California and elsewhere.

RevDate: 2018-06-22

Balvín O, Roth S, Talbot B, et al (2018)

Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts.

Scientific reports, 8(1):8797 pii:10.1038/s41598-018-25545-y.

Wolbachia bacteria, vertically transmitted intracellular endosymbionts, are associated with two major host taxa in which they show strikingly different symbiotic modes. In some taxa of filarial nematodes, where Wolbachia are strictly obligately beneficial to the host, they show complete within- and among-species prevalence as well as co-phylogeny with their hosts. In arthropods, Wolbachia usually are parasitic; if beneficial effects occurs, they can be facultative or obligate, related to host reproduction. In arthropods, the prevalence of Wolbachia varies within and among taxa, and no co-speciation events are known. However, one arthropod species, the common bedbug Cimex lectularius was recently found to be dependent on the provision of biotin and riboflavin by Wolbachia, representing a unique case of Wolbachia providing nutritional and obligate benefits to an arthropod host, perhaps even in a mutualistic manner. Using the presence of presumably functional biotin gene copies, our study demonstrates that the obligate relationship is maintained at least in 10 out of 15 species of the genera Cimex and Paracimex. The remaining five species harboured Wolbachia as well, demonstrating the first known case of 100% prevalence of Wolbachia among higher arthropod taxa. Moreover, we show the predicted co-cladogenesis between Wolbachia and their bedbug hosts, also as the first described case of Wolbachia co-speciation in arthropods.

RevDate: 2018-07-15

Badawi M, Moumen B, Giraud I, et al (2018)

Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods.

Genes, 9(6): pii:genes9060290.

In animals, sexual differences between males and females are usually determined by sex chromosomes. Alternatively, sex may also be determined by vertically transmitted intracellular microbial endosymbionts. The best known cytoplasmic sex manipulative endosymbiont is Wolbachia which can, for instance, feminize genetic males into phenotypic females in the terrestrial isopod Armadillidium vulgare. However, the molecular genetic basis of cytoplasmic sex determination is unknown. To identify candidate genes of feminization induced by Wolbachia strain wVulC from A. vulgare, we sequenced the genome of Wolbachia strain wCon from Cylisticus convexus, the most closely related known Wolbachia strain to wVulC that does not induce feminization, and compared it to the wVulC genome. Then, we performed gene expression profiling of the 216 resulting wVulC candidate genes throughout host developmental stages in A. vulgare and the heterologous host C. convexus. We identified a set of 35 feminization candidate genes showing differential expression during host sexual development. Interestingly, 27 of the 35 genes are present in the f element, which is a piece of a feminizing Wolbachia genome horizontally transferred into the nuclear genome of A. vulgare and involved in female sex determination. Assuming that the molecular genetic basis of feminization by Wolbachia and the f element is the same, the 27 genes are candidates for acting as master sex determination genes in A. vulgare females carrying the f element.

RevDate: 2018-06-10

Zhang L, Yun Y, Hu G, et al (2018)

Insights into the bacterial symbiont diversity in spiders.

Ecology and evolution, 8(10):4899-4906 pii:ECE34051.

Most spiders are natural enemies of pests, and it is beneficial for the biological control of pests to learn the relationships between symbionts and their spider hosts. Research on the bacterial communities of insects has been conducted recently, but only a few studies have addressed the bacterial communities of spiders. To obtain a complete overview of the microbial communities of spiders, we examined eight species of spider (Pirata subpiraticus, Agelena difficilis, Artema atlanta, Nurscia albofasciata, Agelena labyrinthica, Ummeliata insecticeps, Dictis striatipes, and Hylyphantes graminicola) with high-throughput sequencing based on the V3 and V4 regions of the 16S rRNA gene. The bacterial communities of the spider samples were dominated by five types of endosymbionts, Wolbachia, Cardinium, Rickettsia, Spiroplasma, and Rickettsiella. The dominant OTUs (operational taxonomic units) from each of the five endosymbionts were analyzed, and the results showed that different spider species were usually dominated by special OTUs. In addition to endosymbionts, Pseudomonas, Sphingomonas, Acinetobacter, Novosphingobium, Aquabacterium, Methylobacterium, Brevundimonas, Rhizobium, Bradyrhizobium, Citrobacter, Arthrobacter, Pseudonocardia, Microbacterium, Lactobacillus, and Lactococcus were detected in spider samples in our study. Moreover, the abundance of Sphingomonas, Methylobacterium, Brevundimonas, and Rhizobium in the spider D. striatipes was significantly higher (p < .05) than the bacterial abundance of these species in seven other spider species. These findings suggest that same as in insects, co-infection of multiple types of endosymbionts is common in the hosts of the Araneae order, and other bacterial taxa also exist in spiders besides the endosymbionts.

RevDate: 2018-06-08

Li J, Wang N, Liu Y, et al (2018)

Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis.

PeerJ, 6:e4905 pii:4905.

Background: Nasonia vitripennis, a parasitic wasp, is a good model organism to study developmental and evolutionary genetics and to evaluate the interactions between insect hosts and their symbionts. Wolbachia may be the most prevalent endosymbiont among insect species due to their special ability to improve the fitness of the infected hosts. Transinfection of bacteria or fungi could substantially alter the expression of host immune system components. However, few studies have focused on the effects of native Wolbachia infection. Accordingly, in this study, we evaluated the proteomics of N. vitripennis following Wolbachia infection.

Methods: We studied the proteomics of N. vitripennis following native Wolbachia infection and in antibiotic-treated Wolbachia-free samples using isobaric tags for relative and absolute quantification-liquid chromatography tandem mass spectrometry, accompanying with some ecological experiments.

Results: In total, 3,096 proteins were found to be associated with a wide range of biological processes, molecular functions, and cellular components. Interestingly, there were few significant changes in immune or reproductive proteins between samples with and without Wolbachia infection. Differentially expressed proteins were involved in the binding process, catalytic activity, and the metabolic process, as confirmed by quantitative reverse transcription polymerase chain reaction.

Discussion: Invasion of any pathogen or bacterium within a short time can cause an immunoreaction in the host. Our results implied that during the long process of coexistence, the immune system of the host was not as sensitive as when the symbiont initially infected the host, implying that the organisms had gradually adjusted to cohabitation.

RevDate: 2018-07-08

Hornok S, Horváth G, Takács N, et al (2018)

Molecular evidence of a badger-associated Ehrlichia sp., a Candidatus Neoehrlichia lotoris-like genotype and Anaplasma marginale in dogs.

Ticks and tick-borne diseases, 9(5):1302-1309.

The family Anaplasmataceae contains pathogenic and endosymbiotic bacteria of veterinary-medical importance. In this study, 90 blood samples from rural dogs, five blood samples from road-killed European badgers and 34 ticks, i.e. 27 Ixodes (Pholeoixodes) canisuga, six I. (Ph.) hexagonus and one Haemaphysalis concinna collected from the badgers were molecularly analysed for members of Anaplasmataceae. Apart from the molecular evidence of Anaplasma phagocytophilum in one dog and Wolbachia sp. associated with Dirofilaria repens in five dogs, four species/genotypes not yet known to occur in canine hosts have also been found. These included A. marginale in two dogs, a badger-associated Ehrlichia sp. in one dog, a Candidatus Neoehrlichia lotoris-like genotype in six dogs and the DNA of arthropod-associated wolbachiae in three dogs. In two badgers the DNA from the Candidatus N. lotoris-like genotype was identified. Among ticks, four I. canisuga carried the DNA of the above badger-associated Ehrlichia sp., one I. canisuga contained the Candidatus N. lotoris-like genotype, and in H. concinna Wolbachia DNA was present. In conclusion, results shown here should be interpreted as the first molecular evidence for exposure of dogs to three members of Anaplasmataceae, i.e. A. marginale, a badger-associated Ehrlichia sp. and a Candidatus N. lotoris-like agent. The presence of DNA in the blood of relevant animals may also indicate susceptibility to these bacteria, but in support of this, further studies are needed.

RevDate: 2018-06-08

Anders KL, Indriani C, Ahmad RA, et al (2018)

The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial.

Trials, 19(1):302 pii:10.1186/s13063-018-2670-z.

BACKGROUND: Dengue and other arboviruses transmitted by Aedes aegypti mosquitoes, including Zika and chikungunya, present an increasing public health challenge in tropical regions. Current vector control strategies have failed to curb disease transmission, but continue to be employed despite the absence of robust evidence for their effectiveness or optimal implementation. The World Mosquito Program has developed a novel approach to arbovirus control using Ae. aegypti stably transfected with Wolbachia bacterium, with a significantly reduced ability to transmit dengue, Zika and chikungunya in laboratory experiments. Modelling predicts this will translate to local elimination of dengue in most epidemiological settings. This study protocol describes the first trial to measure the efficacy of Wolbachia in reducing dengue virus transmission in the field.

METHODS/DESIGN: The study is a parallel, two-arm, non-blinded cluster randomised controlled trial conducted in a single site in Yogyakarta, Indonesia. The aim is to determine whether large-scale deployment of Wolbachia-infected Ae. aegypti mosquitoes leads to a measurable reduction in dengue incidence in treated versus untreated areas. The primary endpoint is symptomatic, virologically confirmed dengue virus infection of any severity. The 26 km2 study area was subdivided into 24 contiguous clusters, allocated randomly 1:1 to receive Wolbachia deployments or no intervention. We use a novel epidemiological study design, the cluster-randomised test-negative design trial, in which dengue cases and arbovirus-negative controls are sampled concurrently from among febrile patients presenting to a network of primary care clinics, with case or control status classified retrospectively based on the results of laboratory diagnostic testing. Efficacy is estimated from the odds ratio of Wolbachia exposure distribution (probability of living in a Wolbachia-treated area) among virologically confirmed dengue cases compared to test-negative controls. A secondary per-protocol analysis allows for individual Wolbachia exposure levels to be assessed to account for movements outside the cluster and the heterogeneity in local Wolbachia prevalence among treated clusters.

DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of Wolbachia in reducing dengue incidence. Together with observational evidence that is accumulating from pragmatic deployments of Wolbachia in other field sites, this will provide valuable data to estimate the effectiveness of this novel approach to arbovirus control, inform future cost-effectiveness estimates, and guide plans for large-scale deployments in other endemic settings.

TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT03055585 . Registered on 14 February 2017.

RevDate: 2018-06-08

Dahmani M, Tahir D, Cabre O, et al (2018)

Prevalence of Anaplasmataceae and Filariidae species in unowned and military dogs in New Caledonia.

Veterinary medicine and science, 4(2):140-149.

Dogs are competent reservoir hosts of several zoonotic agents, including Filariidae nematodes and Anaplasmataceae family bacteria. The latter family unites human and veterinary pathogens (Anaplasma, Ehrlichia and Neorickettsia bacteria) with Wolbachia, some of which are obligatory endosymbionts of pathogenic filarial nematodes. The epidemiology of Anaplasmataceae and Filariidae species infecting dogs living in kennels in New Caledonia was studied. 64 EDTA blood samples were screened for the presence of Anaplasmataceae and filarial nematodes. Molecular study was conducted using primers and probe targeting the of 23S rRNA long fragment of Anaplasmataceae species. Next, all blood sample was screened for the presence of Filariidae species targeting the primers and probe targeting the COI gene, as well as primers targeting the COI and 5S rRNA genes of all filarial worms. Anaplasma platys was identified in 8/64 (12.5, 95% confidence interval [CI]: 4.4-20.6%) and Wolbachia endosymbiont of Dirofilaria immitis in 8/64 (12.5%, CI: 4.4-20.6%). Filariidae species investigation was performed and showed that 11/64 (17.2%, CI: 7.9-26.4%) dogs were infected with D. immitis, whereas, 2/64 (3.1%, CI: 0.0-7.3%) were infected with Acanthocheilonema reconditum. Finally, we checked the occurrence of co-infection between Anaplasmataceae and Filariidae species. Co-occurrence with Wolbachia endosymbiont of D. immitis was observed in seven dogs, one dog was co-infected with A. platys and A. reconditum and another was co-infected with Wolbachia endosymbiont of D. immitis and A. reconditum. These results are the first report of Anaplasmataceae and Filariidae occurring in dogs in New Caledonia.

RevDate: 2018-05-31

Ote M, D Yamamoto (2018)

The Wolbachia protein TomO interacts with a host RNA to induce polarization defects in Drosophila oocytes.

Archives of insect biochemistry and physiology [Epub ahead of print].

Wolbachia is an endosymbiont prevalent in arthropods. To maximize its transmission thorough the female germline, Wolbachia induces in infected hosts male-to-female transformation, male killing, parthenogenesis, and cytoplasmic incompatibility, depending on the host species and Wolbachia strain involved. However, the molecular mechanisms underlying these host manipulations by Wolbachia remain largely unknown. The Wolbachia strain wMel, an inhabitant of Drosophila melanogaster, impairs host oogenesis only when transplanted into a heterologous host, for example, Drosophila simulans. We found that egg polarity defects induced by wMel infection in D. simulans can be recapitulated in the natural host D. melanogaster by transgenic overexpression of a variant of the Wolbachia protein Toxic manipulator of oogenesis (TomO), TomOwMel∆HS , in the female germline. RNA immunoprecipitation assays demonstrated that TomO physically associates with orb mRNA, which, as a result, fails to interact with the translation repressor Cup. This leads to precocious translation of Orb, a posterior determinant, and thereby to the misspecification of oocytes and accompanying polarity defects. We propose that the ability of TomO to bind to orb mRNA might provide a means for Wolbachia to enter the oocyte located at the posterior end of the egg chamber, thereby accomplishing secure maternal transmission thorough the female germline.

RevDate: 2018-05-30

O'Neill SL (2018)

The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses.

Advances in experimental medicine and biology, 1062:355-360.

The biological control of mosquito transmission by the use of the naturally occurring insect-specific bacterial endosymbiont Wolbachia has been successfully tested in small field trials. The approach has been translated successfully to larger field sites in Townsville, Australia and expanded to more than 10 countries through the Eliminate Dengue Program. The broader application of the program beyond limiting the transmission of dengue and including other Aedes aegypti borne mosquitoes has seen the program growing into a global not-for-profit initiative to be known as the World Mosquito Program.

RevDate: 2018-06-01

Perry KD, Baker GJ, Powis KJ, et al (2018)

Cryptic Plutella species show deep divergence despite the capacity to hybridize.

BMC evolutionary biology, 18(1):77 pii:10.1186/s12862-018-1183-4.

BACKGROUND: Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world's most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays.

RESULTS: The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella.

CONCLUSIONS: Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella.

RevDate: 2018-05-29

Ali H, Muhammad A, Y Hou (2018)

Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping.

Journal of microbiology and biotechnology, 28(5):796-808.

The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia-mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein (wsp) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles (ftsZ-234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia. The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima, which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima. Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.

RevDate: 2018-05-31

Opatovsky I, Santos-Garcia D, Ruan Z, et al (2018)

Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment.

BMC genomics, 19(1):402 pii:10.1186/s12864-018-4786-7.

BACKGROUND: Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first reconstructed the metabolic networks of five common B. tabaci symbionts genera (Portiera, Rickettsia, Hamiltonella, Cardinium and Wolbachia), and then used network analysis approaches to predict: (1) species-specific metabolic capacities in a simulated bacteriocyte-like environment; (2) metabolic capacities of the corresponding species' combinations, and (3) dependencies of each species on different media components.

RESULTS: The predictions for metabolic capacities of the symbionts in the host environment were in general agreement with previously reported genome analyses, each focused on the single-species level. The analysis suggests several previously un-reported routes for complementary interactions and estimated the dependency of each symbiont in specific host metabolites. No clear association was detected between metabolic co-dependencies and co-occurrence patterns.

CONCLUSIONS: The analysis generated predictions for testable hypotheses of metabolic exchanges and co-dependencies in bacterial communities and by crossing them with co-occurrence profiles, contextualized interaction patterns into a wider ecological perspective.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )