picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
26 Jan 2022 at 01:34
HITS:
378
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Long Term Ecological Research

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jan 2022 at 01:34 Created: 

Long Term Ecological Research

The LTER Network: The US. long-term ecological research network consists of 28 sites with a rich history of ecological inquiry, collaboration across a wide range of research topics, and engagement with students, educators, and community members. Bringing together diverse groups of researchers with sustained data collection, ecosystem manipulation experiments, and modeling, these sites allow scientists to apply new tools and explore new questions in systems where the context is well understood, shared, and thoroughly documented.

Created with PubMed® Query: "Long Term Ecological Research" OR LTER NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2022-01-13

Moi DA, Romero GQ, Jeppesen E, et al (2021)

Regime shifts in a shallow lake over 12 years: Consequences for taxonomic and functional diversities, and ecosystem multifunctionality.

The Journal of animal ecology [Epub ahead of print].

Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12-year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.

RevDate: 2022-01-12

Nevison C, Goodale C, Hess P, et al (2022)

Nitrification and denitrification in the Community Land Model compared to observations at Hubbard Brook Forest.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

Models of terrestrial system dynamics often include nitrogen (N) cycles to better represent N limitation of terrestrial carbon (C) uptake but simulating the fate of N in ecosystems has proven challenging. Here, key soil N fluxes and flux ratios from the Community Land Model version 5.0 (CLM5.0) are compared to an extensive set of observations from the Hubbard Brook Forest Long-Term Ecological Research (LTER) site in New Hampshire. Simulated fluxes include microbial immobilization and plant uptake, which compete with nitrification and denitrification, respectively, for available soil ammonium (NH4 +) and nitrate (NO3 -). In its default configuration, CLM5.0 predicts that both plant uptake and immobilization are strongly dominated by NH4 + over NO3 - , and that the model ratio of nitrification:denitrification is approximately 1:1. In contrast, Hubbard Brook observations suggest that NO3 - plays a more significant role in plant uptake and that nitrification could exceed denitrification by an order of magnitude. Modifications to the standard CLM5.0 at Hubbard Brook indicate that a simultaneous increase in the competitiveness of nitrifying microbes for NH4 + and reduction in the competitiveness of denitrifying bacteria for NO3 - are needed to bring soil N flux ratios into better agreement with observations. Such adjustments, combined with evaluation against observations, may help improve confidence in present and future simulations of N limitation on the C cycle, although C fluxes such as gross primary productivity (GPP) and net primary productivity (NPP) are less sensitive to the model modifications than soil N fluxes.

RevDate: 2022-01-12

Ross Brown A, Lilley MKS, Shutler J, et al (2022)

Harmful Algal Blooms and their impacts on shellfish mariculture follow regionally distinct patterns of water circulation in the western English Channel during the 2018 heatwave.

Harmful algae, 111:102166.

Harmful algal blooms (HABs) can have severe ecological, societal and economic impacts upon marine ecosystems, human health and the seafood industry. We evaluated changes in marine plankton communities with prevailing physico-chemical conditions throughout an exceptionally warm summer (2018), to elucidate key factors governing HABs and their impacts on shellfish mariculture in the western English Channel. Despite warm, stable weather conditions and widespread seasonal stratification throughout the summer, divergent plankton community compositions were observed at two rope-grown mussel (Mytilus edulis) farms (St Austell Bay and Lyme Bay) and a long-term ecological research LTER site (Plymouth L4). There were significant differences between sites in the abundances of HAB species, including Dinophysis spp. and Karenia mikimotoi, whose cell counts bloomed in excess of UK Food Standards Agency (FSA) advisory 'trigger' levels at Plymouth L4 and St Austell Bay, but not at the Lyme Bay site. The K. mikimotoi bloom occurred over two weeks in August and comprised up to 88% of the standing phytoplankton biomass in St Austell Bay. Dinophysis spp. also bloomed here from May to September, constituting up to 28% of phytoplankton biomass. This protracted bloom resulted in concentrations of Dinophysis toxins 1 & 2 and pectenotoxins and okadaic acid in shellfish, which closed shellfish harvesting operations on farms located in St Austell Bay, and other shellfish sites in the west of the western English Channel (but not in the east of the region). Inter-site differences in the abundances of these and other HAB species were associated with variations in water circulation and co-occurring phytoplankton and zooplankton communities. Furthermore, plankton monitoring data obtained from the L4 site over the past 3 decades showed HAB species (including Dinophysis spp.) with abundances commonly occurring above advisory trigger levels during warmer periods, such as that coinciding with our study. Under projected climate warming these blooms are likely to continue to be governed by regionally distinct patterns of water circulation, which need to be taken into account in marine spatial planning, when assessing the suitability of new shellfish mariculture sites.

RevDate: 2022-01-11

Cáliz J, Subirats J, Triadó-Margarit X, et al (2022)

Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions.

Environment international, 160:107077 pii:S0160-4120(22)00002-2 [Epub ahead of print].

Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.

RevDate: 2022-01-07

Cluzel N, Courbariaux M, Wang S, et al (2022)

A nationwide indicator to smooth and normalize heterogeneous SARS-CoV-2 RNA data in wastewater.

Environment international, 158:106998.

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors. To circumvent these limits, we propose here a novel indicator, the wastewater indicator (WWI), that partly reduces and corrects the noise associated with the SARS-CoV-2 genome quantification in wastewater (average noise reduction of 19%). All data processing results in an average correlation gain of 18% with the incidence rate. The WWI can take into account the censorship linked to the limit of quantification (LOQ), allows the automatic detection of outliers to be integrated into the smoothing algorithm, estimates the average measurement error committed on the samples and proposes a solution for inter-laboratory normalization in the absence of inter-laboratory assays (ILA). This method has been successfully applied in the context of Obépine, a French national network that has been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs since March 5th 2020. By August 26th, 2021, 168 WWTPs were monitored in the French metropolitan and overseas territories of France. We detail the process of elaboration of this indicator, show that it is strongly correlated to the incidence rate and that the optimal time lag between these two signals is only a few days, making our indicator an efficient complement to the incidence rate. This alternative approach may be especially important to evaluate SARS-CoV-2 dynamics in human populations when the testing rate is low.

RevDate: 2021-12-15

Fadini RF, Brocardo CR, Rosa C, et al (2021)

Long-term standardized ecological research in an Amazonian savanna: a laboratory under threat.

Anais da Academia Brasileira de Ciencias, 93(suppl 4):e20210879 pii:S0001-37652021000801012.

A few decades ago, researchers from the National Institute for Amazonian Research (INPA) started a pilot study to integrate the ecological studies of several organisms using monitoring plots, which then became the embryo for the creation of the RAPELD (Rapid Assessments and Long-term Ecological Research) system used by the Program for Biodiversity Research (PPBio) and the Long-term ecological research site POPA (PELD Western Pará). They installed and maintained permanent plots in an Amazonian-savanna patch near to the village of Alter do Chão. Amazonian savannas constitute a threatened ecosystem comprising only 6% of the Amazon biome. Most of the studies focused on three main long-term ecological research questions, but the site was also of importance for other inquiries and for the training of young researchers, contributing 71 articles so far and 32 masters and doctorate theses. Here, we present the experimental design and results of standardized studies in the savannas and forest fragments near Alter do Chão that have been carried out over the years. We discuss the future prospects and local threats to the area (e.g. soy crops and land speculation), and highlight the need to incorporate Alter do Chão villagers in land-use planning in the region.

RevDate: 2021-12-13

Wurtzer S, Waldman P, Levert M, et al (2021)

SARS-CoV-2 genome quantification in wastewaters at regional and city scale allows precise monitoring of the whole outbreaks dynamics and variants spreading in the population.

The Science of the total environment pii:S0048-9697(21)07289-2 [Epub ahead of print].

SARS-CoV-2 is a coronavirus causing a globalized outbreak called COVID-19. SARS-CoV-2 transmission is associated with inhalation of contaminated respiratory droplets and could causes severe complications. Until today several "waves" of infections have been observed despite implementation of strict health policies. Decisions for such sanitary measures are based on population health monitoring. Unfortunately, for COVID-19, a significant proportion of individuals are asymptomatic but play a role in the virus transmission. To overcome these limitations, several strategies were developed including genome quantification in wastewater that could allow monitoring of the health status of population, since shedding of SARS-CoV-2 in patient stool is frequent. Wastewater-based epidemiology (WBE) was established and several countries implemented this approach to allow COVID-19 outbreak monitoring. In France, the OBEPINE project performed a quantitative analysis of SARS-CoV-2 in raw wastewater samples collected from major wastewater treatment plants (WWTP) since March 2020. In the greater Paris area 1101 samples (507 for five WWTP and 594 for sewer) were collected. This 16 months monitoring allows us to observe the outbreak dynamics. Comparison of WBE indicators with health data lead to several important observation; the good level of correlation with incidence rates, the average 3 days lead time, and the sensitivity (WBE change when incidence is > to 7/100000 inhabitants). We also compared the local monitoring (city level) with the regional monitoring, to help cluster identification. Moreover, variants of concern (VOC) emerged due to the selection pressure. We developed a specific RT-qPCR method targeting the deletion H69-V70 in the spike protein, using this deletion as a proxy of the B.1.1.7 presence in the wastewater. With this data we demonstrate the predominant role played by this strain in the third wave. All these results allow a better description and understanding of the pandemic and highlight the role of such WBE indicators.

RevDate: 2021-11-25

Roeder KA, Benson BR, Weiser MD, et al (2021)

Testing the role of body size and litter depth on invertebrate diversity across six forests in North America.

Ecology [Epub ahead of print].

Ecologists search for rules by which traits dictate the abundance and distribution of species. Here we search for rules that apply across three common taxa of litter invertebrates in six North American forests from Panama to Oregon. We use image analysis to quantify the abundance and body size distributions of mites, springtails, and spiders in 21-m2 plots per forest. We contrast three hypotheses: two of which focus on trait-abundance relationships and a third linking abundance to species richness. Despite three orders of magnitude variation in size, the predicted negative relationship between mean body size and abundance per m2 occurred in only 18% of cases-never for large bodied taxa like spiders. We likewise found only 18% of tests supported our prediction that increasing litter depth allows for high abundance; 2/3 of which occurred at a single deciduous forest in Massachusetts. In contrast, invertebrate abundance constrained species richness 76% of the time. Our results suggest that body size and habitat volume in brown food webs are rarely good predictors of variation in abundance, but that variation in diversity is generally well predicted by abundance.

RevDate: 2021-11-18

Chandler JL, Elkinton JS, DA Orwig (2021)

High Rainfall May Induce Fungal Attack of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Leading to Regional Decline.

Environmental entomology pii:6430834 [Epub ahead of print].

Hemlock woolly adelgid (HWA; Adelges tsugae Annand (Hemiptera: Adelgidae)) is the cause of widespread mortality of Carolina and eastern hemlock (Tsuga caroliniana Engelmann and T. canadensis (L.) Carrière) throughout the eastern United States (U.S.). Since its arrival in the northeastern U.S., HWA has steadily invaded and established throughout eastern hemlock stands. However, in 2018, anecdotal evidence suggested a sharp, widespread HWA decline in the northeastern U.S. following above-average summer and autumn rainfall. To quantify this decline in HWA density and investigate its cause, we surveyed HWA density in hemlock stands from northern Massachusetts to southern Connecticut and analyzed HWA density and summer mortality in Pennsylvania. As native fungal entomopathogens are known to infect HWA in the northeastern U.S. and rainfall facilitates propagation and spread of fungi, we hypothesized high rainfall facilitates fungal infection of aestivating nymphs, leading to a decline in HWA density. We tested this hypothesis by applying a rain-simulation treatment to hemlock branches with existing HWA infestations in western MA. Our results indicate a regional-scale decline and subsequent rebound in HWA density that correlates with 2018 rainfall at each site. Experimental rain treatments resulted in higher proportions of aestivating nymphs with signs of mortality compared to controls. In conjunction with no evidence of increased mortality from extreme winter or summer temperatures, our results demonstrate an indirect relationship between high rainfall and regional HWA decline. This knowledge may lead to better prediction of HWA population dynamics.

RevDate: 2021-11-13

Juyal A, Guber A, Oerther M, et al (2021)

Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography.

Scientific reports, 11(1):21998.

Bioenergy cropping systems can substantially contribute to climate change mitigation. However, limited information is available on how they affect soil characteristics, including pores and particulate organic matter (POM), both essential components of the soil C cycle. The objective of this study was to determine effects of bioenergy systems and field topography on soil pore characteristics, POM, and POM decomposition under new plant growth. We collected intact soil cores from two systems: monoculture switchgrass (Panicum virgatum L.) and native prairie, at two contrasting topographical positions (depressions and slopes), planting half of the cores with switchgrass. Pore and POM characteristics were obtained using X-ray computed micro-tomography (μCT) (18.2 µm resolution) before and after new switchgrass growth. Diverse prairie vegetation led to higher soil C than switchgrass, with concomitantly higher volumes of 30-90 μm radius pores and greater solid-pore interface. Yet, that effect was present only in the coarse-textured soils on slopes and coincided with higher root biomass of prairie vegetation. Surprisingly, new switchgrass growth did not intensify decomposition of POM, but even somewhat decreased it in monoculture switchgrass as compared to non-planted controls. Our results suggest that topography can play a substantial role in regulating factors driving C sequestration in bioenergy systems.

RevDate: 2021-11-09

Alred B, Haan N, Landis DA, et al (2021)

Does the Presence of the Biological Control Agent, Hypena opulenta (Lepidoptera: Erebidae) on Swallow-Worts Deter Monarch Oviposition?.

Environmental entomology pii:6423837 [Epub ahead of print].

Invasive black and pale swallow-worts (Vincetoxicum nigrum (L.) Moench, and Vincetoxicum rossicum Kelopow), which are related to milkweeds, can act as ecological traps for monarch butterflies (Danaus plexippus L. (Lepidoptera: Nymphalidae)) as they lay eggs on them that fail to develop. A recently approved biological control agent against swallow-worts, Hypena opulenta Christoph, occupies the same feeding guild on swallow-worts as monarch larvae and could be perceived as a competitor to monarchs. We tested how the presence of this defoliating moth on swallow-worts may influence monarch host selection. In a two-year field experiment, we placed pale swallow-wort plants that were either infested with H. opulenta or noninfested as well as common milkweed (Asclepias syriaca L.), into monarch habitats to assess oviposition rates. In the laboratory, monarchs were either given a choice or not between milkweeds and black swallow-worts with or without H. opulenta. While monarchs strongly preferred common milkweed in the field, up to 25% of the eggs we observed were laid on pale swallow-wort, without preference for swallow-wort with (10.7%) or without (14.3%) H. opulenta. In laboratory choice and no-choice tests, monarchs did not lay any eggs on black swallow-wort, likely because of the long-term laboratory rearing on common milkweeds. Our results confirm that pale swallow-wort may act as an oviposition sink to monarchs in Michigan as well. Since the biological control program is still in its infancy, the nature of interactions between monarchs and H. opulenta may change as the biocontrol agent becomes more widespread.

RevDate: 2021-11-15

Gallitelli L, Battisti C, Olivieri Z, et al (2021)

Carpobrotus spp. patches as trap for litter: Evidence from a Mediterranean beach.

Marine pollution bulletin, 173(Pt B):113029 pii:S0025-326X(21)01063-8 [Epub ahead of print].

Dunal plants may affect the patterns of deposition of beach litter. In this study, we aimed at evaluating if Carpobrotus spp. patches may act as a litter trap in coastal dune systems. To do so, we counted the number of macrolitter occurring in both Carpobrotus and control (embryo dune vegetation) patches classifying each item into categories according to the Marine Strategy. Totally, we observed a significant difference between litter trapped in Carpobrotus (331 items, representing 62.4% of the total beach litter) and control (199, 37.6%). Plastic fragments were the most trapped items by both Carpobrotus (46.2%) and control patches (47.2%). We also calculated the item co-occurrence, obtaining a random aggregated 'litter community'. The main emerging output is that Carpobrotus patches act as filter in respect to different anthropogenic materials (overall plastics), suggesting that alien plant management actions may contribute to solve beach litter issues as well.

RevDate: 2021-10-23
CmpDate: 2021-10-22

Trubl G, Kimbrel JA, Liquet-Gonzalez J, et al (2021)

Active virus-host interactions at sub-freezing temperatures in Arctic peat soil.

Microbiome, 9(1):208.

BACKGROUND: Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures).

RESULTS: We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients.

CONCLUSIONS: Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.

RevDate: 2021-11-15

Triadó-Margarit X, Cáliz J, EO Casamayor (2021)

A long-term atmospheric baseline for intercontinental exchange of airborne pathogens.

Environment international, 158:106916 pii:S0160-4120(21)00541-9 [Epub ahead of print].

The atmosphere is a potential pathway for global-scale and long-range dispersal of viable microorganisms, promoting biological interconnections among the total environment. We aimed to provide relevant baseline information for long-range long-term intercontinental exchange of potentially infectious airborne microorganisms of major interest in environmental and health-related disciplines. We used an interannual survey (7-y) with wet depositions fortnightly collected above the boundary layer (free troposphere) at a remote high-elevation LTER (Long-Term-Ecological-Research) site, analyzed by 16S and 18S rRNA genes, and compared to a database of 475 well-known pathogens. We applied a conservative approach on close relatives of pathogenic species (>98% identity) standing their theoretical upper limit for atmospheric baseline relative abundances. We identified c. 2-3% of the total airborne microbiota as potential pathogens. Their most frequent environmental origins were soil, aquatic, and anthropogenic sources. Phytopathogens (mostly fungi) were the potential infectious agents most widely present. We uncovered consistent interannual dynamics with taxa foreseeable over time (i.e., predictable seasonal behavior) and under recurrent environmental scenarios (e.g., Saharan dust intrusions), respectively, being highly valuable microbial forensic environmental indicators. Up to 8 bacterial and 21 fungal genera consistently showed temporal abundances and recurrences unevenly distributed. Incidence of allergenic fungi was lower in summer, and significantly higher in spring. Close relatives to Coccidioides posadasii consistently showed higher signals (i.e., high specificity and high fidelity) in winter, whereas Cryptococcus neoformans had a significant signal in spring. Along Saharan dust intrusions, the bacterial phytopathogens Acidovorax avenae and Agrobacterium tumefaciens and the fungal phytopathogens Pseudozyma hubeiensis and Peniophora sp. consistently showed higher signals. Potential human pathogens showed low proportion, being mostly fungal allergens. Microorganisms related to obligated human, amphibian and fish pathogens were commonly found in winter. More studies in remote field sites above the boundary layer will unveil whether or not a similar trend is found globally.

RevDate: 2021-11-03
CmpDate: 2021-11-03

Le Guernic A, Palos Ladeiro M, Boudaud N, et al (2022)

First evidence of SARS-CoV-2 genome detection in zebra mussel (Dreissena polymorpha).

Journal of environmental management, 301:113866.

The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions. Within their digestive tissues, our results showed that SARS-CoV-2 genome was detected in zebra mussels, whether in raw and treated wastewaters. Moreover, the detection of the SARS-CoV-2 genome in such bivalve molluscans appeared even with low concentrations in raw wastewaters. This is the first detection of the SARS-CoV-2 genome in the tissues of a sentinel species exposed to raw and treated urban wastewaters. Despite the need for development for quantitative approaches, these results support the importance of such invertebrate organisms, especially zebra mussel, for the active surveillance of pathogenic microorganisms and their indicators in environmental waters.

RevDate: 2021-11-15
CmpDate: 2021-11-15

Radujković D, Verbruggen E, Seabloom EW, et al (2021)

Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?.

Ecology letters, 24(12):2713-2725.

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.

RevDate: 2021-11-12
CmpDate: 2021-11-12

Lin SY, Hameed A, Tsai CF, et al (2021)

Zeimonas arvi gen. nov., sp. nov., of the family Burkholderiaceae, harboring biphenyl- and phenolic acid-metabolizing genes, isolated from a long-term ecological research field.

Antonie van Leeuwenhoek, 114(12):2101-2111.

A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-CFT501T, harboring xenobiotic- and allelochemical-metabolizing genes, isolated from a long-term ecological research field in Taiwan. Cells of strain CC-CFT501T were catalase- and oxidase-positive, non-motile and short rods. Optimal growth occurred at 30 °C, pH 8 and 1% NaCl. Strain CC-CFT501T was found to share high 16S rRNA gene sequence similarity with the members of genera Quisquiliibacterium (94.3%, n = 1), Pandoraea (93.4-94.0%, n = 23) and Paraburkholderia (93.3-94.0%, n = 9), affiliated to the family Burkholderiaceae. Strain CC-CFT501T shared 76.4% orthologous average nucleotide identity (OrthoANI) and 20.9% digital DNA-DNA hybridization (dDDH) values with Quisquiliibacterium transsilvanicum DSM 29781T. Draft genome sequence (3.83 Mb) of strain CC-CFT501T revealed several genes encoding the proteins involved in biphenyl and phenolic acid metabolism. Fatty acid profile contained C16:0, C18:0, C10:0 3-OH, C16:1 ω7c/C16:1 ω6c and C18:1 ω7c/C18:1 ω6c in predominant amounts. The polar lipid profile consisted of phosphatidylethanolamine, thirteen unidentified amino lipids, two unidentified phospholipids and two unidentified glycolipids. The major polyamine was spermidine and ubiquinone Q-8 was the sole respiratory quinone. The DNA G + C content was 70.0 mol%. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT501T is considered to represent a novel genus and species of the family Burkholderiaceae, for which the name Zeimonas arvi gen. nov., sp. nov. is proposed. The type strain of the type species is CC-CFT501T (= BCRC 81218T = JCM 33506T).

RevDate: 2021-09-30

Henschel JR (2021)

Long-Term Population Dynamics of Namib Desert Tenebrionid Beetles Reveal Complex Relationships to Pulse-Reserve Conditions.

Insects, 12(9):.

Noy-Meir's paradigm concerning desert populations being predictably tied to unpredictable productivity pulses was tested by examining abundance trends of 26 species of flightless detritivorous tenebrionid beetles (Coleoptera, Tenebrionidae) in the hyper-arid Namib Desert (MAP = 25 mm). Over 45 years, tenebrionids were continuously pitfall trapped on a gravel plain. Species were categorised according to how their populations increased after 22 effective rainfall events (>11 mm in a week), and declined with decreasing detritus reserves (97.7-0.2 g m-2), while sustained by nonrainfall moisture. Six patterns of population variation were recognised: (a) increases triggered by effective summer rainfalls, tracking detritus over time (five species, 41% abundance); (b) irrupting upon summer rainfalls, crashing a year later (three, 18%); (c) increasing gradually after series of heavy (>40 mm) rainfall years, declining over the next decade (eight, 15%); (d) triggered by winter rainfall, population fluctuating moderately (two, 20%); (e) increasing during dry years, declining during wet (one, 0.4%); (f) erratic range expansions following heavy rain (seven, 5%). All species experienced population bottlenecks during a decade of scant reserves, followed by the community cycling back to its earlier composition after 30 years. By responding selectively to alternative configurations of resources, Namib tenebrionids showed temporal patterns and magnitudes of population fluctuation more diverse than predicted by Noy-Meir's original model, underpinning high species diversity.

RevDate: 2021-11-15

Atkinson ST, Cale D, Pinder A, et al (2021)

Substantial long-term loss of alpha and gamma diversity of lake invertebrates in a landscape exposed to a drying climate.

Global change biology, 27(23):6263-6279.

Many regions across the globe are shifting to more arid climates. For shallow lakes, decreasing rainfall volume and timing, changing regional wind patterns and increased evaporation rates alter water regimes so that dry periods occur more frequently and for longer. Drier conditions may affect fauna directly and indirectly through altered physicochemical conditions in lakes. Although many studies have predicted negative effects of such changes on aquatic biodiversity, empirical studies demonstrating these effects are rare. Global warming has caused severe climatic drying in southwestern Australia since the 1970s, so we aimed to determine whether lakes in this region showed impacts on lake hydroperiod, water quality, and α, β and γ diversity of lake invertebrates from 1998 to 2011. Seventeen lakes across a range of salinities were sampled biennially in spring in the Wheatbelt and Great Southern regions of Western Australia. Multivariate analyses were used to identify changes in α, β and γ diversity and examine patterns in physicochemical data. Salinity and average rainfall partially explained patterns in invertebrate richness and assemblage composition. Climatic drying was associated with significant declines in lake depth, increased frequency of dry periods, and reduced α and γ diversity (γ declined from ~300 to ~100 taxa from 1998 to 2011 in the 17 wetlands). In contrast, β diversity remained consistently high, because each lake retained a distinct fauna. Mean α diversity per-lake declined both in lakes that dried and lakes that did not dry out, but lakes which retained a greater proportion of their maximum depth retained more α diversity. Accumulated losses in α diversity caused the decline in γ diversity likely through shrinking habitat area, fewer stepping stones for dispersal and loss of specific habitat types. Biodiversity loss is thus likely from lakes in drying regions globally. Management actions will need to sustain water depth in lakes to prevent biodiversity loss.

RevDate: 2021-10-15

Mata VA, da Silva LP, Veríssimo J, et al (2021)

Combining DNA metabarcoding and ecological networks to inform conservation biocontrol by small vertebrate predators.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

In multifunctional landscapes, diverse communities of flying vertebrate predators provide vital services of insect pest control. In such landscapes, conservation biocontrol should benefit service-providing species to enhance the flow, stability and resilience of pest control services supporting the production of food and fiber. However, this would require identifying key service providers, which may be challenging when multiple predators interact with multiple pests. Here we provide a framework to identify the functional role of individual species to pest control in multifunctional landscapes. First, we used DNA metabarcoding to provide detailed data on pest species predation by diverse predator communities. Then, these data were fed into an extensive network analysis, in which information relevant for conservation biocontrol is gained from parameters describing network structure (e.g., modularity) and species roles in such network (e.g., centrality, specialization). We applied our framework to a Mediterranean landscape, where 19 bat species were found to feed on 132 insect pest species. Metabarcoding data revealed potentially important bats that consumed insect pest species in high frequency and/or diversity. Network analysis showed a modular structure, indicating sets of bat species that are required to regulate specific sets of insect pests. A few generalist bats had particularly important roles, either at network or module levels. Extinction simulations highlighted six bats, including species of conservation concern, which were sufficient to ensure that over three-quarters of the pest species had at least one bat predator. Combining DNA metabarcoding and ecological network analysis provides a valuable framework to identify individual species within diverse predator communities that might have a disproportionate contribution to pest control services in multifunctional landscapes. These species can be regarded as candidate targets for conservation biocontrol, although additional information is needed to evaluate their actual effectiveness in pest regulation.

RevDate: 2021-09-07

Grosse M, Ahlborn MC, W Hierold (2021)

Metadata of agricultural long-term experiments in Europe exclusive of Germany.

Data in brief, 38:107322 pii:S2352-3409(21)00606-5.

Agricultural long-term experiments (LTEs) are an important research infrastructure for agriculture, plant and soil sciences. The aim of this metadata compilation is to make LTEs easier to find and to facilitate networking. LTEs are here defined as agricultural experiments with a minimum duration of 20 years and research in the context of soil and yield. An extensive literature review was conducted to identify LTEs in Europe exclusive of Germany, because Germany's LTEs were published before. Sources were scientific papers as well as other articles, books, trial guides and websites. The following information was searched for and compiled in this dataset, if available: site and name of the LTE, start and end (if appropriate), holding institution, type of land use (e.g. field crops or grassland), research theme, website (if available), participation in networks, measured parameters, farming category (i.e. conventional or organic), size of the LTE area, longitude and latitude of the LTE, experimental setup including factors, treatments, randomization and replication, number of plots, size of the plots, crop rotation, soil type, substrate, texture, literature which was written in the context of the LTE data, and AGROVOC keywords. LTE from the following countries are included: Austria, Belarus, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Great Britain, Hungary, Italy, Moldova, Norway, Poland, Romania, Serbia, Slovenia, Spain, Sweden, Switzerland, Ukraine. In total, 186 LTEs could be identified. The LTEs were classified according to the following research themes: fertilization, tillage, crop rotation, other. The majority of LTEs have the research theme "fertilization" (n = 125). Thirty LTEs have the research theme "crop rotation", 26 LTEs have the research theme "tillage", and 26 LTEs have "other" research themes. The following networks could be identified: GLTEN (Global long-term experiment network), ILTER (International long-term ecological research), IOSDV (International Organic Nitrogen Fertilization Experiment), NLFT (National Long-term Fertilization Trials, Hungary), RetiBio 2 (Italy). The oldest LTE was set up 1843, but the largest number of LTEs was established in the second half of the 20th century. Most of the LTEs are held by a scientific institution, i.e. 88 LTEs are held by a non-university scientific institution and 81 LTEs are held by a university or university of applied sciences. The link to the holding institution is provided whenever possible to facilitate contacting.

RevDate: 2021-09-28

Manlick PJ, Maldonado K, SD Newsome (2021)

Competition shapes individual foraging and survival in a desert rodent ensemble.

The Journal of animal ecology [Epub ahead of print].

Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear. Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested. We used repeated stable isotope measurements (δ13 C, δ15 N; N = 3,509) and 6 years of capture-mark-recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies. Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists. These results indicate that competition is the proximate driver of individual foraging strategies, and that diet-mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.

RevDate: 2021-10-27
CmpDate: 2021-10-27

Cresta E, C Battisti (2021)

Anthropogenic litter along a coastal-wetland gradient: Reed-bed vegetation in the backdunes may act as a sink for expanded polystyrene.

Marine pollution bulletin, 172:112829.

We investigated the accumulation of litter along a transition gradient from the dunal beaches (B), to the backdunes (BD), to the channels of a coastal wetland (W), considering both the total litter and a sub-category represented by expanded polystyrene (EPS). Using a removal sampling technique carried out in spring (April and May), we hypothesized that: (i) the total accumulation of litter decreases progressively from the dunes to the backdunes to wet environments while (ii) the lighter polystyrene concentrates in the BD-W fringe where the Phragmites australis reedbeds can have a sink role for this polymer. The total litter density showed a significant decrease along the gradient B-BD-W in both months, with an evident collapse between BD and W. Analogously, EPS showed a significant difference in density along the B-BD-W gradient in both months, although with a different pattern: a maximum in the BD and a significant collapse between BD and W. The presence of backdune hygrophilous vegetation (Phragmites australis' reedbeds) may act as a sink trapping all types of litter in both cases (total litter and EPS). The different accumulation pattern between total litter and the EPS is due to the lower specific weight of the latter polymer: while the generic litter tends to decrease quantitatively moving away from the sea, the lighter EPS is removed by the winds and pushed towards the land, beyond the dune, where it is trapped by the vegetation, thus showing a peak in density in the backdunes. No significant differences were observed between the litter density in the two months (before and after the removal) either considering the total litter and only EPS. This may suggest a continuous supply of litter from the sea, highlighting how clean-ups actions should be carried out with a higher frequency rather than monthly. This may be even more valid in the period of greater frequency of intense weather-marine events (autumn-winter) when a greater quantity of litter is deposited. These are the first data for the Mediterranean regarding a specific role of wetland hygrophilous vegetation as a sink for anthropogenic litter, mainly expanded polystyrene.

RevDate: 2021-09-29
CmpDate: 2021-09-29

Cesarini G, Cera A, Battisti C, et al (2021)

Is the weight of plastic litter correlated with vegetal wrack? A case study from a Central Italian beach.

Marine pollution bulletin, 171:112794.

This study analyzes the occurrence and distribution of plastic litter and the entrapment of plastic by wrack beached on a natural reserve. Large microplastics (2.5 - 5 mm) were the most abundant plastic size category detected. The main color and shape were white and fragment, respectively. The plastics entrapped by egagropiles were mainly transparent fibers. We analyzed the correlation between the weights of plastic litter and vegetal wrack in two transects, selected for their different environmental characteristics. The transect closer to a breakwater showed a significant positive correlation between the weights of plastics and wrack, while the other transect suggested a casual pattern of plastic deposition on the beach. Further research is suggested to focus on the role of breakwaters in altering marine currents and enhancing plastic beaching.

RevDate: 2021-08-10

Pilla RM, Mette EM, Williamson CE, et al (2021)

Global data set of long-term summertime vertical temperature profiles in 153 lakes.

Scientific data, 8(1):200.

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

RevDate: 2021-08-17

Osburn ED, Badgley BD, Aylward FO, et al (2021)

Historical forest disturbance mediates soil microbial community responses to drought.

Environmental microbiology [Epub ahead of print].

Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought-rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed 'reference' site and a 'disturbed' site that was clear-cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought-rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought-rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought-rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought-rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r-selected bacteria, and reductions in network connectivity following drought-rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem-scale trajectories of these environments under ongoing and future climate change.

RevDate: 2021-08-06

Wohner C, Ohnemus T, Zacharias S, et al (2021)

Assessing the biogeographical and socio-ecological representativeness of the ILTER site network.

Ecological indicators, 127:107785.

The challenges posed by climate and land use change are increasingly complex, with rising and accelerating impacts on the global environmental system. Novel environmental and ecosystem research needs to properly interpret system changes and derive management recommendations across scales. This largely depends on advances in the establishment of an internationally harmonised, long-term operating and representative infrastructure for environmental observation. This paper presents an analysis evaluating 743 formally accredited sites of the International Long-Term Ecological Research (ILTER) network in 47 countries with regard to their spatial distribution and related biogeographical and socio-ecological representativeness. "Representedness" values were computed from six global datasets. The analysis revealed a dense coverage of Northern temperate regions and anthropogenic zones most notably in the US, Europe and East Asia. Significant gaps are present in economically less developed and anthropogenically less impacted hot and barren regions like Northern and Central Africa and inner-continental parts of South America. These findings provide the arguments for our recommendations regarding the geographic expansion for the further development of the ILTER network.

RevDate: 2021-09-30
CmpDate: 2021-09-30

De Falco N, Tal-Berger R, Hjazin A, et al (2021)

Geodiversity impacts plant community structure in a semi-arid region.

Scientific reports, 11(1):15259.

Geodiversity refers to the variety of geological and physical elements as well as to geomorphological processes of the earth surface. Heterogeneity of the physical environment has an impact on plant diversity. In recent years, the relations between geodiversity and biodiversity has gained attention in conservation biology, especially in the context of climate change. In this study, we assessed the spatial and temporal change in plant's community structure in a semi-arid region, Sayeret Shaked Long Term Ecosystem Research (LTER) station, Israel. Vegetation surveys were conducted on different hillslopes, either with or without rock covers in order to study the spatial trends of hillslope geodiversity. The surveys were conducted for two consecutive years (2016 and 2017), of which the second year was drier and hotter and therefore permitted to investigate the temporal change of plant's community structure. The results of the spatial trends show that (1) geodiversity increases vegetation biodiversity and promotes perennial plants and those of the temporal change show that (2) the positive effect of geodiversity on plants' community structure and species richness is greater in the drier year than that in a wetter year. The main insight is that in these drylands, hillslopes with higher geodiversity appear to buffer the effect of drier years, and supported a more diverse plant community than lower geodiversity hillslopes.

RevDate: 2021-09-20
CmpDate: 2021-09-20

Seabloom EW, Borer ET, Hobbie SE, et al (2021)

Soil nutrients increase long-term soil carbon gains threefold on retired farmland.

Global change biology, 27(19):4909-4920.

Abandoned agricultural lands often accumulate soil carbon (C) following depletion of soil C by cultivation. The potential for this recovery to provide significant C storage benefits depends on the rate of soil C accumulation, which, in turn, may depend on nutrient supply rates. We tracked soil C for almost four decades following intensive agricultural soil disturbance along an experimentally imposed gradient in nitrogen (N) added annually in combination with other macro- and micro-nutrients. Soil %C accumulated over the course of the study in unfertilized control plots leading to a gain of 6.1 Mg C ha-1 in the top 20 cm of soil. Nutrient addition increased soil %C accumulation leading to a gain of 17.8 Mg C ha-1 in fertilized plots, nearly a threefold increase over the control plots. These results demonstrate that substantial increases in soil C in successional grasslands following agricultural abandonment occur over decadal timescales, and that C gain is increased by high supply rates of soil nutrients. In addition, soil %C continued to increase for decades under elevated nutrient supply, suggesting that short-term nutrient addition experiments underestimate the effects of soil nutrients on soil C accumulation.

RevDate: 2021-11-11
CmpDate: 2021-11-11

Meng B, Li J, Maurer GE, et al (2021)

Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts.

Ecology, 102(11):e03483.

Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.

RevDate: 2021-09-09
CmpDate: 2021-09-09

O'Connell JL, Mishra DR, Alber M, et al (2021)

BERM: a Belowground Ecosystem Resiliency Model for estimating Spartina alterniflora belowground biomass.

The New phytologist, 232(1):425-439.

Spatiotemporal patterns of Spartina alterniflora belowground biomass (BGB) are important for evaluating salt marsh resiliency. To solve this, we created the BERM (Belowground Ecosystem Resiliency Model), which estimates monthly BGB (30-m spatial resolution) from freely available data such as Landsat-8 and Daymet climate summaries. Our modeling framework relied on extreme gradient boosting, and used field observations from four Georgia salt marshes as ground-truth data. Model predictors included estimated tidal inundation, elevation, leaf area index, foliar nitrogen, chlorophyll, surface temperature, phenology, and climate data. The final model included 33 variables, and the most important variables were elevation, vapor pressure from the previous four months, Normalized Difference Vegetation Index (NDVI) from the previous five months, and inundation. Root mean squared error for BGB from testing data was 313 g m-2 (11% of the field data range), explained variance (R2) was 0.62-0.77. Testing data results were unbiased across BGB values and were positively correlated with ground-truth data across all sites and years (r = 0.56-0.82 and 0.45-0.95, respectively). BERM can estimate BGB within Spartina alterniflora salt marshes where environmental parameters are within the training data range, and can be readily extended through a reproducible workflow. This provides a powerful approach for evaluating spatiotemporal BGB and associated ecosystem function.

RevDate: 2021-05-26

Arismendi I, Bury G, Zatkos L, et al (2021)

A method to evaluate body length of live aquatic vertebrates using digital images.

Ecology and evolution, 11(10):5497-5502.

Traditional methods to measure body lengths of aquatic vertebrates rely on anesthetics, and extended handling times. These procedures can increase stress, potentially affecting the animal's welfare after its release. We developed a simple procedure using digital images to estimate body lengths of coastal cutthroat trout (Oncorhynchus clarkii clarkii) and larval coastal giant salamander (Dicamptodon tenebrosus). Images were postprocessed using ImageJ2. We measured more than 900 individuals of these two species from 200 pool habitats along 9.6 river kilometers. The percent error (mean ± SE) of our approach compared to the use of a traditional graded measuring board was relatively small for all length metrics of the two species. Total length of trout was -2.2% ± 1.0. Snout-vent length and total length of larval salamanders was 3.5% ± 3.3 and -0.6% ± 1.7, respectively. We cross-validated our results by two independent observers that followed our protocol to measure the same animals and found no significant differences (p > .7) in body size distributions for all length metrics of the two species. Our procedure provides reliable information of body size reducing stress and handling time in the field. The method is transferable across taxa and the inclusion of multiple animals per image increases sampling efficiency with stored images that can be reviewed multiple times. This practical tool can improve data collection of animal size over large sampling efforts and broad spatiotemporal contexts.

RevDate: 2021-05-18
CmpDate: 2021-05-18

Wurtzer S, Waldman P, Ferrier-Rembert A, et al (2021)

Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment.

Water research, 198:117183.

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.

RevDate: 2021-05-25
CmpDate: 2021-05-25

Li Z, AM Cupples (2021)

Diversity of nitrogen cycling genes at a Midwest long-term ecological research site with different management practices.

Applied microbiology and biotechnology, 105(10):4309-4327.

Nitrogen fertilizer results in the release of nitrous oxide (N2O), a concern because N2O is an ozone-depleting substance and a greenhouse gas. Although the reduction of N2O to nitrogen gas can control emissions, the factors impacting the enzymes involved have not been fully explored. The current study investigated the abundance and diversity of genes involved in nitrogen cycling (primarily denitrification) under four agricultural management practices (no tillage [NT], conventional tillage [CT], reduced input, biologically-based). The work involved examining soil shotgun sequencing data for nine genes (napA, narG, nirK, nirS, norB, nosZ, nirA, nirB, nifH). For each gene, relative abundance values, diversity and richness indices, and taxonomic classification were determined. Additionally, the genes associated with nitrogen metabolism (defined by the KEGG hierarchy) were examined. The data generated were statistically compared between the four management practices. The relative abundance of four genes (nifH, nirK, nirS, and norB) were significantly lower in the NT treatment compared to one or more of the other soils. The abundance values of napA, narG, nifH, nirA, and nirB were not significantly different between NT and CT. The relative abundance of nirS was significantly higher in the CT treatment compared to the others. Diversity and richness values were higher for four of the nine genes (napA, narG, nirA, nirB). Based on nirS/nirK ratios, CT represents the highest N2O consumption potential in four soils. In conclusion, the microbial communities involved in nitrogen metabolism were sensitive to different agricultural practices, which in turn, likely has implications for N2O emissions. KEY POINTS: • Four genes were less abundant in NT compared to one or more of the others soils (nifH, nirK, nirS, norB). • The most abundant sequences for many of the genes classified within the Proteobacteria. • Higher diversity and richness indices were observed for four genes (napA, narG, nirA, nirB). • Based on nirS/nirK ratios, CT represents the highest N2O consumption potential.

RevDate: 2021-10-07
CmpDate: 2021-10-07

Pansera M, Camatti E, Schroeder A, et al (2021)

The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species.

Scientific reports, 11(1):8341.

The Venice lagoon (VL) has been recognized as a hot spot of introduction of non-indigenous species (NIS), due to several anthropogenic factors and environmental stressors that combined may facilitate NIS invasions. In the last decades an increasing number of zooplankton NIS have been observed in the VL. This work aims to provide a picture of the annual cycle and distribution of the recently recorded non-indigenous copepod Oithona davisae, considering the coexistence patterns with the congeneric resident Oithona nana. Therefore, zooplankton samplings were carried out monthly from August 2016 to July 2017 at five Long-Term Ecological Research LTER stations in the VL. Oithona davisae showed a persistent occurrence throughout the year with the highest abundances in the warm season and in the inner areas, while the congeneric O. nana, showing a different distribution pattern, resulted more abundant near the inlets of the Lagoon, where O. davisae reached the minimum density. Oithona davisae seems to find local conditions that promote its settlement and distribution, especially in the inner and more trophic lagoon sites. In other European coastal embayments or transitional waters, O. davisae occupied the niche left by the indigenous O. nana or can replace this congeneric species through competitive exclusion mechanisms. Our data indicate that, for now, such species replacement has not occurred in the VL. One of the causes is the extreme variety of habitats and niches offered by this environment allowing a balanced coexistence with O. nana and in general with the resident copepod community.

RevDate: 2021-04-16
CmpDate: 2021-04-16

Rosa C, Baccaro F, Cronemberger C, et al (2021)

The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation.

Anais da Academia Brasileira de Ciencias, 93(2):e20201604 pii:S0001-37652021000301008.

The Program for Biodiversity Research (PPBio) is an innovative program designed to integrate all biodiversity research stakeholders. Operating since 2004, it has installed long-term ecological research sites throughout Brazil and its logic has been applied in some other southern-hemisphere countries. The program supports all aspects of research necessary to understand biodiversity and the processes that affect it. There are presently 161 sampling sites (see some of them at Supplementary Appendix), most of which use a standardized methodology that allows comparisons across biomes and through time. To date, there are about 1200 publications associated with PPBio that cover topics ranging from natural history to genetics and species distributions. Most of the field data and metadata are available through PPBio web sites or DataONE. Metadata is available for researchers that intend to explore the different faces of Brazilian biodiversity spatio-temporal variation, as well as for managers intending to improve conservation strategies. The Program also fostered, directly and indirectly, local technical capacity building, and supported the training of hundreds of undergraduate and graduate students. The main challenge is maintaining the long-term funding necessary to understand biodiversity patterns and processes under pressure from global environmental changes.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Scotti A, R Bottarin (2021)

Fine-scale multiannual survey of benthic invertebrates in a glacier-fed stream used for hydropower generation.

Scientific data, 8(1):105.

The present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small "run-of-river" hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important - and long advocated - baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.

RevDate: 2021-06-28
CmpDate: 2021-06-28

Wilcots ME, Harpole WS, Seabloom EW, et al (2021)

Community change can buffer chronic nitrogen impacts, but multiple nutrients tip the scale.

Ecology, 102(6):e03355.

Anthropogenic nitrogen (N) inputs are causing large changes in ecosystems worldwide. Many previous studies have examined the impact of N on terrestrial ecosystems; however, most have added N at rates that are much higher than predicted future deposition rates. Here, we present the results from a gradient of experimental N addition (0-10 g·N·m-2) in a temperate grassland. After a decade of N addition, we found that all levels of N addition changed plant functional group composition, likely indicating altered function for plant communities exposed to 10 yr of N inputs. However, N addition only had weak impacts on species composition and this functional group shift was not driven by any particular species, suggesting high levels of functional redundancy among grasslands species. Adding other nutrients (P, K, and micronutrients) in combination with N caused substantially greater changes in the relative abundance of species and functional groups. Together, these results suggest that compositional change within functional groups may buffer grasslands from impacts of N deposition, but concurrent eutrophication with other elements will likely lead to substantial changes in plant composition and biomass.

RevDate: 2021-05-28
CmpDate: 2021-05-28

Haubrock PJ, Balzani P, Matsuzaki SS, et al (2021)

Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability.

The Science of the total environment, 777:145947.

Invasive alien fishes have detrimental ecological effects on aquatic ecosystems and the services they provide. Impacts from an invasion in a single ecosystem may differ across space and time due to variability in prey availability and environmental conditions. We hypothesize that such variability can be profound, even within a single ecosystem. Stable isotopes analysis (SIA) is commonly used to quantitatively describe the trophic niche of a species. However, spatial and temporal variability in occupied niches are often not incorporated into management strategies and policy options. Here, we used long-term monitoring data to investigate the invasion stage as well as SIA to analyse the trophic niche of the invasive channel catfish Ictalurus punctatus in Lake Kasumigaura (Japan), a long-term ecological research site (LTER), across distant sampling sites and years. We found a significant spatio-temporal variability in relative growth and isotopic niche occupation. Moreover, we defined a new index, the Isotopic Plasticity Index (IPI), which is the ratio between core and total home range of an occupied isotopic niche, to be used as a proxy for the trophic niche stretch or density. We found that this IPI varied considerably, confirming the spatio-temporal variability in trophic niches, suggesting the IPI to be an adequate new isotopic metric. Our results further provide evidence for the existence of variation across invaded landscapes, implying heterogeneous impacts on recipient native communities. Therefore, our work emphasizes the importance of exploring trophic plasticity in feeding ecology and growth as such information enables a better understanding of impacts and can inform the design and implementation of effective management responses.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Van Sundert K, Arfin Khan MAS, Bharath S, et al (2021)

Fertilized graminoids intensify negative drought effects on grassland productivity.

Global change biology, 27(11):2441-2457.

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.

RevDate: 2021-08-11
CmpDate: 2021-08-11

Liang L, Henebry GM, Liu L, et al (2021)

Trends in land surface phenology across the conterminous United States (1982-2016) analyzed by NEON domains.

Ecological applications : a publication of the Ecological Society of America, 31(5):e02323.

Tracking phenological change in a regionally explicit context is a key to understanding ecosystem status and change. The current study investigated long-term trends of satellite-observed land surface phenology (LSP) in the 17 National Ecological Observatory Network (NEON) domains across the conterminous United States (CONUS). Characterization of LSP trends was based on a high temporal resolution (3-d) time series of the two-band enhanced vegetation index (EVI2) derived from a long-term data record (LTDR) of the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). We identified significant trend patterns in LSP and their seasonal climate and land use/land cover drivers for each NEON domain. Key findings include (1) the start of season (SOS) predominantly shifted later in 13 out of 17 domains (24.3% of CONUS by area) due potentially to both a lack of spring warming in the eastern United States and changes in agronomic practices over agricultural lands; (2) the end of season (EOS) became predominantly later in nine domains dominated by natural vegetation (14.1% of CONUS by area) in response to widespread warming in autumn; (3) the EOS predominantly shifted earlier in three domains (10.6% of CONUS by area) over primarily agricultural lands as potentially affected by changes in crop growth cycles; and (4) earlier shift in the SOS was mostly found in the Northwest (3.6% of CONUS by area) and was predominant only in the moist Pacific Northwest (27.7% of the domain by area) in response to more pronounced spring warming in the region. The overall patterns of SOS and EOS trends across CONUS appeared constrained by continental-scale temperature trends as characterized by a west-east dipole and the distribution of the nation's agricultural lands. In addition, seasonal trend analysis revealed that most NEON domains (15/17) became predominantly greener in part of or throughout the growing season, potentially contributed by both climate change-induced growth increase and improved agricultural productivity. The domain-wide LSP trends with their underlying drivers identified here provide important contextual information for NEON science as well as for investigations within CONUS using other distributed observatories (e.g., LTER, LTAR, FLUXNET, USA-NPN, etc.).

RevDate: 2021-05-27
CmpDate: 2021-05-27

Wurtzer S, Maréchal V, Bertrand I, et al (2021)

[Viral infectious diseases seen through wastewater].

Virologie (Montrouge, France), 25(1):8-11.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Wurtzer S, Maréchal V, Bertrand I, et al (2021)

Viral infectious diseases seen through wastewater.

Virologie (Montrouge, France), 25(1):1-4.

RevDate: 2021-04-15
CmpDate: 2021-04-15

Cusser S, Helms J, Bahlai CA, et al (2021)

How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network.

Ecology letters, 24(5):1103-1111.

We utilise the wealth of data accessible through the 40-year-old Long-Term Ecological Research (LTER) network to ask if aspects of the study environment or taxa alter the duration of research necessary to detect consistent results. To do this, we use a moving-window algorithm. We limit our analysis to long-term (> 10 year) press experiments recording organismal abundance. We find that studies conducted in dynamic abiotic environments need longer periods of study to reach consistent results, as compared to those conducted in more moderated environments. Studies of plants were more often characterised by spurious results than those on animals. Nearly half of the studies we investigated required 10 years or longer to become consistent, where all significant trends agreed in direction, and four studies (of 100) required longer than 20 years. Here, we champion the importance of long-term data and bolster the value of multi-decadal experiments in understanding, explaining and predicting long-term trends.

RevDate: 2021-04-23
CmpDate: 2021-04-23

Evers SM, Knight TM, Inouye DW, et al (2021)

Lagged and dormant season climate better predict plant vital rates than climate during the growing season.

Global change biology, 27(9):1927-1941.

Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.

RevDate: 2021-07-29
CmpDate: 2021-07-29

Paciorek CJ, Cogbill CV, Peters JA, et al (2021)

The forests of the midwestern United States at Euro-American settlement: Spatial and physical structure based on contemporaneous survey data.

PloS one, 16(2):e0246473.

We present gridded 8 km-resolution data products of the estimated stem density, basal area, and biomass of tree taxa at Euro-American settlement of the midwestern United States during the middle to late 19th century for the states of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The data come from settlement-era Public Land Survey (PLS) data (ca. 0.8-km resolution) of trees recorded by land surveyors. The surveyor notes have been transcribed, cleaned, and processed to estimate stem density, basal area, and biomass at individual points. The point-level data are aggregated within 8 km grid cells and smoothed using a generalized additive statistical model that accounts for zero-inflated continuous data and provides approximate Bayesian uncertainty estimates. The statistical modeling smooths out sharp spatial features (likely arising from statistical noise) within areas smaller than about 200 km2. Based on this modeling, presettlement Midwestern landscapes supported multiple dominant species, vegetation types, forest types, and ecological formations. The prairies, oak savannas, and forests each had distinctive structures and spatial distributions across the domain. Forest structure varied from savanna (averaging 27 Mg/ha biomass) to northern hardwood (104 Mg/ha) and mesic southern forests (211 Mg/ha). The presettlement forests were neither unbroken and massively-statured nor dominated by young forests constantly structured by broad-scale disturbances such as fire, drought, insect outbreaks, or hurricanes. Most forests were structurally between modern second growth and old growth. We expect the data product to be useful as a baseline for investigating how forest ecosystems have changed in response to the last several centuries of climate change and intensive Euro-American land use and as a calibration dataset for paleoecological proxy-based reconstructions of forest composition and structure for earlier time periods. The data products (including raw and smoothed estimates at the 8-km scale) are available at the LTER Network Data Portal as version 1.0.

RevDate: 2021-01-12

Anonymous (2021)

Erratum.

Ecological applications : a publication of the Ecological Society of America, 31(1):e02231.

RevDate: 2021-05-10
CmpDate: 2021-05-10

Käse L, Metfies K, Neuhaus S, et al (2021)

Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?.

PloS one, 16(1):e0244817.

In this study, we created a dataset of a continuous three-year 18S metabarcoding survey to identify eukaryotic parasitoids, and potential connections to hosts at the Long-Term Ecological Research station Helgoland Roads. The importance of parasites and parasitoids for food web dynamics has previously been recognized mostly in terrestrial and freshwater systems, while marine planktonic parasitoids have been understudied in comparison to those. Therefore, the occurrence and role of parasites and parasitoids remains mostly unconsidered in the marine environment. We observed high abundances and diversity of parasitoid operational taxonomic units in our dataset all year round. While some parasitoid groups were present throughout the year and merely fluctuated in abundances, we also detected a succession of parasitoid groups with peaks of individual species only during certain seasons. Using co-occurrence and patterns of seasonal occurrence, we were able to identify known host-parasitoid dynamics, however identification of new potential host-parasitoid interactions was not possible due to their high dynamics and variability in the dataset.

RevDate: 2021-01-01

Sherman J, Gorbunov MY, Schofield O, et al (2020)

Photosynthetic energy conversion efficiency in the West Antarctic Peninsula.

Limnology and oceanography, 65(12):2912-2925.

The West Antarctic Peninsula (WAP) is a highly productive polar ecosystem where phytoplankton dynamics are regulated by intense bottom-up control from light and iron availability. Rapid climate change along the WAP is driving shifts in the mixed layer depth and iron availability. Elucidating the relative role of each of these controls and their interactions is crucial for understanding of how primary productivity will change in coming decades. Using a combination of ultra-high-resolution variable chlorophyll fluorescence together with fluorescence lifetime analyses on the 2017 Palmer Long Term Ecological Research cruise, we mapped the temporal and spatial variability in phytoplankton photophysiology across the WAP. Highest photosynthetic energy conversion efficiencies and lowest fluorescence quantum yields were observed in iron replete coastal regions. Photosynthetic energy conversion efficiencies decreased by ~ 60% with a proportional increase in quantum yields of thermal dissipation and fluorescence on the outer continental shelf and slope. The combined analysis of variable fluorescence and lifetimes revealed that, in addition to the decrease in the fraction of inactive reaction centers, up to 20% of light harvesting chlorophyll-protein antenna complexes were energetically uncoupled from photosystem II reaction centers in iron-limited phytoplankton. These biophysical signatures strongly suggest severe iron limitation of photosynthesis in the surface waters along the continental slope of the WAP.

RevDate: 2020-12-31

Bowen JL, Giblin AE, Murphy AE, et al (2020)

Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands.

Bioscience, 70(12):1108-1119.

Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3-) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3- can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3- to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.

RevDate: 2021-01-23
CmpDate: 2020-12-24

Wurtzer S, Marechal V, Mouchel JM, et al (2020)

Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020.

Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(50):.

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease (COVID-19). People infected with SARS-CoV-2 may exhibit no or mild non-specific symptoms; thus, they may contribute to silent circulation of the virus among humans. Since SARS-CoV-2 RNA can be detected in stool samples, monitoring SARS-CoV-2 RNA in waste water (WW) has been proposed as a complementary tool to investigate virus circulation in human populations.AimTo test if the quantification of SARS-CoV-2 genomes in WW correlates with the number of symptomatic or non-symptomatic carriers.MethodWe performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw WW samples collected from several major WW treatment plants in Greater Paris. The study period was 5 March to 23 April 2020, including the lockdown period in France (from 17 March).ResultsWe showed that the increase of genome units in raw WW accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genome could be detected before the epidemic grew massively (around 8 March). Equally importantly, a marked decrease in the quantities of genome units was observed concomitantly with the reduction in the number of new COVID-19 cases, 29 days following the lockdown.ConclusionThis work suggests that a quantitative monitoring of SARS-CoV-2 genomes in WW could generate important additional information for improved monitoring of SARS-CoV-2 circulation at local or regional levels and emphasises the role of WW-based epidemiology.

RevDate: 2021-02-15
CmpDate: 2021-02-15

Kohli M, Henning JA, Borer ET, et al (2021)

Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies.

Ecology letters, 24(3):487-497.

Plant diversity and plant-consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (Re) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and Re , but NEE remained unchanged. Removing foliar fungi increased GPP and NEE, with the greatest effects at low plant diversity. After accounting for plant biomass, we found that removing foliar fungi increased mass-specific flux rates in the low-diversity plant communities by altering plant species composition and community-wide foliar nitrogen content. However, this effect disappeared when soil fungi and arthropods were also removed, demonstrating that both plant diversity and interactions among consumer groups determine the ecosystem-scale effects of plant-fungal interactions.

RevDate: 2021-01-12
CmpDate: 2021-01-12

Baker NJ, Pilotto F, Jourdan J, et al (2021)

Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community.

The Science of the total environment, 758:143685.

Freshwater ecosystems are dynamic, complex systems with a multitude of physical and ecological processes and stressors which drive fluctuations on the community-level. Disentangling the effects of different processes and stressors is challenging due to their interconnected nature. However, as protected areas (i.e. national parks) are less anthropogenically impacted, they are ideal for investigating single stressors. We focus on the Bavarian Forest National Park, a Long-Term Ecological Research (LTER) site in Germany, where the major stressors are climate warming, air pollution (i.e. acidification) and bark beetle infestations. We investigated the effects of these stressors on freshwater macroinvertebrates using comprehensive long-term (1983-2014) datasets comprising high-resolution macroinvertebrate and physico-chemical data from a near-natural stream. Macroinvertebrate communities have undergone substantial changes over the past 32 years, highlighted by increases in overall community abundance (+173%) and richness (+51.6%) as well as taxonomic restructuring driven by a disproportional increase of dipterans. Prior to the year 2000, regression analyses revealed a decline in sulphate deposition and subsequent recovery from historical acidification as potential drivers of the increases in abundance and richness rather than to increases in water temperature (1.5 °C overall increase). Post 2000, however, alterations to nutrient cycling caused by bark beetle infestations coupled with warming temperatures were correlated to taxonomic restructuring and disproportional increases of dipterans at the expense of sensitive taxa such as plecopterans and trichopterans. Our results highlight the challenges when investigating the effects of climate change within a multi-stressor context. Even in conservation areas, recovery from previous disturbance might mask the effects of ongoing disturbances like climate change. Overall, we observed strong community restructuring, demonstrating that stenothermal headwater communities face additional stress due to emerging competition with tolerant taxa. Conservation efforts should consider the temporal variability of communities and their recovery from disturbances to adequately identify species vulnerable to local or widespread extinction.

RevDate: 2020-12-01

Sakio H, T Masuzawa (2020)

Advancing Timberline on Mt. Fuji between 1978 and 2018.

Plants (Basel, Switzerland), 9(11):.

Climate change is a major cause of changes in alpine and polar vegetation, particularly at the edges of distributions. In temperate regions, these changes are expected to occur at the timberline of alpine zones. On Mt. Fuji, the highest mountain in Japan, the timberline is located 2400-2500 m above sea level. Over a 40-year period (1978-2018), we researched changes in the timberline vegetation of Mt. Fuji. A permanent belt transect extending from the upper timberline to subalpine zones was set up in August 1978. Tree diameters and heights were recorded at the establishment of the transect and every 20 years afterwards. Over the 40 years of the study, the timberline advanced rapidly upwards, and the degree of vegetation cover above the timberline increased remarkably. Notably, the expansion of Salix reinii into the upper part of the timberline facilitated the subsequent spread of Larix kaempferi into this zone. Seedlings of L. kaempferi were particularly abundant at the upper timberline and became established on the uppermost part of the slope. The shape of L. kaempferi at the upper timberline changed from a prostrate form to an upright tree form. We conclude that the upward advance of the alpine timberline observed on Mt. Fuji is due to climate change.

RevDate: 2021-01-28
CmpDate: 2020-11-25

Anthony MA, Stinson KA, Moore JAM, et al (2020)

Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment.

Oecologia, 194(4):659-672.

The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Margiotta F, Balestra C, Buondonno A, et al (2020)

Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay.

Marine environmental research, 160:104980.

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.

RevDate: 2021-03-15
CmpDate: 2021-03-15

Harrison JL, Sanders-DeMott R, Reinmann AB, et al (2020)

Growing-season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest.

Ecology, 101(11):e03173.

Climate models project higher growing-season temperatures and a decline in the depth and duration of winter snowpack throughout many north temperate ecosystems over the next century. A smaller snowpack is projected to induce more frequent soil freeze/thaw cycles in winter in northern hardwood forests of the northeastern United States. We measured the combined effects of warmer growing-season soil temperatures and increased winter freeze/thaw cycles on rates of leaf-level photosynthesis and transpiration (sap flow) of red maple (Acer rubrum) trees in a northern hardwood forest at the Climate Change Across Seasons Experiment at Hubbard Brook Experimental Forest in New Hampshire. Soil temperatures were warmed 5°C above ambient temperatures during the growing season and soil freeze/thaw cycles were induced in winter to mimic the projected changes in soil temperature over the next century. Relative to reference plots, growing-season soil warming increased rates of leaf-level photosynthesis by up to 85.32 ± 4.33%, but these gains were completely offset by soil freeze/thaw cycles in winter, suggesting that increased freeze/thaw cycles in winter over the next 100 yr will reduce the effect of warming on leaf-level carbon gains. Soil warming in the growing season increased rates of transpiration per kilopascal of vapor pressure deficit (VPD) by up to 727.39 ± 0.28%, even when trees were exposed to increased frequency of soil freeze/thaw cycles in the previous winter, which could influence regional hydrology in the future. Using climate projections downscaled from the Coupled Model Intercomparison Project, we project increased rates of whole-season transpiration in these forests over the next century by 42-61%. We also project 52-77 additional days when daily air temperatures will be above the long-term average daily maximum during the growing season at Hubbard Brook. Together, these results show that projected changes in climate across both the growing season and winter are likely to cause greater rates of water uptake and have no effect on rates of leaf-level carbon uptake by trees, with potential ecosystem consequences for hydrology and carbon cycling in northern hardwood forests.

RevDate: 2021-06-30
CmpDate: 2020-09-25

Albrecht M, Kleijn D, Williams NM, et al (2020)

The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis.

Ecology letters, 23(10):1488-1498.

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.

RevDate: 2021-04-14
CmpDate: 2021-04-14

Risch AC, Zimmermann S, Moser B, et al (2020)

Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties.

Global change biology, 26(12):7173-7185.

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.

RevDate: 2021-05-17
CmpDate: 2020-12-07

Crossley MS, Meier AR, Baldwin EM, et al (2020)

No net insect abundance and diversity declines across US Long Term Ecological Research sites.

Nature ecology & evolution, 4(10):1368-1376.

Recent reports of dramatic declines in insect abundance suggest grave consequences for global ecosystems and human society. Most evidence comes from Europe, however, leaving uncertainty about insect population trends worldwide. We used >5,300 time series for insects and other arthropods, collected over 4-36 years at monitoring sites representing 68 different natural and managed areas, to search for evidence of declines across the United States. Some taxa and sites showed decreases in abundance and diversity while others increased or were unchanged, yielding net abundance and biodiversity trends generally indistinguishable from zero. This lack of overall increase or decline was consistent across arthropod feeding groups and was similar for heavily disturbed versus relatively natural sites. The apparent robustness of US arthropod populations is reassuring. Yet, this result does not diminish the need for continued monitoring and could mask subtler changes in species composition that nonetheless endanger insect-provided ecosystem services.

RevDate: 2021-03-15
CmpDate: 2021-03-15

Gade MR, Connette GM, Crawford JA, et al (2020)

Predicted alteration of surface activity as a consequence of climate change.

Ecology, 101(11):e03154.

Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.

RevDate: 2020-09-28

Schoenrock KM, Chan KM, O'Callaghan T, et al (2020)

A review of subtidal kelp forests in Ireland: From first descriptions to new habitat monitoring techniques.

Ecology and evolution, 10(13):6819-6832.

Aim: Kelp forests worldwide are important marine ecosystems that foster high primary to secondary productivity and multiple ecosystem services. These ecosystems are increasingly under threat from extreme storms, changing ocean temperatures, harvesting, and greater herbivore pressure at regional and global scales, necessitating urgent documentation of their historical to present-day distributions. Species range shifts to higher latitudes have already been documented in some species that dominate subtidal habitats within Europe. Very little is known about kelp forest ecosystems in Ireland, where rocky coastlines are dominated by Laminaria hyperborea. In order to rectify this substantial knowledge gap, we compiled historical records from an array of sources to present historical distribution, kelp and kelp forest recording effort over time, and present rational for the monitoring of kelp habitats to better understand ecosystem resilience.

Location: Ireland (Northern Ireland and Éire).

Methods: Herbaria, literature from the Linnaean society dating back to late 1700s, journal articles, government reports, and online databases were scoured for information on L. hyperborea. Information about kelp ecosystems was solicited from dive clubs and citizen science groups that are active along Ireland's coastlines.

Results: Data were used to create distribution maps and analyze methodology and technology used to record L. hyperborea presence and kelp ecosystems within Ireland. We discuss the recent surge in studies on Irish kelp ecosystems, fauna associated with kelp ecosystems that may be used as indicators of ecosystem health and suggest methodologies for continued monitoring.

Main Conclusions: While there has been a steady increase in recording effort of the dominant subtidal kelp forest species, L. hyperborea, only recently have studies begun to address other important eco-evolutionary processes at work in kelp forests including connectivity among kelp populations in Ireland. Further monitoring, using suggested methodologies, is required to better understand the resilience of kelp ecosystems in Ireland.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Serra AA, Bittebière AK, Mony C, et al (2020)

Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape.

The Science of the total environment, 744:140772.

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.

RevDate: 2021-01-29
CmpDate: 2021-01-29

Goldberg L, Lagomasino D, Thomas N, et al (2020)

Global declines in human-driven mangrove loss.

Global change biology, 26(10):5844-5855.

Global mangrove loss has been attributed primarily to human activity. Anthropogenic loss hotspots across Southeast Asia and around the world have characterized the ecosystem as highly threatened, though natural processes such as erosion can also play a significant role in forest vulnerability. However, the extent of human and natural threats has not been fully quantified at the global scale. Here, using a Random Forest-based analysis of over one million Landsat images, we present the first 30 m resolution global maps of the drivers of mangrove loss from 2000 to 2016, capturing both human-driven and natural stressors. We estimate that 62% of global losses between 2000 and 2016 resulted from land-use change, primarily through conversion to aquaculture and agriculture. Up to 80% of these human-driven losses occurred within six Southeast Asian nations, reflecting the regional emphasis on enhancing aquaculture for export to support economic development. Both anthropogenic and natural losses declined between 2000 and 2016, though slower declines in natural loss caused an increase in their relative contribution to total global loss area. We attribute the decline in anthropogenic losses to the regionally dependent combination of increased emphasis on conservation efforts and a lack of remaining mangroves viable for conversion. While efforts to restore and protect mangroves appear to be effective over decadal timescales, the emergence of natural drivers of loss presents an immediate challenge for coastal adaptation. We anticipate that our results will inform decision-making within conservation and restoration initiatives by providing a locally relevant understanding of the causes of mangrove loss.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Metfies K, Hessel J, Klenk R, et al (2020)

Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S meta-barcoding.

PloS one, 15(6):e0233921.

In May 2016, the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) was implemented in parallel to the Long Term Ecological Research (LTER) observatory Helgoland Roads in the German Bight. We collected samples for characterization of dynamics within the eukaryotic microbial communities at the end of a phytoplankton bloom via 18S meta-barcoding. Understanding consequences of environmental change for key marine ecosystem processes, such as phytoplankton bloom dynamics requires information on biodiversity and species occurrences with adequate temporal and taxonomic resolution via time series observations. Sampling automation and molecular high throughput methods can serve these needs by improving the resolution of current conventional marine time series observations. A technical evaluation based on an investigation of eukaryotic microbes using the partial 18S rRNA gene suggests that automated filtration with the AUTOFIM device and preservation of the plankton samples leads to highly similar 18S community profiles, compared to manual filtration and snap freezing. The molecular data were correlated with conventional microscopic counts. Overall, we observed substantial change in the eukaryotic microbial community structure during the observation period. A simultaneous decline of diatom and ciliate sequences succeeded a peak of Miracula helgolandica, suggesting a potential impact of these oomycete parasites on diatom bloom dynamics and phenology in the North Sea. As oomycetes are not routinely counted at Helgoland Roads LTER, our findings illustrate the benefits of combining automated filtration with metabarcodingto augment classical time series observations, particularly for taxa currently neglected due to methodological constraints.

RevDate: 2020-09-30

Käse L, Kraberg AC, Metfies K, et al (2020)

Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea.

Journal of plankton research, 42(3):305-319.

The dynamics of diatoms and dinoflagellates have been monitored for many decades at the Helgoland Roads Long-Term Ecological Research site and are relatively well understood. In contrast, small-sized eukaryotic microbes and their community changes are still much more elusive, mainly due to their small size and uniform morphology, which makes them difficult to identify microscopically. By using next-generation sequencing, we wanted to shed light on the Helgoland planktonic community dynamics, including nano- and picoplankton, during a spring bloom. We took samples from March to May 2016 and sequenced the V4 region of the 18S rDNA. Our results showed that mixotrophic and heterotrophic taxa were more abundant than autotrophic diatoms. Dinoflagellates dominated the sequence assemblage, and several small-sized eukaryotic microbes like Haptophyta, Choanoflagellata, Marine Stramenopiles and Syndiniales were identified. A diverse background community including taxa from all size classes was present during the whole sampling period. Five phases with several communities were distinguished. The fastest changes in community composition took place in phase 3, while the communities from phases 1 to 5 were more similar to each other despite contrasting environmental conditions. Synergy effects of next-generation sequencing and traditional methods may be exploited in future long-term observations.

RevDate: 2020-07-10
CmpDate: 2020-07-10

Battisti C, Fanelli G, Filpa A, et al (2020)

Giant Reed (Arundo donax) wrack as sink for plastic beach litter: First evidence and implication.

Marine pollution bulletin, 155:111179.

In order to maintain the hydraulic outflow in land reclaimed canalizations, the competent agencies provide to mechanically mow the Giant Reed (Arundo donax, L. 1753) along the aquatic ecosystem banks. Nevertheless, the reeds mowed can be transported away from the waters following storm surges and can be deposited in large quantities along the sandy beaches. We carried out a stratified study in a Mediterranean sandy beach to test the hypothesis that Giant Reed wrack may act as a sink and barrier for plastic beach litter. We observed a large amount of plastic litter entrapped in the Arundo donax wrack (density of 0.868 items/m2), with a higher density when compared to both the inner and the shoreline belts. Density of litter is significantly higher considering the categories of meso- and micro-plastics. Organic macrophyte wrack is useful for dunal macrodetritivorous invertebrates and generally for fauna communities, which use this litter as refuge and trophic pabulum. Significant accumulations of organic wrack can mitigate coastal erosion; nevertheless, for its structural characteristics, Arundo wrack can also act as a barrier for litter towards the inner vegetated dunes, so entrapping a large amount of anthropogenic litter. In this regard, Arundo wrack can represent a sink habitat, first attracting (due to large availability of detritus with a relative high rate of decomposition) and then, entrapping many organisms in anthropogenic litter. We suggest that, once mechanically mowed, the land reclaimed agencies should periodically remove from the channel banks the Arundo donax reeds, impeding the accumulation of incoherent vegetated matter along the aquatic ecosystem banks.

RevDate: 2021-03-03
CmpDate: 2021-03-03

Fanelli E, Aguzzi J, Marini S, et al (2020)

Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring.

Sensors (Basel, Switzerland), 20(10):.

Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station "Mare Chiara", and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).

RevDate: 2021-05-19
CmpDate: 2020-10-02

Wood LK, Hays S, JC Zinnert (2020)

Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment.

Scientific reports, 10(1):8210.

Regime shift from grasslands to shrub-dominated landscapes occur worldwide driven by altered land-use and climate change, affecting landscape function, biodiversity, and productivity. Warming winter temperatures are a main driver of expansion of the native, evergreen shrub, Morella cerifera, in coastal landscapes. Shrub establishment in these habitats alters microclimate, but little is known about seasonal differences and microclimate variance. We assessed influence of shrubs on microclimate variance, community composition, and community physiological functioning across three vegetation zones: grass, transitional, and shrub in a coastal grassland. Using a novel application of a time-series analysis, we interpret microclimatic variance modification and elucidate mechanisms of shrub encroachment at the Virginia Coast Reserve, Long-Term Ecological Research site. As shrub thickets form, diversity is reduced with little grass/forb cover, while transpiration and annual productivity increase. Shrub thickets significantly reduced temperature variance with a positive influence of one day on the next in maximum air, minimum air, and maximum ground temperature. We also show that microclimatic temperature moderation reduces summer extreme temperatures in transition areas, even before coalescence into full thickets. Encroachment of Morella cerifera on the Virginia barrier islands is driven by reduced local exposure to cold temperatures and enhanced by abiotic microclimatic modification and biotic physiological functioning. This shift in plant community composition from grassland to shrub thicket alters the role of barrier islands in productivity and can have impacts on the natural resilience of the islands.

RevDate: 2020-09-28

Bush ER, Jeffery K, Bunnefeld N, et al (2020)

Rare ground data confirm significant warming and drying in western equatorial Africa.

PeerJ, 8:e8732.

Background: The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios.

Methods: We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns.

Results: Lopé's weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of -75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales.

Conclusions: The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the 'dry' models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear.

RevDate: 2020-10-29
CmpDate: 2020-10-29

Turk Dermastia T, Cerino F, Stanković D, et al (2020)

Ecological time series and integrative taxonomy unveil seasonality and diversity of the toxic diatom Pseudo-nitzschia H. Peragallo in the northern Adriatic Sea.

Harmful algae, 93:101773.

Pseudo-nitzschia H. Peragallo (1900) is a globally distributed genus of pennate diatoms that are important components of phytoplankton communities worldwide. Some members of the genus produce the neurotoxin domoic acid, so regular monitoring is in place. However, the identification of toxic members in routine samplings remains problematic. In this study, the diversity and seasonal occurrence of Pseudo-nitzschia species were investigated in the Gulf of Trieste, a shallow gulf in the northern Adriatic Sea. We used time series data from 2005 to 2018 to describe the seasonal and inter-annual occurrence of the genus in the area and its contribution to the phytoplankton community. On average, the genus accounted for about 15 % of total diatom abundance and peaked in spring and autumn, with occasional outbreaks during summer and large inter-annual fluctuations. Increased water temperature and decreased salinity positively affected the presence of some members of the genus, while strong effects could be masked by an unsuitable definition of the species complexes used for monitoring purposes. Therefore, combining morphological (TEM) and molecular analyses by sequencing the ITS, 28S and rbcL markers, eight species were identified from 83 isolated monoclonal strains: P. calliantha, P. fraudulenta, P. delicatissima, P. galaxiae, P. mannii, P. multistriata, P. pungens and P. subfraudulenta. A genetic comparison between the isolated strains and other strains in the Mediterranean was carried out and rbcL was inspected as a potential barcode marker in respect to our results. This is the first study in the Gulf of Trieste on Pseudo-nitzschia time series from a long-term ecological research (LTER) site coupled with molecular data. We show that meaningful ecological conclusions can be drawn by applying integrative methodology, as opposed to the approach that only considers species complexes. The results of this work will provide guidance for further monitoring efforts as well as research activities, including population genetics and genomics, associated with seasonal distribution and toxicity profiles.

RevDate: 2021-02-22
CmpDate: 2021-02-22

Peters DPC, Okin GS, Herrick JE, et al (2020)

Modifying connectivity to promote state change reversal: the importance of geomorphic context and plant-soil feedbacks.

Ecology, 101(9):e03069.

Alternative states maintained by feedbacks are notoriously difficult, if not impossible, to reverse. Although positive interactions that modify soil conditions may have the greatest potential to alter self-reinforcing feedbacks, the conditions leading to these state change reversals have not been resolved. In a 9-yr study, we modified horizontal connectivity of resources by wind or water on different geomorphic surfaces in an attempt to alter plant-soil feedbacks and shift woody-plant-dominated states back toward perennial grass dominance. Modifying connectivity resulted in an increase in litter cover regardless of the vector of transport (wind, water) followed by an increase in perennial grass cover 2 yr later. Modifying connectivity was most effective on sandy soils where wind is the dominant vector, and least effective on gravelly soils on stable surfaces with low sediment movement by water. We found that grass cover was related to precipitation in the first 5 yr of our study, and plant-soil feedbacks developed following 6 yr of modified connectivity to overwhelm effects of precipitation on sandy, wind-blown soils. These feedbacks persisted through time under variable annual rainfall. On alluvial soils, either plant-soil feedbacks developed after 7 yr that were not persistent (active soils) or did not develop (stable soils). This novel approach has application to drylands globally where desertified lands have suffered losses in ecosystem services, and to other ecosystems where connectivity-mediated feedbacks modified at fine scales can be expected to impact plant recovery and state change reversals at larger scales, in particular for wind-impacted sites.

RevDate: 2020-04-08
CmpDate: 2020-04-08

Leitner S, Dirnböck T, Kobler J, et al (2020)

Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst.

Journal of environmental management, 262:110338.

With climate change the occurrence of summer droughts is expected to increase in Central Europe. This could lead to increased nitrate (NO3-) leaching when water scarcity affects the N-uptake capacity of trees and increases soil N availability due to early leaf senescence and higher litter input. In the present study, we used 16 years of ecological monitoring data from the LTER research site "Zöbelboden" in Austria. The monitoring site is a mixed Spruce-Sycamore-Ash-Beech forest on karst, which is representative for many watersheds that supply drinking water in Austria. We found that in the year after a summer drought, NO3- leaching via soil water seepage was significantly elevated compared to the long-term mean. While in normal years, NO3- leaching was primarily affected by soil water seepage volume, after a summer drought these controls changed and NO3- leaching was controlled by NO3- input via precipitation, tree N uptake, and vapor-pressure deficit. Furthermore, higher aboveground litter input during dry years was correlated with increased NO3- leaching in the following year. Our findings show that NO3- leaching from temperate mountain forests on karst is susceptible to summer drought, which could affect drinking water quality in the Central European Alps in the future, especially in combination with forest disturbances like bark beetle outbreaks, which are often a direct consequence of drought damage to trees.

RevDate: 2021-04-03
CmpDate: 2020-09-03

Plum C, Hillebrand H, S Moorthi (2020)

Krill vs salps: dominance shift from krill to salps is associated with higher dissolved N:P ratios.

Scientific reports, 10(1):5911.

Pronounced atmospheric and oceanic warming along the West Antarctic Peninsula (WAP) has resulted in abundance shifts in populations of Antarctic krill and Salpa thompsoni determined by changes in the timing of sea-ice advance, the duration of sea-ice cover and food availability. Krill and salps represent the most important macrozooplankton grazers at the WAP, but differ profoundly in their feeding biology, population dynamics and stoichiometry of excretion products with potential consequences for the relative availability of dissolved nitrogen and phosphorus. Alternation of the dissolved nutrient pool due to shifts in krill and salp densities have been hypothesized but never explicitly tested by using observational data. We therefore used the Palmer LTER dataset in order to investigate whether the dominance of either grazer is related with the observed dissolved nitrogen:phosphorus (N:P) ratios at the WAP. Across the whole sampling grid, the dominance of salps over krill was significantly correlated to higher concentrations of both N and P as well as a higher N:P ratios. Using actual long-term data, our study shows for the first time that changes in key grazer dominance may have consequences for the dynamics of dissolved nitrogen and phosphorus at the WAP.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Cusser S, Bahlai C, Swinton SM, et al (2020)

Long-term research avoids spurious and misleading trends in sustainability attributes of no-till.

Global change biology, 26(6):3715-3725.

Agricultural management recommendations based on short-term studies can produce findings inconsistent with long-term reality. Here, we test the long-term environmental sustainability and profitability of continuous no-till agriculture on yield, soil water availability, and N2 O fluxes. Using a moving window approach, we investigate the development and stability of several attributes of continuous no-till as compared to conventional till agriculture over a 29-year period at a site in the upper Midwest, US. Over a decade is needed to detect the consistent effects of no-till. Both crop yield and soil water availability required 15 years or longer to generate patterns consistent with 29-year trends. Only marginal trends for N2 O fluxes appeared in this period. Relative profitability analysis suggests that after initial implementation, 86% of periods between 10 and 29 years recuperated the initial expense of no-till implementation, with the probability of higher relative profit increasing with longevity. Importantly, statistically significant but misleading short-term trends appeared in more than 20% of the periods examined. Results underscore the importance of decadal and longer studies for revealing consistent dynamics and emergent outcomes of no-till agriculture, shown to be beneficial in the long term.

RevDate: 2021-01-15
CmpDate: 2021-01-15

Caruso T, Melecis V, Kagainis U, et al (2020)

Population asynchrony alone does not explain stability in species-rich soil animal assemblages: The stabilizing role of forest age on oribatid mite communities.

The Journal of animal ecology, 89(6):1520-1531.

The importance of microbial and plant communities in the control of the diversity and structure of soil animal communities has been clarified over the last decade. Previous research focused on abiotic factors, niche separation and spatial patterns. Significant gaps still exist in our knowledge of the factors that control the stability of these communities over time. We analysed a 9-year dataset from the national Long-term Ecological Research Network of Latvia. We focused on 117 oribatid species from three Scots pine forests of different age (<40, 65 and >150 years) and structure. For each forest type, 100 samples were collected each year, providing very high replication and long time series for a soil community. We assessed different aspects of stability: we used a dynamic null model, parameterized on observed growth rates, to test the hypothesis that asynchrony in species populations stabilizes total community size; we also analysed alpha and beta diversity over time to test the hypothesis that temporal variation in species composition and relative abundances is controlled by forest attributes. Real communities can be more stable than their stochastic counterparts if species are asynchronous, confirming for the first time the role of asynchrony in stabilizing soil communities. Yet, while some real communities were more stable and had higher abundance and growth rates than others, they were not necessarily more asynchronous than the less stable communities. Species composition and relative abundances were also less variable in the more stable communities. Species asynchrony generally stabilizes species-rich communities but is not sufficient to explain the different levels of stability between forests. Forest age is a key factor explaining the different levels of overyielding and so stability. Data suggest that both asynchrony and high diversity of microhabitat structure of Scots pine forests promote the stability of soil animal communities.

RevDate: 2020-12-14
CmpDate: 2020-12-04

Trout-Haney JV, Heindel RC, RA Virginia (2020)

Picocyanobacterial cells in near-surface air above terrestrial and freshwater substrates in Greenland and Antarctica.

Environmental microbiology reports, 12(3):296-305.

Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near-surface air at concentrations ranging from 2,431 to 28,355 cells m-3 of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon-specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life.

RevDate: 2021-02-14
CmpDate: 2020-03-09

Prager CM, Boelman NT, Eitel JUH, et al (2020)

A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability.

Oecologia, 192(3):671-685.

Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.

RevDate: 2020-02-25

PLOS ONE Staff (2020)

Correction: Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities.

PloS one, 15(2):e0229219.

[This corrects the article DOI: 10.1371/journal.pone.0227706.].

RevDate: 2020-09-28

Armeli Minicante S, Piredda R, Quero GM, et al (2019)

Habitat Heterogeneity and Connectivity: Effects on the Planktonic Protist Community Structure at Two Adjacent Coastal Sites (the Lagoon and the Gulf of Venice, Northern Adriatic Sea, Italy) Revealed by Metabarcoding.

Frontiers in microbiology, 10:2736.

The Lagoon of Venice (LoV) and the Gulf of Venice (GoV), two adjacent coastal Long Term Ecological Research (LTER) sites in the northern Adriatic Sea, represent a transitional/marine coupled ecosystem under the influence of regional and local factors. In this study, these sites were sampled on four dates from April 2016 to February 2017 for environmental DNA and relevant abiotic variables, aiming to assess the relative importance of habitat heterogeneity and connectivity in structuring the protist community. High Throughput Sequencing of V4-18S rRNA gene from 56 samples collected at seven stations produced ca 6 million reads, grouped into 7,336 Operational Taxonomic Units (OTUs) at 97% similarity, which were affiliated to protists belonging to 34 taxonomic groups. The whole community was dominated by Bacillariophyta, especially in spring-summer in the LoV, and by Dinophyta, mainly in the GoV. Ciliophora, Syndiniales, and Cryptophyceae were the next more abundant groups. The community structure varied across the seasons and was different in the two ecosystems, which shared 96% of the reads but showed a high proportion of OTUs distributed preferentially in one of the two sites (specialists) and a different partitioning of trophic categories. GoV specialists were mainly Dinophyceae (>56%), followed by Syndiniales and Bacillariophyta, while the LoV specialists were distributed among several groups, including Bacillariophyta, Syndiniales, Ciliophora, Cryptophyceae, and Trebouxiophyceae. The main abiotic drivers of the differences between protist communities were salinity and temperature, which however explained a minor part of the variance (17%), pointing at a higher relevance of biotic factors and inter-taxa relationships. This was more evident in the LoV, where the network analysis highlighted a higher number of OTUs' connections than in the GoV. Overall, the metabarcoding approach allowed to depict the composition of the whole protist community in the lagoon and adjacent coastal waters with high resolution, revealing many taxa so far not reported in the area. In addition, despite no clear barrier to dispersal processes, differences in the relative abundance and temporal variability of local protist communities indicate that environmental heterogeneity, in these adjacent and connected ecosystems, can be strong enough to allow for ecological segregation.

RevDate: 2020-03-25
CmpDate: 2020-03-25

Alejandre-Colomo C, Harder J, Fuchs BM, et al (2020)

High-throughput cultivation of heterotrophic bacteria during a spring phytoplankton bloom in the North Sea.

Systematic and applied microbiology, 43(2):126066.

On-going studies of phytoplankton-bacterioplankton interactions at the long-term ecological research site Helgoland Roads have indicated that many of the heterotrophic bacterial taxa have not yet been cultivated. A high-throughput approach combining whole cell matrix-assisted laser desorption ionization - time of flight mass spectroscopy with 16S rRNA gene sequencing was applied to the spring bloom of 2016. Aiming at an assessment of cultivability during a spring bloom, cultivation on solid marine media had to be used since dilution to extinction would not have been feasible for a high-throughput approach, as performed in this study. A total of 5023 isolates were obtained from nine weekly samples on eight different solid media between the early-bloom and post-bloom periods. Most of the 4136 strains identified affiliated with Bacteroidetes (13.3%), Gammaproteobacteria (26.9%), Alphaproteobacteria (40.6%) and Actinobacteria (6.7%). Of the 271 operational phylogenetic units (OPUs) identified, 13 are likely to represent novel genera and 143 novel species. A comparison with 16S rRNA gene tag data indicated that most of the isolates were rather rare in surface waters, with the exception of five OPUs affiliating with Rhodobacteraceae, Polaribacter, Psychromonas and Pseudoalteromonas. The effort yielded many novel isolates, yet most of the abundant heterotrophic bacteria still remained elusive. The large strain collection obtained will not only provide insights into the succession of the cultivable fraction of the bacterioplankton, but also enable fine-tuned taxonomic and physiological follow-up studies for improving our knowledge on heterotrophic bacteria in North Sea waters.

RevDate: 2020-02-21

PLOS ONE Staff (2020)

Correction: Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities.

PloS one, 15(2):e0228886.

[This corrects the article DOI: 10.1371/journal.pone.0227706.].

RevDate: 2021-01-06
CmpDate: 2021-01-06

Kominoski JS, Gaiser EE, Castañeda-Moya E, et al (2020)

Disturbance legacies increase and synchronize nutrient concentrations and bacterial productivity in coastal ecosystems.

Ecology, 101(5):e02988.

Long-term ecological research can resolve effects of disturbance on ecosystem dynamics by capturing the scale of disturbance and interactions with environmental changes. To quantify how disturbances interact with long-term directional changes (sea-level rise, freshwater restoration), we studied 17 yr of monthly dissolved organic carbon (DOC), total nitrogen (TN), and phosphorus (TP) concentrations and bacterioplankton productivity across freshwater-to-marine estuary gradients exposed to multiple disturbance events (e.g., droughts, fire, hurricanes, and low-temperature anomalies) and long-term increases in water levels. By studying two neighboring drainages that differ in hydrologic connectivity, we additionally tested how disturbance legacies are shaped by hydrologic connectivity. We predicted that disturbance events would interact with long-term increases in water levels in freshwater and marine ecosystems to increase spatiotemporal similarity (i.e., synchrony) of organic matter, nutrients, and microbial activities. Wetlands along the larger, deeper, and tidally influenced Shark River Slough (SRS) drainage had higher and more variable DOC, TN, and TP concentrations than wetlands along the smaller, shallower, tidally restricted Taylor River Slough/Panhandle (TS/Ph) drainage. Along SRS, DOC concentrations declined with proximity to coast, and increased in magnitude and variability following drought and flooding in 2015 and a hurricane in 2017. Along TS/Ph, DOC concentrations varied by site (higher in marine than freshwater wetlands) but not year. In both drainages, increases in TN from upstream freshwater marshes occurred following fire in 2008 and droughts in 2010 and 2015, whereas downstream increases in TP occurred with coastal storm surge from hurricanes in 2005 and 2017. Decreases in DOC:TN and DOC:TP were explained by increased TN and TP. Increases in bacterioplankton productivity occurred throughout both drainages following low-temperature events (2010 and 2011) and a hurricane (2017). Long-term TN and TP concentrations and bacterioplankton productivity were correlated (r > 0.5) across a range of sampling distances (1-50 km), indicating spatiotemporal synchrony. DOC concentrations were not synchronized across space or time. Our study advances disturbance ecology theory by illustrating how disturbance events interact with long-term environmental changes and hydrologic connectivity to determine the magnitude and extent of disturbance legacies. Understanding disturbance legacies will enhance prediction and enable more effective management of rapidly changing ecosystems.

RevDate: 2020-04-15
CmpDate: 2020-04-15

Ferreira PMA, Andrade BO, Podgaiski LR, et al (2020)

Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities.

PloS one, 15(1):e0227706.

Grazing exclusion may lead to biodiversity loss and homogenization of naturally heterogeneous and species-rich grassland ecosystems, and these effects may cascade to higher trophic levels and ecosystem properties. Although grazing exclusion has been studied elsewhere, the consequences of alleviating the disturbance regime in grassland ecosystems remain unclear. In this paper, we present results of the first five years of an experiment in native grasslands of southern Brazil. Using a randomized block experimental design, we examined the effects of three grazing treatments on plant and arthropod communities: (i) deferred grazing (i.e., intermittent grazing), (ii) grazing exclusion and (iii) a control under traditional continuous grazing, which were applied to 70 x 70 m experimental plots, in six regionally distributed blocks. We evaluated plant community responses regarding taxonomic and functional diversity (life-forms) in separate spatial components: alpha (1 x 1 m subplots), beta, and gamma (70 x 70 m plots), as well as the cascading effects on arthropod high-taxa. By estimating effect sizes (treatments vs. control) by bootstrap resampling, both deferred grazing and grazing exclusion mostly increased vegetation height, plant biomass and standing dead biomass. The effect of grazing exclusion on plant taxonomic diversity was negative. Conversely, deferred grazing increased plant taxonomic diversity, but both treatments reduced plant functional diversity. Reduced grazing pressure in both treatments promoted the break of dominance by prostrate species, followed by fast homogenization of vegetation structure towards dominance of ligneous and erect species. These changes in the plant community led to increases in high-taxa richness and abundance of vegetation-dwelling arthropod groups under both treatments, but had no detectable effects on epigeic arthropods. Our results indicate that decision-making regarding the conservation of southern Brazil grasslands should include both intensive and alleviated levels of grazing management, but not complete grazing exclusion, to maximize conservation results when considering plant and arthropod communities.

RevDate: 2020-11-10
CmpDate: 2020-11-10

Mazzei V, Wilson BJ, Servais S, et al (2020)

Periphyton as an indicator of saltwater intrusion into freshwater wetlands: insights from experimental manipulations.

Ecological applications : a publication of the Ecological Society of America, 30(3):e02067.

Saltwater intrusion has particularly large impacts on karstic wetlands of the Caribbean Basin due to their porous, carbonate bedrock and low elevation. Increases in salinity and phosphorus (P) accompanying saltwater intrusion into these freshwater, P-limited wetlands are expected to alter biogeochemical cycles along with the structure and function of plant and algal communities. Calcareous periphyton is a characteristic feature of karstic wetlands and plays a central role in trophic dynamics, carbon storage, and nutrient cycling. Periphyton is extremely sensitive to water quality and quantity, but the effects of saltwater intrusion on these microbial mats remain to be understood. We conducted an ex situ mesocosm experiment to test the independent and combined effects of elevated salinity and P on the productivity, nutrient content, and diatom composition of calcareous periphyton from the Florida Everglades. We measured periphyton total carbon, nitrogen, and P concentrations and used settlement plates to measure periphyton accumulation rates and diatom species composition. The light and dark bottle method was used to measure periphyton productivity and respiration. We found that exposure to ~1 g P·m-2 ·yr-1 significantly increased periphyton mat total P concentrations, but had no effect on any other response variable. Mats exposed to elevated salinity (~22 kg salt·m-2 ·yr-1) had significantly lower total carbon and tended to have lower biomass and reduced productivity and respiration rates; however, mats exposed to salinity and P simultaneously had greater gross and net productivity. We found strong diatom species dissimilarity between fresh- and saltwater-treated periphyton, while P additions only elicited compositional changes in periphyton also treated with saltwater. This study contributes to our understanding of how the ecologically important calcareous periphyton mats unique to karstic, freshwater wetlands respond to increased salinity and P caused saltwater intrusion and provides a guide to diatom indicator taxa for these two important environmental drivers.

RevDate: 2021-01-10
CmpDate: 2020-05-07

Battisti C, Dodaro G, G Fanelli (2020)

Polystyrene seedling trays used as substrate by native plants.

Environmental science and pollution research international, 27(6):6690-6694.

Among polymers, expanded polystyrene (EPS) is increasingly abundant as a form of anthropogenic litter in natural environments, particularly along waterways. Nevertheless, there is still no research focusing on the interaction between this type of litter and biodiversity components. In this note, we reported the first evidence of an interaction between EPS and living native plants along an artificial drainage channel in a land reclaimed area of Tyrrhenian central Italy. We sampled a number of EPS seedling trays, deriving from agricultural activities, obtaining evidence for an interaction between this polymer and plants: on a total of 231 available seedling holes, 16.88% have been occupied from six species (Lycopus europaeus, Poa cfr. trivialis, Stachys palustris, Silene sp., Phragmites australis, Parietariajudaica). The set of species occurring on floating polystyrene trays appears comparable to that occurring on the sides of the land reclaimed channels (locally, L. europaeus and S. palustris are among the most common species of the riverine vegetation). Therefore, it is very probable that floating trays are a random sample of the seed rain of the vegetation of the sides of the channels. However, more research is needed to assess if the plant assemblage growing on EPS is random process or if peculiar substrate exerts some sort of selection on the plant community.

RevDate: 2020-10-01

Suari Y, Dadon-Pilosof A, Sade T, et al (2019)

A long term physical and biogeochemical database of a hyper-eutrophicated Mediterranean micro-estuary.

Data in brief, 27:104809.

Ruppin's Estuarine and Coastal Observatory (RECO) is a Long-Term Ecological Research station positioned on the East Mediterranean shoreline between Tel-Aviv and Haifa, Israel. We present a comprehensive online database and an accompanying website that provides direct access to the physical, chemical, and biological characteristics of the local coastal marine ecosystem and the Alexander micro estuary. It includes three databases that are updated continuously since 2014: a) In situ stationary sensors data (10 min intervals) of surface and bottom temperature, salinity, oxygen and water level measured at three stations along the estuary. b) Monthly profiles and discrete biogeochemical samples (surface and bottom water) of multiple parameters at four stations located at the inland part of the estuary. Measured parameters include concentrations of chlorophyll-a, microalgae and bacteria (counted with a flow cytometer), Nitrate, Nitrite, Ammonium, Phosphate, total N, total P, particulate organic matter (POM), total suspended solids (TSS), biochemical oxygen demand (BOD), as well as Secchi depth in each station c) Bi-weekly profiles, chlorophyll-a concentrations and cell counts at two marine stations adjacent to the estuary, (1, and 7 Km from the estuary mouth, at bottom depths of 8 and 48 m). The database also includes historical data for the Taninim micro-estuary (2014-2016). The RECO observatory provides a unique data set documenting the interaction of highly eutrophicated estuarine water with the ultra-oligotrophic seawater of the Eastern Mediterranean. This combination results in sharp gradients of salinity, temperature, dissolved oxygen, and nutrients over very small scales (centimeters to meters) and therefore offers an important data set for the coastal shelf research community. The data set also provide a long-term baseline of the estuary hydrography and geochemistry with the hope to foster effective science-based management and environmental planning of this and similar systems.

RevDate: 2020-05-15
CmpDate: 2020-05-15

Pimentel CR, Andrades R, Ferreira CEL, et al (2020)

BRUVS reveal locally extinct shark and the way for shark monitoring in Brazilian oceanic islands.

Journal of fish biology, 96(2):539-542.

Here we present records of sharks obtained using baited remote underwater stereo-video systems (stereo-BRUVS) at two Brazilian oceanic islands. Fourteen of the 60 deployments recorded 19 sharks in Trindade Island. In Saint Peter and Saint Paul Archipelago (SPSPA), two pelagic and two demersal deployments recorded two and one shark, respectively, including the locally extinct Galapagos shark Carcharhinus galapagensis. Stereo-BRUVS should be considered as adjuncts to other non-invasive methods to monitor shark populations.

RevDate: 2020-01-22
CmpDate: 2020-01-22

Virdis SGP, Soodcharoen N, Lugliè A, et al (2020)

Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: Integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach.

The Science of the total environment, 707:135567.

Lake surface water temperature (LSWT) is a key parameter to help study the environmental and ecological impacts of climate change. In this work, we measured the LSWT of 1 natural and 23 artificial lakes located on the island of Sardinia in the western Mediterranean, which is a region where changes in climate are projected to have significant impacts. By integrating multi-source and multi-resolution datasets of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat and long-term in situ temperature observations, we detected, measured, and analysed the LSWT trends during the period of 2000-2018 across all the investigated lakes. Methodologically, we demonstrated that a simplified approached based on Planck's equation for Landsat thermal infrared (TIR) data could be a valid alternative to radiative transfer equation retrieval methods for the retrieval of LSWT without loss of accuracy. Moreover, we demonstrated that rescaled and independently validated MOD112A-derived LSWT showed good accuracy, efficiently filled the spatial and temporal gaps in long-term in situ LSWT, and could be used for long-term LSWT trend detection and measurement. All 24 lakes showed an annual warming trend of +0.010 °C/y, warming winter trend of +0.013 °C/y, and cooling summer trend of -0.038 °C/y during the period of 2000-2018. This study demonstrated that the measured trend rates could be explained by and were strongly correlated with the climatology of Italy for the 2000-2018 period. Finally, we demonstrated the key role and the importance of the availability of long-term in situ temperature datasets. The approach used in this study is up-scalable to other medium to low-resolution TIR sensors as well as to other long-term monitoring sites, such as LTER-Italy, LTER-Europe, or ILTER sites.

RevDate: 2020-04-08
CmpDate: 2020-04-06

Kang JY, Kwon YS, Jeong G, et al (2019)

Characteristics of Microbial Communities of Pachygrontha antennata (Hemiptera: Pachygronthidae) in Relation to Habitat Variables.

International journal of environmental research and public health, 16(23):.

The microbial community interacts with the environment and the health and immune function of its host both directly and indirectly. However, very few studies about microbial communities have considered habitat and external environmental variables. This study examined environmental influences on the microbial community of Pachygrontha antennata, which is found in various habitats (e.g., urban, forested, and agricultural areas). The results demonstrated that the composition of the microbial community differed according to land use, while the bacterial diversity did not. In urban areas with high environmental heterogeneity, microbial community diversity tended to be high. Furthermore, bacteria in forests and agricultural areas (e.g., Paraburkholderia, Burkholderia) have been found to be highly correlated with habitat variables. Therefore, we suggest that habitat variables should be considered in future symbiotic studies.

RevDate: 2020-09-25
CmpDate: 2020-09-25

O'Connor RC, Taylor JH, JB Nippert (2020)

Browsing and fire decreases dominance of a resprouting shrub in woody encroached grassland.

Ecology, 101(2):e02935.

North American grasslands have experienced increased relative abundance of shrubs and trees over the last 150 yr. Alterations in herbivore composition, abundance, and grazing pressure along with changes in fire frequency are drivers that can regulate the transition from grassland to shrubland or woodland (a process known as woody encroachment). Historically, North American grasslands had a suite of large herbivores that grazed and/or browsed (i.e., bison, elk, pronghorn, deer), as well as frequent and intense fires. In the tallgrass prairie, many large native ungulates were extirpated by the 1860s, corresponding with increased homesteading (which led to decreased fire frequencies and intensities). Changes in the frequency and intensity of these two drivers (browsing and fire) have coincided with woody encroachment in tallgrass prairie. Within tallgrass prairie, woody encroachment can be categorized in to two groups: non-resprouting species that can be killed with fire and resprouting species that cannot be killed with fire. Resprouting species require additional active management strategies to decrease abundance and eventually be removed from the ecosystem. In this study, we investigated plant cover, ramet density, and physiological effects of continuous simulated browsing and prescribed fire on Cornus drummondii C.A. Mey, a resprouting clonal native shrub species. Browsing reduced C. drummondii canopy cover and increased grass cover. We also observed decreased ramet density, which allowed for more infilling of grasses. Photosynthetic rates between browsed and unbrowsed control shrubs did not increase in 2015 or 2016. In 2017, photosynthetic rates for browsed shrubs were higher in the unburned site than the unbrowsed control shrubs at the end of the growing season. Additionally, after the prescribed fire, browsed shrubs had ~90% decreased cover, ~50% reduced ramet density, and grass cover increased by ~80%. In the roots of browsed shrubs after the prescribed fire, nonstructural carbohydrates (NSC) experienced a twofold reduction in glucose and a threefold reduction in both sucrose and starch. The combined effects of browsing and fire show strong potential as a successful management tool to decrease the abundance of clonal-resprouting woody plants in mesic grasslands and illustrate the potential significance of browsers as a key driver in this ecosystem.

RevDate: 2020-09-25
CmpDate: 2020-09-25

Gross A, Lin Y, Weber PK, et al (2020)

The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests.

Ecology, 101(2):e02928.

Humid tropical forests are among the most productive ecosystems globally, yet they often occur on soils with high phosphorus (P) sorption capacity, lowering P availability to biota. Short-term anoxic events are thought to release sorbed P and enhance its acquisition by soil microbes. However, the actual effects of anoxic conditions on microbial P acquisition in humid tropical forest soils are surprisingly poorly studied. We used laboratory incubations of bulk soils, NanoSIMS analysis of single microbial cells, and landscape-scale measurements in the Luquillo Experimental Forest (LEF), Puerto Rico to test the hypothesis that anoxic conditions increase microbial P acquisition in humid tropical forests. In laboratory and field experiments, we found that microbial P uptake generally decreased under anoxic conditions, leading to high microbial carbon (C) to P ratios in anoxic soils. The decreased P acquisition under anoxic conditions was correlated with lower microbial C use efficiency (CUE), an index of microbial energy transfer in ecosystems. Phosphorus amendments to anoxic soils led to increased microbial P uptake and higher CUE suggesting that microbes were less able to access and utilize P under natural low redox conditions. Under oxic conditions, microbial C:P ratios and CUE did not respond to changes in substrate stoichiometry. These results challenge the existing paradigm by showing that anoxic conditions can decrease microbial P uptake and ultimately constrain microbial CUE. Our findings indicate that soil redox conditions tightly couple soil P and C cycles and advance our understanding of controls on P cycling in humid tropical forest ecosystems.

RevDate: 2020-03-16
CmpDate: 2020-03-16

Battisti C (2020)

Heterogeneous composition of anthropogenic litter recorded in nests of Yellow-legged gull (Larus michahellis) from a small Mediterranean island.

Marine pollution bulletin, 150:110682.

This note reports data about a heterogeneous assemblage of anthropogenic litter recorded in 307 nesting and roosting sites of Yellow-legged Gull (Larus michahellis) from a small Mediterranean island. I obtained items of anthropogenic litter on > 30% on the total, with plastic, glass and paper the significantly more abundant litter categories. Litter items were found in the nests mainly as a dry remnant in the regurgitated pellets. Fragments of expanded polystyrene (EPS) with peck marks were also recorded, these last transported to the nests because of their resemblance to the cuttlebones of the Sepia cuttlefish. Ingestion of this litter and the pecking on EPS can negatively impact on seabirds. Moreover, the presence of this litter highlights a transport of polluting material even at considerable distance from anthropized areas. Finally, the presence of scavenger species (an endemic lizard and terrestrial molluscs) feeding on food remains could suggest an assimilation of litter into the trophic webs.

RevDate: 2020-06-15
CmpDate: 2020-06-15

Obertegger U, Pindo M, G Flaim (2019)

Multifaceted aspects of synchrony between freshwater prokaryotes and protists.

Molecular ecology, 28(19):4500-4512.

Community composition of freshwater prokaryotes and protists varies through time. Few studies contemporarily investigate temporal variation of these freshwater communities for more than 1 year. We compared the temporal patterns of prokaryotes and protists in three distinct habitats for 4 years (2014-2017) in Lake Tovel, a cold-water lake. This lake showed a marked temperature increase in 2017 linked to altered precipitation patterns. We investigated whether microbial communities reflected this change across habitats and whether changes occurred at the same time and to the same extent. Furthermore, we tested the concept of hydrological year emphasizing the ecological effect of water renewal on communities for its explanatory power of community changes. Microbe diversity was assessed by Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene and 18S rRNA gene, and we applied co-inertia analysis and asymmetric eigenvector maps modelling to infer synchrony and temporal patterns of prokaryotes and protists. When considering community composition, microbes were invariable in synchrony across habitats and indicated a temporal gradient linked to decreasing precipitation; however, when looking at temporal patterns, the extent of synchrony was reduced. Small-scale patterns were similar across habitats and microbes and linked to seasonally varying environmental variables, while large-scale patterns were different and partially linked to an ecosystem change as indicated by increasing water transparency and temperature and decreasing dissolved oxygen. Our advanced statistical approach outlined the multifaceted aspect of synchrony when linked to community composition and temporal patterns.

RevDate: 2020-03-30
CmpDate: 2020-03-30

Komatsu KJ, Avolio ML, Lemoine NP, et al (2019)

Global change effects on plant communities are magnified by time and the number of global change factors imposed.

Proceedings of the National Academy of Sciences of the United States of America, 116(36):17867-17873.

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.

RevDate: 2020-09-30

Smith AL, Kujala H, Lahoz-Monfort JJ, et al (2019)

Managing uncertainty in movement knowledge for environmental decisions.

Conservation letters, 12(3):e12620.

Species' movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to integrate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species' movement that are heavily influenced by uncertainty: knowledge about movement and relevance of movement to environmental decisions. Management decisions can be informed by their position in this knowledge-relevance space. We then outline a framework to support decisions around (1) increasing understanding of the relevance of movement knowledge, (2) increasing robustness of decisions to uncertainties and (3) improving knowledge on species' movement. Our decision-support framework provides guidance for managing movement-related uncertainty in systematic conservation planning, agri-environment schemes, habitat restoration and international biodiversity policy. It caters to different resource levels (time and funding) so that species' movement knowledge can be more effectively integrated into environmental decisions.

RevDate: 2020-03-16
CmpDate: 2020-03-16

Mai ACG, Albuquerque CQ, Lemos VM, et al (2019)

Coastal zone use and migratory behaviour of the southern population of Mugil liza in Brazil.

Journal of fish biology, 95(5):1207-1214.

We analysed the ratios Sr:Ca and Ba:Ca in the otoliths of 55 adults of the southern population of Mugil liza in Brazil (Paraná to Rio Grande do Sul) to investigate its coastal zone use and migratory behaviour. All individual M. liza analysed had Sr:Ca and Ba:Ca values indicating that their birth was in the marine environment, which is consistent with the southern population migration to spawn in the ocean,. Juveniles exhibited at least three coastal use and recruitment strategies (contingents): the majority (89%) of M. liza juveniles migrated toward brackish water. They entered the estuary before completing the first year of life (64%) or after (25%) their first year of life. The remaining 11% did not appear to enter brackish or freshwater water as a nursery or at any point in their life cycle. Some adults returned to the estuary after spawning in the ocean but others (of both sexes) never returned to the estuary after spawning, remaining in the marine environment. The pattern of juvenile habitat use in the Brazilian southern population of M. liza seems to be recurrent throughout the extent of its distribution as a consequence of the reproductive spawning aggregation behaviour, which mixes all contingents (with marine or estuarine preferences).

RevDate: 2020-03-16
CmpDate: 2020-03-16

Felton AJ, Slette IJ, Smith MD, et al (2020)

Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland.

Global change biology, 26(2):658-668.

Ongoing intensification of the hydrological cycle is altering rainfall regimes by increasing the frequency of extreme wet and dry years and the size of individual rainfall events. Despite long-standing recognition of the importance of precipitation amount and variability for most terrestrial ecosystem processes, we lack understanding of their interactive effects on ecosystem functioning. We quantified this interaction in native grassland by experimentally eliminating temporal variability in growing season rainfall over a wide range of precipitation amounts, from extreme wet to dry conditions. We contrasted the rain use efficiency (RUE) of above-ground net primary productivity (ANPP) under conditions of experimentally reduced versus naturally high rainfall variability using a 32-year precipitation-ANPP dataset from the same site as our experiment. We found that increased growing season rainfall variability can reduce RUE and thus ecosystem functioning by as much as 42% during dry years, but that such impacts weaken as years become wetter. During low precipitation years, RUE is lowest when rainfall event sizes are relatively large, and when a larger proportion of total rainfall is derived from large events. Thus, a shift towards precipitation regimes dominated by fewer but larger rainfall events, already documented over much of the globe, can be expected to reduce the functioning of mesic ecosystems primarily during drought, when ecosystem processes are already compromised by low water availability.

RevDate: 2021-01-10
CmpDate: 2020-03-12

da Silva LP, Mata VA, Lopes PB, et al (2019)

Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists.

Molecular ecology resources, 19(6):1420-1432.

The application of DNA metabarcoding to dietary analysis of trophic generalists requires using multiple markers in order to overcome problems of primer specificity and bias. However, limited attention has been given to the integration of information from multiple markers, particularly when they partly overlap in the taxa amplified, and vary in taxonomic resolution and biases. Here, we test the use of a mix of universal and specific markers, provide criteria to integrate multi-marker metabarcoding data and a python script to implement such criteria and produce a single list of taxa ingested per sample. We then compare the results of dietary analysis based on morphological methods, single markers, and the proposed combination of multiple markers. The study was based on the analysis of 115 faeces from a small passerine, the Black Wheatears (Oenanthe leucura). Morphological analysis detected far fewer plant taxa (12) than either a universal 18S marker (57) or the plant trnL marker (124). This may partly reflect the detection of secondary ingestion by molecular methods. Morphological identification also detected far fewer taxa (23) than when using 18S (91) or the arthropod markers IN16STK (244) and ZBJ (231), though each method missed or underestimated some prey items. Integration of multi-marker data provided far more detailed dietary information than any single marker and estimated higher frequencies of occurrence of all taxa. Overall, our results show the value of integrating data from multiple, taxonomically overlapping markers in an example dietary data set.

RevDate: 2019-08-06

Colombo N, Salerno F, Martin M, et al (2019)

Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps).

The Science of the total environment, 685:886-901.

Permafrost degradation, rock-glacier thawing, and glacier retreat are influencing surface water quality at high elevations. However, there is a lack of knowledge on the dominant geochemical reactions occurring in different cryospheric conditions and how these reactions change during the ice-free season. In the Col d'Olen area (LTER site, NW Italian Alps), four ponds with similar sizes, located in basins with different cryospheric features (glacier, permafrost, rock glacier, none of these), are present in a geographically limited area. All ponds were sampled weekly in 2015 and partially in 2014. Major ions, selected trace elements, and biotic parameters (dissolved organic carbon-DOC, fluorescence index-FI, and nitrate) are examined to evidence the effect of different cryospheric features on water characteristics. Where cryospheric conditions occur chemical weathering is more intensive, with strong seasonal increase of major ions. Sulphide oxidation dominates in glacier and permafrost lying on acid rocks, probably driven by enhanced weathering of freshly exposed rocks in subglacial environment and recently deglaciated areas, and active layer thickness increase. Differently, carbonation dominates for the rock glacier lying on ultramafic rocks. There, high Ni concentrations originate from dissolution of Mg-bearing rocks in the landform. In all settings, pH neutralisation occurs because of the presence of secondary carbonate lithology and ultramafic rocks. Nitrate highest concentrations and changes occur in cryospheric settings while DOC and FI do not show strong differences and seasonal variations. The establishment of more frequent monitoring for water quality in high-elevated surface waters is necessary to provide greater statistical power to detect changes on longer time scales.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )