About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

23 Mar 2019 at 01:41
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Invasive Species


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 23 Mar 2019 at 01:41 Created: 

Invasive Species

Standard Definition: Invasive species are plants, animals, or pathogens that are non-native (or alien) to the ecosystem under consideration and whose introduction causes or is likely to cause harm. Although that definition allows a logical possibility that some species might be non-native and harmless, most of time it seems that invasive species and really bad critter (or weed) that should be eradicated are seen as equivalent phrases. But, there is a big conceptual problem with that notion: every species in every ecosystem started out in that ecosystem as an invader. If there were no invasive species, all of Hawaii would be nothing but bare volcanic rock. Without an invasion of species onto land, there would be no terrestrial ecosystems at all. For the entire history of life on Earth, the biosphere has responded to perturbation and to opportunity with evolutionary innovation and with physical movement. While one may raise economic or aesthetic arguments against invasive species, it is impossible to make such an argument on scientific grounds. Species movement — the occurrence of invasive species — is the way the biosphere responds to perturbation. One might even argue that species movement is the primary, short-term "healing" mechanism employed by the biosphere to respond to perturbation — to "damage." As with any healing process, the short-term effect may be aesthetically unappealing (who thinks scabs are appealing?), but the long-term effects can be glorious.

Created with PubMed® Query: "invasive species" OR "invasion biology" OR "alien species" OR "introduced species" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-03-22

Miranda RJ, Coleman MA, Tagliafico A, et al (2019)

Invasion-mediated effects on marine trophic interactions in a changing climate: positive feedbacks favour kelp persistence.

Proceedings. Biological sciences, 286(1899):20182866.

The interactive effects of ocean warming and invasive species are complex and remain a source of uncertainty for projecting future ecological change. Climate-mediated change to trophic interactions can have pervasive ecological consequences, but the role of invasion in mediating trophic effects is largely unstudied. Using manipulative experiments in replicated outdoor mesocosms, we reveal how near-future ocean warming and macrophyte invasion scenarios interactively impact gastropod grazing intensity and preference for consumption of foundation macroalgae (Ecklonia radiata and Sargassum vestitum). Elevated water temperature increased the consumption of both macroalgae through greater grazing intensity. Given the documented decline of kelp (E. radiata) growth at higher water temperatures, enhanced grazing could contribute to the shift from kelp-dominated to Sargassum-dominated reefs that is occurring at the low-latitude margins of kelp distribution. However, the presence of a native invader (Caulerpa filiformis) was related to low consumption by the herbivores on dominant kelp at warmer temperatures. Thus, antagonistic effects between climate change and a range expanding species can favour kelp persistence in a warmer future. Introduction of species should, therefore, not automatically be considered unfavourable under climate change scenarios. Climatic changes are increasing the need for effective management actions to address the interactive effects of multiple stressors and their ecological consequences, rather than single threats in isolation.

RevDate: 2019-03-22

Ricks KD, RT Koide (2019)

Biotic filtering of endophytic fungal communities in Bromus tectorum.

Oecologia pii:10.1007/s00442-019-04388-y [Epub ahead of print].

The assembly of horizontally transmitted endophytic fungi within plant tissues may be affected by "biotic filtering". In other words, only particular endophytic fungal taxa from the available inoculum pool may be able to colonize a given plant species. We tested that hypothesis in Bromus tectorum, an important invasive species in the arid, western United States. We collected seed from Bromus tectorum and sources of inoculum for endophytic fungi including soil and various kinds of plant litter at a field site in central Utah. We characterized, using Illumina sequencing, the endophytic fungal communities in the various inoculum sources, inoculated Bromus tectorum seedlings under gnotobiotic conditions with the various sources, and then characterized the communities of endophytic fungi that assembled in their roots and leaves. Different inoculum sources containing significantly different endophytic fungal communities produced complex communities of endophytic fungi in leaves and roots of Bromus tectorum. In leaves, the communities assembling from the various inoculum sources were not significantly different from each other and, in roots, they were only slightly different from each other, mainly due to variation in a single fungal OTU, Coprinopsis brunneofibrillosa. Consequently, there was significantly more variation in the structure of the communities of endophytic fungi among the inoculum sources than in the resultant endophytic fungal communities in the leaves and roots of Bromus tectorum. These results are consistent with biotic filtering playing a significant role in endophytic fungal community assembly.

RevDate: 2019-03-22

Cleveland CA, Swanepoel L, Box EK, et al (2019)

Rickettsia species in ticks collected from wild pigs (Sus scrofa) and Philippine deer (Rusa marianna) on Guam, Marianna Islands, USA.

Acta tropica pii:S0001-706X(18)31566-3 [Epub ahead of print].

The prevalence and diversity of ticks on wildlife species on Guam is understudied, as to date no work has been conducted on the infection of these ticks with Rickettsia (obligate intracellular pathogens that use a variety of ectoparasites as vectors and can cause disease in humans, domestic animals, and wildlife species). The goal of our study was to investigate the presence of Rickettsia species on the island of Guam by testing ticks found on Philippine deer (Rusa marianna) and wild pigs (Sus scrofa). Increasing numbers of these species have led to increased interactions with humans, including hunting, highlighting the importance of studies on vector prevalence and associated zoonotic pathogens. In this study, ticks were removed from Philippine deer and wild pigs in March and April of 2015 and tested for Rickettsia spp. using nested PCR. Overall, a low prevalence of Rickettsia spp. was detected (5.4% (6/112 ticks)). Ticks removed from wild pigs were identified as Amblyomma breviscutatum, one of which was positive for Rickettsia ambylommatis. Ticks recovered from Philippine deer were identified as Rhipicephalus microplus, and five were positive for Rickettsia; two with R. amblyommatis and one with 'Candidatus Rickettsia senegalensis', a recently proposed species in the R. felis cluster. The remaining two sequences were short and species classification was not possible. Rickettsia felis is a known zoonotic pathogen in the spotted fever group of Rickettsia and there is evidence that 'C. R. senegalensis' can also cause illness in people. This study confirms the occurrence of Rickettsia in ticks on Guam and highlights the presence of potential human pathogenic species in the R. felis cluster.

RevDate: 2019-03-22

Willbrand BN, DG Pfeiffer (2019)

Brown Rice Vinegar as an Olfactory Field Attractant for Drosophila suzukii (Matsumura) and Zaprionus indianus Gupta (Diptera: Drosophilidae) in Cherimoya in Maui, Hawaii, with Implications for Attractant Specificity between Species and Estimation of Relative Abundance.

Insects, 10(3): pii:insects10030080.

Drosophila suzukii (Matsumura) is an agricultural pest that has been observed co-infesting soft-skinned fruits with Zaprionus indianus Gupta. The characterization of olfactory preferences by species is a necessary step towards the development of species-specific attractants. Five olfactory attractants were used to survey the populations of two invasive drosophilids in cherimoya in Maui, Hawaii. The attractants used were apple cider vinegar (ACV), brown rice vinegar (BRV), red wine (RW), apple cider vinegar and red wine (ACV+RW; 60/40), and brown rice vinegar and red wine (BRV+RW; 60/40). For D. suzukii, BRV+RW resulted in more captures than BRV, ACV, and RW, while ACV+RW resulted in more captures than ACV. No differences were observed between BRV+RW and ACV+RW. BRV had greater specificity in attracting D. suzukii compared to ACV, ACV+RW, and RW. For Z. indianus, no significant differences were observed in either the mean captures or specificity for any attractant used. Collectively, these findings demonstrate that (1) BRV and BRV+RW are effective field attractants and (2) D. suzukii has unique olfactory preferences compared to non-target drosophilids, while (3) Z. indianus' preferences do not appear to vary from non-target drosophilids, and (4) the accuracy of relative abundance is impacted by the specificity of the attractants.

RevDate: 2019-03-22
CmpDate: 2019-03-22

Snow NP, Lavelle MJ, Halseth JM, et al (2019)

Exposure of a population of invasive wild pigs to simulated toxic bait containing biomarker: implications for population reduction.

Pest management science, 75(4):1140-1149.

BACKGROUND: An international effort to develop an acute and humane toxic bait for invasive wild pigs (Sus scrofa) is underway to curtail their expansion. We evaluated the ability to expose a population of wild pigs to a simulated toxic bait (i.e., placebo bait containing a biomarker, rhodamine B, in lieu of the toxic ingredient) to gain insight on potential population reduction. We used 28 GPS-collars and sampled 428 wild pigs to examine their vibrissae for evidence of consuming the bait.

RESULTS: We estimated that 91% of wild pigs within 0.75 km of bait sites (total area = 16.8 km2) consumed the simulated toxic bait, exposing them to possible lethal effects. Bait sites spaced 0.75-1.5 km apart achieved optimal delivery of the bait, but wild pigs ranging ≥ 3 km away were susceptible. Use of wild pig-specific bait stations resulted in no non-target species directly accessing the bait.

CONCLUSION: Results demonstrate the potential for exposing a large proportion of wild pigs to a toxic bait in similar ecosystems. Toxic baits may be an effective tool for reducing wild pig populations especially if used as part of an integrated pest management strategy. Investigation of risks associated with a field-deployment of the toxic bait is needed. © 2018 Society of Chemical Industry.

RevDate: 2019-03-22
CmpDate: 2019-03-22

Oliveira JL, SB Santos (2019)

Distribution of cysts of Strongyluris sp. (Nematoda) in the pallial system of Achatina fulica Bowdich, 1822 from Vila Dois Rios and Vila do Abraão, Ilha Grande, Angra dos Reis, Rio de Janeiro.

Brazilian journal of biology = Revista brasleira de biologia, 79(1):38-44.

This work aimed to assessing Strongyluris sp. cysts distribution pattern in the several inner organs from pallial system of Achatina fulica Bowdich, 1822. Also we verified if there is a relationship between the mollusk size and the number of specimens from parasites collected from two touristic villages in Ilha Grande (Angra dos Reis, Rio de Janeiro state): Vila Dois Rios (VDR) and Vila do Abraão (ABR). The samples were obtained through a field work conducted bimonthly during 2007, 2008, 2010, and 2011, at both locations. Height and width were measured from shells collected, and the all specimens were classified in different classes: class 1 - <4.0 cm, class 2 - 4.1-9.0 cm and class 3 - < 9.0 cm. After the specimens were dissected in order to find and count the number cysts in the pallial system. In specimens from both locations, the pulmonary and secondary veins showed a high number of cysts. No significance difference was found both in the abundance of cysts among the specimens in ABR (p=0.138) and VDR (p=0.181). Achatina fulica showed different intensities of cyst infection based on the size classes: the class-3 specimens, at both locations, showed the greatest cyst average (ABR Anova F= 3.8; p=0.02); (VDR T of Student T= -2.04; p=0.04). The results suggested that the highest number of cysts in the vascularized area in pallial system of A. fulica was a consequence of a greater hemolymph circulation in that area, delivering more nutrients for larvae development. We think that bigger individuals host a higher number of cysts, as they usually present a larger biomass and a larger area of the pallial system, allowing an efficient parasite colonization. Other possible explanation could be the long exposure of the molluscs of class 3 to the parasites, which allowed a longer time to the larvae to allocate themselves.

RevDate: 2019-03-22
CmpDate: 2019-03-22

Liu XA, Peng Y, Li JJ, et al (2019)

Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

Brazilian journal of biology = Revista brasleira de biologia, 79(1):15-21.

Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

RevDate: 2019-03-21

van Riper CJ, Browning MHEM, Becker D, et al (2019)

Correction to: Human-Nature Relationships and Normative Beliefs Influence Behaviors that Reduce the Spread of Aquatic Invasive Species.

The original article was published with few incorrect contexts.

RevDate: 2019-03-21

Cooperband MF, Wickham J, Cleary K, et al (2019)

Discovery of Three Kairomones in Relation to Trap and Lure Development for Spotted Lanternfly (Hemiptera: Fulgoridae).

Journal of economic entomology, 112(2):671-682.

The spotted lanternfly, Lycorma delicatula (White), is an invasive phloem feeder recently introduced into North America that attacks a broad range of woody plants. When feeding in large numbers, they can seriously damage or kill a tree. Their preferred host is the invasive tree-of-heaven, Ailanthus altissima Swingle (Sapindales: Simaroubaceae), but they are serious pests of grape, Vitis vinifera L. (Vitales: Vitaceae) and a number of other commercially important host plants. Volatile collections were conducted on tree-of-heaven and grape, and the most abundant compounds from these plants present in samples and indicated in the literature were tested for attraction in the laboratory and field. Three compounds, methyl salicylate, (Z)-3-hexenol, and (E,E)-α-farnesene, were found to be highly attractive in laboratory behavioral bioassays. Methyl salicylate was attractive to all stages of L. delicatula, whereas the youngest nymphs were not as attracted to (Z)-3-hexenol or (E,E)-α-farnesene in laboratory bioassays. When comparing individual compounds, methyl salicylate attracted the most L. delicatula. Methyl salicylate lures in the field produced a two- to four-fold increase in captures compared with unbaited controls, and field testing also revealed a significant positive dose response. Of the several types of sticky bands tested, Web-Cote Industries sticky bands were found to be most efficient at trapping L. delicatula adults and nymphs.

RevDate: 2019-03-21
CmpDate: 2019-03-21

Morrissey-McCaffrey E, Shephard S, Kelly FL, et al (2019)

Non-native species and lake warming negatively affect Arctic char Salvelinus alpinus abundance; deep thermal refugia facilitate co-existence.

Journal of fish biology, 94(1):5-16.

This study finds that non-native species and warming temperatures have significant negative effects on Arctic char Salvelinus alpinus abundance in Irish lakes. Eutrophication was not important at the range of total phosphorus tested (0.005-0.023 mg l-1). Model results predict that S. alpinus occur across the temperature range sampled (8.2-19.7°C) when non-natives are absent, but S. alpinus catch is predicted to be close to zero irrespective of temperature when non-native catch is high. This result indicates that to persist, S. alpinus may require a habitat where non-natives are at low abundance or absent. Salvelinus alpinus segregated from other species along the thermal axis, inhabiting significantly colder water and actively avoided non-native species, which appeared to limit their distribution. The thermal niche realized by S. alpinus in non-native dominated lakes was thus compressed relative to native dominated lakes and S. alpinus population density was significantly lower. These findings were consistent even when the only non-native present was Perca fluviatilis. Temperature appeared to limit the distribution of non-native species, such that the presence of deep thermal refugia is currently facilitating S. alpinus co-existence with non-natives in associated lakes. Diet analysis identified P. fluviatilis as potential predators and competitors. This study provides strong evidence that non-native species are a key driver of low S. alpinus abundance in Irish lakes. Temperature increases associated with climate change are identified as a secondary concern, as they could erode S. alpinus' thermal niche and lead to their extirpation. The lower thermal buffering capacity of shallow lakes identifies these as higher risk systems. Salvelinus alpinus conservation in Ireland should focus on preventing future illegal non-native species introductions because unlike other stressors (e.g., eutrophication etc.), species introductions are rarely reversible.

RevDate: 2019-03-20

Furlan-Murari PJ, Ruas CF, Ruas EA, et al (2019)

Structure and genetic variability of golden mussel (Limnoperna fortunei) populations from Brazilian reservoirs.

Ecology and evolution, 9(5):2706-2714 pii:ECE34941.

The golden mussel, Limnoperna fortunei a highly invasive species in Brazil, has generated productive, economical, and biological impacts. To evaluate genetic structure and variability of L. fortunei populations present in fish farms in the reservoirs of Canoas I (CANFF), Rosana (ROSFF), and Capivara (CAPFF) (Paranapanema River, Paraná, Brazil), eight microsatellite loci were amplified. Five of those eight loci resulted in 38 alleles. The observed heterozygosity (Ho) was lower than the expected heterozygosity (He) in all populations, with a deviation from the Hardy-Weinberg equilibrium (HWE). The average value for the inbreeding coefficient (Fis) was positive and significative for all populations. There was higher genetic variability within populations than among them. The fixation index (Fst) showed a small genetic variability among these populations. The occurrence of gene flow was identified in all populations, along with the lack of a recent bottleneck effect. The clustering analysis yielded K = 2, with genetic similarity between the three populations. The results demonstrate low genetic structure and suggest a founding population with greater genetic variability (ROSFF). Our data point to the possible dispersal of L. fortunei aided by anthropic factors in the upstream direction. It was concluded that the three populations presented a unique genetic pool for Paranapanema River, with occurrence of gene flow.

RevDate: 2019-03-20
CmpDate: 2019-02-19

Li WC, Sheng HY, Chen WJ, et al (2018)

Variation of soil bacterial diversity after the invasion of Phyllostachys edulis into Pinus massoniana forest.

Ying yong sheng tai xue bao = The journal of applied ecology, 29(12):3969-3976.

To identify the variation in soil bacterial community diversity brought by the invasion of Phyllostachys edulis into Pinus massoniana forest, we collected mixed soil samples from three types of forests, including a pure Ph. edulis forest, a mixed Ph. edulis and conifers (P. massoniana) fore-st, and a mixed forest of evergreen broadleaves and conifers. Samples were analyzed by high-throughput sequencing for measuring the soil bacterial community diversity and structure. The results showed that the bacterial communities comprised of 511 genera, 160 families, 134 orders, 88 classes, and 39 phyla. The proportion of Acidobateria in the pure Ph. edulis forest was significantly lower and the proportions of Actinobacteria, Bacteroidetes, TM7, and Chlamydiae were significantly higher than that in other forests. Meanwhile, various genera showed significant differences in proportions in both the mixed forests when compared with their corresponding proportions in the pure Ph. edulis forest. There were 130 non-dominant genera presented alone in each of the two mixed forests, at proportions between 0.005% and 0.1%. The pure Ph. edulis forest had the lowest &Agr; diversity, while that of the mixed Ph. edulis and evergreen broadleaf forest was intermediate, and that of the mixed evergreen broadleaf and coniferous forest was the highest. The index of &Agr; diversity followed evergreen coniferous mixed forest > bamboo needle mixed forest > pure bamboo forest, and the diffe-rence between the mixed Ph. edulis and evergreen broadleaf forest and the mixed evergreen broadleaf and coniferous forest was insignificant. The PCoA results revealed that the invasion of Ph. edulis affected the population diversity and community structure of soil bacteria. There was a significant correlation between the percentage of non-dominant bacterial phyla in the soil (less than 0.1% of the proportion) and the soil environmental gradient such as water-soluble organic nitrogen and nitrate. Water-soluble organic nitrogen and nitrate had strong effects on the non-dominant bacterial population in the soil following the invasion of Ph. edulis into the P. massoniana forest. These findings would serve as important references for further related studies.

RevDate: 2019-03-20
CmpDate: 2019-02-19

Barbato M, Hailer F, Orozco-terWengel P, et al (2017)

Genomic signatures of adaptive introgression from European mouflon into domestic sheep.

Scientific reports, 7(1):7623.

Mouflon (Ovis aries musimon) became extinct from mainland Europe after the Neolithic, but remnant populations from the Mediterranean islands of Corsica and Sardinia have been used for reintroductions across Europe since the 19th-century. Mouflon x sheep hybrids are larger-bodied than mouflon, potentially showing increased male reproductive success, but little is known about genomic levels of admixture, or about the adaptive significance of introgression between resident mouflon and local sheep breeds. Here we analysed Ovine medium-density SNP array genotypes of 92 mouflon from six geographic regions, along with data from 330 individuals of 16 domestic sheep breeds. We found lower levels of genetic diversity in mouflon than in domestic sheep, consistent with past bottlenecks in mouflon. Introgression signals were bidirectional and affected most mouflon and sheep populations, being strongest in one Sardinian mouflon population. Developing and using a novel approach to identify chromosomal regions with consistent introgression signals, we infer adaptive introgression from mouflon to domestic sheep related to immunity mechanisms, but not in the opposite direction. Further, we infer that Soay and Sarda sheep carry introgressed mouflon alleles involved in bitter taste perception and/or innate immunity. Our results illustrate the potential for adaptive introgression even among recently diverged populations.

RevDate: 2019-03-20
CmpDate: 2017-08-23

Szyniszewska AM, Leppla NC, Huang Z, et al (2016)

Analysis of Seasonal Risk for Importation of the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae), via Air Passenger Traffic Arriving in Florida and California.

Journal of economic entomology, 109(6):2317-2328.

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January-August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May-August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California.

RevDate: 2019-03-20
CmpDate: 2017-06-12

Egizi A, Kiser J, Abadam C, et al (2016)

The hitchhiker's guide to becoming invasive: exotic mosquitoes spread across a US state by human transport not autonomous flight.

Molecular ecology, 25(13):3033-3047.

Not all exotic species establish and expand aggressively (i.e. become invasive). As potential vectors of disease agents, invasive mosquitoes can have considerable impact on public health, livestock and wildlife; therefore, understanding the species characteristics and ecological circumstances promoting their invasiveness is important. The mosquito Aedes japonicus japonicus, originally from north-east Asia, was introduced at least two separate times to the north-eastern USA, as surmised from the initial existence of two populations with distinct nuclear and mitochondrial genetic signatures that later intermixed. Since these original introductions in the late 1990s, Ae. j. japonicus has expanded across 31 US states, two Canadian provinces and five European countries. Although some of the expanded range was due to other independent introductions, to understand what drove the postintroduction expansion of Ae. j. japonicus within the north-eastern USA, we performed a high-resolution landscape genetic analysis of 461 specimens collected across Virginia, a state south of the original introductions. All specimens were genotyped at seven pre-optimized microsatellite loci, and a subsample was sequenced at one mitochondrial locus. We concluded that throughout Virginia this species has primarily expanded in association with humans: genetic distance and distance along roads remained correlated after controlling for geographic distance, and proximity to I-95, a major interstate highway, strongly predicted nuclear ancestry. In contrast, there was very limited evidence of diffusion even at distances potentially suitable for autonomous mosquito flight. This implies that its association with humans (rather than innate species characteristics) is the single most important determinant of invasiveness in this mosquito.

RevDate: 2019-03-20
CmpDate: 2017-06-12

Števove B, V Kováč (2016)

Ontogenetic variations in the diet of two invasive gobies, Neogobius melanostomus (Pallas, 1814) and Ponticola kessleri (Günther, 1861), from the middle Danube (Slovakia) with notice on their potential impact on benthic invertebrate communities.

The Science of the total environment, 557-558:510-519.

In this study, ontogenetic variations in diet of invasive bighead goby Ponticola kessleri and round goby Neogobius melanostomus from the middle Danube were analysed. Index of stomach fullness, Fulton's condition factor, index of food importance, frequency of occurrence, biomass, electivity, and proportions of invasive organisms in their diet were examined. Changes in the diet during ontogeny of both species emphasise the differences in their trophic niches. Our results combined with literary data suggest that bighead goby may threaten small native benthic fish species as a predator (especially in the invasion front), whereas round goby can potentially impact native fish species of all ontogenetic phases by competing for food. Round goby appear to have strong impact on bivalves, especially in the invasion front. High consumption of invasive organisms by bighead goby may help the native macroinvertebrate community. Thus, in contrast to round goby, bighead goby does not seem to be a hot candidate for being a nuisance invader.

RevDate: 2019-03-19

Bishop TR, Parr CL, Gibb H, et al (2019)

Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages.

Global change biology [Epub ahead of print].

Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages is likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV-B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait-mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business-as-usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganised in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait-environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-19

Plasman M, McCue MD, Reynoso VH, et al (2019)

Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard.

The Journal of experimental biology, 222(Pt 6): pii:222/6/jeb194480.

Processing food (e.g. ingestion, digestion, assimilation) requires energy referred to as specific dynamic action (SDA) and is at least partially fuelled by oxidation of the nutrients (e.g. proteins and lipids) within the recently ingested meal. In ectotherms, environmental temperature can affect the magnitude and/or duration of the SDA, but is likely to also alter the mixture of nutrients that are oxidized to cover these costs. Here, we examined metabolic rate, gut passage time, assimilation efficiency and fuel use in the lizard Agama atra digesting cricket meals at three ecologically relevant temperatures (20, 25 and 32°C). Crickets were isotopically enriched with 13C-leucine or 13C-palmitic-acid tracers to distinguish between protein and lipid oxidation, respectively. Our results show that higher temperatures increased the magnitude of the SDA peak (by 318% between 32 and 20°C) and gut passage rate (63%), and decreased the duration of the SDA response (by 20% for males and 48% for females). Peak rate of dietary protein oxidation occurred sooner than peak lipid oxidation at all temperatures (70, 60 and 31 h earlier for 20, 25 and 32°C, respectively). Assimilation efficiency of proteins, but not lipids, was positively related to temperature. Interestingly, the SDA response exhibited a notable circadian rhythm. These results show that temperature has a pronounced effect on digestive energetics in A.atra, and that this effect differs between nutrient classes. Variation in environmental temperatures may thus alter the energy budget and nutrient reserves of these animals.

RevDate: 2019-03-18

Tedjou AN, Kamgang B, Yougang AP, et al (2019)

Update on the geographical distribution and prevalence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae), two major arbovirus vectors in Cameroon.

PLoS neglected tropical diseases, 13(3):e0007137 pii:PNTD-D-18-01480 [Epub ahead of print].

INTRODUCTION: Arboviral diseases including dengue are increasingly spreading in the tropical/subtropical world including Africa. Updated knowledge on the distribution and abundance of the major vectors Aedes aegypti and Aedes albopictus constitutes crucial surveillance action to prepare African countries such as Cameroon for potential arbovirus outbreaks. Here, we present a nationwide survey in Cameroon to assess the current geographical distribution and prevalence of both vectors including a genetic diversity profiling of Ae. albopictus (invasive species) using mitochondrial DNA.

METHODS: Immature stages of Aedes were collected between March and August 2017 in 29 localities across Cameroon following north-south and east-west transects. Larvae and pupae were collected from several containers in each location, reared to adult and morphologically identified. Genetic diversity of Ae. albopictus from 16 locations were analysed using Cytochrome Oxidase I gene (COI).

RESULTS: In total, 30,381 immature stages of Aedes with an average of 646.40±414.21 per location were identified across the country comprising 69.3% of Ae. albopictus and 30.7% of Ae. aegypti. Analysis revealed that Ae. aegypti is still distributed nation widely whereas Ae. albopictus is limited to the southern part, around 6°4'N. However, Ae. albopictus is the most prevalent species in all southern locations where both species are sympatric except in Douala where Ae. aegypti is predominant. This suggests that factors such as climate, vegetation, and building density impact the distribution of both species in Cameroon. Mitochondrial DNA analysis revealed a low genetic diversity in Ae. albopictus populations with a major common haplotype resulting in low haplotype diversity ranging from 0.13 to 0.65 and 0.35 for the total sample. Similarly, low nucleotide diversity was also reported varying from 0.0000 to 0.0017 with an overall index of 0.0008. This low genetic polymorphism is consistent with the recent introduction of Ae. albopictus in Cameroon.

CONCLUSION: This updated distribution of arbovirus vectors across Cameroon will help in planning vector control programme against possible outbreak of arbovirus related diseases in the country.

RevDate: 2019-03-18

Ye XQ, Meng JL, M Wu (2019)

The effects of Solidago canadensis water extracts on maize seedling growth in association with the biomass allocation pattern.

PeerJ, 7:e6564 pii:6564.

Background: Solidago canadensis L. is an aggressive exotic plant species in China that has potential allelopathic effects on competing plant species. Effects of hormesis are frequently observed in studies of allelopathy; however, the mechanisms of such effects need to be elucidated. Allelopathic compounds may affect the growth of recipient plants via alteration of biomass allocation patterns or photosynthetic capacity. The aim of this study was to determine how water extracts from S. canadensis affected the shoot and root growth of recipient plants and whether the underlying mechanism was related to the biomass allocation pattern or photosynthetic gas exchange capacity.

Methods: The water extracts from S. canadensis shoots at 12 different concentrations in the range of 0-0.25 g/ml were applied thrice in 9 days to maize seedlings cultivated in silica sand. The growth (shoot height, leaf length and area and root length) and biomass accumulation and allocation (specific leaf area (SLA), leaf area ratio (LAR) and leaf mass ratio (LMR)) were compared among maize seedlings exposed to different treatment concentrations. Gas exchange (photosynthetic light response curve) was measured and compared among maize seedlings exposed to three concentrations of water extract (0, 0.0125 and 0.2 g/ml) before and after the first application, and seedling growth was measured after the third and final application.

Results: The growth of seedlings (shoot height, leaf length and area and root length) was promoted at concentrations below 0.125 g/ml and inhibited at concentrations above this level (P < 0.05). The pattern of change in biomass accumulation and allocation was similar to that of shoot growth, but biomass accumulation and allocation was not significantly affected by the water extract treatments (P > 0.05). The water extract treatments did not significantly affect the photosynthetic capacity (P > 0.05), but the dark respiration rate was higher in the low-dose treatment than that in the high-dose treatment. Shoot height was positively correlated with the biomass allocation indicators SLA and LAR (P < 0.05) but not with LMR (P > 0.05).

Conclusions: The results suggested that the effects of the water extracts from S. canadensis were highly dependent on the concentration, with the growth of maize seedlings promoted at low concentrations of water extracts. The effects of the water extracts on the growth of maize seedlings were mainly due to the effects on the LAR, the allocation to leaf area growth, whereas the effects of the water extracts on leaf gas exchange capacity cannot explain variation of seedling growth. Thus, the stimulation of plant growth was very likely due to increased biomass allocation towards the shoot.

RevDate: 2019-03-18

Bradbeer SJ, Harrington J, Watson H, et al (2019)

Limited hybridization between introduced and Critically Endangered indigenous tilapia fishes in northern Tanzania.

Hydrobiologia, 832(1):257-268.

Hybridization between introduced and indigenous species can lead to loss of unique genetic resources and precipitate extinction. In Tanzania, the Nile tilapia (Oreochromis niloticus) and blue-spotted tilapia (Oreochromis leucostictus) have been widely introduced to non-native habitats for aquaculture and development of capture fisheries. Here, we aimed to quantify interspecific hybridization between these introduced species and the indigenous species Oreochromis esculentus, Oreochromis jipe and Oreochromis korogwe. In the Pangani basin, several hybrids were observed (O. niloticus × O. jipe, O. leucostictus × O. jipe, O. niloticus × O. korogwe), although hybrids were relatively uncommon within samples relative to purebreds. Hybrids between the native O. jipe × O. korogwe were also observed. In the Lake Victoria basin, no evidence of hybrids was found. Analysis of body shape using geometric morphometrics suggested that although purebreds could be discriminated from one another, hybrids could not be readily identified on body and head shape alone. These results provide the first evidence of hybridization between the introduced species and the Critically Endangered O. jipe in Tanzania. Given uncertainty regarding benefits of introduced species over large-bodied indigenous species in aquaculture and capture fisheries, we suggest that future introductions of hybridization-prone species should be carefully evaluated.

RevDate: 2019-03-18

Shechonge A, Ngatunga BP, Bradbeer SJ, et al (2019)

Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction.

Hydrobiologia, 832(1):235-253.

From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960-1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture.

RevDate: 2019-03-18
CmpDate: 2019-03-18

Ondračková M, Fojtů J, Seifertová M, et al (2019)

Non-native parasitic copepod Neoergasilus japonicus (Harada, 1930) utilizes non-native fish host Lepomis gibbosus (L.) in the floodplain of the River Dyje (Danube basin).

Parasitology research, 118(1):57-62.

The parasitic copepod Neoergasilus japonicus (Harada, 1930) (Ergasilidae), native to east Asia, is widely distributed in Asia, Europe, and North and Central America. Recently, this species appeared in lentic water bodies of the River Dyje floodplain (Danube basin, Czech Republic). It was first recorded in 2015 and in 2 years it reached a 100% prevalence in recently expanding non-native fish host, Lepomis gibbosus (Linnaeus, 1758) (Centrarchidae, native to North America) at two borrow pits. Abundance of N. japonicus increased with fish length, with maximum intensity of infection reaching 99 parasites per fish. The parasite was most frequently found attached to the dorsal and anal fins of fish, while preference for the dorsal fin was more evident with lower infection intensities. Utilization of expanding fish hosts in water bodies that are regularly interconnected via natural or managed flooding may support the rapid dispersal of this non-native parasite.

RevDate: 2019-03-18
CmpDate: 2019-03-18

Zuk M, Bailey NW, Gray B, et al (2018)

Sexual signal loss: The link between behaviour and rapid evolutionary dynamics in a field cricket.

The Journal of animal ecology, 87(3):623-633.

Sexual signals may be acquired or lost over evolutionary time, and are tempered in their exaggeration by natural selection. In the Pacific field cricket, Teleogryllus oceanicus, a mutation ("flatwing") causing loss of the sexual signal, the song, spread in <20 generations in two of three Hawaiian islands where the crickets have been introduced. Flatwing (as well as some normal-wing) males behave as satellites, moving towards and settling near calling males to intercept phonotactic females. From 2005 to 2012, we surveyed crickets and their responses to conspecific song, noting the morph and number of males and females before and after experimental playbacks. The three Hawaiian islands consistently contained different proportions of flatwing crickets, ranging from about 90% of males on Kauai to 50% on Oahu to rare on the Big Island of Hawaii. Flatwing and normal-wing males do not appear to differ in responsiveness to playback, a behaviour that should influence the likelihood of a male encountering a phonotactic female. Instead, male and female crickets from populations in which little to no calling song is perceptible during development tended to seek out callers more readily than crickets that developed in noisier environments. Such increased phonotaxis makes females more likely to find either the caller to which they are responding or to encounter a flatwing (or normal male satellite) that has also been attracted to the song. Our evidence suggests that pre-existing behavioural plasticity (manifest as flexible responses to social-particularly acoustic-information in the environment) is associated with the rapid spread of the flatwing trait. Different social environments select for differential success of flatwing or normal-wing males, which in turn alters the social environment itself.

RevDate: 2019-03-18
CmpDate: 2019-03-18

Brown GP, Holden D, Shine R, et al (2018)

Invasion history alters the behavioural consequences of immune system activation in cane toads.

The Journal of animal ecology, 87(3):716-726.

Acute activation of the immune system often initiates a suite of behavioural changes. These "sickness behaviours"-involving lethargy and decreased activity-may be particularly costly on invasion fronts, where evolutionary pressures on dispersal favour individuals that move large distances. We used a combination of field and laboratory studies to compare sickness behaviours of cane toads from populations differing in invasion history. To do this we stimulated immune system activation by injecting lipopolysaccharide (LPS) to mimic bacterial infection. We predicted that LPS would result in less severe sickness behaviour in toads from range-edge populations because they had undergone selection for rapid and sustained dispersal (activities in conflict with lethargy and decreased activity). Contrary to our prediction, LPS injection caused a greater reduction in dispersal-relevant traits in invasion-front individuals than in conspecifics from the range-core. Our data suggest that the rapid invasion of cane toads through tropical Australia has seen an evolutionary shift in the magnitude of sickness behaviour elicited by pathogen infection. The increased sickness behaviour among range-edge toads suggests a shift away from pathogen tolerance (seen in range-core populations) towards resistance to pathogen attack. But as a consequence, when pathogens do become successfully established, toads from invasion-front populations may have less capacity to tolerate their ill-effects.

RevDate: 2019-03-15

Bartlett J, Convey P, SAL Hayward (2019)

Not so free range? Oviposition microhabitat and egg clustering affects Eretmoptera murphyi (Diptera: Chironomidae) reproductive success.

Polar biology, 42(2):271-284.

Understanding the physiology of non-native species in Antarctica is key to elucidating their ability to colonise an area, and how they may respond to changes in climate. Eretmoptera murphyi is a chironomid midge introduced to Signy Island (Maritime Antarctic) from South Georgia (Sub-Antarctic) where it is endemic. Here, we explore the tolerance of this species' egg masses to heat and desiccation stress encountered within two different oviposition microhabitats (ground surface vegetation and underlying soil layer). Our data show that, whilst oviposition takes place in both substrates, egg sacs laid individually in soil are at the greatest risk of failing to hatch, whilst those aggregated in the surface vegetation have the lowest risk. The two microhabitats are characterised by significantly different environmental conditions, with greater temperature fluctuations in the surface vegetation, but lower humidity (%RH) and available water content in the soil. Egg sacs were not desiccation resistant and lost water rapidly, with prolonged exposure to 75% RH affecting survival for eggs in singly oviposited egg sacs. In contrast, aggregated egg sacs (n = 10) experienced much lower desiccation rates and survival of eggs remained above 50% in all treatments. Eggs had high heat tolerance in the context of the current microhabitat conditions on Signy. We suggest that the atypical (for this family) use of egg sac aggregation in E. murphyi has developed as a response to environmental stress. Current temperature patterns and extremes on Signy Island are unlikely to affect egg survival, but changes in the frequency and duration of extreme events could be a greater challenge.

RevDate: 2019-03-15

Lenancker P, Hoffmann BD, Tay WT, et al (2019)

Strategies of the invasive tropical fire ant (Solenopsis geminata) to minimize inbreeding costs.

Scientific reports, 9(1):4566 pii:10.1038/s41598-019-41031-5.

How invasive species overcome challenges associated with low genetic diversity is unclear. Invasive ant populations with low genetic diversity sometimes produce sterile diploid males, which do not contribute to colony labour or reproductive output. We investigated how inbreeding affects colony founding and potential strategies to overcome its effects in the invasive tropical fire ant, Solenopsis geminata. Our genetic analyses of field samples revealed that 13-100% of males per colony (n = 8 males per 10 colonies) were diploid, and that all newly mated queens (n = 40) were single-mated. Our laboratory experiment in which we assigned newly mated queens to nests consisting of 1, 2, 3, or 5 queens (n = 95 ± 9 replicates) revealed that pleometrosis (queens founding their nest together) and diploid male larvae execution can compensate for diploid male load. The proportion of diploid male producing (DMP) colonies was 22.4%, and DMP colonies produced fewer pupae and adult workers than non-DMP colonies. Pleometrosis significantly increased colony size. Queens executed their diploid male larvae in 43.5% of the DMP colonies, and we hypothesize that cannibalism benefits incipient colonies because queens can redirect nutrients to worker brood. Pleometrosis and cannibalism of diploid male larvae represent strategies through which invasive ants can successfully establish despite high inbreeding.

RevDate: 2019-03-15

Kerkow A, Wieland R, Koban MB, et al (2019)

What makes the Asian bush mosquito Aedes japonicus japonicus feel comfortable in Germany? A fuzzy modelling approach.

Parasites & vectors, 12(1):106 pii:10.1186/s13071-019-3368-0.

BACKGROUND: The Asian bush mosquito Aedes japonicus japonicus is an invasive species native to East Asia and has become established in North America and Europe. On both continents, the species has spread over wide areas. Since it is a potential vector of human and livestock pathogens, distribution and dissemination maps are urgently needed to implement targeted surveillance and control in case of disease outbreaks. Previous distribution models for Europe and Germany in particular focused on climate data. Until now, effects of other environmental variables such as land use and wind remained unconsidered.

RESULTS: In order to better explain the distribution pattern of Ae. j. japonicus in Germany at a regional level, we have developed a nested approach that allows for the combination of data derived from (i) a climate model based on a machine-learning approach; (ii) a landscape model developed by means of ecological expert knowledge; and (iii) wind speed data. The approach is based on the fuzzy modelling technique that enables to precisely define the interactions between the three factors and additionally considers uncertainties with regard to the acceptance of certain environmental conditions. The model combines different spatial resolutions of data for Germany and achieves a much higher degree of accuracy than previous published distribution models. Our results reveal that a well-suited landscape structure can even facilitate the occurrence of Ae. j. japonicus in a climatically unsuitable region. Vice versa, unsuitable land use types such as agricultural landscapes and coniferous forests reduce the occurrence probability in climatically suitable regions.

CONCLUSIONS: The approach has significantly improved existing distribution models of Ae. j. japonicus for the area of Germany. We generated distribution maps with a resolution of 100 × 100 m that can serve as a basis for the design of control measures. All model input data and scripts are open source and freely available, so that the model can easily be applied to other countries or, more generally, to other species.

RevDate: 2019-03-15

Koban MB, Kampen H, Scheuch DE, et al (2019)

The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods.

Parasites & vectors, 12(1):109 pii:10.1186/s13071-019-3349-3.

After the first detection of the Asian bush mosquito Aedes japonicus japonicus in the year 2000 in France, its invasive nature was revealed in 2008 in Switzerland and Germany. In the following years, accumulating reports have shown that Ae. j. japonicus succeeded in establishing in several European countries. Surveillance efforts suggest that there are currently four populations in Europe, with the largest one, formed by the recent fusion of several smaller populations, ranging from West Germany, with extensions to Luxembourg and French Alsace, southwards to Switzerland and continuing westwards through Liechtenstein to western Austria. This paper summarises the present distribution of Ae. j. japonicus in Europe, based on published literature and hitherto unpublished findings by the authors, and critically reviews the monitoring strategies applied. A proposal for a more standardised monitoring approach is provided, aiming at the harmonisation of future data collections for improving the comparability between studies and the suitability of collected data for further research purposes, e.g. predictive modelling approaches.

RevDate: 2019-03-14

Mandáková T, Zozomová-Lihová J, Kudoh H, et al (2019)

The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives.

Annals of botany pii:5380421 [Epub ahead of print].

BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives.

METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species.

KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids.

CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.

RevDate: 2019-03-14

Lee Y, Schmidt H, Collier TC, et al (2019)

Genome-wide divergence among invasive populations of Aedes aegypti in California.

BMC genomics, 20(1):204 pii:10.1186/s12864-019-5586-4.

BACKGROUND: In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions.

RESULTS: Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California.

CONCLUSIONS: A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.

RevDate: 2019-03-14

Marchini GL, Maraist CA, MB Cruzan (2019)

Trait divergence, not plasticity, determines the success of a newly invasive plant.

Annals of botany, 123(4):667-679.

BACKGROUND AND AIMS: Phenotypic plasticity and genetic differentiation both play important roles in the establishment and spread of species after extra-range dispersal; however, the adaptive potential of plasticity and genetic divergence in successful invasions remains unclear.

METHODS: We measured six anatomical traits associated with drought tolerance in contrasting water environments for individuals from the invasive and native range of the bunchgrass Brachypodium sylvaticum. To represent sources contributing to admixed genotypes in the invasive range accurately, we used unique alleles to determine probabilities of genetic contribution, and utilized these as weights in our analyses. The adaptive values of plasticity and genetic differentiation were assessed using regression.

KEY RESULTS: No plasticity was found in response to water availability for any of the measured traits. Bulliform cell area and three traits related to xylem morphology displayed genetic differentiation between invasive and native ranges, indicating a shift in the invasive range towards drought-tolerant phenotypes. Genetic divergence was not consistently in the direction indicated by selection, suggesting that responses are limited by trade-offs with other traits or physical constraints.

CONCLUSIONS: Our results indicate that invasive adaptation is the consequence of post-introduction selection leading to genetic differentiation. Selection, rather than plasticity, is driving B. sylvaticum success in its invaded range.

RevDate: 2019-03-13

Urquía D, Gutierrez B, Pozo G, et al (2019)

Psidium guajava in the Galapagos Islands: Population genetics and history of an invasive species.

PloS one, 14(3):e0203737 pii:PONE-D-18-24672.

The threat of invasive plant species in island populations prompts the need to better understand their population genetics and dynamics. In the Galapagos islands, this is exemplified by the introduced guava (Psidium guajava), considered one of the greatest threats to the local biodiversity due to its effective spread in the archipelago and its ability to outcompete endemic species. To better understand its history and genetics, we analyzed individuals from three inhabited islands in the Galapagos archipelago with 11 SSR markers. Our results reveal similar genetic diversity between islands, and the populations appear to be distinct: the islands of San Cristobal and Isabela are genetically different while the population of Santa Cruz is a mixture from both. Additional evidence for genetic bottlenecks and the inference of introduction events suggests an original introduction of the species in San Cristobal, from where it was later introduced to Isabela, and finally into Santa Cruz. Alternatively, a second introduction in Isabela might have occurred. These results are contrasted with the historical record, providing a first overview of the history of P. guajava in the Galapagos islands and its current population dynamics.

RevDate: 2019-03-13

Dale AL, Feau N, Everhart SE, et al (2019)

Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum.

mBio, 10(2): pii:mBio.02452-18.

Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.

RevDate: 2019-03-13
CmpDate: 2019-03-13

Feis ME, John U, Lokmer A, et al (2018)

Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis.

Molecular ecology, 27(6):1505-1519.

On theoretical grounds, antagonistic co-evolution between hosts and their parasites should be a widespread phenomenon but only received little empirical support so far. Consequently, the underlying molecular mechanisms and evolutionary steps remain elusive, especially in nonmodel systems. Here, we utilized the natural history of invasive parasites to document the molecular underpinnings of co-evolutionary trajectories. We applied a dual-species transcriptomics approach to experimental cross-infections of blue mussel Mytilus edulis hosts and their invasive parasitic copepods Mytilicola intestinalis from two invasion fronts in the Wadden Sea. We identified differentially regulated genes from an experimental infection contrast for hosts (infected vs. control) and a sympatry contrast (sympatric vs. allopatric combinations) for both hosts and parasites. The damage incurred by Mytilicola infection and the following immune response of the host were mainly reflected in cell division processes, wound healing, apoptosis and the production of reactive oxygen species (ROS). Furthermore, the functional coupling of host and parasite sympatry contrasts revealed the concerted regulation of chitin digestion by a Chitotriosidase 1 homolog in hosts with several cuticle proteins in the parasite. Together with the coupled regulation of ROS producers and antagonists, these genes represent candidates that mediate the different evolutionary trajectories within the parasite's invasion. The host-parasite combination-specific coupling of these effector mechanisms suggests that underlying recognition mechanisms create specificity and local adaptation. In this way, our study demonstrates the use of invasive species' natural history to elucidate molecular mechanisms of host-parasite co-evolution in the wild.

RevDate: 2019-03-12

Zhang Y, Pennings SC, Li B, et al (2019)

Biotic homogenization of wetland nematode communities by exotic Spartina alterniflora in China.

Ecology [Epub ahead of print].

Introduced species may homogenize biotic communities. Whether this homogenization can erase latitudinal patterns of species diversity and composition has not been well studied. We examined this by comparing nematode and microbial communities in stands of native Phragmites australis and exotic Spartina alterniflora in coastal wetlands across 18° of latitude in China. We found clear latitudinal clines in nematode diversity and functional composition, and in microbial composition, for soils collected from native P. australis. These latitudinal patterns were weak or absent for soils collected from nearby stands of the exotic S. alterniflora. Climatic and edaphic variables varied across latitude in similar ways in both community types. In P. australis there were strong correlations between community structure and environmental variables, whereas in S. alterniflora these correlations were weak. These results suggest that the invasion of S. alterniflora into the Chinese coastal wetlands has caused profound biotic homogenization of soil communities across latitude. We speculate that the variation in P. australis nematode and microbial communities across latitude is primarily driven by geographic variation in plant traits, but that such variation in plant traits is largely lacking for the recently introduced exotic S. alterniflora. These results indicate that widespread exotic species can homogenize nematode communities at large spatial scales.

RevDate: 2019-03-12

Wen B (2019)

Seed germination ecology of Alexandra palm (Archontophoenix alexandrae) and its implication on invasiveness.

Scientific reports, 9(1):4057 pii:10.1038/s41598-019-40733-0.

Biological invasions are occurring worldwide, causing enormous economic and ecological damage. Early detection and prediction of invasiveness are the most effective measures to reduce its damage. The Alexandra palm (Archontophoenix alexandrae) is a prolific seeder and an alien species widely planted in tropical China. To help understand the invasion risks posed by this species, lab and field experiments on seed germination were conducted. Results show that the seeds only germinate within a temperature range of 20-30 °C and are sensitive to desiccation and high temperature, with seedling inhibition at 35 °C and -0.8 MPa. Complete viability loss was observed after desiccation to water content of 0.17-0.21 g/g or heat treatment for 30 minutes at 60 °C and above. However, appropriate habitats such as the rainforest understory, forest gaps, forest edges, and a rubber plantation are present in Xishuangbanna. Seeds are also frequently consumed by animals; therefore, there is a high potential for Alexandra palm to become an invasive species in Xishuangbanna. Currently, the main barrier to invasion in Xishuangbanna is likely to be the need for seed dispersal into suitable moist, partly shaded, habitats. Understanding the requirements for germination of the Alexandra palm can better inform management strategies for the control of this species.

RevDate: 2019-03-12

O'Loughlin LS, Gooden B, Foster CN, et al (2019)

Invasive shrub re-establishment following management has contrasting effects on biodiversity.

Scientific reports, 9(1):4083 pii:10.1038/s41598-019-40654-y.

Effective control of an invasive species is frequently used to infer positive outcomes for the broader ecosystem. In many situations, whether the removal of an invasive plant is of net benefit to biodiversity is poorly assessed. We undertook a 10-year study on the effects of invasive shrub management (bitou bush, Chrysanthemoides monilifera ssp. rotundata) on native flora and fauna in a eucalypt forest in south-eastern Australia. Bitou bush eradication is a management priority, yet the optimal control regime (combination of herbicide spray and fire) is difficult to implement, meaning managed sites have complex management histories that vary in effectiveness of control. Here we test the long-term response of common biodiversity indicators (species richness, abundance and diversity of native plants, birds, herpetofauna and small mammals) to both the management, and the post-management status of bitou bush (% cover). While average bitou bush cover decreased with management, bitou bush consistently occurred at around half of our managed sites despite control efforts. The relationship between biodiversity and bitou bush cover following management differed from positive, neutral or negative among species groups and indicators. Native plant cover was lower under higher levels of bitou bush cover, but the abundance of birds and small mammals were positively related to bitou bush cover. Evidence suggests that the successful control of an invader may not necessarily result in beneficial outcomes for all components of biodiversity.

RevDate: 2019-03-12
CmpDate: 2019-03-12

Di Vitantonio C, Depalo L, Marchetti E, et al (2018)

Response of the European Ladybird Adalia bipunctata and the Invasive Harmonia axyridis to a Neonicotinoid and a Reduced-Risk Insecticide.

Journal of economic entomology, 111(5):2076-2080.

The spread of the multicolored Asian lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Europe coincided with the decline of the native Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Both species are predators of aphids in orchards, and differential susceptibility to insecticides used to control fruit pests may contribute to explain the competitive advantage of the invasive over the native species. In this study, the insecticidal activity of imidacloprid and spinetoram was tested on third instars and adults of both ladybird species under laboratory conditions. Insects were exposed to insecticide residues on potted peach plants that were sprayed with the maximum recommended field doses (100 mg/liter for imidacloprid and 66.67 mg/liter for spinetoram). Mortality was scored after short (2 d for both stages) and long (7 and 10 d for adults and larvae, respectively) exposure periods. The susceptibility to the insecticides was very similar for H. axyridis and A. bipunctata. Imidacloprid caused a significant increase in the mortality of both stages of the two species for every exposure period. On the other hand, when exposed to spinetoram residues, larvae and adults of both ladybirds did not show higher mortality than controls after short and long exposure periods. The pest suppression provided by ladybirds, which could be severely hampered by the applications of nonselective pesticides, might be enhanced by the adoption of reduced-risk insecticides, selective for these beneficial insects.

RevDate: 2019-03-12
CmpDate: 2019-03-12

Chase KD, Stringer LD, Butler RC, et al (2018)

Multiple-Lure Surveillance Trapping for Ips Bark Beetles, Monochamus Longhorn Beetles, and Halyomorpha halys (Hemiptera: Pentatomidae).

Journal of economic entomology, 111(5):2255-2263.

Invasions by insects introduced via international trade continue to cause worldwide impacts. Surveillance programs using traps baited with host volatiles and pheromones can detect incursions of nonnative species. We report on two experiments executed to determine if attractants for several insect species can be combined without compromising trap catches and detection ability of target species. In the first experiment, we tested the effect of bark beetle pheromones (plus α-pinene) and trap contact with foliage on trap catches of the brown marmorated stink bug Halyomorpha halys Stål (Hemiptera: Pentatomidae) in traps baited with a mixture of bisabolenes and methyl (E,E,Z)-2,4,6-decatrienoate. Trap capture of H. halys adults was greater in traps not in contact with foliage, and the bark beetle pheromones ipsenol and ipsdienol did not affect trap capture of H. halys. In the second experiment, we tested the effects of multi-lure interactions among the primary host attractants α-pinene and ethanol, and the pheromones monochamol, ipsenol, ipsdienol, lanierone, and the H. halys compounds, on trap captures of various forest and agricultural insect pests. Specifically, we targeted Monochamus spp. (Coleoptera: Cerambycidae), Ips spp. (Coleoptera: Scolytinae) and H. halys. We found that a combination of all lures did not catch significantly lower numbers of Monochamus carolinensis Olivier, Monochamus scutellatus Say (Coleoptera: Cerambycidae), and Ips pini Say (Coleoptera: Scolytidae) than lure combinations missing components although removal of both lanierone and ipsdienol somewhat increased catches of Ips grandicollis Eichhoff (Coleoptera: Curculionidae). Our results support the use of traps baited with a full combination of these attractants in surveillance programs. This should reduce costs and increase detection rates of a wider range of conifer forest pests and H. halys.

RevDate: 2019-03-11

Bajwa AA, Wang H, Chauhan BS, et al (2019)

Effect of elevated carbon dioxide concentration on growth, productivity and glyphosate response of parthenium weed (Parthenium hysterophorus L.).

Pest management science [Epub ahead of print].

BACKGROUND: The rise in atmospheric CO2 has huge impacts on the biology and management of invasive weed species such as Parthenium hysterophorus. This study evaluated the effect of ambient (400 ppm) and elevated (700 ppm) CO2 concentrations on P. hysterophorus growth, reproductive output and response to glyphosate applied at several doses including the recommended dose (800 g a.e. ha-1).

RESULTS: The plants in control treatment (no herbicide) grew taller (41%), produced a larger number of leaves (13%) and flowers (39%), and higher dry biomass (34%) at elevated CO2 as compared to the ambient CO2 . Glyphosate caused significant reduction in chlorophyll content of P. hysterophorus plants grown at both CO2 concentration in a dose-dependent manner. The percentage herbicide injury was relatively less at elevated CO2 as compared to the ambient CO2 at 7 and 14 days after glyphosate application but it was almost similar at 21 days after application. This shows that elevated CO2 might have slowed the translocation of glyphosate initially, but most plants were killed eventually close to 21 days after application. The survival rate was higher under elevated as compared to the ambient CO2 at recommended and lower doses of glyphosate. There was a negligible difference between the two CO2 concentrations for the plant dry biomass reduction over the control treatment.

CONCLUSIONS: P. hysterophorus growth and reproductive potential (indicated by number of flowers) improved significantly by CO2 enrichment but there was little effect on the overall efficacy of glyphosate applied to control this species. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-11

Venegas-Li R, Levin N, Morales-Barquero L, et al (2019)

Global assessment of marine biodiversity potentially threatened by offshore hydrocarbon activities.

Global change biology [Epub ahead of print].

Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two-thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid-1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes, and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritisation to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritisation can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritising management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-11

Mahon MB, TO Crist (2019)

Invasive earthworm and soil litter response to the experimental removal of white-tailed deer and an invasive shrub.

Ecology [Epub ahead of print].

Recent studies have shown that complex species interactions can regulate above- and below-ground processes in terrestrial systems. Ungulate herbivory and invasive species are known to have strong effects on plant communities in some systems, but their impacts on soil biota and belowground processes are lesser known. Growing evidence suggests white-tailed deer (Odocoileus virginianus) and invasive plants facilitate increased abundance of exotic earthworms in temperate forests of the eastern United States. We conducted an experimental study that manipulated deer access and the presence of an invasive understory shrub in an eastern deciduous forest of southwestern Ohio, USA from 2013 to 2017. Earthworm density and biomass, and standing litter biomass were measured in five paired deer access and exclosure plots, each with a split-plot removal of Amur honeysuckle (Lonicera maackii). Earthworm density declined in response to the experimental exclusion of deer, with earthworm density decreasing over time in the deer exclosure plots relative to deer access plots. Deer exclusion produced greater variation in earthworm species composition relative to access plots. Multivariate analyses indicated that larger earthworms in the genus Lumbricus were associated with deer exclosure plots, while smaller endogeic species were ubiquitous in both treatments. Standing litter biomass decreased over time in the deer-access plots. In contrast, honeysuckle removal had little effect on earthworm density and standing litter biomass. There was an interaction between deer and honeysuckle treatments on earthworm biomass, with honeysuckle removal reducing earthworm biomass when deer were excluded. Our results demonstrate strong effects of herbivores on invasive earthworms and ecosystem processes, but indicate a weaker influence of invasive shrubs. Further, our findings suggest that the effects of deer overabundance in forest ecosystems are potentially reversible with long-term intervention. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Goldsmit J, Nudds SH, Stewart DB, et al (2019)

Where else? Assessing zones of alternate ballast water exchange in the Canadian eastern Arctic.

Marine pollution bulletin, 139:74-90.

Mid-ocean ballast water exchange (BWE) is recommended for international vessels to minimize the transfer of nonindigenous species (NIS). When this cannot be accomplished due to safety concerns, alternate ballast water exchange zones (ABWEZ) may be used. A coupled-ice-ocean model with meteorological forcing and particle tracking was used to evaluate the relative risks from BWE along primary shipping routes into Canada's eastern Arctic. Relative risk to receiving habitats from BWE was calculated from the product of likelihood of exposure, likelihood of establishment, and habitat sensitivity to potential NIS. Modelling results indicate that existing ABWEZs in and around Lancaster Sound and Hudson Strait are among the areas of highest relative risk for introductions of NIS via ballast water. The deeper offshore regions of Labrador Sea and Baffin Bay should be considered as alternatives. However, further research is recommended to assess the risks of NIS associated with BWE in the Canadian Arctic.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Cahill P, Tait L, Floerl O, et al (2019)

A portable thermal system for reactive treatment of biofouled internal pipework on recreational vessels.

Marine pollution bulletin, 139:65-73.

Biofouled commercial and recreational vessels are primary vectors for the introduction and spread of marine non-indigenous species (NIS). This study designed and assessed a portable system to reactively treat biofouling in the internal pipework of recreational vessels - a high-risk 'niche area' for NIS that is difficult to access and manage. A novel thermal treatment apparatus was optimised in a series of laboratory experiments performed using scale models of vessel pipework configurations. Treatment effectiveness was validated using the Pacific oyster Magallana gigas, a marine NIS with known resilience to heat. In subsequent field validations on actual recreational vessels, treatment was successfully delivered to high-risk portions of pipework when an effective seal between delivery unit and targeted pipework was achieved and ambient heat loss was minimised. In addition to demonstrating the feasibility of in-water treatment of vessel pipework, the study highlights the importance of robust optimisation and validation of any treatment system intended for biosecurity purposes.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Shen M, Zhu Y, Zhang Y, et al (2019)

Micro(nano)plastics: Unignorable vectors for organisms.

Marine pollution bulletin, 139:328-331.

Micro(nano)plastics, as emerging contaminants, have attracted worldwide attention. Nowadays, the environmental distribution, sources, and analysis methods and technologies of micro(nano)plastics have been well studied and recognized. Nevertheless, the role of micro(nano)plastic particles as vectors for attaching organisms is not fully understood. In this paper, the role of micro(nano)plastics as vectors, and their potential effects on the ecology are introduced. Micro(nano)plastics could 1) accelerate the diffusion of organisms in the environment, which may result in biological invasion; 2) increase the gene exchange between attached biofilm communities, causing the transfer of pathogenic and antibiotic resistance genes; 3) enhance the rate of energy, material and information flow in the environment. Accordingly, the role of microplastics as vectors for organisms should be further evaluated in the future research.

RevDate: 2019-03-10

Magliozzi L, Maselli V, Almada F, et al (2019)

Effect of the algal alkaloid caulerpin on neuropeptide Y (NPY) expression in the central nervous system (CNS) of Diplodus sargus.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology pii:10.1007/s00359-019-01322-8 [Epub ahead of print].

Recent studies have suggested that Mediterranean indigenous fish species are affected by bioactive metabolites coming from marine invasive species via food web interactions. In particular, both physiological and behavioural changes in the white sea bream Diplodus sargus were related to caulerpin (CAU), a bisindolic alkaloid particularly abundant in the invasive alga Caulerpa cylindracea, on which the fish actively feed. Dietary administration of CAU decreased aggressiveness in D. sargus, suggesting an anxiolytic-like effect of CAU possibly mediated by endogenous anxiolytic agents. This hypothesis is supported here by the finding of a significant increase of NPY transcriptional expression in the brain of fish fed with CAU enriched food, shedding more light on the neural mechanisms behind the altered behaviour of D. sargus.

RevDate: 2019-03-10

Pais-Costa AJ, Varó I, Martinez-Haro M, et al (2019)

Life history and physiological responses of native and invasive brine shrimps exposed to zinc.

Aquatic toxicology (Amsterdam, Netherlands), 210:148-157 pii:S0166-445X(18)31064-6 [Epub ahead of print].

Although a substantial amount of research exists on pollution and biological invasions, there is a paucity of understanding of how both factors interact. Most studies show that pollution favours the establishment of invasive species, but pollution may also promote local adaptation of native species and prevent the establishment of new incomers. However, evidence for this is extremely limited because most studies focus on successful invasions and very few on cases where an invasion has been resisted. Here we provide evidence of local adaptation of native species to pollution combining life history and physiological data. We focused on the invasion of the North American brine shrimp Artemia franciscana, which is causing a dramatic biodiversity loss in hypersaline ecosystems worldwide, and one of the last native Artemia populations in SW Europe (A. parthenogenetica from the historically polluted Odiel estuary, SW Spain). Life table response experiments were carried out in the laboratory to compare the demographic responses of A. parthenogenetica and a nearby A. franciscana population to long-term Zn exposure (0.2 mg L-1). We also evaluated oxidative stress by measuring antioxidant defences (catalase, glutathione reductase and superoxide dismutase) and lipid peroxidation (thiobarbituric acid reactive substances). A high concentration of Zn induced strong mortality in A. franciscana, which also showed high levels of lipid peroxidation, suggesting relatively poor physiological resistance to pollution compared with A. parthenogenetica. The age at maturity was shorter in A. parthenogenetica, which may be an adaptation to the naturally high mortality rate observed in the Odiel population. Exposure to Zn accelerated age at first reproduction in A. franciscana but not in A. parthenogenetica. In contrast, Zn had a stimulatory effect on offspring production in A. parthenogenetica,which also showed higher reproductive parameters (number of broods, total offspring and offspring per brood) than A. franciscana. Overall, the results of this study strongly suggest that native Artemia from Odiel estuary is locally adapted (at both, reproductive and physiological levels) to Zn contamination and that A. franciscana is highly sensitive. This is a good example of how pollution may play a role in the persistence of the last native Artemia populations in the Mediterranean.

RevDate: 2019-03-10

Cheney C, Esler KJ, Foxcroft LC, et al (2019)

Scenarios for the management of invasive Acacia species in a protected area: Implications of clearing efficacy.

Journal of environmental management, 238:274-282 pii:S0301-4797(19)30272-5 [Epub ahead of print].

In many protected areas in South Africa, invasive Australian Acacia species pose on-going management challenges, perpetuating high long-term management costs. Due to limited availability of resources, conservation actions need to be prioritised within and across Protected Areas (PA). We draw on comprehensive datasets spanning over 20 years from the Table Mountain National Park to model long-term outcomes of clearing Acacia species at different levels of management clearing efficacy. We test a 50 year outlook based on current and 38 incremental levels of management efficacy, ranging from 5 to 100%, to assess under which scenarios a management goal of reducing Acacia density to below 1 plant per hectare for the 22,671 ha protected area is achieved. With the current clearing resources and maximum clearing efficacy (100% control), it would take between 32 and 42 years to attain the management goal. The modelling revealed two main drivers of Acacia persistence. Firstly, germination of seeds added to the seedbank from standing plants made a significantly larger contribution to future clearing requirements than fire stimulated seed germination or the existing (pre-management) seedbank. Secondly the relationship between the number of hectares and management units that could be treated and the efficacy of the treatment was non-linear. When clearing efficacy was decreased from 100% to the current project minimum target of 80% efficacy, the goal was not achieved in all areas, but the area that reached a density of <1 plant per hectare was significantly reduced to 53% of the PA for the simulated 50 years. Results emphasize the need to differentiate between increasing financial resources and increasing efficacy. While increasing financial resources allows for increased effort, this is of little value for Acacia management in the absence of an increase in clearing efficacy, as low quality implementation perpetuates the need for large budgets over time. Conversely, improving efficacy allows for decreased budget requirements over time, allowing fund re-direction to additional areas of alien species management such as the early detection and rapid control of newly introduced species.

RevDate: 2019-03-10

Hui C, DM Richardson (2019)

Network Invasion as an Open Dynamical System: Response to Rossberg and Barabás.

RevDate: 2019-03-09

Richardson KM, Iverson JB, CM Kurle (2019)

Marine subsidies likely cause gigantism of iguanas in the Bahamas.

Oecologia pii:10.1007/s00442-019-04366-4 [Epub ahead of print].

We utilized natural experiment opportunities presented by differential conditions (presence/absence of seabirds and invasive species) on cays in the Bahamas to study whether interisland variations in food resources contributed to gigantism in Allen Cays Rock Iguanas (Cyclura cychlura inornata). We analyzed the stable carbon (δ13C) and nitrogen (δ15N) isotope values from iguana tissues and resources from each island food web to test the predictions that (1) food webs on islands with seabirds exhibit the influence of marine subsidies from seabird guano, whereas those from non-seabird islands do not, and (2) size differences in iguanas among cays were due to either (a) supplemental food availability from mice and/or seabird carcasses killed by barn owls (Tyto alba) and/or (b) access to more nutrient-rich vegetation fertilized by seabird guano. Food web components from the seabird island (Allen Cay) had 5-9‰ higher δ15N values than those on the other cays and Allen Cay plants contained nearly two times more nitrogen. Bayesian stable isotope mixing models indicated that C3 plants dominated iguana diets on all islands and showed no evidence for consumption of mice or shearwaters. The iguanas on Allen Cay were ~ 2 times longer (48.3 ± 11.6 cm) and ~ 6 times heavier (5499 ± 2847 g) than iguanas on other cays and this was likely from marine-derived subsidies from seabird guano which caused an increase in nitrogen concentration in the plants and a resultant increase in the δ15N values across the entire food web relative to non-seabird islands.

RevDate: 2019-03-09

Alexander JM, JM Levine (2019)

Earlier phenology of a nonnative plant increases impacts on native competitors.

Proceedings of the National Academy of Sciences of the United States of America pii:1820569116 [Epub ahead of print].

Adaptation to climate is expected to increase the performance of invasive species and their community-level impacts. However, while the fitness gains from adaptation should, in general, promote invader competitive ability, empirical demonstrations of this prediction are scarce. Furthermore, climate adaptation, in the form of altered timing of life cycle transitions, should affect the phenological overlap between nonnative and native competitors, with potentially large, but poorly tested, impacts on native species persistence. We evaluated these predictions by growing native California grassland plants in competition with nonnative Lactuca serriola, a species that flowers earlier in parts of its nonnative range that are drier than its putative European source region. In common garden experiments in southern California with L. serriola populations differing in phenology, plants originating from arid climates bolted up to 48 d earlier than plants from more mesic climates, and selection favored early flowering, supporting an adaptive basis for the phenology cline. The per capita competitive effects of L. serriola from early flowering populations on five early flowering native species were greater than the effects of L. serriola from later flowering populations. Consequently, the ability of the native species to increase when rare in competition with L. serriola, as inferred from field-parameterized competition models, declined with earlier L. serriola phenology. Indeed, changes to L. serriola phenology affected whether or not one native species was predicted to persist in competition with L. serriola Our results suggest that evolution in response to new climatic conditions can have important consequences for species interactions, and enhance the impacts of biological invasions on natural communities.

RevDate: 2019-03-08

Sherpa S, Blum MGB, Capblancq T, et al (2019)

Unraveling the invasion history of the Asian tiger mosquito in Europe.

Molecular ecology [Epub ahead of print].

Multiple introductions are key features for establishment and persistence of introduced species. However, little is known about the contribution of genetic admixture to the invasive potential of populations. To address this issue, we studied the recent invasion of the Asian tiger mosquito in Europe. Combining genome-wide single nucleotide polymorphisms (SNPs) and historical knowledge using an approximate Bayesian computation framework, we reconstruct the colonization routes and establish the demographic dynamics of invasion. The colonization of Europe involved at least three independent introductions in Albania, North Italy and Central Italy that subsequently acted as dispersal centers throughout Europe. We show that the topology of human transportation networks shaped demographic histories with North Italy and Central Italy being the main dispersal centers in Europe. Introduction modalities conditioned the levels of genetic diversity in invading populations, and genetically diverse and admixed populations promoted more secondary introductions and have spread farther than single-source invasions. This genomic study provides further crucial insights into a general understanding of the role of genetic diversity promoted by modern trade in driving biological invasions. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-08

Kohl PA, Brossard D, Scheufele DA, et al (2019)

Public views about gene editing wildlife for conservation.

Conservation biology : the journal of the Society for Conservation Biology [Epub ahead of print].

Developments in CRISPR-based gene-editing technologies have generated a growing number of proposals to gene edit populations of wildlife to meet conservation goals. These include proposals to use wildlife genome editing as a response to the spread of invasive species and other threats to biodiversity. As these proposals attract greater attention, controversies have emerged among scientists and stakeholder groups over potential consequences and ethical implications. Stakeholders on both sides of debates acknowledge that responsible governance cannot be developed without consulting broader publics. Yet little effort has been made to systematically assess public understandings and beliefs in relation to this new area of applied genetic engineering. In this study, we analyze the results of a survey of American adults (n = 1,600) to examine concerns about gene editing wildlife and how those concerns are shaped by cultural dispositions toward science and beliefs about the appropriateness of intervening into nature at the genetic level. On average, people perceived more risk than benefit in using these tools. Large majorities also agreed that gene editing wildlife could be easily used for the wrong purposes. When evaluating the moral acceptability of gene editing wildlife, people evaluate applications to improve survival in endangered wildlife as more morally acceptable than applications to reduce or eliminate a wildlife population. People who tend to more strongly believe in the authority of scientific knowledge expressed more favorable views of the benefits, risks, and moral acceptability of gene editing wildlife. On the other hand, people who tended to think gene editing wildlife inappropriately intervenes in nature expressed more concern about risks and moral acceptability and were more skeptical of the benefits. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-08

Mu X, Xu M, Ricciardi A, et al (2019)

The influence of warming on the biogeographic and phylogenetic dependence of herbivore-plant interactions.

Ecology and evolution, 9(4):2231-2241 pii:ECE34918.

Evolutionary experience and the phylogenetic relationships of plants have both been proposed to influence herbivore-plant interactions and plant invasion success. However, the direction and magnitude of these effects, and how such patterns are altered with increasing temperature, are rarely studied. Through laboratory functional response experiments, we tested whether the per capita feeding efficiency of an invasive generalist herbivore, the golden apple snail, Pomacea canaliculata, is dependent on the biogeographic origin and phylogenetic relatedness of host plants, and how increasing temperature alters these dependencies. The feeding efficiency of the herbivore was highest on plant species with which it had no shared evolutionary history, that is, novel plants. Further, among evolutionarily familiar plants, snail feeding efficiency was higher on those species more closely related to the novel plants. However, these biogeographic dependencies became less pronounced with increasing temperature, whereas the phylogenetic dependence was unaffected. Collectively, our findings indicate that the susceptibility of plants to this invasive herbivore is mediated by both biogeographic origin and phylogenetic relatedness. We hypothesize that warming erodes the influence of evolutionary exposure, thereby altering herbivore-plant interactions and perhaps the invasion success of plants.

RevDate: 2019-03-07

Trapero-Casas A, Rodríguez-Tello A, WJ Kaiser (2000)

Lupins, a New Host of Phytophthora erythroseptica.

Plant disease, 84(4):488.

Several lupin (Lupinus) species are native to southern Spain (2). The white lupin, Lupinus albus L., is the most important crop, and its seeds are used for human consumption and animal feed. Accessions of three indigenous species, L. albus, L. angustifolius L., and L. luteus L., and an introduced species from South America, L. mutabilis Sweet, were planted during October in replicated yield trials in acidic soils (pH 6.5) in the Sierra Morena Mountains (elevation 350 m) north of Córdoba. Root and crown rot disease was widespread and very serious on the indigenous lupins, particularly in several patches of white lupin cultivars. Infected plants were devoid of feeder rootlets, and the tap roots, crowns, and lower stems were necrotic and turned dark brown to black. Rotted roots were colonized heavily by fungal oospores. Many affected plants wilted and died before flowering. A Phytophthora sp. was isolated consistently from the necrotic roots and crowns of symptomatic white lupins. The same fungus also was isolated from the necrotic root tissues of the other indigenous lupin species. Isolates of the fungus from diseased white lupins were homothallic and produced oospores rapidly and abundantly on corn meal and V8 agars. Antheridia were amphigynous, and aplerotic oospores ranged from 22 to 32 μm (average 27 μm). Nonpapillate, ovoidobpyriform sporangia were produced only in water on simple sympodial sporangiophores. Cultures on V8 agar grew at 5 to 30°C (optimum ≈25°C). The species was identified as Phytophthora erythroseptica Pethybr. based on morphology of oospores, sporangia, and other cultural characteristics (1). Koch's postulates were fulfilled by planting seeds of white lupin cv. Multulupa in sterile potting soil infested with a blended culture on V8 agar from a white lupin isolate of P. erythroseptica and reisolating the fungus after 28 days from lesions that developed on the roots and crowns of inoculated plants incubated in a greenhouse at 16 to 26°C. The fungus was not isolated from white lupins seeded in potting soil inoculated with sterile V8 agar. In pathogenicity tests, two isolates of P. erythroseptica from white lupins caused severe symptoms on the roots and crowns of inoculated white lupin cv. Multulupa similar to those observed on white lupins naturally infected in field trials. These isolates also caused root and crown rots on inoculated L. luteus and L. angustifolius. The fungus did not infect the roots or crowns of tarwi (L. mutabilis cv. SCG 20), alfalfa (Medicago sativa cv. Moapa), bean (Phaseolus vulgaris cv. Contender), chickpea (Cicer arietinum cv. Blanco Lechoso), faba bean (Vicia faba cv. Arboleda), lentil (Lens culinaris cv. local), pea (Pisum sativum cv. Lancet), soybean (Glycine max cv. Akashi), or subterranean clover (Trifolium subterraneum cv. Seaton-park). The tests were repeated, and the results were similar. This is the first report of P. erythroseptica infecting Lupinus spp. References: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. (2) B. Valdés et al. 1987. Flora Vascular de Andalucía Occidental. Ketres, Barcelona, Spain.

RevDate: 2019-03-08
CmpDate: 2019-03-08

Aladin NV, Gontar VI, Zhakova LV, et al (2019)

The zoocenosis of the Aral Sea: six decades of fast-paced change.

Environmental science and pollution research international, 26(3):2228-2237.

During the last six decades, the water level of the Aral Sea, once one of the largest lakes in the world, has experienced a major human-driven regression followed by significant changes in salinity. These fast-paced alterations were initiated by the diversion of two rivers-the Amu Darya and Syr Darya-key players in the regulation of the water balance of the Aral Sea. Consequently, biological modifications took place leading to severe changes of the zoocenosis. This paper reviews the changes that have affected communities of fish and aquatic invertebrates in the Aral Sea since the 1950s. The reported alterations in biodiversity not only represent a natural response to a decrease in water level and a subsequent increase in salinity but also effects of non-native species introduction. The future prospects for invertebrates and fish in the Aral Sea, assuming that initiated restoration work is continued, are also discussed in this paper.

RevDate: 2019-03-08
CmpDate: 2019-03-08

Black A, Waipara N, M Gerth (2018)

Calling time on New Zealand's oldest tree species.

Nature, 561(7722):177.

RevDate: 2019-03-07

Anderson RB (2019)

Human traffic and habitat complexity are strong predictors for the distribution of a declining amphibian.

PloS one, 14(3):e0213426 pii:PONE-D-18-09442.

Invasive species and habitat modification threaten California's native pond-breeding amphibians, including the federally threatened California Red-legged Frog (Rana draytonii). The relative contributions of invasive species, including the American Bullfrog (Lithobates catesbeianus), and of habitat changes to these declines are disputed. I conducted a field study over several years in central California to examine the presence/absence of these two species at 79 breeding ponds to determine the predictive role for occupancy of factors including vegetation, pond characteristics, and measures of human activity. I used a boosted regression tree approach to determine the relative value of each predictor variable. Increased measures of human activity, especially proximity to trails and roads, were the best predictors for the absence of California Red-legged Frogs and California Newts. Historical factors and habitat conditions were associated with the extent and spread of the American Bullfrog. The extent and complexity of aquatic macrophytes and pond surface area were good predictors for the presence of these and other amphibian species. Surprisingly, invasive species played a relatively small role in predicting pond occupancy by the native species. These findings can inform conservation and restoration efforts for California Red-legged Frogs, which apparently persist best in small vegetated ponds in areas of low human disturbance.

RevDate: 2019-03-07

Helmer L, Farrell P, Hendy I, et al (2019)

Active management is required to turn the tide for depleted Ostrea edulis stocks from the effects of overfishing, disease and invasive species.

PeerJ, 7:e6431 pii:6431.

The decline of the European oyster Ostrea edulis across its biogeographic range has been driven largely by over-fishing and anthropogenic habitat destruction, often to the point of functional extinction. However, other negatively interacting factors attributing to this catastrophic decline include disease, invasive species and pollution. In addition, a relatively complex life history characterized by sporadic spawning renders O. edulis biologically vulnerable to overexploitation. As a viviparous species, successful reproduction in O. edulis populations is density dependent to a greater degree than broadcast spawning oviparous species such as the Pacific oyster Crassostrea (Magallana) gigas. Here, we report on the benthic assemblage of O. edulis and the invasive gastropod Crepidula fornicata across three actively managed South coast harbors in one of the few remaining O. edulis fisheries in the UK. Long-term data reveals that numbers of O. edulis sampled within Chichester Harbour have decreased by 96%, in contrast numbers of C. fornicata sampled have increased by 441% over a 19-year period. The recent survey data also recorded extremely low densities of O. edulis, and extremely high densities of C. fornicata, within Portsmouth and Langstone Harbours. The native oyster's failure to recover, despite fishery closures, suggests competitive exclusion by C. fornicata is preventing recovery of O. edulis, which is thought to be due to a lack of habitat heterogeneity or suitable settlement substrate. Large scale population data reveals that mean O. edulis shell length and width has decreased significantly across all years and site groups from 2015 to 2017, with a narrowing demographic structure. An absence of juveniles and lack of multiple cohorts in the remaining population suggests that the limited fishing effort exceeds biological output and recruitment is poor. In the Langstone & Chichester 2017 sample 98% of the population is assigned to a single cohort (modal mean 71.20 ± 8.78 mm, maximum length). There is evidence of small scale (<5 km) geographic population structure between connected harbors; the 2015 Portsmouth and Chichester fishery populations exhibited disparity in the most frequent size class with 36% within 81-90 mm and 33.86% within 61-70 mm, respectively, the data also indicates a narrowing demographic over a short period of time. The prevalence of the disease Bonamiosis was monitored and supports this microgeographic population structure. Infection rates of O. edulis by Bonamia ostreae was 0% in Portsmouth Harbor (n = 48), 4.1% in Langstone (n = 145) and 21.3% in Chichester (n = 48) populations. These data collectively indicate that O. edulis is on the brink of an ecological collapse within the Solent harbors. Without effective intervention to mitigate the benthic dominance by C. fornicata in the form of biologically relevant fishery policy and the management of suitable recruitment substrate these native oyster populations could be lost.

RevDate: 2019-03-07

Lu-Irving P, Harenčár JG, Sounart H, et al (2019)

Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria.

mSphere, 4(2): pii:4/2/e00088-19.

Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.

RevDate: 2019-03-07
CmpDate: 2019-03-07

Ibañez-Justicia A, Poortvliet PM, CJM Koenraadt (2019)

Evaluating perceptions of risk in mosquito experts and identifying undocumented pathways for the introduction of invasive mosquito species into Europe.

Medical and veterinary entomology, 33(1):78-88.

In several reported cases of the entry of invasive mosquito species (IMSs) into Europe, the introduction was associated with a specific pathway of introduction or dispersal. The identification of potential pathways for the introduction of IMSs and evaluations of the importance of the different pathways are key to designing proper surveillance strategies to promptly detect and control introductions in non-infested areas. The main goals of the present study were to identify other, previously undocumented, pathways of introduction into Europe, and to identify mosquito experts' perceptions regarding control measures against IMS introductions via different documented pathways. At the European Mosquito Control Association (EMCA) conference in Montenegro in March 2017, a questionnaire was distributed among meeting participants to collect expert data. Results showed that ground transportation (by cars, trucks, etc.), passive natural dispersal and the shipping of used tyres are perceived as the most likely pathways. Introduction via aircraft did not appear to be well known and was not perceived as probable. This study shows that there were no pathways unknown to European experts that could lead to cryptic introductions into the experts' countries. Furthermore, the findings demonstrated that the perceived efficacy of surveillance and control is key to overcoming the constraints experienced and to supporting the implementation of actions against introductions.

RevDate: 2019-03-07
CmpDate: 2019-03-07

Klobučar A, Lipovac I, Žagar N, et al (2019)

First record and spreading of the invasive mosquito Aedes japonicus japonicus (Theobald, 1901) in Croatia.

Medical and veterinary entomology, 33(1):171-176.

Aedes (Hulecoeteomyia) japonicus japonicus (Theobald, 1901) has recently established across North America and Central Europe. A 3-year survey was conducted in northwestern Croatian regions from 2013 to 2015 using mosquito ovitraps at possible points of entry and house yards, occasionally complemented by larval collections from cemetery vases. In the first year, the survey investigated the county bordering Slovenia, where the first detection of Ae. j. japonicus had taken place on 28 August 2013. During the next 2 years, Ae. j. japonicus was detected in this area from early May until late October. In 2015, several counties further to the east were included in the survey, leading to the detection of Ae. j. japonicus approximately 100 km eastward from the initially surveyed region. Given a moderate continental climate and homogeneous climatic conditions in this part of Europe, the eastward spread of Ae. j. japonicus can be expected to continue.

RevDate: 2019-03-06

Liang W, Tran L, Wiggins GJ, et al (2019)

Determining Spread Rate of Kudzu Bug (Hemiptera: Plataspidae) and Its Associations With Environmental Factors in a Heterogeneous Landscape.

Environmental entomology pii:5370310 [Epub ahead of print].

By the end of 2017, kudzu bug was reported in 652 counties in the United States since it was first observed in Georgia in 2009. Modeling its invasion dynamics is valuable to guide management through early detection and prevention of further invasion. Herein, we initially estimated the spread rate of kudzu bug with county-level invasion records and then determined important spatial factors affecting its spread during years 2010-2016. As kudzu bug infests a large heterogeneous area and shows asymmetric spread, we first utilized spatially constrained clustering (SCC), an unsupervised machine learning method, to divide the infested area into eight spatially contiguous and environmentally homogenous neighborhoods. We then used distance regression and boundary displacement methods to estimate the spread rates in all neighborhoods. Finally, we applied multiple regression to determine spatial factors influencing the spread of kudzu bug. The average spread rate reached 76 km/yr by boundary displacement method; however, the rate varied largely among eight neighborhoods (45-144 km/yr). In the southern region of the infested area, host plant density and wind speed were positively associated with the spread rate, whereas mean annual temperature, precipitation in the fall, and elevation had inverse relationships. In the northern region, January minimum temperature, wind speed, and human population density showed positive relationships. This study increases the knowledge on the spread dynamics of kudzu bug. Our research highlights the utility of SCC to determine natural clustering in a large heterogeneous region for better modeling of local spread patterns and determining important factors affecting the invasions.

RevDate: 2019-03-06

Bridi R, Atala E, Pizarro PN, et al (2019)

Honeybee Pollen Load: Phenolic Composition and Antimicrobial Activity and Antioxidant Capacity.

Journal of natural products [Epub ahead of print].

Honeybee pollen loads result from the agglutination of pollen grains and salivary secretions of bees. The potential use of honeybee pollen as a food supplement greatly depends on its chemical composition, which varies depending on the botanical and geographical origin of the pollen grains. This study aimed to characterize the botanical origin, chemical composition, and antioxidant and antibacterial activities of honeybee pollen from the V Region of Chile. The introduced species Brassica rapa and Eschscholzia californica predominated in the bee pollen analyzed. The honeybee pollen extracts showed antioxidant and antibacterial properties, specifically against the pathogenic microorganism Streptococcus pyogenes. Quercetin and myricetin were found in all samples in large concentrations. The separation of pollen loads from a multifloral sample demonstrated that E. californica pollen loads are responsible for antibacterial activity. This sample also showed a high concentration of quercetin (304.8 mg/100 g of bee pollen). Based on the present results, honeybee pollen from the V Region of Chile has been found to exhibit antioxidant and antimicrobial activities. Furthermore, it is proposed to use quercetin as a quality indicator for honeybee pollen from this region of Chile. These results should help establish better quality control criteria for Chilean honeybee pollen and its potential use as a functional ingredient.

RevDate: 2019-03-06

Levin SC, Crandall RM, TM Knight (2019)

Population projection models for 14 alien plant species in the presence and absence of above-ground competition.

Ecology [Epub ahead of print].

Plant population ecologists strive to understand how environmental drivers influence demographic vital rates and thus population dynamics. Hundreds of studies have collected demographic data and used matrix- and/or integral projection models to quantify lifetime fitness and population dynamics of plants. However, most of these studies have focused on native plant species, and there is a need for more studies on alien plants. Further, few studies on alien plants have experimentally manipulated environmental drivers in order to understand the mechanisms that allow alien plant species to have positive population growth. A synthetic understanding of the population dynamics of alien plant species will only be achieved if ecologists collect demographic data on many plant species and environments and provide the demographic data and model structure in a data archive for future comparisons and meta-analyses. Invasive alien species are a social, economic and ecological issue that has become increasingly important in an increasingly globalized world. Researchers continue to forecast impacts and prevent new introductions by seeking a robust understanding of drivers of invasive species success and failure. Researchers have hypothesized that competitive differences may play a key role in determining alien species success in novel environments. Studies that experimentally manipulate competitors while quantifying demography provide mechanistic insight into species' responses to competition. To date, nearly all field manipulations of competition that measure plant demography and population dynamics have focused on native plant species. The data we provide here aims to address this gap in our knowledge for alien plant species. We present raw data and population projection models for 14 alien plant species in eastern Missouri, USA. We sampled under ambient conditions and with all individuals of non-focal species removed from the community, allowing us to project population dynamics in the presence and absence of competition. We have also included the data quantifying how much biomass we removed at the plot level during each removal procedure and data from our germination experiment. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Zhao B, Xue S, Zhu W, et al (2019)

Development of microsatellite markers for the Siberian weasel Mustela sibirica.

Genes & genetic systems, 93(6):255-258.

The Siberian weasel (Mustela sibirica) is widely distributed in mainland Asia, but its introduction into Japan and subsequent expansion have affected the Japanese weasel (M. itatsi). To provide a useful tool for population genetic studies and control of M. sibirica, we developed 10 polymorphic microsatellite markers. Among 40 individuals of M. sibirica collected in Hubei Province, China, the number of alleles per locus varied from 2 to 19, with the observed heterozygosity ranging from 0.050 to 1.000 and the expected heterozygosity ranging from 0.049 to 0.920. None of the loci deviated from Hardy-Weinberg equilibrium. These markers will be useful in further studies investigating the population structure and natural history of M. sibirica, and may thus provide new insights for the efficient management of this species.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Keeling MJ, Franklin DN, Datta S, et al (2017)

Predicting the spread of the Asian hornet (Vespa velutina) following its incursion into Great Britain.

Scientific reports, 7(1):6240.

The yellow-legged or Asian hornet (Vespa velutina) is native to South-East Asia, and is a voracious predator of pollinating insects including honey bees. Since its accidental introduction into South-Western France in 2004, V. velutina has spread to much of western Europe. The presence of V. velutina in Great Britain was first confirmed in September 2016. The likely dynamics following an initial incursion are uncertain, especially the risk of continued spread, and the likely success of control measures. Here we extrapolate from the situation in France to quantify the potential invasion of V. velutina in Great Britain. We find that, without control, V. velutina could colonise the British mainland rapidly, depending upon how the Asian hornet responds to the colder climate in Britain compared to France. The announcement that a second hornet had been discovered in Somerset, increases the chance that the invasion first occurred before 2016. We therefore consider the likely site of first invasion and the probabilistic position of additional founding nests in late 2016 and early 2017. Given the potential dispersion of V. velutina, we conclude that vigilance is required over a large area to prevent the establishment of this threat to the pollinator population.

RevDate: 2019-03-04

Molina CV, Heinemann MB, Kierulff C, et al (2019)

Leptospira spp., rotavirus, norovirus, and hepatitis E virus surveillance in a wild invasive golden-headed lion tamarin (Leontopithecus chrysomelas; Kuhl, 1820) population from an urban park in Niterói, Rio de Janeiro, Brazil.

American journal of primatology [Epub ahead of print].

The world currently faces severe biodiversity losses caused by anthropogenic activities such as deforestation, pollution, the introduction of exotic species, habitat fragmentation, and climate changes. Disease ecology in altered environments is still poorly understood. The golden-headed lion tamarin (GHLT, Leontopithecus chrysomelas) is an endangered species that became invasive in an urban park in Niterói, Rio de Janeiro, Brazil. The initially few invasive GHLT individuals became hundreds, adapted to living in proximity to humans and domestic animals. These GHLTs were captured as part of a conservation project; some animals were translocated to Bahia and some were kept in captivity. This study tested 593 GHLT for Leptospira serology; 100 and 95 GHLT for polymerase chain reaction (PCR) toLeptospira and hepatitis E virus genotype 3 (HEV-3), respectively, and 101 familiar groups for PCR to viruses (rotavirus A, norovirus GI and GII, and HEV-3). One animal had antibodies for Leptospira serovar Shermani and another for serovar Hebdomadis. One saprophyticLeptospira was found by the 16S PCR and sequencing. Viruses were not detected in samples tested. Findings suggest that the epidemiological importance of such pathogens in this GHLT population is either low or nonexistent. These data are important to understand the local disease ecology, as well as monitoring a translocation project, and to contribute data for species conservation.

RevDate: 2019-03-04

DeLong JP, J Belmaker (2019)

Ecological pleiotropy and indirect effects alter the potential for evolutionary rescue.

Evolutionary applications, 12(3):636-654 pii:EVA12745.

Invading predators can negatively affect naïve prey populations due to a lack of evolved defenses. Many species therefore may be at risk of extinction due to overexploitation by exotic predators. Yet the strong selective effect of predation might drive evolution of imperiled prey toward more resistant forms, potentially allowing the prey to persist. We evaluated the potential for evolutionary rescue in an imperiled prey using Gillespie eco-evolutionary models (GEMs). We focused on a system parameterized for protists where changes in prey body size may influence intrinsic rate of population growth, space clearance rate (initial slope of the functional response), and the energetic benefit to predators. Our results show that the likelihood of rescue depends on (a) whether multiple parameters connected to the same evolving trait (i.e., ecological pleiotropy) combine to magnify selection, (b) whether the evolving trait causes negative indirect effects on the predator population by altering the energy gain per prey, (c) whether heritable trait variation is sufficient to foster rapid evolution, and (d) whether prey abundances are stable enough to avoid very rapid extinction. We also show that when evolution fosters rescue by increasing the prey equilibrium abundance, invasive predator populations also can be rescued, potentially leading to additional negative effects on other species. Thus, ecological pleiotropy, indirect effects, and system dynamics may be important factors influencing the potential for evolutionary rescue for both imperiled prey and invading predators. These results suggest that bolstering trait variation may be key to fostering evolutionary rescue, but also that the myriad direct and indirect effects of trait change could either make rescue outcomes unpredictable or, if they occur, cause rescue to have side effects such as bolstering the populations of invasive species.

RevDate: 2019-03-04

Senn HV, Ghazali M, Kaden J, et al (2019)

Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration.

Evolutionary applications, 12(3):399-414 pii:EVA12720.

The degree of introgressive hybridization between the Scottish wildcat and domestic cat has long been suspected to be advanced. Here, we use a 35-SNP-marker test, designed to assess hybridization between wildcat and domestic cat populations in Scotland, to assess a database of 295 wild-living and captive cat samples, and test the assumptions of the test using 3,097 SNP markers generated independently in a subset of the data using ddRAD. We discovered that despite increased genetic resolution provided by these methods, wild-living cats in Scotland show a complete genetic continuum or hybrid swarm structure when judged against reference data. The historical population of wildcats, although hybridized, clearly groups at one end of this continuum, as does the captive population of wildcats. The interpretation of pelage scores against nuclear genetic data continues to be problematic. This is probably because of a breakdown in linkage equilibrium between wildcat pelage genes as the two populations have become increasingly mixed, meaning that pelage score or SNP score alone is poor diagnostic predictors of hybrid status. Until better tools become available, both should be used jointly, where possible, when making management decisions about individual cats. We recommend that the conservation community in Scotland must now define clearly what measures are to be used to diagnose a wildcat in the wild in Scotland, if future conservation action is to be effective.

RevDate: 2019-03-04

Scapin P, Ulbano M, Ruggiero C, et al (2019)

Surgical sterilization of male and female grey squirrels (Sciurus carolinensis) of an urban population introduced in Italy.

The Journal of veterinary medical science [Epub ahead of print].

We report a successful surgical sterilization procedure for population control of 324 male and female free-ranging grey squirrels (Sciurus carolinensis) in Genoa (Italy). We describe the clinical procedure from the trapping of the animals to their surgical sterilization and release in another part of the city. Live-trapped squirrels were transported to the veterinary clinic within 1-2 hr of capture and maintained in a hospitalization room reserved for them. The waiting period before surgery was kept below 12 hr. The developed procedure has resulted in a survival of 94% of trapped squirrels from surgery to animal release. Sterilized squirrels started to feed in a very short time (1.0-1.5 hr), and after 2-3 days, it was possible to release them in a new area. Amoxicillin was used as a long-acting postoperative antibiotic to reduce the period of captivity. The successful surgical procedure described here can provide an important additional tool for the management of introduced populations of squirrels. We showed that the surgical sterilization of some hundred squirrels is clinically possible and could be included in management strategies aimed at removing critical populations of these species. Moreover, the data allow dosages and operational times in order to provide economic viability assessment of future population control measures.

RevDate: 2019-03-04

Joyce PWS, Dickey JWE, Cuthbert RN, et al (2019)

Using functional responses and prey switching to quantify invasion success of the Pacific oyster, Crassostrea gigas.

Marine environmental research pii:S0141-1136(19)30022-4 [Epub ahead of print].

Invasive alien species continue to proliferate and cause severe ecological impacts. Functional responses (FRs) have shown excellent utility in predicting invasive predator success, however, their use in predicting invasive prey success is limited. Here, we assessed invader success by quantifying FRs and prey switching patterns of two native predators, the common sea star, Asterias rubens, and the green crab, Carcinus maenas, towards native blue mussels, Mytilus edulis, and invasive Pacific oysters, Crassostrea gigas. Asterias displayed destabilising type II FRs, whereas Carcinus displayed stabilising type III FRs towards both prey species. Both predators exhibited greater search efficiencies and maximum feeding rates towards native compared to invasive prey. Both predators disproportionately consumed native mussels over invasive oysters when presented simultaneously, even when native mussels were rare in the environment, therefore indicating negligible prey switching. We demonstrate that invasion success may be mediated through differential levels of biotic resistance exerted by native predators.

RevDate: 2019-03-04
CmpDate: 2019-03-04

Whitehead ABR, Butcher GD, Walden HS, et al (2018)

Burden of exposure to infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus, Mycoplasma gallisepticum, and intestinal parasites in introduced broiler chickens on the Galapagos.

PloS one, 13(9):e0203658.

Diseases in introduced broilers can possibly spill over to wild birds on the Galapagos. Knowledge about the current burden of exposure to pathogens in broilers on the Galapagos is very limited. The objective of the study reported here was to measure the burden of exposure to infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), Mycoplasma gallisepticum (MG), and intestinal parasites in a sample of broiler chickens on 13 farms on Santa Cruz Island and San Cristobal Island in July 2017. Blood serum samples were tested for detection of antibodies to IBDV, IBV, NDV, and MG by using an IDEXX Enzyme-linked Immunosorbent Assay. In addition, fecal samples and pen bedding environmental samples were processed and analyzed for diagnosis of intestinal parasite eggs under a compound light microscope. The frequency of seropositive broilers to IBDV was 74/130 or 56% (95% CI = 48, 65%), to IBV was 27/130 or 20% (14, 28%), and to NDV was 1/130 or 0.7% (0.1, 4%). All broilers tested negative to MG antibodies. Eimeria spp. infection was common in study broilers. Finally, we observed interaction between broiler chickens and wild birds (finches) inside broiler pens, as well as the presence of backyard chickens inside property limits of study farms. This study produced evidence that exposure to IBDV, IBV, and intestinal parasites in broilers on Santa Cruz Island and San Cristobal Island is important. Study results are relevant because (i) they provide new baseline data on the burden of exposure to avian pathogens in broiler farms, (ii) justify the need to verify standard operating procedures in hatcheries that supply (non-vaccinated) day-old chicks to the Galapagos and (iii) to implement enhanced biosecurity standards on broiler chicken farms to mitigate risk of disease transmission between broilers, backyard poultry, and wild birds on the Galapagos.

RevDate: 2019-03-04
CmpDate: 2019-03-04

Zhang L, Wang S, Liu S, et al (2018)

Perennial forb invasions alter greenhouse gas balance between ecosystem and atmosphere in an annual grassland in China.

The Science of the total environment, 642:781-788.

Grassland ecosystems are sensitive to invasions by plants from other functional groups which can alter soil greenhouse gas (GHG) fluxes. However, the effects of plant invasion on net GHG exchanges between soils and the atmosphere, plant production, and global warming potential (GWP) of annual grasslands is poorly understood. To evaluate the impacts of perennial forb invasions on GHG budgets of an annual grassland in China, we measured soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes over two years in replicated invaded (dominated by Alternanthera philoxeroides or Solidago canadensis) and non-invaded (dominated by the annual grass Eragrostis pilosa or the annual forb Sesbania cannabina) field sites. On average, soil CO2 and N2O emissions from invaded sites were 30% and 76% higher, respectively, relative to sites dominated by native species. Emissions of N2O and CO2 were especially high in Solidago and Alternanthera dominated sites, respectively. Soil CH4 emissions did not vary with plant species. On average, total biomass C of invaded sites was higher than that of the native dominated sites but this reflected the high C in Solidago dominated sites. Global warming potential (GWP) was increased by Alternanthera invasions and decreased by Solidago invasions. Plant invasions affected GWP of these annual grasslands through higher emissions of some GHGs but also sometimes higher biomass C. Together, this suggests that perennial forb invasions could change the net source or sink role of annual grasslands for GHG budgets, but the effects on GWP vary among species depending on GHG responses and C storage.

RevDate: 2019-03-04
CmpDate: 2019-03-04

De Jong GL, NL Fowler (2018)

Duration of propagule pressure affects non-native plant species abundances.

American journal of botany, 105(2):197-206.

PREMISE OF THE STUDY: Invasions by non-native species are known to be related to present propagule pressure (e.g., the number of non-native seeds arriving in a site each year). However, previous studies have mostly ignored the potential effects of the length of time that a site has experienced propagule pressure. This study is novel in studying past as well as present propagule pressure and in demonstrating the importance of past propagule pressure.

METHODS: We tested the importance of past and present propagule pressure in three plant communities in central Texas to quantify relationships between variables representing past and present propagule pressure, other environmental variables, and the abundance of non-native and native woody plant species.

KEY RESULTS: Duration of propagule pressure predicted non-native species richness. Sites had greater non-native species richness if they were nearer to development (houses, roads) and if nearby development was older. While mesic woodlands had the most native species, streamside woodlands had the most non-native species.

CONCLUSIONS: First, future studies of non-native invasions would benefit from including past as well as present propagule pressure. If past propagule pressure is not considered, its effects may be wrongly ascribed to present propagule pressure. Second, the non-native species in this study are widely used in landscaping, and development age reflects the years that landscaping has been present nearby. As xeriscaping becomes more common, streamside woodlands may someday not have the highest non-native species richness: the new drought-tolerant landscaping plants may be better invaders of drier sites than their predecessors.

RevDate: 2019-03-02

Hill JH, Alleman R, Hogg DB, et al (2001)

First Report of Transmission of Soybean mosaic virus and Alfalfa mosaic virus by Aphis glycines in the New World.

Plant disease, 85(5):561.

The recent discovery of the soybean aphid, Aphis glycines Matsamura, in the North Central region of the United States is significant because it is the first time that a soybean-colonizing aphid has been detected in the New World. Although the aphid has the potential to cause physiological loss of up to 52% on soybeans (4), it can also transmit Soybean mosaic virus (SMV). Transmission of Alfalfa mosaic virus (AMV) has not been reported. SMV, and less commonly AMV, are found in soybeans in the North Central states and are transmitted by numerous aphids in a nonpersistent manner (2; Grau, unpublished). For SMV, potential exists for specificity of transmission between virus strain and aphid species (3). For these reasons, it was important to determine if an endemic isolate of these viruses could be transmitted by this introduced species of aphid in the North Central region. Transmission experiments were conducted as described (3), using 3, 5, and 10 aphids per plant. Ten plants of the soybean cultivar Williams 82 were used for each treatment. To preclude confounding results by possible seed transmission, plants used in all tests were grown from seeds harvested from virus-indexed plants grown in the greenhouse. For experiments involving SMV, the aphid-transmissible field isolate Al5 (GeneBank Accession no. AF242844) and, as a negative control, the non-aphid transmissible isolate N (GeneBank Accession no. D500507) were used. For experiments involving AMV, a field isolate of AMV, confirmed by ELISA and host range, was used. The aphid species Myzus persicae was maintained on broad bean and A. glycines was maintained on virus-free soybean. The protocol for transmission studies of AMV was identical to that used in the SMV study, except only A. glycines was tested. For experiments, plants were periodically observed for symptom development and tested by ELISA 4 to 5 weeks after inoculation access. No transmission of SMV-N occurred in any tests, which together involved 180 aphids each of M. persicae or A. glycines. For the Al5 isolate, transmission efficiencies of 30, 50, and 50% were obtained with 3, 5, and 10 individuals, respectively, of M. persicae per plant. Efficiencies for A. glycines were 30, 40, and 40%. Transmission levels by the two aphid species did not differ significantly (t-test, P = 0.01). For AMV, corresponding transmission efficiencies were 0, 0, and 20%. The data suggest that the introduced A. glycines can be an efficient vector of SMV, but a less efficient vector of AMV, in the North Central region. Transmission of AMV by M. persicae has been documented (1) but was not examined in this study. Transmission of SMV and AMV by A. glycines is of concern because it may increase SMV and AMV incidence. With the recent outbreak of Bean pod mottle virus (BPMV) in the region, the potential for synergism of SMV and BPMV is increased (2). References: (1) M. B. Castillo and G. G. Orlob. Phytopathology 56:1028, 1966. (2) G. L. Hartman et al., eds. 1999. Compendium of Soybean Diseases, 4th Ed. American Phytopathological Society, St. Paul, MN. (3) B. S. Lucas and J. H. Hill. Phytopathol. Z. 99:47, 1980. (4) C. L. Wang et al. Plant Prot. 20:12, 1994.

RevDate: 2019-03-02

Grady MJ, Harper EE, Carlisle KM, et al (2019)

Assessing public support for restrictions on transport of invasive wild pigs (Sus scrofa) in the United States.

Journal of environmental management, 237:488-494 pii:S0301-4797(19)30267-1 [Epub ahead of print].

Wild pigs (Sus scrofa) are a non-native invasive species in the United States that cause significant economic loss, transmit disease, and inflict damage upon natural resources, agriculture, livestock, and property. Geographic distribution of wild pigs in the United States has nearly tripled since 1982, with anthropogenic influences playing a significant role in the expansion. In this regard, there is speculation that a driver of the expansion may be human-mediated movement of wild pigs to new areas for the purpose of sport hunting. In response, states have implemented a variety of wild pig control policies, including legal restrictions on their transport. The success of such policies depends, in part, on their level of public support, which in turn may be influenced by individuals' attitudes concerning wild pigs, their interest in maintaining wild pig populations (e.g., for sport hunting), and their knowledge and awareness of the threats wild pigs pose. Multiple regression was used to analyze data collected from a nationwide survey concerning attitudes toward wild pigs and policies that restrict their transport. Results indicate that a majority of individuals in the United States have negative attitudes toward wild pigs and support policies that restrict their transport and penalize transgressors. Consistent with other invasive species research, findings suggest that as knowledge and awareness of wild pigs increase, so too does support for policies restricting and penalizing transport of wild pigs. Contrary to previous studies, this research also finds that hunters are more likely to support restrictions on wild pig transport than are non-hunters. Overall, these findings suggest that legal restrictions on the transport of wild pigs, even in states with large hunter populations, enjoy broad public support and may help to curb the expansion of wild pig populations.

RevDate: 2019-03-02

Valan M, Makonyi K, Maki A, et al (2019)

Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks.

Systematic biology pii:5368535 [Epub ahead of print].

Rapid and reliable identification of insects is important in many contexts, from the detection of disease vectors and invasive species to the sorting of material from biodiversity inventories. Because of the shortage of adequate expertise, there has long been an interest in developing automated systems for this task. Previous attempts have been based on laborious and complex handcrafted extraction of image features, but in recent years it has been shown that sophisticated convolutional neural networks (CNNs) can learn to extract relevant features automatically, without human intervention. Unfortunately, reaching expert-level accuracy in CNN identifications requires substantial computational power and huge training datasets, which are often not available for taxonomic tasks. This can be addressed using feature transfer: a CNN that has been pretrained on a generic image classification task is exposed to the taxonomic images of interest, and information about its perception of those images is used in training a simpler, dedicated identification system. Here, we develop an effective method of CNN feature transfer, which achieves expert-level accuracy in taxonomic identification of insects with training sets of 100 images or less per category, depending on the nature of dataset. Specifically, we extract rich representations of intermediate to high-level image features from the CNN architecture VGG16 pretrained on the ImageNet dataset. This information is submitted to a linear support vector machine classifier, which is trained on the target problem. We tested the performance of our approach on two types of challenging taxonomic tasks: (1) identifying insects to higher groups when they are likely to belong to subgroups that have not been seen previously; and (2) identifying visually similar species that are difficult to separate even for experts. For the first task, our approach reached > 92 % accuracy on one dataset (884 face images of 11 families of Diptera, all specimens representing unique species), and > 96 % accuracy on another (2936 dorsal habitus images of 14 families of Coleoptera, over 90 % of specimens belonging to unique species). For the second task, our approach outperformed a leading taxonomic expert on one dataset (339 images of three species of the Coleoptera genus Oxythyrea; 97 % accuracy), and both humans and traditional automated identification systems on another dataset (3845 images of nine species of Plecoptera larvae; 98.6 % accuracy). Reanalyzing several biological image identification tasks studied in the recent literature, we show that our approach is broadly applicable and provides significant improvements over previous methods, whether based on dedicated CNNs, CNN feature transfer, or more traditional techniques. Thus, our method, which is easy to apply, can be highly successful in developing automated taxonomic identification systems even when training datasets are small and computational budgets limited. We conclude by briefly discussing some promising CNN-based research directions in morphological systematics opened up by the success of these techniques in providing accurate diagnostic tools.

RevDate: 2019-03-02

Evangelista C, Olden JD, Lecerf A, et al (2019)

Scale-dependent patterns of intraspecific trait variations in two globally invasive species.

Oecologia pii:10.1007/s00442-019-04374-4 [Epub ahead of print].

Animal species often show substantial intraspecific trait variability (ITV), yet evidence for its flexibility across multiple ecological scales remains poorly explored. Gaining this knowledge is essential to better understand the different processes maintaining ITV in nature. Due to their broad geographic ranges, widespread invasive species are expected to display strong phenotypic variations across their distribution. Here, we quantified the scale-dependent patterns of morphological variability among invasive populations of two global freshwater invaders-red swamp crayfish Procambarus clarkii and pumpkinseed sunfish Lepomis gibbosus-both established in American and European lakes. We quantified patterns in body morphology across different ecological (Individual and Population) and spatial scales (Region). We then analyzed the scale-dependency of morphological variations among lake populations that span a diversity of abiotic and biotic conditions. Next, we used stable isotope analyses to test the existence of ecomorphological patterns linking morphology and trophic niche of individuals. We found that trait variations mainly accounted for at the regional and individual levels. We showed that populations of both species strongly differed between United States and Europe whereas habitat characteristics had a relatively minor influence on morphological variations. Stable isotope analyses also revealed that ecomorphological pattern for the trophic position of L. gibbosus was region-dependent, whereas no ecomorphological patterns were observed for P. clarkii. Overall, our study strongly supports the notion that the patterns of phenotypic variability among invasive populations are likely to modulate the ecological impacts of invasive species on recipient ecosystems.

RevDate: 2019-03-01

Gibson SD, Liczner AR, SR Colla (2019)

Conservation Conundrum: At-risk Bumble Bees (Bombus spp.) Show Preference for Invasive Tufted Vetch (Vicia cracca) While Foraging in Protected Areas.

Journal of insect science (Online), 19(2):.

In recent decades, some bumble bee species have declined, including in North America. Declines have been reported in species of bumble bees historically present in Ontario, including: yellow bumble bee (Bombus fervidus) (Fabricus, 1798), American bumble bee (Bombus pensylvanicus) (DeGeer, 1773), and yellow-banded bumble bee (Bombus terricola) (Kirby, 1837). Threats contributing to bumble bee population declines include: land-use changes, habitat loss, climate change, pathogen spillover, and pesticide use. A response to the need for action on pollinator preservation in North America has been to encourage 'bee-friendly' plantings. Previous studies show differences in common and at-risk bumble bee foraging; however, similar data are unavailable for Ontario. Our research question is whether there is a difference in co-occurring at-risk and common bumble bee (Bombus spp.) floral use (including nectar and pollen collection) in protected areas in southern Ontario. We hypothesize that common and at-risk species forage differently, predicting that at-risk species forage on a limited selection of host plants. We conducted a field survey of sites in southern Ontario, using observational methods to determine bumble bee foraging by species. The results of a redundancy analysis show a difference in foraging between common and at-risk bumblebee species. At-risk bumble bee species show a preference for foraging on invasive, naturalized Vicia cracca (tufted vetch). This finding raises the question of how to preserve or provide forage for at-risk bumble bees, when they show an association with an invasive species often subject to control in protected areas.

RevDate: 2019-03-01

Bytheway JP, PB Banks (2019)

Overcoming prey naiveté: free-living marsupials develop recognition and effective behavioral responses to alien predators in Australia.

Global change biology [Epub ahead of print].

Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multi-level naiveté framework suggests that animals can progress through levels of naiveté towards predator awareness. Alternatively, native prey may be pre-adapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free-living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate anti-predator behavior towards fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time-frame, driven by experience with predators, thus supporting the multi-level naiveté framework. This article is protected by copyright. All rights reserved.

RevDate: 2019-02-28

Marshall D, Work TT, JF Cavey (2003)

Invasion Pathways of Karnal Bunt of Wheat into the United States.

Plant disease, 87(8):999-1003.

Karnal bunt of wheat (caused by Tilletia indica) was first detected in the United States in Arizona in 1996. The seed lots of infected, spring-habit, durum wheat associated with the initial detection were traced to planted fields in California, Arizona, New Mexico, and Texas. However, in the summer of 1997, the disease appeared in unrelated, winter-habit, bread wheat located over 700 km from the nearest potentially contaminated wheat from 1996 (and destroyed prior to reinfection). Here, we examined potential invasion pathways of the fungus associated with the movement of wheat into the United States. We analyzed the USDA/APHIS Port Information Network (PIN) database from 1984 through 2000 to determine likely pathways of introduction based on where, when, and how the disease was intercepted coming into the United States. All interceptions were made on wheat transported from Mexico, with the majority (98.8%) being intercepted at land border crossings. Karnal bunt was not intercepted from any other country over the 17-year period analyzed. Most interceptions were on wheat found in automobiles, trucks, and railway cars. The majority of interceptions were made at Laredo, Brownsville, Eagle Pass, and El Paso, TX, and Nogales, AZ. Karnal bunt was intercepted in all 17 years; however, interceptions peaked in 1986 and 1987. Averaged over all years, more interceptions (19.2%) were made in the month of May than in any other month. Our results indicate that Karnal bunt has probably arrived in the United States on many occasions, at least since 1984. Because of the relatively unaggressive nature of the disease and its reliance on rather exacting weather conditions for infection, we surmised that it is possible this disease has a long period of latent survival between initial arrival and becoming a thriving, established disease.

RevDate: 2019-02-28

Newcombe G, C Nischwitz (2004)

First Report of Powdery Mildew Caused by Erysiphe cichoracearum on Creeping Thistle (Cirsium arvense) in North America.

Plant disease, 88(3):312.

Creeping or Canada thistle (Cirsium arvense (L.) Scop.) is a perennial weed of Eurasian origin that arrived in North America as early as the 1700s (3). Spreading by seeds and rhizomes, it is now widely distributed in Canada, Alaska, and 40 other states. It is apparently absent from Texas, Oklahoma, Louisiana, Mississippi, Alabama, Georgia, Florida, and South Carolina (1). Powdery mildew is common on C. arvense in Europe, but it has never been observed in North America (4). In Europe and Asia, powdery mildew of C. arvense is caused by any one of the following fungi: Leveillula taurica, two species of Sphaerotheca, and varieties of Erysiphe cichoracearum and E. mayorii. Specimens of C. arvense infected with powdery mildew (deposited in the U.S. National Fungus Collections as BPI 843471) were collected in the fall of 2003 near Moscow, ID and in two areas in Oregon (the canyon of the Grande Ronde River and near the base of the Wallowa Mountains). Mycelium and cleistothecia were observed on stems and upper and lower surfaces of leaves. The mean diameter of the cleistothecia was 122 (±11.6) μm. Basally inserted, mycelioid appendages were hyaline or brown and varied considerably in length, but most were in the range of 80 to 120 μm. Asci averaged 58 (±5.5) μm × 35 (±4.1) μm in length and width, respectively. Each ascus bore two ascospores averaging 23 (±1.4) μm × 14 (±1.7) μm. Conidia averaged 30 (±3.0) μm × 14 (±0.8) μm. The specimens fit the description of E. cichoracearum DC. (2). Because the length/breadth ratio of conidia is greater than 2, the specimens could be further diagnosed as E. cichoracearum var. cichoracearum (2). Also noteworthy was the presence of the hyperparasitic Ampelomyces quisqualis Ces. ex Schlechtend. E. cichoracearum is thought to be a cosmopolitan powdery mildew of broad host range, but this concept is difficult to reconcile with the absence of mildew on North American populations of C. arvense for more than 200 years. References: (1) Anonymous. USDA Natural Resources Conservation Service Plants Profile for Cirsium arvense. On-line publication, 2003. (2) U. Braun. A monograph of the Erysiphales (powdery mildews), J. Cramer, Berlin-Stuttgart, 1987. (3) G. Cox. Alien Species in North America and Hawaii, Island Press, Washington, D.C., 1999. (4) D. F. Farr et al. Fungal Databases, Systematic Botany and Mycology Laboratory, ARS, USDA. On-line publication, 2003.

RevDate: 2019-02-28

Gibson LM, Mychajliw AM, Leon Y, et al (2019)

Using the past to contextualize anthropogenic impacts on the present and future distribution of an endemic Caribbean mammal.

Conservation biology : the journal of the Society for Conservation Biology [Epub ahead of print].

Island species are difficult to conserve because they face the synergy of climate change, invasive species, deforestation, and increasing human population densities in areas where land mass is shrinking. The Caribbean island of Hispaniola presents particular challenges because of geopolitical complexities that span 2 countries and hinder coordinated management of species across the island. We employed species distribution modeling to evaluate the impacts of climatic change and anthropogenic activities on the distribution of an endemic mammal of conservation concern, the Hispaniolan solenodon (Solenodon paradoxus). We aggregated occurrence points for this poorly known species for the Last Glacial Maximum (LGM) and the present (1975-2016) based on museum collections, online biodiversity databases, and new field surveys. We quantified degree of overlap between periods and scenarios with Schoener's D. Through a conservation paleobiology lens, we found that over time humans played an increasing role in shaping the distribution of S. paradoxus, thus, providing a foundation for developing conservation strategies on appropriate spatiotemporal scales. Human population density was the single most important predictor of S. paradoxus occurrence. Densities >166 people/km2 corresponded to a near-zero probability of occurrence. Models that accounted for climate but not anthropogenic variables falsely identified suitable habitat in Haiti, where on-the-ground surveys confirm habitat is unavailable. Climate-only models also significantly overestimated the potential for habitat connectivity between isolated populations. Our work highlights that alternative fates for S. paradoxus in the Anthropocene exist across the political border between the Dominican Republic and Haiti due to the fundamentally different economic and political realities of each country. Relationships in the fossil record confirm that Hispaniola's sociopolitical boundary is not biologically significant but instead represents one imposed on the island's fauna in the past 500 years by colonial activity. Our approach reveals how a paleontological perspective can contribute to concrete management insights.

RevDate: 2019-02-28

Hirsch H, Castillo ML, Impson FAC, et al (2019)

Ghosts from the past: even comprehensive sampling of the native range may not be enough to unravel the introduction history of invasive species-the case of Acacia dealbata invasions in South Africa.

American journal of botany [Epub ahead of print].

PREMISE OF THE STUDY: Knowledge about the introduction history (source(s), number and size of introduction events) of an invasive species is a crucial prerequisite to understand invasion success and to facilitate effective and sustainable management approaches, especially for effective biological control. We investigated the introduction history of the Australian legume tree Acacia dealbata in South Africa. Results of this study will not only provide critical information for the management of this species in South Africa, but will also broaden our overall knowledge on the invasion ecology of this globally important invasive tree.

METHODS: We used nuclear microsatellite markers to compare the genetic diversity and structure between 42 native Australian and 18 invasive South African populations and to test different and competing introduction scenarios using Approximate Bayesian Computation analyses.

KEY RESULTS: Australian populations were characterized by two distinct genetic clusters, while South African populations lacked any clear genetic structure and showed significantly lower levels of genetic diversity compared to native range populations. South African populations were also genetically divergent from native populations and the most likely introduction scenario indicated an unknown source population.

CONCLUSIONS: Although we cannot definitely prove the cause of the observed genetic novelty/diversification in South African Acacia dealbata populations, it cannot be attributable to insufficient sampling of native populations. Our study highlights the complexity of unravelling the introduction histories of commercially important alien species.

RevDate: 2019-02-28

Král J, Forman M, Kořínková T, et al (2019)

Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes.

Scientific reports, 9(1):3001 pii:10.1038/s41598-019-39034-3.

Spiders are an ancient and extremely diverse animal order. They show a considerable diversity of genome sizes, karyotypes and sex chromosomes, which makes them promising models to analyse the evolution of these traits. Our study is focused on the evolution of the genome and chromosomes in haplogyne spiders with holokinetic chromosomes. Although holokinetic chromosomes in spiders were discovered a long time ago, information on their distribution and evolution in these arthropods is very limited. Here we show that holokinetic chromosomes are an autapomorphy of the superfamily Dysderoidea. According to our hypothesis, the karyotype of ancestral Dysderoidea comprised three autosome pairs and a single X chromosome. The subsequent evolution has frequently included inverted meiosis of the sex chromosome and an increase of 2n. We demonstrate that caponiids, a sister clade to Dysderoidea, have enormous genomes and high diploid and sex chromosome numbers. This pattern suggests a polyploid event in the ancestors of caponiids. Holokinetic chromosomes could have arisen by subsequent multiple chromosome fusions and a considerable reduction of the genome size. We propose that spider sex chromosomes probably do not pose a major barrier to polyploidy due to specific mechanisms that promote the integration of sex chromosome copies into the genome.

RevDate: 2019-02-28

Quilodrán CS, Nussberger B, Montoya-Burgos JI, et al (2019)

Hybridization and introgression during density-dependent range expansion: European wildcats as a case study.

Evolution; international journal of organic evolution [Epub ahead of print].

Interbreeding between historically allopatric species with incomplete reproductive barriers may result when species expand their range. The genetic consequences of such hybridization depend critically on the dynamics of the range expansion. Hybridization models during range expansion have been developed but assume dispersal to be independent from neighboring population densities. However, organisms may disperse because they are attracted by conspecifics or because they prefer depopulated areas. Here, through spatially explicit simulations, we assess the effect of various density-dependent dispersal modes on the introgression between two species. We find huge introgression from the local species into the invasive one with all dispersal modes investigated, even when the hybridization rate is relatively low. This represents a general expectation for neutral genes even if the dispersal modes differ in colonization times and amount of introgression. Invasive individuals attracted by conspecifics need more time to colonize the whole area and are more introgressed by local genes, while the opposite is found for solitary individuals. We applied our approach to a recent expansion of European wildcats in the Jura Mountains and the hybridization with domestic cats. We show that the simulations explained better the observed level of introgression at nuclear, mtDNA and Y chromosome markers, when using solitary dispersal for wildcats instead of random or gregarious dispersal, in accordance with ecological knowledge. Using density-dependent dispersal models thus increase the predictive power of the approach. This article is protected by copyright. All rights reserved.

RevDate: 2019-02-28

Galloway KA, ME Porter (2019)

Mechanical properties of the venomous spines of Pterois volitans and morphology among lionfish species.

The Journal of experimental biology pii:jeb.197905 [Epub ahead of print].

The red lionfish, Pterois volitans, an invasive species, has 18 venomous spines: 13 dorsal, 3 anal, and one on each pelvic fin. Fish spines can have several purposes such as defense, intimidation, and for anchoring into crevices. Instead of having hollow spines, lionfish have a tri-lobed cross-sectional shape with grooves that deliver the venom, tapering towards the tip. We aim to quantify the impacts of shape (Second moment of area) and tapering on the mechanical properties of the spine. We performed two-point bending at several positions along the spines of P. volitans to determine mechanical properties (Young's modulus, Elastic energy storage, and Flexural stiffness). The short and recurved anal and pelvic spines are stiffer and resist bending more effectively than the long, dorsal spines. In addition, mechanical properties differ along the length of the spines, most likely because they are tapered. We hypothesize that the highly bendable dorsal spines are used for intimidation, making the fish look larger. The stiffer and energy absorbing anal and pelvic spines are smaller and less numerous, but they may be used for protection since they are located near important internal structures such as the swim bladder. Lastly, spine second moment of area varies across the Pterois genus. These data suggest there may be morphological and mechanical trade-offs among defense, protection, and intimidation of lionfish spines. Overall, the red lionfish venomous spine shape and mechanics may offer protection and intimidate potential predators, significantly contributing to their invasion success.

RevDate: 2019-02-28
CmpDate: 2019-02-28

Lillian S, Redak RA, MP Daugherty (2019)

Assessing the Role of Differential Herbivore Performance Among Plant Species in Associational Effects Involving the Invasive Stink Bug Bagrada hilaris (Hemiptera: Pentatomidae).

Environmental entomology, 48(1):114-121.

Co-occurring plant species can influence the extent of damage to each other by altering the activity or abundance of a shared herbivore. One mechanism by which neighboring host plants exacerbate damage to a focal host is if the neighbor amplifies herbivore populations. We studied the performance of a shared herbivore on a native and an invasive plant, to estimate how strongly the presence of the invasive plant increases local herbivore abundance-in a system in which highly asymmetric spillover herbivory may occur. Specifically, we conducted a series of greenhouse experiments that measured reproduction, development, and survival of the invasive stink bug Bagrada hilaris Burmeister on an invasive annual forb, Sahara mustard (Brassica tournefortii), or a native perennial shrub, four-winged saltbush (Atriplex canescens). All measured aspects of stink bug performance revealed consistently greater performance on Br. tournefortii. Indeed, A. canescens appears to be insufficient for Ba. hilaris to complete its development. Nonetheless, preliminary damage assessments found that both plant species were used as feeding hosts, putative feeding lesions were a more reliable indicator of herbivory than was the degree of yellowing, and higher Ba. hilaris abundance was generally associated with greater sublethal damage to A. canescens. Thus, A. canescens appears to be susceptible to Ba. hilaris herbivory, though more research is needed to assess fitness impacts of this novel herbivore. Our results indicate that differential herbivore performance among host plants may be an important contributor to observed patterns of abundance of a shared herbivore and spillover herbivory between plants.

RevDate: 2019-02-28
CmpDate: 2019-02-28

Honek A, Martinkova Z, Roy HE, et al (2019)

Differences in the Phenology of Harmonia axyridis (Coleoptera: Coccinellidae) and Native Coccinellids in Central Europe.

Environmental entomology, 48(1):80-87.

Harmonia axyridis (Pallas), an invasive non-native species in central Europe, can outcompete other aphidophagous species. The distribution and abundance of H. axyridis vary depending on different host plants, and its effects on native coccinellid communities may change accordingly. The distribution and abundance of coccinellids in central Europe (50°N, 14°E) were investigated from 2010 to 2016. Coccinellids were counted at regular intervals on cereals (Avena, Hordeum, and Triticum), herbaceous plants (Matricaria and Urtica) and trees (Acer, Betula, and Tilia). Additionally, the occurrence over time of each species on these plants was assessed and used as an index of persistence. Across all years, the adults and larvae of H. axyridis were the dominant species of coccinellid on trees. However, H. axyridis was less abundant on herbaceous plants and cereals than on trees. Populations of native coccinellids and H. axyridis co-occurred on trees and persisted for the same length of time, while native coccinellids persisted longer than H. axyridis on herbaceous plants and cereals. Compared to 1976-1986, in the 2010s, the abundance of native species decreased on all plants by 50-70%. The presence of H. axyridis could be considered as a factor driving changes in the assemblages of native coccinellids.

RevDate: 2019-02-28
CmpDate: 2019-02-28

Honek A, Dixon AF, Soares AO, et al (2017)

Spatial and temporal changes in the abundance and compostion of ladybird (Coleoptera: Coccinellidae) communities.

Current opinion in insect science, 20:61-67.

Because of their services to agriculture most ladybirds (Coleoptera: Coccinellidae) are intensively studied predators of mainly phytophagous pests. The study of the long-term variation in the composition of their communities was stimulated by recent dramatic changes in the abundance of some species. We review and evaluate possible effects of the main causes cited in the literature. Agricultural and habitat changes (particularly urbanization) affect coccinellid abundance, both negatively and positively. In the temperate zone dominant species occur most frequently associated with abundant prey populations on crops, weeds and planted stands of trees resulting from human activity. Invasive non-native species of coccinellids may endanger native species through intraguild predation or competition for resources, but their supposed serious negative effects on native species can differ considerably. Climatic change may influence coccinellid species in several ways, including indirect effects through lower trophic levels and desynchronisation of the phenologies of host plants, prey and coccinellid populations. In the near future we do not expect climate warming to have important effects on ladybird diversity globally, but local changes in the composition of coccinellid communities and abundance of particular species could occur.

RevDate: 2019-02-27

Makino T, M Kawata (2019)

Invasive invertebrates associated with highly duplicated gene content.

Molecular ecology [Epub ahead of print].

Invasion of alien species has led to serious problems, including the destruction of native ecosystems. In general, invasive species adapt to new environments rapidly, suggesting that they have high genetic diversity that can directly influence environmental adaptability. However, it is not known how genomic architecture causes genetic diversity that leads to invasiveness. Recent studies have showed that the proportion of duplicated genes (PD) in whole animal genomes correlate with environmental variability within a habitat. Here, we show that PD and propagule size significantly explain the differences in species categories (invasive species, noninvasive species, and parasites). PD correlated negatively with the propagule size. The residual values of regression of PD on propagule size revealed that the invasive species had higher PD values and larger propagule size than those of the noninvasive species, whereas the parasites had lower PD values and smaller propagule size than those of others. There were no correlations between the invasive species and other genomic factors including the genome size, number of genes, and certain gene families. Our results suggest that the PD values of a genome might be a potential genomic source causing genetic variations for adaptation to diverse environments. The results also showed that the invasiveness status of a species would be predicted by the residual values of regression of PD on propagule size. Our innovative approach provides a measure to estimate the environmental adaptability of organisms based on genomic data.

RevDate: 2019-02-27

Su T, Thieme J, Lura T, et al (2019)

Susceptibility Profile of Aedes aegypti L. (Diptera: Culicidae) from Montclair, California, to Commonly Used Pesticides, With Note on Resistance to Pyriproxyfen.

Journal of medical entomology pii:5366013 [Epub ahead of print].

The peridomestic anthropophilic Aedes aegypti L. (Diptera: Culicidae) is originated from the wild zoophilic subspecies Aedes aegypti formosus in sub-Saharan Africa, and currently has a broad distribution in human-modified environments of the tropics and subtropics worldwide. In California, breeding populations were initially detected in 2013 in the cities of Fresno, Madera, and San Mateo, and now can be found in 188 cities of 12 counties in the state. Recent genetic studies suggest that this species invaded California on multiple occasions from several regions of the United States and northern Mexico prior to initial detection. As an invasive species and vector for numerous arboviruses, Ae. aegypti is a primary target of surveillance and control in California. In southern California city of Montclair, a population was identified in September 2015, from which a short-term colony was established in an insectary. The susceptibility of this field population to commonly used pesticides with various modes of action, including 15 formulations against larvae and four against adults, was determined, in reference to a susceptible laboratory colony of the same species. No resistance was shown to most pesticides tested. However, tolerance or reduced susceptibility to spinosad, spinetoram, diflubezuron, and fipronil was detected, and modest levels of resistance to pyriproxyfen (resistance ratio = 38.7-fold at IE50 and 81.5-fold at IE90) was observed. Results are discussed based on the field usage and modes of action of the pesticides tested. Strategic selection and application of pesticides against this population of Ae. aegypti in the urban environments should be taken into consideration.

RevDate: 2019-02-27

Denoël M, Drapeau L, Oromi N, et al (2019)

The role of predation risk in metamorphosis versus behavioural avoidance: a sex-specific study in a facultative paedomorphic amphibian.

Oecologia pii:10.1007/s00442-019-04362-8 [Epub ahead of print].

Evolutionary theory predicts the evolution of metamorphosis over paedomorphosis (the retention of larval traits at the adult stage) in response to life in unfavourable habitats and to the benefits of dispersal. Although many organisms are canalised into obligatory complex or simple life cycles, some species of newts and salamanders can express both processes (facultative paedomorphosis). Previous research highlighted the detrimental effect of fish on both metamorphic and paedomorphic phenotypes, but it remains unknown whether predation risk could induce shifts from paedomorphosis to metamorphosis, whether behavioural avoidance could be an alternative strategy to metamorphosis and whether these responses could be sex-biased. Testing these hypotheses is important because metamorphosed paedomorphs are dispersal individuals which could favour the long-term persistence of the process by breeding subsequently in more favourable waters. Therefore, we quantified the spatial behaviour and timing of the metamorphosis of facultative paedomorphic palmate newts Lissotriton helveticus in response to predation risk. We found that fish induced both male and female paedomorphs to hide more often, but behavioural avoidance was not predictive of metamorphosis. Paedomorphs did not metamorphose more in the presence of fish, yet there was an interaction between sex and predation risk in metamorphosis timing. These results improve our understanding of the lower prevalence of paedomorphs in fish environments and of the female-biased sex ratios in natural populations of paedomorphic newts. Integrating sex-dependent payoffs of polyphenisms and dispersal across habitats is therefore essential to understand the evolution of these processes in response to environmental change.

RevDate: 2019-02-27
CmpDate: 2019-02-27

Katoh M, Tatsuta H, K Tsuji (2017)

Rapid evolution of a Batesian mimicry trait in a butterfly responding to arrival of a new model.

Scientific reports, 7(1):6369.

Batesian mimicry, a phenomenon in which harmless organisms resemble harmful or unpalatable species, has been extensively studied in evolutionary biology. Model species may differ from population to population of a single mimetic species, so different predation pressures might have driven micro-evolution towards better mimicry among regions. However, there is scant direct evidence of micro-evolutionary change over time in mimicry traits. Papilio polytes shows female-limited Batesian mimicry. On Okinawa, one mimicry model is Pachliopta aristolochiae, which was not present on the island until 1993. In P. polytes, the size of the hind-wing white spot, a mimetic trait, is maternally heritable. Among specimens collected between 1961 and 2016, the average white spot size was unchanged before the model's arrival but has rapidly increased since then. However, white spot size showed greater variance after the model's establishment than before. This suggests that before 1993, white spot size in this population was not selectively neutral but was an adaptive trait for mimicking an unpalatable native, Byasa alcinous, which looks like P. aristolochiae apart from the latter's hind-wing white spot. Thus, some females switched their model to the new one after its arrival.

RevDate: 2019-02-26

Baek JT, Hong JH, Tayyab M, et al (2019)

Continuous bubble reactor using carbon dioxide and its mixtures for ballast water treatment.

Water research, 154:316-326 pii:S0043-1354(19)30139-3 [Epub ahead of print].

The treatment of ballast water is indispensable for preventing ecological and economic damage from the spread of invasive species. In this study, a continuous gas bubble reactor (CBR) system was developed for the efficient disinfection of microorganisms in ballast water. Ballast water treatment (BWT) in the CBR was experimentally performed to disinfect Artemia salina in seawater by using 1) pure CO2 and 2) mixtures with CO2, N2, and/or SO2 as a simulated flue gas (CO2/N2: 20%/80% and CO2/N2/SO2: 19.2%/77.0%/3.8%). The BWT efficiency was improved with an increase in gas flowrate, residence time, gas pressure, and CO2 concentration in the gas. The toxicity of SO2 in the CO2 mixture significantly improved the mortality of microorganisms. Since good dispersion of bubbles and effective contact between bubbles and liquid were important factors in the BWT, a 100% mortality rate of microorganisms could be achieved by controlling the operating conditions in the vertical-type CBR with a counter-current flow between the gas bubbles and seawater. The CO2 gas distribution, CO2 solubility, and gas bubble size distribution in the CBR were determined using computational fluid dynamics (CFD) and experimentally confirmed using a high-speed camera. Since excess gas can be recovered from a gas-liquid separator before a ballast tank, the CBR system can be operated without using any toxic or explosive gases in an eco-friendly and energy saving manner.

RevDate: 2019-02-26

Bozorov TA, Luo Z, Li X, et al (2019)

Agrilus mali Matsumara (Coleoptera: Buprestidae), a new invasive pest of wild apple in western China: DNA barcoding and life cycle.

Ecology and evolution, 9(3):1160-1172 pii:ECE34804.

Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood-boring beetle distributed to eastern China that occasionally injures apple species. However, this wood-boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single-nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima-Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.

RevDate: 2019-02-26

Crowther LP, Wright DJ, Richardson DS, et al (2019)

Spatial ecology of a range-expanding bumble bee pollinator.

Ecology and evolution, 9(3):986-997 pii:ECE34722.

Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between-year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony-specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha-1 in 2014 and 2015, respectively), estimated between-year lineage survival rate was 0.07, and there was no evidence of fine-scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion.

RevDate: 2019-02-26

Linnakoski R, KM Forbes (2019)

Pathogens-The Hidden Face of Forest Invasions by Wood-Boring Insect Pests.

Frontiers in plant science, 10:90.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Order from Amazon

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

21454 NE 143rd Street
Woodinville, WA 98077


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )