picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
26 Nov 2020 at 01:33
HITS:
17182
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biofilm

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Nov 2020 at 01:33 Created: 

Biofilm

Wikipedia: Biofilm A biofilm is any group of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPS). The EPS components are produced by the cells within the biofilm and are typically a polymeric conglomeration of extracellular DNA, proteins, and polysaccharides. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, biofilms are frequently described metaphorically as cities for microbes. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital settings. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium. Biofilms can be present on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease. Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or non-specific attachment sites on a surface, nutritional cues, or in some cases, by exposure of planktonic cells to sub-inhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Created with PubMed® Query: biofilm[title] NOT 28392838[PMID] NOT 31293528[PMID] NOT 29372251[PMID] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2020-11-25

Sette-DE-Souza PH, Santana CP, Sousa IMO, et al (2020)

Schinopsis brasiliensis Engl. to combat the biofilm-dependents diseases in vitro.

Anais da Academia Brasileira de Ciencias, 92(4):e20200408 pii:S0001-37652020000700921.

Dental caries and periodontal disease are the most prevalent of the biofilm-dependent diseases. With numerous side effects on the use of chlorhexidine, the search for new safe therapeutic alternatives for microorganisms involved with these diseases increases every day. This study aimed to evaluate the antimicrobial activity and cytotoxicity of extracts made from the bark of Schinopsis brasiliensis Engl. against five oral microorganisms and analyze their phytochemical and thermal degradation profile. The liquid-liquid partition was performed with hexane, chloroform and ethyl acetate. The identification and quantification of the chemical marker was done. Antimicrobial activity was evaluated based on the minimum inhibitory concentration. The cytotoxicity was analyzed based on the hemolysing potential of the samples. The thermal degradation profile was performed by two different methods. Gallic acid was identified as the main compound of the samples and showed the highest amount in the chloroform fraction. All samples were able to inhibit the growth of the microorganisms tested and showed no cytotoxicity. The ethanol extract absorbs less heat than the fractions. All samples exhibited exothermic peak consistent with degradation of gallic acid. Based on the results, the samples used are potential candidates for use in dental formulations for biofilm control.

RevDate: 2020-11-25

Kataoka Y, Kunimitsu M, Nakagami G, et al (2020)

Effectiveness of ultrasonic debridement on reduction of bacteria and biofilm in patients with chronic wounds: A scoping review.

International wound journal [Epub ahead of print].

Chronic wounds are defined as "hard-to-heal" wounds that are caused by disordered mechanisms of wound healing. Chronic wounds have a high risk of infection and can form biofilms, leading to the release of planktonic bacteria, which causes persistent infections locally or remotely. Therefore, infection control and removal of the biofilm in chronic wounds are essential. Recently, ultrasonic debridement was introduced as a new method to reduce infection and promote the healing of chronic wounds. This scoping review aimed to evaluate the effectiveness of ultrasonic debridement on the changes in bacteria and biofilms, and consequently the wound healing rate of chronic wounds. A total of 1021 articles were identified through the database search, and nine papers were eligible for inclusion. Findings suggest that non-contact devices are useful for wound healing as they reduce the inflammatory response, although the bacterial load is not significantly changed. Ultrasonic debridement devices that require direct contact with the wound promote wound healing through reduction of biofilm or bacterial load. The optimum settings for ultrasonic debridement using a non-contact device are relatively consistent, but the settings for devices that require direct contact are diverse. Further studies on ultrasonic debridement in chronic wounds are required.

RevDate: 2020-11-25

Quinn J, McFadden R, Chan CW, et al (2020)

Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation.

iScience, 23(11):101745 pii:S2589-0042(20)30942-1.

Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.

RevDate: 2020-11-25

Mirani ZA, Urooj S, Khan MN, et al (2020)

An effective weapon against biofilm consortia and small colony variants of MRSA.

Iranian journal of basic medical sciences, 23(11):1494-1498.

Objectives: This study was designed to investigate the effect of AgNPs (10 nm and 30 nm) on different phenotypes of Staphylococcusaureus biofilm consortia.

Materials and Methods: A total of eighteen biofilm-producing isolates of Methicillin-Resistant S. aureus (MRSA) were used in the present study. Tube methods, Congo-red agar method, and scanning electron microscopy (SEM) were used to study biofilm phenotypes. Population analysis assay on a tryptone soya agar (TSA) plate was applied to study the different phenotypes of biofilm consortia. The effect of AgNPs was evaluated by broth dilution assay.

Results: Results showed that biofilm consortia harbour different phenotypes, i.e., planktonic, metabolically inactive cells, and small colony variants (SCVs) or persister cells. The focus of the present study is the effect of AgNPs on biofilm consortia of MRSA, particularly on the SCVs population. Large size AgNPs (30 nm) were unable to diffuse through extracellular matrix material coverings of the biofilm consortia; they were only active against the planktonic population that occupies the outer surface of consortia. The smaller AgNPs (10 nm), on the other hand, were found to diffuse through the matrix material and hence were effective against planktonic as well as metabolically inactive population of consortia. Moreover, 30 nm AgNPs take 6 hr to disperse off and kill planktonic and upper surface indwellers. The 10 nm AgNPs disperse and kill the majority of biofilm indwellers within 20 min.

Conclusion: The present study showed that 10 nm AgNPs can easily penetrate inside the biofilm and are active against all of the indwellers of consortia.

RevDate: 2020-11-25

Burgos-Garay M, Ganim C, de Man TJB, et al (2020)

Colonization of carbapenem-resistant Klebsiella pneumoniae in a sink-drain model biofilm system.

Infection control and hospital epidemiology pii:S0899823X20012878 [Epub ahead of print].

BACKGROUND: Sink drains in healthcare facilities may provide an environment for antimicrobial-resistant microorganisms, including carbapenemase-producing Klebsiella pneumoniae (CPKP).

METHODS: We investigated the colonization of a biofilm consortia by CPKP in a model system simulating a sink-drain P-trap. Centers for Disease Control (CDC) biofilm reactors (CBRs) were inoculated with microbial consortia originally recovered from 2 P-traps collected from separate patient rooms (designated rooms A and B) in a hospital. Biofilms were grown on stainless steel (SS) or polyvinyl chloride (PVC) coupons in autoclaved municipal drinking water (ATW) for 7 or 28 days.

RESULTS: Microbial communities in model systems (designated CBR-A or CBR-B) were less diverse than communities in respective P-traps A and B, and they were primarily composed of β and γ Proteobacteria, as determined using 16S rRNA community analysis. Following biofilm development CBRs were inoculated with either K. pneumoniae ST45 (ie, strain CAV1016) or K. pneumoniae ST258 KPC+ (ie, strain 258), and samples were collected over 21 days. Under most conditions tested (CBR-A: SS, 7-day biofilm; CBR-A: PVC, 28-day biofilm; CBR-B: SS, 7-day and 28-day biofilm; CBR-B: PVC, 28-day biofilm) significantly higher numbers of CAV1016 were observed compared to 258. CAV1016 showed no significant difference in quantity or persistence based on biofilm age (7 days vs 28 days) or substratum type (SS vs PVC). However, counts of 258 were significantly higher on 28-day biofilms and on SS.

CONCLUSIONS: These results suggest that CPKP persistence in P-trap biofilms may be strain specific or may be related to the type of P-trap material or age of the biofilm.

RevDate: 2020-11-25

Ng G, Li M, Yeow J, et al (2020)

Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a Pseudomonas Biofilm.

ACS applied materials & interfaces [Epub ahead of print].

We report a high-throughput method for producing surface-tethered polymeric brushes on glass substrates via surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Due to its excellent oxygen tolerance, SI-PET-RAFT allows brush growth using low reagent volumes (30 μL) without prior degassing. An initial 28 homopolymer brush library was successfully prepared and screened with respect to their antifouling performance. The high-throughput approach was further exploited to expand the library to encompass statistical, gradient, and block architectures to investigate the effect of monomer composition and distribution using two monomers of disparate performance. In this manner, the degree of attachment from Gram-negative Pseudomonas aeruginosa (PA) bacterial biofilms could be tuned between the bounds set by the homopolymer brushes.

RevDate: 2020-11-25

Osland AM, Vestby LK, LL Nesse (2020)

The Effect of Disinfectants on Quinolone Resistant E. coli (QREC) in Biofilm.

Microorganisms, 8(11): pii:microorganisms8111831.

The aim of disinfection is to reduce the number of microorganisms on surfaces which is a challenge due to biofilms. In the present study, six quinolone resistant Escherichia coli (QREC) strains with three different biofilm matrix compositions were included to assess the log10 colony forming units (CFU) reduction effect of three disinfectants at various exposure times on biofilm of different ages and morphotypes. Biofilm was formed on stainless steel coupons for two and five days before transferred to tubes with Virocid 0, 25%, VirkonS 1%, and TP990 1% and left for various exposure times. The biofilms were scraped off and serial dilutions were spread on blood agar plates where colony forming units (CFU) were counted. A mean log10 CFU reduction ≥4 was seen on two-day-old biofilm with VirkonS and Virocid (30 min) but not on five-day old biofilm. TP990 did not display sufficient effect under the conditions tested. The bactericidal effect was inferior to that reported on planktonic bacteria. The findings of this study should be considered when establishing both disinfectant routines and standard susceptibility tests, which further should accommodate E. coli biofilms and not only Pseudomonas as is the case today.

RevDate: 2020-11-25

Gilbert-Girard S, Savijoki K, Yli-Kauhaluoma J, et al (2020)

Screening of FDA-Approved Drugs Using a 384-Well Plate-Based Biofilm Platform: The Case of Fingolimod.

Microorganisms, 8(11): pii:microorganisms8111834.

In an effort to find new repurposed antibacterial compounds, we performed the screening of an FDA-approved compounds library against Staphylococcus aureus American Type Culture Collection (ATCC) 25923. Compounds were evaluated for their capacity to prevent both planktonic growth and biofilm formation as well as to disrupt pre-formed biofilms. One of the identified initial hits was fingolimod (FTY720), an immunomodulator approved for the treatment of multiple sclerosis, which was then selected for follow-up studies. Fingolimod displayed a potent activity against S. aureus and S. epidermidis with a minimum inhibitory concentration (MIC) within the range of 12-15 µM at which concentration killing of all the bacteria was confirmed. A time-kill kinetic study revealed that fingolimod started to drastically reduce the viable bacterial count within two hours and we showed that no resistance developed against this compound for up to 20 days. Fingolimod also displayed a high activity against Acinetobacter baumannii (MIC 25 µM) as well as a modest activity against Escherichia coli and Pseudomonas aeruginosa. In addition, fingolimod inhibited quorum sensing in Chromobacterium violaceum and might therefore target this signaling pathway in certain Gram-negative bacteria. In conclusion, we present the identification of fingolimod from a compound library and its evaluation as a potential repurposed antibacterial compound.

RevDate: 2020-11-25

Falghoush A, Beyenal H, DR Call (2020)

Sequential Hypertonic-Hypotonic Treatment Enhances Efficacy of Antibiotic against Acinetobacter baumannii Biofilm Communities.

Antibiotics (Basel, Switzerland), 9(11): pii:antibiotics9110832.

Infections with bacterial biofilm communities are highly tolerant of antibiotics. This protection is attributed, in part, to a hydrated extracellular polymeric substance (EPS) that surrounds the bacterial community and that limits antibiotic diffusion. In this study, we evaluated whether it is possible to dehydrate and then re-hydrate a biofilm as a means to increase antibiotic penetration and efficacy. Acinetobacter baumannii biofilms (24 h) were exposed to hypertonic concentrations of maltodextrin, sucrose or polyethylene glycol (PEG) as the dehydration step. These biofilms were then washed with deionized water containing 10 times the concentration of antibiotics needed to kill these bacteria in broth culture (50 µg/mL tobramycin, 300 µg/mL chloramphenicol, 20 µg/mL ciprofloxacin or 100 µg/mL erythromycin) as the rehydration step. Biofilms were then harvested, and the number of viable cells was determined. Sequential treatment with PEG and tobramycin reduced cell counts 4 to 7 log (p < 0.05) relative to combining PEG and tobramycin in a single treatment, and 3 to 7 log relative to tobramycin treatment alone (p < 0.05). Results were variable for other osmotic compounds and antibiotics depending on the concentrations used, likely related to mass and hydrophobicity. Our findings support future clinical evaluation of sequential regimens of hypertonic and hypotonic solutions to enhance antibiotic efficacy against chronic biofilm infections.

RevDate: 2020-11-25

Li J, X Zhao (2020)

Effects of quorum sensing on the biofilm formation and viable but non-culturable state.

Food research international (Ottawa, Ont.), 137:109742.

Quorum sensing exists widely in all kinds of microorganisms and is a communication channel for microorganisms. Many bacterial processes, including virulence factor expression, biofilm formation, and viable but non-culturable (VBNC) cell resuscitation, are mediated by quorum sensing, and biofilm formation complicates the treatment of various infections. Foodborne pathogens can enter VBNC state in extreme environments, and pathogens in VBNC state can evade traditional detection and resuscitate under appropriate conditions, causing potential harm to human health. The disruption of quorum sensing may decisively help control biofilm formation and VBNC cell resuscitation. This review describes the quorum sensing systems of various bacteria and major fungi, and summarizes the role of bacterial quorum sensing system in biofilm formation and VBNC resuscitation. In addition, the relationship between quorum sensing inhibitors (QSI) with biofilms and VBNC is also discussed.

RevDate: 2020-11-25

Lianou A, Nychas GE, KP Koutsoumanis (2020)

Strain variability in biofilm formation: A food safety and quality perspective.

Food research international (Ottawa, Ont.), 137:109424.

The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.

RevDate: 2020-11-25

Fan Y, Qiao J, Lu Z, et al (2020)

Influence of different factors on biofilm formation of Listeria monocytogenes and the regulation of cheY gene.

Food research international (Ottawa, Ont.), 137:109405.

In a food-processing environment, bacterial cells often adhere to surfaces and form biofilms to protect themselves from external adverse influences. Our study aimed to identify the influence of environmental factors and cell properties on Listeria monocytogenes biofilm formation. Biofilm formation was quantified through measuring the optical density at 590 nm (OD590 nm) after crystal violet staining. Neutral pH and 37oC were beneficial for biofilm formation whereas the influence of glucose (0.0-1.0%) and sodium chloride (0.0-1.0%) were strain-dependent. In general, the addition of sodium chloride and glucose increased biofilm formation in most strains compared to that in controls with no sodium chloride or glucose added. Bacteria with strong biofilm-forming capacity always produced large amounts of biofilm in most instances. Biofilm formation positively correlated with the cell surface hydrophobicity and motility but was independent from planktonic cell growth. The expression of flagella-related flaA, motB, and the two-component chemotactic system cheA/Y genes in biofilm cells increased compared to that in planktonic cells. Meanwhile, a cheY knockout mutant was constructed, and decreased biofilm-formation ability along with reduced cell-surface hydrophobicity were found in the non-motile mutant. Furthermore, the cheY knockout mutant showed no change in growth, and pH susceptibility compared to that in the wild-type strain.

RevDate: 2020-11-24

Mawla GD, Hall BM, Cárcamo-Oyarce G, et al (2020)

ClpP1P2 peptidase activity promotes biofilm formation in P. aeruginosa.

Molecular microbiology [Epub ahead of print].

Caseinolytic proteases (Clp) are central to bacterial proteolysis and control cellular physiology and stress responses. They are composed of a double-ring compartmentalized peptidase (ClpP) and a AAA+ unfoldase (ClpX or ClpA/ClpC). Unlike many bacteria, the opportunistic pathogen P. aeruginosa contains two ClpP homologs: ClpP1 and ClpP2. The specific functions of these homologs, however, are largely elusive. Here, we report that the active form of PaClpP2 is a part of a heteromeric PaClpP17 P27 tetradecamer that is required for proper biofilm development. PaClpP114 and PaClpP17 P27 complexes exhibit distinct peptide cleavage specificities and interact differentially with P. aeruginosa ClpX and ClpA. Crystal structures reveal that PaClpP2 has non-canonical features in its N- and C-terminal regions that explain its poor interaction with unfoldases. However, experiments in vivo indicate that the PaClpP2 peptidase active site uniquely contributes to biofilm development. These data strongly suggest that the specificity of different classes of ClpP peptidase subunits contributes to the biological outcome of proteolysis. This specialized role of PaClpP2 highlights it as an attractive target for developing antimicrobial agents that interfere specifically with late-stage P. aeruginosa development.

RevDate: 2020-11-24

Tonon CC, Panariello BHD, Spolidorio DMP, et al (2020)

Anti-biofilm effect of ozonized physiological saline solution on peri-implant-related biofilm.

Journal of periodontology [Epub ahead of print].

BACKGROUND: Removal of dental plaque and local application of local chemical adjuncts, such as chlorhexidine (CHX), have been used to control and treat peri-implant disease. However, these methods can damage the surface properties of the implants or promote bacterial resistance. The application of ozone as an adjunctive treatment represents a new approach in the management of peri-implantitis. Thus, the purpose of this study was to evaluate the antimicrobial effect of ozonized physiological saline solution in different concentrations against oral biofilms developed on titanium surface.

METHODS: Single and multi-species biofilms of Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus oralis were formed on titanium specimens for 5 days in anaerobic conditions. Biofilms were treated with ozonized saline solution at different concentrations (25, 50 and 80 μg/NmL), for 30 seconds and 1 minute. CHX (0.12%) and saline solution (0.89% NaCl) were used as positive and negative controls, respectively. Bacterial viability was quantified by Colony Forming Units (CFU mL-1), and biofilm images were acquired by Confocal Laser Scanning Microscopy (CLSM). Data were analyzed by parametric test (ANOVA) with Tukey post-hoc test (p <0.05).

RESULTS: Ozonized saline solution showed antibiofilm activity at a concentration of 80 μg/NmL for 30 seconds and 1 minute, reducing, mainly, Porphyromonas gingivalis viability, with 2.78 and 1.7 log10 CFU mL-1 of reduction in both single and multi-specie biofilms, respectively, when compared to the control (saline), while CHX reduced 1.4 and 1.2 log10 CFU mL-1 .

CONCLUSION: Ozonized saline solution has antibiofilm activity, with better effect when applied for 1 minute at 80 μg/NmL, being a promising candidate therapy for the treatment of peri-implant diseases. This article is protected by copyright. All rights reserved.

RevDate: 2020-11-24

Paul P, Chakraborty P, Chatterjee A, et al (2020)

1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat.

Archives of microbiology pii:10.1007/s00203-020-02117-1 [Epub ahead of print].

Staphylococcus aureus, a Gram-positive opportunistic microorganism, promotes pathogenicity in the human host through biofilm formation. Microorganisms associated with biofilm often exhibit drug-resistance property that poses a major threat to public healthcare. Thus, the exploration of new therapeutic approaches is the need of the hour to manage biofilm-borne infections. In the present study, efforts are put together to test the antimicrobial as well as antibiofilm activity of 1,4-naphthoquinone against Staphylococcus aureus. The result showed that the minimum bactericidal concentration (MBC) of this compound was found to be 100 µg/mL against Staphylococcus aureus. In this regard, an array of experiments (crystal violet, biofilm protein measurement, and microscopic analysis) related to biofilm assay were conducted with the sub-MBC concentrations (1/20 and 1/10 MBC) of 1,4-naphthoquinone. All the results of biofilm assay demonstrated that these tested concentrations (1/20 and 1/10 MBC) of the compound (1,4-naphthoquinone) showed a significant reduction in biofilm development by Staphylococcus aureus. Moreover, the tested concentrations (1/20 and 1/10 MBC) of the compound (1,4-naphthoquinone) were able to reduce the microbial motility of Staphylococcus aureus that might affect the development of biofilm. Further studies revealed that the treatment of 1,4-naphthoquinone to the organism was found to increase the cellular accumulation of reactive oxygen species (ROS) that resulted in the inhibition of biofilm formation by Staphylococcus aureus. Hence, it can be concluded that 1,4-naphthoquinone might be considered as a promising compound towards biofilm inhibition caused by Staphylococcus aureus.

RevDate: 2020-11-24

Latka A, Z Drulis-Kawa (2020)

Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase.

Scientific reports, 10(1):20338 pii:10.1038/s41598-020-77198-5.

One of the potential antibiofilm strategies is to use lytic phages and phage-derived polysaccharide depolymerases. The idea is to uncover bacteria embedded in the biofilm matrix making them accessible and vulnerable to antibacterials and the immune system. Here we present the antibiofilm efficiency of lytic phage KP34 equipped with virion-associated capsule degrading enzyme (depolymerase) and its recombinant depolymerase KP34p57, depolymerase-non-bearing phage KP15, and ciprofloxacin, separately and in combination, using a multidrug-resistant K. pneumoniae biofilm model. The most effective antibiofilm agents were (1) phage KP34 alone or in combination with ciprofloxacin/phage KP15, and (2) depolymerase KP34p57 with phage KP15 and ciprofloxacin. Secondly, applying the commonly used biofilm microtiter assays: (1) colony count, (2) LIVE/DEAD BacLight Bacterial Viability Kit, and (3) crystal violet (CV) biofilm staining, we unravelled the main advantages and limitations of the above methods in antibiofilm testing. The diverse mode of action of selected antimicrobials strongly influenced obtained results, including a false positive enlargement of biofilm mass (CV staining) while applying polysaccharide degrading agents. We suggest that to get a proper picture of antimicrobials' effectiveness, multiple examination methods should be used and the results must be read considering the principle of each technique and the antibacterial mechanism.

RevDate: 2020-11-24

Motlhatlego KE, Abdalla MA, Leonard CM, et al (2020)

Inhibitory effect of Newtonia extracts and myricetin-3-o-rhamnoside (myricitrin) on bacterial biofilm formation.

BMC complementary medicine and therapies, 20(1):358 pii:10.1186/s12906-020-03139-4.

BACKGROUND: Diarrhoea is a major health issue in both humans and animals and may be caused by bacterial, viral and fungal infections. Previous studies highlighted excellent activity of Newtonia buchananii and N. hildebrandtii leaf extracts against bacterial and fungal organisms related to diarrhoea-causing pathogens. The aim of this study was to isolate the compound(s) responsible for antimicrobial activity and to investigate efficacy of the extracts and purified compound against bacterial biofilms.

METHODS: The acetone extract of N. buchananii leaf powder was separated by solvent-solvent partitioning into eight fractions, followed by bioassay-guided fractionation for isolation of antimicrobial compounds. Antibacterial activity testing was performed using a broth microdilution assay. The cytotoxicity was evaluated against Vero cells using a colorimetric MTT assay. A crystal violet method was employed to test the inhibitory effect of acetone, methanol: dichloromethane and water (cold and hot) extracts of N. buchananii and N. hildebrandtii leaves and the purified compound on biofilm formation of Pseudomonas aeruginosa, Escherichia coli, Salmonella Typhimurium, Enterococcus faecalis, Staphylococcus aureus and Bacillus cereus.

RESULTS: Myricetin-3-o-rhamnoside (myricitrin) was isolated for the first time from N. buchananii. Myricitrin was active against B. cereus, E. coli and S. aureus (MIC = 62.5 μg/ml in all cases). Additionally, myricitrin had relatively low cytotoxicity with IC50 = 104 μg/ml. Extracts of both plant species had stronger biofilm inhibitory activity against Gram-positive than Gram-negative bacteria. The most sensitive bacterial strains were E. faecalis and S. aureus. The cold and hot water leaf extracts of N. buchananii had antibacterial activity and were relatively non-cytotoxic with selectivity index values of 1.98-11.44.

CONCLUSIONS: The purified compound, myricitrin, contributed to the activity of N. buchananii but it is likely that synergistic effects play a role in the antibacterial and antibiofilm efficacy of the plant extract. The cold and hot water leaf extracts of N. buchananii may be developed as potential antibacterial and antibiofilm agents in the natural treatment of gastrointestinal disorders including diarrhoea in both human and veterinary medicine.

RevDate: 2020-11-24

Yamasaki R, Kawano A, Yoshioka Y, et al (2020)

Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm.

BMC microbiology, 20(1):358 pii:10.1186/s12866-020-02034-9.

BACKGROUND: Bacteria survive in various environments by forming biofilms. Bacterial biofilms often cause significant problems to medical instruments and industrial processes. Techniques to inhibit biofilm formation are essential and have wide applications. In this study, we evaluated the ability of two types of biosurfactants (rhamnolipids and surfactin) to inhibit growth and biofilm formation ability of oral pathogenic bacteria such as Aggregatibacter actinomycetemcomitans, Streptococcus mutans, and Streptococcus sanguinis.

RESULTS: Rhamnolipids inhibited the growth and biofilm formation ability of all examined oral bacteria. Surfactin showed effective inhibition against S. sanguinis ATCC10556, but lower effects toward A. actinomycetemcomitans Y4 and S. mutans UA159. To corroborate these results, biofilms were observed by scanning electron microscopy (SEM) and confocal microscopy. The observations were largely in concordance with the biofilm assay results. We also attempted to determine the step in the biofilm formation process that was inhibited by biosurfactants. The results clearly demonstrated that rhamnolipids inhibit biofilm formation after the initiation process, however, they do not affect attachment or maturation.

CONCLUSIONS: Rhamnolipids inhibit oral bacterial growth and biofilm formation by A. actinomycetemcomitans Y4, and may serve as novel oral drug against localized invasive periodontitis.

RevDate: 2020-11-24

Terán LC, Distefano M, Bellich B, et al (2020)

Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis.

Microorganisms, 8(11): pii:microorganisms8111826.

Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.

RevDate: 2020-11-24

Kwiecińska-Piróg J, Przekwas J, Majkut M, et al (2020)

Biofilm Formation Reducing Properties of Manuka Honey and Propolis in Proteus mirabilis Rods Isolated from Chronic Wounds.

Microorganisms, 8(11): pii:microorganisms8111823.

Chronic wound infections are difficult to manage because of the biofilm formation in the wound environment. New measures for eliminating infections are necessary to increase the chance of wound healing. Apitherapy may be the new solution. The aim of this study was to assess the prevalence of wound infection factors and to examine the impact of Manuka honey and ethanol extract of propolis on biofilm formation of Proteus mirabilis isolated from chronic wound infections. According to the findings, the most frequent factors of infection are Staphylococcus aureus (46.1%), Pseudomonas aeruginosa (35.0%), and Proteus mirabilis (10.6%). Minimal inhibitory concentration and minimal bactericidal concentration values were assigned using the microbroth dilution test according to the Clinical and Laboratory Standards Institute. Biofilm of Proteus mirabilis isolates was formed in 96-well polystyrene plates and treated with Manuka honey (concentrations from 1.88% to 30.0%) and ethanol extract of propolis (1.0% to 40.0%). After 24 h, the biofilm viability was expressed by formazan absorbance (λ = 470 nm). Manuka honey reduced the biofilm viability in all, and ethanol extract of propolis in most, of the concentrations tested. Ethanol extract of propolis at the concentrations of 20.0% and 40.0%, reduced biofilm viability stronger than ethanol itself. With these results comes the conclusion that these substances can reduce biofilm formation.

RevDate: 2020-11-23

Engevik M, Danhof HA, Auchtung J, et al (2020)

Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus.

Gastroenterology pii:S0016-5085(20)35437-8 [Epub ahead of print].

BACKGROUND: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C. difficile. We hypothesized that select mucus-associated bacteria would promote C. difficile colonization and biofilm formation.

METHODS/RESULTS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C. difficile with the addition of human MUC2-coated coverslips. C. difficile was found to colonize and form biofilms on MUC2-coated coverslips and 16S rRNA sequencing revealed a unique biofilm profile with substantial co-colonization with Fusobacterium. Consistent with our bioreactor data, publicly available datasets and patient stool samples revealed that a subset of patients with C. difficile infection harbored high levels of Fusobacterium. We observed co-localization of C. difficile and F. nucleatum in an aggregation assay using adult patients and pediatric IBD patient stool and in CDI patient tissue sections. C. difficile strains were found to co-aggregate with F. nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C. difficile. Aggregation was shown to be unique between F. nucleatum and C. difficile, as other gut commensals did not aggregate with C. difficile. Addition of F. nucleatum also enhanced C. difficile biofilm formation and extracellular polysaccharide production.

CONCLUSIONS: Collectively, these data demonstrate a unique interaction of between pathogenic C. difficile and F. nucleatum in the intestinal mucus layer.

RevDate: 2020-11-23

Assisi C, Forauer E, Oliver HF, et al (2020)

Genomic and Transcriptomic Analysis of Biofilm Formation in Persistent and Transient Listeria monocytogenes Isolates from the Retail Deli Environment Does Not Yield Insight into Persistence Mechanisms.

Foodborne pathogens and disease [Epub ahead of print].

Persistence of Listeria monocytogenes in retail deli environments is a serious food safety issue, potentially leading to cross-contamination of ready-to-eat foods such as deli meats, salads, and cheeses. We previously discovered strong evidence of L. monocytogenes persistence in delis across multiple states. We hypothesized that this was correlated with isolates' innate characteristics, such as biofilm-forming capacity or gene differences. To test this hypothesis, we sequenced the genomes of 21 L. monocytogenes isolates previously collected longitudinally from the retail deli environment. Isolates were chosen to represent varying attachment capacity and sanitizer tolerance as well as persistence or transience. We used single-nucleotide polymorphism analysis to characterize the isolates' genetic relationships and used BLAST to search the isolates' genomes for antibiotic resistance elements, quaternary ammonium tolerance genes, and stress survival islets. We further chose four isolates for RNA-sequencing analysis and compared their global biofilm transcriptome with their global planktonic transcriptome. We did not find genetic content that explained persistence. The presence of stress survival islet-1 correlated to increased attachment capacity (p < 0.05), but not persistence. Further, the presence of sanitizer tolerance elements was not significantly correlated with phenotypic sanitizer tolerance. Analysis of biofilm versus planktonic gene expression did not show the expected differences in gene expression patterns. Overall, L. monocytogenes persistence in the deli environment is likely a matter of poor sanitation and/or facility design, rather than isolates' biofilm-forming capacity, sanitizer tolerance, or genomic content.

RevDate: 2020-11-23

Gupta P, Pruthi V, KM Poluri (2020)

Mechanistic Insights into Candida biofilm eradication potential of eucalyptol.

Journal of applied microbiology [Epub ahead of print].

AIM: Candida associated fungal infections are prevalent in hospitalized and immune-compromised patients. Their biofilm architecture and high rate of antifungal resistance make treatment challenging. Eucalyptol (EPTL), a monoterpene majorly present in the essential oil of eucalyptus is well known for curing respiratory infections. Hence, the present study investigated the anti-biofilm efficacy of EPTL against the laboratory strains and clinical isolates of Candida to delineate its mode of action.

METHODS: The effect of EPTL on the viability, biofilm formation and mature biofilm of Candida strains was studied. Further, its effect on cell cycle arrest, mitochondrial membrane potential, ROS generation, germ tube formation, ergosterol content and transcriptional expression of selected genes was also investigated.

RESULTS: EPTL exhibited anti-biofilm activity against mature and developing biofilm of Candida albicans and Candida glabrata along with their clinical isolates. The biochemical components and enzyme activity were differentially modulated in EPTL treated biofilm extra cellular matrix. EPTL generated ROS and arrested cell cycle at the G1 /S phase in both the species, while altered mitochondrial membrane potential was recorded in C. glabrata. Transcriptional analysis evidenced for differential gene expression of selected ABC transporters, secreted hydrolytic enzymes, and cell wall biogenesis in C. albicans/C. glabrata upon treating with EPTL.

CONCLUSION: The current data on anti-biofilm activity of EPTL establish its candidacy for drug development or as an adjuvant with existing antifungal formulations.

SIGNIFICANCE AND IMPACT: Present investigation elucidate the mode of action of Eucalyptol as antifungal agent and would stand as a candidate for management of topical fungal infection.

RevDate: 2020-11-23

Walther C, Zumbülte S, Faerber CM, et al (2020)

Analysis of relative bacterial activity and lactate dehydrogenase gene expression of caries-associated bacteria in a site-specific natural biofilm: an ex vivo study.

Clinical oral investigations pii:10.1007/s00784-020-03691-w [Epub ahead of print].

OBJECTIVES: Detecting bacterial activity is considered a promising approach to monitor shifts from symbiosis to dysbiosis in oral microbiome. The present study aimed at investigating both the relative bacterial activity and the lactate dehydrogenase (ldh) gene expression of caries-associated bacteria in a site-specific natural biofilm.

MATERIAL AND METHODS: Sixty subjects (age, mean ± SE: 30.1 ± 1.4) were allocated to two groups: caries-free subjects (CF) or caries-active subjects (CA). CF presented one sound surface (CFS, n = 30). CA presented two donor sites: a cavitated caries lesion (CAC, n = 30) and a sound reference surface (CAS, n = 30). Real-time quantitative PCR (q-PCR) on species or genus level and total bacteria was performed targeting the 16S gene, the 16S rRNA, the ldh gene, and the ldh mRNA (increasing 16S ribosomal RNA copy numbers can function as an indicator of increased energy metabolism). As the 16S rRNA abundance represents the number of ribosomes, while the 16S gene abundance represents the number of genomes, the quotient of the relative abundances functions as a measure for the relative bacterial activity (%).

RESULTS: Both lactobacilli and S. mutans showed the highest relative bacterial activity in CAC ((mean ± SE) 218 ± 60% and 61 ± 16%, respectively) and the lowest values for both sound reference surfaces (69 ± 48%; 8 ± 3%). Significant differences were found between CAC and CAS as well as between CAC and CFS for both lactobacilli and S. mutans (p < 0.05). The ldh gene expression of lactobacilli and S. mutans only showed moderate values in CAC (1.90E+03 ± 2.11E+03; 2.08E+04 ± 4.44E+04 transcripts/μl) and CFS (2.04E+03 ± 2.74E+03; 8.16E+03 ± 6.64E+03 transcripts/μl); consequently no significant differences were detected.

Caries-associated bacteria (lactobacilli and S. mutans) showed the highest relative bacterial activity in plaque of cavitated lesions, the lowest in sound surfaces, allowing the detection of a significant activity shift in health and disease for caries-active patients. However, no significant differences in ldh gene expression could be determined.

RevDate: 2020-11-23

Chipenzi T, Baloyi G, Mudondo T, et al (2020)

An Evaluation of the Antibacterial Properties of Tormentic Acid Congener and Extracts From Callistemon viminalis on Selected ESKAPE Pathogens and Effects on Biofilm Formation.

Advances in pharmacological and pharmaceutical sciences, 2020:8848606.

ESKAPE pathogens, namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, are responsible for a majority of all healthcare-acquired infections (HAI). The bacteria cause nosocomial infections in immunocompromised patients. Extracts from Callistemon viminalis have been shown to have antibacterial, antifungal, and anti-inflammatory activities. Tormentic acid congener, a pentacyclic triterpene saponin, was isolated from C. viminalis leaves. This study aimed to investigate the antibacterial effects of tormentic acid congener and leaf extracts on biofilm formation by A. baumannii, S. aureus, S. pyogenes, and P. aeruginosa. The antibacterial effects were determined by the microbroth dilution method, and ciprofloxacin was used as the standard antibacterial drug. Biofilm formation and detachment assays were performed using crystal violet staining. Production of extracellular polymeric DNA and polysaccharides from biofilms was also determined. Tormentic acid congener showed time-dependent antibacterial activity against P. aeruginosa with a MIC of 100 µg/ml and caused significant protein leakage. Antibacterial activity was found when tormentic acid congener was tested against both S. aureus and P. aeruginosa. The MICs were found to be 25 µg/ml and 12.5 µg/ml for P. aeruginosa and S. aureus cells, respectively. S. pyogenes was found to be susceptible to tormentic acid congener and the hydroethanolic extract with an MIC of 100 µg/ml and 25 µg/ml, respectively. A. baumannii was found not to be susceptible to the compound or the extracts. The compound and the extracts caused a significant decrease in the biofilm extracellular polysaccharide content of S. pyogenes. The extracts and tormentic acid congener caused detachment of biofilms and decreased the release of extracellular DNA and capsular polysaccharides from biofilms of P. aeruginosa and S. aureus. Tormentic acid congener and extracts, thus, have significant antibacterial and antibiofilm activities on these selected ESKAPE bacteria and can act as source lead compounds for the development of antibacterial triterpenoids.

RevDate: 2020-11-23

Tseng CY, Sun MF, Li TC, et al (2020)

Effect of Coptis chinensis on Biofilm Formation and Antibiotic Susceptibility in Mycobacterium abscessus.

Evidence-based complementary and alternative medicine : eCAM, 2020:9754357.

Mycobacterium abscessus infections are notoriously difficult to be treated and newer treatment options are required. Coptis chinensis (C. chinensis) and its main compound berberine are frequently used to treat bacterial and viral infections. In this study, the susceptibility of M. abscessus to C. chinensis extract and berberine was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) evaluation. The effects of C. chinensis and berberine on biofilm formation and antibiotic susceptibility in M. abscessus were observed. C. chinensis at concentrations of MIC (1.5 mg/mL) and 2 × MIC (3.0 mg/mL) and berberine at ½ × MIC (0.125 mg/mL) demonstrated a strong inhibition of biofilm formation. Concentration of C. chinensis at ½ × MIC resulted in a significant reduction in MICs of trimethoprim/sulfamethoxazole (TMP/SXT), clarithromycin (CLA), and linezolid (LZD). Similarly, ½ × MIC berberine had a significant effect on the MIC reductions of nine antibiotics including TMP/SXT, CLA, and LZD. Notably, the resistance level MIC of LZD against M. abscessus was reversed to a susceptible level by treatment with either C. chinensis or berberine. Therefore, C. chinensis and berberine have the potential to produce a synergistic antimycobacterial effect, reduce biofilm formation, and decrease antibacterial resistance to LZD in M. abscessus.

RevDate: 2020-11-23

Abdollahi S, Tofighi Z, Babaee T, et al (2020)

Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa.

Iranian journal of pharmaceutical research : IJPR, 19(2):115-126.

Biosurfactants, the microbial originated surface active agents, can modify the physicochemical properties of surfaces and reduce the bacterial adhesion via changing bacterial adhesion interactions on surfaces. They were also able to block oxidative chain reactions and might show antioxidant properties. The goal of this study was to evaluate the antioxidant and antibiofilm activities of biosurfactants which were derived from two autochthonous biosurfactant-producing strains, Bacillus amyloliquefaciens NS6 (surfactin), and Pseudomonas aeruginosa MN1 (rhamnolipids). Their antioxidant activities were determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods. Ferric thiocyanate (FTC) assay was used for determination of their lipid peroxidation inhibition capacity. Their effect to reduce the adhesion of Streptococcus mutans on polystyrene surfaces and disruption of its pre-formed biofilms were also investigated. Our results indicated that surfactin showed higher antioxidant activity than rhamnolipids and showed relatively similar efficiency to BHA that suggests it as a good alternative for synthetic antioxidants. In other hand, rhamnolipid conditioned surfaces showed higher antiadhesive and antibiofilm activity in comparison with surfactin treated surfaces.

RevDate: 2020-11-23

Yu J, Jiang F, Zhang F, et al (2020)

Virtual Screening for Novel SarA Inhibitors to Prevent Biofilm Formation of Staphylococcus aureus in Prosthetic Joint Infections.

Frontiers in microbiology, 11:587175.

Staphylococcus aureus is one of the predominant causes of periprosthetic joint infections (PJIs). Bacterial adhesion and biofilm formation are important factors in the pathogenesis of PJIs. S. aureus biofilm formation is regulated by several factors, including S. aureus regulator A (SarA). Previous studies have found that SarA mutants have limited ability to develop biofilms. In this study, we identified a SarA-targeting antibiofilm compound, ZINC00990144, and evaluated its efficacy and toxicity. According to static biofilm assay, the antibiofilm ability of the compound was concentration dependent. ZINC00990144 reduced biofilm in multiple strains by 40-86% at a concentration of 11.5 μM. Additionally, ZINC00990144 inhibited biofilm formation on different orthopedic implant materials including Titanium and UHMWPE disc. Furthermore, quantitative polymerase chain reaction results demonstrated that ZINC00990144 upregulated the expression of S. aureus exoproteases to inhibit the formation of biofilms. Moreover, ZINC00990144 prevented biofilm formation when exposed to sub-inhibitory doses of vancomycin, which is known to promote biofilm formation. CCK-8 results demonstrated ZINC00990144 has no significant effect on cell viability at concentration of 11.5 μM or below. Finally, we verified the antibiofilm function of the compound in vivo using implant infection mice model with/without exposure to sub-inhibitory vancomycin. In conclusion, ZINC00990144 acts by modulating between biofilm and planktonic state of S. aureus instead of being bactericidal. Therefore, it has the potential to be used in combination with other antibiotics to prevent PJIs.

RevDate: 2020-11-22

Qi X, Wang S, Li T, et al (2020)

An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning.

Biosensors & bioelectronics, 173:112822 pii:S0956-5663(20)30808-3 [Epub ahead of print].

Besides serving in wastewater treatment and energy generation fields, electroactive biofilm (EAB) has been employed as a sensitive bio-elements in a biosensor to monitor water quality by delivering electrical signals without additional mediators. Increasing studies have applied EAB-based biosensor in specific pollutant detection, typically biochemical oxygen demand (BOD) detection, as well as in early-warning of composite pollutants. Based on a comprehensive review of literatures, this study reveals how EAB outputs electrical signal, how we can evaluate and improve this performance, and what information we can expect from EAB-based biosensor. Since BOD detection and early-warning are normally confusing, this study manages to differentiate these two applications through distinguished purposes and metrics. Based on the introductions of progresses and applications of EAB-based biosensors so far, several novel strategies toward the future development of EAB-based biosensors are proposed.

RevDate: 2020-11-22

Moon DJ, AK Deva (2021)

Adverse Events Associated with Breast Implants: The Role of Bacterial Infection and Biofilm.

Clinics in plastic surgery, 48(1):101-108.

RevDate: 2020-11-21

Yuan J, Yuan H, Huang S, et al (2020)

Comprehensive performance, bacterial community structure of single-chamber microbial fuel cell affected by COD/N ratio and physiological stratifications in cathode biofilm.

Bioresource technology, 320(Pt B):124416 pii:S0960-8524(20)31690-4 [Epub ahead of print].

This study compares the effects and bacterial community structure of single-chamber microbial fuel cells (MFCs) in the treatment of NH4+-containing wastewater with different chemical oxygen demand (COD)/N ratios, whilst simultaneously conducting stratification research on the cathode biofilm. To this end, five nitrifier pre-enriched single-chamber MFC reactors are established to treat five different COD/N wastewaters, respectively. The results show that MFCs with low COD/N have better NH4+-N removal, electrochemical performance, but the removal stability and COD removal effect are lower than MFCs with high COD/N. High-throughput sequencing reveals that the anode community structure is weakly affected by the COD/N and is dominated by Geobacter; however, the cathode community is complex and susceptible to the COD/N. Furthermore, the pH profile in the cathode biofilm is characterized by a pH microelectrode and fluorescence in situ hybridization (FISH) is used to confirm that the distribution trend of nitrifiers and denitrifiers in cathode biofilm.

RevDate: 2020-11-21

Zhao Z, Li H, Tao X, et al (2020)

Light-triggered Nitric Oxide Release Photosensitizer to Combat Bacterial Biofilm Infections.

Chemistry (Weinheim an der Bergstrasse, Germany) [Epub ahead of print].

Bacterial biofilms are a serious global health concern, often responsible for persistent infections. New strategies to prevent and treat bacterial infections via eradication of the biofilms are urgently needed. A novel ruthenium-based compound was reported in this study that functions as both a boronic acid-decorated photosensitizer (PS) and a light-triggered nitric oxide (NO) releasing agent. The compound could selectively attach to the bacterial membrane and biofilms. And it is highly potent to eradicate P. aeruginosa biofilms via the simultaneous release of NO as well as reactive oxygen species (ROS), which is more effective than clinical antibiotics tobramycin. The compound also has excellent bacterial specificity and shows no significant cytotoxicity to human cells. The results reveal potential applications of this innovative dual-functional photoactivated ruthenium compound to combat bacterial biofilm infections.

RevDate: 2020-11-20

da Silva CR, S Campos R, de A Neto JB, et al (2020)

Antifungal activity of β-lapachone against Candida spp. resistant to azoles and its aspects upon biofilm formation.

Future microbiology [Epub ahead of print].

Aim: The purpose of this study was to assess the antifungal effect of β-lapachone (β-lap) on azole-resistant strains of Candida spp. in both planktonic and biofilm form. Materials & methods: The antifungal activity of β-lap was evaluated by broth microdilution, flow cytometry and the comet assay. The cell viability of the biofilms was assessed using the MTT assay. Results: β-lap showed antifungal activity against resistant strains of Candida spp. in planktonic form. In addition, β-lap decreased the viability of mature biofilms and inhibited the formation of biofilms in vitro. Conclusion: β-lap showed antifungal activity against Candida spp., suggesting that the compound can be utilized as an adjunct agent in the treatment of candidiasis.

RevDate: 2020-11-20

Amaya Arbeláez MI, Vergani CE, Barbugli PA, et al (2020)

Long-Term Effect of Daily Chemical Disinfection on Surface Topography and Candida Albicans Biofilm Formation on Denture Base and Reline Acrylic Resins.

Oral health & preventive dentistry, 18(1):999-1010 pii:45521.

PURPOSE: This study investigated the effect of long-term daily chemical disinfection on the topographic and Candida albicans biofilm formation on a denture base resin and a reline acrylic resin.

MATERIAL AND METHODS: Circular samples (14 × 1.2 mm) were fabricated from a denture base (Vipi Wave) and reline acrylic resins (Tokuyama Rebase Fast II). Samples were kept in 50 ml of distilled water (48 h at 37°C). Subsequently, the samples were immersed in five different solutions: 0.5% sodium hypochlorite; 3.8% sodium perborate; 2% chlorhexidine gluconate; apple vinegar containing 4% maleic acid; and distilled water (control group). The specimen was immersed in the solutions for 8 h daily and transferred to distilled water at 37°C for more 16 h. The surface topographic and Candida albicans (ATCC 90028) biofilm formation were evaluated at baseline (before chemical disinfection) and after 1, 3 and 6 months of immersion. The surface topographic was evaluated by arithmetical roughness average (Ra) and scanning electron microscope (SEM), while the biofilm formation was evaluated by colony-forming units (CFU/ml) method and Alamar Blue assay (cell metabolism). The results were evaluated by three-way analysis of variance (ANOVAs) and post-hoc tests (α = 0.05).

RESULTS: The results showed statistically significant effects from the type of acrylic resin (p = 0.029) and time (p <0.001) on the roughness of the specimen. In general, the reline resin had higher roughness than the denture base resin. In addition, the roughness of the samples after 1, 3 and 6 months of immersion in the cleaning solutions was higher than at baseline. In relation to the microbiological assays, there were no statistically significant differences (p >0.055) in the CFU/ml values of the biofilms among the different resins, periods of time and cleaning solutions. Considering the metabolism of the cells within the biofilms, the results showed that, at baseline, it was statistically significantly higher (p <0.05) than after 1, 3 and 6 months of storage. The SEM images showed that all disinfectant solutions provided surface changes of both acrylic resins (base and reline) after 1, 3 and 6 months of immersion.

CONCLUSIONS: The roughness of both acrylic resins was affected by the disinfection in all cleaning agents, increasing over time, and this effect was more evident in the reline acrylic resin group. This surface change was also observed in the SEM images. While the number of cells within the biofilms was not affected by immersion in the cleaning agents, their metabolism was lower after 1, 3 and 6 months of immersion.

RevDate: 2020-11-20

Jeyakumar J, Sculean A, S Eick (2020)

Anti-biofilm Activity of Oral Health-care Products Containing Chlorhexidine Digluconate and Citrox.

Oral health & preventive dentistry, 18(1):981-990 pii:45437.

PURPOSE: To analyze in vitro new formulations with Citrox and chlorhexidine digluconate (CHX) regarding their antibacterial activity against planktonic bacteria and their potential to inhibit biofilm formation or to act on existing biofilms.

MATERIALS AND METHODS: Five oral health care products with 0.05%-0.5% CHX formulations (four rinses and one gel) were compared with Citrox preparations and additive-free CHX solutions. The minimal inhibitory concentrations (MIC) were determined against 13 oral bacteria associated with caries or periodontitis. Further, the activity on retarding biofilm formation and on existing biofilms was analyzed; both a 'cariogenic' (5 species) and a 'periodontal' (12 species) biofilm were included.

RESULTS: The MIC values did not differ between the CHX mouthrinse/gel formulations and the respective additive-free CHX solutions. Citrox was active against selected periodontopathogens (e.g. Porphyromonas gingivalis). The CHX formulations more effectively retarded biofilm formation than did solutions with the same concentration of CHX but without additives. The anti-biofilm activities depended on the CHX concentration in the formulations. Both CHX solutions and formulations (rinse and gel) were only slightly active on an already formed biofilm. Citrox did not exert any anti-biofilm effect.

CONCLUSION: The present in vitro data support the anti-biofilm activity of the novel CHX, Citrox, poly-L-lysine and xylitol oral health-care formulations. Further studies are warranted to confirm the present findings in various clinical settings.

RevDate: 2020-11-20

Shadbad MA, Kafil HS, Rezaee MA, et al (2020)

Streptococcus agalactiae clinical isolates in Northwest Iran: antibiotic susceptibility, molecular typing, and biofilm formation.

GMS hygiene and infection control, 15:Doc23 pii:dgkh000358.

Background: Group B Streptococcus (S. agalactiae) is one of the colonizing bacteria in pregnant women which can be a causative agent of meningitis and neonatal sepsis. This organism has also been increasingly related to invasive infections in non-pregnant adults. Objective: In present study, we aimed to characterize the clonality of biofilm-producing S. agalactiae isolates from various sources from two different clinical laboratories in Tehran, Iran. Materials and Methods:S. agalactiae isolates were collected from community-acquired (CA) and hospital-acquired (HA) infections in pregnant and non-pregnant adults. The antimicrobial susceptibility patterns and biofilm formation ability were determined. In addition, pulse field gel electrophoresis (PFGE) was used to verify the clonal diversity of isolates. Results: Out of the 87 isolates, 15 (16.6%) formed biofilm. The antibiotic resistance rate was 98.85% for clindamycin, 98.85% for tetracycline, followed by 29.88% for erythromycin, 9.19% for moxifloxacin and 6.89% for levofloxacin. The PFGE patterns revealed a total of 16 different clusters consisting of 6 single types (STs). Conclusion: This study evaluated the biofilm formation of clinical S. agalactiae, which may be a step towards understanding its role in pathological processes. Biofilm formation was significant only in the hypervirulent ST-17 clone. Intraclonal spread of isolates indicates that a local lineage of isolates is responsible for infection by these bacteria.

RevDate: 2020-11-20

Antar A, Lee MA, Yoo Y, et al (2020)

PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae.

Pathogens (Basel, Switzerland), 9(11): pii:pathogens9110956.

Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of bacterial leaf blight of rice, possesses two-component regulatory systems (TCSs) as an intracellular signaling pathway. In this study, we observed changes in virulence, biofilm formation, motility, chemotaxis, and tolerance against oxidative stress of a knockout mutant strain for the PXO_RS20535 gene, encoding an orphan response regulator (RR). The mutant strain lost virulence, produced significantly less biofilm, and showed remarkably reduced motility in swimming, swarming, and twitching. Furthermore, the mutant strain lost glucose-guided movement and showed clear diminution of growth and survival in the presence of H2O2. These results indicate that the RR protein encoded in the PXO_RS20535 gene (or a TCS mediated by the protein) is closely involved in regulation of biofilm formation, all types of motility, chemotaxis, and tolerance against reactive oxygen species (ROS) in Xoo. Moreover we found that the expression of most genes required for a type six secretion system (T6SS) was decreased in the mutant, suggesting that lack of the RR gene most likely leads to defect of T6SS in Xoo.

RevDate: 2020-11-20

Shenkutie AM, Yao MZ, Siu GK, et al (2020)

Biofilm-Induced Antibiotic Resistance in Clinical Acinetobacter baumannii Isolates.

Antibiotics (Basel, Switzerland), 9(11): pii:antibiotics9110817.

In order to understand the role of biofilm in the emergence of antibiotic resistance, a total of 104 clinical Acinetobacter baumannii strains were investigated for their biofilm-forming capacities and genes associated with biofilm formation. Selected biofilm-formers were tested for antibiotic susceptibilities when grown in biofilm phase. Reversibility of antibiotic susceptibility in planktonic cells regrown from biofilm were investigated. We found 59.6% of the strains were biofilm-formers, among which, 66.1% were non-multidrug resistant (MDR) strains. Presence of virulence genes bap, csuE, and abaI was significantly associated with biofilm-forming capacities. When strains were grown in biofilm state, the minimum biofilm eradication concentrations were 44, 407, and 364 times higher than the minimum bactericidal concentrations (MBC) for colistin, ciprofloxacin, and imipenem, respectively. Persisters were detected after treating the biofilm at 32-256 times the MBC of planktonic cells. Reversibility test for antibiotic susceptibility showed that biofilm formation induced reversible antibiotic tolerance in the non-MDR strains but a higher level of irreversible resistance in the extensively drug-resistant (XDR) strain. In summary, we showed that the non-MDR strains were strong biofilm-formers. Presence of persisters in biofilm contributed to the reduced antibiotic susceptibilities. Biofilm-grown Acinetobacter baumannii has induced antibiotic tolerance in non-MDR strains and increased resistance levels in XDR strains. To address the regulatory mechanisms of biofilm-specific resistance, thorough investigations at genome and transcription levels are warranted.

RevDate: 2020-11-19

Verhorstert KWJ, Guler Z, de Boer L, et al (2020)

In Vitro Bacterial Adhesion and Biofilm Formation on Fully Absorbable Poly-4-hydroxybutyrate and Nonabsorbable Polypropylene Pelvic Floor Implants.

ACS applied materials & interfaces [Epub ahead of print].

Knitted polypropylene (PP) implants for the correction of pelvic organ prolapse have been associated with complications such as vaginal exposure, infection, and pain. Since certain complications may be linked to bacterial contamination and persistent inflammation, there is a rationale to develop a biocompatible implant that is less prone to bacterial adhesion and biofilm formation. Delayed absorbable materials could meet these requirements and poly-4-hydroxybutyrate (P4HB) might be such a new material for future pelvic floor implants. We studied in vitro bacterial adhesion and biofilm formation on P4HB in comparison to PP. We investigated the influence of both polymers using flat films and compared P4HB and PP implants with different knitting designs. P4HB flat films were demonstrated to be hydrophilic with significantly less Staphylococcus aureus and Escherichia coli cultured from P4HB films than from hydrophobic PP films after 24 h of incubation. On the implants, a higher number of E. coli were cultured after 1 h of incubation from the knitted P4HB implant with the highest density and smallest pore size, compared to other P4HB and PP implants. No differences were observed between the implants for E. coli at later time points or for S. aureus incubation. These results show that in flat films, the polymer influences biofilm formation, demonstrated by a reduced biofilm formation on P4HB compared with PP flat films. In addition, the knitting design may affect bacterial adhesion. Despite certain design and material characteristics that give the knitted P4HB implants a higher surface area, this did not result in more bacterial adhesion and biofilm formation overall. Collectively, these results warrant further (pre)clinical investigations of P4HB pelvic floor implants.

RevDate: 2020-11-19

Boyd JD, Stromberg AJ, Miller CS, et al (2020)

Biofilm and cell adhesion strength on dental implant surfaces via the laser spallation technique.

Dental materials : official publication of the Academy of Dental Materials pii:S0109-5641(20)30288-8 [Epub ahead of print].

OBJECTIVE: The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion.

METHODS: High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The ratio of cell adhesion strength to biofilm adhesion strength (i.e., Adhesion Index) is determined as a nondimensionalized parameter for biocompatibility assessment.

RESULTS: Adhesion strength of 143 MPa, with a 95% C.I. (114, 176), is measured for MG 63 cells on smooth titanium and 292 MPa, with a 95% C.I. (267, 306), on roughened titanium. Adhesion strength for S. mutans on smooth titanium is 320 MPa, with a 95% C.I. (304, 333), and remained relatively constant at 332 MPa, with a 95% C.I. (324, 343), on roughened titanium. The calculated Adhesion Index for smooth titanium is 0.451, with a 95% C.I. (0.267, 0.622), which increased to 0.876, with a 95% C.I. (0.780, 0.932), on roughened titanium.

SIGNIFICANCE: The laser spallation technique provides a platform to examine the tradeoffs of adhesion modulators on both biofilm and cell adhesion. This tradeoff is characterized by the Adhesion Index, which is proposed to aid biocompatibility screening and could help improve implantation outcomes. The Adhesion Index is implemented to determine surface factors that promote favorable adhesion of cells greater than biofilms. Here, an Adhesion Index ≫ 1 suggests favorable biocompatibility.

RevDate: 2020-11-19

Pestana-Nobles R, Leyva-Rojas JA, J Yosa (2020)

Searching Hit Potential Antimicrobials in Natural Compounds Space against Biofilm Formation.

Molecules (Basel, Switzerland), 25(22): pii:molecules25225334.

Biofilms are communities of microorganisms that can colonize biotic and abiotic surfaces and thus play a significant role in the persistence of bacterial infection and resistance to antimicrobial. About 65% and 80% of microbial and chronic infections are associated with biofilm formation, respectively. The increase in infections by multi-resistant bacteria instigates the need for the discovery of novel natural-based drugs that act as inhibitory molecules. The inhibition of diguanylate cyclases (DGCs), the enzyme implicated in the synthesis of the second messenger, cyclic diguanylate (c-di-GMP), involved in the biofilm formation, represents a potential approach for preventing the biofilm development. It has been extensively studied using PleD protein as a model of DGC for in silico studies as virtual screening and as a model for in vitro studies in biofilms formation. This study aimed to search for natural products capable of inhibiting the Caulobacter crescentus enzyme PleD. For this purpose, 224,205 molecules from the natural products ZINC15 database, have been evaluated through molecular docking and molecular dynamic simulation. Our results suggest trans-Aconitic acid (TAA) as a possible starting point for hit-to-lead methodologies to obtain new inhibitors of the PleD protein and hence blocking the biofilm formation.

RevDate: 2020-11-19

Yang Y, Zhuang H, Cui H, et al (2021)

Effect of waterproof breathable membrane based cathodes on performance and biofilm microbiomes in bioelectrochemical systems.

The Science of the total environment, 753:142281.

A novel method for fabricating air-cathodes was developed by assembling an activated carbon (AC) catalyst together with a waterproof breathable membrane (WBM) and stainless steel mesh (SSM) to reduce manufacturing costs of bioelectrochemical systems (BESs). WBMs made of different materials were tested in the assembly, including a hybrid of polypropylene and polyolefin (PPPO), polyethylene (PE), and polyurethane (PU), and compared against poly tetrafluoroethylene (PTFE)-based cathodes. Results showed that the maximum power density of the activated carbon-stainless steel mesh-polyurethane (AC@SSM/PU) assembly was 2.03 W/m2 while that of conventional carbon cloth cathode assembly (Pt@CC/PTFE) was 1.51 W/m2. Compared to conventional cathode fabrication, AC@SSM/PU had a much lower cost and simpler manufacturing process. Illumina Miseq sequencing of 16S rRNA gene amplicons indicated that microbiomes were substantially different between anode and cathode biofilms. There was also a difference in the community composition between different cathode biofilms. The predominant population in the anode biofilms was Geobacter (38-75% relative abundance), while Thauera and Pseudomonas dominated the cathode biofilms. The results demonstrated that different types of air-cathodes influenced the microbial community assembly on the electrodes.

RevDate: 2020-11-18

Jerdan R, Cameron S, Donaldson E, et al (2020)

Community biofilm-formation, stratification and productivity in serially-transferred microcosms.

FEMS microbiology letters pii:5989696 [Epub ahead of print].

The establishment of O2 gradients in liquid columns by bacterial metabolic activity produces a spatially-structured environment. This produces a high-O2 region at the top that represents an un-occupied niche which could be colonised by biofilm-competent strains. We have used this to develop an experimental model system using soil-wash inocula and a serial-transfer approach to investigate changes in community-based biofilm-formation and productivity. This involved ten transfers of mixed-community or biofilm-only samples over a total of 10-60 days incubation. In all final-transfer communities the ability to form biofilms was retained, though in longer incubations the build-up of toxic metabolites limited productivity. Measurements of microcosm productivity, biofilm-strength and attachment levels were used to assess community-aggregated traits which showed changes at both the community and individual-strain levels. Final-transfer communities were stratified with strains demonstrating a plastic phenotype when migrating between the high and low-O2 regions. The majority of community productivity came from the O2-depleted region rather than the top of the liquid column. This model system illustrates the complexity we expect to see in natural biofilm-forming communities. The connection between biofilms and the liquid column seen here has important implications for how these structures form and respond to selective pressure.

RevDate: 2020-11-18

Bonete JM, Silva GD, Guidelli ÉJ, et al (2020)

Tissue reaction and anti-biofilm action of new biomaterial composed of latex from Hancornia speciosa Gomes and silver nanoparticles.

Anais da Academia Brasileira de Ciencias, 92(4):e20191584 pii:S0001-37652020000700909.

In this work, the natural latex extracted from Harconia speciosa was incorporated with silver nanoparticles (AgNP) to compose a functional biomaterial associating the intrinsic angiogenic activity of the latex and the antimicrobial activity of AgNP. Tissue reaction after subcutaneous implantation in dorsum of rats of membranes without AgNP and with 0.05%, 0.4% AgNP was compared at 3, 7 and 25 days. No statistically significant difference in the tissue response of the different biomaterials was observed, indicating that AgNP did not interfere with the inflammatory reaction (p > 0.05) or with the angiogenic activity of latex. Biomembranes were also tested against bacterial biofilm formation by Staphylococcus aureus and the antimicrobial activity of the new biomaterial can be found with bacteria crenation (0.05% AgNP) and no biofilm deposition (0.4% AgNP). Therefore, this biomaterial has interesting properties for the tissue repair process and may be feasible for future applications as dressing.

RevDate: 2020-11-18

McMahon RE, Salamone AB, Poleon S, et al (2020)

Efficacy of Wound Cleansers on Wound-Specific Organisms Using In Vitro and Ex Vivo Biofilm Models.

Wound management & prevention, 66(11):31-42.

Biofilms are believed to be a source of chronic inflammation in non-healing wounds.

PURPOSE: In this study, the pre-clinical anti-biofilm efficacy of several wound cleansers was examined using the Calgary minimum biofilm eradication concentration (MBEC) and ex vivo porcine dermal explant (PDE) models on Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans biofilms.

METHODS: A surfactant-based cleanser and antimicrobial-based cleansers containing ionic silver, hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and polyhexamethylene biguanide (PHMB) were tested on the MBEC model biofilms with a 10-minute application time. Select cleansers were then tested on the mature PDE biofilms with 10-minute applications followed by the application of cleanser-soaked gauze. The PDE model was further expanded to include single and daily applications of the cleansers to mimic daily and 72-hour dressing changes.

RESULTS: In the MBEC model, PHMB- and HOCl-based cleansers reduced immature MRSA, C albicans, and P aeruginosa biofilm regrowth by > 3× when compared with silver, surfactant, and saline cleansers. The major differences could be elucidated in the PDE model in which, after daily application, 1 PHMB-based cleanser showed a statistically significant reduction (3-8 CFU/mL log reduction) in all mature biofilms tested, while a NaOCl-based cleanser showed significant reduction in 2 microorganisms (3-5 CFU/mL log reduction, P aeruginosa and MRSA).The other PHMB-based cleanser showed a statistically significant 3 log CFU/mL reduction in P aeruginosa. The remaining cleansers showed no statistically significant difference from the saline control.

CONCLUSION: Results confirm that there are model-dependent differences in the outcomes of these studies, suggesting the importance of model selection for product screening. The results indicate that 1 PHMB-based cleanser was effective in reducing mature P aeruginosa, MRSA, and C albicans biofilms and that sustained antimicrobial presence was necessary to reduce or eliminate these mature biofilms.

RevDate: 2020-11-18

Nadler N, Kvich L, Bjarnsholt T, et al (2020)

The discovery of bacterial biofilm in patients with muscle invasive bladder cancer.

APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [Epub ahead of print].

The carcinogenic effects of microorganisms have been discovered in multiple cancer types. In urology, the development of squamous cell carcinoma of the bladder due to the parasitic infection with Schistosoma Mansoni is widely accepted. The oncogenic potential of biofilms has been studied in colorectal cancer and experimental studies have shown that bacteria such as Escherichia coli drive the development of colorectal cancer. Notably, Escherichia coli is responsible for 80 % of all urinary tract infections. Recent findings suggests an altered urinary microbiome in patients with bladder cancer compared to healthy subjects. In this case series, we demonstrate our findings of biofilm formation in human bladder cancer tissue. Tissue samples from ten patients that underwent routine Transurethral Resection of Bladder Tumor (TURBT) were obtained from the Danish National Biobank. Pathological tissue was examined for presence of bacterial aggregates by Fluorescence in situ Hybridization. In two of ten patients, analysis showed abundant bacterial aggregation on the surface epithelium. Both positive cases had pT2 urothelial bladder cancer. Our findings suggest that biofilm occurs in urothelial cancer tissue indicating an association between biofilm formation and bladder cancer.

RevDate: 2020-11-19

Cavitt TB, Carlisle JG, Dodds AR, et al (2020)

Thermodynamic Surface Analyses to Inform Biofilm Resistance.

iScience, 23(11):101702.

Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.

RevDate: 2020-11-18

Selvaraj A, Valliammai A, Muthuramalingam P, et al (2020)

Proteomic and Systematic Functional Profiling Unveils Citral Targeting Antibiotic Resistance, Antioxidant Defense, and Biofilm-Associated Two-Component Systems of Acinetobacter baumannii To Encumber Biofilm and Virulence Traits.

mSystems, 5(6):.

Acinetobacter baumannii has been reported as a multidrug-resistant bacterium due to biofilms and antimicrobial resistance mechanisms. Hence, novel therapeutic strategies are necessary to overcome A. baumannii infections. This study revealed that citral at 200 μg/ml attenuated A. baumannii biofilms by up to 90% without affecting viability. Furthermore, microscopic analyses and in vitro assays confirmed the antibiofilm efficacy of citral. The global effect of citral on A. baumannii was evaluated by proteomic, transcriptional, and in silico approaches. Two-dimensional (2D) gel electrophoresis and matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) analyses were used to assess the effect of citral on the A. baumannii cellular proteome. Quantitative real-time PCR (qPCR) analysis was done to validate the proteomic data and identify the differentially expressed A. baumannii genes. Protein-protein interactions, gene enrichment, and comparative gene network analyses were performed to explore the interactions and functional attributes of differentially expressed proteins of A. baumannii Global omics-based analyses revealed that citral targeted various mechanisms such as biofilm formation, antibiotic resistance, antioxidant defense, iron acquisition, and type II and type IV secretion systems. The results of antioxidant analyses and antibiotic sensitivity, blood survival, lipase, and hemolysis assays validated the proteomic results. Cytotoxicity analysis showed a nontoxic effect of citral on peripheral blood mononuclear cells (PBMCs). Overall, the current study unveiled that citral has multitarget efficacy to inhibit the biofilm formation and virulence of A. baumanniiIMPORTANCEAcinetobacter baumannii is a nosocomial-infection-causing bacterium and also possesses multidrug resistance to a wide range of conventional antibiotics. The biofilm-forming ability of A. baumannii plays a major role in its resistance and persistence. There is an alarming need for novel treatment strategies to control A. baumannii biofilm-associated issues. The present study demonstrated the strong antibiofilm and antivirulence efficacy of citral against A. baumannii In addition, proteomic analysis revealed the multitarget potential of citral against A. baumannii Furthermore, citral treatment enhances the susceptibility of A. baumannii to the host innate immune system and reactive oxygen species (ROS). Cytotoxicity analysis revealed the nonfatal effect of citral on human PBMCs. Therefore, citral could be the safest therapeutic compound and can be taken for further clinical evaluation for the treatment of biofilm-associated infections by A. baumannii.

RevDate: 2020-11-18

Arjes HA, KC Huang (2020)

Straightening up for life in a biofilm.

Proceedings of the National Academy of Sciences of the United States of America [Epub ahead of print].

RevDate: 2020-11-18

Cennamo P, Ebbreo M, Quarta G, et al (2020)

UV-C Irradiation as a Tool to Reduce Biofilm Growth on Pompeii Wall Paintings.

International journal of environmental research and public health, 17(22): pii:ijerph17228392.

This study focuses on the experimentation of a method based on the use of UV-C irradiation to eliminate the biofilms present in a tomb located in the necropolis of Porta Nocera, in Pompeii. For this study, the autotrophic component of the biofilm was isolated in the laboratory, while, contemporarily, the characterization of the composition of the pigments of the frescoes took place on original fragments, which had already detached from the tomb and were examined in situ. These preliminary analyses were necessary for the recreation of test samples in the laboratory, which closely matched the original surfaces. Artificial biofilms were used for experimental exposure to UV-C radiation. The exposure to UV-C radiation was carried out at different distances for a fixed time interval. The effectiveness of the biocidal action was assessed by employing optical microscopy techniques, through a careful visual assessment of the area occupied by the biofilm on the different test samples, using a photographic survey, as well as by means of colorimetric measurements using spectrometric techniques. In order to obtain an additional parameter to evaluate the death rate of microorganism cultures exposed to the UV-C radiation, the concentrations of the photosynthetic pigments were also measured by spectrophotometry. Results showed that biofilms were completely eradicated by radiation, and no change in pigment color was observed.

RevDate: 2020-11-18

Arweiler NB, Auschill TM, Heumann C, et al (2020)

Influence of Probiotics on the Salivary Microflora Oral Streptococci and Their Integration into Oral Biofilm.

Antibiotics (Basel, Switzerland), 9(11): pii:antibiotics9110803.

Probiotics' ability to integrate into dental biofilms is not yet clarified. The aim of this trial was to detect probiotic bacteria from probiotic products in dental biofilm and saliva during and after intake. In this parallel, randomized clinical trial, 39 subjects wore customized appliances to build up intra-oral biofilms (72-h periods). The trial was divided into screening (S) to determine baseline biofilm flora, intervention (I), and wash out (WO). During I (28 days), subjects consumed a product containing (a) Enterococcus faecalis (b) Lactobacilluscasei, or (c) Lactobacillus rhamnosus GG. Probiotic bacteria and Streptococci spp. were detected in the biofilms and saliva of the 35 subjects that were included in the analysis. During I and WO, the ratio of probiotics in the biofilm was very low compared to total bacterial load, while saliva had slightly but not significantly higher values. No significant changes of probiotic bacteria (p > 0.05) were found at any visit during I or WO. The proportion of streptococci was significantly reduced (p < 0.05) during I and even lower in WO, compared to S. Probiotic bacteria could neither integrate nor persist in dental biofilm and saliva but did influence the growth of streptococci in biofilm and saliva.

RevDate: 2020-11-18

Thappeta KRV, Zhao LN, Nge CE, et al (2020)

In-Silico Identified New Natural Sortase A Inhibitors Disrupt S. aureus Biofilm Formation.

International journal of molecular sciences, 21(22): pii:ijms21228601.

Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.

RevDate: 2020-11-17

Wang B, Yao Y, Wei P, et al (2020)

Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo.

International journal of biological macromolecules pii:S0141-8130(20)35021-2 [Epub ahead of print].

The increasing drug resistance of pathogenic bacteria is a crisis that threatens public health. Antimicrobial peptides (AMPs) have been suggested to be potentially effective alternatives to solve this problem. Here, we tested housefly Phormicin-derived peptides for effects on Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. A decreased bacterial load of MRSA was observed in the mouse scald model after treatment with Phormicin and in the positive control group (vancomycin). A mouse scrape model indicated that Phormicin helps the host fight drug-resistant MRSA infections. The protective effect of Phormicin on MRSA was confirmed in the Hermetia illucens larvae model. Phormicin also disrupted the formation of S. aureus and MRSA biofilms. Furthermore, this effect coincided with the downregulation of biofilm formation-related gene expression (agrC, sigB, RNAIII, altA, rbf, hla, hld, geh and psmɑ). Notably, virulence genes and several regulatory factors were also altered by Phormicin treatment. Based on these findings, housefly Phormicin helps the host inhibit MRSA infection through effects on biofilm formation and related gene networks. Therefore, housefly Phormicin potential represents a candidate agent for clinical MRSA chemotherapy.

RevDate: 2020-11-17

Komathy M, Loke MF, Vadivelu J, et al (2020)

LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth.

Microbial pathogenesis pii:S0882-4010(20)30980-3 [Epub ahead of print].

Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).

RevDate: 2020-11-17

Pybus CA, Felder-Scott C, Obuekwe V, et al (2020)

Cefiderocol Retains Anti-Biofilm Activity in Multi-Drug Resistant Gram-Negative Pathogens.

Antimicrobial agents and chemotherapy pii:AAC.01194-20 [Epub ahead of print].

Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multi-drug resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to seven commonly used antibiotics in well-characterized multi-drug resistant pathogens, then determined their efficacy in the biofilm setting. MIC90 values were consistently lower for cefiderocol in all strains tested compared to other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, tobramycin, clarithromycin). Cefiderocol treatment displayed a superior reduction in Pseudomonas aeruginosa biofilm (93%, p<0.0001) compared to other antibiotics (49-82%). Cefiderocol was generally as effective or superior in reducing biofilm in other pathogens depending on the pathogen-antibiotic combination. There was a trend towards greater biofilm reduction when the antibiotic dose was increased or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.

RevDate: 2020-11-17

Doub JB (2020)

Bacteriophage Therapy for Clinical Biofilm Infections: Parameters That Influence Treatment Protocols and Current Treatment Approaches.

Antibiotics (Basel, Switzerland), 9(11): pii:antibiotics9110799.

Biofilm infections are extremely difficult to treat, which is secondary to the inability of conventional antibiotics to eradicate biofilms. Consequently, current definitive treatment of biofilm infections requires complete removal of the infected hardware. This causes significant morbidity and mortality to patients and therefore novel therapeutics are needed to cure these infections without removal of the infected hardware. Bacteriophages have intrinsic properties that could be advantageous in the treatment of clinical biofilm infections, but limited knowledge is known about the proper use of bacteriophage therapy in vivo. Currently titers and duration of bacteriophage therapy are the main parameters that are evaluated when devising bacteriophage protocols. Herein, several other important parameters are discussed which if standardized could allow for more effective and reproducible treatment protocols to be formulated. In addition, these parameters are correlated with the current clinical approaches being evaluated in the treatment of clinical biofilm infections.

RevDate: 2020-11-16

Afonso TB, Simões LC, N Lima (2020)

Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation.

Research in microbiology pii:S0923-2508(20)30104-2 [Epub ahead of print].

Water is indispensable to life and safe and accessible supply must be available to all. The presence of microorganisms is a threat to this commitment. Biofilms are the main reservoir of microorganisms inside water distribution systems and they are extremely ecologically diverse. Filamentous fungi and bacteria can coexist inside these systems forming inter-kingdom biofilms. This review has the goal of summarizing the most relevant and recent reports on the occurrence of filamentous fungi in water distribution systems along with the current knowledge and gaps about filamentous fungal biofilm formation. Special focus is given on fungal-bacterial interactions in water biofilms.

RevDate: 2020-11-16

Mumtaz S, Behera S, K Mukhopadhyay (2020)

Lipidated Short Analogue of α-Melanocyte Stimulating Hormone Exerts Bactericidal Activity against the Stationary Phase of Methicillin-Resistant Staphylococcus aureus and Inhibits Biofilm Formation.

ACS omega, 5(44):28425-28440.

Stationary phase Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has been widely associated with many persistent infections as well as biofilm-associated infections, which are challenging due to their increasing antibiotic resistance. α-Melanocyte stimulating hormone (α-MSH) is an antimicrobial peptide (AMP) with well-established potent activity against S. aureus, but little is known about its antimicrobial efficacy against the stationary phase of the bacteria. We investigated the in vitro activities of two palmitoylated analogues, Pal-α-MSH(6-13) and Pal-α-MSH(11-13), of the C-terminal fragments of α-MSH against biofilm-producing strains of methicillin-sensitive S. aureus (MSSA) and MRSA. While both the peptides demonstrated anti-staphylococcal efficacy, Pal-α-MSH(11-13) emerged as the most effective AMP as palmitoylation led to a remarkable enhancement in its activity against stationary phase bacteria. Similar to α-MSH, both the designed analogues were membrane-active and exhibited improved bacterial membrane depolarization and permeabilization, as further confirmed via electron microscopy studies. Of the two peptides, Pal-α-MSH(11-13) was able to retain its activity in the presence of standard microbiological media, which otherwise is a major limiting factor toward the therapeutic use of α-MSH-based peptides. More importantly, Pal-α-MSH(11-13) was also highly effective in inhibiting the formation of biofilms. Furthermore, it did not lead to resistance development in MRSA cells even upon 18 serial passages at sub-MIC concentrations. These observations support the potential use of Pal-α-MSH(11-13) in the treatment of planktonic as well as sessile S. aureus infections.

RevDate: 2020-11-16

Shaker B, Ahmad S, Thai TD, et al (2020)

Rational Drug Design for Pseudomonas aeruginosa PqsA Enzyme: An in silico Guided Study to Block Biofilm Formation.

Frontiers in molecular biosciences, 7:577316.

Pseudomonas aeruginosa is an opportunistic gram-negative bacterium implicated in acute and chronic nosocomial infections and a leading cause of patient mortality. Such infections occur owing to biofilm formation that confers multidrug resistance and enhanced pathogenesis to the bacterium. In this study, we used a rational drug design strategy to inhibit the quorum signaling system of P. aeruginosa by designing potent inhibitory lead molecules against anthranilate-CoA ligase enzyme encoded by the pqsA gene. This enzyme produces autoinducers for cell-to-cell communication, which result in biofilm formation, and thus plays a pivotal role in the virulence of P. aeruginosa. A library of potential drug molecules was prepared by performing ligand-based screening using an available set of enzyme inhibitors. Subsequently, structure-based virtual screening was performed to identify compounds showing the best binding conformation with the target enzyme and forming a stable complex. The two hit compounds interact with the binding site of the enzyme through multiple short-range hydrophilic and hydrophobic interactions. Molecular dynamic simulation and MM-PBSA/GBSA results to calculate the affinity and stability of the hit compounds with the PqsA enzyme further confirmed their strong interactions. The hit compounds might be useful in tackling the resistant phenotypes of this pathogen.

RevDate: 2020-11-16

Elamary R, WM Salem (2020)

Optimizing and purifying extracellular amylase from soil bacteria to inhibit clinical biofilm-forming bacteria.

PeerJ, 8:e10288 pii:10288.

Background: Bacterial biofilms have become a major threat to human health. The objective of this study was to isolate amylase-producing bacteria from soil to determine the overall inhibition of certain pathogenic bacterial biofilms.

Methods: We used serial dilution and the streaking method to obtain a total of 75 positive amylase isolates. The starch-agar plate method was used to screen the amylolytic activities of these isolates, and we used morphological and biochemical methods to characterize the isolates. Optimal conditions for amylase production and purification using Sephadex G-200 and SDS-PAGE were monitored. We screened these isolates' antagonistic activities and the purified amylase against pathogenic and multi-drug-resistant human bacteria using the agar disk diffusion method. Some standard antibiotics were controlled according to their degree of sensitivity. Finally, we used spectrophotometric methods to screen the antibiofilm 24 and 48 h after application of filtering and purifying enzymes in order to determine its efficacy at human pathogenic bacteria.

Results: The isolated Bacillus species were Bacillus megaterium (26.7%), Bacillus subtilis (16%), Bacillus cereus (13.3%), Bacillus thuringiesis (10.7%), Bacillus lentus (10.7%), Bacillus mycoides (5.3%), Bacillus alvei (5.3%), Bacillus polymyxa (4%), Bacillus circulans (4%), and Micrococcus roseus (4%). Interestingly, all isolates showed a high antagonism to target pathogens. B. alevi had the highest recorded activity (48 mm) and B. polymyxa had the lowest recorded activity (12 mm) against Staphylococcus aureus (MRSA) and Escherichia coli, respectively. On the other hand, we detected no antibacterial activity for purified amylase. The supernatant of the isolated amylase-producing bacteria and its purified amylase showed significant inhibition for biofilm: 93.7% and 78.8%, respectively. This suggests that supernatant and purified amylase may be effective for clinical and environmental biofilm control.

Discussion: Our results showed that soil bacterial isolates such as Bacillus sp. supernatant and its purified amylase are good antibiofilm tools that can inhibit multidrug-resistant former strains. They could be beneficial for pharmaceutical use. While purified amylase was effective as an antibiofilm, the isolated supernatant showed better results.

RevDate: 2020-11-16

Palka L, Mazurek-Popczyk J, Arkusz K, et al (2020)

Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: a preliminary study.

Journal of oral microbiology, 12(1):1838164 pii:1838164.

Background: In the oral and maxillofacial surgery, fixation plates are commonly used for the stabilization of bone fragments. Additive manufacturing has enabled us to design and create personalized fixation devices that would ideally fit any given fracture. Aim: The aim of the present preliminary study was to assess the susceptibility of 3D-printed titanium fixation plates to biofilm formation. Methods: Plates were manufactured using selective laser melting (SLM) from Ti-6Al-4 V. Reference strains of Streptococcus mutans, Staphyloccocus epidermidis, Staphylococcus aureus, Lactobacillus rhamnosus, and Candida albicans, were tested to evaluate the material's susceptibility to biofilm formation over 48 hours. Biofilm formations were quantified by a colorimetric method and colony-forming units (CFU) quantification. Scanning electron microscopy (SEM) visualized the structure of the biofilm. Results: Surface analysis revealed the average roughness of 102.75 nm and irregular topography of the tested plates. They were susceptible to biofilm formation by all tested strains. The average CFUs were as follows: S. mutans (11.91 x 107) > S.epidermidis (4.45 x 107) > S. aureus (2.3 x 107) > C.albicans (1.22 x 107) > L. rhamnosus (0.78 x 107). Conclusions: The present preliminary study showed that rough surfaces of additively manufactured titanium plates are susceptible to microbial adhesion. The research should be continued in order to compare additively manufactured plates with other commercially available osteotomy plates. Therefore, we suggest caution when using this type of material.

RevDate: 2020-11-16

Biot FV, Bachert BA, Mlynek KD, et al (2020)

Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness.

Frontiers in microbiology, 11:593542.

Francisella tularensis, the causative agent of tularemia, is capable of causing disease in a multitude of mammals and remains a formidable human pathogen due to a high morbidity, low infectious dose, lack of a FDA approved vaccine, and ease of aerosolization. For these reasons, there is concern over the use of F. tularensis as a biological weapon, and, therefore, it has been classified as a Tier 1 select agent. Fluoroquinolones and aminoglycosides often serve as the first line of defense for treatment of tularemia. However, high levels of resistance to these antibiotics has been observed in gram-negative bacteria in recent years, and naturally derived resistant Francisella strains have been described in the literature. The acquisition of antibiotic resistance, either natural or engineered, presents a challenge for the development of medical countermeasures. In this study, we generated a surrogate panel of antibiotic resistant F. novicida and Live Vaccine Strain (LVS) by selection in the presence of antibiotics and characterized their growth, biofilm capacity, and fitness. These experiments were carried out in an effort to (1) assess the fitness of resistant strains; and (2) identify new targets to investigate for the development of vaccines or therapeutics. All strains exhibited a high level of resistance to either ciprofloxacin or streptomycin, a fluoroquinolone and aminoglycoside, respectively. Whole genome sequencing of this panel revealed both on-pathway and off-pathway mutations, with more mutations arising in LVS. For F. novicida, we observed decreased biofilm formation for all ciprofloxacin resistant strains compared to wild-type, while streptomycin resistant isolates were unaffected in biofilm capacity. The fitness of representative antibiotic resistant strains was assessed in vitro in murine macrophage-like cell lines, and also in vivo in a murine model of pneumonic infection. These experiments revealed that mutations obtained by these methods led to nearly all ciprofloxacin resistant Francisella strains tested being completely attenuated while mild attenuation was observed in streptomycin resistant strains. This study is one of the few to examine the link between acquired antibiotic resistance and fitness in Francisella spp., as well as enable the discovery of new targets for medical countermeasure development.

RevDate: 2020-11-16

Gao H, Ma L, Qin Q, et al (2020)

Fur Represses Vibrio cholerae Biofilm Formation via Direct Regulation of vieSAB, cdgD, vpsU, and vpsA-K Transcription.

Frontiers in microbiology, 11:587159.

Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription. In contrast, Fur activates the transcription of vieSAB in a direct manner. The cdgD and vieSAB encode proteins with GGDEF and EAL domains, respectively. Thus, data presented here highlight a new physiological role for Fur wherein it acts as a repressor of V. cholerae biofilm formation mediated by decreasing the production of exopolysaccharide and the intracellular levels of c-di-GMP.

RevDate: 2020-11-16

Hympanova M, Terlep S, Markova A, et al (2020)

The Antibacterial Effects of New N-Alkylpyridinium Salts on Planktonic and Biofilm Bacteria.

Frontiers in microbiology, 11:573951.

An increasing microbial resistance to known antibiotics raises a demand for new antimicrobials. In this study the antimicrobial properties of a series of new N-Alkylpyridinium quaternary ammonium compounds (QACs) with varying alkyl chain lengths were evaluated for several nosocomial pathogens. The chemical identities of the new QACs were determined by NMR, LC-MS, and HRMS. All the planktonic bacteria tested were susceptible to the new QACs as evaluated by MIC and MBC assays. The antimicrobial effect was most pronounced against Staphylococcus aureus clinical isolates. Live/dead staining CLSM was used to test the effectiveness of the QACs in biofilms. The effectiveness was up to 10-fold lower than in the plankton. When QACs were used as irrigants in Er:YAG - SSP photoacoustic steaming, their effectiveness significantly increased. The combined use of irrigants and photoacoustic streaming increased biofilm removal from the surface and increased the killing rate of the cells remaining on the surface. This may allow for a shorter chemical exposure time and lower dosage of QACs used in applications. The results demonstrate that the new QACs have potential to be applied as antibacterial compounds effective against planktonic and biofilm bacteria as well as irrigants in removal of difficult-to-reach biofilms.

RevDate: 2020-11-16

Mishra R, Panda AK, De Mandal S, et al (2020)

Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens.

Frontiers in microbiology, 11:566325.

Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.

RevDate: 2020-11-16

Kadam S, Madhusoodhanan V, Bandgar A, et al (2020)

From Treatise to Test: Evaluating Traditional Remedies for Anti-Biofilm Potential.

Frontiers in pharmacology, 11:566334 pii:566334.

Traditional plant-based remedies hold vast potential as novel antimicrobial agents, particularly for recalcitrant infection states such as biofilms. To explore their potential, it is important to bring these remedies out of historical treatises, and into present-day scientific evaluation. Using an example of Indian traditional medicine (Ayurveda), we present a perspective toward evaluating historical remedies for anti-biofilm potential. Across compendia, we identified three plant-based remedies (of Kalanchoe pinnata, Cynodon dactylon, and Ocimum tenuiflorum) recommended for wounds. The remedies were reconstituted in accordance with historical practices, and tested for their effects on biofilm formation and eradication assays of wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Based on our approach and the results obtained, we provide insights into the considerations and challenges related to identifying potential remedies in historical texts, and testing them in the laboratory with standard biofilm assays. We believe this will be relevant for future studies exploring anti-biofilm approaches at the interface of historical medicine and present-day scientific practices.

RevDate: 2020-11-16

Katsipis G, Tsalouxidou V, Halevas E, et al (2020)

In vitro and in silico evaluation of the inhibitory effect of a curcumin-based oxovanadium (IV) complex on alkaline phosphatase activity and bacterial biofilm formation.

Applied microbiology and biotechnology pii:10.1007/s00253-020-11004-0 [Epub ahead of print].

The scientific interest in the development of novel metal-based compounds as inhibitors of bacterial biofilm-related infections and alkaline phosphatase (ALP) deregulating effects is continuous and rising. In the current study, a novel crystallographically defined heteroleptic V(IV)-curcumin-bipyridine (V-Cur) complex with proven bio-activity was studied as a potential inhibitor of ALP activity and bacterial biofilm. The inhibitory effect of V-Cur was evaluated on bovine ALP, with two different substrates: para-nitrophenyl phosphate (pNPP) and adenosine triphosphate (ATP). The obtained results suggested that V-Cur inhibited the ALP activity in a dose-dependent manner (IC50 = 26.91 ± 1.61 μM for ATP, IC50 = 2.42 ± 0.12 μM for pNPP) exhibiting a mixed/competitive type of inhibition with both substrates tested. The evaluation of the potential V-Cur inhibitory effect on bacterial biofilm formation was performed on Gram (+) bacteria Staphylococcus aureus (S. aureus) and Gram (-) Escherichia coli (E. coli) cultures, and it positively correlated with inhibition of bacterial ALP activity. In silico study proved the binding of V-Cur at eukaryotic and bacterial ALP, and its interaction with crucial amino acids of the active sites, verifying complex's inhibitory potential. The findings suggested a specific anti-biofilm activity of V-Cur, offering a further dimension in the importance of metal complexes, with naturally derived products as biological ligands, as therapeutic agents against bacterial infections and ALP-associated diseases. KEY POINTS: • V-Cur inhibits bovine and bacterial alkaline phosphatases and bacterial biofilm formation. • Alkaline phosphatase activity correlates with biofilm formation. • In silico studies prove binding of the complex on alkaline phosphatase.

RevDate: 2020-11-16

Lin D, Chen K, Guo J, et al (2020)

Contribution of biofilm formation genetic locus, pgaABCD, to antibiotic resistance development in gut microbiome.

Gut microbes, 12(1):1-12.

The human gut microbiome is the presumed site in which the emergence and evolution of antibiotic-resistant organisms constantly take place. To delineate the genetic basis of resistance formation in gut microbiome strains, we investigated the changes in the subpopulation structure of Escherichia coli in rat intestine before and after antimicrobial treatment. We observed that antibiotic treatment was selected for an originally minor subpopulation E. coli carrying the biofilm-forming genetic locus pgaABCD and the toxin-antitoxin system HipAB. Such strains possessed dramatically enhanced ability to withstand the detrimental effects of antibiotics, becoming a dominant subspecies upon antibiotic treatment and eventually evolving into resistant mutants. In contrast, E. coli strains that did not carry pgaABCD and HipAB were eradicated upon antibiotic treatment. Our findings, therefore, suggested that genes encoding biofilm-forming ability played an important role in conferring specific gut E. coli strains the ability to evolve into resistant strains upon a prolonged antibiotic treatment, and that such strains may therefore be considered bacterial antibiotic resistance progenitor cells in the gut microbiome.

RevDate: 2020-11-15

Yu Z, Tao S, Xu HHK, et al (2020)

Rechargeable adhesive with calcium phosphate nanoparticles inhibited long-term dentin demineralization in a biofilm-challenged environment.

Journal of dentistry pii:S0300-5712(20)30276-1 [Epub ahead of print].

OBJECTIVES: This study aims to investigate the long-term demineralization-inhibition capability of a rechargeable adhesive with nanoparticles of amorphous calcium phosphate (NACP) on dentin in a biofilm-challenged environment.

METHODS: The NACP adhesive was immersed in a pH 4 solution to exhaust calcium (Ca) and phosphate (P) ions and then recharged with Ca and P ions. Dentin samples were demineralized underStreptococcus mutans biofilms for 24 h and randomly divided into two groups: (1) dentin control, (2) dentin with recharged NACP adhesives. Each day, all the samples were immersed in brain heart infusion broth with 1% sucrose (BHIS) for 4 h, and then in artificial saliva (AS) for 20 h. This cycle was repeated for 10 days. The pH of BHIS, the Ca and P ions content of the BHIS and AS were measured daily. After 10 days, the lactic acid production and colony-forming units of the biofilms were tested. The changes of remineralization/demineralization were also analyzed.

RESULTS: Dentin in the control group showed further demineralization. The recharged NACP adhesive neutralized acids, increasing the pH to above 5, and released large amounts of Ca and P ions each day. The recharged NACP adhesive decreased the production of lactic acid (P < 0.05), inhibited dentin demineralization and sustained the dentin hardness in the biofilm-challenged environment, showing an excellent long-term demineralization-inhibition capability.

CONCLUSIONS: The NACP adhesive could continuously inhibit dentin demineralization in a biofilm-challenged environment by recharging with Ca and P ions.

SIGNIFICANCE: The rechargeable NACP adhesive could provide long-term dentin bond protection.

RevDate: 2020-11-15

Manobala T, Shukla SK, Rao TS, et al (2020)

Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm.

Chemosphere pii:S0045-6535(20)32920-9 [Epub ahead of print].

Increasing number of reports on uranium contamination in groundwater bodies is a growing concern. Deinococcus radiodurans biofilm-based U(VI) bioremediation has great potential to provide solution. This study focuses on the kinetic modelling of uranium biosorption by D. radiodurans biofilm biomass and identification of the functional groups involved in the sequestration process. The effect of temperature, pH and amount of biofilm dry mass were studied using two uranyl ion concentrations (100 and 1000 mg/L). D. radiodurans dry biomass showed good affinity for uranyl ion adsorption. The kinetic experiments revealed that the biosorption process was spontaneous and exothermic in nature. The modelling of kinetic adsorption data revealed that U(VI) sorption by D. radiodurans biofilm biomass follows a pseudo-second-order reaction. Mechanism of U(VI) sorption was suggested to follow an intra-particle diffusion model, which includes covalent bonding between U(VI) and functional groups present on the surface of biofilm biomass, and diffusional barrier acts as a rate limiting step. External mass transfer was the rate-limiting step as evident from Boyd and Elovich plot. Chemical modifications in surface functional groups of biofilm biomass, confirmed the involvement of carboxyl, phosphate, and hydroxyl groups in uranium binding as a significant loss in U(VI) sorption capacity was recorded in these chemically modified biomasses. XRD data indicated the formation of metal deposits, predominantly as uranyl phosphates.

RevDate: 2020-11-14

Ušjak D, Dinić M, Novović K, et al (2020)

Methoxy-Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression.

Chemistry & biodiversity [Epub ahead of print].

An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-Time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2-methoxy-2'-hydroxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.

RevDate: 2020-11-16

Boyeldieu A, Ali Chaouche A, Ba M, et al (2020)

The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis.

NPJ biofilms and microbiomes, 6(1):54 pii:10.1038/s41522-020-00165-5.

The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.

RevDate: 2020-11-16

Tan L, Fu J, Feng F, et al (2020)

Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection.

Science advances, 6(46): pii:6/46/eaba5723.

Preventing multidrug-resistant bacteria-related infection and simultaneously improving osseointegration are in great demand for orthopedic implants. However, current strategies are still limited to a combination of non-U.S. Food and Drug Administration-approved antibacterial and osteogenic agents. Here, we develop a food-grade probiotic-modified implant to prevent methicillin-resistant Staphylococcus aureus (MRSA) infection and accelerate bone integration. Lactobacillus casei is cultured on the surface of alkali heat-treated titanium (Ti) substrates and inactivated by ultraviolet irradiation to avoid sepsis induced by viable bacteria. This inactivated L. casei biofilm shows excellent 99.98% antibacterial effectiveness against MRSA due to the production of lactic acid and bacteriocin. In addition, the polysaccharides in the L. casei biofilm stimulate macrophages to secrete abundant osteogenic cytokines such as oncostatin M and improve osseointegration of the Ti implant. Inactivated probiotics modification can be a promising strategy to endow implants with both excellent self-antibacterial activity and osteointegration ability.

RevDate: 2020-11-14

Lefebvre M, Razakandrainibe R, Villena I, et al (2020)

A review on Cryptosporidium and biofilm interactions.

Applied and environmental microbiology pii:AEM.02483-20 [Epub ahead of print].

Biofilms are increasingly implicated as suspected to play a major role in waterborne cryptosporidiosis. This review aims to synthesize all currently available data on interactions between Cryptosporidium oocysts and biofilms. Initially described following a waterborne outbreak, the integration of Cryptosporidium oocysts in biofilm has been well demonstrated. Biofilms appear important in the dissemination/protection of oocysts in the environment. Consequently, it has been suggested that substrate-associated biofilms should be systematically considered in oocyst water quality assessment. The influence of physicochemical parameters has been studied on oocyst biofilm retention. Biofilm surface roughness, ionic concentration (especially Ca2+), laminar/turbulent flow, shear stress and electrostatic repulsion forces appear important to consider regarding oocyst release from biofilm. However, data analysis carried out during this review, also revealed important gaps in biological interactions within biofilms offering many perspectives for future works.

RevDate: 2020-11-14

Rodrigues AC, Almeida FA, André C, et al (2020)

Phenolic extract of Eugenia uniflora L. and furanone reduce biofilm formation by Serratia liquefaciens and increase its susceptibility to antimicrobials.

Biofouling [Epub ahead of print].

Serratia liquefaciens is a spoilage microorganism of relevance in the dairy industry because it is psychrotrophic, able to form biofilm, and produces thermoresistant proteases and lipases. Phenolic compounds and furanones have been studied as inhibitors of biofilm formation. In this study, the potential of the pulp phenolic extract of Eugenia uniflora L. orange fruits, also called pitanga, and furanone C30 on the inhibition of biofilm formation by S. liquefaciens L53 and the susceptibility to different antimicrobials were evaluated. The pulp phenolic extract of pitanga had a high total phenolic content, being mainly composed of glycosylated quercetins and ellagitannins. Sub-inhibitory concentrations of this extract and furanone reduced biofilm formation by S. liquefaciens on polystyrene and the amount of polysaccharides, proteins and extracellular DNA in the biofilms. These biofilms were also more susceptible to kanamycin. The combinations of furanone with phenolic extract of pitanga or kanamycin showed a synergistic effect with total growth inhibition of S. liquefaciens.

RevDate: 2020-11-13

Bohl LP, Isaa P, Breser ML, et al (2020)

Interaction between bovine mammary epithelial cells and planktonic or biofilm Staphylococcus aureus: The bacterial lifestyle determines its internalization ability and the pathogen recognition.

Microbial pathogenesis pii:S0882-4010(20)30970-0 [Epub ahead of print].

The main cause of mastitis, one of the most costly diseases in the dairy industry, is bacterial intramammary infection. Many of these bacteria are biofilm formers. Biofilms have been associated with resistance to antibiotics and to the host immune system. Here, we evaluated different experimental models representing bacterial biofilm lifestyle with the aim to study bacterial invasion into bovine mammary epithelial cells and the interaction of these cells with planktonic or biofilm Staphylococcus aureus. Staphylococcus aureus V329, its nonbiofilm-forming mutant and bovine mammary alveolar cells (MAC-T) were used. Bacterial invasion was studied using the gentamicin exclusion test, cell viability by trypan blue exclusion technique, TLR2 expression by flow cytometry, IL1β/IL6 production by ELISA and IL8/TNFα gene expression by real-time polymerase chain reaction. Biofilm and planktonic S. aureus showed differences in their invasion ability, with the biofilm mode showing a lower ability. Planktonic S. aureus reduced MAC-T viability after 6 h of co-culture, while biofilms did so at 24 h. MAC-T infected with planktonic bacteria showed increased TLR2 expression. Both lifestyles increased IL8 expression and IL1β/IL6 production but did not modify TNFα expression. Our results demonstrate that the bacterial lifestyle affects the invasion behavior, suggesting that biofilms reduce the bacteria-epithelial cell interaction. Planktonic cultures seem to induce higher cellular activation than biofilms. Further knowledge about the complex host-biofilm interaction is necessary to design more efficient therapies against bovine mastitis.

RevDate: 2020-11-13

Lei L, Zeng J, Wang L, et al (2020)

Quantitative acetylome analysis reveals involvement of glucosyltransferase acetylation in Streptococcus mutans biofilm formation.

Environmental microbiology reports [Epub ahead of print].

Streptococcus mutans (S. mutans) effectively utilizes dietary sucrose for the exopolysaccharide productions which are mostly synthesized by the effects of glucosyltransferases (Gtfs). In the present study, the acetylome of S. mutans was identified and quantitative acetylome analysis of the bacterial biofilm growth (SMB) was compared with that of planktonic growth (SMP). The dynamic changes of protein acetylation were quantified using the integrated approach involving TMT labeling and Kac affinity enrichment followed by high-resolution mass spectrometry-based quantitative proteomics. In total, 973 acetylation sites in 445 proteins were identified, among which 617 acetylation sites in 302 proteins were quantitated. The overall analysis indicated that 22.7% of proteins were acetylated. Among the quantified proteins in SMB, the acetylation degree of lysine in 56 sites increased, while that of lysine decreased in 52 sites. In the acetylome of S. mutans, six significantly enriched motifs were identified and obtained including Kac****K, KacF, Kac****R, KacY, KacH, F*Kac. In addition, KEGG pathway-based enrichment analysis indicated significant enrichments in glycolysis/gluconeogenesis, and RNA degradation. Particularly, most down-regulated acetylated lysine proteins were glucosyltransferase-SI, glucosyltransferase-I, and glucosyltransferase-S in S. mutans biofilm, which probably reveals a switch-off mechanism for the regulation of glucosyltransferases function during the biofilm development. This article is protected by copyright. All rights reserved.

RevDate: 2020-11-13

Oliveira VC, Souza MT, Zanotto ED, et al (2020)

Biofilm Formation and Expression of Virulence Genes of Microorganisms Grown in Contact with a New Bioactive Glass.

Pathogens (Basel, Switzerland), 9(11): pii:pathogens9110927.

Bioactive glass F18 (BGF18), a glass containing SiO2-Na2O-K2O-MgO-CaO-P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time. However, changes in the expression level of genes related to virulence factors were observed after 8 and 48 h of culture in BGF18. BGF18 coating did not have a clear inhibitory effect on biofilm growth but promoted the modulation of virulence factors.

RevDate: 2020-11-13

Reigada I, Guarch-Pérez C, Patel JZ, et al (2020)

Combined Effect of Naturally-Derived Biofilm Inhibitors and Differentiated HL-60 Cells in the Prevention of Staphylococcus aureus Biofilm Formation.

Microorganisms, 8(11): pii:microorganisms8111757.

Nosocomial diseases represent a huge health and economic burden. A significant portion is associated with the use of medical devices, with 80% of these infections being caused by a bacterial biofilm. The insertion of a foreign material usually elicits inflammation, which can result in hampered antimicrobial capacity of the host immunity due to the effort of immune cells being directed to degrade the material. The ineffective clearance by immune cells is a perfect opportunity for bacteria to attach and form a biofilm. In this study, we analyzed the antibiofilm capacity of three naturally derived biofilm inhibitors when combined with immune cells in order to assess their applicability in implantable titanium devices and low-density polyethylene (LDPE) endotracheal tubes. To this end, we used a system based on the coculture of HL-60 cells differentiated into polymorphonuclear leukocytes (PMNs) and Staphylococcus aureus (laboratory and clinical strains) on titanium, as well as LDPE surfaces. Out of the three inhibitors, the one coded DHA1 showed the highest potential to be incorporated into implantable devices, as it displayed a combined activity with the immune cells, preventing bacterial attachment on the titanium and LDPE. The other two inhibitors seemed to also be good candidates for incorporation into LDPE endotracheal tubes.

RevDate: 2020-11-12

Cannon ML, Merchant M, Kabat W, et al (2020)

In Vitro Studies of Xylitol and Erythritol Inhibition of Streptococcus Mutans and Streptococcus Sobrinus Growth and Biofilm Production.

The Journal of clinical pediatric dentistry, 44(5):307-314.

The aim of this study was to evaluate synergy and inhibitory effects of xylitol and erythritol on Streptococcus mutans and Streptococcus sobrinus growth and biomass production on a polystyrene plastic surface. Study design; S. mutans and sobrinus strains (American Type Culture Collection reference strains 31341, 35668, 25175, sobrinus 33478) were cultivated in media (Todd Hewitt Broth with 1% sucrose or heart-brain infusion broth with 1% sucrose) at differing concentrations of xylitol or erythritol in microtiter assay plates incubated for 48 hours. Bacterial growth was quantified and measured by optical density using a microplate reader. Experiments assessing synergy and biofilm growth were carried out also using microdilution assays. All four strains were inhibited by 30% (w/v) xylitol, and 15% erythritol at 150mg/ml erythritol, 2/4 strains had reduced growth; at 270mg/ml, 4/4 strains were inhibited. Bactericidal effects were not observed at any polyol concentration. Combinations of both polyols in a checker board array were used to determine if there were any benefits of polyol combinations. Results The combination studies yielded mixed outcomes with indifference in growth for strains 68 and 78, potential additive effect for strain 75 and possible antagonism for strain 41. Assessment of biomass formation and polyol interference were also performed post MIC assessment. Strains 41, 68 and 75 produced significant biomass in the absence of either polyol. Both polyols inhibited biomass formation in a dose-dependent fashion. Strain 75 is a poor biomass producer and could not be assessed for polyol effects in our assay. Conclusion: Our results demonstrate significant polyol influence on the oral Streptococcal strains tested in our laboratory.

RevDate: 2020-11-12

Yi L, Li J, Fan Q, et al (2020)

The otc gene of Streptococcus suis plays an important role in biofilm formation, adhesion, and virulence in a murine model.

Veterinary microbiology, 251:108925 pii:S0378-1135(20)31063-4 [Epub ahead of print].

Streptococcus suis (S. suis) is an emerging zoonotic pathogen that can cause meningitis, arthritis, pneumonia, and sepsis. It poses a serious threat to the swine industry and public health worldwide. Ornithine carbamoyltransferase (OTC) is involved in the arginine deiminase system. OTC, which is a widely distributed enzyme in microorganisms, mammals, and higher plants, catalyzes the conversion of ornithine to citrulline. The present study showed that the otc gene plays an important role in the pathogenesis of S. suis infections. The ability of an otc-deficient mutant (Δotc) to form a biofilm was significantly reduced compared to the wild-type (WT) strain, as determined by crystal violet staining. Confocal laser scanning microscopy and scanning electron microscopy observations showed that the weakening of biofilm formation by the Δotc strain is related to a decrease in the extracellular matrix. In addition, compared to the WT strain, the Δotc strain had a reduced capacity to adhere to human laryngeal epidermoid carcinoma (HEp-2) cells compared to the WT strain. A real-time PCR analysis showed that the expression of adhesion-related genes by the Δotc strain was also lower than that of the WT strain. The virulence of the Δotc strain was significantly lower than that of the WT strain in a murine infection model. In addition, a histological analysis showed that the pathogenicity of the Δotc strain was lower than that of the WT strain, causing only slight inflammatory lesions in lung, liver, spleen, and kidney tissues. No significant differences were observed between the complemented mutant (CΔotc) and WT strains with respect to biofilm formation, adhesion, gene expression, and virulence. The present study provided evidence that the otc gene plays a pivotal role in the regulation of S. suis adhesion and biofilm formation. It also suggested that the otc gene is indirectly involved in the pathogenesis of S. suis serotype 2 infections.

RevDate: 2020-11-12

Gao R, van der Mei HC, Ren Y, et al (2020)

Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro.

Nanomedicine : nanotechnology, biology, and medicine pii:S1549-9634(20)30178-7 [Epub ahead of print].

Nanotechnology offers many novel infection-control strategies that may help prevent and treat antimicrobial-resistant bacterial infections. Here, we synthesized polydopamine, photothermal-nanoparticles (PDA-NPs) without further surface-functionalization to evaluate their potential with respect to biofilm-control. Most ESKAPE-panel pathogens in suspension with photothermal-nanoparticles showed three- to four-log-unit reductions upon Near-Infra-Red (NIR)-irradiation, but for enterococci only less than two-log unit reduction was observed. Exposure of existing Staphylococcus aureus biofilms to photothermal-nanoparticles followed by NIR-irradiation did not significantly kill biofilm-inhabitants. This indicates that the biofilm mode of growth poses a barrier to penetration of photothermal-nanoparticles, yielding dissipation of heat to the biofilm-surrounding rather than in its interior. Staphylococcal biofilm-growth in the presence of photothermal-nanoparticles could be significantly prevented after NIR-irradiation because PDA-NPs were incorporated in the biofilm and heat dissipated inside it. Thus, unmodified photothermal nanoparticles have potential for prophylactic infection-control, but data also constitute a warning for possible development of thermo-resistance in infectious pathogens.

RevDate: 2020-11-12

Çimen M, AÖ Düzgün (2020)

Antibiotic induced biofilm formation of novel multidrug resistant Acinetobacter baumannii ST2121 clone.

Acta microbiologica et immunologica Hungarica [Epub ahead of print].

The aim of this study was to identify antimicrobial resistance and virulence factor genes exhibited by multidrug resistant (MDR) Acinetobacter baumannii, to analyze biofilm formation and to investigate clonal subtypes of isolate. Whole genome sequencing was done by Illumina NovaSeq 6,000 platform and multilocus sequence typing (MLST) was performed by Oxford and Pasteur typing schemes. Influence of imipenem and levofloxacin on biofilm formation was investigated in 96-well plates at 3 replicates. The strain was found to carry OXA-23, OXA-51-like, AmpC and TEM-1 beta-lactamases. The sequence of the blaOXA-51-like gene has been identified as a blaOXA-66. According to Pasteur MLST scheme the strain displayed ST2 allelic profile. However, based on Oxford MLST scheme this strain represents the new ST2121, as the gdhB gene has a single allelic mutation namely, the gdhB-227. It was determined that MDR isolate carried bap, basABCDFGHIJ, csuA/BABCDE, bauABCDEF, plcD, pgaABCD, entE, barAB, ompA, abaIR, piT2EAFTE/AUBl, fimADT, cvaC, bfmR, bfmS virulence genes. In our study imipenem induced the highest biofilm formation at a concentration of 32 µg/ml and levofloxacin at a concentration of 16 µg/ml. In conclusion, we detected a new MDR A. baumannii ST2121 clone harboring blaOXA-66 gene that has been reported for the first time in Turkey.

RevDate: 2020-11-12

Gries CM, Rivas Z, Chen J, et al (2020)

Intravital Multiphoton Examination of Implant-Associated Staphylococcus aureus Biofilm Infection.

Frontiers in cellular and infection microbiology, 10:574092.

Bacterial infections associated with implanted medical devices represents a healthcare crisis due to their persistence, antibiotic tolerance, and immune avoidance. Indwelling devices are rapidly coated with host plasma and extracellular matrix proteins which can then be exploited by bacterial pathogens for adherence and subsequent biofilm development. Our understanding of the host-pathogen interface that determines the fate of biofilm-mediated infections is limited to the experimental models employed by laboratories studying these organisms. Current in vivo models of biofilm-mediated infection, while certainly useful, are typically limited to end-point analyses of bacterial burden enumeration, immune cell profiling, and cytokine/chemokine analysis. Thus, with these models, the complex, real-time assessment of biofilm development and innate immune cell activity remains imperceptible. Here, we describe a novel murine biofilm infection model employing time-lapse intravital multiphoton microscopy which permits concurrent and real-time visualization of Staphylococcus aureus biofilm formation and immune cell activity. Using cell tracking, we found that S. aureus biofilms impede neutrophil chemotaxis, redirecting their migration patterns to prevent biofilm invasion. This approach is the first to directly examine device-associated biofilm development and host-pathogen interactions and will serve to both further our understanding of infection development and help reveal the effects of future antibiofilm treatment strategies.

RevDate: 2020-11-12

Horton MV, JE Nett (2020)

Candida auris infection and biofilm formation: going beyond the surface.

Current clinical microbiology reports, 7(3):51-56.

Purpose of Review: Emergent fungal pathogen C. auris is spreading in hospitals throughout the world and mortality rates for patients with invasive disease approach 60%. This species exhibits a heightened capacity to colonize skin, persist on hospital surfaces, rapidly disseminate in healthcare settings, and resist antifungal therapy.

Recent Findings: Current investigations show that C. auris produces biofilms, surface-adherent communities that resist antifungals and withstand desiccation. These biofilms form when C. auris is growing on skin or in conditions expected in the hospital environment and on implanted medical devices.

Summary: Here we will highlight the topic of biofilm formation by C. auris. We illustrate how this process influences resistance to antimicrobials and promotes nosocomial transmission.

RevDate: 2020-11-12

Zhou L, Zhang Y, Ge Y, et al (2020)

Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation.

Frontiers in microbiology, 11:589640.

A biofilm is an assemblage of microbial cells attached to a surface and encapsulated in an extracellular polymeric substance (EPS) matrix. The formation of a biofilm is one of the important mechanisms of bacterial resistance, which not only leads to hard-to-control bacterial infections in humans and animals but also enables bacteria to be a major problem in various fields, such as food processing, wastewater treatment and metalworking. Quorum sensing (QS) is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small diffusible signaling molecules called autoinducers (AIs). Bacteria use QS to regulate diverse arrays of functions, including virulence and biofilm formation. Therefore, the interference with QS by using QS inhibiting agents, including QS inhibitors (QSIs) and quorum quenching (QQ) enzymes, to reduce or even completely repress the biofilm formation of pathogenic bacteria appears to be a promising approach to control bacterial infections. In this review, we summarize the mechanisms of QS-regulating biofilm formation and QS-inhibiting agents that control bacterial biofilm formation, strategies for the discovery of new QS inhibiting agents, and the current applications of QS-inhibiting agents in several fields to provide insight into the development of effective drugs to control pathogenic bacteria.

RevDate: 2020-11-12

Oliveira LT, Medina-Alarcón KP, Singulani JL, et al (2020)

Dynamics of Mono- and Dual-Species Biofilm Formation and Interactions Between Paracoccidioides brasiliensis and Candida albicans.

Frontiers in microbiology, 11:551256.

The oral cavity is a highly diverse microbial environment in which microorganisms interact with each other, growing as biofilms on biotic and abiotic surfaces. Understanding the interaction among oral microbiota counterparts is pivotal for clarifying the pathogenesis of oral diseases. Candida spp. is one of the most abundant fungi in the oral mycobiome with the ability to cause severe soft tissue lesions under certain conditions. Paracoccidioides spp., the causative agent of paracoccidioidomycosis, may also colonize the oral cavity leading to soft tissue damage. It was hypothesized that both fungi can interact with each other, increasing the growth of the biofilm and its virulence, which in turn can lead to a more aggressive infectivity. Therefore, this study aimed to evaluate the dynamics of mono- and dual-species biofilm growth of Paracoccidioides brasiliensis and Candida albicans and their infectivity using the Galleria mellonella model. Biomass and fungi metabolic activity were determined by the crystal violet and the tetrazolium salt reduction tests (XTT), respectively, and the colony-forming unit (CFU) was obtained by plating. Biofilm structure was characterized by both scanning electronic- and confocal laser scanning- microscopy techniques. Survival analysis of G. mellonella was evaluated to assess infectivity. Our results showed that dual-species biofilm with P. brasiliensis plus C. albicans presented a higher biomass, higher metabolic activity and CFU than their mono-species biofilms. Furthermore, G. mellonella larvae infected with P. brasiliensis plus C. albicans presented a decrease in the survival rate compared to those infected with P. brasiliensis or C. albicans, mainly in the form of biofilms. Our data indicate that P. brasiliensis and C. albicans co-existence is likely to occur on oral mucosal biofilms, as per in vitro and in vivo analysis. These data further widen the knowledge associated with the dynamics of fungal biofilm growth that can potentially lead to the discovery of new therapeutic strategies for these infections.

RevDate: 2020-11-12

Sandbakken ET, Witsø E, Sporsheim B, et al (2020)

Highly variable effect of sonication to dislodge biofilm-embedded Staphylococcus epidermidis directly quantified by epifluorescence microscopy: an in vitro model study.

Journal of orthopaedic surgery and research, 15(1):522 pii:10.1186/s13018-020-02052-3.

BACKGROUND: In cases of prosthetic joint infections, culture of sonication fluid can supplement culture of harvested tissue samples for correct microbial diagnosis. However, discrepant results regarding the increased sensitivity of sonication have been reported in several studies. To what degree bacteria embedded in biofilm are dislodged during the sonication process has to our knowledge not been fully elucidated. In the present in vitro study, we have evaluated the effect of sonication as a method to dislodge biofilm by quantitative microscopy.

METHODS: We used a standard biofilm method to cover small steel plates with biofilm forming Staphylococcus epidermidis ATCC 35984 and carried out the sonication procedure according to clinical practice. By comparing area covered with biofilm before and after sonication with epifluorescence microscopy, the effect of sonication on biofilm removal was quantified. Two series of experiments were made, one with 24-h biofilm formation and another with 72-h biofilm formation. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm whether bacteria were present after sonication. In addition, quantitative bacteriology of sonication fluid was performed.

RESULTS: Epifluorescence microscopy enabled visualization of biofilm before and after sonication. CLSM and SEM confirmed coccoid cells on the surface after sonication. Biofilm was dislodged in a highly variable manner.

CONCLUSION: There is an unexpected high variation seen in the ability of sonication to dislodge biofilm-embedded S. epidermidis in this in vitro model.

RevDate: 2020-11-12

Straub H, Eberl L, Zinn M, et al (2020)

A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.

Journal of nanobiotechnology, 18(1):166 pii:10.1186/s12951-020-00724-0.

BACKGROUND: Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions.

RESULTS: Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials.

CONCLUSION: The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.

RevDate: 2020-11-11

Rocha MP, Santos MS, Rodrigues PLF, et al (2020)

Photodynamic therapy with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: Microbiological and spectral fluorescense analysis.

Photodiagnosis and photodynamic therapy pii:S1572-1000(20)30438-5 [Epub ahead of print].

BACKGROUND: Antimicrobial photodynamic therapy (PDT) emerged as a therapeutic strategy to conventional procedures using antibiotics.

OBJECTIVE: To evaluate the antimicrobial effectiveness of PDT using blue light emitting diode (LED) associated with curcumin on biofilms of Enterococcus faecalis in bovine bone cavities and also to analyze the presence of these biofilms through spectral fluorescence.

MATERIALS AND METHODS: Standardized suspensions of E. faecalis (ATCC 29212) were incubated in artificial bone cavities for 14 days at 36 °C ± 1 °C for biofilm formation. The test specimens were distributed among the four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min) and L + C+ (PDT). Aliquots were collected from the bone cavities after treatments and seeded on BHI agar for 24 h at 36 °C ± 1 °C for CFU count. Before and after each treatment the specimens were submitted to spectral fluorescence, whose images were compared in the Image J program. The log10 CFU/mL results were submitted to the Kruskal-Wallis test (5%) and the biofilm fluorescence spectroscopy results were submitted to the Wilcoxon test (5%).

RESULTS: All treatments presented statistical difference when compared to the control, and PDT was responsible for the largest reduction (1.92 log10 CFU/mL). There was a reduction in the fluorescence emitted after the treatments, with greater statistical difference in the PDT group.

CONCLUSION: The PDT was efficient in the reduction of E. faecalis biofilms. In all groups post treatment there was a significant reduction of biofilms in the fluorescence spectroscopy images with greater reduction in the PDT group.

RevDate: 2020-11-11

Chen Y, Le Mauff F, Wang Y, et al (2020)

The Transcription Factor SomA Synchronously Regulates Biofilm Formation and Cell Wall Homeostasis in Aspergillus fumigatus.

mBio, 11(6):.

Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated.IMPORTANCE The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development.

RevDate: 2020-11-11

Dutta K, Karmakar A, Jana D, et al (2020)

Benzyl isocyanate isolated from the leaves of Psidium guajava inhibits Staphylococcus aureus biofilm formation.

Biofouling [Epub ahead of print].

Benzyl isocyanate (BIC), from methanol extract of Psidium guajava leaves, exhibited substantial anti-biofilm activities against Staphylococcus aureus, the common bacterial pathogen in nosocomial infections. Major components of the extract included eugenol, BIC, phenyl-2-methoxy-4-(1-propenyl)-acetate and 2,5-pyrrolidinedione,1-penta-3-4-dienyl, analyzed by GC-MS and HPLC studies. BIC exhibited substantial anti-biofilm activitiy against S. aureus, established by assaying biofilm formation, biofilm metabolic activity, bacterial adherence to hydrocarbons, exopolysaccharide formation, and optical and scanning electron microscopic studies. BIC significantly downregulated the important biofilm markers of S. aureus, viz., icaAD, sarA and agr, observed by quantitative real time polymerase chain reaction analysis. Molecular docking studies revealed thermodynamically favorable interaction of BIC with IcaA, SarA and Agr, having Gibbs energy values of -8.45, -9.09 and -10.29 kcal mol-1, respectively. BIC after binding to IcaR, the repressor of IcaA, influences its binding to target DNA site (Eshape, -157.27 kcal mol-1). The results are considered to demonstrate anti-biofilm potential of BIC against bacterial infections.

RevDate: 2020-11-11

Ben Abdallah F, Lagha R, A Gaber (2020)

Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates.

Pharmaceuticals (Basel, Switzerland), 13(11): pii:ph13110369.

Methicillin-resistant Staphylococcus aureus is a major human pathogen that poses a high risk to patients due to the development of biofilm. Biofilms, are complex biological systems difficult to treat by conventional antibiotic therapy, which contributes to >80% of humans infections. In this report, we examined the antibacterial activity of Origanum majorana, Rosmarinus officinalis, and Thymus zygis medicinal plant essential oils against MRSA clinical isolates using disc diffusion and MIC methods. Moreover, biofilm inhibition and eradication activities of oils were evaluated by crystal violet. Gas chromatography-mass spectrometry analysis revealed variations between oils in terms of component numbers in addition to their percentages. Antibacterial activity testing showed a strong effect of these oils against MRSA isolates, and T. zygis had the highest activity succeeded by O. majorana and R. officinalis. Investigated oils demonstrated high biofilm inhibition and eradication actions, with the percentage of inhibition ranging from 10.20 to 95.91%, and the percentage of eradication ranging from 12.65 to 98.01%. O. majorana oil had the highest biofilm inhibition and eradication activities. Accordingly, oils revealed powerful antibacterial and antibiofilm activities against MRSA isolates and could be a good alternative for antibiotics substitution.

RevDate: 2020-11-11

Yuyama KT, Rohde M, Molinari G, et al (2020)

Unsaturated Fatty Acids Control Biofilm Formation of Staphylococcus aureus and Other Gram-Positive Bacteria.

Antibiotics (Basel, Switzerland), 9(11): pii:antibiotics9110788.

Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.

RevDate: 2020-11-10

Javed S, Mirani ZA, ZA Pirzada (2021)

Phylogenetic Group B2 Expressed Significant Biofilm Formation among Drug Resistant Uropathogenic Escherichia coli.

The Libyan journal of medicine, 16(1):1845444.

Biofilm is an important virulent marker attributed to the development of urinary tract infections (UTIs) by uropathogenic E. coli (UPEC). Drug-resistant and biofilm-producing UPEC are highly problematic causing catheter-associated or recurrent UTIs with significant morbidity and mortality. The aim of the current study was to investigate the prevalence of biofilm formation and phylogenetic groups in drug-resistant UPEC to predict their ability to cause disease. This prospective study was conducted at the Department of Microbiology, University of Karachi from January to June 2019. A total of 50 highly drug-resistant UPEC were selected for this study. UPEC isolates were screened to form biofilm by Congo-red agar (CRA) and microtiter plate (MTP) technique. The representative biofilm-producing isolates were analysed by scanning electron microscopy (SEM) monitoring. Phylogenetic analysis was done by PCR method based on two preserved genes; chuA, yjaA and TspE4-C2 DNA fragment. On CRA 34 (68%) UPEC were slime producers, while on MTP 20 (40%) were strong biofilm producers, 19 (38%) moderate and 11 (22%) were low to negligible biofilm producers. Molecular typing confirmed that phylogenetic group B2 was prevalent in drug resistant UPEC strains. Pathogenic strains belonged to phylogenetic group B2 and D were found to have greater biofilm forming ability as compare to non-pathogenic commensal strains that belonged to phylogenetic group A. Our results indicate that biofilm formation vary in drug resistant UPEC belonged to different phylogenetic groups. This study indicates possible link between in vitro biofilm formation and phylogenetic groups of UPEC, therefore this knowledge might be helpful to predict the pathogenic potential of UPEC and help design strategies for controlling UTIs.

RevDate: 2020-11-10

Feng M, Burgess AC, Cuellar RR, et al (2020)

Modelling persistent Mycoplasma pneumoniae biofilm infections in a submerged BEAS-2B bronchial epithelial tissue culture model.

Journal of medical microbiology [Epub ahead of print].

Introduction. Infections with the respiratory pathogen Mycoplasma pneumoniae are often chronic, recurrent and resistant, persisting after antibiotic treatment. M. pneumoniae grown on glass forms protective biofilms, consistent with a role for biofilms in persistence. These biofilms consist of towers of bacteria interspersed with individual adherent cells.Hypothesis/Gap Statement. A tissue culture model for M. pneumoniae biofilms has not been described or evaluated to address whether growth, development and resistance properties are consistent with persistence in the host. Moreover, it is unclear whether the M. pneumoniae cells in the biofilm towers and individual bacterial cells have distinct roles in disease.Aim. We evaluated the properties of biofilms of M. pneumoniae grown on the immortalized human bronchial epithelial cell line BEAS-2B in relation to persistence in the host. We observed nucleation of biofilm towers and the disposition of individual cells in culture, leading to a model of how tower and individual cells contribute to infection and disease.Methodology. With submerged BEAS-2B cells as a substrate, we evaluated growth and development of M. pneumoniae biofilms using scanning electron microscopy and confocal laser scanning microscopy. We characterized resistance to erythromycin and complement using minimum inhibitory concentration assays and quantification of colony forming units. We monitored biofilm tower formation using time-lapse microscopic analysis of host-cell-free M. pneumoniae cultures.Results. Bacteria grown on host cells underwent similar development to those grown without host cells, including tower formation, rounding and incidence of individual cells outside towers. Erythromycin and complement significantly reduced growth of M. pneumoniae. Towers formed exclusively from pre-existing aggregates of bacteria. We discuss a model of the M. pneumoniae biofilm life cycle in which protective towers derive from pre-existing aggregates, and generate individual cytotoxic cells.Conclusion. M. pneumoniae can form protective biofilms in a tissue culture model, implicating biofilms in chronic infections, with aggregates of M. pneumoniae cells being important for establishing infections.

RevDate: 2020-11-10

Sun H, Liu H, Zhang M, et al (2020)

A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water.

Chemosphere pii:S0045-6535(20)33034-4 [Epub ahead of print].

In this study, a single-stage ceramic membrane moving bed biofilm reactor (CMMBBR) was developed for simultaneous COD and nitrogen removal, while its effluent was further reclaimed to ultra-clean water by a coupled reverse osmosis (RO) unit. Results showed that approximately 97% of COD and 93% of total nitrogen (TN) removal were obtained in CMMBBR, with the effluent COD and TN concentrations being 8.15 mg/L and 2.31 mg/L, respectively. The excellent performance of CMMBBR was achieved at a constant permeate flux of 30 L/m2/h (LMH), with the average dTMP/dt of 0.05 bar/d due to the low suspended sludge concentration (i.e. 75 mg VSS/L) and the effective membrane scouring by fluidized biocarriers. The excellent permeate quality of CMMBBR could lead to a very low RO fouling rate of 0.029 bar/d, with the product water quality meeting typical NEWater standards in major ions concerned. In addition, the energy and cost analyses further indicated that the proposed CMMBBR-RO process could reduce 43.8% of energy consumption and 23.5% of operating cost compared to the current NEWater production process. It is expected that the integrated CMMBBR-RO process could provide a promising alternative for municipal wastewater reclamation to high-grade product water towards minimized sludge production and energy-efficient operation.

RevDate: 2020-11-10

Simoneti DM, Pereira-Cenci T, MBF Dos Santos (2020)

Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods.

The Journal of prosthetic dentistry pii:S0022-3913(20)30513-8 [Epub ahead of print].

STATEMENT OF PROBLEM: Three-dimensionally printed interim restorations are among the recent technological advancements in dentistry. However, evidence of their performance is lacking.

PURPOSE: The purpose of this in vitro study was to compare the properties of interim restorations made by 3D printing with different technologies, laser stereolithography (SLA), technology and selective laser sintering (SLS) with those obtained by conventional techniques from acrylic resin and bis-acryl resin.

MATERIAL AND METHODS: Four different groups (acrylic resin, bis-acryl resin, SLS, SLA) were tested for flexural strength, Vickers microhardness, fatigue test, compressive strength, surface roughness before and after polishing, and biofilm formation. Specimens were made in the form of rectangular blocks, disks, and single crowns by following the manufacturing technique of each material. One-way ANOVA was used to test biofilm formation, Vickers microhardness, and the results of the 3-point bend flexural test, while the paired t test was used to assess differences in surface roughness between the materials (α=.05 for all tests).

RESULTS: The highest Vickers microhardness value was for acrylic resin interim crowns, while the elastic moduli were lower for both the 3D printed materials. Only the SLA resin fractured during the fatigue test. For surface roughness, a statistically significant difference was found among the studied materials (P<.001), with SLA resin and bis-acryl resin having the lowest values. No statistically significant differences were found for biofilm formation (P>.05).

CONCLUSIONS: SLS resin had favorable results for the Vickers microhardness, higher maximum flexural strength, and peak stress in load-to-fracture tests, the fatigue test, and biofilm formation compared with acrylic resin and bis-acryl resin, while SLA resin showed favorable results only for biofilm formation and surface roughness.

RevDate: 2020-11-09

Goraj W, Pytlak A, Kowalska B, et al (2020)

Influence of pipe material on biofilm microbial communities found in drinking water supply system.

Environmental research pii:S0013-9351(20)31330-X [Epub ahead of print].

The biofilms and water samples from a model installation built of PVC-U, PE-HD and cast iron pipes were investigated using standard heterotrophic plate count and 16S rRNA Next Generation Sequencing. The results of the high throughput identification imply that the construction material strongly influences the microbiome composition. PVC-U and PE-HD pipes were dominated with Proteobacteria (54-60%) while the cast pipe was overgrown by Nitrospirae (64%). It was deduced that the plastic pipes create a more convenient environment for the potentially pathogenic taxa than the cast iron. The 7-year old biofilms were described as complex habitats with sharp oxidation-reduction gradients, where co-existence of methanogenic and methanotrophic microbiota takes place. Furthermore, it was found that the drinking water distribution systems (DWDS) are a useful tool for studying the ecology of rare bacterial phyla. New ecophysiological aspects were described for Aquihabitans, Thermogutta and Vampirovibrio. The discrepancy between identity of HPC-derived bacteria and NGS-revealed composition of biofilm and water microbiomes point to the need of introducing new diagnostical protocols to enable proper assessment of the drinking water safety, especially in DWDSs operating without disinfection.

RevDate: 2020-11-09

Ampofo EK, Amponsah IK, Asante-Kwatia E, et al (2020)

Indigenous Medicinal Plants as Biofilm Inhibitors for the Mitigation of Antimicrobial Resistance.

Advances in pharmacological and pharmaceutical sciences, 2020:8821905.

The majority of indigenes in the rural areas of Ghana use herbal medicines for their primary health care. In this study, an ethnobotanical survey was undertaken to document medicinal plants used by traditional healers in the Ejisu-Juaben district in the Ashanti region of Ghana to treat infections and to further investigate the antibiofilm formation properties of selected plants in resisting pathogenic bacteria. Seventy medicinal plants used by traditional practitioners for the treatment of skin infections and wounds were documented from the ethnobotanical survey. Forty out of the seventy plants were collected and their methanol extracts evaluated for antimicrobial activity by the agar diffusion assay. Extracts that showed antibacterial activity were tested for biofilm inhibitory activity, and the most active plant was subsequently purified to obtain the active constituents. Biofilm formation was significantly mitigated by petroleum ether, ethyl acetate, and methanol extracts of Holarrhena floribunda stem bark. Bioassay-guided fractionation of an alkaloidal extract prepared from the methanol fraction led to the isolation of three steroidal alkaloids, namely, holonamine, holadienine, and conessine. The isolated compounds demonstrated varying degrees of biofilm formation inhibitory properties. The current study reveals that screening of indigenous medicinal plants could unravel potential leads to salvage the declining efficacy of conventional antibiotics. Holarrhena floribunda stem bark extract has strong biofilm formation inhibition properties, which could be attributed to the presence of steroidal alkaloids.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )