picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
07 Dec 2019 at 01:37
HITS:
3397
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Evolution of Multicelluarity

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 07 Dec 2019 at 01:37 Created: 

Evolution of Multicelluarity

Created with PubMed® Query: (evolution OR origin) AND (multicellularity OR multicellular) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-12-05

Thomas F, Giraudeau M, Renaud F, et al (2019)

Can postfertile life stages evolve as an anticancer mechanism?.

PLoS biology, 17(12):e3000565 pii:PBIOLOGY-D-19-02304 [Epub ahead of print].

Why a postfertile stage has evolved in females of some species has puzzled evolutionary biologists for over 50 years. We propose that existing adaptive explanations have underestimated in their formulation an important parameter operating both at the specific and the individual levels: the balance between cancer risks and cancer defenses. During their life, most multicellular organisms naturally accumulate oncogenic processes in their body. In parallel, reproduction, notably the pregnancy process in mammals, exacerbates the progression of existing tumors in females. When, for various ecological or evolutionary reasons, anticancer defenses are too weak, given cancer risk, older females could not pursue their reproduction without triggering fatal metastatic cancers nor even maintain a normal reproductive physiology if the latter also promotes the growth of existing oncogenic processes, e.g., hormone-dependent malignancies. At least until stronger anticancer defenses are selected for in these species, females could achieve higher inclusive fitness by ceasing their reproduction and/or going through menopause (assuming that these traits are easier to select than anticancer defenses), thereby limiting the risk of premature death due to metastatic cancers. Because relatively few species experience such an evolutionary mismatch between anticancer defenses and cancer risks, the evolution of prolonged life after reproduction could also be a rare, potentially transient, anticancer adaptation in the animal kingdom.

RevDate: 2019-12-05

Walker DM, Hill AJ, Albecker MA, et al (2019)

Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity.

Microbial ecology pii:10.1007/s00248-019-01456-x [Epub ahead of print].

A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.

RevDate: 2019-12-04

Fields C, Bischof J, M Levin (2020)

Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling.

Physiology (Bethesda, Md.), 35(1):16-30.

Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems' information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.

RevDate: 2019-12-04

Baumgartner M, Drake K, RN Kanadia (2019)

An Integrated Model of Minor Intron Emergence and Conservation.

Frontiers in genetics, 10:1113.

Minor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome. Both are ancient, tracing back to the last eukaryotic common ancestor (LECA), which is reflected by minor intron enrichment in specific gene families, such as the mitogen activated-protein kinase kinases, voltage-gated sodium and calcium ion channels, and E2F transcription factors. Most minor introns occur as single introns in genes with predominantly major introns. Due to this organization, minor intron-containing gene (MIG) expression requires the coordinated action of two spliceosomes, which increases the probability of missplicing. Thus, one would expect loss of minor introns via purifying selection. This has resulted in complete minor intron loss in at least nine eukaryotic lineages. However, minor introns are highly conserved in land plants and metazoans, where their importance is underscored by embryonic lethality when the minor spliceosome is inactivated. Conditional inactivation of the minor spliceosome has shown that rapidly dividing progenitor cells are highly sensitive to minor spliceosome loss. Indeed, we found that MIGs were significantly enriched in a screen for genes essential for survival in 341 cycling cell lines. Here, we propose that minor introns inserted randomly into genes in LECA or earlier and were subsequently conserved in genes crucial for cycling cell survival. We hypothesize that the essentiality of MIGs allowed minor introns to endure through the unicellularity of early eukaryotic evolution. Moreover, we identified 59 MIGs that emerged after LECA, and that many of these are essential for cycling cell survival, reinforcing our essentiality model for MIG conservation. This suggests that minor intron emergence is dynamic across eukaryotic evolution, and that minor introns should not be viewed as molecular fossils. We also posit that minor intron splicing was co-opted in multicellular evolution as a regulatory switch for en masse control of MIG expression and the biological processes they regulate. Specifically, this mode of regulation could control cell proliferation and thus body size, an idea supported by domestication syndrome, wherein MIGs are enriched in common candidate animal domestication genes.

RevDate: 2019-12-03

Jékely G (2019)

Evolution: How Not to Become an Animal.

Current biology : CB, 29(23):R1240-R1242.

The origin of animals has always fascinated biologists. Studies on choanoflagellates, the closest living relatives of animals, have contributed major insights. The discovery of a multicellular choanoflagellate with light-regulated collective behaviour now provides a new perspective.

RevDate: 2019-12-02

Southworth J, Grace CA, Marron AO, et al (2019)

A genomic survey of transposable elements in the choanoflagellate Salpingoeca rosetta reveals selection on codon usage.

Mobile DNA, 10:44 pii:189.

Background: Unicellular species make up the majority of eukaryotic diversity, however most studies on transposable elements (TEs) have centred on multicellular host species. Such studies may have therefore provided a limited picture of how transposable elements evolve across eukaryotes. The choanoflagellates, as the sister group to Metazoa, are an important study group for investigating unicellular to multicellular transitions. A previous survey of the choanoflagellate Monosiga brevicollis revealed the presence of only three families of LTR retrotransposons, all of which appeared to be active. Salpingoeca rosetta is the second choanoflagellate to have its whole genome sequenced and provides further insight into the evolution and population biology of transposable elements in the closest relative of metazoans.

Results: Screening the genome revealed the presence of a minimum of 20 TE families. Seven of the annotated families are DNA transposons and the remaining 13 families are LTR retrotransposons. Evidence for two putative non-LTR retrotransposons was also uncovered, but full-length sequences could not be determined. Superfamily phylogenetic trees indicate that vertical inheritance and, in the case of one family, horizontal transfer have been involved in the evolution of the choanoflagellates TEs. Phylogenetic analyses of individual families highlight recent element activity in the genome, however six families did not show evidence of current transposition. The majority of families possess young insertions and the expression levels of TE genes vary by four orders of magnitude across families. In contrast to previous studies on TEs, the families present in S. rosetta show the signature of selection on codon usage, with families favouring codons that are adapted to the host translational machinery. Selection is stronger in LTR retrotransposons than DNA transposons, with highly expressed families showing stronger codon usage bias. Mutation pressure towards guanosine and cytosine also appears to contribute to TE codon usage.

Conclusions: S. rosetta increases the known diversity of choanoflagellate TEs and the complement further highlights the role of horizontal gene transfer from prey species in choanoflagellate genome evolution. Unlike previously studied TEs, the S. rosetta families show evidence for selection on their codon usage, which is shown to act via translational efficiency and translational accuracy.

RevDate: 2019-11-29
CmpDate: 2019-11-29

Škaloud P, Škaloudová M, Doskočilová P, et al (2019)

Speciation in protists: Spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte.

Molecular ecology, 28(5):1084-1095.

Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.

RevDate: 2019-11-27
CmpDate: 2019-11-27

Sequeira-Mendes J, Vergara Z, Peiró R, et al (2019)

Differences in firing efficiency, chromatin, and transcription underlie the developmental plasticity of the Arabidopsis DNA replication origins.

Genome research, 29(5):784-797.

Eukaryotic genome replication depends on thousands of DNA replication origins (ORIs). A major challenge is to learn ORI biology in multicellular organisms in the context of growing organs to understand their developmental plasticity. We have identified a set of ORIs of Arabidopsis thaliana and their chromatin landscape at two stages of post-embryonic development. ORIs associate with multiple chromatin signatures including transcription start sites (TSS) but also proximal and distal regulatory regions and heterochromatin, where ORIs colocalize with retrotransposons. In addition, quantitative analysis of ORI activity led us to conclude that strong ORIs have high GC content and clusters of GGN trinucleotides. Development primarily influences ORI firing strength rather than ORI location. ORIs that preferentially fire at early developmental stages colocalize with GC-rich heterochromatin, but at later stages with transcribed genes, perhaps as a consequence of changes in chromatin features associated with developmental processes. Our study provides the set of ORIs active in an organism at the post-embryo stage that should allow us to study ORI biology in response to development, environment, and mutations with a quantitative approach. In a wider scope, the computational strategies developed here can be transferred to other eukaryotic systems.

RevDate: 2019-11-26

Kar R, Jha NK, Jha SK, et al (2019)

A "NOTCH" Deeper into the Epithelial-To-Mesenchymal Transition (EMT) Program in Breast Cancer.

Genes, 10(12): pii:genes10120961.

Notch signaling is a primitive signaling pathway having various roles in the normal origin and development of each multicellular organisms. Therefore, any aberration in the pathway will inevitably lead to deadly outcomes such as cancer. It has now been more than two decades since Notch was acknowledged as an oncogene in mouse mammary tumor virus-infected mice. Since that discovery, activated Notch signaling and consequent up-regulation of tumor-promoting Notch target genes have been observed in human breast cancer. Moreover, consistent over-expression of Notch ligands and receptors has been shown to correlate with poor prognosis in human breast cancer. Notch regulates a number of key processes during breast carcinogenesis, of which, one key phenomenon is epithelial-mesenchymal transition (EMT). EMT is a key process for large-scale cell movement during morphogenesis at the time of embryonic development. Cancer cells aided by transcription factors usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis. In this review, we recapitulate recent progress in breast cancer research that has provided new perceptions into the molecular mechanisms behind Notch-mediated EMT regulation during breast tumorigenesis.

RevDate: 2019-11-25
CmpDate: 2019-11-25

Riahi H, Brekelmans C, Foriel S, et al (2019)

The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption.

PLoS biology, 17(3):e2006146 pii:pbio.2006146.

Stress responses are crucial processes that require activation of genetic programs that protect from the stressor. Stress responses are also energy consuming and can thus be deleterious to the organism. The mechanisms coordinating energy consumption during stress response in multicellular organisms are not well understood. Here, we show that loss of the epigenetic regulator G9a in Drosophila causes a shift in the transcriptional and metabolic responses to oxidative stress (OS) that leads to decreased survival time upon feeding the xenobiotic paraquat. During OS exposure, G9a mutants show overactivation of stress response genes, rapid depletion of glycogen, and inability to access lipid energy stores. The OS survival deficiency of G9a mutants can be rescued by a high-sugar diet. Control flies also show improved OS survival when fed a high-sugar diet, suggesting that energy availability is generally a limiting factor for OS tolerance. Directly limiting access to glycogen stores by knocking down glycogen phosphorylase recapitulates the OS-induced survival defects of G9a mutants. We propose that G9a mutants are sensitive to stress because they experience a net reduction in available energy due to (1) rapid glycogen use, (2) an inability to access lipid energy stores, and (3) an overinduced transcriptional response to stress that further exacerbates energy demands. This suggests that G9a acts as a critical regulatory hub between the transcriptional and metabolic responses to OS. Our findings, together with recent studies that established a role for G9a in hypoxia resistance in cancer cell lines, suggest that G9a is of wide importance in controlling the cellular and organismal response to multiple types of stress.

RevDate: 2019-11-22

Forbes G, Chen ZH, Kin K, et al (2019)

Phylogeny-wide conservation and change in developmental expression, cell-type specificity and functional domains of the transcriptional regulators of social amoebas.

BMC genomics, 20(1):890 pii:10.1186/s12864-019-6239-3.

BACKGROUND: Dictyostelid social amoebas self-organize into fruiting bodies, consisting of spores and up to four supporting cell types in the phenotypically most complex taxon group 4. High quality genomes and stage- and cell-type specific transcriptomes are available for representative species of each of the four taxon groups. To understand how evolution of gene regulation in Dictyostelia contributed to evolution of phenotypic complexity, we analysed conservation and change in abundance, functional domain architecture and developmental regulation of their transcription factors (TFs).

RESULTS: We detected 440 sequence-specific TFs across 33 families, of which 68% were upregulated in multicellular development and about half conserved throughout Dictyostelia. Prespore cells expressed two times more TFs than prestalk cells, but stalk cells expressed more TFs than spores, suggesting that gene expression events that define spores occur earlier than those that define stalk cells. Changes in TF developmental expression, but not in TF abundance or functional domains occurred more frequently between group 4 and groups 1-3, than between the more distant branches formed by groups 1 + 2 and 3 + 4.

CONCLUSIONS: Phenotypic innovation is correlated with changes in TF regulation, rather than functional domain- or TF acquisition. The function of only 34 TFs is known. Of 12 TFs essential for cell differentiation, 9 are expressed in the cell type for which they are required. The information acquired here on conserved cell type specifity of 120 additional TFs can effectively guide further functional analysis, while observed evolutionary change in TF developmental expression may highlight how genotypic change caused phenotypic innovation.

RevDate: 2019-11-21

Williams LM, Inge MM, Mansfield KM, et al (2019)

Transcription factor NF-κB in a basal metazoan, the sponge, has conserved and unique sequences, activities, and regulation.

Developmental and comparative immunology pii:S0145-305X(19)30386-6 [Epub ahead of print].

Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq). Aq-NF-κB is most similar to NF-κB p100/p105 among vertebrate proteins, with an N-terminal DNA-binding domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile akin to human NF-κB proteins. Like mammalian NF-κB p100, C-terminal truncation allows nuclear translocation of Aq-NF-κB and increases its transcriptional activation activity. Expression of IκB kinases (IKKs) induces proteasome-dependent C-terminal processing of Aq-NF-κB in human cells, and processing requires C-terminal serines in Aq-NF-κB. Unlike NF-κB p100, C-terminal sequences of Aq-NF-κB do not inhibit its DNA-binding activity. Tissue of a black encrusting demosponge contains NF-κB site DNA-binding activity, as well as nuclear and processed NF-κB. Treatment of sponge tissue with LPS increases both DNA-binding activity and processing of NF-κB. A. queenslandica transcriptomes contain homologs to upstream NF-κB pathway components. This is first functional characterization of NF-κB in sponge, the most basal multicellular animal.

RevDate: 2019-11-04
CmpDate: 2019-11-04

Stelbrink B, Jovanovska E, Levkov Z, et al (2018)

Diatoms do radiate: evidence for a freshwater species flock.

Journal of evolutionary biology, 31(12):1969-1975.

Due to the ubiquity and high dispersal capacity of unicellular eukaryotes, their often extraordinary diversity found in isolated and long-lived ecosystems such as ancient lakes is typically attributed to multiple colonization events rather than to in situ speciation. However, respective evolutionary studies are very scarce and the often high number of species flocks in ancient lakes across multicellular taxa raises the question whether unicellular species, such as diatoms, may radiate as well. Here, we use an integrative approach that includes molecular data from benthic diatom species of the genus Aneumastus endemic to ancient Lake Ohrid, fossil data obtained from the sediment record of a recent deep-drilling project and biogeographical information to test if this group, indeed, constitutes a species flock. Molecular-clock and phylogenetic analyses indicate a young monophyletic group of several endemic species. Molecular, fossil and biogeographical data strongly suggest a rapid intralacustrine diversification, which was possibly triggered by the emergence of novel habitats. This finding is the first evidence for a species flock in diatoms and suggests that in situ speciation is also a relevant evolutionary process for unicellular eukaryotes in isolated ecosystems.

RevDate: 2019-11-19

Brenneis G, BS Beltz (2019)

Adult neurogenesis in crayfish: origin, expansion and migration of neural progenitor lineages in a pseudostratified neuroepithelium.

The Journal of comparative neurology [Epub ahead of print].

Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, 1st generation NPs act as transit-amplifying intermediate NPs which eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions. This article is protected by copyright. All rights reserved.

RevDate: 2019-11-18

Chen J, N Wang (2019)

Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments.

Acta mechanica Sinica = Li xue xue bao, 35(2):270-274.

Evolution of eukaryotes from simple cells to complex multicellular organisms remains a mystery. Our postulate is that cytoskeletal stiffening is a necessary condition for evolution of complex multicellular organisms from early simple eukaryotes. Recent findings show that embryonic stem cells are as soft as primitive eukaryotes-amoebae and that differentiated tissue cells can be two orders of magnitude stiffer than embryonic stem cells. Soft embryonic stem cells become stiff as they differentiate into tissue cells of the complex multicellular organisms to match their microenvironment stiffness. We perhaps see in differentiation of embryonic stem cells (derived from inner cell mass cells) the echo of those early evolutionary events. Early soft unicellular organisms might have evolved to stiffen their cytoskeleton to protect their structural integrity from external mechanical stresses while being able to maintain form, to change shape, and to move.

RevDate: 2019-11-14

Jacobeen S, Pentz JT, Graba EC, et al (2018)

Cellular packing, mechanical stress and the evolution of multicellularity.

Nature physics, 14:286-290.

The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size-a fundamental step in the evolution of multicellularity.

RevDate: 2019-11-14

Thattai M (2019)

How contraction has shaped evolution.

eLife, 8: pii:52805.

Two unicellular relatives of animals reveal that coordinated contractions of groups of cells using actomyosin predated animal multicellularity during evolution.

RevDate: 2019-11-14

Dudin O, Ondracka A, Grau-Bové X, et al (2019)

A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization.

eLife, 8: pii:49801.

In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.

RevDate: 2019-11-12

Hammond MJ, Wang T, SF Cummins (2019)

Characterisation of early metazoan secretion through associated signal peptidase complex subunits, prohormone convertases and carboxypeptidases of the marine sponge (Amphimedon queenslandica).

PloS one, 14(11):e0225227 pii:PONE-D-19-17687.

Efficient communication between cells requires the ability to process precursor proteins into their mature and biologically active forms, prior to secretion into the extracellular space. Eukaryotic cells achieve this via a suite of enzymes that involve a signal peptidase complex, prohormone convertases and carboxypeptidases. Using genome and transcriptome data of the demosponge Amphimedon queenslandica, a universal ancestor to metazoan multicellularity, we endeavour to bridge the evolution of precursor processing machinery from single-celled eukaryotic ancestors through to the complex multicellular organisms that compromise Metazoa. The precursor processing repertoire as defined in this study of A. queenslandica consists of 3 defined signal peptidase subunits, 6 prohormone convertases and 1 carboxypeptidase, with 2 putative duplicates identified for signal peptidase complex subunits. Analysis of their gene expression levels throughout the sponge development enabled us to predict levels of activity. Some A. queenslandica precursor processing components belong to established functional clades while others were identified as having novel, yet to be discovered roles. These findings have clarified the presence of precursor processing machinery in the poriferans, showing the necessary machinery for the removal of precursor sequences, a critical post-translational modification required by multicellular organisms, and further sets a foundation towards understanding the molecular mechanism for ancient protein processing.

RevDate: 2019-11-12
CmpDate: 2019-11-12

Kalsoom N, Zafar M, Ahmad M, et al (2019)

Investigating Schizocarp morphology as a taxonomic tool in study of Apiaceae family by utilizing LM and SEM techniques.

Microscopy research and technique, 82(7):1012-1020.

In present study, the schizocarp morphology of 14 species belonging to Apiaceae family has been investigated. Light microscopy (LM) and scanning electron microscopy (SEM) have been utilized to highlight qualitative and quantitative features of studied species. Variations have been observed in macro- and micro-morphological features such as color, shape, symmetry, length, width, apex, epicuticular projections, surface patterns, anticlinal, and periclinal wall patterns. Schizocarp shapes observed were oval, round, triangular, linear, elliptic, and globose. Fruit was either homomorphic or heteromorphic. Crystalloids, stellate hair, multicellular spines, and platelets were mostly observed epicuticular projections. Surface patterns on the fruit surface were striate, rugulate-striate, reticulate, and striato-knotted. Both macro- and micro-morphological characters can serve as an important tool in classifying Apiaceae family at various taxonomic ranks. Substantial variations observed can assist as useful constraints at various taxonomic levels as they provide reliable and constant details. Disparities observed in schizocarp features can pave a path for Apiaceae family classification based on phylogenetic and molecular studies.

RevDate: 2019-11-11

Collens A, Kelley E, LA Katz (2019)

The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.

RevDate: 2019-11-10

Stubbendieck RM, Li H, CR Currie (2019)

Convergent evolution of signal-structure interfaces for maintaining symbioses.

Current opinion in microbiology, 50:71-78 pii:S1369-5274(19)30055-4 [Epub ahead of print].

Symbiotic microbes are essential to the ecological success and evolutionary diversification of multicellular organisms. The establishment and stability of bipartite symbioses are shaped by mechanisms ensuring partner fidelity between host and symbiont. In this minireview, we demonstrate how the interface of chemical signals and host structures influences fidelity between legume root nodules and rhizobia, Hawaiian bobtail squid light organs and Allivibrio fischeri, and fungus-growing ant crypts and Pseudonocardia. Subsequently, we illustrate the morphological diversity and widespread phylogenetic distribution of specialized structures used by hosts to house microbial symbionts, indicating the importance of signal-structure interfaces across the history of multicellular life. These observations, and the insights garnered from well-studied bipartite associations, demonstrate the need to concentrate on the signal-structure interface in complex and multipartite systems, including the human microbiome.

RevDate: 2019-11-08

Grall E, P Tschopp (2019)

A sense of place, many times over - pattern formation and evolution of repetitive morphological structures.

Developmental dynamics : an official publication of the American Association of Anatomists [Epub ahead of print].

50 years ago, Lewis Wolpert introduced the concept of 'positional information' to explain how patterns form in a multicellular embryonic field. Using morphogen gradients, whose continuous distributions of positional values are discretized via thresholds into distinct cellular states, he provided, at the theoretical level, an elegant solution to the 'French Flag problem'. In the intervening years, many experimental studies have lent support to Wolpert's ideas. However, the embryonic patterning of highly repetitive morphological structures, as often occurring in nature, can reveal limitations in the strict implementation of his initial theory, given the number of distinct threshold values that would have to be specified. Here, we review how positional information is complemented to circumvent these inadequacies, to accommodate tissue growth and pattern periodicity. In particular, we focus on functional anatomical assemblies composed of such structures, like the vertebrate spine or tetrapod digits, where the resulting segmented architecture is intrinsically linked to periodic pattern formation and unidirectional growth. These systems integrate positional information and growth with additional patterning cues that, we suggest, increase robustness and evolvability. We discuss different experimental and theoretical models to study such patterning systems, and how the underlying processes are modulated over evolutionary timescales to enable morphological diversification. This article is protected by copyright. All rights reserved.

RevDate: 2019-11-08

Raven N, Bramwell G, Hamede R, et al (2019)

Fifth International Biannual Evolution and Ecology of Cancer Conference (Cooperation, Conflict and Parasitism) meeting report-Wellcome Genome Campus, Hinxton, UK.

Evolutionary applications, 12(10):1863-1867 pii:EVA12862.

The fifth biannual conference of the International Society of Evolution and Ecology of Cancer (ISEEC) was held between the 17th and 19th of July 2019 in Hinxton (UK) at the Wellcome Genome Campus. The main theme of the conference: cooperation, conflict and parasitism reflected our growing understanding of the role cancer has played in the evolution of multicellular organisms, as well as the urgent need of translating these Darwinian processes to treatment strategies. Below we provide a brief summary of each plenary sessions and other oral presentations, to bring the conference to the broader audience of evolutionary biology and applications.

RevDate: 2019-11-05

Coudert Y, Harris S, B Charrier (2019)

Design Principles of Branching Morphogenesis in Filamentous Organisms.

Current biology : CB, 29(21):R1149-R1162.

The radiation of life on Earth was accompanied by the diversification of multicellular body plans in the eukaryotic kingdoms Animalia, Plantae, Fungi and Chromista. Branching forms are ubiquitous in nature and evolved repeatedly in the above lineages. The developmental and genetic basis of branch formation is well studied in the three-dimensional shoot and root systems of land plants, and in animal organs such as the lung, kidney, mammary gland, vasculature, etc. Notably, recent thought-provoking studies combining experimental analysis and computational modeling of branching patterns in whole animal organs have identified global patterning rules and proposed unifying principles of branching morphogenesis. Filamentous branching forms represent one of the simplest expressions of the multicellular body plan and constitute a key step in the evolution of morphological complexity. Similarities between simple and complex branching forms distantly related in evolution are compelling, raising the question whether shared mechanisms underlie their development. Here, we focus on filamentous branching organisms that represent major study models from three distinct eukaryotic kingdoms, including the moss Physcomitrella patens (Plantae), the brown alga Ectocarpus sp. (Chromista), and the ascomycetes Neurospora crassa and Aspergillus nidulans (Fungi), and bring to light developmental regulatory mechanisms and design principles common to these lineages. Throughout the review we explore how the regulatory mechanisms of branching morphogenesis identified in other models, and in particular animal organs, may inform our thinking on filamentous systems and thereby advance our understanding of the diverse strategies deployed across the eukaryotic tree of life to evolve similar forms.

RevDate: 2019-11-05

Poljsak B, Kovac V, Dahmane R, et al (2019)

Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition?.

Oxidative medicine and cellular longevity, 2019:7831952.

A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.

RevDate: 2019-11-04

Naumann B, P Burkhardt (2019)

Spatial Cell Disparity in the Colonial Choanoflagellate Salpingoeca rosetta.

Frontiers in cell and developmental biology, 7:231.

Choanoflagellates are the closest unicellular relatives of animals (Metazoa). These tiny protists display complex life histories that include sessile as well as different pelagic stages. Some choanoflagellates have the ability to form colonies as well. Up until recently, these colonies have been described to consist of mostly identical cells showing no spatial cell differentiation, which supported the traditional view that spatial cell differentiation, leading to the co-existence of specific cell types in animals, evolved after the split of the last common ancestor of the Choanoflagellata and Metazoa. The recent discovery of single cells in colonies of the choanoflagellate Salpingoeca rosetta that exhibit unique cell morphologies challenges this traditional view. We have now reanalyzed TEM serial sections, aiming to determine the degree of similarity of S. rosetta cells within a rosette colony. We investigated cell morphologies and nuclear, mitochondrial, and food vacuole volumes of 40 individual cells from four different S. rosetta rosette colonies and compared our findings to sponge choanocytes. Our analysis shows that cells in a choanoflagellate colony differ from each other in respect to cell morphology and content ratios of nuclei, mitochondria, and food vacuoles. Furthermore, cell disparity within S. rosetta colonies is slightly higher compared to cell disparity within sponge choanocytes. Moreover, we discovered the presence of plasma membrane contacts between colonial cells in addition to already described intercellular bridges and filo-/pseudopodial contacts. Our findings indicate that the last common ancestor of Choanoflagellata and Metazoa might have possessed plasma membrane contacts and spatial cell disparity during colonial life history stages.

RevDate: 2019-11-04

Arnellos A, F Keijzer (2019)

Bodily Complexity: Integrated Multicellular Organizations for Contraction-Based Motility.

Frontiers in physiology, 10:1268.

Compared to other forms of multicellularity, the animal case is unique. Animals-barring some exceptions-consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration is so well-known that it is often taken as a natural one that 'must' have evolved, given environmental conditions that make large free-moving units 'obviously' adaptive. Here we question the seemingly evolutionary inevitableness of animals and introduce a thesis of bodily complexity: The multicellular organization characteristic for typical animals requires the integration of a multitude of intrinsic bodily features between its sensorimotor, physiological, and developmental aspects, and the related contraction-based tissue- and cellular-level events and processes. The evolutionary road toward this bodily complexity involves, we argue, various intermediate organizational steps that accompany and support the wider transition from cilia-based to contraction/muscle-based motility, and which remain insufficiently acknowledged. Here, we stress the crucial and specific role played by muscle-based and myoepithelial tissue contraction-acting as a physical platform for organizing both the multicellular transmission of mechanical forces and multicellular signaling-as key foundation of animal motility, sensing and maintenance, and development. We illustrate and discuss these bodily features in the context of the four basal animal phyla-Porifera, Ctenophores, Placozoans, and Cnidarians-that split off before the bilaterians, a supergroup that incorporates all complex animals.

RevDate: 2019-10-25
CmpDate: 2019-10-25

Waters AJ, Capriotti P, Gaboriau DCA, et al (2018)

Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster.

Scientific reports, 8(1):13125.

The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance.

RevDate: 2019-10-31

Fortunato A, A Aktipis (2019)

Social feeding behavior of Trichoplax adhaerens.

Frontiers in ecology and evolution, 7:.

Animals have evolved different foraging strategies in which some animals forage independently and others forage in groups. The evolution of social feeding does not necessarily require cooperation; social feeding can be a beneficial individual-level strategy if it provides mutualistic benefits, for example though increasing the efficiency of resource extraction or processing. We found that Trichoplax adhaerens, the simplest multicellular animal ever described, engages in social feeding behavior. T. adhaerens lacks muscle tissue, nervous and digestive systems - yet is capable of aggregating and forming groups of closely connected individuals who collectively feed. The tight physical interactions between the animals are transitory and appear to serve the goal of staying connected to neighbors during the external digestion of algae when enzymes are released on the biofilm and nutrients are absorbed through the ventral epithelium. We found that T. adhaerens are more likely to engage in social feeding when the concentrations of algae are high - both in a semi-natural conditions and in vitro. It is surprising that T. adhaerens - an organism without a nervous system - is able to engage in this social feeding behavior. Whether this behavior is cooperative is still an open question. Nevertheless, the social feeding behavior of T. adhaerens, an early multicellular animal, suggests that sociality may have played an important role in the early evolution of animals. It also suggests that T. adhaerens could be used as a simple model organism for exploring questions regarding ecology and sociobiology.

RevDate: 2019-10-30

Du H, Zhang W, Zhang W, et al (2019)

Magnetosome Gene Duplication as an Important Driver in the Evolution of Magnetotaxis in the Alphaproteobacteria.

mSystems, 4(5): pii:4/5/e00315-19.

The evolution of microbial magnetoreception (or magnetotaxis) is of great interest in the fields of microbiology, evolutionary biology, biophysics, geomicrobiology, and geochemistry. Current genomic data from magnetotactic bacteria (MTB), the only prokaryotes known to be capable of sensing the Earth's geomagnetic field, suggests an ancient origin of magnetotaxis in the domain Bacteria Vertical inheritance, followed by multiple independent magnetosome gene cluster loss, is considered to be one of the major forces that drove the evolution of magnetotaxis at or above the class or phylum level, although the evolutionary trajectories at lower taxonomic ranks (e.g., within the class level) remain largely unstudied. Here we report the isolation, cultivation, and sequencing of a novel magnetotactic spirillum belonging to the genus Terasakiella (Terasakiella sp. strain SH-1) within the class Alphaproteobacteria The complete genome sequence of Terasakiella sp. strain SH-1 revealed an unexpected duplication event of magnetosome genes within the mamAB operon, a group of genes essential for magnetosome biomineralization and magnetotaxis. Intriguingly, further comparative genomic analysis suggests that the duplication of mamAB genes is a common feature in the genomes of alphaproteobacterial MTB. Taken together, with the additional finding that gene duplication appears to have also occurred in some magnetotactic members of the Deltaproteobacteria, our results indicate that gene duplication plays an important role in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain BacteriaIMPORTANCE A diversity of organisms can sense the geomagnetic field for the purpose of navigation. Magnetotactic bacteria are the most primitive magnetism-sensing organisms known thus far and represent an excellent model system for the study of the origin, evolution, and mechanism of microbial magnetoreception (or magnetotaxis). The present study is the first report focused on magnetosome gene cluster duplication in the Alphaproteobacteria, which suggests the important role of gene duplication in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria A novel scenario for the evolution of magnetotaxis in the Alphaproteobacteria is proposed and may provide new insights into evolution of magnetoreception of higher species.

RevDate: 2019-10-28
CmpDate: 2019-10-28

Morrissey EM, Mau RL, Hayer M, et al (2019)

Evolutionary history constrains microbial traits across environmental variation.

Nature ecology & evolution, 3(7):1064-1069.

Organisms influence ecosystems, from element cycling to disturbance regimes, to trophic interactions and to energy partitioning. Microorganisms are part of this influence, and understanding their ecology in nature requires studying the traits of these organisms quantitatively in their natural habitats-a challenging task, but one which new approaches now make possible. Here, we show that growth rate and carbon assimilation rate of soil microorganisms are influenced more by evolutionary history than by climate, even across a broad climatic gradient spanning major temperate life zones, from mixed conifer forest to high-desert grassland. Most of the explained variation (~50% to ~90%) in growth rate and carbon assimilation rate was attributable to differences among taxonomic groups, indicating a strong influence of evolutionary history, and taxonomic groupings were more predictive for organisms responding to resource addition. With added carbon and nitrogen substrates, differences among taxonomic groups explained approximately eightfold more variance in growth rate than did differences in ecosystem type. Taxon-specific growth and carbon assimilation rates were highly intercorrelated across the four ecosystems, constrained by the taxonomic identity of the organisms, such that plasticity driven by environment was limited across ecosystems varying in temperature, precipitation and dominant vegetation. Taken together, our results suggest that, similar to multicellular life, the traits of prokaryotes in their natural habitats are constrained by evolutionary history to a greater degree than environmental variation.

RevDate: 2019-10-25

Smith NC, Rise ML, SL Christian (2019)

A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish.

Frontiers in immunology, 10:2292.

The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.

RevDate: 2019-10-25

Duttke SH, Chang MW, Heinz S, et al (2019)

Identification and dynamic quantification of regulatory elements using total RNA.

Genome research pii:gr.253492.119 [Epub ahead of print].

The spatial and temporal regulation of transcription initiation is pivotal for controlling gene expression. Here, we introduce capped-small RNA-seq (csRNA-seq), which uses total RNA as starting material to detect transcription start sites (TSSs) of both stable and unstable RNAs at single-nucleotide resolution. csRNA-seq is highly sensitive to acute changes in transcription and identifies an order of magnitude more regulated transcripts than does RNA-seq. Interrogating tissues from species across the eukaryotic kingdoms identified unstable transcripts resembling enhancer RNAs, pri-miRNAs, antisense transcripts, and promoter upstream transcripts in multicellular animals, plants, and fungi spanning 1.6 million years of evolution. Integration of epigenomic data from these organisms revealed that histone H3 trimethylation (H3K4me3) was largely confined to TSSs of stable transcripts, whereas H3K27ac marked nucleosomes downstream from all active TSSs, suggesting an ancient role for posttranslational histone modifications in transcription. Our findings show that total RNA is sufficient to identify transcribed regulatory elements and capture the dynamics of initiated stable and unstable transcripts at single-nucleotide resolution in eukaryotes.

RevDate: 2019-10-23
CmpDate: 2019-10-21

Thomas GWC, Wang RJ, Puri A, et al (2018)

Reproductive Longevity Predicts Mutation Rates in Primates.

Current biology : CB, 28(19):3193-3197.e5.

Mutation rates vary between species across several orders of magnitude, with larger organisms having the highest per-generation mutation rates. Hypotheses for this pattern typically invoke physiological or population-genetic constraints imposed on the molecular machinery preventing mutations [1]. However, continuing germline cell division in multicellular eukaryotes means that organisms with longer generation times and of larger size will leave more mutations to their offspring simply as a byproduct of their increased lifespan [2, 3]. Here, we deeply sequence the genomes of 30 owl monkeys (Aotus nancymaae) from six multi-generation pedigrees to demonstrate that paternal age is the major factor determining the number of de novo mutations in this species. We find that owl monkeys have an average mutation rate of 0.81 × 10-8 per site per generation, roughly 32% lower than the estimate in humans. Based on a simple model of reproductive longevity that does not require any changes to the mutational machinery, we show that this is the expected mutation rate in owl monkeys. We further demonstrate that our model predicts species-specific mutation rates in other primates, including study-specific mutation rates in humans based on the average paternal age. Our results suggest that variation in life history traits alone can explain variation in the per-generation mutation rate among primates, and perhaps among a wide range of multicellular organisms.

RevDate: 2019-10-21

Brunet T, Larson BT, Linden TA, et al (2019)

Light-regulated collective contractility in a multicellular choanoflagellate.

Science (New York, N.Y.), 366(6463):326-334.

Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin-cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.

RevDate: 2019-10-16

Nanjundiah V (2019)

Many roads lead to Rome: Neutral phenotypes in microorganisms.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

John Bonner pointed out that microorganisms differ in several ways, some of which may reflect neutral phenotypic evolution. For making his case, Bonner referred to interspecies differences and morphological traits. Here we consider intraspecies differences and physiological traits. As a case-study, we examine the production of an extracellular cyclic 3 ' ,5 ' monophosphate phosphodiesterase in the cellular slime mold Dictyostelium discoideum. Temporal profiles of phosphodiesterase activity differ significantly between wild-type strains. From that we argue that the inference drawn initially from studies on a single wild-type, namely that the profile displayed by it pointed to an adaptive role, was mistaken. We generalize the conclusion to suggest that physiological differences exhibited by microorganisms of the same species may, but need not, reflect adaptations to different environments. Rather, the differences could be related to the fact that microorganisms live in groups whose composition can vary between homogeneous (clonal) and heterogeneous (polyclonal). More than one physiological profile is consistent with the normal development of the group in a given environment; the alternatives are neutral. When studying microbial physiology and behavior, it is expected that the observations are made on a clonal population; genetic (and so phenotypic) heterogeneity is carefully guarded against. As the example from D. discoideum shows, an unintended consequence of overlooking phenotypic heterogeneity is that one can fall into the trap of accepting a seemingly plausible, but possibly erroneous, adaptive explanation for a "normal" wild-type phenotype.

RevDate: 2019-10-16

Wan TM, Iyer DN, L Ng (2019)

Roles of microRNAs as non-invasive biomarker and therapeutic target in colorectal cancer.

Histology and histopathology pii:HH-18-171 [Epub ahead of print].

Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.

RevDate: 2019-10-16
CmpDate: 2019-10-16

Cardon ZG, Peredo EL, Dohnalkova AC, et al (2018)

A model suite of green algae within the Scenedesmaceae for investigating contrasting desiccation tolerance and morphology.

Journal of cell science, 131(7): pii:jcs.212233.

Microscopic green algae inhabiting desert microbiotic crusts are remarkably diverse phylogenetically, and many desert lineages have independently evolved from aquatic ancestors. Here we worked with five desert and aquatic species within the family Scenedesmaceae to examine mechanisms that underlie desiccation tolerance and release of unicellular versus multicellular progeny. Live cell staining and time-lapse confocal imaging coupled with transmission electron microscopy established that the desert and aquatic species all divide by multiple (rather than binary) fission, although progeny were unicellular in three species and multicellular (joined in a sheet-like coenobium) in two. During division, Golgi complexes were localized near nuclei, and all species exhibited dynamic rotation of the daughter cell mass within the mother cell wall at cytokinesis. Differential desiccation tolerance across the five species, assessed from photosynthetic efficiency during desiccation/rehydration cycles, was accompanied by differential accumulation of intracellular reactive oxygen species (ROS) detected using a dye sensitive to intracellular ROS. Further comparative investigation will aim to understand the genetic, ultrastructural and physiological characteristics supporting unicellular versus multicellular coenobial morphology, and the ability of representatives in the Scenedesmaceae to colonize ecologically diverse, even extreme, habitats.

RevDate: 2019-10-15

Love AC (2019)

Evolution evolving? Reflections on big questions.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

John Bonner managed a long and productive career that balanced specialized inquiry into cellular slime molds with general investigations of big questions in evolutionary biology, such as the origins of multicellular development and the evolution of complexity. This commentary engages with his final paper ("The evolution of evolution"), which argues that the evolutionary process has changed through the history of life. In particular, Bonner emphasizes the possibility that natural selection plays different roles at different size scales. I identify some underlying assumptions in his argument and evaluate its cogency to both foster future discussion and emulate the intellectual example set by Bonner over a lifetime. This endeavor is important beyond Bonner's own theoretical disposition because similar issues are visible in controversies about the possibility of an extended evolutionary synthesis.

RevDate: 2019-10-12

Ramon-Mateu J, Ellison ST, Angelini TE, et al (2019)

Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing.

BMC biology, 17(1):80 pii:10.1186/s12915-019-0695-8.

BACKGROUND: The ability to regenerate is a widely distributed but highly variable trait among metazoans. A variety of modes of regeneration has been described for different organisms; however, many questions regarding the origin and evolution of these strategies remain unanswered. Most species of ctenophore (or "comb jellies"), a clade of marine animals that branch off at the base of the animal tree of life, possess an outstanding capacity to regenerate. However, the cellular and molecular mechanisms underlying this ability are unknown. We have used the ctenophore Mnemiopsis leidyi as a system to study wound healing and adult regeneration and provide some first-time insights of the cellular mechanisms involved in the regeneration of one of the most ancient extant group of multicellular animals.

RESULTS: We show that cell proliferation is activated at the wound site and is indispensable for whole-body regeneration. Wound healing occurs normally in the absence of cell proliferation forming a scar-less wound epithelium. No blastema-like structure is generated at the cut site, and pulse-chase experiments and surgical intervention show that cells originating in the main regions of cell proliferation (the tentacle bulbs) do not seem to contribute to the formation of new structures after surgical challenge, suggesting a local source of cells during regeneration. While exposure to cell-proliferation blocking treatment inhibits regeneration, the ability to regenerate is recovered when the treatment ends (days after the original cut), suggesting that ctenophore regenerative capabilities are constantly ready to be triggered and they are somehow separable of the wound healing process.

CONCLUSIONS: Ctenophore regeneration takes place through a process of cell proliferation-dependent non-blastemal-like regeneration and is temporally separable of the wound healing process. We propose that undifferentiated cells assume the correct location of missing structures and differentiate in place. The remarkable ability to replace missing tissue, the many favorable experimental features (e.g., optical clarity, high fecundity, rapid regenerative performance, stereotyped cell lineage, sequenced genome), and the early branching phylogenetic position in the animal tree, all point to the emergence of ctenophores as a new model system to study the evolution of animal regeneration.

RevDate: 2019-10-11

Agić H, Högström AES, Moczydłowska M, et al (2019)

Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway.

Scientific reports, 9(1):14659 pii:10.1038/s41598-019-50650-x.

Eukaryotic multicellularity originated in the Mesoproterozoic Era and evolved multiple times since, yet early multicellular fossils are scarce until the terminal Neoproterozoic and often restricted to cases of exceptional preservation. Here we describe unusual organically-preserved fossils from mudrocks, that provide support for the presence of organisms with differentiated cells (potentially an epithelial layer) in the late Neoproterozoic. Cyathinema digermulense gen. et sp. nov. from the Nyborg Formation, Vestertana Group, Digermulen Peninsula in Arctic Norway, is a new carbonaceous organ-taxon which consists of stacked tubes with cup-shaped ends. It represents parts of a larger organism (multicellular eukaryote or a colony), likely with greater preservation potential than its other elements. Arrangement of open-ended tubes invites comparison with cells of an epithelial layer present in a variety of eukaryotic clades. This tissue may have benefitted the organism in: avoiding overgrowth, limiting fouling, reproduction, or water filtration. C. digermulense shares characteristics with extant and fossil groups including red algae and their fossils, demosponge larvae and putative sponge fossils, colonial protists, and nematophytes. Regardless of its precise affinity, C. digermulense was a complex and likely benthic marine eukaryote exhibiting cellular differentiation, and a rare occurrence of early multicellularity outside of Konservat-Lagerstätten.

RevDate: 2019-10-09

Kieninger AK, Forchhammer K, I Maldener (2019)

A nanopore array in the septal peptidoglycan hosts gated septal junctions for cell-cell communication in multicellular cyanobacteria.

International journal of medical microbiology : IJMM pii:S1438-4221(18)30639-8 [Epub ahead of print].

Some filamentous cyanobacteria are phototrophic bacteria with a true multicellular life style. They show patterned cell differentiation with the distribution of metabolic tasks between different cell types. This life style requires a system of cell-cell communication and metabolite exchange along the filament. During our study of the cell wall of species Nostoc punctiforme and Anabaena sp. PCC 7120 we discovered regular perforations in the septum between neighboring cells, which we called nanopore array. AmiC-like amidases are drilling the nanopores with a diameter of 20 nm, and are essential for communication and cell differentiation. NlpD-like regulators of AmiC activity and septum localized proteins SepJ, FraC and FraD are also involved in correct nanopore formation. By focused ion beam (FIB) milling and electron cryotomography we could visualize the septal junctions, which connect adjacent cells and pass thru the nanopores. They consist of cytoplasmic caps, which are missing in the fraD mutant, a plug inside the cytoplasmic membrane and a tube like conduit. A destroyed membrane potential and other stress factors lead to a conformational change in the cap structure and loss of cell-cell communication. These gated septal junctions of cyanobacteria are ancient structures that represent an example of convergent evolution, predating metazoan gap junctions.

RevDate: 2019-10-08
CmpDate: 2019-10-08

Guo JS, Zhang Z, Qiao M, et al (2019)

Phalangispora sinensis sp. nov. from Yunnan, China and two new members of Wiesneriomycetaceae.

International journal of systematic and evolutionary microbiology, 69(10):3207-3213.

Phalangispora sinensis, an aquatic hyphomycete collected from south-western PR China, is described as a new species. This new species is characterized by having multicellular branched conidia composed of a curved main axis and one or two laterals, with the laterals arising from the third or fourth cell of the base of the main axis. Combined analyses of the LSU, SSU, RPB2 and TEF1 gene sequence data revealed that Phalangispora and another aquatic hyphomycete genus, Setosynnema, belonged to Wiesneriomycetaceae, Tubeufiales, Dothideomycetes, Ascomycota.

RevDate: 2019-10-07

Arcas A, Wilkinson DG, MÁ Nieto (2019)

The evolutionary history of Ephs and ephrins: towards multicellular organisms.

Molecular biology and evolution pii:5582654 [Epub ahead of print].

Eph receptor (Eph) and ephrin signalling regulates fundamental developmental processes through both forward and reverse signalling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that (i) premetazoan choanoflagellates may already have rudimental Eph/ephrin signalling as they have an Eph-/ephrin-like pair and homologues of downstream signalling genes; (ii) both forward and reverse downstream signalling might already occur in Porifera since sponges have most genes involved in these types of signalling; (iii) the non-vertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane anchoring structure, glycosylphosphatidylinositol or transmembrane; (iv) Eph/ephrin cross-class binding is specific to Gnathostomata and (v) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signalling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream signalling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.

RevDate: 2019-10-07

López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, et al (2019)

Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1786):20190088.

Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.

RevDate: 2019-09-30

Thakur R, Shiratori T, KI Ishida (2019)

Taxon-rich Multigene Phylogenetic Analyses Resolve the Phylogenetic Relationship Among Deep-branching Stramenopiles.

Protist, 170(5):125682 pii:S1434-4610(18)30086-5 [Epub ahead of print].

Stramenopiles are one of the major eukaryotic assemblages. This group comprises a wide range of species including photosynthetic unicellular and multicellular algae, fungus-like osmotrophic organisms and many free-living phagotrophic flagellates. However, the phylogeny of the Stramenopiles, especially relationships among deep-branching heterotrophs, has not yet been resolved because of a lack of adequate transcriptomic data for representative lineages. In this study, we performed multigene phylogenetic analyses of deep-branching Stramenopiles with improved taxon sampling. We sequenced transcriptomes of three deep-branching Stramenopiles: Incisomonas marina, Pseudophyllomitus vesiculosus and Platysulcus tardus. Phylogenetic analyses using 120 protein-coding genes and 56 taxa indicated that Pl. tardus is sister to all other Stramenopiles while Ps. vesiculosus is sister to MAST-4 and form a robust clade with the Labyrinthulea. The resolved phylogenetic relationships of deep-branching Stramenopiles provide insights into the ancestral traits of the Stramenopiles.

RevDate: 2019-09-30

Newman SA (2019)

Cell differentiation: what have we learned in 50 years?.

Journal of theoretical biology pii:S0022-5193(19)30401-1 [Epub ahead of print].

I revisit two theories of cell differentiation in multicellular organisms published a half-century ago, Stuart Kauffman's global gene regulatory dynamics (GGRD) model and Roy Britten's and Eric Davidson's modular gene regulatory network (MGRN) model, in light of newer knowledge of mechanisms of gene regulation in the metazoans (animals). The two models continue to inform hypotheses and computational studies of differentiation of lineage-adjacent cell types. However, their shared notion (based on bacterial regulatory systems) of gene switches and networks built from them, have constrained progress in understanding the dynamics and evolution of differentiation. Recent work has described unique write-read-rewrite chromatin-based expression encoding in eukaryotes, as well metazoan-specific processes of gene activation and silencing in condensed-phase, enhancer-recruiting regulatory hubs, employing disordered proteins, including transcription factors, with context-dependent identities. These findings suggest an evolutionary scenario in which the origination of differentiation in animals, rather than depending exclusively on adaptive natural selection, emerged as a consequence of a type of multicellularity in which the novel metazoan gene regulatory apparatus was readily mobilized to amplify and exaggerate inherent cell functions of unicellular ancestors. The plausibility of this hypothesis is illustrated by the evolution of the developmental role of Grainyhead-like in the formation of epithelium.

RevDate: 2019-09-30

Gilbert SF (2019)

Evolutionary transitions revisited: Holobiont evo-devo.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

John T. Bonner lists four essential transformations in the evolution of life: the emergence of the eukaryotic cell, meiosis, multicellularity, and the nervous system. This paper analyses the mechanisms for those transitions in light of three of Dr. Bonner's earlier hypotheses: (a) that the organism is its life cycle, (b) that evolution consists of alterations of the life cycle, and (c) that development extends beyond the body and into interactions with other organisms. Using the notion of the holobiont life cycle, this paper attempts to show that these evolutionary transitions can be accomplished through various means of symbiosis. Perceiving the organism both as an interspecies consortium and as a life cycle supports a twofold redefinition of the organism as a holobiont constructed by integrating together the life cycles of several species. These findings highlight the importance of symbiosis and the holobiont development in analyses of evolution.

RevDate: 2019-09-29

Hernández-Hernández V, Benítez M, A Boudaoud (2019)

Interplay between turgor pressure and plasmodesmata during plant development.

Journal of experimental botany pii:5575975 [Epub ahead of print].

Plasmodesmata traverse cell walls, generating connections between neighboring cells. They allow intercellular movement of molecules such as transcription factors, hormones, and sugars, and thus create a symplasmic continuity within a tissue. One important factor that determines plasmodesmal permeability is their aperture which is regulated during developmental and physiological processes. Regulation of aperture has been shown to affect developmental events such as vascular differentiation in the root, initiation of lateral roots, or transition to flowering. Extensive research has unraveled molecular factors involved in the regulation of plasmodesmal permeability. Nevertheless, many plant developmental processes appear to involve feedbacks mediated by mechanical forces, raising the question of whether mechanical forces and plasmodesmal permeability affect each other. Here, we review experimental data on how one of these forces, turgor pressure, and plasmodesmal permeability may mutually influence each other during plant development, and we discuss the questions raised by these data. Addressing such questions will improve our knowledge of how cellular patterns emerge during development, shedding light on the evolution of complex multicellular plants.

RevDate: 2019-09-25

Wanninger A, T Wollesen (2020)

Methods in Brain Development of Molluscs.

Methods in molecular biology (Clifton, N.J.), 2047:311-324.

Representatives of the phylum Mollusca have long been important models in neurobiological research. Recently, the routine application of immunocytochemistry and gene expression analyses in combination with confocal laserscanning microscopy has allowed fast generation of highly detailed reconstructions of neural structures of even the smallest multicellular animals, including early developmental stages. As a consequence, large-scale comparative analyses of neurogenesis-an important prerequisite for inferences concerning the evolution of animal nervous systems-are now possible in a reasonable amount of time. Herein, we describe immunocytochemical staining and in situ hybridization protocols for both, whole-mount preparations of developmental stages-usually 70-300 μm in size-as well as for vibratome and cryostat sections of complex brains. Although our procedures have been optimized for marine molluscs, they may easily be adapted to other (marine) organisms by the creative neurobiologist.

RevDate: 2019-09-22

Barger SR, James ML, Pellenz CD, et al (2019)

Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis.

Experimental cell research pii:S0014-4827(19)30487-2 [Epub ahead of print].

In both unicellular and multicellular organisms, long-tailed class I myosins function in clathrin-mediated endocytosis. Myosin 1e (Myo1e) in vertebrates and Myo1 in fission yeast have similar domain organization, yet whether these proteins or their individual protein domains are functionally interchangeable remains unknown. In an effort to assess functional conservation of class I myosins, we tested whether human Myo1e could replace Myo1 in fission yeast Schizosaccharomyces pombe and found that it was unable to substitute for yeast Myo1. To determine if any individual protein domain is responsible for the inability of Myo1e to function in yeast, we created human-yeast myosin-I chimeras. By functionally testing these chimeric myosins in vivo, we concluded that the Myo1e motor domain is unable to function in yeast, even when combined with the yeast Myo1 tail and a full complement of yeast regulatory light chains. Conversely, the Myo1e tail, when attached to the yeast Myo1 motor domain, supports localization to endocytic actin patches and partially rescues the endocytosis defect in myo1Δ cells. Further dissection showed that both the TH1 and TH2-SH3 domains in the human Myo1e tail are required for localization and function of chimeric myosin-I at endocytic sites. Overall, this study provides insights into the role of individual myosin-I domains, expands the utility of fission yeast as a simple model system to study the effects of disease-associated MYO1E mutations, and supports a model of co-evolution between a myosin motor and its actin track.

RevDate: 2019-09-21

Pukhlyakova EA, Kirillova AO, Kraus YA, et al (2019)

Cadherin switch marks germ layer formation in the diploblastic sea anemone Nematostella vectensis.

Development (Cambridge, England) pii:dev.174623 [Epub ahead of print].

Morphogenesis is a shape-building process during development of multicellular organisms. During this process the establishment and modulation of cell-cell contacts play an important role. Cadherins, the major cell adhesion molecules, form adherens junctions connecting epithelial cells. Numerous studies in Bilateria have shown that cadherins are associated with the regulation of cell differentiation, cell shape changes, cell migration and tissue morphogenesis. To date, the role of Cadherins in non-bilaterians is unknown. Here, we study the expression and the function of two paralogous classical cadherins, cadherin1 and cadherin3, in the diploblastic animal, the sea anemone Nematostella vectensis We show that a cadherin switch is accompanying the formation of germ layers. Using specific antibodies, we show that both cadherins are localized to adherens junctions at apical and basal positions in ectoderm and endoderm. During gastrulation, partial EMT of endodermal cells is marked by a step-wise down-regulation of cadherin3 and up-regulation of cadherin1. Knockdown experiments show that both cadherins are required for maintenance of tissue integrity and tissue morphogenesis. Thus, both sea anemones and bilaterians use independently duplicated cadherins combinatorially for tissue morphogenesis and germ layer differentiation.

RevDate: 2019-09-21

Denes V, Geck P, Mester A, et al (2019)

Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service.

Journal of clinical medicine, 8(9): pii:jcm8091488.

Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer's disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: "this is not the end, not even the beginning of the end, but maybe the end of the beginning."

RevDate: 2019-09-19

Moger-Reischer R, JT Lennon (2019)

Microbial ageing and longevity.

Nature reviews. Microbiology pii:10.1038/s41579-019-0253-y [Epub ahead of print].

Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.

RevDate: 2019-09-18

Powell R, MA O'Malley (2019)

Metabolic and microbial perspectives on the "evolution of evolution".

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

Identifying and theorizing major turning points in the history of life generates insights into not only world-changing evolutionary events but also the processes that bring these events about. In his treatment of these issues, Bonner identifies the evolution of sex, multicellularity, and nervous systems as enabling the "evolution of evolution," which involves fundamental transformations in how evolution occurs. By contextualizing his framework within two decades of theorizing about major transitions in evolution, we identify some basic problems that Bonner's theory shares with much of the prevailing literature. These problems include implicit progressivism, theoretical disunity, and a limited ability to explain major evolutionary transformations. We go on to identify events and processes that are neglected by existing views. In contrast with the "vertical" focus on replication, hierarchy, and morphology that preoccupies most of the literature on major transitions, we propose a "horizontal" dimension in which metabolism and microbial innovations play a central explanatory role in understanding the broad-scale organization of life.

RevDate: 2019-09-18

Erwin DH (2019)

Tempos and modes of collectivity in the history of life.

Theory in biosciences = Theorie in den Biowissenschaften pii:10.1007/s12064-019-00303-4 [Epub ahead of print].

Collective integration and processing of information have increased through the history of life, through both the formation of aggregates in which the entities may have very different properties and which jointly coarse-grained environmental variables (ranging from widely varying metabolism in microbial consortia to the ecological diversity of species on reefs) and through collectives of similar entities (such as cells within an organism or social groups). Such increases have been implicated in significant transitions in the history of life, including aspects of the origin of life, the generation of pangenomes among microbes and microbial communities such as stromatolites, multicellularity and social insects. This contribution provides a preliminary overview of the dominant modes of collective information processing in the history of life, their phylogenetic distribution and extent of convergence, and the effects of new modes for integrating and acting upon information on the tempo of evolutionary change.

RevDate: 2019-09-15

Rausch P, Rühlemann M, Hermes BM, et al (2019)

Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms.

Microbiome, 7(1):133 pii:10.1186/s40168-019-0743-1.

BACKGROUND: The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants.

METHODS: In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample.

CONCLUSION: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.

RevDate: 2019-09-13

de Araújo Silva-Cardoso IM, Meira FS, Gomes ACMM, et al (2019)

Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea.

Physiologia plantarum [Epub ahead of print].

Somatic embryogenesis in palm trees is, in general, a slow and highly complex process, with a predominance of the indirect route and, consequently, a lack of knowledge about the direct route. We present new knowledge related to the morphological, histochemical, and ultrastructural aspects of the transition from somatic to embryogenic cells and direct formation of somatic embryos from mature zygotic embryos of Syagrus oleracea, a palm tree. The results support the general concept that 2,4-dichlorophenoxyacetic acid plays a critical role for the formation of somatic embryos of direct and multicellular origin. Seven days in medium with auxin were enough for the identification of embryogenic cells. These cells had a set of characteristics that fit them into the concept of totipotent stem cells. At fourteen days in induction medium, nodular formations were observed in the distal region of inoculated embryos, which evolved into globular somatic embryos. At 120 days in induction medium, the quality of the somatic embryos was compromised. The dynamics of the mobilization of reserve compounds was also demonstrated, with emphasis on starch and protein as energy sources required for the embryogenic process. This study shows for the first time the anatomical and ultrastructural events involved in direct somatic embryogenesis in a palm tree and incites the scientific community to return to the discussion of classical concepts related to direct somatic embryogenesis, especially regarding the characteristics and location of determined pre-embryogenic cells. This article is protected by copyright. All rights reserved.

RevDate: 2019-09-10

Kiss E, Hegedüs B, Virágh M, et al (2019)

Comparative genomics reveals the origin of fungal hyphae and multicellularity.

Nature communications, 10(1):4080 pii:10.1038/s41467-019-12085-w.

Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions.

RevDate: 2019-09-04

Fisher RM, B Regenberg (2019)

Multicellular group formation in Saccharomyces cerevisiae.

Proceedings. Biological sciences, 286(1910):20191098.

Understanding how and why cells cooperate to form multicellular organisms is a central aim of evolutionary biology. Multicellular groups can form through clonal development (where daughter cells stick to mother cells after division) or by aggregation (where cells aggregate to form groups). These different ways of forming groups directly affect relatedness between individual cells, which in turn can influence the degree of cooperation and conflict within the multicellular group. It is hard to study the evolution of multicellularity by focusing only on obligately multicellular organisms, like complex animals and plants, because the factors that favour multicellular cooperation cannot be disentangled, as cells cannot survive and reproduce independently. We support the use of Saccharomyces cerevisiae as an ideal model for studying the very first stages of the evolution of multicellularity. This is because it can form multicellular groups both clonally and through aggregation and uses a family of proteins called 'flocculins' that determine the way in which groups form, making it particularly amenable to laboratory experiments. We briefly review current knowledge about multicellularity in S. cerevisiae and then propose a framework for making predictions about the evolution of multicellular phenotypes in yeast based on social evolution theory. We finish by explaining how S. cerevisiae is a particularly useful experimental model for the analysis of open questions concerning multicellularity.

RevDate: 2019-09-02

Gonçalves AP, Heller J, Span EA, et al (2019)

Allorecognition upon Fungal Cell-Cell Contact Determines Social Cooperation and Impacts the Acquisition of Multicellularity.

Current biology : CB pii:S0960-9822(19)30940-6 [Epub ahead of print].

Somatic cell fusion and conspecific cooperation are crucial social traits for microbial unicellular-to-multicellular transitions, colony expansion, and substrate foraging but are also associated with risks of parasitism. We identified a cell wall remodeling (cwr) checkpoint that acts upon cell contact to assess genetic compatibility and regulate cell wall dissolution during somatic cell fusion in a wild population of the filamentous fungus Neurospora crassa. Non-allelic interactions between two linked loci, cwr-1 and cwr-2, were necessary and sufficient to block cell fusion: cwr-1 encodes a polysaccharide monooxygenase (PMO), a class of enzymes associated with extracellular degradative capacities, and cwr-2 encodes a predicted transmembrane protein. Mutations of sites in CWR-1 essential for PMO catalytic activity abolished the block in cell fusion between formerly incompatible strains. In Neurospora, alleles cwr-1 and cwr-2 were highly polymorphic, fell into distinct haplogroups, and showed trans-species polymorphisms. Distinct haplogroups and trans-species polymorphisms at cwr-1 and cwr-2 were also identified in the distantly related genus Fusarium, suggesting convergent evolution. Proteins involved in chemotropic processes showed extended localization at contact sites, suggesting that cwr regulates the transition between chemotropic growth and cell wall dissolution. Our work revealed an allorecognition surveillance system based on kind discrimination that inhibits cooperative behavior in fungi by blocking cell fusion upon contact, contributing to fungal immunity by preventing formation of chimeras between genetically non-identical colonies.

RevDate: 2019-09-01

Vostinar AE, Goldsby HJ, C Ofria (2019)

Suicidal selection: Programmed cell death can evolve in unicellular organisms due solely to kin selection.

Ecology and evolution, 9(16):9129-9136 pii:ECE35460.

Abstract: Unicellular organisms can engage in a process by which a cell purposefully destroys itself, termed programmed cell death (PCD). While it is clear that the death of specific cells within a multicellular organism could increase inclusive fitness (e.g., during development), the origin of PCD in unicellular organisms is less obvious. Kin selection has been shown to help maintain instances of PCD in existing populations of unicellular organisms; however, competing hypotheses exist about whether additional factors are necessary to explain its origin. Those factors could include an environmental shift that causes latent PCD to be expressed, PCD hitchhiking on a large beneficial mutation, and PCD being simply a common pathology. Here, we present results using an artificial life model to demonstrate that kin selection can, in fact, be sufficient to give rise to PCD in unicellular organisms. Furthermore, when benefits to kin are direct-that is, resources provided to nearby kin-PCD is more beneficial than when benefits are indirect-that is, nonkin are injured, thus increasing the relative amount of resources for kin. Finally, when considering how strict organisms are in determining kin or nonkin (in terms of mutations), direct benefits are viable in a narrower range than indirect benefits.

Open Research Badges: This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework at https://github.com/anyaevostinar/SuicidalAltruismDissertation/tree/master/LongTerm.

RevDate: 2019-09-05

Romero-Mujalli D, Jeltsch F, R Tiedemann (2019)

Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change.

BMC evolutionary biology, 19(1):175 pii:10.1186/s12862-019-1494-0.

BACKGROUND: Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats.

RESULTS: The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats.

CONCLUSIONS: Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become - at least locally - extinct.

RevDate: 2019-09-01

Cleri F (2019)

Agent-based model of multicellular tumor spheroid evolution including cell metabolism.

The European physical journal. E, Soft matter, 42(8):112 pii:10.1140/epje/i2019-11878-7.

Computational models aiming at the spatio-temporal description of cancer evolution are a suitable framework for testing biological hypotheses from experimental data, and generating new ones. Building on our recent work (J. Theor. Biol. 389, 146 (2016)) we develop a 3D agent-based model, capable of tracking hundreds of thousands of interacting cells, over time scales ranging from seconds to years. Cell dynamics is driven by a Monte Carlo solver, incorporating partial differential equations to describe chemical pathways and the activation/repression of "genes", leading to the up- or down-regulation of specific cell markers. Each cell-agent of different kind (stem, cancer, stromal etc.) runs through its cycle, undergoes division, can exit to a dormant, senescent, necrotic state, or apoptosis, according to the inputs from its systemic network. The basic network at this stage describes glucose/oxygen/ATP cycling, and can be readily extended to cancer-cell specific markers. Eventual accumulation of chemical/radiation damage to each cell's DNA is described by a Markov chain of internal states, and by a damage-repair network, whose evolution is linked to the cell systemic network. Aimed at a direct comparison with experiments of tumorsphere growth from stem cells, the present model will allow to quantitatively study the role of transcription factors involved in the reprogramming and variable radio-resistance of simulated cancer-stem cells, evolving in a realistic computer simulation of a growing multicellular tumorsphere.

RevDate: 2019-08-25

Annunziata R, Andrikou C, Perillo M, et al (2019)

Development and evolution of gut structures: from molecules to function.

Cell and tissue research pii:10.1007/s00441-019-03093-9 [Epub ahead of print].

The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.

RevDate: 2019-08-24

Wu F, Ma C, Han B, et al (2019)

Behavioral, physiological, and molecular changes in alloparental care givers may be responsible for selection response for female reproductive investment in honey bees.

Molecular ecology [Epub ahead of print].

Reproductive investment is a central life history variable that influences all aspects of life. Hormones coordinate reproduction in multicellular organisms, but the mechanisms controlling the collective reproductive investment of social insects are largely unexplored. One important aspect of honey bee (Apis mellifera) reproductive investment consists of raising female-destined larvae into new queens by alloparental care of nurse bees in form of royal jelly provisioning. Artificial selection for commercial royal jelly production over 40 years has increased this reproductive investment by an order of magnitude. In a cross-fostering experiment, we establish that this shift in social phenotype is caused by nurse bees. We find no evidence for changes in larval signaling. Instead, the antennae of the nurse bees of the selected stock are more responsive to brood pheromones than control bees. Correspondingly, the selected royal jelly bee nurses are more attracted to brood pheromones than unselected control nurses. Comparative proteomics of the antennae from the selected and unselected stocks indicate putative molecular mechanisms, primarily changes in chemosensation and energy metabolism. We report expression differences of several candidate genes that correlate with the differences in reproductive investment. The functional relevance of these genes is supported by demonstrating that the corresponding proteins can competitively bind one previously described and one newly discovered brood pheromone. Thus, we suggest several chemosensory genes, most prominently OBP16 and CSP4, as candidate mechanisms controlling queen rearing, a key reproductive investment, in honey bees. These findings reveal novel aspects of pheromonal communication in honey bees and explain how sensory changes affect communication and lead to a drastic shift in colony-level resource allocation to sexual reproduction. Thus, pheromonal and hormonal communication may play similar roles for reproductive investment in superorganisms and multicellular organisms, respectively. This article is protected by copyright. All rights reserved.

RevDate: 2019-08-24

Draper GW, Shoemark DK, JC Adams (2019)

Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges.

Essays in biochemistry pii:EBC20180048 [Epub ahead of print].

Animals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.

RevDate: 2019-08-20

D'Ario M, R Sablowski (2019)

Cell Size Control in Plants.

Annual review of genetics [Epub ahead of print].

The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution. Expected final online publication date for the Annual Review of Genetics, Volume 53 is November 23, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2019-08-20

Kjeldsen KU, Schreiber L, Thorup CA, et al (2019)

On the evolution and physiology of cable bacteria.

Proceedings of the National Academy of Sciences of the United States of America pii:1903514116 [Epub ahead of print].

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.

RevDate: 2019-08-25

Miller WB, Torday JS, F Baluška (2019)

The N-Space episenome unifies cellular information space-time within Cognition-Based Evolution.

Progress in biophysics and molecular biology pii:S0079-6107(19)30148-8 [Epub ahead of print].

Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.

RevDate: 2019-08-18

Fields C, M Levin (2019)

Somatic multicellularity as a satisficing solution to the prediction-error minimization problem.

Communicative & integrative biology, 12(1):119-132 pii:1643666.

Adaptive success in the biosphere requires the dynamic ability to adjust physiological, transcriptional, and behavioral responses to environmental conditions. From chemical networks to organisms to whole communities, biological entities at all levels of organization seek to optimize their predictive power. Here, we argue that this fundamental drive provides a novel perspective on the origin of multicellularity. One way for unicellular organisms to minimize surprise with respect to external inputs is to be surrounded by reproductively-disabled, i.e. somatic copies of themselves - highly predictable agents which in effect reduce uncertainty in their microenvironments. We show that the transition to multicellularity can be modeled as a phase transition driven by environmental threats. We present modeling results showing how multicellular bodies can arise if non-reproductive somatic cells protect their reproductive parents from environmental lethality. We discuss how a somatic body can be interpreted as a Markov blanket around one or more reproductive cells, and how the transition to somatic multicellularity can be represented as a transition from exposure of reproductive cells to a high-uncertainty environment to their protection from environmental uncertainty by this Markov blanket. This is, effectively, a transition by the Markov blanket from transparency to opacity for the variational free energy of the environment. We suggest that the ability to arrest the cell cycle of daughter cells and redirect their resource utilization from division to environmental threat amelioration is the key innovation of obligate multicellular eukaryotes, that the nervous system evolved to exercise this control over long distances, and that cancer is an escape by somatic cells from the control of reproductive cells. Our quantitative model illustrates the evolutionary dynamics of this system, provides a novel hypothesis for the origin of multicellular animal bodies, and suggests a fundamental link between the architectures of complex organisms and information processing in proto-cognitive cellular agents.

RevDate: 2019-08-16

Kuzdzal-Fick JJ, Chen L, G Balázsi (2019)

Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast.

Ecology and evolution, 9(15):8509-8523 pii:ECE35322.

Multicellular organisms appeared on Earth through several independent major evolutionary transitions. Are such transitions reversible? Addressing this fundamental question entails understanding the benefits and costs of multicellularity versus unicellularity. For example, some wild yeast strains form multicellular clumps, which might be beneficial in stressful conditions, but this has been untested. Here, we show that unicellular yeast evolve from clump-forming ancestors by propagating samples from suspension after larger clumps have settled. Unicellular yeast strains differed from their clumping ancestors mainly by mutations in the AMN1 (Antagonist of Mitotic exit Network) gene. Ancestral yeast clumps were more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts, but they grew slower without stress. These findings suggest disadvantages and benefits to multicellularity and unicellularity that may have impacted the emergence of multicellular life forms.

RevDate: 2019-08-31

Small CM, Currey M, Beck EA, et al (2019)

Highly Reproducible 16S Sequencing Facilitates Measurement of Host Genetic Influences on the Stickleback Gut Microbiome.

mSystems, 4(4): pii:4/4/e00331-19.

Multicellular organisms interact with resident microbes in important ways, and a better understanding of host-microbe interactions is aided by tools such as high-throughput 16S sequencing. However, rigorous evaluation of the veracity of these tools in a different context from which they were developed has often lagged behind. Our goal was to perform one such critical test by examining how variation in tissue preparation and DNA isolation could affect inferences about gut microbiome variation between two genetically divergent lines of threespine stickleback fish maintained in the same laboratory environment. Using careful experimental design and intensive sampling of individuals, we addressed technical and biological sources of variation in 16S-based estimates of microbial diversity. After employing a two-tiered bead beating approach that comprised tissue homogenization followed by microbial lysis in subsamples, we found an extremely minor effect of DNA isolation protocol relative to among-host microbial diversity differences. Abundance estimates for rare operational taxonomic units (OTUs), however, showed much lower reproducibility. Gut microbiome composition was highly variable across fish-even among cohoused siblings-relative to technical replicates, but a subtle effect of host genotype (stickleback line) was nevertheless detected for some microbial taxa.IMPORTANCE Our findings demonstrate the importance of appropriately quantifying biological and technical variance components when attempting to understand major influences on high-throughput microbiome data. Our focus was on understanding among-host (biological) variance in community metrics and its magnitude in relation to within-host (technical) variance, because meaningful comparisons among individuals are necessary in addressing major questions in host-microbe ecology and evolution, such as heritability of the microbiome. Our study design and insights should provide a useful example for others desiring to quantify microbiome variation at biological levels in the face of various technical factors in a variety of systems.

RevDate: 2019-08-08

Blum P, S Payne (2019)

Evidence of an Epigenetics System in Archaea.

Epigenetics insights, 12:2516865719865280 pii:10.1177_2516865719865280.

Changes in the phenotype of a cell or organism that are heritable but do not involve changes in DNA sequence are referred to as epigenetic. They occur primarily through the gain or loss of chemical modification of chromatin protein or DNA. Epigenetics is therefore a non-Mendelian process. The study of epigenetics in eukaryotes is expanding with advances in knowledge about the relationship between mechanism and phenotype and as a requirement for multicellularity and cancer. However, life also includes other groups or domains, notably the bacteria and archaea. The occurrence of epigenetics in these deep lineages is an emerging topic accompanied by controversy. In these non-eukaryotic organisms, epigenetics is critically important because it stimulates new evolutionary theory and refines perspective about biological action.

RevDate: 2019-08-05

Newman SA (2019)

Inherent forms and the evolution of evolution.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

John Bonner presented a provocative conjecture that the means by which organisms evolve has itself evolved. The elements of his postulated nonuniformitarianism in the essay under discussion-the emergence of sex, the enhanced selection pressures on larger multicellular forms-center on a presumed close mapping of genotypic to phenotypic change. A different view emerges from delving into earlier work of Bonner's in which he proposed the concept of "neutral phenotypes" and "neutral morphologies" allied to D'Arcy Thompson's analysis of physical determinants of form and studied the conditional elicitation of intrinsic organizational properties of cell aggregates in social amoebae. By comparing the shared and disparate mechanistic bases of morphogenesis and developmental outcomes in the embryos of metazoans (animals), closely related nonmetazoan holozoans, more distantly related dictyostelids, and very distantly related volvocine algae, I conclude, in agreement with Bonner's earlier proposals, that understanding the evolution of multicellular evolution requires knowledge of the inherent forms of diversifying lineages, and that the relevant causative factors extend beyond genes and adaptation to the physics of materials.

RevDate: 2019-08-13

Yeoh LM, Goodman CD, Mollard V, et al (2019)

Alternative splicing is required for stage differentiation in malaria parasites.

Genome biology, 20(1):151 pii:10.1186/s13059-019-1756-6.

BACKGROUND: In multicellular organisms, alternative splicing is central to tissue differentiation and identity. Unicellular protists lack multicellular tissue but differentiate into variable cell types during their life cycles. The role of alternative splicing in transitions between cell types and establishing cellular identity is currently unknown in any unicellular organism.

RESULTS: To test whether alternative splicing in unicellular protists plays a role in cellular differentiation, we conduct RNA-seq to compare splicing in female and male sexual stages to asexual intraerythrocytic stages in the rodent malaria parasite Plasmodium berghei. We find extensive changes in alternative splicing between stages and a role for alternative splicing in sexual differentiation. Previously, general gametocyte differentiation was shown to be modulated by specific transcription factors. Here, we show that alternative splicing establishes a subsequent layer of regulation, controlling genes relating to consequent sex-specific differentiation of gametocytes.

CONCLUSIONS: We demonstrate that alternative splicing is reprogrammed during cellular differentiation of a unicellular protist. Disruption of an alternative splicing factor, PbSR-MG, perturbs sex-specific alternative splicing and decreases the ability of the parasites to differentiate into male gametes and oocysts, thereby reducing transmission between vertebrate and insect hosts. Our results reveal alternative splicing as an integral, stage-specific phenomenon in these protists and as a regulator of cellular differentiation that arose early in eukaryotic evolution.

RevDate: 2019-08-07

Olin-Sandoval V, Yu JSL, Miller-Fleming L, et al (2019)

Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism.

Nature, 572(7768):249-253.

Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway-a conserved first-line response to oxidative insults1,2. Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p3-5 in maintaining oxidant resistance is unknown6. However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH-which would otherwise be required for lysine biosynthesis-is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection.

RevDate: 2019-07-26

Lu TM, Kanda M, Furuya H, et al (2019)

Dicyemid mesozoans: a unique parasitic lifestyle with reduced genome.

Genome biology and evolution pii:5536717 [Epub ahead of print].

Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only ∼30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to approximately 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies.

RevDate: 2019-08-10

Perez-Lamarque B, H Morlon (2019)

Characterizing symbiont inheritance during host-microbiota evolution: Application to the great apes gut microbiota.

Molecular ecology resources [Epub ahead of print].

Microbiota play a central role in the functioning of multicellular life, yet understanding their inheritance during host evolutionary history remains an important challenge. Symbiotic microorganisms are either acquired from the environment during the life of the host (i.e. environmental acquisition), transmitted across generations with a faithful association with their hosts (i.e. strict vertical transmission), or transmitted with occasional host switches (i.e. vertical transmission with horizontal switches). These different modes of inheritance affect microbes' diversification, which at the two extremes can be independent from that of their associated host or follow host diversification. The few existing quantitative tools for investigating the inheritance of symbiotic organisms rely on cophylogenetic approaches, which require knowledge of both host and symbiont phylogenies, and are therefore often not well adapted to DNA metabarcoding microbial data. Here, we develop a model-based framework for identifying vertically transmitted microbial taxa. We consider a model for the evolution of microbial sequences on a fixed host phylogeny that includes vertical transmission and horizontal host switches. This model allows estimating the number of host switches and testing for strict vertical transmission and independent evolution. We test our approach using simulations. Finally, we illustrate our framework on gut microbiota high-throughput sequencing data of the family Hominidae and identify several microbial taxonomic units, including fibrolytic bacteria involved in carbohydrate digestion, that tend to be vertically transmitted.

RevDate: 2019-07-31

Boscaro V, Husnik F, Vannini C, et al (2019)

Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses.

Proceedings. Biological sciences, 286(1907):20190693.

Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes, which has repeatedly taken up the bacterium Polynucleobacter from the environment, triggering its transformation into obligate endosymbiont. This multiple origin makes the relationship an excellent model to understand recent symbioses, but Euplotes may host bacteria other than Polynucleobacter, and a more detailed knowledge of these additional interactions is needed in order to correctly interpret the system. Here, we present the first systematic survey of Euplotes endosymbionts, adopting a classical as well as a metagenomic approach, and review the state of knowledge. The emerging picture is indeed quite complex, with some Euplotes harbouring rich, stable prokaryotic communities not unlike those of multicellular animals. We provide insights into the distribution, evolution and diversity of these symbionts (including the establishment of six novel bacterial taxa), and outline differences and similarities with the most well-understood group of eukaryotic hosts: insects.

RevDate: 2019-09-04

Newman SA (2019)

Inherency and homomorphy in the evolution of development.

Current opinion in genetics & development, 57:1-8 pii:S0959-437X(18)30148-5 [Epub ahead of print].

Organismal development occurs when expression of certain genes leads to the mobilization of physical forces and effects that shape and pattern multicellular clusters. All materials exhibit preferred forms, but the inherent morphological motifs of some, such as liquids and crystalline solids are well-characterized. Recent work has shown that the origin of the animals (Metazoa) was accompanied by the acquisition by their developing tissues of liquid-like and liquid-crystalline properties. This and the novel capacity to produce stiff internal substrata (basal laminae) set these organisms apart from their closest relatives by the propensity (predictable from their material nature) to form complex bodies and organs. Once functional forms became established, however, they were susceptible to further genetic change as well as partial or full supplanting of original physical determinants by different ones. This results in the increasingly recognized phenomenon of homomorphy, the presence of the same structure in descendent organisms, brought about by transformed developmental mechanisms.

RevDate: 2019-08-20

Joukov V, A De Nicolo (2019)

The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle.

Cells, 8(7): pii:cells8070701.

Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.

RevDate: 2019-07-23

Yang YJ, Singh RP, Lan X, et al (2019)

Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.

Microbial cell factories, 18(1):123 pii:10.1186/s12934-019-1172-3.

BACKGROUND: Myxococcus xanthus DK1622 is a model system for studying multicellular development, predation, cellular differentiation, and evolution. Furthermore, it is a rich source of novel secondary metabolites and is widely used as heterologous expression host of exogenous biosynthetic gene clusters. For decades, genetic modification of M. xanthus DK1622 has mainly relied on kanamycin and tetracycline selection systems.

RESULTS: Here, we introduce an alternative selection system based on chloramphenicol (Cm) to broaden the spectrum of available molecular tools. A chloramphenicol-resistant growth phase and a chloramphenicol-susceptible growth phase before and after chloramphenicol-induction were prepared, and later sequenced to identify specific genes related to chloramphenicol-repercussion and drug-resistance. A total of 481 differentially expressed genes were revealed in chloramphenicol-resistant Cm5_36h and 1920 differentially expressed genes in chloramphenicol-dormant Cm_8h. Moreover, the gene expression profile in the chloramphenicol-dormant strain Cm_8h was quite different from that of Cm5_36 which had completely adapted to Cm, and 1513 differentially expression genes were identified between these two phenotypes. Besides upregulated acetyltransferases, several transporter encoding genes, including ABC transporters, major facilitator superfamily transporters (MFS), resistance-nodulation-cell division (RND) super family transporters and multidrug and toxic compound extrusion family transporters (MATE) were found to be involved in Cm resistance. After the knockout of the most highly upregulated MXAN_2566 MFS family gene, mutant strain DK-2566 was proved to be sensitive to Cm by measuring the growth curve in the Cm-added condition. A plasmid with a Cm resistance marker was constructed and integrated into chromosomes via homologous recombination and Cm screening. The integration efficiency was about 20% at different concentrations of Cm.

CONCLUSIONS: This study provides a new antibiotic-based selection system, and will help to understand antibiotic resistance mechanisms in M. xanthus DK1622.

RevDate: 2019-08-15

Rezaei-Lotfi S, Hunter N, RM Farahani (2019)

Coupled cycling programs multicellular self-organization of neural progenitors.

Cell cycle (Georgetown, Tex.), 18(17):2040-2054.

Self-organization is central to the morphogenesis of multicellular organisms. However, the molecular platform that coordinates the robust emergence of complex morphological patterns from local interactions between cells remains unresolved. Here we demonstrate that neural self- organization is driven by coupled cycling of progenitor cells. In a coupled cycling mode, intercellular contacts relay extrinsic cues to override the intrinsic cycling rhythm of an individual cell and synchronize the population. The stringency of coupling and hence the synchronicity of the population is programmed by recruitment of a key coupler, β-catenin, into junctional complexes. As such, multicellular self-organization is driven by the same basic mathematical principle that governs synchronized behavior of macro-scale biological systems as diverse as the synchronized chirping of crickets, flashing of fireflies and schooling of fish; that is synchronization by coupling. It is proposed that coupled cycling foreshadows a fundamental adaptive change that facilitated evolution and diversification of multicellular life forms.

RevDate: 2019-07-30

Staps M, van Gestel J, CE Tarnita (2019)

Emergence of diverse life cycles and life histories at the origin of multicellularity.

Nature ecology & evolution, 3(8):1197-1205.

The evolution of multicellularity has given rise to a remarkable diversity of multicellular life cycles and life histories. Whereas some multicellular organisms are long-lived, grow through cell division, and repeatedly release single-celled propagules (for example, animals), others are short-lived, form by aggregation, and propagate only once, by generating large numbers of solitary cells (for example, cellular slime moulds). There are no systematic studies that explore how diverse multicellular life cycles can come about. Here, we focus on the origin of multicellularity and develop a mechanistic model to examine the primitive life cycles that emerge from a unicellular ancestor when an ancestral gene is co-opted for cell adhesion. Diverse life cycles readily emerge, depending on ecological conditions, group-forming mechanism, and ancestral constraints. Among these life cycles, we recapitulate both extremes of long-lived groups that propagate continuously and short-lived groups that propagate only once, with the latter type of life cycle being particularly favoured when groups can form by aggregation. Our results show how diverse life cycles and life histories can easily emerge at the origin of multicellularity, shaped by ancestral constraints and ecological conditions. Beyond multicellularity, this finding has similar implications for other major transitions, such as the evolution of sociality.

RevDate: 2019-07-03

Etxebeste O, Otamendi A, Garzia A, et al (2019)

Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi.

Critical reviews in microbiology [Epub ahead of print].

Complex multicellularity (CM) is characterized by the generation of three-dimensional structures that follow a genetically controlled program. CM emerged at least five times in evolution, one of them in fungi. There are two types of CM programs in fungi, leading, respectively, to the formation of sexual or asexual spores. Asexual spores foment the spread of mycoses, as they are the main vehicle for dispersion. In spite of this key dependence, there is great morphological diversity of asexual multicellular structures in fungi. To advance the understanding of the mechanisms that control initiation and progression of asexual CM and how they can lead to such a remarkable morphological diversification, we studied 503 fungal proteomes, representing all phyla and subphyla, and most known classes. Conservation analyses of 33 regulators of asexual development suggest stepwise emergence of transcription factors. While velvet proteins constitute one of the most ancient systems, the central regulator BrlA emerged late in evolution (with the class Eurotiomycetes). Some factors, such as MoConX4, seem to be species-specific. These observations suggest that the emergence and evolution of transcriptional regulators rewire transcriptional networks. This process could reach the species level, resulting in a vast diversity of morphologies.

RevDate: 2019-08-30

Falz AL, SJ Müller-Schüssele (2019)

Physcomitrella as a model system for plant cell biology and organelle-organelle communication.

Current opinion in plant biology, 52:7-13 pii:S1369-5266(18)30178-X [Epub ahead of print].

In multicellular eukaryotic cells, metabolism and growth are sustained by the cooperative functioning of organelles in combination with cell-to-cell communication at the organism level. In land plants, multiple strategies have evolved to adapt to life outside water. As basal land plant, the moss Physcomitrella patens is used for comparative genomics, allowing to study lineage-specific features, as well as to track the evolution of fundamental parameters of plant cell organisation and physiology. P. patens is a versatile model for cell biology research, especially to investigate adaptive growth, stress biology as well as organelle dynamics and interactions. Recent advances include the use of genetically encoded biosensors for in vivo imaging of physiological parameters.

RevDate: 2019-07-07

Aufrecht JA, Fowlkes JD, Bible AN, et al (2019)

Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network.

PloS one, 14(6):e0218316 pii:PONE-D-18-34329.

Bacteria occupy heterogeneous environments, attaching and growing within pores in materials, living hosts, and matrices like soil. Systems that permit high-resolution visualization of dynamic bacterial processes within the physical confines of a realistic and tractable porous media environment are rare. Here we use microfluidics to replicate the grain shape and packing density of natural sands in a 2D platform to study the flow-induced spatial evolution of bacterial biofilms underground. We discover that initial bacterial dispersal and grain attachment is influenced by bacterial transport across pore space velocity gradients, a phenomenon otherwise known as rheotaxis. We find that gravity-driven flow conditions activate different bacterial cell-clustering phenotypes depending on the strain's ability to product extracellular polymeric substances (EPS). A wildtype, biofilm-producing bacteria formed compact, multicellular patches while an EPS-defective mutant displayed a linked-cell phenotype in the presence of flow. These phenotypes subsequently influenced the overall spatial distribution of cells across the porous media network as colonies grew and altered the fluid dynamics of their microenvironment.

RevDate: 2019-06-29

Ågren JA, Davies NG, KR Foster (2019)

Enforcement is central to the evolution of cooperation.

Nature ecology & evolution, 3(7):1018-1029.

Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization.

RevDate: 2019-06-28

Robu A, Mironov V, A Neagu (2019)

Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study.

Computational and mathematical methods in medicine, 2019:7853586.

A long-standing problem in tissue engineering is the biofabrication of perfusable tissue constructs that can be readily connected to the patient's vasculature. It was partially solved by three-dimensional (3D) printing of sacrificial material (e.g., hydrogel) strands: upon incorporation in another cell-laden hydrogel, the strands were removed, leaving behind perfusable channels. Their complexity, however, did not match that of the native vasculature. Here, we propose to use multicellular spheroids as a sacrificial material and investigate their potential benefits in the context of 3D bioprinting of cell aggregates and/or cell-laden hydrogels. Our study is based on computer simulations of postprinting cellular rearrangements. The computational model of the biological system is built on a cubic lattice, whereas its evolution is simulated using the Metropolis Monte Carlo algorithm. The simulations describe structural changes in three types of tissue constructs: a tube made of a single cell type, a tube made of two cell types, and a cell-laden hydrogel slab that incorporates a branching tube. In all three constructs, the lumen is obtained after the elimination of the sacrificial cell population. Our study suggests that sacrificial cell spheroids (sacrospheres) enable one to print tissue constructs outfitted with a finer and more complex network of channels than the ones obtained so far. Moreover, cellular interactions might give rise to a tissue microarchitecture that lies beyond the bioprinter's resolution. Although more expensive than inert materials, sacrificial cells have the potential to bring further progress towards the biofabrication of fully vascularized tissue substitutes.

RevDate: 2019-07-15

Tian L, Zhang B, Zhang J, et al (2019)

A magnetic compass guides the direction of foraging in a bat.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 205(4):619-627.

Previously, two studies have provided evidence that bats can use magnetic field cues for homing or roosting. For insectivorous bats, it is well established that foraging represents one of the most fundamental behaviors in animals relies on their ability to echolocate. Whether echolocating bats can also use magnetic cues during foraging remains unknown, however. Here, we tested the orientation behavior of Chinese noctules (Nyctalus plancyi) during foraging in a plus-shaped, 4-channel apparatus under different magnetic field conditions. To minimize the effects of spatial memory on orientation from repeated experiments, naïve bats were tested only once in each experimental condition. As expected, under geomagnetic field and a food resource offered conditions, the bats significantly preferred to enter the channel containing food, indicating that they primarily relied on direct sensory signals unrelated to magnetic cues. In contrast, when we offered food simultaneously in all four channels and minimized any differences in all other sensory signals available, the bats exhibited a clear directional preference to forage along the magnetic field direction under either geomagnetic field or a magnetic field in which the horizontal component was rotated by 90°. Our study offers a novel evidence for the importance of a geomagnetic field during foraging.

RevDate: 2019-07-23
CmpDate: 2019-07-23

Muras V, Toulouse C, Fritz G, et al (2019)

Respiratory Membrane Protein Complexes Convert Chemical Energy.

Sub-cellular biochemistry, 92:301-335.

The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.

RevDate: 2019-06-18

Bonner JT (2019)

The evolution of evolution.

Journal of experimental zoology. Part B, Molecular and developmental evolution [Epub ahead of print].

In the past, most biologists, myself included, did not think of evolution as changing over time. The wonders of natural selection were always at hand and went into operation once there was life. However, with a little reflection it becomes obvious that evolution has changed-there has been an evolution of evolution. Evolution can be separated into four phases, or eras, that may or may not overlap. The first era starts with the evolution of life on earth, which led to single cells that multiply asexually. The second era takes advantage of the invention of sexual reproduction as evolution could now gallop forward because of a richer fare of diverse offspring for natural selection. The third era begins with the introduction of multicellularity. In the fourth era there is a radical innovation: the nervous system that arises animals by standard Darwinian selection. This has allowed major rapid changes to proceed, such as language that led to all the rapid progress we call civilization; a true revolution, and one that does not depend on the slow genetic changes of all other standard gene-controlled evolutionary steps.

RevDate: 2019-06-14

Pirkmajer S, AV Chibalin (2019)

Hormonal regulation of Na+-K+-ATPase from the evolutionary perspective.

Current topics in membranes, 83:315-351.

Na+-K+-ATPase, an α/β heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and β-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.

RevDate: 2019-06-27

Sogabe S, Hatleberg WL, Kocot KM, et al (2019)

Pluripotency and the origin of animal multicellularity.

Nature, 570(7762):519-522.

A widely held-but rarely tested-hypothesis for the origin of animals is that they evolved from a unicellular ancestor, with an apical cilium surrounded by a microvillar collar, that structurally resembled modern sponge choanocytes and choanoflagellates1-4. Here we test this view of animal origins by comparing the transcriptomes, fates and behaviours of the three primary sponge cell types-choanocytes, pluripotent mesenchymal archaeocytes and epithelial pinacocytes-with choanoflagellates and other unicellular holozoans. Unexpectedly, we find that the transcriptome of sponge choanocytes is the least similar to the transcriptomes of choanoflagellates and is significantly enriched in genes unique to either animals or sponges alone. By contrast, pluripotent archaeocytes upregulate genes that control cell proliferation and gene expression, as in other metazoan stem cells and in the proliferating stages of two unicellular holozoans, including a colonial choanoflagellate. Choanocytes in the sponge Amphimedon queenslandica exist in a transient metastable state and readily transdifferentiate into archaeocytes, which can differentiate into a range of other cell types. These sponge cell-type conversions are similar to the temporal cell-state changes that occur in unicellular holozoans5. Together, these analyses argue against homology of sponge choanocytes and choanoflagellates, and the view that the first multicellular animals were simple balls of cells with limited capacity to differentiate. Instead, our results are consistent with the first animal cell being able to transition between multiple states in a manner similar to modern transdifferentiating and stem cells.

RevDate: 2019-07-08

Qian XX, Santini CL, Kosta A, et al (2019)

Juxtaposed membranes underpin cellular adhesion and display unilateral cell division of multicellular magnetotactic prokaryotes.

Environmental microbiology [Epub ahead of print].

Multicellular magnetotactic prokaryotes (MMPs) exhibit peculiar coordination of swimming along geomagnetic field lines. Approximately 40-80 cells assemble, with a helical geometry or axisymmetry, into spherical or ellipsoidal MMPs respectively. To contribute to a comprehensive understanding of bacterial multicellularity here we took multiple microscopic approaches to study the diversity, assembly, reproduction and motility of ellipsoidal MMPs. Using correlative fluorescence in situ hybridization and scanning electron microscopy analysis, we found an unexpected diversity in populations of ellipsoidal MMPs in the Mediterranean Sea. The high-pressure freezing/freeze substitution fixation technique allowed us to show, for the first time, that cells adhere via juxtaposed membranes and are held together by a rimming lattice. Fluorescence confocal microscopy and ultrathin section images revealed not only the one-layer hollow three-dimensional architecture, but also periphery-core unilateral constriction of constituent cells and unidirectional binary fission of the ellipsoidal MMPs. This finding suggests the evolution toward MMPs multicellularity via the mechanism of incomplete separation of offspring. Remarkably, thousands of flagellar at the periphery surface of cells underpin the coordinated swimming of MMPs in response to mechanical, chemical, magnetic and optical stimuli, including a magnetotactic photokinesis behaviour. Together these results unveil the unique structure and function property of ellipsoidal MMPs.

RevDate: 2019-08-05

Yamashita S, H Nozaki (2019)

Embryogenesis of flattened colonies implies the innovation required for the evolution of spheroidal colonies in volvocine green algae.

BMC evolutionary biology, 19(1):120 pii:10.1186/s12862-019-1452-x.

BACKGROUND: Volvocine algae provide a suitable model for investigation of the evolution of multicellular organisms. Within this group, evolution of the body plan from flattened to spheroidal colonies is thought to have occurred independently in two different lineages, Volvocaceae and Astrephomene. Volvocacean species undergo inversion to form a spheroidal cell layer following successive cell divisions during embryogenesis. During inversion, the daughter protoplasts change their shape and develop acute chloroplast ends (opposite to basal bodies). By contrast, Astrephomene does not undergo inversion; rather, its daughter protoplasts rotate during successive cell divisions to form a spheroidal colony. However, the evolutionary pathways of these cellular events involved in the two tactics for formation of spheroidal colony are unclear, since the embryogenesis of extant volvocine genera with ancestral flattened colonies, such as Gonium and Tetrabaena, has not previously been investigated in detail.

RESULTS: We conducted time-lapse imaging by light microscopy and indirect immunofluorescence microscopy with staining of basal bodies, nuclei, and microtubules to observe embryogenesis in G. pectorale and T. socialis, which form 16-celled or 4-celled flattened colonies, respectively. In G. pectorale, a cup-shaped cell layer of the 16-celled embryo underwent gradual expansion after successive cell divisions, with the apical ends (position of basal bodies) of the square embryo's peripheral protoplasts separated from each other. In T. socialis, on the other hand, there was no apparent expansion of the daughter protoplasts in 4-celled embryos after successive cell divisions, however the two pairs of diagonally opposed daughter protoplasts shifted slightly and flattened after hatching. Neither of these two species exhibited rotation of daughter protoplasts during successive cell divisions as in Astrephomene or the formation of acute chloroplast ends of daughter protoplasts as in volvocacean inversion.

CONCLUSIONS: The present results indicate that the ancestor of Astrephomene might have newly acquired the rotation of daughter protoplasts after it diverged from the ancestor of Gonium, while the ancestor of Volvocaceae might have newly acquired the formation of acute chloroplast ends to complete inversion after divergence from the ancestor of Goniaceae (Gonium and Astrephomene).

RevDate: 2019-06-30

Roy M, SD Finley (2019)

Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model.

PLoS computational biology, 15(6):e1007053 pii:PCOMPBIOL-D-18-01871.

Mathematical modeling provides the predictive ability to understand the metabolic reprogramming and complex pathways that mediate cancer cells' proliferation. We present a mathematical model using a multiscale, multicellular approach to simulate avascular tumor growth, applied to pancreatic cancer. The model spans three distinct spatial and temporal scales. At the extracellular level, reaction diffusion equations describe nutrient concentrations over a span of seconds. At the cellular level, a lattice-based energy driven stochastic approach describes cellular phenomena including adhesion, proliferation, viability and cell state transitions, occurring on the timescale of hours. At the sub-cellular level, we incorporate a detailed kinetic model of intracellular metabolite dynamics on the timescale of minutes, which enables the cells to uptake and excrete metabolites and use the metabolites to generate energy and building blocks for cell growth. This is a particularly novel aspect of the model. Certain defined criteria for the concentrations of intracellular metabolites lead to cancer cell growth, proliferation or death. Overall, we model the evolution of the tumor in both time and space. Starting with a cluster of tumor cells, the model produces an avascular tumor that quantitatively and qualitatively mimics experimental measurements of multicellular tumor spheroids. Through our model simulations, we can investigate the response of individual intracellular species under a metabolic perturbation and investigate how that response contributes to the response of the tumor as a whole. The predicted response of intracellular metabolites under various targeted strategies are difficult to resolve with experimental techniques. Thus, the model can give novel predictions as to the response of the tumor as a whole, identifies potential therapies to impede tumor growth, and predicts the effects of those therapeutic strategies. In particular, the model provides quantitative insight into the dynamic reprogramming of tumor cells at the intracellular level in response to specific metabolic perturbations. Overall, the model is a useful framework to study targeted metabolic strategies for inhibiting tumor growth.

RevDate: 2019-06-11

Chaplain MAJ, Lorenzi T, FR Macfarlane (2019)

Bridging the gap between individual-based and continuum models of growing cell populations.

Journal of mathematical biology pii:10.1007/s00285-019-01391-y [Epub ahead of print].

Continuum models for the spatial dynamics of growing cell populations have been widely used to investigate the mechanisms underpinning tissue development and tumour invasion. These models consist of nonlinear partial differential equations that describe the evolution of cellular densities in response to pressure gradients generated by population growth. Little prior work has explored the relation between such continuum models and related single-cell-based models. We present here a simple stochastic individual-based model for the spatial dynamics of multicellular systems whereby cells undergo pressure-driven movement and pressure-dependent proliferation. We show that nonlinear partial differential equations commonly used to model the spatial dynamics of growing cell populations can be formally derived from the branching random walk that underlies our discrete model. Moreover, we carry out a systematic comparison between the individual-based model and its continuum counterparts, both in the case of one single cell population and in the case of multiple cell populations with different biophysical properties. The outcomes of our comparative study demonstrate that the results of computational simulations of the individual-based model faithfully mirror the qualitative and quantitative properties of the solutions to the corresponding nonlinear partial differential equations. Ultimately, these results illustrate how the simple rules governing the dynamics of single cells in our individual-based model can lead to the emergence of complex spatial patterns of population growth observed in continuum models.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )