About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

21 May 2022 at 01:35
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biofilm


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 21 May 2022 at 01:35 Created: 


Wikipedia: Biofilm A biofilm is any group of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPS). The EPS components are produced by the cells within the biofilm and are typically a polymeric conglomeration of extracellular DNA, proteins, and polysaccharides. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, biofilms are frequently described metaphorically as cities for microbes. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital settings. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium. Biofilms can be present on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease. Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or non-specific attachment sites on a surface, nutritional cues, or in some cases, by exposure of planktonic cells to sub-inhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Created with PubMed® Query: biofilm[title] NOT 28392838[PMID] NOT 31293528[PMID] NOT 29372251[PMID] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-05-20

Cobrado L, Ramalho P, Ricardo E, et al (2022)

Efficacy assessment of different time-cycles of nebulized hydrogen peroxide against bacterial and yeast biofilm.

The Journal of hospital infection pii:S0195-6701(22)00152-9 [Epub ahead of print].

BACKGROUND: The prevention of healthcare-associated infections requires a continuous effort. In order to achieve better practical results, the control of environmental microbial biofilms with effective disinfection strategies should be addressed.

AIM: This study aims to test the efficacy of different time-cycles of nebulized H2O2 against bacterial and yeast dry biofilm.

METHODS: The efficacy of a standard cycle (SC) and of a fast cycle (FC) of nebulized H2O2 was compared. Microbial biofilms were previously grown on different material coupons. The biofilm metabolic activity was determined by XTT assay and the biofilm total biomass by crystal violet assay.

FINDINGS: Regarding the efficacy of nebulized H2O2 against biofilms, the mean reduction of metabolic activity of the SC was 55.2% (±19.4%), comparing to a reduction of 50.4% (±17.7%) of the FC. The mean reduction of total biomass of the SC was 45.5% (±22.7%), versus 46.7% (±21.7%) of the FC. No statistical significant differences were found when comparing the tested cycles and distinct materials.

CONCLUSION: H2O2 nebulization was found to exhibit a good efficacy against healthcare-associated microbial dry biofilms. Moreover, similar efficacies were found between the tested cycles.

RevDate: 2022-05-20

Kumar M, Kumar R, Chaudhary DR, et al (2022)

An appraisal of early stage biofilm-forming bacterial community assemblage and diversity in the Arabian Sea, India.

Marine pollution bulletin, 180:113732 pii:S0025-326X(22)00414-3 [Epub ahead of print].

The community composition and distribution of early-stage (24 h) biofilm-forming bacteria on two different surfaces (glass slide and polystyrene plastic slide) at three different locations (Diu, Alang and Sikka) were studied using a culture-dependent and next-generation sequencing (NGS) approach in the Arabian Sea, Gujarat, India. The most dominant phyla observed using the NGS approach were the Proteobacteria among the sampling sites. Gammaproteobacteria class dominated both the surfaces among the sites and accounted for 46.7% to 89.2% of total abundance. The culture-dependent analysis showed Proteobacteria and Firmicutes as the dominant phyla on the surfaces within the sampling sites. During the initial colonization, hydrocarbon-degrading bacterial strains have also attached to the surfaces. The outcome of this study would be of great importance for targeting the early stage biofilm-forming and hydrocarbon-degrading bacterial isolates may help to degrade plastic in the marine environment.

RevDate: 2022-05-20

Liu A, Lin W, Ming R, et al (2022)

Stability of 28 typical prescription drugs in sewer systems and interaction with the biofilm bacterial community.

Journal of hazardous materials, 436:129142 pii:S0304-3894(22)00932-3 [Epub ahead of print].

Identifying the attenuation characteristics of drugs in sewage and sewers is one of the important factors to improve the accuracy of wastewater-based epidemiology (WBE) application. In this study, 28 drugs including antidepressants, cardiovascular drugs, antihistamines, anticonvulsants and some of their human metabolites were chosen as the targets to study the hydrolysis, adsorption, and biodegradation at different temperatures in sewage and sewers. The interaction between drugs degradation and community structure of biofilm was also investigated. In the simulated sewers, the removal percentages of 12 parent or drug metabolites are 0-20%, such as demethylvenlafaxine, fluvoxamine, etc., which are highly stable chemicals and suitable to be chosen as biomarkers for WBE back-calculation under appropriate circumstances. Fourteen drugs including venlafaxine and citalopram have removal percentages of 20-60%. While paroxetine and sertraline, with removal percentage of 100%, are the most unstable and cannot be used as biomarkers. Among the 28 drugs, there are 25 drugs that have a higher loss rate in the aerobic sewer than that in the anaerobic sewer in this study. During drug exposure in anaerobic biofilms, species abundance first decreased and then increased. Species abundance and diversity in aerobic biofilm generally showed a decreasing trend. In addition, Proteobacteria and Spirochaetota were the dominant phyla in both sewers.

RevDate: 2022-05-20

Ray S, Jin JO, Choi I, et al (2022)

Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus.

Applied biochemistry and biotechnology [Epub ahead of print].

Staphylococcus aureus is an important bacterial pathogen responsible for biofilm formation in medical devices. Due to the increasing antibiotic resistance of S. aureus, it is necessary to search for new anti-biofilm agents. In this study, the cell-free supernatant of Bacillus thuringiensis inhibited biofilm formation up to 93% and dispersed biofilms up to 83% without affecting the growth of S. aureus. The ethyl acetate extract of B. thuringiensis cell-free supernatant exhibited a dose-dependent anti-biofilm activity against S. aureus with the biofilm inhibition concentration ranging from 8 to 64 µg/mL. Scanning electron microscopy revealed that the cell-free supernatant extract of B. thuringiensis resulted in a significant reduction in S. aureus biofilms. The ethyl acetate extract of cell-free supernatant of B. thuringiensis was found to contain various compounds with structural similarity to known anti-biofilm compounds. In particular, squalene, cinnamic acid derivatives, and eicosapentaene seem to act synergistically against S. aureus biofilms. Hence, B. thuringiensis cell-free supernatant proved to be effective against S. aureus biofilms. The results clearly show the potential of natural molecules produced by B. thuringiensis as alternative therapies with anti-biofilm activity instead of bactericidal properties.

RevDate: 2022-05-20

Sarfraz S, Mäntynen PH, Laurila M, et al (2022)

Effect of Surface Tooling Techniques of Medical Titanium Implants on Bacterial Biofilm Formation In Vitro.

Materials (Basel, Switzerland), 15(9): pii:ma15093228.

The aim of this study was to assess the biofilm formation of Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli on titanium implants with CAD-CAM tooling techniques. Twenty specimens of titanium were studied: Titanium grade 2 tooled with a Planmeca CAD-CAM milling device (TiGrade 2), Ti6Al4V grade 5 as it comes from CAD-DMLS device (computer aided design-direct metal laser sintering device) (TiGrade 5), Ti6Al4V grade 23 as it comes from a CAD-CAM milling device (TiGrade 23), and CAD-DMLS TiGrade 5 polished with an abrasive disc (TiGrade 5 polished). Bacterial adhesion on the implants was completed with and without saliva treatment to mimic both extraoral and intraoral surgical methods of implant placement. Five specimens/implant types were used in the bacterial adhesion experiments. Autoclaved implant specimens were placed in petri plates and immersed in saliva solution for 30 min at room temperature and then washed 3× with 1× PBS. Bacterial suspensions of each strain were made and added to the specimens after saliva treatment. Biofilm was allowed to form for 24 h at 37 °C and the adhered bacteria was calculated. Tooling techniques had an insignificant effect on the bacterial adhesion by all the bacterial strains studied. However, there was a significant difference in biofilm formation between the saliva-treated and non-saliva-treated implants. Saliva contamination enhanced S. mutans, S. aureus, and E. faecalis adhesion in all material types studied. S. aureus was found to be the most adherent strain in the saliva-treated group, whereas E. coli was the most adherent strain in the non-saliva-treated group. In conclusion, CAD-CAM tooling techniques have little effect on bacterial adhesion. Saliva coating enhances the biofilm formation; therefore, saliva contamination of the implant must be minimized during implant placement. Further extensive studies are needed to evaluate the effects of surface treatments of the titanium implant on soft tissue response and to prevent the factors causing implant infection and failure.

RevDate: 2022-05-20

Nakagawa R, Saito K, Kanematsu H, et al (2022)

Impedance Characteristics of Monolayer and Bilayer Graphene Films with Biofilm Formation and Growth.

Sensors (Basel, Switzerland), 22(9): pii:s22093548.

Biofilms are the result of bacterial activity. When the number of bacteria (attached to materials' surfaces) reaches a certain threshold value, then the bacteria simultaneously excrete organic polymers (EPS: extracellular polymeric substances). These sticky polymers encase and protect the bacteria. They are called biofilms and contain about 80% water. Other components of biofilm include polymeric carbon compounds such as polysaccharides and bacteria. It is well-known that biofilms cause various medical and hygiene problems. Therefore, it is important to have a sensor that can detect biofilms to solve such problems. Graphene is a single-atom-thick sheet in which carbon atoms are connected in a hexagonal shape like a honeycomb. Carbon compounds generally bond easily to graphene. Therefore, it is highly possible that graphene could serve as a sensor to monitor biofilm formation and growth. In our previous study, monolayer graphene was prepared on a glass substrate by the chemical vapor deposition (CVD) method. Its biofilm forming ability was compared with that of graphite. As a result, the CVD graphene film had the higher sensitivity for biofilm formation. However, the monolayer graphene has a mechanical disadvantage when used as a biofilm sensor. Therefore, for this new research project, we prepared bilayer graphene with high mechanical strength by using the CVD process on copper substrates. For these specimens, we measured the capacitance component of the specimens' impedance. In addition, we have included a discussion about the possibility of applying them as future sensors for monitoring biofilm formation and growth.

RevDate: 2022-05-19

Giri AK, Jena B, Biswal B, et al (2022)

Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria.

Scientific reports, 12(1):8383.

The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.

RevDate: 2022-05-19

Sun Y, Sun F, Feng W, et al (2022)

Luteolin Inhibits the Biofilm Formation and Cytotoxicity of Methicillin-Resistant Staphylococcus aureus via Decreasing Bacterial Toxin Synthesis.

Evidence-based complementary and alternative medicine : eCAM, 2022:4476339.

Owing to the fact that luteolin has antibacterial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), its specific mechanism in MRSA is worthy of investigation, which is the focus of this study. Initially, the collected S. aureus strains were treated with luteolin. Then, the minimum inhibitory concentration (MIC) of luteolin against the S. aureus strains was measured by the broth microdilution. The growth curves, biofilm formation, and cytotoxicity of treated S. aureus were detected using a microplate reader. The live and dead bacteria were evaluated using confocal laser scanning microscopy, the bacterial morphology was observed using scanning electron microscopy, and the S. aureus colony-forming unit (CFU) numbers were assessed. The levels of alpha hemolysin (α-hemolysin), delta hemolysin (δ-hemolysin), and hlaA were detected via western blot and RT-PCR. The mortality of mouse model with S. aureus systemic infection was analyzed, and the levels of IL-6, IL-8, IL-10, and TNF-α were quantitated using ELISA. Concretely, the MIC of luteolin against MRSA N315 was 64 μg/mL. Luteolin at 16 μg/mL did not affect the growth of MRSA N315, but inhibited the biofilm formation and CFU, and promoted the morphological changes and death of MRSA N315. Luteolin decreased the cytotoxicity and the levels of α-hemolysin, δ-hemolysin, and hlaA in MRSA N315, elevated MRSA-reduced mice survival rate, and differentially modulated the inflammatory cytokine levels in MRSA-infected mice. Collectively, luteolin inhibits biofilm formation and cytotoxicity of MRSA via blocking the bacterial toxin synthesis.

RevDate: 2022-05-18

Costa RC, Bertolini M, Costa Oliveira BE, et al (2022)

Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix.

Critical reviews in microbiology [Epub ahead of print].

Biofilms are complex tri-dimensional structures that encase microbial cells in an extracellular matrix comprising self-produced polymeric substances. The matrix rich in extracellular polymeric substance (EPS) contributes to the unique features of biofilm lifestyle and structure, enhancing microbial accretion, biofilm virulence, and antimicrobial resistance. The role of the EPS matrix of biofilms growing on biotic surfaces, especially dental surfaces, is largely unravelled. To date, there is a lack of a broad overview of existing literature concerning the relationship between the EPS matrix and the dental implant environment and its role in implant-related infections. Here, we discuss recent advances in the critical role of the EPS matrix on biofilm growth and virulence on the dental implant surface and its effect on the etiopathogenesis and progression of implant-related infections. Similar to other biofilms associated with human diseases/conditions, EPS-enriched biofilms on implant surfaces promote microbial accumulation, microbiological shift, cross-kingdom interaction, antimicrobial resistance, biofilm virulence, and, consequently, peri-implant tissue damage. But intriguingly, the protagonism of EPS role on implant-related infections and the development of matrix-target therapeutic strategies has been neglected. Finally, we highlight the need for more in-depth analyses of polymicrobial interactions within EPS matrix and EPS-targeting technologies' rationale for disrupting the complex biofilm microenvironment with more outstanding translation to implant applications in the near future.

RevDate: 2022-05-17

Bi H, Deng R, Y Liu (2022)

Linezolid decreases Staphylococcus aureus biofilm formation by affecting the IcaA and IcaB proteins.

Acta microbiologica et immunologica Hungarica [Epub ahead of print].

Background: The ica gene of Staphylococcus aureus (S. aureus) plays a vital role in its growth and biofilm formation. Among them, IcaA and IcaB are critical proteins for synthesizing extracellular polysaccharides and biofilms in S. aureus. To investigate whether the formation of S. aureus biofilms can be inhibited through the IcaA and IcaB proteins by the presence of linezolid.

Methods: The icaA and icaB genes of S. aureus ATCC 25923 were silenced by homologous recombination. The critical roles of icaA and icaB in S. aureus were analysed by observing the growth curve and biofilm formation after linezolid treatment. Then, the effect of linezolid on the morphology of S. aureus was observed by scanning electron microscopy. Finally, the potential binding ability of linezolid to Ica proteins was predicted by molecular docking.

Results: The icaA- and icaB-silenced strains were successfully constructed, and the sensitivity of S. aureus to linezolid was decreased after icaA and icaB silencing. Scanning electron microscopy showed that linezolid caused invagination of the S. aureus surface and reduced the production of biofilms. Molecular docking results showed that linezolid could bind to IcaA and IcaB proteins.

Conclusion: IcaA and IcaB are potential targets of linezolid in inhibiting the biofilm formation of S. aureus (ATCC 25923).

RevDate: 2022-05-17

Bhadra S, Chettri D, A Kumar Verma (2022)

Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal.

Applied biochemistry and biotechnology [Epub ahead of print].

The search for environmentally friendly methods to remove persistent substances such as organic pollutants and sessile communities such as biofilms that severely affect the environment and human health resulted in biosurfactant discovery. Owing to their low level of toxicity and high biodegradability, biosurfactants are increasingly preferred to be used for removal of pollutants from nature. These amphipathic molecules can be synthesized inexpensively, employing cheap substrates such as agricultural and industrial wastes. Recent progress has been made in identifying various biosurfactants that can be used to remove organic pollutants and harmful microbial aggregates, as well as novel microbial strains that produce these surface-active molecules to survive in a hydrocarbon-rich environment. This review focuses on the identification and understanding the role of biosurfactants and the microorganisms involved in the removal of biofilms and remediation of xenobiotics and various types of hydrocarbons such as crude oil, aromatic hydrocarbons, n-alkanes, aliphatic hydrocarbons, asphaltenes, naphthenes, and other petroleum products. This property of biosurfactant is very important as biofilms are of great concern due to their impact on the environment, public health, and industries worldwide. This work also includes several advanced molecular methods that can be used to enhance the production of biosurfactants by the microorganisms studied.

RevDate: 2022-05-17

Saraswathi N, Girigoswami K, Divya KC, et al (2022)

Degree of Gelatination on Ag-Nanoparticles to Inactivate Multi-drug Resistant Bacterial Biofilm Isolated from Sewage Treatment Plant.

Current drug delivery pii:CDD-EPUB-123245 [Epub ahead of print].

INTRODUCTION: Overuse and improper dosage of antibiotics have generated antimicrobial resistance (AMR) worldwide. Pseudomonas aeruginosa (PA), a well-known bacterial strain can establish MDR leading to a variety of infections in humans. Furthermore, these PA strains hold the ability to form biofilms by generating extracellular polymeric substances on the surface of medical tools and critical care units. To supersede the infectious effect of MDR organisms, silver nanoparticles have been known to be the choice.

MATERIALS AND METHODS: Hence, the present study concentrates on the engineering of varying concentrations of gelatin-based polymeric hydrogel embedded with silver nanoparticles (G-AgNPs) for controlled bactericidal activity against MDR PA biofilms. Biofilms formation by MDR PA was confirmed microscopically, and spectroscopy was taken as a tool to characterize and analyze the efficacy at every stage of experiments.

RESULTS: When MDR PA biofilms were treated with G-AgNPs prepared with 5 % gelatin concentration (AgNP3), they exhibited superior bactericidal activity. Furthermore, a dose-dependent study showed that 800 nM of AgNP3 could inhibit the growth of MDR PA.

CONCLUSION: Hence it can be concluded that silver nanoparticles synthesized in the presence of 5% gelatin can act as a bactericidal agent in the inactivation of MDR PA biofilms, thereby controlling the infections caused by these biofilms.

RevDate: 2022-05-17

Rosca AS, Castro J, Sousa LGV, et al (2022)

In vitro interactions within a biofilm containing three species found in bacterial vaginosis (BV) support the higher antimicrobial tolerance associated with BV recurrence.

The Journal of antimicrobial chemotherapy pii:6586622 [Epub ahead of print].

BACKGROUND: Bacterial vaginosis (BV), the most common cause of vaginal discharge, is characterized by the presence of a polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp., but also other anaerobic species. Interactions between bacteria in multi-species biofilms are likely to contribute to increased virulence and to enhanced antimicrobial tolerance observed in vivo. However, functional studies addressing this question are lacking.

OBJECTIVES: To gain insights into the role that interactions between BV-associated species in multi-species BV biofilms might have on antimicrobial tolerance, single- and triple-species biofilms formed by Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae and Peptostreptococcus anaerobius were characterized, before and after metronidazole or clindamycin treatment.

METHODS: Total biofilm biomass, total cells and cfu counts prior to and after antibiotic treatment were first determined. In addition, bacterial populations in the triple-species biofilms were also quantified by quantitative PCR (qPCR) and peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH).

RESULTS: Despite the effect observed in single-species biofilms, neither metronidazole nor clindamycin was effective in reducing triple-species biofilm biomass. Similar results were obtained when evaluating the number of total or culturable cells. Interestingly, despite differences between strain susceptibilities to antibiotics, the composition of the triple-species biofilms was not strongly affected by antibiotics.

CONCLUSIONS: Taken together, these results strengthen the idea that, when co-incubated, bacteria can interact synergistically, leading to increased tolerance to antimicrobial therapy, which helps explain the observed clinically high BV recurrence rates.

RevDate: 2022-05-18

Das A, Kundu S, Gupta M, et al (2022)

Guar gum propionate-kojic acid films for Escherichia coli biofilm disruption and simultaneous inhibition of planktonic growth.

International journal of biological macromolecules, 211:57-73 pii:S0141-8130(22)01013-3 [Epub ahead of print].

Nosocomial bacterial infections associated with biofilms inspire to explore newer bactericidal strategy with eco-friendly biomaterials as sustainable alternatives. In this research work, we successfully developed bio-safe films from kojic acid(KA) and guar gum propionate(GGP) for Escherichia coli biofilm disruption and planktonic cell killing. High DS(degree of substitution = 1.52) GGP was synthesized from guar gum (GG)assisted by chaotropic ions at room-temperature. Biopolymers were routinely characterized in CHN analyzer, FT-IR, TGA and XRD analysis. KA loaded GGP films were prepared by cross-linking the molecules in presence of epichlorhydrin and two different percentages of KA were employed. Film physical and tensile properties were systematically evaluated and optimized. Water vapour permeability (WVP) and tensile strength of final film GGPFK10 were recorded at 0.741 ± 0.09gmm-1kPa-1h-1 and 19.23 MPa. KA release from GGP matrix followed controlled diffusion process. MIC of GGP was 130 μg/mL and zone of inhibition of GGPFK10 was confirmed at 16.1 mm. SEM experiments disclosed the absence of pili-like structures with squeezed and elongated cellular morphology in dead planktonic cells. Disruption of biofilms was experimented in detail by CV assay, fluorescent, light microscopic and SEM studies. The film showed excellent cell-viability on human adult dermal fibroblast (HADF)cell-line. Overall, the biosafe film would be a potent antibacterial device for treating infections against E.coli biofilms and planktonic cells.

RevDate: 2022-05-18
CmpDate: 2022-05-18

Gurler H, Findik A, MG Sezener (2022)

Determination of antibiotic resistance profiles and biofilm production of Staphylococcus spp. isolated from Anatolian water buffalo milk with subclinical mastitis.

Polish journal of veterinary sciences, 25(1):51-59.

Mastitis is one of the most crucial diseases of dairy animals. Especially subclinical mastitis (SCM) has negative impacts on of dairy economy in term of reducing milk quality and quantity also premature culling and cost of therapy. Staphylococci are important etiological agents in SCM. The aim of the study was to investigate the biofilm production and antibiotic resistance profiles of Staphylococcus spp. other than S. aureus isolated from milks of Anatolian water buffalo with subclinical mastitis. Twenty-two coagulase negative staphylococci (CNS) identified phenotypically were also identified with PCR as Staphylococcus spp. other than S. aureus. Biofilm productions were investigated both by Congo Red Agar Method and PCR. The antibiotic resistance profiles of the isolates were determined by Disc Diffusion Method and they were antibiotyped. Only three (13.6%) isolates were biofilm positive both phenotypically and genotypically. All isolates except for two were resistant against at least two antibiotics. Multidrug-resistance among the isolates was low (13.6%). Antibiotyping results showed that the similarities among the strains were between 30-100%. Genotyping of the strains revealed that a genetic heterogeneity was found among CNS isolates and their similarities were between 43% and 93%. In conclusion, CNS isolates identified as subclinical mastitis agents in buffaloes showed a high antibiotic resistance profile especially against oxacillin and vancomycin. Further studies should be conducted to investigate new mechanisms and/or genes responsible for antibiotic resistance in buffaloes.

RevDate: 2022-05-18

Ma Y, Hasan Z, Huang J, et al (2022)

Measuring the Migration and Biofilm Formation of Various Bacteria.

Journal of visualized experiments : JoVE.

As microbes that thrive in the host body primarily have adaptive abilities that facilitate their survival, methods for classifying and identifying their nature would be beneficial in facilitating their characterization. Currently, most studies focus only on one specific characterization method; however, the isolation and identification of microorganisms from the host is a continuous process and usually requires several combinatorial characterization methods. Herein, we describe methods of identifying the microbial biofilm-forming ability, the microbial respiration state, and their chemotaxis behavior. The methods are used to identify five microbes, three of which were isolated from the bone tissue of Sprague-Dawley (SD) rats (Corynebacterium stationis, Staphylococcus cohnii subsp. urealyticus, and Enterococcus faecalis) and two from the American Type Culture Collection (ATCC)-Staphylococcus aureus ATCC 25923 and Enterococcus faecalis V583. The microbes isolated from the SD rat bone tissue include the gram-positive microbes. These microbes have adapted to thrive under stressful and nutrient-limiting environments within the bone matrix. This article aims to provide the readers with the specific know-how of determining the nature and behavior of the isolated microbes within a laboratory setting.

RevDate: 2022-05-16

Ham SY, Kim HS, Cha E, et al (2022)

Raffinose Inhibits Streptococcus mutans Biofilm Formation by Targeting Glucosyltransferase.

Microbiology spectrum [Epub ahead of print].

Streptococcus mutans is a representative biofilm-forming bacterium that causes dental caries through glucosyltransferase (GTF) activity. Glucans are synthesized from sucrose by GTFs and provide binding sites for S. mutans to adhere tightly to the tooth enamel. Therefore, if a novel compound that interferes with GTF function is developed, biofilm formation control in S. mutans would be possible. We discovered that raffinose, an oligosaccharide from natural products, strongly inhibited biofilm formation, GTF-related gene expression, and glucan production. Furthermore, biofilm inhibition on saliva-coated hydroxyapatite discs through the reduction of bacterial adhesion indicated the applicability of raffinose in oral health. These effects of raffinose appear to be due to its ability to modulate GTF activity in S. mutans. Hence, raffinose may be considered an antibiofilm agent for use as a substance for oral supplies and dental materials to prevent dental caries. IMPORTANCE Dental caries is the most prevalent infectious disease and is expensive to manage. Dental biofilms can be eliminated via mechanical treatment or inhibited using antibiotics. However, bacteria that are not entirely removed or are resistant to antibiotics can still form biofilms. In this study, we found that raffinose inhibited biofilm formation by S. mutans, a causative agent of dental caries, possibly through binding to GtfC. Our findings support the notion that biofilm inhibition by raffinose can be exerted by interference with GTF function, compensating for the shortcomings of existing commercialized antibiofilm methods. Furthermore, raffinose is an ingredient derived from natural products and can be safely utilized in humans; it has no smell and tastes sweet. Therefore, raffinose, which can control S. mutans biofilm formation, has been suggested as a substance for oral supplies and dental materials to prevent dental caries.

RevDate: 2022-05-16

Shmidov E, Lebenthal-Loinger I, Roth S, et al (2022)

PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation.

Microbiology spectrum [Epub ahead of print].

Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together, these results highlight the importance of this toxin-antitoxin system to key physiological traits in P. aeruginosa. IMPORTANCE The functions attributed to bacterial TA systems are controversial and remain largely unknown. Our study suggests new insights into the potential functions of bacterial TA systems. We reveal that a chromosome-encoded TA system can regulate biofilm and motility, antibiotic resistance, prophage gene expression, and phage production. The latter presents a thus far unreported function of bacterial TA systems. In addition, with the emergence of antimicrobial-resistant bacteria, especially with the rising of P. aeruginosa resistant strains, the investigation of TA systems is critical as it may account for potential new targets against the resistant strains.

RevDate: 2022-05-16

Peng J, Xie S, Huang K, et al (2022)

Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds.

Journal of materials chemistry. B [Epub ahead of print].

Biofilm infection is regarded as a major contributing factor to the failure of burn treatment and a persistent inflammatory state delays healing and leads to the formation of chronic wounds. Herein, self-propelled nanomotors (NMs) are proposed to enhance biofilm infiltration, bacterial destruction, and endotoxin clearance to accelerate the healing of infected burn wounds. Janus nanoparticles (NPs) were prepared through partially coating Fe3O4 NPs with polydopamine (PDA) layers, and then polymyxin B (PMB) and thiolated nitric oxide (SNO) donors were separately grafted onto the Janus NPs to obtain IO@PMB-SNO NMs. In response to elevated glutathione (GSH) levels in biofilms, NO generation from one side of the Janus NPs leads to self-propelled motion and deep infiltration into biofilms. The local release of NO could destroy bacteria inside the biofilm, which provides a non-antibiotic antibiofilm approach without the development of drug resistance. In addition to intrinsic antibacterial effects, the PMB grafts preferentially bind with bacteria and the active motion enhances lipopolysaccharide (LPS) clearance and then significantly attenuates the production of inflammatory cytokines and reactive oxide species by macrophages. Partial-thickness burn wounds were established on mice and infected with P. aeruginosa, and NM treatment almost fully destroyed the bacteria in the wounds. IO@PMB-SNO NMs absorb LPS and remove it from the wounds under a magnetic field, which downregulates the interleukin-6 and tumor necrosis factor-α levels in tissues. The infected wounds were completely healed with the deposition and arrangement of collagen fibers and the generation of skin features similar to those of normal skin. Thus, IO@PMB-SNO NMs achieved multiple-mode effects, including GSH-triggered NO release and self-propelled motion, the NO-induced non-antibiotic elimination of biofilms and bacteria, and PMB-induced endotoxin removal. This study offers a feasible strategy, with integrated antibiofilm and anti-inflammatory effects, for accelerating the healing of infected burn wounds.

RevDate: 2022-05-18

Xue R, Chu X, Yang F, et al (2022)

Imidazolium-Based Polypeptide Coating with a Synergistic Antibacterial Effect and a Biofilm-Responsive Property.

ACS macro letters, 11(3):387-393.

Surface modification with cationic polymer coatings represented an important strategy to address the medical device-related infection issues. However, limited antibacterial activities and high cytotoxicity have hampered their development. Herein, we report a facile method to enhance the surface antibacterial activity by construction of an imidazolium-based polypeptide with fosfomycin counteranions (i.e., S4-PIL-FS). The polypeptide coating displayed a synergistic antibacterial effect from the combination of membrane disruption and inhibition of initial cell wall synthesis, leading to higher in vitro and in vivo surface antibacterial activities than cationic polypeptide or fosfomycin sodium alone. S4-PIL-FS also showed a decrease in the hemolytic ratio and cytotoxicity toward different mammalian cells. Moreover, we observed an interesting biofilm-responsive property of S4-PIL-FS originating from the esterase-induced cleavages of side-chain ester bonds that enabled an antibiofilm property of the cationic polypeptide coating.

RevDate: 2022-05-16

Ribeiro Almeida JC, Merces Bega JM, Leite LS, et al (2022)

Membrane Aerated Biofilm Reactor in Recirculating Aquaculture System for Effluent Treatment.

Environmental technology [Epub ahead of print].

The implementation of fish farming has been increasing worldwide over the last decades, as well the search for alternative production systems and the treatment of their generated effluent. Recirculating Aquaculture System (RAS) is a compact solution for future intensive fish farming. However, few configurations of treatment technologies were tested in RAS, such as systems with a Membrane Aerated Biofilm Reactor (MABR). In this scene, this study aimed to evaluate the RAS effluent treatment efficiency device for intensive Nile tilapia (Oreochromis niloticus) production, the fish species most cultivated worldwide. The novel RAS configuration was composed of a cultivation tank (CT), a Column Settler, and a MABR. The RAS performance was evaluated by pH, temperature, turbidity, dissolved oxygen (DO), total nitrogen (TN), ammonia, nitrite, nitrate, total solids (TS), and chemical oxygen demand (COD). The obtained results in average values for temperature, pH, and DO inside the CT were 25.22 ± 1.88 °C, 7.61 ± 0.33, and 3.80 ± 1.30 mg L-1, respectively, as ideal for tilapias survival. Average removal efficiencies found in the RAS for turbidity, COD, TN, nitrite, nitrate, ammonia, and TS were 50.0, 40.5, 11.7, 40.2, 13.1, 35.0, and 11.4%, respectively. Overall, we observed removals for all parameters studied, with good results, particularly, for COD, turbidity, nitrite, and ammonia. The evaluated system proved an effective alternative for water reuse in RAS capable of maintaining water quality characteristics within the recommended values for fish farming.

RevDate: 2022-05-18

Cho JY, Liu R, A Hsiao (2022)

Microbiota-Associated Biofilm Regulation Leads to Vibrio cholerae Resistance Against Intestinal Environmental Stress.

Frontiers in cellular and infection microbiology, 12:861677.

The commensal microbes of the gut microbiota make important contributions to host defense against gastrointestinal pathogens, including Vibrio cholerae, the etiologic agent of cholera. As interindividual microbiota variation drives individual differences in infection susceptibility, we examined both host and V. cholerae gene expression during infection of suckling mice transplanted with different model human commensal communities, including an infection-susceptible configuration representing communities damaged by recurrent diarrhea and malnutrition in cholera endemic areas and a representative infection-resistant microbiota characteristic of healthy individuals. In comparison to colonization of animals with resistant microbiota, animals bearing susceptible microbiota challenged with V. cholerae downregulate genes associated with generation of reactive oxygen/nitrogen stress, while V. cholerae in these animals upregulates biofilm-associated genes. We show that V. cholerae in susceptible microbe infection contexts are more resistant to oxidative stress and inhibitory bile metabolites generated by the action of commensal microbes and that both phenotypes are dependent on biofilm-associated genes, including vpsL. We also show that susceptible and infection-resistant microbes drive different bile acid compositions in vivo by the action of bile salt hydrolase enzymes. Taken together, these findings provide a better understanding of how the microbiota uses multiple mechanisms to modulate the infection-associated host environment encountered by V. cholerae, leading to commensal-dependent differences in infection susceptibility.

RevDate: 2022-05-18

Ommen P, Hansen L, Hansen BK, et al (2022)

Aptamer-Targeted Drug Delivery for Staphylococcus aureus Biofilm.

Frontiers in cellular and infection microbiology, 12:814340.

Treatment of Staphylococcus aureus biofilm infections using conventional antibiotic therapy is challenging as only doses that are sublethal to the biofilm can be administered safely to patients. A potential solution to this challenge is targeted drug delivery. In this study, we tailored an aptamer-targeted liposomal drug delivery system for accumulation and delivery of antibiotics locally in S. aureus biofilm. In our search for a suitable targeting ligand, we identified six DNA aptamers that bound to S. aureus cells in biofilms, and we demonstrated that one of these aptamers could facilitate accumulation of liposomes around S. aureus cells inside the biofilm. Aptamer-targeted liposomes encapsulating a combination of vancomycin and rifampicin were able to eradicate S. aureus biofilm upon 24 h of treatment in vitro. Our results point to that aptamer-targeted drug delivery of antibiotics is a potential new strategy for treatment of S. aureus biofilm infections.

RevDate: 2022-05-16

Sun H, Chan Y, Li X, et al (2022)

Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: In vivo sequencing-based pilot study in beagle dogs.

Materials today. Bio, 15:100275 pii:S2590-0064(22)00073-4.

Peri-implantitis, the major cause of implant failure, is an inflammatory destructive disease due to the dysbiotic polymicrobial communities at the peri-implant sites. Therefore, it is highly warranted to develop the implant materials with antimicrobial properties and investigate their effects on oral microbiota. However, most of the relevant studies were performed in vitro, and insufficient to provide the comprehensive assessment of the antimicrobial capacity of the implant materials in vivo. Herein, we introduce an innovative approach to evaluate the in vivo antibacterial properties of the most commonly used implant materials, titanium with different nanostructured surfaces, and investigate their antibacterial mechanism via the next-generation sequencing (NGS) technology. We firstly prepared the titanium implants with three different surfaces, i) mechanical polishing (MP), ii) TiO2 nanotubes (NT) and iii) nanophase calcium phosphate embedded to TiO2 nanotubes (NTN), and then characterized them using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM) and surface hydrophilicity analysis. Afterwards, the implants were placed in the beagle dogs' mouths to replace the pre-extracted premolar and molar teeth for eight weeks through implant surgery. The supra- and sub-mucosal plaques were collected and subjected to 16S rRNA gene/RNA sequencing and data analysis. It was found that the nanostructured surfaces in NT and NTN groups showed significantly increased roughness and decreased water contact angles compared to the MP group, while the XPS data further confirmed the successful modifications of TiO2 nanotubes and the subsequent deposition of nanophase calcium phosphate. Notably, the nanostructured surfaces in NT and NTN groups had limited impact on the diversity and community structure of oral microbiota according to the 16S rRNA sequencing results, and the nanostructures in NTN group could down-regulate the genes associated with localization and locomotion based on Gene Ontology (GO) terms enrichment analysis. Moreover, the differentially expressed genes (DEGs) were associated with microbial metabolism, protein synthesis and bacterial invasion of epithelial cells. Taken together, this study provides a new strategy to evaluate the antibacterial properties of the biomedical materials in vivo via the high-throughput sequencing and bioinformatic approaches, revealing the differences of the composition and functional gene expressions in the supra- and sub-mucosal microbiome.

RevDate: 2022-05-16

Li RJ, Qin C, Huang GR, et al (2022)

Phillygenin Inhibits Helicobacter pylori by Preventing Biofilm Formation and Inducing ATP Leakage.

Frontiers in microbiology, 13:863624.

With the widespread use and abuse of antibiotics, Helicobacter pylori (H. pylori) has become seriously drug resistant. The development of new antibiotics is an important way to solve H. pylori's drug resistance. Screening antibacterial ingredients from natural products is a convenient way to develop new antibiotics. Phillygenin, an effective antibacterial component, was selected from the natural product, forsythia, in this study. Its minimal inhibitory concentration (MIC) for 18 H. pylori strains was 16-32 μg/ml. The minimum bactericidal concentration (MBC) of H. pylori G27 was 128 μg/ml; the higher the drug concentration and the longer the time, the better the sterilization effect. It was non-toxic to gastric epithelial cell (GES)-1 and BGC823 cells at the concentration of 100 μg/ml. It presented a better antibacterial effect on H. pylori in an acidic environment, and after 24 days of induction on H. pylori with 1/4 MIC of phillygenin, no change was found in the MIC of H. pylori. In the mechanism of action, phillygenin could cause ATP leakage and inhibit the biofilm formation; the latter was associated with the regulation of spoT and Hp1174 genes. In addition, phillygenin could regulate the genes of Nhac, caggamma, MATE, MdoB, flagellinA, and lptB, leading to the weakening of H. pylori's acid resistance and virulence, the diminishing of H. pylori's capacity for drug efflux, H. pylori's DNA methylation, the initiation of human immune response, and the ATP leakage of H. pylori, thus accelerating the death of H. pylori. In conclusion, phillygenin was a main ingredient inhibiting H. pylori in Forsythia suspensa, with a good antibacterial activity, high safety, strong specificity, better antibacterial effect under acidic conditions, and low risk of resistance development by H. pylori. Its mechanism of action was mainly associated with inhibiting the biofilm formation and resulting in ATP leakage. In addition, phillygenin was shown to be able to reduce the acid resistance and virulence of H. pylori.

RevDate: 2022-05-16

Demir B, Taylor A, Broughton RM, et al (2022)

N-halamine surface coating for mitigation of biofilm and microbial contamination in water systems for space travel.

Biofilm, 4:100076 pii:S2590-2075(22)00010-7.

A copolymer termed HASL produced from monomeric units of 2-acrylamido-2-methyl-1-(5-methylhydantoinyl)propane (HA) and of 3-(trimethoxysilyl)propyl methacrylate (SL) has been coated onto stainless steel and Inconel™ substrates, which upon halogenation with either aqueous oxidative chlorine or bromine, became antimicrobial. It has been demonstrated that the halogenated stainless steel and Inconel™ substrates were effective in producing 6 to 7 log inactivations of Staphylococcus aureus and Escherichia coli O157:H7 within about 10 min, and in prevention of Pseudomonas aeruginosa biofilm formation over a period of at least 72 h on the stainless steel substrates. Upon loss of halogen, the HASL coating could be re-charged with aqueous halogen. The HASL coating was easily applied to the substrates via a simple dip-coating method and was reasonably stable to contact with water. Both chlorinated substrates could be loaded with at least 6 × 1016 oxidative Cl atoms per cm2 and maintained a loading of greater than 1 × 1016 chlorine atoms per cm2 for a period of 3-7 days while agitated in aqueous solution. After loss of chlorine to a level below 1 × 1016 atoms per cm2, the substrates could be recharged to the 6 × 1016 Cl atoms per cm2 level for at least 5 times over a 28 day period. The new antimicrobial coating technology has potential for use in a variety of important applications, particularly for water treatment and storage on spacecraft.

RevDate: 2022-05-16

Fortune GT, Oliveira NM, RE Goldstein (2022)

Biofilm Growth under Elastic Confinement.

Physical review letters, 128(17):178102.

Bacteria often form surface-bound communities, embedded in a self-produced extracellular matrix, called biofilms. Quantitative studies of bioflim growth have typically focused on unconfined expansion above solid or semisolid surfaces, leading to exponential radial growth. This geometry does not accurately reflect the natural or biomedical contexts in which biofilms grow in confined spaces. Here, we consider one of the simplest confined geometries: a biofilm growing laterally in the space between a solid surface and an overlying elastic sheet. A poroelastic framework is utilized to derive the radial growth rate of the biofilm; it reveals an additional self-similar expansion regime, governed by the Poisson's ratio of the matrix, leading to a finite maximum radius, consistent with our experimental observations of growing Bacillus subtilis biofilms confined by polydimethylsiloxane.

RevDate: 2022-05-18

Rana MS, SK Prajapati (2022)

Mixotrophic microalgal-biofilm reactor augmenting biomass and biofuel productivity.

Bioresource technology, 356:127306 pii:S0960-8524(22)00635-6 [Epub ahead of print].

The present work aimed to evaluate the mixotrophic growth of Chlorella pyrenoidosa in a microalgal-biofilm reactor (MBR) using waste glycerol as an organic carbon source. The biomass productivity of C. pyrenoidosa (10.14 g m-2 d-1) under the mixotrophic mode was remarkably higher than that observed during the phototrophic mode (4.16 g m-2 d-1), under similar incubation conditions. The hydraulic retention time (HRT) of 6 d was found optimal for the higher productivity of microalgae in the MBR. Notably, based on biofuel quality, mixotrophically grown microalgal biomass was noted to have better suitability for biomethane production compared to biodiesel. Besides, up to 98.09, 75.74, and 55.86% removal of phosphate, nitrate, and COD, respectively, was recorded within 6 d under mixotrophic growth. Overall, the present findings magnificently demonstrate the efficient recycling of waste glycerol for higher biomass production coupled with phycoremediation using mixotrophic MBR.

RevDate: 2022-05-19

Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, et al (2022)

Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates.

International journal of food microbiology, 373:109712 pii:S0168-1605(22)00184-2 [Epub ahead of print].

Various species of the genus Arcobacter are regarded as emerging food pathogens and can be cause of human gastroenteric illness, among others. In order to gain knowledge on the risk associated with the presence of arcobacters in retail foods, this study aimed to determine their presence in a variety of products; to evaluate the genetic diversity and the occurrence of virulence and biofilm-associated genes in the isolated strains; and to assess their biofilm activity on polystyrene, borosilicate and stainless steel. Arcobacters were detected in the 22.3% of the analysed samples and the 83 recovered isolates were identified as A. butzleri (n = 53), A. cryaerophilus (n = 24), A. skirrowii (n = 2), A. thereius (n = 3) and A. vitoriensis (n = 1). They were isolated from virtually all tested food types, but mostly from squids and turkey meat (contamination levels of 60% and 40%, respectively). MLST differentiated 68 STs, most of which were novel (89.7%) and represented by a single strain (86.9%). Five novel STs were detected in various isolates derived from seafood, and the statistical analysis revealed their potential association with that type of food product (p < 0,001). All the isolates except one harboured virulence-associated genes and the highest incidence was noted for A. butzleri. Nineteen isolates (23.5%) were able to form biofilms on the different surfaces tested and, of note; glass enhanced the adhesion ability of the majority of them (84.2%). The results highlight the role that common food products can have in the transmission of Arcobacter spp., the pathogenic potential of the different species, and the survival and growth ability of several of them on different food contact surfaces. Therefore, the study provides interesting information regarding the risk arcobacters may pose to human health and the food industry.

RevDate: 2022-05-17

Gamal El-Din MI, Youssef FS, Altyar AE, et al (2022)

GC/MS Analyses of the Essential Oils Obtained from Different Jatropha Species, Their Discrimination Using Chemometric Analysis and Assessment of Their Antibacterial and Anti-Biofilm Activities.

Plants (Basel, Switzerland), 11(9):.

The essential oils of Jatropha intigrimma, J. roseae and J. gossypifolia (Euphorbiaceae) were analyzed employing GC/MS (Gas Chromatography coupled with Mass Spectrometry) analyses. A total of 95 volatile constituents were identified from J. intigrimma, J. gossypifolia and J. roseae essential oils, accounting for 91.61, 90.12, and 86.24%, respectively. Chemometric analysis using principal component analysis (PCA) based on the obtained GC data revealed the formation of three discriminant clusters due to the placement of the three Jatropha species in three different quadrants, highlighting the dissimilarity between them. Heneicosane, phytol, nonacosane, silphiperfol-6-ene, copaborneol, hexatriacontane, octadecamethyl-cyclononasiloxane, 9,12,15-Octadecatrienoic acid, methyl ester and methyl linoleate constitute the key markers for their differentiation. In vitro antibacterial activities of the essential oils were investigated at doses of 10 mg/mL against the Gram-negative anaerobe Escherichia coli using the agar well diffusion method and broth microdilution test. J. gossypifolia essential oil showed the most potent antimicrobial activity, demonstrating the largest inhibition zone (11.90 mm) and the least minimum inhibitory concentration (2.50 mg/mL), followed by the essential oil of J. intigrimma. The essential oils were evaluated for their anti-adhesion properties against the Gram-negative E. coli biofilm using a modified method of biofilm inhibition spectrophotometric assay. J. intigrimma essential oil showed the most potent biofilm inhibitory activity, demonstrating the least minimum biofilm inhibitory concentration (MBIC) of 31.25 µg/mL. In silico molecular docking performed within the active center of E. coli adhesion protein FimH showed that heneicosane, followed by cubebol and methyl linoleate, displayed the best fitting score. Thus, it can be concluded that the essential oils of J. gossypifolia and J. intigrimma leaves represent promising sources for antibacterial drugs with antibiofilm potential.

RevDate: 2022-05-17

Xue M, Fu D, Hu J, et al (2022)

The Transcription Regulator YgeK Affects Biofilm Formation and Environmental Stress Resistance in Avian Pathogenic Escherichia coli.

Animals : an open access journal from MDPI, 12(9):.

Avian pathogenic Escherichia coli (APEC) is one of the most common pathogens in poultry and a potential gene source of human extraintestinal pathogenic E. coli (ExPEC), leading to serious economic losses in the poultry industry and public health concerns. Exploring the pathogenic mechanisms underpinning APEC and the identification of new targets for disease prevention and treatment are warranted. YgeK is a transcriptional regulator in APEC and is localized to the type III secretion system 2 of E. coli. In our previous work, the transcription factor ygeK significantly affected APEC flagella formation, bacterial motility, serum sensitivity, adhesion, and virulence. To further explore ygeK functions, we evaluated its influence on APEC biofilm formation and resistance to environmental stress. Our results showed that ygeK inactivation decreased biofilm formation and reduced bacterial resistance to environmental stresses, including acid and oxidative stress. In addition, the multi-level regulation of ygeK in APEC was analyzed using proteomics, and associations between differentially expressed proteins and the key targets of ygeK were investigated. Overall, we identified ygeK's new function in APEC. These have led us to better understand the transcriptional regulatory ygeK and provide new clues about the pathogenicity of APEC.

RevDate: 2022-05-16

Li Y, Dong R, Ma L, et al (2022)

Combined Anti-Biofilm Enzymes Strengthen the Eradicate Effect of Vibrio parahaemolyticus Biofilm: Mechanism on cpsA-J Expression and Application on Different Carriers.

Foods (Basel, Switzerland), 11(9):.

Vibrio parahaemolyticus is a human foodborne pathogen, and it can form a mature biofilm on food and food contact surfaces to enhance their resistance to antibacterial agents. In this study, the effect of anti-biofilm enzymes (combined lipase, cellulase and proteinase K) on the inhibition and eradication of pathogen biofilm was evaluated. The biofilm content of V. parahaemolyticus showed the highest level at the incubation time of 24 h, and the combined enzymes significantly inhibited the biofilm's development. The biofilm's inhibition and eradication rate at an incubation time of 24 h was 89.7% and 66.9%, respectively. The confocal laser scanning microscopic images confirmed that the microcolonies' aggregation and the adhesion of biofilm were inhibited with the combined enzyme treatment. Furthermore, combined enzymes also decreased the concentration of exopolysaccharide (EPS) and disrupted the EPS matrix network, wherein the expression of the EPS-related gene, cpsA-J, was likewise suppressed. The combined enzymes showed an excellent inhibition effect of V. parahaemolyticus biofilm on different carriers, with the highest inhibition rate of 59.35% on nonrust steel plate. This study demonstrates that the combined enzyme of lipase, cellulase and proteinase K could be a novel candidate to overcome biofilm's problem of foodborne pathogens in the food industry.

RevDate: 2022-05-16

Yi Z, J Xie (2022)

Genomic Analysis of Two Representative Strains of Shewanella putrefaciens Isolated from Bigeye Tuna: Biofilm and Spoilage-Associated Behavior.

Foods (Basel, Switzerland), 11(9):.

Shewanella putrefaciens can cause the spoilage of seafood and shorten its shelf life. In this study, both strains of S. putrefaciens (YZ08 and YZ-J) isolated from spoiled bigeye tuna were subjected to in-depth phenotypic and genotypic characterization to better understand their roles in seafood spoilage. The complete genome sequences of strains YZ08 and YZ-J were reported. Unique genes of the two S. putrefaciens strains were identified by pan-genomic analysis. In vitro experiments revealed that YZ08 and YZ-J could adapt to various environmental stresses, including cold-shock temperature, pH, NaCl, and nutrient stresses. YZ08 was better at adapting to NaCl stress, and its genome possessed more NaCl stress-related genes compared with the YZ-J strain. YZ-J was a higher biofilm and exopolysaccharide producer than YZ08 at 4 and 30 °C, while YZ08 showed greater motility and enhanced capacity for biogenic amine metabolism, trimethylamine metabolism, and sulfur metabolism compared with YZ-J at both temperatures. That YZ08 produced low biofilm and exopolysaccharide contents and displayed high motility may be associated with the presence of more a greater number of genes encoding chemotaxis-related proteins (cheX) and low expression of the bpfA operon. This study provided novel molecular targets for the development of new antiseptic antisepsis strategies.

RevDate: 2022-05-16

Shi J, Li SF, Feng K, et al (2022)

Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat.

Foods (Basel, Switzerland), 11(9):.

For improving probiotics' survivability under harsh conditions, this study used Lactiplantibacillus plantarum GIM1.648 as a model microorganism to investigate its ability to produce biofilms on electrospun ethyl cellulose nanofiber mats. SEM observations confirmed that biofilm was successfully formed on the nanofibers, with the latter being an excellent scaffold material. The optimal cultivation conditions for biofilm formation were MRS medium without Tween 80, a culture time of 36 h, a temperature of 30 °C, a pH of 6.5, and an inoculum concentration of 1% (v/v). The sessile cells in the biofilm exhibited improved gastrointestinal and thermal tolerance compared to the planktonic cells. Additionally, the RT-qPCR assay indicated that the luxS gene played a crucial role in biofilm formation, with its relative expression level being 8.7-fold higher compared to the planktonic cells. In conclusion, biofilm formation on electrospun nanofiber mat has great potential for improving the viability of probiotic cells under harsh conditions.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Gómez-Alonso IS, Martínez-García S, Betanzos-Cabrera G, et al (2022)

Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates.

International journal of molecular sciences, 23(9):.

Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA-, icaD- genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.

RevDate: 2022-05-17

Yehia FAA, Yousef N, M Askoura (2022)

Correction: Celastrol mitigates staphyloxanthin biosynthesis and biofilm formation in Staphylococcus aureus via targeting key regulators of virulence; in vitro and in vivo approach.

BMC microbiology, 22(1):130.

RevDate: 2022-05-13

Li A, Shi C, Qian S, et al (2022)

Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability.

Microbial pathogenesis pii:S0882-4010(22)00187-5 [Epub ahead of print].

Vibrio parahaemolyticus (V. parahaemolyticus) is a common pathogen in seafood. The use of antibiotics is a primary tool to prevent and control V. parahaemolyticus in the aquaculture industry. However, V. parahaemolyticus combats the damage caused by antibiotics by forming biofilms under certain conditions. In this study, we analyzed the antibacterial effect and the characteristics of V. parahaemolyticus by experimentally determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) values of a combination of the Litsea cubeba essential oil (LCEO) and several commonly used V. parahaemolyticus antibiotics. The bactericidal effect of the essential oil alone and essential oil in combination with the antibiotics were evaluated with time-kill curves. The damage to cell membranes and cell walls were assessed by measuring the content of macromolecules and alkaline phosphatase (AKP) released into the supernatant using V. parahaemolyticus ATCC17802 as the experimental strain. The membrane structure was observed by transmission electron microscopy. The results showed that the MIC value of the LCEO was 1,024 μg/mL, and the LCEO FICI values in combination with tetracycline or oxytetracycline hydrochloride was 0.3125 and 0.75, respectively, indicating synergistic and additive effects. Moreover, LCEO inhibited the growth and promoted the removal of biofilms by reducing the content of hydrophobic and extracellular polysaccharides on the cell surface. This study provides a reference for studying the antibacterial activity of LCEO and the combination of antibiotics to prevent and control the formation of biofilms by V. parahaemolyticus.

RevDate: 2022-05-18

Wang YR, Li KW, Wang YX, et al (2022)

Nutrient limitation regulates the properties of extracellular electron transfer and hydraulic shear resistance of electroactive biofilm.

Environmental research, 212(Pt C):113408 pii:S0013-9351(22)00735-6 [Epub ahead of print].

Understanding the roles of nutrient restriction in extracellular electron transfer (EET) and stability of mixed electroactive biofilm is essential in pollutant degradation and bioenergy production. However, the relevant studies are still limited so far. Herein, the effect of nutrient restriction on the EET pathways and stability of mixed electroactive biofilm was explored. It was found that the electroactive Pseudomonas and Geobacter genera were selectively enriched in the biofilms cultured under total nutrient and P-constrained conditions, and two EET pathways including direct and indirect were found, while Rhodopseudomonas genus was enriched in the N-constrained biofilm, which only had the direct EET pathway. Moreover, multiple analyses including 2D confocal Raman spectra revealed that P-constrained biofilm was rich in extracellular polymeric substances (EPS) especially for polysaccharide, presented a dense and uniform layered distribution, and had better stability than N-constrained biofilm with lower EPS and biofilm with heterostructures cultured under total nutrient conditions.

RevDate: 2022-05-15

Zulkifli M, Abu Hasan H, Sheikh Abdullah SR, et al (2022)

A review of ammonia removal using a biofilm-based reactor and its challenges.

Journal of environmental management, 315:115162 pii:S0301-4797(22)00735-6 [Epub ahead of print].

Extensive growth of industries leads to uncontrolled ammonia releases to environment. This can result in significant degradation of the aquatic ecology as well as significant health concerns for humans. Knowing the mechanism of ammonia elimination is the simplest approach to comprehending it. Ammonia has been commonly converted to less hazardous substances either in the form of nitrate or nitrogen gas. Ammonia has been converted into nitrite by ammonia-oxidizing bacteria and further reduced to nitrate by nitrite-oxidizing bacteria in aerobic conditions. Denitrification takes place in an anoxic phase and nitrate is converted into nitrogen gas. It is challenging to remove ammonia by employing technologies that do not incur particularly high costs. Thus, this review paper is focused on biofilm reactors that utilize the nitrification process. Many research publications and patents on biofilm wastewater treatment have been published. However, only a tiny percentage of these projects are for full-scale applications, and the majority of the work was completed within the last few decades. The physicochemical approaches such as ammonia adsorption, coagulation-flocculation, and membrane separation, as well as conventional biological treatments including activated sludge, microalgae, and bacteria biofilm, are briefly addressed in this review paper. The effectiveness of biofilm reactors in removing ammonia was compared, and the microbes that effectively remove ammonia were thoroughly discussed. Overall, biofilm reactors can remove up to 99.7% ammonia from streams with a concentration in range of 16-900 mg/L. As many challenges were identified for ammonia removal using biofilm at a commercial scale, this study offers future perspectives on how to address the most pressing biofilm issues. This review may also improve our understanding of biofilm technologies for the removal of ammonia as well as polishing unit in wastewater treatment plants for the water reuse and recycling, supporting the circular economy concept.

RevDate: 2022-05-16

Ganesh PS, Veena K, Senthil R, et al (2022)

Biofilm-Associated Agr and Sar Quorum Sensing Systems of Staphylococcus aureus Are Inhibited by 3-Hydroxybenzoic Acid Derived from Illicium verum.

ACS omega, 7(17):14653-14665.

Biofilm-producing Staphylococcus aureus (S. aureus) is less sensitive to conventional antibiotics than free-living planktonic cells. Here, we evaluated the antibiofilm activity of Illicium verum (I. verum) and one of its constituent compounds 3-hydroxybenzoic acid (3-HBA) against multi-drug-resistant S. aureus. We performed gas chromatography-mass spectroscopy (GC-MS) to identify the major constituents in the methanolic extract of I. verum. Ligand-receptor interactions were studied by molecular docking, and in vitro investigations were performed using crystal violet assay, spreading assay, hemolysis, proteolytic activity, and growth curve analysis. The methanolic extract of I. verum inhibited S. aureus at 4.8 mg/mL, and GC-MS analysis revealed anethole, m-methoxybenzaldehyde, and 3-HBA as the major constituents. Molecular docking attributed the antibiofilm activity to an active ligand present in 3-HBA, which strongly interacted with the active site residues of AgrA and SarA of S. aureus. At a subinhibitory concentration of 2.4 mg/mL, the extract showed biofilm inhibition. Similarly, 3-HBA inhibited biofilm activity at 25 μg/mL (90.34%), 12.5 μg/mL (77.21%), and 6.25 μg/mL (62.69%) concentrations. Marked attrition in bacterial spreading was observed at 2.4 mg/mL (crude extract) and 25 μg/mL (3-HBA) concentrations. The methanol extract of I. verum and 3-HBA markedly inhibited β-hemolytic and proteolytic activities of S. aureus. At the lowest concentration, the I. verum extract (2.4 mg/mL) and 3-HBA (25 μg/mL) did not inhibit bacterial growth. Optical microscopy and SEM analysis confirmed that I. verum and 3-HBA significantly reduced biofilm dispersion without disturbing bacterial growth. Together, we found that the antibiofilm activity of I. verum and 3-HBA strongly targeted the Agr and Sar systems of S. aureus.

RevDate: 2022-05-13

Saptami K, Arokia Balaya Rex D, Chandrasekaran J, et al (2022)

Competitive interaction of thymol with cviR inhibits quorum sensing and associated biofilm formation in Chromobacterium violaceum.

International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].

Biofilm formation associated with quorum sensing (QS) is a community behaviour displayed by many gram-negative pathogenic bacteria that provide survival advantages in hostile conditions. The inhibitors of QS interrupt bacterial communication and coordinated cell signalling for community aggregation in the biofilm. Thymol, a natural monoterpenoid, was tested against QS in Chromobacterium violaceum. As the first step, the interaction of thymol with cviR protein was investigated using in silico approach followed by validation using detailed in vitro experiments. The QS and biofilm studies were performed using the wild type of strain C. violaceum ATCC 12,472 and a mini-Tn5 mutant CV026. The MIC of thymol was established by the broth micro-dilution method, and IC50 value for violacein inhibition was quantified spectrophotometrically by extracting the violacein from the treated cells. Inhibitory effect of thymol on the biofilm was quantified by the crystal violet staining method, and scanning electron microscopy (SEM) was employed for biofilm visualization. The expression of biofilm associated genes (hmsH, hmsR, pilB, and pilT) was evaluated by qRT-PCR analysis. The in silico molecular interactions of thymol with cviR exhibited a G-score of - 5.847 kcal/mol, binding with TYR-80 and SER-155 by Pi-Pi stacking and H-bond, respectively. The MIC of thymol was 160 µg/mL, and the IC50 for violacein inhibition was estimated to be 28 µg/mL. The thymol treatment significantly reduced the biofilm viability and biomass by > 80% along with disruption of the well-organized biofilm architecture. QS inhibitory activity of thymol resulted in the reduction of exopolysaccharide production, swarming motility, and downregulation of biofilm-associated hmsH, hmsR, pilB, and pilT genes. This data establishes the QS inhibitory role of thymol in the biofilm formation in C. violaceum.

RevDate: 2022-05-13

Song Y, Wang Z, Long Y, et al (2022)

2-Alkyl-anthraquinones inhibit Candida albicans biofilm via inhibiting the formation of matrix and hyphae.

Research in microbiology pii:S0923-2508(22)00036-5 [Epub ahead of print].

Candida albicans can form biofilm on biotic and abiotic surfaces of medical implants to cause superficial and systemic infections under specific condition. The formation of hyphae and matrix of C. albicans are considered as probable virulence factors. We assessed the inhibitory activities of 26 anthraquinones against C. albicans biofilm formation, which were substituted by different functional groups including hydroxyl groups, amino groups, carboxyl groups, alkyl groups, and glycoside groups at C1- or C2-position. Among them, anthraquinones without substituents at other positions but only an alkyl group attached to C2-position, namely 2-alkyl-anthraquinones were determined to have significant anti-biofilm activities. Furthermore, 2-ethylanthraquinone can significantly affect genes related to extracellular matrix (PMT6 and IFD6), and hyphal formation (HWP1, ECE1 and EFG1), leading to the disrupted formation of biofilm, by detail transcriptomics analysis. We believed that 2-ethylanthraquinone could inspire more discoveries of anti-biofilm agents against C. albicans.

RevDate: 2022-05-18

Giedraitiene A, Pereckaite L, Bredelyte-Gruodiene E, et al (2022)

CTX-M-producing Escherichia coli strains: resistance to temocillin, fosfomycin, nitrofurantoin and biofilm formation.

Future microbiology [Epub ahead of print].

Aim: ESBL-producing and bacterial biofilms-forming Escherichia coli are associated with antimicrobial treatment failure. This study aimed to investigate the phenotypic resistance mechanisms of CTX-M E. coli against old antibiotics - cell wall synthesis inhibitors temocillin, nitrofurantoin and fosfomycin. Materials & Methods: Susceptibility to old antibiotics testing was performed using disk diffusion method, biofilm formation was evaluated spectrophotometrically, and PCR was used for the determination of CTX-M type. Results & conclusion: Temocillin was active against nearly 93%, nitrofurantoin and fosfomycin, respectively, 91.7% and 98.6% of tested E. coli. Thus, it demonstrated to be a good alternative therapeutic option against ESBL infections. Bacteria resistant to old antibiotics had CTX-M-15 or CTX-M-15, TEM-1 and OXA-1 combinations. No significant association was found between CTX-M E. coli resistance to temocillin, nitrofurantoin and fosfomycin; however, the level of biofilm formation was found as not affected by the type of CTX-M β-lactamases.

RevDate: 2022-05-16

Yang R, Lai B, Liao K, et al (2022)

Overexpression of BIT33_RS14560 Enhances the Biofilm Formation and Virulence of Acinetobacter baumannii.

Frontiers in microbiology, 13:867770.

Acinetobacter baumannii, a strictly aerobic, non-lactose fermented Gram-negative bacteria, is one of the important pathogens of nosocomial infection. Major facilitator superfamily (MFS) transporter membrane proteins are a class of proteins that widely exists in microbial genomes and have been revealed to be related to biofilm formation in a variety of microorganisms. However, as one of the MFS transporter membrane proteins, little is known about the role of BIT33_RS14560 in A. baumannii. To explore the effects of BIT33_RS14560 on biofilm formation of A. baumannii, the biofilm formation abilities of 62 isolates were firstly investigated and compared with their transcript levels of BIT33_RS14560. Then, this specific gene was over-expressed in a standard A. baumannii strain (ATCC 19606) and two isolates of extensively drug-resistant A. baumannii (XDR-Ab). Bacterial virulence was observed using a Galleria mellonella infection model. High-throughput transcriptome sequencing (RNA seq) was performed on ATCC 19606 over-expressed strain and its corresponding empty plasmid control strain. Spearman's correlation analysis indicated a significant negative correlation (R = -0.569, p = 0.000) between the △CT levels of BIT33_RS1456 and biofilm grading of A. baumannii isolates. The amount of A. baumannii biofilm was relatively high within 12-48 h. Regardless of standard or clinical strains; the biofilm biomass in the BIT33_RS14560 overexpression group was significantly higher than that in the control group (p < 0.0001). Kaplan-Meier survival curve analysis showed that the mortality of G. mellonella was significantly higher when infected with the BIT33_RS14560 overexpression strain (χ2 = 8.462, p = 0.004). RNA-Seq showed that the mRNA expression levels of three genes annotated as OprD family outer membrane porin, glycosyltransferase family 39 protein, and glycosyltransferase family 2 protein, which were related to bacterial adhesion, biofilm formation, and virulence, were significantly upregulated when BIT33_RS14560 was over-expressed. Our findings provided new insights in identifying potential drug targets for the inhibition of biofilm formation. We also developed a practical method to construct an over-expressed vector that can stably replicate in XDR-Ab isolates.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Mohammadi Mollaahmadi C, Anzabi Y, J Shayegh (2021)

Comparison of the Frequency of Biofilm-Forming Genes (icaABCD) in Methicillin-Resistant S. aureus Strains Isolated from Human and Livestock.

Archives of Razi Institute, 76(6):1655-1663.

Methicillin-resistant Staphylococcus aureus (MRSA) can cause infections in both human and animal groups, which is a serious threat to public health worldwide. Attachment and colonization are the first steps for S. aureus pathogenesis, and biofilm-mediated infections have a significant negative impact on human and animal health. The MRSA can adapt to different environments and give rise to different strains of human and animal MRSA, causing transmissions of the disease between humans and animals. This study aimed to investigate biofilm production in vitro, and the presence of icaABCD genes in MRSA isolates in both human as well as the disease transmission between human and animal strains. In total, 39 human and 35 livestock isolates were evaluated by the Congo Red Agar method. The presence of mecA and icaABCDR genes were assessed by polymerase chain reaction (PCR), and finally, the PCR products were examined by agarose gel electrophoresis. The results showed that the mecA gene frequency in human and animal isolates was 64.1% and 36.1%, respectively, and there was a significant relationship between mecA and icaAD in human isolates. In addition, significant relationships were found between icaA and Rifampicin and also between icaC and Chloramphenicol and Penicillin in human isolates. In animal isolates, there was a significant relationship between mecA and Trimethoprim as well as between icaR and Rifampicin. It was concluded that all operon ica genes were involved in biofilm production, but icaA and icaD genes in MRSA were more closely associated with mecA. Both animal and human strains can be involved in disease transmission, but this conclusion should be made cautiously.

RevDate: 2022-05-17

Yılmaz Öztürk B, Yenice Gürsu B, İ Dağ (2022)

In vitro effect of farnesol on planktonic cells and dual biofilm formed by Candida albicans and Escherichia coli.

Biofouling [Epub ahead of print].

Many biofilm studies have focused on axial biofilms, however biofilms in nature and in vivo environment are multi-species. Farnesol is a sesquiterpene alcohol found in many essential oils. This study investigated the in vitro effects of farnesol on planktonic cells and biofilms of Candida albicans and Escherichia coli. The ultrastructural morphology of farnesol treated cells was evaluated by TEM. According to the XTT results, farnesol caused a significant decrease in metabolic activity and scanning electron microscope images confirmed a reduction in the preformed biofilm as a result of farnesol treatment for single species C. albicans and E. coli biofilms. Although farnesol has less effect on dual species biofilm compared to the single species biofilms, its effect on the dual biofilm was found to be stronger than amphotericin B or ampicillin. Further studies are needed to clarify the role of farnesol on fungal-bacterial biofilms.

RevDate: 2022-05-11

Vidal JM, Ruiz P, Carrasco C, et al (2022)

Piscirickettsia salmonis forms a biofilm on nylon surface using a CDC Biofilm Reactor.

Journal of fish diseases [Epub ahead of print].

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.

RevDate: 2022-05-14
CmpDate: 2022-05-12

Pourhajibagher M, Alaeddini M, Etemad-Moghadam S, et al (2022)

Quorum quenching of Streptococcus mutans via the nano-quercetin-based antimicrobial photodynamic therapy as a potential target for cariogenic biofilm.

BMC microbiology, 22(1):125.

BACKGROUND: Quorum sensing (QS) system can regulate the expression of virulence factors and biofilm formation in Streptococcus mutans. Antimicrobial photodynamic therapy (aPDT) inhibits quorum quenching (QQ), and can be used to prevent microbial biofilm. We thereby aimed to evaluate the anti-biofilm potency and anti-metabolic activity of nano-quercetin (N-QCT)-mediated aPDT against S. mutans. Also, in silico evaluation of the inhibitory effect of N-QCT on the competence-stimulating peptide (CSP) of S. mutans was performed to elucidate the impact of aPDT on various QS-regulated genes.

METHODS: Cytotoxicity and intracellular reactive oxygen species (ROS) generation were assessed following synthesis and confirmation of N-QCT. Subsequently, the minimum biofilm inhibitory concentration (MBIC) of N-QCT against S. mutans and anti-biofilm effects of aPDT were assessed using colorimetric assay and plate counting. Molecular modeling and docking analysis were performed to confirm the connection of QCT to CSP. The metabolic activity of S. mutans and the expression level of various genes involved in QS were evaluated by flow cytometry and reverse transcription quantitative real-time PCR, respectively.

RESULTS: Successful synthesis of non-toxic N-QCT was confirmed through several characterization tests. The MBIC value of N-QCT against S. mutans was 128 μg/mL. Similar to the crystal violet staining, the results log10 CFU/mL showed a significant degradation of preformed biofilms in the group treated with aPDT compared to the control group (P < 0.05). Following aPDT, metabolic activity of S. mutans also decreased by 85.7% (1/2 × MBIC of N-QCT) and 77.3% (1/4 × MBIC of N-QCT), as compared to the control values (P < 0.05). In silico analysis showed that the QCT molecule was located in the site formed by polypeptide helices of CSP. The relative expression levels of the virulence genes were significantly decreased in the presence of N-QCT-mediated aPDT (P < 0.05).

CONCLUSIONS: The combination of N-QCT with blue laser as a QQ-strategy leads to maximum ROS generation, disrupts the microbial biofilm of S. mutans, reduces metabolic activity, and downregulates the expression of genes involved in the QS pathway by targeting genes of the QS signaling system of S. mutans.

RevDate: 2022-05-10

He Y, Pang J, Yang Z, et al (2022)

Toluidine blue O-induced photoinactivation inhibit the biofilm formation of methicillin-resistant Staphylococcus aureus.

Photodiagnosis and photodynamic therapy pii:S1572-1000(22)00188-0 [Epub ahead of print].

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is increasingly resistant to conventional antimicrobial therapies, representing high morbidity and mortality. Photodynamic antimicrobial chemotherapy (PACT) is one method that combines visible harmless light with the optimum wavelength with photosensitizers or dyes, producing singlet oxygen (1O2) and reactive oxygen strains (ROS), making permanent damages to the target cells. The purpose of this research is to evaluate the suppression efficacy of toluidine blue O (TBO)-mediated PACT on mature MRSA biofilm in vitro.

METHODS: In this study, the 48 hours mature biofilm of the multidrug-resistant Staphylococcus aureus strain MRSA252 was used. The photodynamic therapy (PDT) group was treated with different concentrations of TBO (0.5, 0.75,1.0 or 1.25 µM) and different doses of red light (635 ± 5 nm wavelength; 30 or 50 J/cm2). The biofilms viability after PDT were evaluated by crystal violet (CV) staining assay and {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetra-zolium hydroxide} (XTT) assay; meanwhile, the morphological changes were detected by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), separately. Moreover, the biofilms virulence was evaluated by red blood cell (RBC) hemolysis assay and staphylococcal virulence factor enterotoxins A (SEA) detected by enzyme linked immunosorbent assay (ELISA). After PDT, the biofilm was re-cultured for extra 48 h. Its formation viability and virulence were detected again. All data were analyzed by ANOVAs followed by the Games Howell post hoc test (α = 0.05).

RESULTS: The biofilm was inactivated about 2.3 log10 at 1.25 µM with 30 J/cm2 illumination, and 3.5 log10 with 50 J/cm2 after PDT (P<0.05). XTT assays demonstrated the viability of mature MRSA biofilms was reduced after PACT. PDT group shows a distinct reduction in RBC hemolysis rate and the concentration of SEA compared to the control groups. The morphological features of the biofilms showed great changes, such as shrinkage, fissure, fragmentation, and rarefaction after being treated by TBO-PDT and observed by SEM. The recovery of the structure and virulence of biofilm were suppressed after PDT.

CONCLUSION: TBO-mediated PDT could destroy the biofilm structure, reduce its virulence and depress its self-recovery.

RevDate: 2022-05-10

Jiang M, Zhang Y, Zheng J, et al (2022)

Mechanistic insights into CO2 pressure regulating microbial competition in a hydrogen-based membrane biofilm reactor for denitrification.

Chemosphere pii:S0045-6535(22)01368-6 [Epub ahead of print].

CO2 is a proven pH regulator in hydrogen-based membrane biofilm reactor (H2-MBfR) but how its pressure regulates microbial competition in this system remains unclear. This work evaluates the CO2 pressure dependent system performance, CO2 allocation, microbial structure and activity of CO2 source H2-MBfR. The optimum system performance was reached at the CO2 pressure of 0.008 MPa, and this pressure enabled 0.18 g C/(m2·d) of dissolved inorganic carbon (DIC) allocated to denitrifying bacteria (DNB) for carbon source anabolism and denitrification-related proton compensation, while inducing a bulk liquid pH (pH 7.4) in favor of DNB activity by remaining 0.21 g C/(m2·d) of DIC as pH buffer. Increasing CO2 pressure from 0.008 to 0.016 MPa caused the markedly changed DNB composition, and the diminished DNB population was accompanied by the enrichment of sulfate-reducing bacteria (SRB). A high CO2 pressure of 0.016 MPa was estimated to induce the enhanced SRB activity and weakened DNB activity.

RevDate: 2022-05-18

Yang M, Özdemir Z, Kim H, et al (2022)

Acid-Responsive Nanoporphyrin Evolution for Near-Infrared Fluorescence-Guided Photo-Ablation of Biofilm.

Advanced healthcare materials [Epub ahead of print].

Combating biofilm infections remains a challenge due to the shield and acidic conditions. Herein, an acid-responsive nanoporphyrin (PN3-NP) based on the self-assembly of a water-soluble porphyrin derivative (PN3) is constructed. Additional kinetic control sites formed by the conjugation of the spermine molecules to a porphyrin macrocycle make PN3 self-assemble into stable nanoparticles (PN3-NP) in the physiological environment. Noteworthily, near-infrared (NIR) fluorescence monitoring and synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) effects of PN3-NP can be triggered by the acidity in biofilms, accompanied by intelligent transformation into dot-like nanospheres. Thus, damage to normal tissue is effectively avoided and accurate diagnosis and treatment of biofilms is achieved successfully. The good results of fluorescence imaging-guided photo-ablation of antibiotic-resistant strains methicillin-resistant Staphylococcus aureus (MRSA) biofilms verify that PN3-NP is a promising alternative to antibiotics. Meanwhile, this strategy also opens new horizons to engineer smart nano-photosensitizer for accurate diagnosis and treatment of biofilms.

RevDate: 2022-05-10

Savorana G, Słomka J, Stocker R, et al (2022)

A microfluidic platform for characterizing the structure and rheology of biofilm streamers.

Soft matter [Epub ahead of print].

Biofilm formation is the most successful survival strategy for bacterial communities. In the biofilm lifestyle, bacteria embed themselves in a self-secreted matrix of extracellular polymeric substances (EPS), which acts as a shield against mechanical and chemical insults. When ambient flow is present, this viscoelastic scaffold can take a streamlined shape, forming biofilm filaments suspended in flow, called streamers. Streamers significantly disrupt the fluid flow by causing rapid clogging and affect transport in aquatic environments. Despite their relevance, the structural and rheological characterization of biofilm streamers is still at an early stage. In this work, we present a microfluidic platform that allows the reproducible growth of biofilm streamers in controlled physico-chemical conditions and the characterization of their biochemical composition, morphology, and rheology in situ. We employed isolated micropillars as nucleation sites for the growth of single biofilm streamers under the continuous flow of a diluted bacterial suspension. By combining fluorescent staining of the EPS components and epifluorescence microscopy, we were able to characterize the biochemical composition and morphology of the streamers. Additionally, we optimized a protocol to perform hydrodynamic stress tests in situ, by inducing controlled variations of the fluid shear stress exerted on the streamers by the flow. Thus, the reproducibility of the formation process and the testing protocol make it possible to perform several consistent experimental replicates that provide statistically significant information. By allowing the systematic investigation of the role of biochemical composition on the structure and rheology of streamers, this platform will advance our understanding of biofilm formation.

RevDate: 2022-05-14
CmpDate: 2022-05-11

Momenijavid M, Salimizand H, Korani A, et al (2022)

Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm.

Scientific reports, 12(1):7595.

Calcium hydroxide Ca(OH)2 has been used as an intracanal medicament to targets microbial biofilms and avert secondary infection in the root canal system. This study evaluated the effects of this material on the morphology and physicochemical properties of an established in-vitro biofilm of Enterococcus faecalis. A biofilm of E. faecalis was grown in multichannel plates. The chemicals including Ca2+, OH-, and saturated Ca(OH)2 (ie 21.6 mM) were prepared in order to evaluate which component eradicated or amplified biofilm structure. Various biochemical and microscopic methods were used to investigate the properties of the biofilm. Biofilms treated with Ca(OH)2 absorbed more Ca2+ because of the alkaline pH of the environment and the ions affected the physicochemical properties of the E. faecalis biofilm. A denser biofilm with more cavities and a granular surface was observed in the presence of Ca2+ ions. This resulted in a decrease in the surface-to-biofilm ratio with increases in its biomass, thickness, colony size, and volume. Calcium hydroxide did not destroy E. faecalis biofilms but rather contributed to the biofilm structure. This in-vitro study sheds light on a missing link in the formation of E. faecalis biofilm in which the Ca2+ in Ca(OH)2.

RevDate: 2022-05-11
CmpDate: 2022-05-11

Doucet AN, Slipski CJ, Golding GR, et al (2022)

Generation of Greater Bacterial Biofilm Biomass using PCR-Plate Deep Well Microplate Devices.

Journal of visualized experiments : JoVE.

Bacterial biofilms are difficult to eradicate from surfaces using conventional antimicrobial interventions. High-throughput 96-well microplate methods are frequently used to cultivate bacterial biofilms for rapid antimicrobial susceptibility testing to calculate minimal biofilm eradication concentration (MBEC) values. Standard biofilm devices consist of polystyrene pegged-lids fitted to 96-well microplates and are ideal for measuring biofilm biomass and MBEC values, but these devices are limited by available peg surface area for biomass accumulation and cost. Here, we outline a protocol to use self-assembled polypropylene 96-well deep well PCR-plate pegged-lid device to grow Escherichia coli BW25113 and Pseudomonas aeruginosa PAO1 biofilms. A comparison of 24-hour biofilms formed on standard and deep well devices by each species using crystal violet biomass staining and MBEC determination assays are described. The larger surface area of deep well devices expectedly increased overall biofilm formation by both species 2-4-fold. P. aeruginosa formed significantly greater biomass/mm2 on deep well pegs as compared to the standard device. E. coli had greater biomass/mm2 on standard polystyrene devices as compared the deep well device. Biofilm eradication assays with disinfectants such as sodium hypochlorite (bleach) or benzalkonium chloride (BZK) showed that both compounds could eliminate E. coli and P. aeruginosa biofilms from both devices but at different MBEC values. BZK biofilm eradication resulted in variable E. coli MBEC values between devices, however, bleach demonstrated reproducible MBEC values for both species and devices. This study provides a high throughput deep well method for growing larger quantities of biofilms on polypropylene devices for downstream studies requiring higher amounts of static biofilm.

RevDate: 2022-05-11
CmpDate: 2022-05-11

Buckingham-Meyer K, Miller LA, Parker AE, et al (2022)

Harvesting and Disaggregation: An Overlooked Step in Biofilm Methods Research.

Journal of visualized experiments : JoVE.

Biofilm methods consist of four distinct steps: growing the biofilm in a relevant model, treating the mature biofilm, harvesting the biofilm from the surface and disaggregating the clumps, and analyzing the sample. Of the four steps, harvesting and disaggregation are the least studied but nonetheless critical when considering the potential for test bias. This article demonstrates commonly used harvesting and disaggregation techniques for biofilm grown on three different surfaces. The three biofilm harvesting and disaggregation techniques, gleaned from an extensive literature review, include vortexing and sonication, scraping and homogenization, and scraping, vortexing and sonication. Two surface types are considered: hard non-porous (polycarbonate and borosilicate glass) and porous (silicone). Additionally, we provide recommendations for the minimum information that should be included when reporting the harvesting technique followed and an accompanying method to check for bias.

RevDate: 2022-05-10

Mekky AF, Hassanein WA, Reda FM, et al (2022)

Anti-biofilm potential of Lactobacillus plantarum Y3 culture and its cell-free supernatant against multidrug-resistant uropathogen Escherichia coli U12.

Saudi journal of biological sciences, 29(4):2989-2997.

Uropathogens develop biofilms on urinary catheters, resulting in persistent and chronic infections that are associated with resistance to antimicrobial therapy. Therefore, the current study was performed to control biofilm-associated urinary tract infections through assaying the anti-biofilm ability of lactic acid bacteria (LAB) against multidrug-resistant (MDR) uropathogens. Twenty LAB were obtained from pickles and fermented dairy products, and screened for their anti-biofilm and antimicrobial effects against MDR Escherichia coli U12 (ECU12). Lactobacillus plantarum Y3 (LPY3) (MT498405), showed the highest inhibitory effect and biofilm production. Pre-coating of a microtitre plate with LPY3 culture was more potent than co-incubation. Pre-coating with LPY3 culture generated a higher anti-biofilm effect with an adherence of 14.5% than cell free supernatant (CFS) (31.2%). Anti-biofilm effect of CFS was heat stable up to 100 °C with higher effect at pH 4-6. Pre-coating urinary catheter with LPY3 culture reduced the CFU/cm2 of ECU12 attached to the catheter for up to seven days. Meanwhile, CFS reduced the ECU12 CFU/cm2 for up to four days. Scanning electron microscope confirmed the reduction of ECU12 adherence to catheters after treatment with CFS. Therefore, Lactobacillus plantarum can be applied in medical devices as prophylactic agent and as a natural biointervention to treat urinary tract infections.

RevDate: 2022-05-08

Joshi KM, Shelar A, Kasabe U, et al (2021)

Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles.

Materials science & engineering. C, Materials for biological applications pii:S0928-4931(21)00732-3 [Epub ahead of print].

The present study demonstrates lignin (L), fragments of lignin (FL), and oxidized fragmented lignin (OFL) as templates for the synthesis of zinc oxide nanoparticles (ZnO NPs) viz., lignin-ZnO (L-ZnO), hierarchical FL-ZnO, and OFL-ZnO NPs. The X-ray diffraction patterns confirmed the formation of phase pure ZnO NPs with a hexagonal wurtzite structure. Electron microscopy confirmed the hierarchical structures with one-dimensional arrays of ZnO NPs with an average particle diameter of 40 nm. The as-synthesized L-ZnO, FL-ZnO, and OFL-ZnO NPs were tested in-vitro for growth and virulence inhibition (morphogenesis and biofilm) in Candida albicans. L-ZnO, FL-ZnO, and OFL-ZnO NPs all inhibited growth and virulence. Growth and virulence inhibitions were highest (more than 90%, respectively at 125, 31.2, and 62.5 μg/mL) in presence of FL-ZnO NPs, indicating that the hierarchical FL-ZnO NPs were potent growth and virulence inhibiting agent than non-hierarchical ZnO NPs. Furthermore, the real-time polymerase chain (RT-PCR) was used to study the virulence inhibition molecular mechanisms of L-ZnO, FL-ZnO, and OFL-ZnO NPs. RT-PCR results showed that the downregulation of phr1, phr2, efg1, hwp1, ras1, als3 and als4, and the upregulation of bcy1, nrg1, and tup1 genes inhibited the virulence in C. albicans. Lastly, we also performed in-vitro test cell cytotoxicity on the cell line, mouse embryo 3T3L1, and in-vivo toxicity on Rats, which showed that FL-ZnO NPs were biocompatible and nontoxic.

RevDate: 2022-05-08

Choi JH, Jung EH, Leea ES, et al (2022)

Anti-biofilm activity of chlorhexidine-releasing elastomerics against dental microcosm biofilms.

Journal of dentistry pii:S0300-5712(22)00209-3 [Epub ahead of print].

OBJECTIVE: To evaluate the anti-biofilm activity of chlorhexidine-releasing elastomerics (CRE) developed to prevent biofilm-related diseases in orthodontic patients, using dental microcosm biofilms.

METHODS: Elastomerics coated with one of two solutions (CRE 1 and 2) were attached to bovine enamel specimens. Uncoated elastomerics were used for negative (distilled water [DW]) and positive (0.1% chlorhexidine [CHX]) control groups. After saliva inoculation on the surface of the specimen for biofilm formation, DW and CRE groups were treated with DW, and the positive control group was treated with CHX twice a day for 5 min. After 7 days of biofilm formation, colony-forming units (CFUs, total and aciduric bacteria), red/green (R/G) ratio, biofilm thickness, live/dead cell ratio, and bacterial morphology in the biofilms were evaluated. Enamel demineralization was evaluated by fluorescence loss (ΔF).

RESULTS: The CFUs of total and aciduric bacteria and R/G ratios in the CRE groups were significantly lower than those in the DW group with a reduction by 13%, 13%, and 19%, respectively (p < 0.05). The CFUs of total bacteria was significantly lower in the CRE groups than in the CHX group (p < 0.05). Among the CRE groups, only CRE 1 exhibited a significantly reduced biofilm thickness of 54% compared to the DW group (p < 0.05) and apparent changes in bacterial morphology. ΔF in the CRE groups was significantly higher by 36% compared to that in the DW group (p < 0.05).

CONCLUSIONS: CREs exhibited anti-biofilm and demineralization-inhibiting efficacy. Particularly, CRE 1 using dichloromethane as the solvent was most effective against biofilms.

CLINICAL SIGNIFICANCE: Chlorhexidine-releasing elastomerics exhibited increased anti-biofilm and demineralization-inhibiting efficacy compared to 0.1% chlorhexidine mouthwash. Therefore, it is possible to prevent biofilm-related diseases simply and effectively by applying chlorhexidine-releasing elastomerics to orthodontic patients.

RevDate: 2022-05-17

Ball AL, Augenstein ED, Wienclaw TM, et al (2022)

Characterization of Staphylococcus aureus biofilms via crystal violet binding and biochemical composition assays of isolates from hospitals, raw meat, and biofilm-associated gene mutants.

Microbial pathogenesis, 167:105554 pii:S0882-4010(22)00167-X [Epub ahead of print].

Staphylococcus aureus (SA) is a gram-positive coccus and an opportunistic pathogen of humans. The ability of SA to form biofilms is an important virulence mechanism because biofilms are protected from host immune responses and antibiotic treatment. This study examines the relative biofilm strength of a variety of hospital and meat-associated strains of SA, using a crystal violet (CV) staining assay. Biofilms were treated with either DNase or proteinase K prior to CV staining, and compared to mock-treated results, to better understand the biochemical composition. Biofilm polysaccharide concentration was also measured using the phenol sulfuric-acid assay which was normalized to base biofilm strength. We found that hospital-associated isolates have biofilms that bind significantly more CV than for meat isolates and are significantly more protein and polysaccharide-based while meat isolates have significantly more DNA-based biofilms. This study also investigates the effects that biofilm-related genes have on biofilm formation and composition by analyzing specific transposon mutants of genes previously shown to play a role in biofilm development. agrA, atl, clfA, fnbA, purH, and sarA mutants produce significantly weaker biofilms (bind less CV) as compared to a wild-type control, whereas the acnA mutant produces a significantly stronger biofilm. Biofilms formed from these mutant strains were treated (or mock-treated) with DNase or proteinase K and tested with phenol and sulfuric acid to determine what role these genes play in biofilm composition. The acnA, clfA, fnbA, and purH mutants showed significant reduction in biofilm staining after either proteinase K or DNase treatment, agrA and sarA mutants showed significant biofilm reduction after only proteinase K treatment, and an atl mutant did not show significant biofilm reduction after either proteinase K or DNase treatment. These data suggest that biofilms that form without acnA, clfA, fnbA, and purH are DNA- and protein-based, that biofilms lacking agrA and sarA are mainly protein-based, and biofilms lacking atl are mainly polysaccharide-based. These results help to elucidate how these genes affect biofilm formation and demonstrate how mutating biofilm-related genes in SA can cause a change in biofilm composition.

RevDate: 2022-05-12

Sorensen HH, Magnussen RA, DiBartola AC, et al (2022)

Influence of Staphylococcus epidermidis Biofilm on the Mechanical Strength of Soft Tissue Allograft.

Journal of orthopaedic research : official publication of the Orthopaedic Research Society [Epub ahead of print].

We sought to determine the impact of bacterial inoculation and length of exposure on the mechanical integrity of soft tissue tendon grafts. Cultures of S. epidermidis were inoculated on human tibialis posterior (TP) cadaveric tendon to grow biofilms. A low inoculum in 10% growth medium was incubated for 30 minutes to replicate conditions of clinical infection. Growth conditions assessed included inoculum concentrations of 100, 1000, 10000 CFU. Tests using the MTS Bionix system were performed to assess the influence of bacterial biofilms on tendon strength. Load-to-failure testing was performed on the tendons, and the ultimate tensile strength was obtained from the maximal force and the cross-sectional area. Displacements of tendon origin to maximal displacement were normalized to tendon length to obtain strain values. Tendon force-displacement and stress-strain relationships were calculated, and Young's modulus was determined. Elastic modulus and ultimate tensile strength decreased with increasing bioburden. Young's modulus was greater in uninoculated controls compared to tendons inoculated at 10,000 CFU (p=0.0011) but unaffected by bacterial concentrations of 100 and 1,000 CFU (p=0.054, p=0.078). Increasing bioburden was associated with decreased peak load to failure (p=0.043) but was most significant compared to the control under the 10,000 CFU and 1,000 CFU growth conditions (p=0.0005, p=0.049). Presence of S. epidermidis increased elasticity and decreased ultimate tensile stress of human cadaveric tendons, with increasing effect noted with increasing bioburden. This article is protected by copyright. All rights reserved.

RevDate: 2022-05-12
CmpDate: 2022-05-10

Bakht M, Alizadeh SA, Rahimi S, et al (2022)

Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran.

BMC microbiology, 22(1):124.

BACKGROUND: Pseudomonas aeruginosa is a common pathogen in Hospitalized patients, and its various resistance mechanisms contribute to patient morbidity and mortality. The main aims of the present study were to assess the susceptibility of biofilm-producing and non-producing P. aeruginosa isolates to the five commonly used Hospital disinfectants, to evaluate the synergistic effect of selected disinfectants and Ethylene-diamine-tetra acetic acid (EDTA), and the effect of exposure to sub-inhibitory concentrations of Sodium hypochlorite on antimicrobial susceptibility test.

RESULTS: The results showed that sodium hypochlorite 5% and Ethanol 70% were the most and least effective disinfectants against P. aeruginosa, respectively. The addition of EDTA significantly increased the effectiveness of the selected disinfectants. The changes in the antibiotic-resistance profiles after exposure to sub-inhibitory concentrations of disinfectants were observed for different classes of antibiotics (Carbapenems, Aminoglycosides, Cephalosporins, Fluoroquinolones). As well as near the all isolates harbored efflux pump genes and 117 (97.5%) of isolates produced biofilm.

CONCLUSION: In the current study, the mixture of disinfectant and EDTA were the most suitable selection to disinfect Hospital surfaces and instruments. Also, it was clear that exposure to sub-inhibitory concentrations of Sodium hypochlorite results in resistance to some antibiotics in P. aeruginosa species. Strong and intermediate biofilm formers belonged to MDR/XDR strains. Future studies should include more complex microbial communities residing in the Hospitals, and more disinfectants use in Hospitals.

RevDate: 2022-05-07

Yu Y, Zhao Y, He Y, et al (2022)

Inhibition of efflux pump encoding genes and biofilm formation by sub-lethal photodynamic therapy in methicillin susceptible and resistant Staphylococcus aureus.

Photodiagnosis and photodynamic therapy pii:S1572-1000(22)00186-7 [Epub ahead of print].

BACKGROUND: Photodynamic therapy (PDT) is an effective method to inactivate microorganisms based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors.

METHODS: Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR.

RESULTS: Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 μM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded.

CONCLUSIONS: TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.

RevDate: 2022-05-07

Chen B, Zhou S, Zhang N, et al (2022)

Micro and nano bubbles promoted biofilm formation with strengthen of COD and TN removal synchronously in a blackened and odorous water.

The Science of the total environment pii:S0048-9697(22)02674-2 [Epub ahead of print].

Blackening and odorization of rivers (BOR) distributed widely in urban cities with high density of human beings. Amounts of pollution control methods have been developed for treatment of these contaminated rivers. Among them, artificial aeration is an effective method for BOR treatment. As a novel developed aeration approach, Micro and nano bubbles (MNBs) takes advances of high specific surface area, high oxygen transfer, long retain time and interface effect. Thus, MNBs aeration was used in an anoxic-oxic (AO) process with traditional activated sludge methods to treat water of BOR in this study. A special designed reactor was made to allow both MNBs and macro bubbles aeration of which mode could be altered easily. The results revealed that MNBs improved removal of COD, NH4+-N and TN distinctly in water of BOR. MNBs provided high dissolved oxygen and promoted the transformation from floc sludge to biofilm. Significant difference between the microbial community of MNBs and macro bubbles sludges was revealed by 16S rRNA amplicon sequencing. Function predictions of MNBs and macro bubbles sludges indicated MNBs enhanced nitrification and aerobic ammonia oxidation without negative impact on denitrification. Moreover, biofilm formed bacteria were enriched by MNBs aeration. This study demonstrated MNBs would be a great potential for the combination of activated sludge and biofilm to treat BOR.

RevDate: 2022-05-16

Zhai S, Cheng H, Wang Q, et al (2022)

Reinforcement of denitrification in a biofilm electrode reactor with immobilized polypyrrole/anthraquinone-2,6-disulfonate composite cathode.

Journal of environmental management, 315:115203 pii:S0301-4797(22)00776-9 [Epub ahead of print].

In biofilm electrode reactors (BER), good nitrate removal performance can be achieved through cooperation of heterotrophic and hydrogen autotrophic denitrification under low carbon/nitrogen conditions. In this study, we proposed a more multifunctional composite cathode, which combine immobilized anthraquinone-2,6-disulphonic disodium salt (AQDS) with polypyrrole (PPy) by electrochemical polymerization-doping method. The nitrate removal performance in BER with PPy/AQDS composite cathode was obviously improved, the nitrate removal rate (4.96 mg/L·h) was almost 2.0 times higher than the control BER system, and relatively stabled nitrate removal efficiency (≥90.0%) was also achieved even as the COD/N of 2.50. Compared with the bare graphite felt, PPy/AQDS coating cathode showed much better electrocatalytic activities, which was more advantageous for in situ production of H2 to support hydrogen autotrophic denitrification process. The PPy-bound AQDS could also act as electron intermediaries, which is beneficial to greatly promote indirect electron process between the denitrifiers and nitrate. Moreover, the PPy/AQDS composite layer formed many particles for improving the specific surface area and bio-attachment site for bacterial attachment, which was conducive for the proliferation of microorganisms and denitrification efficiency. The ratio of biofilm and electrode of PPy/AQDS biocathode was 0.32 ± 0.08, which was 2.46 times than bare electrode (0.13 ± 0.06). Furthermore, enrichment of specific denitrifiers and enhancement of denitrifying enzyme activity was obtained using PPy/AQDS treated electrode, the much higher relative abundance of Thauera of PPy/AQDS biocathode was 1.58 times to the application of bare graphite felt.

RevDate: 2022-05-07

Gu M, Jiang S, Xu X, et al (2022)

Simultaneous Photodynamic Eradication of Tooth Biofilm and Tooth Whitening with an Aggregation-Induced Emission Luminogen.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Dental caries is among the most prevalent dental diseases globally, which arises from the formation of microbial biofilm on teeth. Besides, tooth whitening represents one of the fastest-growing areas of cosmetic dentistry. It will thus be great if tooth biofilm eradication can be combined with tooth whitening. Herein, a highly efficient photodynamic dental therapy strategy is reported for tooth biofilm eradication and tooth discoloration by employing a photosensitizer (DTTPB) with aggregation-induced emission characteristics. DTTPB can efficiently inactivate S. mutans, and inhibit biofilm formation by suppressing the expression of genes associated with extracellular polymeric substance synthesis, bacterial adhesion, and superoxide reduction. Its inhibition performance can be further enhanced through combined treatment with chlorhexidine. Besides, DTTPB exhibits an excellent tooth-discoloration effect on both colored saliva-coated hydroxyapatite and clinical teeth, with short treatment time (less than 1 h), better tooth-whitening performance than 30% hydrogen peroxide, and almost no damage to the teeth. DTTPB also demonstrates excellent biocompatibility with neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications for simultaneous tooth biofilm eradication and tooth whitening in clinical dentistry.

RevDate: 2022-05-13

Matthes R, Jablonowski L, Pitchika V, et al (2022)

Efficiency of biofilm removal by combination of water jet and cold plasma: an in-vitro study.

BMC oral health, 22(1):157.

BACKGROUND: Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices.

METHODS: We compared the efficiency of a single treatment with a WJ or curette and cotton swab (CC) without or with adjunctive use of CAP (WJ + CAP, CC + CAP) to remove biofilm in vitro from rough titanium discs. Treatment efficacy was evaluated by measuring turbidity up to 72 h for bacterial re-growth or spreading of osteoblast-like cells (MG-63) after 5 days with scanning electron microscopy. With respect to application safety, the WJ and CAP instruments were examined according to basic regulations for medical devices.

RESULTS: After 96 h of incubation all WJ and CC treated disks were turbid but 67% of WJ + CAP and 46% CC + CAP treated specimens were still clear. The increase in turbidity after WJ treatment was delayed by about 20 h compared to CC treatment. In combination with CAP the cell coverage significantly increased to 82% (WJ + CAP) or 72% (CC + CAP), compared to single treatment 11% (WJ) or 10% (CC).

CONCLUSION: The newly developed water jet device effectively removes biofilm from rough titanium surfaces in vitro and, in combination with the new CAP device, biologically acceptable surfaces allow osteoblasts to grow. WJ in combination with CAP leads to cleaner surfaces than the usage of curette and cotton swabs with or without subsequent plasma treatment. Our next step will be a clinical pilot study with these new devices to assess the clinical healing process.

RevDate: 2022-05-06

Ma CJ, He Y, Jin X, et al (2021)

Light-regulated nitric oxide release from hydrogel-forming microneedles integrated with graphene oxide for biofilm-infected-wound healing.

Materials science & engineering. C, Materials for biological applications pii:S0928-4931(21)00695-0 [Epub ahead of print].

Nitric oxide (NO) is an antimicrobial agent that possesses tissue-regenerating ability. However, it also has a short half-life and storage difficulties as disadvantages to its application. To overcome these limitations, a new type of hydrogel-forming microneedle (HFMN) is proposed that can be fabricated by integrating polyvinyl alcohol (PVA) hydrogels (a highly biocompatible drug carrier) with S-nitrosoglutathione (GSNO, a NO releasing agent), and graphene oxide (GO) at freezing temperatures (GO-GNSO-HFMNs). Results show that GSNO-GO-HFMNs release NO gradually with increasing temperature and, more importantly, can be warmed up by mild infrared irradiation to accelerate subcutaneous release of NO from the heat-sensitive GSNO. Biofilm-infected wounds often present obstacles to drug delivery, whereas the microneedle (MN) structure disrupts the biofilm and directly releases NO into the wound. This inhibits bacterial growth and increases tissue regeneration while shortening the healing time of biofilm-infected wounds. Therefore, this type of patch can be regarded as a novel, heat-sensitive, light-regulated, NO-releasing MN patch.

RevDate: 2022-05-07

Cohen-Cymberknoh M, Kolodkin-Gal D, Keren-Paz A, et al (2022)

Calcium carbonate mineralization is essential for biofilm formation and lung colonization.

iScience, 25(5):104234.

Biofilms are differentiated microbial communities held together by an extracellular matrix. μCT X-ray revealed structured mineralized areas within biofilms of lung pathogens belonging to two distant phyla - the proteobacteria Pseudomonas aeruginosa and the actinobacteria Mycobacterium abscessus. Furthermore, calcium chelation inhibited the assembly of complex bacterial structures for both organisms with little to no effect on cell growth. The molecular mechanisms promoting calcite scaffold formation were surprisingly conserved between the two pathogens as biofilm development was similarly impaired by genetic and biochemical inhibition of calcium uptake and carbonate accumulation. Moreover, chemical inhibition and mutations targeting mineralization significantly reduced the attachment of P. aeruginosa to the lung, as well as the subsequent damage inflicted by biofilms to lung tissues, and restored their sensitivity to antibiotics. This work offers underexplored druggable targets for antibiotics to combat otherwise untreatable biofilm infections.

RevDate: 2022-05-07

Mashamba TG, Adeosun IJ, Baloyi IT, et al (2022)

Quorum sensing modulation and inhibition in biofilm forming foot ulcer pathogens by selected medicinal plants.

Heliyon, 8(4):e09303.

The crisis of antibiotic resistance necessitates the search of phytochemicals as potential antibacterial, anti-quorum sensing and antibiofilm forming agents. For the present study, fifteen (15) selected medicinal plants were evaluated to inhibit the biological activities of multi-drug resistant (MDR) pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis) associated with diabetic foot ulcer. Antibacterial activities revealed noteworthy minimum inhibitory concentration (MIC) values ≤1 mg/mL for thirteen (13) out of the sixty (60) plant extracts screened. The potent extracts included Euclea natalensis ethyl acetate (0.25 mg/mL), Aloe ferox methanol (0.5 mg/ml) and Warburgia salutaris aqueous (0.5 mg/mL) extracts. Chemical profiling of the active extracts using gas chromatography-mass spectrometry (GC-MS) identified neophytadiene, guanosine, squalene, cis megastigma-5,8-diene-4-one and sorbitol as prevalent compounds among the active extracts. Anti-quorum sensing activities of E. natalensis (ethyl acetate), A. ferox (methanol) and W. salutaris (aqueous) extracts ranged from 4.81 - 58.34% with E. natalensis (ethyl-acetate) showing the highest activity. Molecular docking against CviR protein showed selected compounds having high docking scores with sorbitol showing the highest score of -7.04 kcal/mol. Warburgia salutaris aqueous extract exhibited the highest biofilm inhibition (73%) against E. coli. Euclea natalensis, Aloe ferox and Warburgia salutaris compounds act as antagonist of N-acyl homoserine lactone (AHL) signaling, thus may serve as candidates in antipathogenic and antibiofilm phytomedicine development for MDR foot ulcer bacterial pathogens.

RevDate: 2022-05-07

Huang J, Wu Z, J Xu (2022)

Effects of Biofilm Nano-Composite Drugs OMVs-MSN-5-FU on Cervical Lymph Node Metastases From Oral Squamous Cell Carcinoma.

Frontiers in oncology, 12:881910.

This work was developed to the effects of biofilm composite nano-drug delivery system (OMVs-MSN-5-FU) on lymph node metastasis from oral squamous cell carcinoma. Mesoporous silica nanoparticles loaded with 5-FU (MSN-5-FU) were prepared first. Subsequently, the outer membrane vesicles (OMV) of Escherichia coli were collected to wrap MSN-5-FU, and then OMVs-MSN-5-FU was prepared. It was then immersed in artificial gastric juice and artificial intestinal juice to explore the drug release rate. Next, the effects of different concentrations of the nano-drug delivery systems on the proliferation activity of oral squamous carcinoma cell line KOSC-2 cl3-43 were analyzed. Tumor-bearing nude mice models were prepared by injecting human tongue squamous cell carcinoma cells Tca8113 into BALB/c-nu nude mice. They were injected with the OMVs-MSN-5-FU nano drug carrier system, and peri-carcinoma tissue and cervical lymph node tissue were harvested to observe morphological changes by Hematoxylin - eosin (HE) staining. The scanning electron microscope (SEM) results showed that all MSN, MSN-5-FU, OMV, and OMV-MSN-5-FU were spherical and uniformly distributed, with particle sizes of about 60nm, 80nm, 90nm, and 140nm, respectively. Among them, OMV had a directional core-shell structure. The cumulative drug release rates of artificial gastric juice in 48 hours were 61.2 ± 2.3% and 26.5 ± 3.1%, respectively. The 48 hours cumulative drug release rates of artificial intestinal juice were 70.5 ± 6.3% and 32.1 ± 3.8%, respectively. The cumulative release of MSN-5-FU was always higher than OMV-MSN-5-FU. The cumulative release of MSN-5-FU was always higher than OMV-MSN-5-FU. After injection of OMVS-MSN-5-FU, the number of cancer cells was significantly reduced and cervical lymph node metastasis was significantly controlled. HE staining results showed that OMVS-MSN-5-FU injection reduced the number of stained cells. Dense lymphocytes were clearly observed in the cortex of neck lymphocytes. The OMVs-MSN-5-FU drug delivery system can slow down the drug release rate, significantly inhibit the proliferation activity of oral squamous cancer cells, and control the metastasis of cancer cells to cervical lymph nodes.

RevDate: 2022-05-09
CmpDate: 2022-05-09

Dietrich PM, Kjærvik M, Willneff EA, et al (2022)

In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS.

Biointerphases, 17(3):031002.

Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers.

RevDate: 2022-05-17

Li Y, Sun W, Wang Q, et al (2022)

The GntR-like transcriptional regulator HutC involved in motility, biofilm-forming ability, and virulence in Vibrio parahaemolyticus.

Microbial pathogenesis, 167:105546 pii:S0882-4010(22)00159-0 [Epub ahead of print].

As a halophilic food-borne pathogen, Vibrio parahaemolyticus continueo be a major health issue worldwide. The pathogenic mechanisms of V. parahaemolyticus are still not fully understood. One of the most abundant and widely distributed groups of helix-turn-helix transcription factors is the GntR family of regulators, which are involved in the regulation of various biological processes in bacteria, but little is known about their functions in V. parahaemolyticus. Here, we identified a gene designated as hutC in V. parahaemolyticus SH112 that encodes a member belongs to the HutC subfamily of the large GntR transcriptional regulator family. Compared to the wild type, the hutC mutant strain was significantly more sensitive to acid, bile salt, Triton X-100, and sodium dodecyl sulfate stresses. Our results showed that HutC is required for optimal swimming motility but not necessary for the swarming of V. parahaemolyticus. In addition, inactivation of hutC in V. parahaemolyticus SH112 led to decreased biofilm formation, reduced cytotoxicity in Coca-2 cells, and defective virulence in vivo compared to the wild-type strain. Furthermore, transcriptome sequencing (RNA-Seq) analysis and real-time PCR indicated 4 upregulated and 14 downregulated genes in the hutC mutant strain. Functional analysis revealed that 4 upregulated genes were related to the histidine metabolism pathway. The 14 downregulated genes were mostly related to the cellular metabolic process, binding, and membrane part. This study presents evidence that HutC is involved in bacterial survival under conditions of stress, swimming motility, biofilm formation, cytotoxicity, virulence, and gene regulation of V. parahaemolyticus during infection.

RevDate: 2022-05-05

Boncompagni SR, Micieli M, Di Maggio T, et al (2022)

Activity of fosfomycin/colistin combinations against planktonic and biofilm Gram-negative pathogens.

The Journal of antimicrobial chemotherapy pii:6580675 [Epub ahead of print].

OBJECTIVES: To investigate the in vitro activity of fosfomycin, colistin and combinations thereof against planktonic and biofilm cultures of Gram-negative pathogens, mostly showing MDR phenotypes, at concentrations achievable via inhalation of aerosolized drugs.

METHODS: Activity against planktonic cultures was tested by the chequerboard assay with 130 strains, including 52 Pseudomonas aeruginosa, 47 Klebsiella pneumoniae, 19 Escherichia coli, 7 Stenotrophomonas maltophilia and 5 Acinetobacter baumannii. Activity against biofilm cultures was tested by biofilm chequerboard and quantitative antibiofilm assays with a subset of 20 strains. In addition, 10 of these strains were tested in mutant prevention concentration (MPC) assays.

RESULTS: Against planktonic cultures, synergism between fosfomycin and colistin was detected with a minority (10%) of strains (eight K. pneumoniae and five P. aeruginosa), while antagonism was never observed. Synergism between fosfomycin and colistin against biofilms was observed with the majority of tested strains (16/20 in biofilm chequerboard assays, and 18/20 in the quantitative antibiofilm assays), including representatives of each species and regardless of their resistance genotype or phenotype. Furthermore, combination of fosfomycin and colistin was found to significantly reduce the MPC of individual drugs.

CONCLUSIONS: Fosfomycin and colistin in combination, at concentrations achievable via inhalation of nebulized drugs, showed notable synergy against MDR Gram-negative pathogens grown in biofilm, and were able to reduce the emergence of fosfomycin- and colistin-resistant subpopulations.

RevDate: 2022-05-18
CmpDate: 2022-05-18

Jia X, Liu X, Zhu K, et al (2022)

Lysozyme regulates the extracellular polymer of activated sludge and promotes the formation of electroactive biofilm.

Bioprocess and biosystems engineering, 45(6):1065-1074.

The formation of electroactive biofilm from activated sludge on electrode surface is a key step to construct a bio-electrochemical system, yet it is greatly limited by the poor affinity between the bacteria and the electrode interface. Herein, we report a new method to promote the formation of electroactive biofilm by regulating the extracellular polymeric substance (EPS) content in activated sludge with lysozyme. The investigation of the effect of lysozyme treatment on the content of extracellular polymers and the biofilm formation of electroactive bacteria suggests that lysozyme can improve the permeability of the positive bacterial cell membrane and thus increase the EPS content in the activated sludge. The characterizations of electrochemical activity, surface morphology and community structure of the anode biofilm indicate that increasing EPS content promotes the adhesion of the mixed bacteria in the activated sludge on the electrode and results in denser biofilms with better conductivities. The microbial fuel cell (MFC) inoculated with the sludge of high EPS content exhibits the power density up to 2.195 W/m2, much higher than that inoculated with the untreated sludge (1.545 W/m2). The strategy of adjusting EPS content in activated sludge with a biological enzyme can effectively enhance the ability of the bacterial community to form biofilms and exhibits great application potentials in the construction of high efficiency bio-electrochemical systems.

RevDate: 2022-05-05

Patil JS, S D'souza (2022)

Dark survival in biofilm-forming microalgae: potential for colonizing benthic ecosystems.

FEMS microbiology ecology pii:6576764 [Epub ahead of print].

The biofilm-forming microalgae are known to experience periods of continuous darkness (upto several days), in addition to the natural day-night cycle, especially in the intertidal sediment regions (when transported to deeper sediments) and the ships' ballast water tanks (during voyages). However, the information on community and physiological responses to different periods of darkness is limited. Here, the survival capability of biofilm-forming microalgae to varying periods of darkness (7-35 days) and the growth patterns upon resumption of normal 12h light:dark photocycle has been addressed through simulation experiments. Diatoms dominated the seawater biofilms, but the dark survival period varied and was species-specific. Of the 25 diatoms, only Amphora, potential toxin producer, followed by Navicula remained viable and photosynthetically healthy under darkness without undergoing asexual reproduction. Both diatoms are essential contributors to fouling and microphytobenthic community. Upon re-exposure of dark-adapted biofilms to 12h light:dark photocycle, the improvement in photosynthetic efficiency and resumption of growth via asexual-reproduction was observed. However, the lag-phase duration increased with a long dark history. Nevertheless, eurytolerant nature and high dark survival capability (with its quick response to light) of Amphora and Navicula indicated that they have the potential to colonize benthic-ecosystems thus impacting the benthic and fouling community.

RevDate: 2022-05-07
CmpDate: 2022-05-06

Li G, Wei Y, Guo Y, et al (2022)

Omadacycline Efficacy against Streptococcus Agalactiae Isolated in China: Correlation between Resistance and Virulence Gene and Biofilm Formation.

Computational intelligence and neuroscience, 2022:7636983.

This study aimed to evaluate the activity, resistance, clonality of MIC distribution, and the correlation between virulence and resistance genes and biofilm formation of omadacycline (OMC) in clinics for Streptococcus agalactiae isolates from China. 162 isolates were collected retrospectively in China. The S. agalactiae were collected from the body's cervical secretions, wound secretions, ear swabs, secretions, semen, venous blood, cerebrospinal fluid, pee, etc. The MIC of OMC against S. agalactiae was determined by broth microdilution. The inhibition zone diameters of OMC and other common antibiotics were measured using filter paper. D-test was performed to determine the phenotype of cross resistance between erythromycin and clindamycin. In Multilocus sequence typing (MLST), some commonly-detected resistance genes and virulence gene of these S. agalactiae isolates were investigated using polymerase chain reaction (PCR). Biofilms were detected by crystal violet staining. Our data demonstrated the correalation of the biofilm formation and OMA antimicrobial susceptibility of S.agalactiae clinical isolates with the carrier of virulence gene scpB. Conclusively, OMC exhibits the robust antimcirobial activity against clinical S. agalactiae isolates from China compared with DOX or MIN, and the carrier of the virulence gene scpB might correlate with the biofilm formation in OMC-resistant S. agalactiae.

RevDate: 2022-05-17
CmpDate: 2022-05-06

ElBaradei A, MA Yakout (2022)

Stenotrophomonas maltophilia: Genotypic Characterization of Virulence Genes and The Effect of Ascorbic Acid on Biofilm Formation.

Current microbiology, 79(6):180.

Stenotrophomonas maltophilia is an environmental bacterium that has gained a lot of attention, as a nosocomial pathogen associated with significant mortality rates. Biofilm formation is considered the corner stone for establishing infections in many bacteria including S. maltophilia. The aim of this study was the genotypic characterization of the different virulence-associated genes and the investigation of the effect of ascorbic acid on S. maltophilia biofilm formation. A total of 20 S. maltophilia isolates from different sources were included in this study. Genes encoding different virulence factors were investigated genotypically. These included stmPr1, stmPr2, smlt3773 locus, smf-1, rpfF, rmlA and spgM. Biofilm formation was investigated phenotypically. The effect of ascorbic acid on biofilm formation was investigated using MIC as well as sub-inhibitory concentrations. Many of the isolates harbored both serine proteases genes stmPr-1 and stmPr-2. Fourteen (70%) of the 20 isolates carried stmPr-1 and 15 (75%) had stmPr-2. Most of the isolates (95%) possessed smlt-3773 locus. Genes linked to biofilm formation such as smf-1, rpfF, rmlA and spgM, were found in (90%), (45%), (85%) and (30%) of the isolates, respectively. Phenotypically, all S. maltophilia isolates (100%) were biofilm producers. Fifteen (75%) were strong biofilm producers and 5 (25%) were moderate biofilm producers. In attempts to seek a non-chemotherapeutic alternative that can hinder biofilm formation without provoking antimicrobial resistance, the results, herein, showed that ascorbic acid inhibits biofilm formation in a dose-dependent manner.

RevDate: 2022-05-06
CmpDate: 2022-05-06

Keymaram M, Falahati M, Farahyar S, et al (2022)

Anti-biofilm properties of eucalyptol in combination with antifungals against Candida albicans isolates in patients with hematological malignancy.

Archives of microbiology, 204(6):295.

Oral candidiasis is a fungal infection caused mainly by Candida albicans and it is a major problem among hematologic malignancy patients. Biofilm formation is an attributable factor to both virulence and drug resistance of Candida species. The aim of the study was to evaluate the biofilm-producing ability of oral C. albicans isolates and to evaluate the inhibitory activity of eucalyptol on Candida biofilm, alone and in combination with antifungal agents. Samples were collected from the oral cavity of 106 patients with hematologic malignancy. The isolated yeasts were identified by PCR-sequencing. Then C. albicans isolates were analyzed for their biofilm-producing ability by crystal violet staining and MTT assay. The minimum biofilm inhibition concentrations (MBIC) of eucalyptol, amphotericin B, itraconazole, and nystatin and the in vitro interaction of eucalyptol with these drugs were tested according to CLSI-M-27-A3 protocol and checkerboard methods, respectively. From 106 patients, 50 (47.2%) were confirmed for oral candidiasis [mean ± SD age 39 ± 14 years; female 31 (62%) and male 19 (38%)]. C. albicans was isolated from 40 of 50 (80%) patients. From 40 C. albicans isolates, 24 (60%) and 16 (40%) were moderate and weak biofilm producer, respectively. The geometric mean MBIC of amphotericin B, itraconazole, nystatin and eucalyptol were 3.93 µg/mL, 12.55 µg/mL, 0.75 µg/mL and 798 µg/mL, respectively. Eucalyptol interacted synergistically with amphotericin B, itraconazole and nystatin against 12.5, 10, and 22.5% of isolates, respectively. Eucalyptol demonstrated promising activity against biofilm of C. albicans when tested alone or combined with antifungal drugs.

RevDate: 2022-05-19

Cao X, Yuan Y, Khodseewong S, et al (2022)

Efficient use of electrons in a double-anode microbial fuel cell-biofilm electrode reactor self-powered coupled system for degradation of azo dyes.

Chemosphere, 302:134760 pii:S0045-6535(22)01253-X [Epub ahead of print].

A coupled system consisting of a double-anode microbial fuel cell (MFC) unit and a biofilm electrode reactor (BER) has been applied to degrade the azo dye reactive brilliant red X-3B. In this system, the MFC effluent was used as the input of the BER. The MFC preliminarily degraded X-3B while generating electricity, and the BER obtained electrons from the MFC through the external circuit to continue degrading pollutants without the need for an external power supply. The X-3B removal efficiency was 41.93% higher in the coupled system than the control when the X-3B concentration was 3000 mg/L. The analysis of intermediate products showed that the azo bond of X-3B broke in the MFC, generating a large number of complex intermediates such as anthraquinones, which were further degraded into simple organic compounds in the BER. Meanwhile, the abundance of microbial taxa related to the degradation of refractory organics in the MFC was high, as was that of microbial taxa related to the degradation of simple organics in the BER. Furthermore, the abundance of microorganisms related to power generation in the MFC increased. These results provided an efficient strategy for improving electron utilization efficiency in the coupling system of bioelectrochemical system.

RevDate: 2022-05-04

Khan F (2022)

Strategies for controlling biofilm-forming microbial pathogens on biotic and abiotic surfaces.

RevDate: 2022-05-16

Mayorga-Martinez CC, Zelenka J, Klima K, et al (2022)

Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication.

ACS nano [Epub ahead of print].

Titanium dental implants are a multibillion dollar market in the United States alone. The growth of a bacterial biofilm on a dental implant can cause gingivitis, implant loss, and expensive subsequent care. Herein, we demonstrate the efficient eradication of dental biofilm on titanium dental implants via swarming magnetic microrobots based on ferromagnetic (Fe3O4) and photoactive (BiVO4) materials through polyethylenimine micelles. The ferromagnetic component serves as a propulsion force using a transversal rotating magnetic field while BiVO4 is the photoactive generator of reactive oxygen species to eradicate the biofilm colonies. Such photoactive magnetically powered, precisely navigated microrobots are able to destroy biofilm colonies on titanium implants, demonstrating their use in precision medicine.

RevDate: 2022-05-16

Cui S, Qiao J, MP Xiong (2022)

Antibacterial and Biofilm-Eradicating Activities of pH-Responsive Vesicles against Pseudomonas aeruginosa.

Molecular pharmaceutics [Epub ahead of print].

The formation of biofilms by a microcolony of bacteria is a significant burden on the healthcare industry due to difficulty eradicating it. In this study, pH-responsive vesicles capable of releasing apramycin (APR), a model aminoglycoside antibiotic, in response to the low pH typical of establishedPseudomonas aeruginosa biofilms resulted in improved eradication of existing biofilms in comparison to the free drug. The amphiphilic polymeric vesicle (PV) comprised of block polymer poly (ethylene glycol)-block-poly 2-(dimethylamino) ethyl methacrylate (mPEG-b-pDEAEMA) averaged 128 nm. The drug encapsulation content of APR in PV/APR was confirmed to be 28.2%, and the drug encapsulation efficiency was confirmed to be 51.2%. At pH 5.5, PV/APR released >90% APR after 24 h compared to <20% at pH 7.4. At pH 5.5, protonation of the pDEAEMA block results in a zeta potential of +23 mV compared to a neutral zeta potential of +2.2 mV at pH 7.4. Confocal microscopy, flow cytometry, and scanning electron microscopy reveal that the positively charged vesicles can compromise the integrity of the planktonic bacterial membrane in a pH-dependent manner. In addition, PV/APR is able to diffuse into mature biofilms to release APR in the acidic milieu of biofilm bacteria, and PV/APR was more efficient at eliminating preexisting biofilms compared to free APR at 128 and 256 μg/mL. This study reveals that dynamic charge density in response to pH can lead to differential levels of interactions with the biofilm and bacterial membrane. This effectively results in enhanced antibacterial and antibiofilm properties against both planktonic and difficult-to-treat biofilm bacteria at concentrations significantly lower than those of the free drug. Overall, this pH-responsive vesicle could be especially promising for treating biofilm-associated infectious diseases.

RevDate: 2022-05-15

Shukla SK, Manobala T, TS Rao (2022)

The role of S-layer protein (SlpA) in biofilm-formation of Deinococcus radiodurans.

Journal of applied microbiology [Epub ahead of print].

AIMS: To investigate the molecular basis of biofilm formation in a recombinant lab strain of Deinococcus radiodurans with a plasmid harbouring gfp and kanR that acquired the biofilm-forming ability.

METHODS AND RESULTS: Deinococcus radiodurans R1 is known as a nonbiofilm former bacterium and so far there are no reports on its biofilm-producing capabilities. In this study, we investigated the molecular basis of biofilm formation in a recombinant strain of D. radiodurans using classical biofilm assays, confocal laser scanning microscopy and real-time PCR. Biochemical analysis of D. radiodurans biofilm matrix revealed that it consisted predominantly of protein and carbohydrate complexes with a little amount of extracellular DNA (eDNA). Furthermore, studies showed that D. radiodurans biofilm formation was enhanced in the presence of 25 mM Ca2+ , which enhanced the exopolysaccharide and protein content in the biofilm matrix. Enzymatic treatments with proteinase K, alginate lyase and DNase I indicated the involvement of some proteinaceous components to be critical in the biofilm formation. RT-PCR studies showed that increased expression of a surface layer protein SlpA conferred the biofilm ability to D. radiodurans.

CONCLUSION: Overexpression of SlpA in D. radiodurans conferred the biofilm formation ability to the bacterium, in which a partial role was also played by the recombinant plasmid pKG. It was also shown that the presence of Ca2+ in the growth medium enhanced SlpA production, thus improving biofilm stability and biofilm maturation of D. radiodurans.

SIGNIFICANCE AND IMPACT: This study shows how biofilm formation can be augmented in D. radiodurans. The finding has implications for the development of D. radiodurans biofilm-based biotechnological applications.

RevDate: 2022-05-06
CmpDate: 2022-05-06

Abdul Azees PA, Wang H, Chen XD, et al (2022)

In vitro effect of an oral spray and mouthrinses on dual species cariogenic bacteria biofilm.

American journal of dentistry, 35(2):103-108.

PURPOSE: To determine the efficacy of an oral spray and oral rinses to inhibit oral cariogenic dual species biofilm formation on hydroxyapatite (HA) discs.

METHODS: The Streptococcus mutans (NCTC 10449, ATCC), Lactobacilli casei (NCIB 8820, ATCC) dual species biofilm formation and inhibition on HA disc was tested using five antimicrobial products, i.e., oral spray (Oral Shield), Mouthrinse (Listerine Ultra Clean, Listerine Cool Mint, Crest Pro-Health, ACT Restoring). An untreated group served as control. The established biofilm on the surface of each disc was treated or untreated with oral spray and mouthrinse for 2 minutes after 24 or 48 hours. The dual species biofilm formation and inhibition on HA discs was determined using the spread plate method and colonies were counted and expressed as colony forming units (CFU/mL). Further, the HA disc was subjected to confocal laser scanning microscope (CLSM) examination to determine the viability of cells using live-dead staining and a scanning electron microscope (SEM) to examine the effect on bacteria biofilm and morphology. The cytotoxic effect of test spray and mouthrinse was tested on OKF6/TERT-2 cells using the MTT method.

RESULTS: At each time point, 24- or 48-hours, S. mutans and L. casei mixed biofilm on HA discs had a significantly (P> 0.001) fewer number of bacteria in the treated groups than the untreated one. The oral spray and mouthrinses had a detrimental effect on bacteria biofilm, morphology and cell wall, whereas no significant changes were observed in the untreated group. Cytotoxic assay revealed that the oral spray was safe for human oral keratinocyte cells.

CLINICAL SIGNIFICANCE: The tested oral spray could offer potential to inhibit the cariogenic bacteria and protect the tooth enamel from cariogenic bacterial biofilm.

RevDate: 2022-05-07

Visperas A, Santana D, Ju M, et al (2022)

Standardized quantification of biofilm in a novel rabbit model of periprosthetic joint infection.

Journal of bone and joint infection, 7(2):91-99.

Periprosthetic joint infection (PJI) is one of the most devastating complications of total joint arthroplasty. The underlying pathogenesis involves the formation of bacterial biofilm that protects the pathogen from the host immune response and antibiotics, making eradication difficult. The aim of this study was to develop a rabbit model of knee PJI that would allow reliable biofilm quantification and permit the study of treatments for PJI. In this work, New Zealand white rabbits (n = 19) underwent knee joint arthrotomy, titanium tibial implant insertion, and inoculation with Xen36 (bioluminescent Staphylococcus aureus) or a saline control after capsule closure. Biofilm was quantified via scanning electron microscopy (SEM) of the tibial explant 14 d after inoculation (n = 3 noninfected, n = 2 infected). Rabbits underwent debridement, antibiotics, and implant retention (DAIR) (n = 6) or sham surgery (n = 2 noninfected, n = 6 infected) 14 d after inoculation, and they were sacrificed 14 d post-treatment. Tibial explant and periprosthetic tissues were examined for infection. Laboratory assays supported bacterial infection in infected animals. No differences in weight or C-reactive protein (CRP) were detected after DAIR compared to sham treatment. Biofilm coverage was significantly decreased with DAIR treatment when compared with sham treatment (61.4 % vs. 90.1 %, p < 0 .0011) and was absent in noninfected control explants. In summary, we have developed an experimental rabbit hemiarthroplasty knee PJI model with bacterial infection that reliably produces quantifiable biofilm and provides an opportunity to introduce treatments at 14 d. This model may be used to better understand the pathogenesis of this condition and to measure treatment strategies for PJI.

RevDate: 2022-05-03

Ramidan JC, Bertolini MME, Júnior MRM, et al (2022)

Filling Materials Efficacy on Preventing Biofilm Formation inside Srew Acess Channnels of Implant Abutments.

The Journal of oral implantology pii:481178 [Epub ahead of print].

The choice of material used to fill screw access channels in implant-supported prostheses depends, in most cases, on operator's preference, without considering the susceptibility of biofilm colonization. Therefore, the aim of this study was to determine and compare the total amount of biofilm formed on different materials used to fill screw access channels in implant abutments. For this propose, titanium implant analogs were attached on abutments and divided into 5 groups: positive control (no filling material); negative control (closed with resin); filled with cotton, gutta-percha, or polytetrafluoroethylene-PTFE. The analogs with attached abutments were then immersed in a brain heart infusion medium containing Candida albicans (ATCC 10231) and incubated aerobically at 37°C with gentle agitation. After 15 days, materials were removed and total viable biofilm on each material was quantified by methyl tetrazolium (MTT) reduction assay at 490nm. All experiments were performed in triplicate. Data were processed by IBM SPSS Statistic software using one-way ANOVA and Bonferroni pos hoc tests to analyze differences between groups, with overall significance level=.05 (P<.001). A significant difference was observed between cotton and gutta-percha (P<.017) and between cotton and PTFE (P<.025). However, there was no statistical difference between gutta-percha and PTFE (P>.050). Thus, this in vitro experiment showed that gutta-percha and PTFE presented lower biofilm formation in comparison with cotton when used to fill screw access channels. These results can provide a basis for future clinical studies that can be a guide to decreasing the occurrence of gaps and bacterial growth inside the implant/abutment attachment site. In addition, controlled in vivo studies are necessary to confirm the clinical viability of findings of this study.

RevDate: 2022-05-16

Leshem T, Schnall BS, Azrad M, et al (2022)

Incidence of biofilm formation among MRSA and MSSA clinical isolates from hospitalized patients in Israel.

Journal of applied microbiology [Epub ahead of print].

AIM: To assess the biofilm-producing capacities of Staphylococcus aureus strains isolated from hospitalized patients in Israel.

METHODS AND RESULTS: A total of 16 S. aureus (80 MRSA and 83 MSSA) from screening (nasal swab) and clinical samples (blood and wounds) were characterized. Biofilm-producing capacities were determined using two different biofilm detection assays: Congo Red agar (CRA) and microtiter plate (MtP). In addition, a real-time PCR analysis was performed to detect the presence of biofilm-associated genes (icaA and icaD) and mecA gene. The two assays showed similar biofilm production pattern (28.2% agreement). MRSA strains tended to be greater biofilm-producers than MSSA strains. The presence of mecA was associated with biofilm production (p = 0.030). Additionally, bacteria isolated from blood samples produced less biofilm compared to those from other sources. Finally, no association was found between icaA and icaD presence and biofilm production.

CONCLUSION: This study supports earlier assumptions that biofilm formation depends strongly on environmental conditions.

This study significantly improved our knowledge on the biofilm production capacity of S. aureus strains in Israel. Moreover, it revealed an association between the mecA gene and biofilm production. Finally, this study underscores the importance of further research to evaluate risk factors for biofilm production.

RevDate: 2022-05-02

Fu HM, Wang J, Ren H, et al (2022)

Acceleration of start-up of moving bed biofilm reactor at low temperature by adding specialized Quorum Sensing bacteria.

Bioresource technology pii:S0960-8524(22)00578-8 [Epub ahead of print].

This study aims to accelerate biofilm formation and operational performance of moving bed biofilm reactor (MBBR) at 5 ℃ by adding specialized Quorum Sensing bacteria (sphingomonas rubra BH3T). Results showed that bio augmented MBBR (RS) achieved a higher chemical oxygen demand and NH4+-N removal rate (93% and 75%), which in accordance with its increased biofilm thickness, higher biofilm activity, and nitrifying bacteria abundance (Nitrospira). The increased biofilm thickness (60.23 %) during the whole operating time, accompanied by more potent adhesion force (61.59 %), was related to increased polysaccharides and proteins in the biofilm. Pyrosequencing analysis indicated that BH3T contributed to higher species richness and triggered the rapid growth of precursor microorganisms (Nakamurella, Micropruina, and Zoogloea) and the enrichment of multifunctional microorganisms (Pseudomonas, Aeromonas, Arcobacter, Dechloromonas, and Flavobacterium) at low temperatures. This study provides an economical and practical new insight into accelerating start-up of MBBR system at low temperature.

RevDate: 2022-05-02

Shahroodian S, Mirshekar M, Talebi M, et al (2022)

Association between virulence factors and biofilm formation in Enterococcus faecalis isolated from semen of infertile men.

American journal of reproductive immunology (New York, N.Y. : 1989) [Epub ahead of print].

PROBLEM: Enterococcus faecalis is a common microbial semen contaminant. Although virulence factors and biofilm formation have often been analyzed in Enterococcus spp., there is little information about these features in isolates obtained from the genitourinary tract. This study was intended to characterize and determine the relationship between biofilm-forming ability and the presence of E. faecalis virulence factors isolated from human semen.

METHOD OF STUDY: A total of 32 patients diagnosed with primary infertility and 28 healthy men were included in the study. Semen analyses were performed according to the WHO guidelines. PCR reactions were applied for the detection of ace, esp, efeA, gelE, asa1, and cylA genes. Microtiter plate assay, via measurement of OD560, was used to measure the biofilm-forming ability of the isolates.

RESULTS: Sixty E. faecalis isolates from semen of infertile and fertile men were characterized by phenotypic and genotypic methods. The prevalence of ace, esp, efeA, gelE, asa1 and cylA were reported to be 81.3%/100.0%, 81.3%/89.3%, 81.3%/85.7%, 71.9%/53.6%, 8.8%/75.0%, and 62.5%/67.9% in infertile/fertile groups; respectively. Strong, weak, and non-biofilm reactions were reported to be 50.0%/21.4%, 40.6%/64.3%, and 9.4%/14.3% in infertile and fertile groups; respectively.

CONCLUSIONS: There was a significant relationship between fertility and weak biofilm reaction and also between biofilm formation and possession of the esp gene (P < 0.05). It could be speculated that colonization with E. faecalis with a strong ability for biofilm formation could become a potential threat to men's fertility. This article is protected by copyright. All rights reserved.

RevDate: 2022-05-03

Li M, Wang Z, Zhou M, et al (2022)

Continuous Production of Human Epidermal Growth Factor Using Escherichia coli Biofilm.

Frontiers in microbiology, 13:855059.

Increasing demand for recombinant proteins necessitates efficient protein production processes. In this study, a continuous process for human epidermal growth factor (hEGF) secretion by Escherichia coli was developed by taking advantage of biofilm formation. Genes bcsB, fimH, and csgAcsgB that have proved to facilitate biofilm formation and some genes moaE, yceA, ychJ, and gshB potentially involved in biofilm formation were examined for their effects on hEGF secretion as well as biofilm formation. Finally, biofilm-based fermentation processes were established, which demonstrated the feasibility of continuous production of hEGF with improved efficiency. The best result was obtained from ychJ-disruption that showed a 28% increase in hEGF secretion over the BL21(DE3) wild strain, from 24 to 32 mg/L. Overexpression of bcsB also showed great potential in continuous immobilized fermentation. Overall, the biofilm engineering here represents an effective strategy to improve hEGF production and can be adapted to produce more recombinant proteins in future.

RevDate: 2022-05-03

Chang C, Yu X, Guo W, et al (2022)

Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future.

Frontiers in microbiology, 13:825828.

Biofilms are complex microbial microcolonies consisting of planktonic and dormant bacteria bound to a surface. The bacterial cells within the biofilm are embedded within the extracellular polymeric substance (EPS) consisting mainly of exopolysaccharides, secreted proteins, lipids, and extracellular DNA. This structural matrix poses a major challenge against common treatment options due to its extensive antibiotic-resistant properties. Because biofilms are so recalcitrant to antibiotics, they pose a unique challenge to patients in a nosocomial setting, mainly linked to lower respiratory, urinary tract, and surgical wound infections as well as the medical devices used during treatment. Another unique property of biofilm is its ability to adhere to both biological and man-made surfaces, allowing growth on human tissues and organs, hospital tools, and medical devices, etc. Based on prior understanding of bacteriophage structure, mechanisms, and its effects on bacteria eradication, leading research has been conducted on the effects of phages and its individual proteins on biofilm and its role in overall biofilm removal while also revealing the obstacles this form of treatment currently have. The expansion in the phage host-species range is one that urges for improvement and is the focus for future studies. This review aims to demonstrate the advantages and challenges of bacteriophage and its components on biofilm removal, as well as potential usage of phage cocktail, combination therapy, and genetically modified phages in a clinical setting.

RevDate: 2022-05-03
CmpDate: 2022-05-03

Sass G, Marsh JJ, Shrestha P, et al (2022)

Synergy Between Pseudomonas aeruginosa Filtrates And Voriconazole Against Aspergillus fumigatus Biofilm Is Less for Mucoid Isolates From Persons With Cystic Fibrosis.

Frontiers in cellular and infection microbiology, 12:817315.

Persons with cystic fibrosis (CF) frequently suffer from Pseudomonas aeruginosa and Aspergillus fumigatus co-infections. There is evidence that co-infections with these interacting pathogens cause airway inflammation and aggravate deterioration of lung function. We recently showed that P. aeruginosa laboratory isolates synergistically interact with the anti-fungal azole voriconazole (VCZ), inhibiting biofilm metabolism of several A. fumigatus laboratory strains. Interaction was usually mediated via pyoverdine, but also via pyocyanin or pyochelin. Here we used planktonic filtrates of 7 mucoid and 9 non-mucoid P. aeruginosa isolates from CF patients, as well as 8 isolates without CF origin, and found that all of these isolates interacted with VCZ synergistically at their IC50 as well as higher dilutions. CF mucoid isolates showed the weakest interactive effects. Four non-mucoid P. aeruginosa CF isolates produced no or very low levels of pyoverdine and did not reach an IC50 against forming A. fumigatus biofilm; interaction with VCZ still was synergistic. A VCZ-resistant A. fumigatus strain showed the same level of susceptibility for P. aeruginosa anti-fungal activity as a VCZ-susceptible reference strain. Filtrates of most Pseudomonas isolates were able to increase anti-fungal activity of VCZ on a susceptible A. fumigatus strain. This was also possible for the VCZ-resistant strain. In summary these data show that clinical P. aeruginosa isolates, at varying degrees, synergistically interact with VCZ, and that pyoverdine is not the only molecule responsible. These data also strengthen the idea that during co-infections of A. fumigatus and P. aeruginosa lower concentrations of VCZ might be sufficient to control fungal growth.

RevDate: 2022-05-01

Taşkın Kafa AH, M Hasbek (2022)

Synergistic efficacy of meropenem, ciprofloxacin and colistin antibiotics against planktonic and biofilm forms of Myroides odoratimimus bacterial isolates.

Indian journal of medical microbiology pii:S0255-0857(22)00077-9 [Epub ahead of print].

PURPOSE: In this study, it was aimed to investigate the combined synergistic efficacy of colistin (CT), meropenem (MEM), and ciprofloxacin (CIP) antibiotics on planktonic and biofilm forms in Myroidesodoratimimus strains isolated from various clinical specimens.

METHODS: Antibiotic susceptibility was determined by the Kirby-Bauer disk diffusion method. In addition, minimum inhibitory concentrations (MIC) of CIP, MEM, and CT were studied using the standardized broth microdilution method. In vitro synergistic activity of antibiotics against M. odoratimimus planktonic bacteria strains was studied by the Micro Broth Checkerboard method. The microtiter plate (MtP) method was used to determine the effectiveness of antibiotics on M. odoratimimus biofilm formation.

RESULTS: A zone of inhibition was not observed against other antibiotics used except amikacin and linezolid in all strains. While CT/MEM and CT/CIP combinations have a synergistic effect on all strains, the combination CIP/MEM has an additive effect. According to the biofilm inhibition results, all three antibiotics inhibited biofilm formation. However, the efficacy of MEM (60.3-76.5%) and CIP (60.2-77.8%) was approximately two times higher than that of CT (25.4-34.5%). In addition, the effectiveness of combinations of antibiotics on biofilm formation was examined and the percentage of inhibition was 30.8% when CT was used alone, while the biofilm inhibition rates of CT/MEM and CT/CIP were 92.4% and 91.7%, respectively. MEM/CIP combination was inhibited biofilm formation by 75.7%.

CONCLUSIONS: This study is the first report showing the efficacy of CT, MEM and CIP antibiotics, which are frequently used in clinical practice, in combination on M. odoratimimus planktonic and biofilm forms. The findings of our study are particularly guiding for combined antibiotic treatment options in immunosuppressed patients admitted to an intensive care unit (ICU). The CT/MEM combination is currently used frequently. In addition, these results are important in terms of supporting in vitro that CT/CIP and MEM/CIP combinations can also be used as a treatment option in M. odoratimimus related infections.

RevDate: 2022-05-17

Xia Y, Lu D, Qi Y, et al (2022)

Removal of nitrate from agricultural runoff in biochar electrode based biofilm reactor: Performance and enhancement mechanisms.

Chemosphere, 301:134744 pii:S0045-6535(22)01237-1 [Epub ahead of print].

A biochar electrode based biofilm reactor was developed for advanced removal of nitrate from agricultural runoff. The corn-straw (Zea mays L.) biochar formed at 500 °C has an adsorption capacity of NO3--N up to 2.659 mg g-1. After 45-day start-up phase, the removal efficiency of nitrate reached 93.4% when impressed current was 20 mA, hydraulic retention time was 12 h and chemical oxygen demand/total nitrogen (C/N) ratio was 0.56 without additional carbon source. In comparison, neither electrochemical reduction alone nor microbial denitrification alone could obtain the ideal nitrate removal efficiency. The results implied that bio-electrochemical reduction was the main way of nitrate removal in the biofilm electrode reactor (BER). The denitrification efficiency of 88.9% could still be obtained when C/N = 0. It is because biochar can significantly promote the utilization efficiency of cathode electrons by microorganisms. Thus, biochar is a promising electrode material, which provides a new idea for the optimization of BER.

RevDate: 2022-05-03
CmpDate: 2022-05-03

Tsagkari E, Connelly S, Liu Z, et al (2022)

The role of shear dynamics in biofilm formation.

NPJ biofilms and microbiomes, 8(1):33.

There is growing evidence that individual bacteria sense and respond to changes in mechanical loading. However, the subtle responses of multispecies biofilms to dynamic fluid shear stress are not well documented because experiments often fail to disentangle any beneficial effects of shear stress from those delivered by convective transport of vital nutrients. We observed the development of biofilms with lognormally distributed microcolony sizes in drinking water on the walls of flow channels underflow regimes of increasing complexity. First, where regular vortices induced oscillating wall shear and simultaneously enhanced mass transport, which produced the thickest most extensive biofilms. Second, where unsteady uniform flow imposed an oscillating wall shear, with no enhanced transport, and where the biomass and coverage were only 20% smaller. Finally, for uniform steady flows with constant wall shear where the extent, thickness, and density of the biofilms were on average 60% smaller. Thus, the dynamics of shear stress played a significant role in promoting biofilm development, over and above its magnitude or mass transfer effects, and therefore, mechanosensing may prevail in complex multispecies biofilms which could open up new ways of controlling biofilm structure.

RevDate: 2022-05-02

Pan T, Chen H, Gao X, et al (2022)

Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication.

Journal of hazardous materials, 435:128996 pii:S0304-3894(22)00785-3 [Epub ahead of print].

Bacterial biofilms have evoked worldwide attention owing to their serious threats to public health, but how to effectively eliminate bacterial biofilms still remains great challenges. Here, we rationally designed a novel and vigorous chitosan grafted Fe-doped-carbon dots (CS@Fe/CDs) as an efficient artificial nanozyme to combat rigid bacterial biofilms through the selective activation of Fenton-like reaction-triggered peroxidase-like catalytic activity and the synergistic antibacterial activity of CS. On the one hand, the peroxidase-like catalytic activity made CS@Fe/CDs catalyze H2O2 for producing hydroxyl radicals (•OH), resulting in efficient cleavage of extracellular DNA (eDNA). On the other hand, CS was capable of binding with the negatively charged cell membrane through electrostatic interaction, changing the cell membrane permeability and causing cell death within bacterial biofilms. Based on their synergistic effects, the fragments of bacterial biofilm and exposed bacteria were persistently eradicated. Remarkably, CS@Fe/CDs-based nanozyme not only enabled the effective destroying of gram-positive Staphylococcus aureus (S. aureus) biofilms, but also completely eliminated gram-negative Pseudomonas aeruginosa (P. aeruginosa) biofilms, showing great potential as a promising anti-biofilm agent against bacteria biofilms. This proposed synergistic strategy for bacterial biofilm eradication might offer a powerful modality to manage of bacterial biofilm fouling in food safety and environmental protection.

RevDate: 2022-04-29

Alviz-Gazitua P, González A, Lee MR, et al (2022)

Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp.

Marine biotechnology (New York, N.Y.) [Epub ahead of print].

Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.

RevDate: 2022-05-19

Zhou L, Lai Y, Zeng R, et al (2022)

Core carbon fixation pathways associated with cake layer development in an anoxic-oxic biofilm-membrane bioreactor treating textile wastewater.

The Science of the total environment, 835:155483 pii:S0048-9697(22)02579-7 [Epub ahead of print].

Microbial carbon fixation pathways have not yet been adequately understood for their role in membrane case layer formation processes. Carbon fixation bacteria can play critical roles in either causing or enhancing cake layer formation in some autotrophic-prone anoxic conditions, such as sulfur-cycling conditions. Understanding the microbes capable of carbon fixation can potentially guide the design of membrane biofouling mitigation strategies in scientific ways. Thus, we used meta-omics methods to query carbon fixation pathways in the cake layers of a full-scale anoxic-oxic biofilm-MBR system treating textile wastewater in this study. Based on the wastewater constituents and other properties, such as anoxic conditions, sulfide-reducing and sulfur-oxidizing bacteria could co-exist in the membrane unit. In addition, low-light radiation conditions could also happen to the membrane unit. However, we could not quantify the light intensity or total energy input accurately because the whole experimental setup was a full-scale system. Potentially complete carbon fixation pathways in the cake layer included the Calvin-Benson-Bassham cycle, Wood-Ljungdahl pathway, and the 3-hydroxypropionate bicycle. We discovered that using aeration could effectively inhibit carbon fixation, which resulted in mitigating membrane cake layer development. However, the aeration resulted in the 3-hydroxypropionate bicycle pathway, presumably used by aerobic sulfur-oxidizing prokaryotes, to become a more abundant carbon fixation pathway in the cake layer under aerobic conditions.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Law SKK, HS Tan (2022)

The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies.

Microbiological research, 260:127032.

Acinetobacter baumannii is a nosocomial pathogen responsible for several serious infections, including pneumonia, sepsis, and meningitis. The propensity of this bacterium to rapidly acquire antibiotic resistance leads to the emergence and spread of multidrug-resistant A. baumannii strains. As a result, antibiotics are becoming less effective in treating infections caused by this pathogen. In recent years, increasing efforts have focused on developing therapeutic compounds that could reduce the ability of A. baumannii to establish infection by inhibiting the virulence factors and pathogenesis of this pathogen without interfering with the bacterial viability. These alternative therapeutic options may impose milder selective pressure, reducing the likelihood of anti-virulence resistance development. To develop novel anti-virulence therapies, an in-depth understanding of the bacterial virulence mechanisms is crucial to identifying potential drug targets. This review summarises the latest discoveries about the virulence of A. baumannii, focusing on quorum sensing, biofilm formation, and iron acquisition, along with the corresponding anti-virulence strategies. This article also elaborates on the practical challenges involved in developing anti-virulence drugs. Therapeutic agents that target bacterial virulence factors may play a crucial role in controlling infection in the human host. Combining anti-virulence agents with existing antibiotics could enhance the therapeutic potential of these antibiotics against A. baumannii. Although anti-virulence therapy has been envisioned as an attractive alternative to overcome antimicrobial resistance, additional research on the possibility of developing resistance against anti-virulence drugs is encouraged to evaluate the sustainability of these strategies. Moreover, future studies on the efficacy of anti-virulence therapy against a diverse panel of clinical isolates and in polymicrobial A. baumannii infections are required to provide more valuable information about its clinical application.

RevDate: 2022-04-29

Kiran GS, Priyadharshini S, Anitha K, et al (2021)

Correction: Characterization of an exopolysaccharide from probiont Enterobacter faecalis MSI12 and its effect on the disruption of Candida albicans biofilm.

RSC advances, 11(33):20003-20005 pii:d1ra90123k.

[This corrects the article DOI: 10.1039/C5RA10302A.].


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

An examination of the research and translational application to prevent and treat biofilm-associated diseases In the decade since the first edition of Microbial Biofilms was published, the interest in this field has expanded, spurring breakthrough research that has advanced the treatment of biofilm-associated diseases. This second edition takes the reader on an exciting, extensive review of bacterial and fungal biofilms, ranging from basic molecular interactions to innovative therapies, with particular emphasis on the division of labor in biofilms, new approaches to combat the threat of microbial biofilms, and how biofilms evade the host defense.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )