picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
22 May 2024 at 01:44
HITS:
22834
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: CRISPR-Cas

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 22 May 2024 at 01:44 Created: 

CRISPR-Cas

Clustered regularly interspaced short palindromic repeats (CRISPR, pronounced crisper) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to foreign DNA (e.g a virus or plasmid). The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages, and provides a form of acquired immunity. CRISPR associated proteins (Cas) use the CRISPR spacers to recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. CRISPRs are found in approximately 40% of sequenced bacterial genomes and 90% of sequenced archaea. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added. The Cas9-gRNA complex corresponds with the CAS III crRNA complex in the above diagram. CRISPR/Cas genome editing techniques have many potential applications, including altering the germline of humans, animals, and food crops. The use of CRISPR Cas9-gRNA complex for genome editing was the AAAS's choice for breakthrough of the year in 2015.

Created with PubMed® Query: ( "CRISPR.CAS" OR "crispr/cas" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-05-18
CmpDate: 2024-05-16

Borges FS, Quilles JC, Lorenzon LB, et al (2024)

Leishmania Ribosomal Protein (RP) paralogous genes compensate each other's expression maintaining protein native levels.

PloS one, 19(5):e0292152.

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.

RevDate: 2024-05-18
CmpDate: 2024-05-16

Nittayasut N, Yata T, Chirakul S, et al (2024)

Non-replicative phage particles delivering CRISPR-Cas9 to target major blaCTX-M variants.

PloS one, 19(5):e0303555.

Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.

RevDate: 2024-05-16

Yang P, Lou Y, Geng Z, et al (2024)

Allele-Specific Suppression of Variant MHC With High-Precision RNA Nuclease CRISPR-Cas13d Prevents Hypertrophic Cardiomyopathy.

Circulation [Epub ahead of print].

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored.

METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs.

RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy.

CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.

RevDate: 2024-05-17

Guhanraj R, D Dhanasekaran (2024)

Probiotic functional gene explorations in the genome of Limosilactobacillus fermentum GD5MG.

Microbial pathogenesis, 192:106686 pii:S0882-4010(24)00153-0 [Epub ahead of print].

Limosilactobacillus fermentum is an isolate obtained from oral gingival samples of healthy human individuals. The whole genome of Lb. fermentum GD5MG is composed of a circular DNA molecule containing 1,834,134 bp and exhibits a GC content of 52.80 %. The sequencing effort produced 38.6 million reads, each 150 bp in length, resulting in a sequencing depth of 2912.48x. Our examination unveiled a total of 1961 protein-coding genes, 27 rRNA genes, 24 tRNA genes, 3 non-coding RNA genes, and 63 pseudogenes with the use of gene annotations in NCBI Prokaryotic Genome Annotation tool. RAST revealed 1863 coding genes distributed across 209 subsystems, with a predominant involvement in amino acid, carbohydrate, and protein metabolism. Phylogenetic analysis infers that the Lb. fermentum GD5MG shares 281 gene clusters. Furthermore, the genome features showed a single CRISPR locus of 45 bp in length. Three genes associated with adhesion ability (strA, dltD, and dltA) and 26 genes related to acid tolerance, digestive enzyme secretion, and bile salt resistance were identified. Numerous genes associated with oral probiotic properties, comprising adhesion, acid and bile salt tolerance, oxidative stress tolerance, and sugar metabolism, were identified in the genome. Our findings shed light on the genomic characteristics of Lb. fermentum GD5MG, which are probable probiotics with functional benefits in humans.

RevDate: 2024-05-18
CmpDate: 2024-05-16

Dupuis S, Girault MS, Le Beulze M, et al (2024)

The lack of Tex44 causes severe subfertility with flagellar abnormalities in male mice.

Cellular & molecular biology letters, 29(1):74.

By analyzing a mouse Interspecific Recombinant Congenic Strain (IRCS), we previously identified a quantitative trait locus (QTL), called Mafq1 on mouse chromosome 1, that is associated with male hypofertility and ultrastructural sperm abnormalities. Within this locus, we identified a new candidate gene that could be implicated in a reproductive phenotype: Tex44 (Testis-expressed protein 44). We thus performed a CRISPR/Cas9-mediated complete deletion of this gene in mice in order to study its function. Tex44-KO males were severely hypofertile in vivo and in vitro due to a drastic reduction of sperm motility which itself resulted from important morphological sperm abnormalities. Namely, Tex44-KO sperm showed a disorganized junction between the midpiece and the principal piece of the flagellum, leading to a 180° flagellar bending in this region. In addition, the loss of some axonemal microtubule doublets and outer dense fibers in the flagellum's principal piece has been observed. Our results suggest that, in mice, TEX44 is implicated in the correct set-up of the sperm flagellum during spermiogenesis and its absence leads to flagellar abnormalities and consequently to severe male hypofertility.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Cooper S, Obolenski S, Waters AJ, et al (2024)

Analyzing the functional effects of DNA variants with gene editing.

Cell reports methods, 4(5):100776.

Continual advancements in genomics have led to an ever-widening disparity between the rate of discovery of genetic variants and our current understanding of their functions and potential roles in disease. Systematic methods for phenotyping DNA variants are required to effectively translate genomics data into improved outcomes for patients with genetic diseases. To make the biggest impact, these approaches must be scalable and accurate, faithfully reflect disease biology, and define complex disease mechanisms. We compare current methods to analyze the function of variants in their endogenous DNA context using genome editing strategies, such as saturation genome editing, base editing and prime editing. We discuss how these technologies can be linked to high-content readouts to gain deep mechanistic insights into variant effects. Finally, we highlight key challenges that need to be addressed to bridge the genotype to phenotype gap, and ultimately improve the diagnosis and treatment of genetic diseases.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Xia Y, Rao R, Xiong M, et al (2024)

CRISPR-Powered Strategies for Amplification-Free Diagnostics of Infectious Diseases.

Analytical chemistry, 96(20):8091-8108.

RevDate: 2024-05-18
CmpDate: 2024-05-15

Lu M, Yu C, Zhang Y, et al (2024)

Structure and genome editing of type I-B CRISPR-Cas.

Nature communications, 15(1):4126.

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3[+] T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.

RevDate: 2024-05-18
CmpDate: 2024-05-15

Deng L, Zhou YL, Cai Z, et al (2024)

Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast.

Science advances, 10(20):eadj9382.

Performing saturation editing of chromosomal genes will enable the study of genetic variants in situ and facilitate protein and cell engineering. However, current in vivo editing of endogenous genes either lacks flexibility or is limited to discrete codons and short gene fragments, preventing a comprehensive exploration of genotype-phenotype relationships. To enable facile saturation editing of full-length genes, we used a protospacer adjacent motif-relaxed Cas9 variant and homology-directed repair to achieve above 60% user-defined codon replacement efficiencies in Saccharomyces cerevisiae genome. Coupled with massively parallel DNA design and synthesis, we developed a saturation gene editing method termed CRISPR-Cas9- and homology-directed repair-assisted saturation editing (CHASE) and achieved highly saturated codon swapping of long genomic regions. By applying CHASE to massively edit a well-studied global transcription factor gene, we found known and unreported genetic variants affecting an industrially relevant microbial trait. The user-defined codon editing capability and wide targeting windows of CHASE substantially expand the scope of saturation gene editing.

RevDate: 2024-05-15

Horn S, B Fehse (2024)

[How safe is gene therapy? : Second death after Duchenne therapy].

Innere Medizin (Heidelberg, Germany) [Epub ahead of print].

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe monogenic hereditary disease with early manifestation and a progressive course. Treatment options have so far been limited. Gene therapy opens up new options for DMD patients.

OBJECTIVES: Against the background of a further death following DMD gene therapy, the side effects and risks of the gene therapeutics already approved or undergoing clinical trials will be evaluated and alternative gene therapeutics will be described. Based thereon, the future of DMD gene therapy will be discussed.

CURRENT DATA: For the first time, in June 2023, delandistrogene moxeparvovec (SRP-9001), a gene replacement therapy based on an adeno-associated virus (AAV) vector, was approved in the USA for children aged 4-5 years with DMD. Other promising gene therapies are in preclinical development or clinical trials, including CRISPR/Cas9-mediated strategies to restore dystrophin expression. Two deaths following DMD gene therapy with high-dose AAV vectors were attributed to AAV-mediated immune responses. The pre-existing disease underlying the therapy is most likely involved in the fatal AAV toxicity.

CONCLUSIONS: Although gene therapy applications of AAV vectors are generally considered safe, the systemic administration of high vector doses can lead to severe side effects with a potentially fatal outcome in individual patients, especially after activation of the immune system. In the future, new methods for immunosuppression, reduction of AAV dose and alternative vectors will therefore increasingly come to the fore.

RevDate: 2024-05-15

Hu W-f, Yang J-y, Wang J-j, et al (2024)

Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria.

mSystems [Epub ahead of print].

UNLABELLED: The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery.

IMPORTANCE: Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.

RevDate: 2024-05-15

Rananaware SR, Meister KS, Shoemaker GM, et al (2024)

PAM-free diagnostics with diverse type V CRISPR-Cas systems.

medRxiv : the preprint server for health sciences pii:2024.05.02.24306194.

Type V CRISPR-Cas effectors have revolutionized molecular diagnostics by facilitating the detection of nucleic acid biomarkers. However, their dependence on the presence of protospacer adjacent motif (PAM) sites on the target double-stranded DNA (dsDNA) greatly limits their flexibility as diagnostic tools. Here we present a novel method named PICNIC that solves the PAM problem for CRISPR-based diagnostics with just a simple ∼10-min modification to contemporary CRISPR-detection protocols. Our method involves the separation of dsDNA into individual single-stranded DNA (ssDNA) strands through a high- temperature and high-pH treatment. We then detect the released ssDNA strands with diverse Cas12 enzymes in a PAM-free manner. We show the utility of PICNIC by successfully applying it for PAM-free detection with three different subtypes of the Cas12 family- Cas12a, Cas12b, and Cas12i. Notably, by combining PICNIC with a truncated 15-nucleotide spacer containing crRNA, we demonstrate PAM-independent detection of clinically important single- nucleotide polymorphisms with CRISPR. We apply this approach to detect the presence of a drug-resistant variant of HIV-1, specifically the K103N mutant, that lacks a PAM site in the vicinity of the mutation. Additionally, we successfully translate our approach to clinical samples by detecting and genotyping HCV-1a and HCV-1b variants with 100% specificity at a PAM-less site within the HCV genome. In summary, PICNIC is a simple yet groundbreaking method that enhances the flexibility and precision of CRISPR-Cas12-based diagnostics by eliminating the restriction of the PAM sequence.

RevDate: 2024-05-16

Jin L, Liyanage R, Duan D, et al (2024)

Machine learning-inferred and energy landscape-guided analyses reveal kinetic determinants of CRISPR/Cas9 gene editing.

bioRxiv : the preprint server for biology pii:2024.04.30.591525.

The CRISPR/Cas nucleases system is widely considered the most important tool in genome engineering. However, current methods for predicting on/off-target effects and designing guide RNA (gRNA) rely on purely data-driven approaches or focus solely on the system's thermal equilibrium properties. Nonetheless, experimental evidence suggests that the process is kinetically controlled rather than being in equilibrium. In this study, we utilized a vast amount of available data and combined random forest, a supervised ensemble learning algorithm, and free energy landscape analysis to investigate the kinetic pathways of R-loop formation in the CRISPR/Cas9 system and the intricate molecular interactions between DNA and the Cas9 RuvC and HNH domains. The study revealed (a) a novel three-state kinetic mechanism, (b) the unfolding of the activation state of the R-loop being the most crucial kinetic determinant and the key predictor for on- and off-target cleavage efficiencies, and (c) the nucleotides from positions +13 to +16 being the kinetically critical nucleotides. The results provide a biophysical rationale for the design of a kinetic strategy for enhancing CRISPR/Cas9 gene editing accuracy and efficiency.

RevDate: 2024-05-17
CmpDate: 2024-05-15

Wang L, Bitar M, Lu X, et al (2024)

CRISPR-Cas13d screens identify KILR, a breast cancer risk-associated lncRNA that regulates DNA replication and repair.

Molecular cancer, 23(1):101.

BACKGROUND: Long noncoding RNAs (lncRNAs) have surpassed the number of protein-coding genes, yet the majority have no known function. We previously discovered 844 lncRNAs that were genetically linked to breast cancer through genome-wide association studies (GWAS). Here, we show that a subset of these lncRNAs alter breast cancer risk by modulating cell proliferation, and provide evidence that a reduced expression on one lncRNA increases breast cancer risk through aberrant DNA replication and repair.

METHODS: We performed pooled CRISPR-Cas13d-based knockdown screens in breast cells to identify which of the 844 breast cancer-associated lncRNAs alter cell proliferation. We selected one of the lncRNAs that increased cell proliferation, KILR, for follow-up functional studies. KILR pull-down followed by mass spectrometry was used to identify binding proteins. Knockdown and overexpression studies were performed to assess the mechanism by which KILR regulates proliferation.

RESULTS: We show that KILR functions as a tumor suppressor, safeguarding breast cells against uncontrolled proliferation. The half-life of KILR is significantly reduced by the risk haplotype, revealing an alternative mechanism by which variants alter cancer risk. Mechanistically, KILR sequesters RPA1, a subunit of the RPA complex required for DNA replication and repair. Reduced KILR expression promotes breast cancer cell proliferation by increasing the available pool of RPA1 and speed of DNA replication. Conversely, KILR overexpression promotes apoptosis in breast cancer cells, but not normal breast cells.

CONCLUSIONS: Our results confirm lncRNAs as mediators of breast cancer risk, emphasize the need to annotate noncoding transcripts in relevant cell types when investigating GWAS variants and provide a scalable platform for mapping phenotypes associated with lncRNAs.

RevDate: 2024-05-14

Lim SR, SJ Lee (2024)

Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering.

Journal of agricultural and food chemistry [Epub ahead of print].

Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Ferrarone JR, Thomas J, Unni AM, et al (2024)

Genome-wide CRISPR screens in spheroid culture reveal that the tumor suppressor LKB1 inhibits growth via the PIKFYVE lipid kinase.

Proceedings of the National Academy of Sciences of the United States of America, 121(21):e2403685121.

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.

RevDate: 2024-05-15
CmpDate: 2024-05-14

Mittermüller D, Otto L, Kilian AL, et al (2024)

PD-1 knockout on cytotoxic primary murine CD8[+] T cells improves their motility in retrovirus infected mice.

Frontiers in immunology, 15:1338218.

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.

RevDate: 2024-05-15

Kretz J, Börner J, Friedrich T, et al (2024)

Function of the RNA-targeting class 2 type VI CRISPR Cas system of Rhodobacter capsulatus.

Frontiers in microbiology, 15:1384543.

Bacteria use CRISPR Cas systems to defend against invading foreign nucleic acids, e.g., phage genomes, plasmids or mobile genetic elements. Some CRISPR Cas systems were reported to have physiological importance under a variety of abiotic stress conditions. We used physiological tests under different stress conditions and RNA-seq analyses to address the possible function of the RNA-targeting class 2 type VI CRISPR Cas system of the facultative phototrophic α-proteobacterium Rhodobacter capsulatus. Expression of the system was low under exponential non-stress conditions and high during oxidative stress, membrane stress and in stationary phase. Induction of the CRISPR Cas system in presence of a target protospacer RNA resulted in a growth arrest of R. capsulatus. RNA-seq revealed a strong alteration of the R. capsulatus transcriptome when cas13a was induced in presence of a target protospacer. RNA 5' end mapping indicated that the CRISPR Cas-dependent transcriptome remodeling is accompanied by fragmentation of cellular RNAs, e.g., for mRNAs originating from a genomic locus which encodes multiple ribosomal proteins and the RNA polymerase subunits RpoA, RpoB and RpoC. The data suggest a function of this CRISPR Cas system in regulated growth arrest, which may prevent the spread of phages within the population.

RevDate: 2024-05-20
CmpDate: 2024-05-20

Wang M, Cai S, Wu Y, et al (2024)

A lateral flow assay for miRNA-21 based on CRISPR/Cas13a and MnO2 nanosheets-mediated recognition and signal amplification.

Analytical and bioanalytical chemistry, 416(14):3401-3413.

The point-of-care testing (POCT) of miRNA has significant application in medical diagnosis, yet presents challenges due to their characteristics of high homology, low abundance, and short length, which hinders the achievement of quick detection with high specificity and sensitivity. In this study, a lateral flow assay based on the CRISPR/Cas13a system and MnO2 nanozyme was developed for highly sensitive detection of microRNA-21 (miR-21). The CRISPR/Cas13a cleavage system exhibits the ability to recognize the specific oligonucleotide sequence, where two-base mismatches significantly impact the cleavage activity of the Cas13a. Upon binding of the target to crRNA, the cleavage activity of Cas13a is activated, resulting in the unlocking of the sequence and initiating strand displacement, thereby enabling signal amplification to produce a new sequence P1. When applying the reaction solution to the lateral flow test strip, P1 mediates the capture of MnO2 nanosheets (MnO2 NSs) on the T zone, which catalyzes the oxidation of the pre-immobilized colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) on the T zone and generates the blue-green product (ox-TMB). The change in gray value is directly proportional to the concentration of miR-21, allowing for qualitative detection through visual inspection and quantitative measurement using ImageJ software. This method achieves the detection of miR-21 within a rapid 10-min timeframe, and the limit of detection (LOD) is 0.33 pM. With the advantages of high specificity, simplicity, and sensitivity, the lateral flow test strip and the design strategy hold great potential for the early diagnosis of related diseases.

RevDate: 2024-05-20
CmpDate: 2024-05-20

Vemulawada C, Renavikar PS, Crawford MP, et al (2024)

Disruption of IFNγ, GZMB, PRF1, or LYST Results in Reduced Suppressive Function in Human CD8+ T Cells.

Journal of immunology (Baltimore, Md. : 1950), 212(11):1722-1732.

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.

RevDate: 2024-05-16
CmpDate: 2024-05-14

Khamaikawin W, Saisawang C, Tassaneetrithep B, et al (2024)

CRISPR/Cas9 genome editing of CCR5 combined with C46 HIV-1 fusion inhibitor for cellular resistant to R5 and X4 tropic HIV-1.

Scientific reports, 14(1):10852.

Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.

RevDate: 2024-05-16
CmpDate: 2024-05-13

Dupuy J, Fouché E, Noirot C, et al (2024)

A dual model of normal vs isogenic Nrf2-depleted murine epithelial cells to explore oxidative stress involvement.

Scientific reports, 14(1):10905.

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Shi K, Tian Y, Liu S, et al (2024)

Phosphorothioate-modified G-quadruplex as a signal-on dual-mode reporter for CRISPR/Cas12a-based portable detection of environmental pollutants.

Analytica chimica acta, 1308:342649.

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants.

RESULTS: By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb[2+]) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb[2+]. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb[2+]. Detection of kanamycin and Pb[2+] was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb[2+].

SIGNIFICANCE: Sensitive, selective, simple and robust detection of kanamycin and Pb[2+] in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.

RevDate: 2024-05-19
CmpDate: 2024-05-19

Carota AG, Bonini A, Urban M, et al (2024)

Low-cost inkjet-printed nanostructured biosensor based on CRISPR/Cas12a system for pathogen detection.

Biosensors & bioelectronics, 258:116340.

The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.

RevDate: 2024-05-19
CmpDate: 2024-05-19

Sarangi P, Kumar N, Sambasivan R, et al (2024)

AAV mediated genome engineering with a bypass coagulation factor alleviates the bleeding phenotype in a murine model of hemophilia B.

Thrombosis research, 238:151-160.

It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 10[11] vgs/mouse), and mFVIIa with homology arms (2 × 10[11] vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.

RevDate: 2024-05-19
CmpDate: 2024-05-19

Iori S, D'Onofrio C, Laham-Karam N, et al (2024)

Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12).

Biochemical pharmacology, 224:116231.

In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.

RevDate: 2024-05-19
CmpDate: 2024-05-19

Li J, Moretti F, Hidvegi T, et al (2024)

Multiple Genes Core to ERAD, Macroautophagy and Lysosomal Degradation Pathways Participate in the Proteostasis Response in α1-Antitrypsin Deficiency.

Cellular and molecular gastroenterology and hepatology, 17(6):1007-1024.

BACKGROUND & AIMS: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD.

METHODS: We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems.

RESULTS: Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria.

CONCLUSIONS: Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.

RevDate: 2024-05-15
CmpDate: 2024-05-13

Kato-Inui T, Takahashi G, Ono T, et al (2024)

Fusion of histone variants to Cas9 suppresses non-homologous end joining.

PloS one, 19(5):e0288578.

As a versatile genome editing tool, the CRISPR-Cas9 system induces DNA double-strand breaks at targeted sites to activate mainly two DNA repair pathways: HDR which allows precise editing via recombination with a homologous template DNA, and NHEJ which connects two ends of the broken DNA, which is often accompanied by random insertions and deletions. Therefore, how to enhance HDR while suppressing NHEJ is a key to successful applications that require precise genome editing. Histones are small proteins with a lot of basic amino acids that generate electrostatic affinity to DNA. Since H2A.X is involved in DNA repair processes, we fused H2A.X to Cas9 and found that this fusion protein could improve the HDR/NHEJ ratio by suppressing NHEJ. As various post-translational modifications of H2A.X play roles in the regulation of DNA repair, we also fused H2A.X mimicry variants to replicate these post-translational modifications including phosphorylation, methylation, and acetylation. However, none of them were effective to improve the HDR/NHEJ ratio. We further fused other histone variants to Cas9 and found that H2A.1 suppressed NHEJ better than H2A.X. Thus, the fusion of histone variants to Cas9 is a promising option to enhance precise genome editing.

RevDate: 2024-05-18
CmpDate: 2024-05-13

Bell RT, Sahakyan H, Makarova KS, et al (2024)

CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA.

eLife, 13:.

A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

RevDate: 2024-05-15
CmpDate: 2024-05-12

Hong T, Luo Q, Ma H, et al (2024)

Structural basis of negative regulation of CRISPR-Cas7-11 by TPR-CHAT.

Signal transduction and targeted therapy, 9(1):111.

CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study. Here, we report cryo-electron microscopy (cryo-EM) structures of Desulfonema ishimotonii (Di) Cas7-11-crRNA, complexed with or without the full length or the N-terminus of TPR-CHAT. These structures unveil the molecular features of the Craspase complex. Structural analysis, combined with in vitro nuclease assay and electrophoretic mobility shift assay, reveals that DiTPR-CHAT negatively regulates the activity of DiCas7-11 by preventing target RNA from binding through the N-terminal 65 amino acids of DiTPR-CHAT (DiTPR-CHATNTD). Our work demonstrates that DiTPR-CHATNTD can function as a small unit of DiCas7-11 regulator, potentially enabling safe applications to prevent overcutting and off-target effects of the CRISPR‒Cas7-11 system.

RevDate: 2024-05-14
CmpDate: 2024-05-11

Park JC, Kim YJ, Hwang GH, et al (2024)

Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways.

Nature communications, 15(1):4002.

Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.

RevDate: 2024-05-11

Ahadaf S, Azzouz S, Galiou OE, et al (2024)

Genomic Insights Into Enterococcus mundtii 203: A Promising Probiotic Candidate Isolated From Camel Feces.

Probiotics and antimicrobial proteins [Epub ahead of print].

Enterococcus, a common commensal organism in the human gut, exhibits a dual nature with certain strains offering probiotic benefits, while others are associated with nosocomial infections. In this study, we conducted a comprehensive examination of the genome of Enterococcus mundtii strain 203 to assess its probiotic potential and safety profile. The complete genome sequencing, assembly, and annotation were performed, followed by bioinformatics analysis. Our investigation reveals a detailed characterization of the Enterococcus mundtii 203 genome, originally isolated from camel feces, with a size of 3,053,234 bases and a GC content of 38.4%. Importantly, our analysis suggests that this strain poses no risk as a human pathogen due to the absence of antibiotic resistance determinants and virulence factors. The genome harbors a multitude of genes responsible for lactic acid production, bioactive peptide synthesis, adhesion molecule expression, resistance to harsh gut conditions, and enhancement of host metabolism. These findings underline the potential probiotic functionality of Enterococcus mundtii 203, positioning it as a promising candidate. Notably, our study did not identify any sequences related to insertion elements or CRISPR-Cas fragments.

RevDate: 2024-05-14

Antonova EV, Shimalina NS, Korotkova AM, et al (2024)

Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress.

Plants (Basel, Switzerland), 13(9):.

Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.

RevDate: 2024-05-13
CmpDate: 2024-05-11

Rizk R, Devost D, Pétrin D, et al (2024)

KCTD Proteins Have Redundant Functions in Controlling Cellular Growth.

International journal of molecular sciences, 25(9):.

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gβ1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gβ1. Our work demonstrates a unique relationship between KCTD proteins and Gβ1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.

RevDate: 2024-05-13
CmpDate: 2024-05-11

Martínez M, Rizzuto I, R Molina (2024)

Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems.

International journal of molecular sciences, 25(9):.

Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.

RevDate: 2024-05-13
CmpDate: 2024-05-11

Liu W, Wang W, Wang Z, et al (2024)

CRISPR Screen Identifies the RNA-Binding Protein Eef1a1 as a Key Regulator of Myogenesis.

International journal of molecular sciences, 25(9):.

Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.

RevDate: 2024-05-13
CmpDate: 2024-05-11

Melnikova L, Molodina V, Georgiev P, et al (2024)

Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins.

International journal of molecular sciences, 25(9):.

Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.

RevDate: 2024-05-15
CmpDate: 2024-05-11

Lee KE, Xu Y, Geng B, et al (2024)

Prime editing-mediated correction of the leptin receptor in muscle cells of db/db mice.

Biotechnology journal, 19(5):e2300676.

Genetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing. Additionally, prime editing does not require a precisely positioned protospacer adjacent motif (PAM) sequence, which offers flexible target and more precise genomic editing. Here we detail a novel construction of a prime editing extended guide RNA (pegRNA) to target mutated leptin receptors in B6.BKS(D)-Leprdb/J mice (db/db mice). The pegRNA was then injected into the flexor digitorum brevis (FDB) muscle of db/db mice to demonstrate in vivo efficacy, which resulted in pegRNA mediated base transversion at endogenous base transversion. Genomic DNA sequencing confirmed that prime editing could correct the mutation of leptin receptor gene in db/db mice. Furthermore, prime editing treated skeletal muscle exhibited enhanced leptin receptor signals. Thus, the current study showed in vivo efficacy of prime editing to correct mutant protein and rescue the physiology associated with functional protein.

RevDate: 2024-05-13
CmpDate: 2024-05-10

Bibert S, Quinodoz M, Perriot S, et al (2024)

Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase.

Nature communications, 15(1):3969.

Encephalitis is a rare and potentially fatal manifestation of herpes simplex type 1 infection. Following genome-wide genetic analyses, we identified a previously uncharacterized and very rare heterozygous variant in the E3 ubiquitin ligase WWP2, in a 14-month-old girl with herpes simplex encephalitis. The p.R841H variant (NM_007014.4:c.2522G > A) impaired TLR3 mediated signaling in inducible pluripotent stem cells-derived neural precursor cells and neurons; cells bearing this mutation were also more susceptible to HSV-1 infection compared to control cells. The p.R841H variant increased TRIF ubiquitination in vitro. Antiviral immunity was rescued following the correction of p.R841H by CRISPR-Cas9 technology. Moreover, the introduction of p.R841H in wild type cells reduced such immunity, suggesting that this mutation is linked to the observed phenotypes.

RevDate: 2024-05-13
CmpDate: 2024-05-10

Berjis A, Muthumani D, Aguilar OA, et al (2024)

Pretreatment with IL-15 and IL-18 rescues natural killer cells from granzyme B-mediated apoptosis after cryopreservation.

Nature communications, 15(1):3937.

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.

RevDate: 2024-05-16

Karimi MR, Jariani P, Yang JL, et al (2024)

A comprehensive review of the molecular and genetic mechanisms underlying gum and resin synthesis in Ferula species.

International journal of biological macromolecules, 269(Pt 2):132168 pii:S0141-8130(24)02973-8 [Epub ahead of print].

Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.

RevDate: 2024-05-10

Tan C, Xie G, Wu S, et al (2024)

Simultaneous detection of breast cancer biomarkers circROBO1 and BRCA1 based on a CRISPR-Cas13a/Cas12a system.

Biosensors & bioelectronics, 258:116373 pii:S0956-5663(24)00378-6 [Epub ahead of print].

Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Nemudraia A, Nemudryi A, B Wiedenheft (2024)

Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells.

Science (New York, N.Y.), 384(6697):808-814.

Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Ryu J, Barkal S, Yu T, et al (2024)

Joint genotypic and phenotypic outcome modeling improves base editing variant effect quantification.

Nature genetics, 56(5):925-937.

CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Vora DS, Bhandari SM, D Sundar (2024)

DNA shape features improve prediction of CRISPR/Cas9 activity.

Methods (San Diego, Calif.), 226:120-126.

The CRISPR/Cas9 genome editing technology has transformed basic and translational research in biology and medicine. However, the advances are hindered by off-target effects and a paucity in the knowledge of the mechanism of the Cas9 protein. Machine learning models have been proposed for the prediction of Cas9 activity at unintended sites, yet feature engineering plays a major role in the outcome of the predictors. This study evaluates the improvement in the performance of similar predictors upon inclusion of epigenetic and DNA shape feature groups in the conventionally used sequence-based Cas9 target and off-target datasets. The approach involved the utilization of neural networks trained on a diverse range of parameters, allowing us to systematically assess the performance increase for the meticulously designed datasets- (i) sequence only, (ii) sequence and epigenetic features, and (iii) sequence, epigenetic and DNA shape feature datasets. The addition of DNA shape information significantly improved predictive performance, evaluated by Akaike and Bayesian information criteria. The evaluation of individual feature importance by permutation and LIME-based methods also indicates that not only sequence features like mismatches and nucleotide composition, but also base pairing parameters like opening and stretch, that are indicative of distortion in the DNA-RNA hybrid in the presence of mismatches, influence model outcomes.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Chidley C, Darnell AM, Gaudio BL, et al (2024)

A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments.

Nature cell biology, 26(5):825-838.

Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Kislitsin VY, Chulkin AM, Dotsenko AS, et al (2024)

The role of intracellular β-glucosidase in cellulolytic response induction in filamentous fungus Penicillium verruculosum.

Research in microbiology, 175(4):104178.

In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular β-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Zhang Y, Zhang Z, Chen Y, et al (2024)

Protein kinase A regulatory subunit is required for normal growth, zoosporogenesis, and pathogenicity in Phytophthora sojae.

Research in microbiology, 175(4):104152.

Phytophthora sojae, one of the most devastating Oomycete pathogens, causes severe diseases that lead to economic loss in the soybean industry. The production of zoospores play a crucial role during the development of Phytophthora disease. In this work, CRISPR/Cas9 genome editing technology were used to obtain protein kinase A regulatory subunit (PsPkaR) knockout mutants. The role of PsPkaR in the production of zoospores and pathogenicity of P. sojae was analyzed. The overall findings indicate that PsPkaR is involved in regulating the growth process of P. sojae, primarily affecting the hyphal morphology and growth rate. Additionally, PsPkaR participates in the regulation of the release process of zoospores. Specifically, knocking-out PsPkaR resulted in incomplete cytoplasmic differentiation and uneven protoplast division, leading to abnormal release of zoospores. Furthermore, when the PsPkaR knockout mutants were inoculated on soybean leaves, the pathogenicity was significantly reduced compared to that of the wild-type and control strains. These findings of this study provide important clues and evidence regarding the role of the cAMP-PKA signaling pathway in the interaction between P. sojae and its host. This work contributes to a better understanding of the pathogenic mechanism of P. sojae and the development of corresponding prevention and control strategies.

RevDate: 2024-05-16
CmpDate: 2024-05-16

Xiang G, Li Y, Sun J, et al (2024)

Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors.

Nature biotechnology, 42(5):745-757.

As the evolutionary ancestor of Cas12 nuclease, the transposon (IS200/IS605)-encoded TnpB proteins act as compact RNA-guided DNA endonucleases. To explore their evolutionary diversity and potential as genome editors, we screened TnpBs from 64 annotated IS605 members and identified 25 active in Escherichia coli, of which three are active in human cells. Further characterization of these 25 TnpBs enables prediction of the transposon-associated motif (TAM) and the right-end element RNA (reRNA) directly from genomic sequences. We established a framework for annotating TnpB systems in prokaryotic genomes and applied it to identify 14 additional candidates. Among these, ISAam1 (369 amino acids (aa)) and ISYmu1 (382 aa) TnpBs demonstrated robust editing activity across dozens of genomic loci in human cells. Both RNA-guided genome editors demonstrated similar editing efficiency as SaCas9 (1,053 aa) while being substantially smaller. The enormous diversity of TnpBs holds potential for the discovery of additional valuable genome editors.

RevDate: 2024-05-10
CmpDate: 2024-05-10

Severi AA, B Akbari (2024)

CRISPR-Cas9 delivery strategies and applications: Review and update.

Genesis (New York, N.Y. : 2000), 62(3):e23598.

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.

RevDate: 2024-05-10

Wünschiers R, Leidenfrost RM, Holtorf H, et al (2024)

CRISPR/Cas9 gene targeting plus nanopore DNA sequencing with the plasmid pBR322 in the classroom.

Journal of microbiology & biology education [Epub ahead of print].

Both nanopore-based DNA sequencing and CRISPR/Cas-based gene editing represent groundbreaking innovations in molecular biology and genomics, offering unprecedented insights into and tools for working with genetic information. For students, reading, editing, and even writing DNA will be part of their everyday life. We have developed a laboratory procedure that includes (i) the biosynthesis of a guide RNA for, (ii) targeting Cas9 to specifically linearize the pBR322 plasmid, and (iii) the identification of the cutting site through nanopore DNA sequencing. The protocol is intentionally kept simple and requires neither living organisms nor biosafety laboratories. We divided the experimental procedures into separate activities to facilitate customization. Assuming access to a well-equipped molecular biology laboratory, an initial investment of approximately $2,700 is necessary. The material costs for each experiment group amount to around $130. Furthermore, we have developed a freely accessible website (https://dnalesen.hs-mittweida.de) for sequence read analysis and visualization, lowering the required computational skills to a minimum. For those with strong computational skills, we provide instructions for terminal-based data processing. With the presented activities, we aim to provide a hands-on experiment that engages students in modern molecular genetics and motivates them to discuss potential implications. The complete experiment can be accomplished within half a day and has been successfully implemented by us at high schools, in teacher training, and at universities. Our tip is to combine CRISPR/Cas gene targeting with nanopore-based DNA sequencing. As a tool, we provide a website that facilitates sequence data analysis and visualization.

RevDate: 2024-05-10

Kim GE, HH Park (2024)

AcrIIA28 is a metalloprotein that specifically inhibits targeted-DNA loading to SpyCas9 by binding to the REC3 domain.

Nucleic acids research pii:7668057 [Epub ahead of print].

CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects. Therefore, understanding the structural and molecular intricacies of diverse Acrs is crucial for elucidating the fundamental mechanisms governing CRISPR-Cas regulation. In this study, we present the structure of AcrIIA28 from Streptococcus phage Javan 128 and analyze its structural and functional features to comprehend the mechanisms involved in its inhibition of Cas9. Our current study reveals that AcrIIA28 is a metalloprotein that contains Zn2+ and abolishes the cleavage activity of Cas9 only from Streptococcus pyrogen (SpyCas9) by directly interacting with the REC3 domain of SpyCas9. Furthermore, we demonstrate that the AcrIIA28 interaction prevents the target DNA from being loaded onto Cas9. These findings indicate the molecular mechanisms underlying AcrIIA28-mediated Cas9 inhibition and provide valuable insights into the ongoing evolutionary battle between bacteria and phages.

RevDate: 2024-05-10
CmpDate: 2024-05-10

Wang QJ (2023)

[Genetics and hearing loss-from gene function to gene therapy].

Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery, 58(Z1):41-51.

RevDate: 2024-05-11

Asif M, Khan WJ, Aslam S, et al (2024)

The Use of CRISPR-Cas9 Genetic Technology in Cardiovascular Disease: A Comprehensive Review of Current Progress and Future Prospective.

Cureus, 16(4):e57869.

Over the last century, there have been major landmark developments in the field of medicine, enabling us to control and cure various diseases on a larger scale. A few of these include the discovery of antibiotics, the development of vaccines, and the origin of organ and tissue transplants. The continued quest for innovation in microbiology and medicine has helped humankind save millions of lives and decrease morbidity at the global level. Genetic medicine has grown significantly in the last two decades and appears to be the next frontier of curative therapies for chronic diseases. One important landmark in genetic medicine is the development of CRISPR (clustered, regularly interspaced short palindromic repeats) technology. In this article, we describe the basic structure and function of the CRISPR-Cas9 system, which, simply put, consists of an RNA part and a protein. It works as a molecular scissor that can perform targeted cuts followed by repairs in and around the genes of interest to attain favorable translational outcomes. We focused on summarizing recent studies using CRISPR-Cas9 technology in diagnosing and treating cardiovascular disease. These studies are primarily experimental and limited to animal models. However, their results are promising enough to anticipate that this technology will undoubtedly be available in clinical medicine in the coming years. CRISPR-Cas9-mediated gene editing has been used to study and potentially treat congenital heart disease, hyperlipidemias, arrhythmogenic cardiomyopathies, and the prevention of ischemia-reperfusion injury. Despite the current progress, we recognize the several challenges this technology faces, including funding for research, improving precision and reproducible results for human subjects, and establishing protocols for ethical compliance so that it is acceptable to the scientific community and the general public.

RevDate: 2024-05-11

Wu Y, Jin R, Chang Y, et al (2024)

A high-fidelity DNAzyme-assisted CRISPR/Cas13a system with single-nucleotide resolved specificity.

Chemical science, 15(18):6934-6942.

A CRISPR/Cas system represents an innovative tool for developing a new-generation biosensing and diagnostic strategy. However, the off-target issue (i.e., mistaken cleavage of nucleic acid targets and reporters) remains a great challenge for its practical applications. We hypothesize that this issue can be overcome by taking advantage of the site-specific cleavage ability of RNA-cleaving DNAzymes. To test this idea, we propose a DNAzyme Operation Enhances the Specificity of CRISPR/Cas13a strategy (termed DOES-CRISPR) to overcome the problem of relatively poor specificity that is typical of the traditional CRISPR/Cas13a system. The key to the design is that the partial hybridization of the CRISPR RNA (crRNA) with the cleavage fragment of off-target RNA was not able to activate the collateral cleavage activity of Cas13a. We showed that DOES-CRISPR can significantly improve the specificity of traditional CRISPR/Cas13a-based molecular detection by up to ∼43-fold. The broad utility of the strategy is illustrated through engineering three different systems for the detection of microRNAs (miR-17 and let-7e), CYP2C19*17 gene, SARS-Cov-2 variants (Gamma, Delta, and Omicron) and Omicron subtypes (BQ.1 and XBB.1) with single-nucleotide resolved specificity. Finally, clinical evaluation of this assay using 10 patient blood samples demonstrated a clinical sensitivity of 100% and specificity of 100% for genotyping CYP2C19*17, and analyzing 20 throat swab samples provided a diagnostic sensitivity of 95% and specificity of 100% for Omicron detection, and a clinical sensitivity of 92% and specificity of 100% for XBB.1 detection.

RevDate: 2024-05-11
CmpDate: 2024-05-10

Yan M, Z Yu (2024)

Viruses contribute to microbial diversification in the rumen ecosystem and are associated with certain animal production traits.

Microbiome, 12(1):82.

BACKGROUND: The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined.

RESULTS: Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions.

CONCLUSIONS: These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.

RevDate: 2024-05-11
CmpDate: 2024-05-10

Zhan T, Li X, Liu J, et al (2024)

CRISPR-based gene expression platform for precise regulation of bladder cancer.

Cellular & molecular biology letters, 29(1):66.

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and β-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular β-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Anonymous (2024)

CRISPR therapy restores some vision to people with blindness.

Nature, 629(8012):507.

RevDate: 2024-05-12
CmpDate: 2024-05-09

Lim JJ, Murata Y, Yuri S, et al (2024)

Generating an organ-deficient animal model using a multi-targeted CRISPR-Cas9 system.

Scientific reports, 14(1):10636.

Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNA[ms] system that induces cell death with a single-guide RNA (sgRNA[ms]) targeting multiple sites in the genome. The Cas9-sgRNA[ms] system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNA[ms] at the Rosa26 locus (Foxn1[Cas9]; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1[Cas9]; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNA[ms] system because Rosa26_ms could be maintained as homozygous.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Xu J, Zhou T, Xue D, et al (2024)

Integrating recombinase polymerase amplification with CRISPR/Cas9-initiated nicking-rolling circle amplification in Staphylococcus aureus assay.

Chemical communications (Cambridge, England), 60(40):5314-5317.

We integrate recombinase polymerase amplification (RPA) with CRISPR/Cas9-initiated nicking rolling circle amplification (CRISPR/Cas9-nRCA) for detecting Staphylococcus aureus. This approach utilizes a unique dimeric G-triplex structure, demonstrating firstly enhanced ThT fluorescence for target detection. The proof-of-concept study introduces a new avenue for integrating isothermal amplifications with CRISPR/Cas9 in the fields of pathogen detection and disease diagnosis.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Liang JH, Wang WT, Wang R, et al (2024)

PRMT5 activates lipid metabolic reprogramming via MYC contributing to the growth and survival of mantle cell lymphoma.

Cancer letters, 591:216877.

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Chen Z, Hu J, Dai J, et al (2024)

Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms.

Microbiological research, 284:127713.

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Negroni YL, Doro I, Tamborrino A, et al (2024)

The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress.

Plant & cell physiology, 65(4):576-589.

In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Haideri T, Lin J, Bao X, et al (2024)

MAGIK: A rapid and efficient method to create lineage-specific reporters in human pluripotent stem cells.

Stem cell reports, 19(5):744-757.

Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Homanics GE, Park JE, Bailey L, et al (2024)

Early molecular events of autosomal-dominant Alzheimer's disease in marmosets with PSEN1 mutations.

Alzheimer's & dementia : the journal of the Alzheimer's Association, 20(5):3455-3471.

INTRODUCTION: Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically engineered marmosets that carry knock-in (KI) point mutations in the presenilin 1 (PSEN1) gene that can be studied from birth throughout lifespan.

METHODS: CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1. Founders and their germline offspring are comprehensively studied longitudinally using non-invasive measures including behavior, biomarkers, neuroimaging, and multiomics signatures.

RESULTS: Prior to adulthood, increases in plasma amyloid beta were observed in PSEN1 mutation carriers relative to non-carriers. Analysis of brain revealed alterations in several enzyme-substrate interactions within the gamma secretase complex prior to adulthood.

DISCUSSION: Marmosets carrying KI point mutations in PSEN1 provide the opportunity to study the earliest primate-specific mechanisms that contribute to the molecular and cellular root causes of AD onset and progression.

HIGHLIGHTS: We report the successful generation of genetically engineered marmosets harboring knock-in point mutations in the PSEN1 gene. PSEN1 marmosets and their germline offspring recapitulate the early emergence of AD-related biomarkers. Studies as early in life as possible in PSEN1 marmosets will enable the identification of primate-specific mechanisms that drive disease progression.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Kumar K, Basak R, Rai A, et al (2024)

GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania.

Molecular microbiology, 121(5):1063-1078.

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Furusawa T, Cavero R, Liu Y, et al (2024)

Metabolism-focused CRISPR screen unveils mitochondrial pyruvate carrier 1 as a critical driver for PARP inhibitor resistance in lung cancer.

Molecular carcinogenesis, 63(6):1024-1037.

Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Zhang C, Tang Y, Tang S, et al (2024)

An inducible CRISPR activation tool for accelerating plant regeneration.

Plant communications, 5(5):100823.

The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.

RevDate: 2024-05-15
CmpDate: 2024-05-15

Arimura SI, I Nakazato (2024)

Genome Editing of Plant Mitochondrial and Chloroplast Genomes.

Plant & cell physiology, 65(4):477-483.

Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.

RevDate: 2024-05-12
CmpDate: 2024-05-09

Kadry MO, RM Abdel-Megeed (2024)

CRISPR-Cas9 genome and long non-coding RNAs as a novel diagnostic index for prostate cancer therapy via liposomal-coated compounds.

PloS one, 19(5):e0302264.

CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.

RevDate: 2024-05-13
CmpDate: 2024-05-09

Fazelzadeh Haghighi M, Jafari Khamirani H, Fallahi J, et al (2024)

Novel insight into FCSK-congenital disorder of glycosylation through a CRISPR-generated cell model.

Molecular genetics & genomic medicine, 12(5):e2445.

BACKGROUND: FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency.

METHODS: In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses.

RESULTS: Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation.

CONCLUSION: This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.

RevDate: 2024-05-13
CmpDate: 2024-05-09

Panara V, Yu H, Peng D, et al (2024)

Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds.

Development (Cambridge, England), 151(9):.

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Pian H, Wang H, Wang H, et al (2024)

Dual CRISPR/Cas13a Cascade Strand Displacement-Triggered Transcription for Point-of-Care Detection of Plasmodium in Asymptomatic Malaria.

Analytical chemistry, 96(19):7524-7531.

Asymptomatic infections of Plasmodium parasites are major obstacles to malaria control and elimination. A sensitive, specific, and user-friendly method is urgently needed for point-of-care (POC) Plasmodium diagnostics in asymptomatic malaria, especially in resource-limited settings. In this work, we present a POC method (termed Cas13a-SDT) based on the cascade sequence recognition and signal amplification of dual Cas13a trans-cleavage and strand displacement-triggered transcription (SDT). Cas13a-SDT not only achieves exceptional specificity in discriminating the target RNA from nontarget RNAs with any cross-interaction but also meets the sensitivity criterion set by the World Health Organization (WHO) for effective malaria detection. Remarkably, this novel method was successfully applied to screen malaria in asymptomatic infections from clinical samples. The proposed method provides a user-friendly and visually interpretable output mode while maintaining high accuracy and reliability comparable to RT-PCR. These excellent features demonstrate the significant potential of Cas13a-SDT for POC diagnosis of Plasmodium infections, laying a vital foundation for advancing malaria control and elimination efforts.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Blanluet C, Kuo CJ, Bhattacharya A, et al (2024)

Design and Evaluation of a Robust CRISPR Kinetic Assay for Hot-Spot Genotyping.

Analytical chemistry, 96(19):7444-7451.

Next-generation sequencing offers highly multiplexed and accurate detection of nucleic acid sequences but at the expense of complex workflows and high input requirements. The ease of use of CRISPR-Cas12 assays is attractive and may enable highly accurate detection of sequences implicated in, for example, cancer pathogenic variants. CRISPR assays often employ end-point measurements of Cas12 trans-cleavage activity after Cas12 activation by the target; however, end point-based methods can be limited in accuracy and robustness by arbitrary experimental choices. To overcome such limitations, we develop and demonstrate here an accurate assay targeting a mutation of the epidermal growth factor gene implicated in lung cancer (exon 19 deletion). The assay is based on characterizing the kinetics of Cas12 trans-cleavage to discriminate the mutant from wild-type targets. We performed extensive experiments (780 reactions) to calibrate key assay design parameters, including the guide RNA sequence, reporter sequence, reporter concentration, enzyme concentration, and DNA target type. Interestingly, we observed a competitive reaction between the target and reporter molecules that has important consequences for the design of CRISPR assays, which use preamplification to improve sensitivity. Finally, we demonstrate the assay on 18 tumor-extracted amplicons and 100 training iterations with 99% accuracy and discuss discrimination parameters and models to improve wild type versus mutant classification.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Zhao S, Liu J, Z Zuo (2024)

Secondary Conformational Checkpoint in CRISPR-Cas9.

Journal of chemical theory and computation, 20(9):3440-3448.

A specific checkpoint between target DNA binding and cleavage primarily governs the precision of Cas9 gene editing. Although various CRISPR-Cas9 variants have been developed to improve DNA cleavage accuracy, we still lack a comprehensive understanding of how they work at the molecular level. Herein, we have focused on studying the late-stage conformational transitions of Cas9 and an evolved Cas9 mutant (evoCas9) that start from the precleavage state. Our submilliseconds of dynamic simulations reveal that the presence of base mismatches leads the HNH nuclease domain of Cas9 to alter its principal functional modes of motion, thereby impairing its conformational activation. This observation suggests the existence of a secondary conformational checkpoint that fine-tunes the final DNA cleavage activation. Remarkably, evoCas9 is prone to deviating from the normal activation pathway with base mismatches. This is characterized by a noticeable shift in the positioning of the HNH domain and a significantly perturbed allosteric communication network within the enzyme. Therefore, the mutations evolved in evoCas9 also reinforce the secondary checkpoint in addition to the previously identified primary checkpoint, collectively ensuring this variant's high gene-editing accuracy. This mechanism should also apply to other Cas9-guide RNA variants with enhanced fidelity.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Eghbalsaied S, Lawler C, Petersen B, et al (2024)

CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering.

Gene therapy, 31(5-6):209-223.

Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.

RevDate: 2024-05-14
CmpDate: 2024-05-14

Burdo TH, Chen C, Kaminski R, et al (2024)

Preclinical safety and biodistribution of CRISPR targeting SIV in non-human primates.

Gene therapy, 31(5-6):224-233.

In this study, we demonstrate the safety and utility of CRISPR-Cas9 gene editing technology for in vivo editing of proviral DNA in ART-treated, virally controlled simian immunodeficiency virus (SIV) infected rhesus macaques, an established model for HIV infection. EBT-001 is an AAV9-based vector delivering SaCas9 and dual guide RNAs designed to target multiple regions of the SIV genome: the viral LTRs, and the Gag gene. The results presented here demonstrate that a single IV inoculation of EBT-001 at each of 3 dose levels (1.4 × 10[12], 1.4 × 10[13] and 1.4 × 10[14] genome copies/kg) resulted in broad and functional biodistribution of AAV9-EBT-001 to known tissue reservoirs of SIV. No off-target effects or abnormal pathology were observed, and animals returned to their normal body weight after receiving EBT-001. Importantly, the macaques that received the 2 highest doses of EBT-001 showed improved absolute lymphocyte counts as compared to antiretroviral-treated controls. Taken together, these results demonstrate safety, biodistribution, and in vivo proviral DNA editing following IV administration of EBT-001, supporting the further development of CRISPR-based gene editing as a potential therapeutic approach for HIV in humans.

RevDate: 2024-05-08
CmpDate: 2024-05-08

Li M, Ren X, Xu M, et al (2024)

Development of an engineered Bacillus subtilis strain for antibiotic-free sucrose isomerase production.

Biotechnology journal, 19(5):e2400178.

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL[-1] in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL[-1] during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.

RevDate: 2024-05-08
CmpDate: 2024-05-08

Wei J, Zhang J, Wang W, et al (2024)

Precision miRNA profiling: Electrochemiluminescence powered by CRISPR-Cas13a and hybridization chain reaction.

Analytica chimica acta, 1307:342641.

The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.

RevDate: 2024-05-10
CmpDate: 2024-05-08

Wang Z, Wang H, Lin S, et al (2024)

Phenotypic targeting using magnetic nanoparticles for rapid characterization of cellular proliferation regulators.

Science advances, 10(19):eadj1468.

Genome-wide CRISPR screens have provided a systematic way to identify essential genetic regulators of a phenotype of interest with single-cell resolution. However, most screens use live/dead readout of viability to identify factors of interest. Here, we describe an approach that converts cell proliferation into the degree of magnetization, enabling downstream microfluidic magnetic sorting to be performed. We performed a head-to-head comparison and verified that the magnetic workflow can identify the same hits from a traditional screen while reducing the screening period from 4 weeks to 1 week. Taking advantage of parallelization and performance, we screened multiple mesenchymal cancer cell lines for their dependency on cell proliferation. We found and validated pan- and cell-specific potential therapeutic targets. The method presented provides a nanoparticle-enabled approach means to increase the breadth of data collected in CRISPR screens, enabling the rapid discovery of drug targets for treatment.

RevDate: 2024-05-08

Mesaki K, Yamamoto H, Juvet S, et al (2024)

CRISPR-Cas genome editing in ex-vivo human lungs to rewire the translational path of genome-targeting therapeutics.

Human gene therapy [Epub ahead of print].

The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both in vivo and ex-vivo organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients However, assessing genome-targeting interventions in a clinically-relevant manner prior to clinical trials remains a major challenge due to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs ex vivo, effectively simulating pre-implantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene IL-10. We combined this approach with adenoviral vector (AdV)-mediated IL-10 delivery to create favorable kinetics for early (immediate post-implantation) graft immunomodulation. Using ex-vivo organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in ex-vivo perfused human organs, we conducted an in vivo rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Liu LL, Yin YQ, Ma KX, et al (2024)

Identification critical host factors for Japanese encephalitis virus replication via CRISPR screening of human sgRNA library.

Veterinary microbiology, 293:110099.

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Wang Y, Li K, Shen W, et al (2024)

Point-of-care testing of methamphetamine and cocaine utilizing wearable sensors.

Analytical biochemistry, 691:115526.

The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Zhang D, Jiang S, Xia N, et al (2024)

Development of visual detection of African swine fever virus using CRISPR/LwCas13a lateral flow strip based on structural protein gene D117L.

Veterinary microbiology, 293:110073.

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Hetzler Z, Marinakos SM, Lott N, et al (2024)

Adeno-associated virus genome quantification with amplification-free CRISPR-Cas12a.

Gene therapy, 31(5-6):304-313.

Efficient manufacturing of recombinant Adeno-Associated Viral (rAAV) vectors to meet rising clinical demand remains a major hurdle. One of the most significant challenges is the generation of large amounts of empty capsids without the therapeutic genome. There is no standardized analytical method to accurately quantify the viral genes, and subsequently the empty-to-full ratio, making the manufacturing challenges even more complex. We propose the use of CRISPR diagnostics (CRISPR-Dx) as a robust and rapid approach to determine AAV genome titers. We designed and developed the CRISPR-AAV Evaluation (CRAAVE) assay to maximize sensitivity, minimize time-to-result, and provide a potentially universal design for quantifying multiple transgene constructs encapsidated within different AAV serotypes. We also demonstrate an on-chip CRAAVE assay with lyophilized reagents to minimize end user assay input. The CRAAVE assay was able to detect AAV titers as low as 7e7 vg/mL with high precision (<3% error) in quantifying unknown AAV titers when compared with conventional quantitative PCR (qPCR) method. The assay only requires 30 min of assay time, shortening the analytical workflow drastically. Our results suggest CRISPR-Dx could be a promising tool for efficient rAAV genome titer quantification and has the potential to revolutionize biomanufacturing process analytical technology (PAT).

RevDate: 2024-05-13
CmpDate: 2024-05-13

Simões S, Lino M, Barrera A, et al (2024)

Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing.

Angewandte Chemie (International ed. in English), 63(21):e202401004.

The CRISPR/Cas9 system has emerged as a promising platform for gene editing; however, the lack of an efficient and safe delivery system to introduce it into cells continues to hinder clinical translation. Here, we report a rationally designed gene-editing nanoparticle (NP) formulation for brain applications: an sgRNA:Cas9 ribonucleoprotein complex is immobilized on the NP surface by oligonucleotides that are complementary to the sgRNA. Irradiation of the formulation with a near-infrared (NIR) laser generates heat in the NP, leading to the release of the ribonucleoprotein complex. The gene-editing potential of the formulation was demonstrated in vitro at the single-cell level. The safety and gene editing of the formulation were also demonstrated in the brains of reporter mice, specifically in the subventricular zone after intracerebral administration and in the olfactory bulb after intranasal administration. The formulation presented here offers a new strategy for the spatially controlled delivery of the CRISPR system to the brain.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Hernandes N, Qi XM, Bhide S, et al (2024)

Acetylcholine esterase of Drosophila melanogaster: a laboratory model to explore insecticide susceptibility gene drives.

Pest management science, 80(6):2950-2964.

BACKGROUND: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses.

RESULTS: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygous, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of gene drive resistance (GDR): rather than being mediated by the conventional non-homologous end-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas.

CONCLUSIONS: Insecticide susceptibility gene drives could be useful tools to control pest insects however problems with particularities of target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as a 'safety-switch' to prevent the unwanted spread of gene drives. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

RevDate: 2024-05-13
CmpDate: 2024-05-13

Alayoubi AM, Khawaji ZY, Mohammed MA, et al (2024)

CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.

Annals of hematology, 103(6):1805-1817.

Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).

RevDate: 2024-05-13
CmpDate: 2024-05-13

Chen X, Zhao D, Hou X, et al (2023)

Genomic allele-specific base editing with imperfect gRNA.

Journal of genetics and genomics = Yi chuan xue bao, 50(10):799-802.

RevDate: 2024-05-08

Yin W, Li L, Yang Y, et al (2024)

Ultra-Sensitive Detection of the SARS-CoV-2 Nucleocapsid Protein via a Clustered Regularly Interspaced Short Palindromic Repeat/Cas12a-Mediated Immunoassay.

ACS sensors [Epub ahead of print].

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 10[7] fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 μL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 10[4] fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.

RevDate: 2024-05-12
CmpDate: 2024-05-12

Bhattacharya S, Agarwal A, K Muniyappa (2024)

Deciphering the Substrate Specificity Reveals that CRISPR-Cas12a Is a Bifunctional Enzyme with Both Endo- and Exonuclease Activities.

Journal of molecular biology, 436(10):168550.

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.

RevDate: 2024-05-08

Fang T, G Chen (2024)

Non-viral vector-based genome editing for cancer immunotherapy.

Biomaterials science [Epub ahead of print].

Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.

RevDate: 2024-05-09
CmpDate: 2024-05-08

Sandor R, Wagh SG, Kelterborn S, et al (2024)

Cytokinin-deficient Chlamydomonas reinhardtii CRISPR-Cas9 mutants show reduced ability to prime resistance of tobacco against bacterial infection.

Physiologia plantarum, 176(3):e14311.

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.

RevDate: 2024-05-10
CmpDate: 2024-05-08

He Z, Dong C, Song T, et al (2024)

FTH1 overexpression using a dCasRx translation enhancement system protects the kidney from calcium oxalate crystal-induced injury.

Cellular & molecular biology letters, 29(1):65.

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.

RevDate: 2024-05-10
CmpDate: 2024-05-07

Prelli Bozzo C, Laliberté A, De Luna A, et al (2024)

Replication competent HIV-guided CRISPR screen identifies antiviral factors including targets of the accessory protein Nef.

Nature communications, 15(1):3813.

Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4[+] T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4[+] T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.

RevDate: 2024-05-10
CmpDate: 2024-05-07

Scranton K, John S, Angelini M, et al (2024)

Cardiac function is regulated by the sodium-dependent inhibition of the sodium-calcium exchanger NCX1.

Nature communications, 15(1):3831.

The Na[+]-Ca[2+] exchanger (NCX1) is the dominant Ca[2+] extrusion mechanism in cardiac myocytes. NCX1 activity is inhibited by intracellular Na[+] via a process known as Na[+]-dependent inactivation. A central question is whether this inactivation plays a physiological role in heart function. Using CRISPR/Cas9, we inserted the K229Q mutation in the gene (Slc8a1) encoding for NCX1. This mutation removes the Na[+]-dependent inactivation while preserving transport properties and other allosteric regulations. NCX1 mRNA levels, protein expression, and protein localization are unchanged in K229Q male mice. However, they exhibit reduced left ventricular ejection fraction and fractional shortening, while displaying a prolonged QT interval. K229Q ventricular myocytes show enhanced NCX1 activity, resulting in action potential prolongation, higher incidence of aberrant action potentials, a faster decline of Ca[2+] transients, and depressed cell shortening. The results demonstrate that NCX1 Na[+]-dependent inactivation plays an essential role in heart function by affecting both cardiac excitability and contractility.

RevDate: 2024-05-10
CmpDate: 2024-05-07

Recinos Y, Ustianenko D, Yeh YT, et al (2024)

CRISPR-dCas13d-based deep screening of proximal and distal splicing-regulatory elements.

Nature communications, 15(1):3839.

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.

RevDate: 2024-05-10
CmpDate: 2024-05-07

Xun G, Zhu Z, Singh N, et al (2024)

Harnessing noncanonical crRNA for highly efficient genome editing.

Nature communications, 15(1):3823.

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.

RevDate: 2024-05-10
CmpDate: 2024-05-07

Zhang H, Li X, Bai J, et al (2024)

Mice with NOP2/sun RNA methyltransferase 5 deficiency die before reaching puberty due to fatal kidney damage.

Renal failure, 46(1):2349139.

BACKGROUND: NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice.

METHODS: In the present research, we built a mouse model (Nsun5[-/-]) using the CRISPR/Cas9 system to investigated the specific role of NSUN5.

RESULTS: We observed that Nsun5[-/-] mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5[-/-] mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5[-/-] kidneys. Furthermore, we found that the kidneys of Nsun5[-/-] mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21.

CONCLUSIONS: In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.

RevDate: 2024-05-07
CmpDate: 2024-05-07

Arnold KA, Moran MC, Shi H, et al (2024)

CLDN1 knock out keratinocytes as a model to investigate multiple skin disorders.

Experimental dermatology, 33(5):e15084.

The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Click covers to order from Amazon
We will earn a commission.

CRISPR-Cas

By delivering the Cas9 nuclease, complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be precisely cut at any desired location, allowing existing genes to be removed and/or new ones added. That is, the CRISPR-Cas system provides a tool for the cut-and-paste editing of genomes. Welcome to the brave new world of genome editing. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )