About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

17 Jan 2019 at 01:31
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Reynolds Number


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 17 Jan 2019 at 01:31 Created: 

Reynolds Number

It is well known that relative size greatly affects how organisms interact with the world. Less well known, at least among biologists, is that at sufficiently small sizes, mechanical interaction with the environment becomes difficult and then virtually impossible. In fluid dynamics, an important dimensionless parameter is the Reynolds Number (abbreviated Re), which is the ratio of inertial to viscous forces affecting the movement of objects in a fluid medium (or the movement of a fluid in a pipe). Since Re is determined mainly by the size of the object (pipe) and the properties (density and viscosity) of the fluid, organisms of different sizes exhibit significantly different Re values when moving through air or water. A fish, swimming at a high ratio of inertial to viscous forces, gives a flick of its tail and then glides for several body lengths. A bacterium, "swimming" in an environment dominated by viscosity, possesses virtually no inertia. When the bacterium stops moving its flagellum, the bacterium "coasts" for about a half of a microsecond, coming to a stop in a distance less than a tenth the diameter of a hydrogen atom. Similarly, the movement of molecules (nutrients toward, wastes away) in the vicinity of a bacterium is dominated by diffusion. Effective stirring — the generation of bulk flow through mechanical means — is impossible at very low Re. An understanding of the constraints imposed by life at low Reynolds numbers is essentially for understanding the prokaryotic biosphere.

Created with PubMed® Query: "reynolds number" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-01-12

Iyer KP, Schumacher J, Sreenivasan KR, et al (2018)

Steep Cliffs and Saturated Exponents in Three-Dimensional Scalar Turbulence.

Physical review letters, 121(26):264501.

The intermittency of a passive scalar advected by three-dimensional Navier-Stokes turbulence at a Taylor-scale Reynolds number of 650 is studied using direct numerical simulations on a 4096^{3} grid; the Schmidt number is unity. By measuring scalar increment moments of high orders, while ensuring statistical convergence, we provide unambiguous evidence that the scaling exponents saturate to 1.2 for moment orders beyond about 12, indicating that scalar intermittency is dominated by the most singular shocklike cliffs in the scalar field. We show that the fractal dimension of the spatial support of steep cliffs is about 1.8, whose sum with the saturation exponent value of 1.2 adds up to the space dimension of 3, thus demonstrating a deep connection between the geometry and statistics in turbulent scalar mixing. The anomaly for the fourth and sixth order moments is comparable to that in the Kraichnan model for the roughness exponent of 4/3.

RevDate: 2019-01-09

Caracappa JC, DM Munroe (2018)

Morphological Variability Among Broods of First-Stage Blue Crab (Callinectes sapidus) Zoeae.

The Biological bulletin, 235(3):123-133.

External morphology has been shown to influence predation and locomotion of decapod larvae and is, therefore, directly related to their ability to survive and disperse. The first goal of this study was to characterize first-stage blue crab zoeal morphology and its variability across larval broods to test whether inter-brood differences in morphology exist. The second was to identify possible correlations between maternal characteristics and zoeal morphology. The offspring of 21 individuals were hatched in the laboratory, photographed, and measured. Zoeae exhibited substantial variability, with all metrics showing significant inter-brood differences. The greatest variability was seen in the zoeal abdomen, rostrum, and dorsal spine length. A principal component analysis showed no distinct clustering of broods, with variation generally driven by larger zoeae. Using observed morphology, models of drag induced by swimming and sinking also showed significant inter-brood differences, with a maximum twofold difference across broods. In contrast to trends in other decapod taxa, maternal characteristics (female carapace width and mass and egg sponge volume and mass) are not significant predictors of zoeal morphology. These results suggest that brood effects are present across a wide range of morphological characteristics and that future experiments involving Callinectes sapidus morphology or its functionality should explicitly account for inter-brood variation. Additionally, inter-brood morphological differences may result in differential predation mortality and locomotory abilities among broods.

RevDate: 2019-01-09

Lamont EI, RB Emlet (2018)

Permanently Fused Setules Create Unusual Folding Fans Used for Swimming in Cyprid Larvae of Barnacles.

The Biological bulletin, 235(3):185-194.

Many crustacean swimming appendages carry arrays of plumose setae-exoskeletal, feather-like structures of long bristles (setae) with short branches (setules) distributed along two sides. Although closely spaced, setae are not physically interconnected. Setal arrays function during swimming as drag-based leaky paddles that push the organism through water. Barnacle cyprids, the final, non-feeding larval stage, swim with six pairs of legs (thoracopods) that open and close setal arrays in alternating high-drag power strokes and low-drag recovery strokes. While studying cyprid swimming, we found that their thoracopods contained setae permanently cross-linked by fused setules. These cuticular connections would seem highly unlikely because setae are individually produced exoskeletal secretions, and the connections imply unknown processes for the production or modification of crustacean setae. We describe the morphology and function of plumose setae on cyprids of Balanus glandula and other species across the clade Cirripedia. Setules from adjacent plumose setae are seamlessly joined at their tips and occur in three distinct linkage patterns. Thoracopods lack muscles to open and close the array; interconnected setae are instead pulled apart, producing a paddle-like fan with high drag when appendages spread laterally during power strokes. Setules are spring-like, passively closing setae into tight bundles with low drag during recovery strokes. The linked setules occur in the three main clades of the Cirripedia. This cuticular arrangement is effective in swimming, may eliminate the need for muscles to close the setal array, and may represent a unique swimming structure within the Crustacea.

RevDate: 2019-01-03

Itzhak N, D Greenblatt (2019)

Aerodynamic Factors Affecting Rebreathing in Infants.

Journal of applied physiology (Bethesda, Md. : 1985) [Epub ahead of print].

The rebreathing of expired air, with high carbon dioxide and low oxygen concentrations, has long been implicated in unexplained Sudden Infant Death Syndrome (SIDS) when infants are placed to sleep in a prone (facedown) position. This study elucidates the effect of aerodynamic parameters: Reynolds number, Strouhal number and Froude number, on the percentage of expired air that is re-inspired (rebreathed). A nasal module was designed that served as a simplified geometric representation of infant nostrils and placed above a hard flat surface. Quantitative and flow visualization experiments were performed to measure rebreathing, using water as the working medium, under conditions of dynamic similarity. Different anatomical (e.g. tidal volume, nostril diameter), physiological (e.g. breathing frequency) and environmental (e.g. temperature, distance from the surface) factors were considered. Increases in Strouhal number (breathing frequency), always produced higher rebreathed percentages, because rolled-up vortices in the vicinity of the nostrils had less time to move away by self-induction. Positively and negatively buoyant flows resulted in significant rebreathing. In the latter case, consistent with a warm environment or a high percentage of rebreathed CO2, denser gas pooled in the vicinity of the nostrils. Reynolds numbers below 200 also dramatically increased rebreathing because the expired gas pooled much closer to the nostrils. These results clearly elucidated how the prone position dramatically increases rebreathing by a number of different mechanisms. Furthermore, the results offer plausible explanations of why a high temperature environment and low birthweight are SIDS risk factors.

RevDate: 2019-01-03

Wu P, Gao Q, PL Hsu (2019)

On the representation of effective stress for computing hemolysis.

Biomechanics and modeling in mechanobiology pii:10.1007/s10237-018-01108-y [Epub ahead of print].

Hemolysis is a major concern in blood-circulating devices, which arises due to hydrodynamic loading on red blood cells from ambient flow environment. Hemolysis estimation models have often been used to aid hemocompatibility design. The preponderance of hemolysis models was formulated on the basis of laminar flows. However, flows in blood-circulating devices are rather complex and can be laminar, transitional or turbulent. It is an extrapolation to apply these models to turbulent flows. For the commonly used power-law models, effective stress has often been represented using Reynolds stresses for estimating hemolysis in turbulent flows. This practice tends to overpredict hemolysis. This study focused on the representation of effective stress in power-law models. Through arithmetic manipulations from Navier-Stokes equation, we showed that effective stress can be represented in terms of energy dissipation, which can be readily obtained from CFD simulations. Three cases were tested, including a capillary tube, the FDA benchmark cases of nozzle model and blood pump. The results showed that the representation of effective stress in terms of energy dissipation greatly improved the prediction of hemolysis for a wide range of flow conditions. The improvement increases as Reynolds number increases; the overprediction of hemolysis was reduced by up to two orders of magnitude.

RevDate: 2019-01-03

Szaszák N, Roloff C, Bordás R, et al (2018)

A novel type of semi-active jet turbulence grid.

Heliyon, 4(12):e01026 pii:e01026.

This article describes a novel approach to generate increased turbulence levels in an incoming flow. It relies on a cost-effective and robust semi-active jet grid, equipped with flexible tubes as moving elements attached onto tube connections placed at the intersections of a fixed, regular grid. For the present study, these flexible tubes are oriented in counter-flow direction in a wind tunnel. Tube motion is governed by multiple interactions between the main flow and the jets exiting the tubes, resulting in chaotic velocity fluctuations and high turbulence intensities in the test section. After describing the structure of the turbulence generator, the turbulent properties of the airflow downstream of the grid in both passive and active modes are measured by hot-wire anemometry and compared with one another. When activating the turbulence generator, turbulence intensity, turbulent kinetic energy, and the Taylor Reynolds number are noticeably increased in comparison with the passive mode (corresponding to simple grid turbulence). Furthermore, the inertial subrange of the turbulent energy spectrum becomes wider and closely follows Kolmogorov's -5/3 law. These results show that the semi-active grid, in contrast to passive systems, is capable of producing high turbulence levels, even at low incoming flow velocity. Compared to alternatives based on actuators driven by servo-motors, the production and operation costs of the semi-active grid are very moderate and its robustness is much higher.

RevDate: 2019-01-03

Garcia F, F Stefani (2018)

Continuation and stability of rotating waves in the magnetized spherical Couette system: secondary transitions and multistability.

Proceedings. Mathematical, physical, and engineering sciences, 474(2220):20180281.

Rotating waves (RW) bifurcating from the axisymmetric basic magnetized spherical Couette (MSC) flow are computed by means of Newton-Krylov continuation techniques for periodic orbits. In addition, their stability is analysed in the framework of Floquet theory. The inner sphere rotates while the outer is kept at rest and the fluid is subjected to an axial magnetic field. For a moderate Reynolds number Re = 103 (measuring inner rotation), the effect of increasing the magnetic field strength (measured by the Hartmann number Ha) is addressed in the range Ha∈(0, 80) corresponding to the working conditions of the HEDGEHOG experiment at Helmholtz-Zentrum Dresden-Rossendorf. The study reveals several regions of multistability of waves with azimuthal wavenumber m = 2, 3, 4, and several transitions to quasi-periodic flows, i.e modulated rotating waves. These nonlinear flows can be classified as the three different instabilities of the radial jet, the return flow and the shear layer, as found in the previous studies. These two flows are continuously linked, and part of the same branch, as the magnetic forcing is increased. Midway between the two instabilities, at a certain critical Ha, the non-axisymmetric component of the flow is maximum.

RevDate: 2019-01-03

Murphy EAK, Barros JM, Schultz MP, et al (2019)

Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics.

Biofouling [Epub ahead of print].

Biofilm fouling significantly impacts ship performance. Here, the impact of biofilm on boundary layer structure at a ship-relevant, low Reynolds number was investigated. Boundary layer measurements were performed over slime-fouled plates using high resolution particle image velocimetry (PIV). The velocity profile over the biofilm showed a downward shift in the log-law region (ΔU+), resulting in an effective roughness height (ks) of 8.8 mm, significantly larger than the physical thickness of the biofilm (1.7 ± 0.5 mm) and generating more than three times as much frictional drag as the smooth-wall. The skin-friction coefficient, Cf, of the biofilm was 9.0 × 10-3 compared with 2.9 × 10-3 for the smooth wall. The biofilm also enhances turbulent kinetic energy (tke) and Reynolds shear stress, which are more heterogeneous in the streamwise direction than smooth-wall flows. This suggests that biofilms increase drag due to high levels of momentum transport, likely resulting from protruding streamers and surface compliance.

RevDate: 2018-12-25

Wang WX, Wang WL, Kang HL, et al (2018)

Effect of naturally restored grassland on the ephemeral gully erosion in the loess hilly and gully region.

Ying yong sheng tai xue bao = The journal of applied ecology, 29(12):3891-3899.

Ephemeral gully erosion is an important erosion type in hilly and gully regions of Loess Plateau. While previous studies mainly focused on ephemeral gullies in agricultural land, little is known about the effects of naturally restored grassland on ephemeral gully erosion. In this study, taking the bare ephemeral gullies as the baseline, we conducted in-situ flushing tests to explore runoff and sediment yield characteristics and erosion mechanism of grassland ephemeral gullies under the runoff conditions of 5, 10, 15, 20 and 25 L·min-1. Compared to the bare ephemeral gully, average flow velocity, stable runoff rate, Reynolds number and Froude number of grassland ephe-meral gullies was reduced by 25.4%-67.3%, 8.4%-26.6%, 54.9%-80.5%, 18.6%-65.1%, respectively, whereas resistance coefficient was increased by 0.09-7.18 folds. Compared to the bare ephemeral gully, the maximum sediment yield rate, stable sediment yield rate, average sediment yield rate of grassland ephemeral gullies was decreased by 55.1%-90.9%, 61.8%-95.4%, and 64.8%-92.4%, respectively. The sediment yield reduction benefit of the naturally restored grassland under the discharge flow rate of 5-25 L·min-1 could reach 65.9%-88.8%, which decreased with increasing discharge flow rate. Compared to the bare ephemeral gully, average stream power and average shear stress of grassland ephemeral gullies was reduced by 54.9%-80.5% and 12.4%-51.1%, respectively, whereas the critical stream power and critical shear stress was increased by 1.43 folds and 33.7%, respectively. The average sediment yield of grassland and bare ephemeral gullies was signifi-cantly linearly related to average stream power and shear stress. Naturally restored grassland significantly increased the erosion resistance and reduced runoff erosion potential of ephemeral gullies.

RevDate: 2018-12-21

Gabbana A, Polini M, Succi S, et al (2018)

Prospects for the Detection of Electronic Preturbulence in Graphene.

Physical review letters, 121(23):236602.

Based on extensive numerical simulations, accounting for electrostatic interactions and dissipative electron-phonon scattering, we propose experimentally realizable geometries capable of sustaining electronic preturbulence in graphene samples. In particular, preturbulence is predicted to occur at experimentally attainable values of the Reynolds number between 10 and 50, over a broad spectrum of frequencies between 10 and 100 GHz.

RevDate: 2018-12-17

Bass K, Boc S, Hindle M, et al (2018)

High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.

Journal of aerosol medicine and pulmonary drug delivery [Epub ahead of print].

BACKGROUND: Computational fluid dynamics (CFD) provides a powerful tool for developing new high-efficiency aerosol delivery strategies, such as nose-to-lung (N2L) aerosol administration to infants and children using correctly sized aerosols. The objective of this study was to establish numerically efficient CFD solution methods and guidelines for simulating N2L aerosol administration to an infant based on comparisons with concurrent in vitro experiments.

MATERIALS AND METHODS: N2L administration of a micrometer-sized aerosol (mass median aerodynamic diameter [MMAD] = 1.4 μm) was evaluated using concurrent CFD simulations and in vitro experiments. Aerosol transport and deposition was assessed in a new nasal airway geometry of a 6-month-old infant with a streamlined nasal cannula interface, which was constructed as a CFD mesh and three-dimensionally printed to form an identical physical prototype. CFD meshes explored were a conventional tetrahedral approach with near-wall (NW) prism elements and a new polyhedral mesh style with an equally refined NW layer. The presence of turbulence in the model was evaluated using a highly efficient low-Reynolds number (LRN) k-ω turbulence model, with previously established NW corrections that accounted for anisotropic wall-normal turbulence as well as improved NW velocity interpolations and hydrodynamic particle damping.

RESULTS: Use of the new polyhedral mesh was found to improve numerical efficiency by providing more rapid convergence and requiring fewer control volumes. Turbulent flow was found in the nasal geometry, generated by the inlet jets from the nasal cannula interface. However, due to the small particle size, turbulent dispersion was shown to have little effect on deposition. Good agreement was established between the CFD predictions using the numerically efficient LRN k-ω model with appropriate NW corrections and in vitro deposition data. Aerosol transmission efficiencies through the delivery tube, nasal cannula, and infant nasal model, based on experimental and CFD predictions, were 93.0% and 91.5%, respectively.

CONCLUSIONS: A numerically efficient CFD approach was established to develop transnasal aerosol administration to infants and children. Small particle aerosols with aerodynamic diameters of ∼1.5 μm were confirmed to have low inertial depositional loss, and have low deposition from turbulent dispersion, making them ideal for high-efficiency lung delivery through an infant nasal cannula interface.

RevDate: 2018-12-14

Enders A, Siller IG, Urmann K, et al (2018)

3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.

Small (Weinheim an der Bergstrasse, Germany) [Epub ahead of print].

One of the basic operations in microfluidic systems for biological and chemical applications is the rapid mixing of different fluids. However, flow profiles in microfluidic systems are laminar, which means molecular diffusion is the only mixing effect. Therefore, mixing structures are crucial to enable more efficient mixing in shorter times. Since traditional microfabrication methods remain laborious and expensive, 3D printing has emerged as a potential alternative for the fabrication of microfluidic devices. In this work, five different passive micromixers known from literature are redesigned in comparable dimensions and manufactured using high-definition MultiJet 3D printing. Their mixing performance is evaluated experimentally, using sodium hydroxide and phenolphthalein solutions, and numerically via computational fluid dynamics. Both experimental and numerical analysis results show that HC and Tesla-like mixers achieve complete mixing after 0.99 s and 0.78 s, respectively, at the highest flow rate (Reynolds number (Re) = 37.04). In comparison, Caterpillar mixers exhibit a lower mixing rate with complete mixing after 1.46 s and 1.9 s. Furthermore, the HC mixer achieves very good mixing performances over all flow rates (Re = 3.7 to 37.04), while other mixers show improved mixing only at higher flow rates.

RevDate: 2018-12-14

Sreenivasan KR (2018)

Turbulent mixing: A perspective.

Proceedings of the National Academy of Sciences of the United States of America pii:1800463115 [Epub ahead of print].

Mixing of initially distinct substances plays an important role in our daily lives as well as in ecological and technological worlds. From the continuum point of view, which we adopt here, mixing is complete when the substances come together across smallest flow scales determined in part by molecular mechanisms, but important stages of the process occur via the advection of substances by an underlying flow. We know how smooth flows enable mixing but less well the manner in which a turbulent flow influences it; but the latter is the more common occurrence on Earth and in the universe. We focus here on turbulent mixing, with more attention paid to the postmixing state than to the transient process of initiation. In particular, we examine turbulent mixing when the substance is a scalar (i.e., characterized only by the scalar property of its concentration), and the mixing process does not influence the flow itself (i.e., the scalar is "passive"). This is the simplest paradigm of turbulent mixing. Within this paradigm, we discuss how a turbulently mixed state depends on the flow Reynolds number and the Schmidt number of the scalar (the ratio of fluid viscosity to the scalar diffusivity), point out some fundamental aspects of turbulent mixing that render it difficult to be addressed quantitatively, and summarize a set of ideas that help us appreciate its physics in diverse circumstances. We consider the so-called universal and anomalous features and summarize a few model studies that help us understand them both.

RevDate: 2018-12-07

Bodling A, A Sharma (2018)

Numerical investigation of low-noise airfoils inspired by the down coat of owls.

Bioinspiration & biomimetics, 14(1):016013.

Numerical analysis of airfoil geometries inspired by the down coat of the night owl is presented. The bioinspired geometry consists of an array of 'finlet fences', which is placed near the trailing edge of the baseline (NACA 0012) airfoil. Two fences with maximum nondimensional heights, [Formula: see text] and [Formula: see text] are investigated, where [Formula: see text] is the displacement thickness at 2.9% chord upstream of the airfoil trailing edge. Wall-resolved large eddy simulations are performed at chord-based Reynolds number, [Formula: see text], flow Mach number, [Formula: see text], and angle of attack, [Formula: see text]. The simulation results show significant reductions in unsteady surface pressure and farfield radiated noise with the fences, in agreement with the measurements available in the literature. Analysis of the results reveals that the fences increase the distance between the boundary layer turbulence (source) and the airfoil trailing (scattering) edge, which is identified to be the mechanism behind high-frequency noise reduction. These reductions are larger for the taller fence as the source-scattering edge separation is greater. Two-point correlations show that the fences reduce the spanwise coherence at low frequencies for separation distances greater than a fence pitch (distance between two adjacent fences) and increase the coherence for smaller distances, the increase being higher for the taller fence. This increase in coherence and the reduced obliqueness of the leading edge of the fence are hypothesized to be responsible for the small increase in farfield noise at low frequencies observed in the simulations with the taller fence.

RevDate: 2018-12-07

Paxman T, Noga M, Finlay WH, et al (2018)

Experimental evaluation of pressure drop for flows of air and heliox through upper and central conducting airway replicas of 4- to 8-year-old children.

Journal of biomechanics pii:S0021-9290(18)30805-4 [Epub ahead of print].

Airway resistance describes the ratio between pressure drop and flow rate through the conducting respiratory airways. Analytical models of airway resistance for tracheobronchial airways have previously been developed and assessed without upper airways positioned upstream of the trachea. This work investigated pressure drop as a function of flow rate and gas properties for upper and central airway replicas of 10 child subjects, ages 4-8. Replica geometries were built based on computed tomography scan data and included airways from the nose through 3-5 distal branching airway generations. Pressure drop through the replicas was measured for constant inspiratory flows of air and heliox. For both the nose-throat and branching airways, the relationship between non-dimensional coefficient of friction, CF, with Reynolds number, Re, was found to resemble the turbulent Blasius equation for pipe flow, where CF∝Re-0.25. Additionally, pressure drop ratios between heliox and air were consistent with analytical predictions for turbulent flow. The presence of turbulence in the branching airways likely resulted from convection of turbulence produced upstream in the nose and throat. An airway resistance model based on the Blasius pipe friction correlation for turbulent flow was proposed for prediction of pressure drop through the branching bronchial airways downstream from the upper airway.

RevDate: 2018-12-07

Acconcia CN, Wright A, DE Goertz (2018)

Translational dynamics of individual microbubbles with millisecond scale ultrasound pulses.

The Journal of the Acoustical Society of America, 144(5):2859.

It is established that radiation forces can be used to transport ultrasound contrast agents, particularly for molecular imaging applications. However, the ability to model and control this process in the context of therapeutic ultrasound is limited by a paucity of data on the translational dynamics of encapsulated microbubbles under the influence of longer pulses. In this work, the translation of individual microbubbles, isolated with optical tweezers, was experimentally investigated over a range of diameters (1.8-8.8 μm, n = 187) and pressures (25, 50, 100, 150, and 200 kPa) with millisecond pulses. Data were compared with theoretical predictions of the translational dynamics, assessing the role of shell and history force effects. A pronounced feature of the displacement curves was an effective threshold size, below which there was only minimal translation. At higher pressures (≥150 kPa) a noticeable structure emerged where multiple local maxima occurred as a function of bubble size. The ability to accurately capture these salient features depended on the encapsulation model employed. In low Reynolds number conditions (i.e., low pressures, or high pressures, off-resonance) the inclusion of history force more accurately fit the data. After pulse cessation, bubbles exhibited substantial displacements consistent with the influence of history effects.

RevDate: 2018-12-05

Mendoza U, Candella RN, Assad LPF, et al (2014)

A Model Analysis for the Design and Deployment of an Eulerian Sediment Trap Mooring Array in a Western Boundary Upwelling System from Southeast Brazil.

Anais da Academia Brasileira de Ciencias, 86(2):589-600.

This work addresses the design and configuration of a Eulerian sediment trap mooring array, which was deployed at the shelf edge (zm ≈ 140 m) 80 km off Cabo Frio, SE- Brazil (23° S). The site was subject to interplay between the Tropical Waters (TW) of the Brazil Current (BC), intrusions from the South Atlantic Central Waters (SACW), which are the source of upwelling in the region, and other oceanographic processes. Detailed computations were used to optimize the total weight, buoyancy balance, and maximum acceptable tilt to avoid hydrodynamic bias in the trapping efficiency and array adaptation to the local oceanographic conditions with the assistance of Matlab and Muringa programs and Modular Ocean Model 4.0 (MOM; i.e., to assert the vertical distribution of the meridional current component). The velocity range of the current component was determined by short term measurements to be between 0.1 and 0.5 m/s. Projections led to a resulting minimum anchor weight of 456 kg. The necessary line tension was ascertained by using the appropriate distribution of a series of buoys along the array, which finally attained a high vertical load of 350 kg because of the attached oceanographic equipment. Additional flotation devices resulted in a stable mooring array as reflected by their low calculated tilt (2.6° ± 0.6°). A low drag of 16 N was computed for the maximum surface current velocity of 0.5 m/s. The Reynolds number values ranged from 4 × 104 to 2 × 105 and a cone-trap aspect ratio of 1.75 was used to assess the trap sampling efficiency upon exposure to different current velocities.

RevDate: 2018-12-04

Jeon W, Kim T, Kim SM, et al (2018)

Fast mass transport-assisted convective heat transfer through a multi-walled carbon nanotube array.

Nanoscale [Epub ahead of print].

The recently reported fast mass transport through nanochannels provides a unique opportunity to explore nanoscale energy transport. Here we experimentally investigated the convective heat transport of air through vertically aligned multi-walled carbon nanotubes (VAMWNTs). The flow through the unit cell, defined as an interstitial space among four adjacent nanotubes (hydraulic diameter = 84.9 nm), was in the transition (0.62 ≤ Knudsen number ≤ 0.78) and creeping flow (3.83 × 10-5 ≤ Reynolds number (Re) ≤ 1.55 × 10-4) regime. The constant heat flux (0.102 or 0.286 W m-2) was supplied by a single-mode microwave (2.45 GHz) instantly heating the VAMWNTs. The volume flow rate was two orders of magnitude greater than the Hagen-Poiseuille theory value. The experimentally determined convective heat transfer coefficient (h, 3.70 × 10-4-4.01 × 10-3 W m-2 K-1) and Nusselt number (Nu, 1.17 × 10-9-1.26 × 10-8) were small partly due to the small Re. A further increase in Re (2.12 × 10-3) with the support of a polytetrafluoroethylene mesh significantly increased h (5.48 × 10-2 W m-2 K-1) and Nu (2.37 × 10-7). A large number of nanochannels in a given cross-section of heat sinks may enhance the heat dissipation significantly.

RevDate: 2018-12-04

Wang C, H Tang (2018)

Influence of complex driving motion on propulsion performance of a heaving flexible foil.

Bioinspiration & biomimetics, 14(1):016011.

This study explores the effects of complex driving motion on the propulsion performance of a flexible foil heaving in the flight regimes of natural flyers. Such a fluid-structure interaction problem is numerically studied using an immersed boundary lattice Boltzmann method (IBLBM) based numerical framework. It is found that, at the Reynolds number 200 and when the foil's bending stiffness and mass ratio are moderate, adding an extra driving motion of doubled frequency to a purely harmonic motion on the foil's leading edge can enhance the thrust and propulsive efficiency by about 860% and 70%, respectively. The improvement in thrust increases with the extra-driving-motion amplitude. When the extra-driving-motion amplitude is fixed, there exists an optimal extra-driving-motion phase angle. As the foil becomes much stiffer or lighter, the improvement in the propulsion performance turns less. On the other hand, as the foil becomes much more flexible or heavier, drag instead of thrust is generated, and extra driving motion brings no improvement. Although the extra driving motion can improve the foil's propulsion performance in flows of different Reynolds numbers, the increasing rate of the thrust reduces with the Reynolds number. Through this study, details about the competitions among various forces exerted on the foil and their roles in the foil's dynamics are also revealed.

RevDate: 2018-11-30

Kabanshi A, M Sandberg (2018)

Entrainment and its Implications on Microclimate Ventilation Systems: Scaling the Velocity and Temperature Field of a Round Free Jet.

Indoor air [Epub ahead of print].

Research on microclimate ventilation systems, which mostly involve free jets, point to delivery of better ventilation in breathing zones. While the literature is comprehensive, the influence of contaminant entrainment in jet flows and its implications on the delivery of supplied air is not fully addressed. This paper present and discuss entrainment characteristics of a jet issued from a round nozzle (0.05 m diameter), in relation to ventilation, by exploring the velocity and temperature fields of the jet flow. The results show a trend suggesting that increasing the Reynolds number (Re) reduces ambient entrainment. As shown herein, about 30% concentration of ambient air entrained into the bulk jet flow at Re 2541 while Re 9233 had about 13% and 19% for Re = 6537/12026 at downstream distance of 8 diameters (40 cm). The study discusses that "moderate to high" Re may be ideal to reduce contaminant entrainment, but this is limited by delivery distance and possibly the risk of occupant discomfort. Incorporating the entrainment mixing factor (the ratio of room contaminants entrained into a jet flow) in performance measurements is proposed and further studies are recommended to verify results herein and test whether this is general to other nozzle configurations. This article is protected by copyright. All rights reserved.

RevDate: 2018-11-29

Kamal A, EE Keaveny (2018)

Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.

Journal of the Royal Society, Interface, 15(148): pii:rsif.2018.0592.

Swimming cells and microorganisms must often move through complex fluids that contain an immersed microstructure such as polymer molecules or filaments. In many important biological processes, such as mammalian reproduction and bacterial infection, the size of the immersed microstructure is comparable to that of the swimming cells. This leads to discrete swimmer-microstructure interactions that alter the swimmer's path and speed. In this paper, we use a combination of detailed simulation and data-driven stochastic models to examine the motion of a planar undulatory swimmer in an environment of spherical obstacles tethered via linear springs to random points in the plane of locomotion. We find that, depending on environmental parameters, the interactions with the obstacles can enhance swimming speeds or prevent the swimmer from moving at all. We also show how the discrete interactions produce translational and angular velocity fluctuations that over time lead to diffusive behaviour primarily due to the coupling of swimming and rotational diffusion. Our results demonstrate that direct swimmer-microstructure interactions can produce changes in swimmer motion that may have important implications for the spreading of cell populations in or the trapping of harmful pathogens by complex fluids.

RevDate: 2018-11-26
CmpDate: 2018-11-26

Grosjean G, Hubert M, Collard Y, et al (2018)

Surface swimmers, harnessing the interface to self-propel.

The European physical journal. E, Soft matter, 41(11):137 pii:10.1140/epje/i2018-11747-y.

In the study of microscopic flows, self-propulsion has been particularly topical in recent years, with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing, micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel these microrobots, as demonstrated by recent experiments using the proximity of an interface, or the interface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates how forces at the interface can be used to generate locomotion. Surface swimmers ranging from the microscopic scale to typically the capillary length are covered. Two systems are then discussed in greater detail. The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming structures. Two previously studied configurations, triangular and collinear, are discussed and contrasted. A new interpretation for the triangular swimmer is presented. Then, the non-monotonic influence of surface tension and viscosity is evidenced in the collinear case. Finally, a new system is introduced. It is a magnetically powered, centimeter-sized piece that swims similarly to water striders.

RevDate: 2018-12-03

Walker BJ, Wheeler RJ, Ishimoto K, et al (2018)

Boundary behaviours of Leishmania mexicana: A hydrodynamic simulation study.

Journal of theoretical biology, 462:311-320 pii:S0022-5193(18)30568-X [Epub ahead of print].

It is well established that the parasites of the genus Leishmania exhibit complex surface interactions with the sandfly vector midgut epithelium, but no prior study has considered the details of their hydrodynamics. Here, the boundary behaviours of motile Leishmania mexicana promastigotes are explored in a computational study using the boundary element method, with a model flagellar beating pattern that has been identified from digital videomicroscopy. In particular a simple flagellar kinematics is observed and quantified using image processing and mode identification techniques, suggesting a simple mechanical driver for the Leishmania beat. Phase plane analysis and long-time simulation of a range of Leishmania swimming scenarios demonstrate an absence of stable boundary motility for an idealised model promastigote, with behaviours ranging from boundary capture to deflection into the bulk both with and without surface forces between the swimmer and the boundary. Indeed, the inclusion of a short-range repulsive surface force results in the deflection of all surface-bound promastigotes, suggesting that the documented surface detachment of infective metacyclic promastigotes may be the result of their particular morphology and simple hydrodynamics. Further, simulation elucidates a remarkable morphology-dependent hydrodynamic mechanism of boundary approach, hypothesised to be the cause of the well-established phenomenon of tip-first epithelial attachment of Leishmania promastigotes to the sandfly vector midgut.

RevDate: 2018-11-22

Digumarti KM, Conn AT, J Rossiter (2018)

EuMoBot: replicating euglenoid movement in a soft robot.

Journal of the Royal Society, Interface, 15(148): pii:rsif.2018.0301.

Swimming is employed as a form of locomotion by many organisms in nature across a wide range of scales. Varied strategies of shape change are employed to achieve fluidic propulsion at different scales due to changes in hydrodynamics. In the case of microorganisms, the small mass, low Reynolds number and dominance of viscous forces in the medium, requires a change in shape that is non-invariant under time reversal to achieve movement. The Euglena family of unicellular flagellates evolved a characteristic type of locomotion called euglenoid movement to overcome this challenge, wherein the body undergoes a giant change in shape. It is believed that these large deformations enable the organism to move through viscous fluids and tiny spaces. The ability to drastically change the shape of the body is particularly attractive in robots designed to move through constrained spaces and cluttered environments such as through the human body for invasive medical procedures or through collapsed rubble in search of survivors. Inspired by the euglenoids, we present the design of EuMoBot, a multi-segment soft robot that replicates large body deformations to achieve locomotion. Two robots have been fabricated at different sizes operating with a constant internal volume, which exploit hyperelasticity of fluid-filled elastomeric chambers to replicate the motion of euglenoids. The smaller robot moves at a speed of [Formula: see text] body lengths per cycle (20 mm min-1 or 2.2 cycles min-1) while the larger one attains a speed of [Formula: see text] body lengths per cycle (4.5 mm min-1 or 0.4 cycles min-1). We show the potential for biomimetic soft robots employing shape change to both replicate biological motion and act as a tool for studying it. In addition, we present a quantitative method based on elliptic Fourier descriptors to characterize and compare the shape of the robot with that of its biological counterpart. Our results show a similarity in shape of 85% and indicate that this method can be applied to understand the evolution of shape in other nonlinear, dynamic soft robots where a model for the shape does not exist.

RevDate: 2018-11-20

Huang HW, Tibbitt MW, Huang TY, et al (2018)

Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs.

Soft robotics [Epub ahead of print].

Stimuli-responsive hydrogels are promising candidates for use in the targeted delivery of drugs using microrobotics. These devices enable the delivery and sustained release of quantities of drugs several times greater than their dry weight and are responsive to external stimuli. However, existing systems have two major drawbacks: (1) severe drug leakage before reaching the targeted areas within the body and (2) impeded locomotion through liquids due to the inherent hydrophilicity of hydrogels. This article outlines an approach to the assembly of hydrogel-based microcapsules in which one device is assembled within another to prevent drug leakage during transport. Inspired by the famous Russian stacking dolls (Matryoshka), the proposed scheme not only improves drug-loading efficiency but also facilitates the movement of hydrogel-based microcapsules driven by an external magnetic field. At room temperature, drug leakage from the hydrogel matrix is 90%. However, at body temperature the device folds up and assembles to encapsulate the drug, thereby reducing leakage to a mere 6%. The Matryoshka-inspired micro-origami capsule (MIMC) can disassemble autonomously when it arrives at a targeted site, where the temperature is slightly above body temperature. Up to 30% of the encapsulated drug was shown to diffuse from the hydrogel matrix within 1 h when it unfolds and disassembles. The MIMC is also shown to enhance the movement of magnetically driven microcapsules while navigating through media with a low Reynolds number. The translational velocity of the proposed MIMC (four hydrogel-based microcapsules) driven by magnetic gradients is more than three times greater than that of a conventional (single) hydrogel-based microcapsule.

RevDate: 2018-11-16

Rigatelli G, Zuin M, Dell'Avvocata F, et al (2018)

Non-invasive Evaluation of Fluid Dynamic of Aortoiliac Atherosclerotic Disease: Impact of Bifurcation Angle and Different Stent Configurations.

Journal of translational internal medicine, 6(3):138-145 pii:jtim-2018-0020.

Objectives: To non-invasively evaluate by computational fluid dynamic (CFD) analysis the physiology and rheology of aortoiliac bifurcation disease at different angles and different stent configurations.

Material and methods: For the analysis, we considered a physiologic model of abdominal aorta with an iliac bifurcation set at 30°, 45° and 70° without stenosis. Subsequently, a bilateral ostial common iliac stenosis of 80% was considered for each type of bifurcation. For the stent simulation, we reconstructed Zilver vascular self-expanding (Zilver; Cook, Bloomington, MN) and Palmaz Genesis Peripheral (Cordis, Miami, FL) stents.

Results: The physiologic model, across the different angles, static pressure, Reynolds number and stream function, were lower for the 30° bifurcation angle with a gradient from 70° to 30° angles, whereas all the other parameters were inversely higher. After stenting, all the fluid parameters decreased homogenously independent of the stent type, maintaining a gradient in favour of 30° compared to 45° and 70° angles. The absolute greater deviation from physiology was observed for low kissing when self-expandable stents were used across all angles; in particular, the wall shear stress was high at at 45° angle.

Conclusion: Bifurcation angle deeply impacts the physiology of aortoiliac bifurcations, which are used to predict the fluid dynamic profile after stenting. CFD, having the potential to be derived both from computed tomography scan or invasive angiography, appears to be an ideal tool to predict fluid dynamic profile before and after stenting in aortoiliac bifurcation.

RevDate: 2018-11-14

Sadri M, Hejranfar K, M Ebrahimi (2018)

Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement.

The Journal of the Acoustical Society of America, 144(3):1521.

In this study, the numerical simulation of the fluid flow and acoustic field of a supersonic jet is performed by using high-order discretization and the vorticity confinement (VC) method on coarse grids. The three-dimensional Navier-Stokes equations are considered in the generalized curvilinear coordinate system and the high-order compact finite-difference scheme is applied for the space discretization, and the time integration is performed by the fourth-order Runge-Kutta scheme. A low-pass high-order filter is applied to stabilize the numerical solution. The non-reflecting boundary conditions are adopted for all the free boundaries, and the Kirchhoff surface integration is utilized to obtain the far-field sound pressure levels in a number of observer locations. Comparisons of the jet mean flow and jet aeroacoustics results with the other numerical and experimental data at similar flow conditions are made and show a reasonable agreement. The study shows that the proposed solution methodology based on the high-order compact finite-difference scheme in conjunction with the VC method can reasonably predict the near-field flow and the far-field noise of high Reynolds number jets with a fairly coarser grid than that used in the large eddy simulations and, thus, the computational cost can be significantly decreased.

RevDate: 2018-11-16

Jung BJ, Kim J, Kim JA, et al (2018)

PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.

Micromachines, 9(6): pii:mi9060255.

Inertial microfluidics has drawn much attention for its applications for circulating tumor cell separations from blood. The fluid flows and the inertial particle focusing in inertial microfluidic systems are highly dependent on the channel geometry and structure. Flexible microfluidic systems can have adjustable 3D channel geometries by curving planar 2D channels into 3D structures, which will enable tunable inertial separation. We present a poly(dimethylsiloxane) (PDMS)-parylene hybrid thin-film microfluidic system that can provide high flexibility for 3D channel shaping while maintaining the channel cross-sectional shape. The PDMS-parylene hybrid microfluidic channels were fabricated by a molding and bonding technique using initiated chemical vapor deposition (iCVD) bonding. We constructed 3D helical inertial microfluidic channels by coiling a straight 2D channel and studied the inertial focusing while varying radius of curvature and Reynolds number. This thin film structure allows for high channel curvature and high Dean numbers which leads to faster inertial particle focusing and shorter channel lengths than 2D spiral channels. Most importantly, the focusing positions of particles and cells in the microchannel can be tuned in real time by simply modulating the channel curvature. The simple mechanical modulation of these 3D structure microfluidic systems is expected to provide unique advantages of convenient tuning of cell separation thresholds with a single device.

RevDate: 2018-11-16

Ansari MA, Kim KY, SM Kim (2018)

Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.

Micromachines, 9(5): pii:mi9050204.

Vortex flow increases the interface area of fluid streams by stretching along with providing continuous stirring action to the fluids in micromixers. In this study, experimental and numerical analyses on a design of micromixer that creates vortex flow were carried out, and the mixing performance was compared with a simple micro T-mixer. In the vortex micro T-mixer, the height of the inlet channels is half of the height of the main mixing channel. The inlet channel connects to the main mixing channel (micromixer) at the one end at an offset position in a fashion that creates vortex flow. In the simple micro T-mixer, the height of the inlet channels is equal to the height of the channel after connection (main mixing channel). Mixing of fluids and flow field have been analyzed for Reynolds numbers in a range from 1⁻80. The study has been further extended to planar serpentine microchannels, which were combined with a simple and a vortex T-junction, to evaluate and verify their mixing performances. The mixing performance of the vortex T-mixer is higher than the simple T-mixer and significantly increases with the Reynolds number. The design is promising for efficiently increasing mixing simply at the T-junction and can be applied to all micromixers.

RevDate: 2018-11-16

Raza W, Ma SB, KY Kim (2018)

Multi-Objective Optimizations of a Serpentine Micromixer with Crossing Channels at Low and High Reynolds Numbers.

Micromachines, 9(3): pii:mi9030110.

In order to maximize the mixing performance of a micromixer with an integrated three-dimensional serpentine and split-and-recombination configuration, multi-objective optimizations were performed at two different Reynolds numbers, 1 and 120, based on numerical simulation. Numerical analyses of fluid flow and mixing in the micromixer were performed using three-dimensional Navier-Stokes equations and convection-diffusion equation. Three dimensionless design variables that were related to the geometry of the micromixer were selected as design variables for optimization. Mixing index at the exit and pressure drop through the micromixer were employed as two objective functions. A parametric study was carried out to explore the effects of the design variables on the objective functions. Latin hypercube sampling method as a design-of-experiment technique has been used to select design points in the design space. Surrogate modeling of the objective functions was performed by using radial basis neural network. Concave Pareto-optimal curves comprising of Pareto-optimal solutions that represents the trade-off between the objective functions were obtained using a multi-objective genetic algorithm at Re = 1 and 120. Through the optimizations, maximum enhancements of 18.8% and 6.0% in mixing index were achieved at Re = 1 and 120, respectively.

RevDate: 2018-11-13
CmpDate: 2018-11-13

Galitski V, Kargarian M, S Syzranov (2018)

Dynamo Effect and Turbulence in Hydrodynamic Weyl Metals.

Physical review letters, 121(17):176603.

The dynamo effect is a class of macroscopic phenomena responsible for generating and maintaining magnetic fields in astrophysical bodies. It hinges on the hydrodynamic three-dimensional motion of conducting gases and plasmas that achieve high hydrodynamic and/or magnetic Reynolds numbers due to the large length scales involved. The existing laboratory experiments modeling dynamos are challenging and involve large apparatuses containing conducting fluids subject to fast helical flows. Here we propose that electronic solid-state materials-in particular, hydrodynamic metals-may serve as an alternative platform to observe some aspects of the dynamo effect. Motivated by recent experimental developments, this Letter focuses on hydrodynamic Weyl semimetals, where the dominant scattering mechanism is due to interactions. We derive Navier-Stokes equations along with equations of magnetohydrodynamics that describe the transport of a Weyl electron-hole plasma appropriate in this regime. We estimate the hydrodynamic and magnetic Reynolds numbers for this system. The latter is a key figure of merit of the dynamo mechanism. We show that it can be relatively large to enable observation of the dynamo-induced magnetic field bootstrap in an experiment. Finally, we generalize the simplest dynamo instability model-the Ponomarenko dynamo-to the case of a hydrodynamic Weyl semimetal and show that the chiral anomaly term reduces the threshold magnetic Reynolds number for the dynamo instability.

RevDate: 2018-11-14

Guo X, H Qi (2017)

Analytical Solution of Electro-Osmotic Peristalsis of Fractional Jeffreys Fluid in a Micro-Channel.

Micromachines, 8(12): pii:mi8120341.

The electro-osmotic peristaltic flow of a viscoelastic fluid through a cylindrical micro-channel is studied in this paper. The fractional Jeffreys constitutive model, including the relaxation time and retardation time, is utilized to describe the viscoelasticity of the fluid. Under the assumptions of long wavelength, low Reynolds number, and Debye-Hückel linearization, the analytical solutions of pressure gradient, stream function and axial velocity are explored in terms of Mittag-Leffler function by Laplace transform method. The corresponding solutions of fractional Maxwell fluid and generalized second grade fluid are also obtained as special cases. The numerical analysis of the results are depicted graphically, and the effects of electro-osmotic parameter, external electric field, fractional parameters and viscoelastic parameters on the peristaltic flow are discussed.

RevDate: 2018-11-08

Nourazar SS, Nazari-Golshan A, F Soleymanpour (2018)

On the expedient solution of the magneto-hydrodynamic Jeffery-Hamel flow of Casson fluid.

Scientific reports, 8(1):16358 pii:10.1038/s41598-018-34778-w.

The equation of magneto-hydrodynamic Jeffery-Hamel flow of non-Newtonian Casson fluid in a stretching/shrinking convergent/divergent channel is derived and solved using a new modified Adomian decomposition method (ADM). So far in all problems where semi-analytical methods are used the boundary conditions are not satisfied completely. In the present research, a hybrid of the Fourier transform and the Adomian decomposition method (FTADM), is presented in order to incorporate all boundary conditions into our solution of magneto-hydrodynamic Jeffery-Hamel flow of non-Newtonian Casson fluid in a stretching/shrinking convergent/divergent channel flow. The effects of various emerging parameters such as channel angle, stretching/shrinking parameter, Casson fluid parameter, Reynolds number and Hartmann number on velocity profile are considered. The results using the FTADM are compared with the results of ADM and numerical Range-Kutta fourth-order method. The comparison reveals that, for the same number of components of the recursive sequences over a wide range of spatial domain, the relative errors associated with the new method, FTADM, are much less than the ADM. The results of the new method show that the method is an accurate and expedient approximate analytic method in solving the third-order nonlinear equation of Jeffery-Hamel flow of non-Newtonian Casson fluid.

RevDate: 2018-11-14

Shahzad K, Aeken WV, Mottaghi M, et al (2018)

Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method.

Microfluidics and nanofluidics, 22(9):104.

We developed a numerical tool to investigate the phenomena of aggregation and clogging of rigid microparticles suspended in a Newtonian fluid transported through a straight microchannel. In a first step, we implement a time-dependent one-way coupling Discrete Element Method (DEM) technique to simulate the movement and effect of adhesion on rigid microparticles in two- and three-dimensional computational domains. The Johnson-Kendall-Roberts (JKR) theory of adhesion is applied to investigate the contact mechanics of particle-particle and particle-wall interactions. Using the one-way coupled solver, the agglomeration, aggregation and deposition behavior of the microparticles is studied by varying the Reynolds number and the particle adhesion. In a second step, we apply a two-way coupling CFD-DEM approach, which solves the equation of motion for each particle, and transfers the force field corresponding to particle-fluid interactions to the CFD toolbox OpenFOAM. Results for the one-way (DEM) and two-way (CFD-DEM) coupling techniques are compared in terms of aggregate size, aggregate percentages, spatial and temporal evaluation of aggregates in 2D and 3D. We conclude that two-way coupling is the more realistic approach, which can accurately capture the particle-fluid dynamics in microfluidic applications.

RevDate: 2018-11-14

Ma N, Duan Z, Ma H, et al (2018)

Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime.

Micromachines, 9(2): pii:mi9020087.

Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE) to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000), channel aspect ratio (0 < ε < 1), and Knudsen number (0.001 < Kn < 0.1) on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.

RevDate: 2018-11-14

Afzal MJ, Ashraf MW, Tayyaba S, et al (2018)

Sinusoidal Microchannel with Descending Curves for Varicose Veins Implantation.

Micromachines, 9(2): pii:mi9020059.

Approximately 26% of adult people, mostly females, are affected by varicose veins in old age. It is a common reason for distress, loss of efficiency, and worsening living conditions. Several traditional treatment techniques (sclerotherapy and foam sclerotherapy of large veins, laser surgeries and radiofrequency ablation, vein ligation and stripping, ambulatory phlebectomy, and endoscopic vein surgery) have failed to handle this disease effectively. Herein, authors have presented an alternative varicose vein implant method-the descending sinusoidal microchannel (DSMC). DSMC was simulated by Fuzzy logic MATLAB (The MathWorks, Natick, MA, USA) and ANSYS (ANSYS 18.2, perpetual license purchased by Ibadat Education Trust, The University of Lahore, Pakistan) with real and actual conditions. After simulations of DSMC, fabrication and testing were performed. The silver DSMC was manufactured by utilizing a micromachining procedure. The length, width, and depth of the silver substrate were 51 mm, 25 mm, and 1.1 mm, respectively. The measurements of the DSMC channel in the silver wafer substrate were 0.9 mm in width and 0.9 mm in depth. The three descending curves of the DSMC were 7 mm, 6 mm, and 5 mm in height. For pressure, actual conditions were carefully taken as 1.0 kPa to 1.5 kPa for varicose veins. For velocity, actual conditions were carefully taken as 0.02 m/s to 0.07 m/s for these veins. These are real and standard values used in simulations and experiments. At Reynolds number 323, the flow rate and velocity were determined as 1001.0 (0.1 nL/s), 11.4 cm/s and 1015.3 (0.1 nL/s), 12.19 cm/s by MATLAB (The MathWorks, Natick, MA, USA) and ANSYS simulations, respectively. The flow rate and velocity were determined to be 995.3 (0.1 nL/s) and 12.2 cm/s, respectively, at the same Reynolds number (323) in the experiment. Moreover, the Dean number was also calculated to observe Dean vortices. All simulated and experimental results were in close agreement. Consequently, DSMC can be implanted in varicose veins as a new treatment to preserve excellent blood flow in human legs from the original place to avoid tissue damage and other problems.

RevDate: 2018-11-03

Amiri Delouei A, Sajjadi H, Mohebbi R, et al (2018)

Experimental study on inlet turbulent flow under ultrasonic vibration: Pressure drop and heat transfer enhancement.

Ultrasonics sonochemistry pii:S1350-4177(18)30352-3 [Epub ahead of print].

This experimental study examines the impact of ultrasonic vibration on pressure drop and heat transfer enhancement of inlet turbulent flows. A stainless steel tube connected to an ultrasonic transducer and immersed in a constant temperature two-phase fluid was considered as the test section. Regarding the designed configuration, the ultrasonic transducer utilized had an acoustic frequency of 28 kHz and two different power levels of 75 W and 100 W. The experiments were conducted for different ultrasonic power levels, inlet temperatures, and flow rates. The accuracy of measurements was successfully validated via the existing empirical correlations. The results indicate that the effect of ultrasonic vibration on pressure drop and heat transfer enhancement diminishes with the growth of both Reynolds number and inlet temperature. Based on previously reported results on inlet flows with a laminar flow regime, the effect of ultrasonic vibration is very trivial in current turbulent inlet flows (up to 7.28% for heat convection enhancement). The results of the present study will be beneficial for future investigations on designing vibrating heat exchangers.

RevDate: 2018-11-05
CmpDate: 2018-11-05

Falkovich G, N Vladimirova (2018)

Turbulence Appearance and Nonappearance in Thin Fluid Layers.

Physical review letters, 121(16):164501.

Flows in fluid layers are ubiquitous in industry, geophysics, and astrophysics. Large-scale flows in thin layers can be considered two dimensional with bottom friction added. Here we find that the properties of such flows depend dramatically on the way they are driven. We argue that a wall-driven (Couette) flow cannot sustain turbulence, no matter how small the viscosity and friction. Direct numerical simulations (DNSs) up to the Reynolds number Re=10^{6} confirm that all perturbations die in a plane Couette flow. On the contrary, for sufficiently small viscosity and friction, perturbations destroy the pressure-driven laminar (Poiseuille) flow. What appears instead is a traveling wave in the form of a jet slithering between wall vortices. For 5×10^{3}

RevDate: 2018-11-05
CmpDate: 2018-11-05

Dong C, Wang L, Huang YM, et al (2018)

Role of the Plasmoid Instability in Magnetohydrodynamic Turbulence.

Physical review letters, 121(16):165101.

The plasmoid instability in evolving current sheets has been widely studied due to its effects on the disruption of current sheets, the formation of plasmoids, and the resultant fast magnetic reconnection. In this Letter, we study the role of the plasmoid instability in two-dimensional magnetohydrodynamic (MHD) turbulence by means of high-resolution direct numerical simulations. At a sufficiently large magnetic Reynolds number (R_{m}=10^{6}), the combined effects of dynamic alignment and turbulent intermittency lead to a copious formation of plasmoids in a multitude of intense current sheets. The disruption of current sheet structures facilitates the energy cascade towards small scales, leading to the breaking and steepening of the energy spectrum. In the plasmoid-mediated regime, the energy spectrum displays a scaling that is close to the spectral index -2.2 as proposed by recent analytic theories. We also demonstrate that the scale-dependent dynamic alignment exists in 2D MHD turbulence and the corresponding slope of the alignment angle is close to 0.25.

RevDate: 2018-10-30

Jhun CS, Siedlecki C, Xu L, et al (2018)

Stress and Exposure Time on von Willebrand Factor Degradation.

Artificial organs [Epub ahead of print].

Despite the prevailing use of the continuous flow left ventricular assist devices (cf-LVAD), acquired von Willebrand syndrome (AvWS) associated with cf-LVAD still remains a major complication. As AvWS is known to be dependent on shear stress (τ) and exposure time (texp), this study examined the degradation of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in terms of τ and texp . Two custom apparatus, i.e., capillary-tubing-type degrader (CTD) and Taylor-Couette-type degrader (TCD) were developed for short-term (0.033 sec ≤ texp ≤ 1.05 s) and long-term (10 s ≤ texp ≤ 10 min) shear exposures of vWF, respectively. Flow conditions indexed by Reynolds number (Re) for CTD were 14 ≤ Re ≤ 288 with corresponding laminar stress level of 52 ≤ τ CTD ≤ 1042 dyne/cm2 . Flow conditions for TCD were 100 ≤ Re ≤ 2500 with corresponding rotor speed of 180 ≤ o ≤ 4000 RPM and laminar stress level of 50 ≤ τ TCD ≤ 1114 dyne/cm2 . Due to transitional and turbulent flows in TCD at Re > 1117, total stress (i.e., τ total = laminar + turbulent) was also calculated using a computational fluid dynamics (CFD) solver, Converge CFD (Converge Science Inc., Madison, WI, USA). Inhibition of ADAMTS13 with different concentration of EDTA (5 mM and 10 mM) was also performed to investigate the mechanism of cleavage in terms of mechanical and enzymatic aspects. Degradation of HMWM with CTD was negligible at all given testing conditions. Although no degradation of HMWM was observed with TCD at Re < 1117 (τ total = 1012 dyne/cm2), increase in degradation of HMWM was observed beyond Re of 1117 for all given exposure times. At Re ~ 2500 (τ total = 3070 dyne/cm2) with texp = 60 s, a severe degradation of HMWM (90.7 ± 3.8%, abnormal) was observed, and almost complete degradation of HMWM (96.1 ± 1.9%, abnormal) was observed with texp = 600 s. The inhibition studies with 5 mM EDTA at Re ~ 2500 showed that loss of HMWM was negligible (<10%, normal) for all given exposure times except for texp = 10 min (39.5 ± 22.3%, borderline-abnormal). With 10 mM EDTA, no degradation of HMWM was observed (11.1 ± 4.4%, normal) even for texp = 10 min. This study investigated the effect of shear stress and exposure time on the HMWM of vWF in laminar and turbulent flows. The inhibition study by EDTA confirms that degradation of HMWM is initiated by shear-induced unfolding followed by enzymatic cleavage at given conditions. Determination of magnitude of each mechanism needs further investigation. It is also important to note that the degradation of vWF is highly dependent on turbulence regardless of the time exposed within our testing conditions.

RevDate: 2018-10-26

Kim H, Kim J, H Choi (2018)

Flow structure modifications by leading-edge tubercles on a 3D wing.

Bioinspiration & biomimetics, 13(6):066011.

Leading-edge tubercles on a humpback whale flipper are known to enhance its hydrodynamic performance at post-stall angles of attack (Miklosovic et al 2004 Phys. Fluids 16 39-42). We investigate vortical structures above a three-dimensional wing with tubercles using surface-oil-flow visualization and particle image velocimetry measurement. Two wing models with and without tubercles, previously studied by Miklosovic et al (2004 Phys. Fluids 16 39-42), are considered at the Reynolds number of 180 000 based on the free-stream velocity and mean chord length. At this Reynolds number, tubercles delay the stall angle by 7° and increase the maximum lift coefficient by about 22%. At a low angle of attack, flow separation first occurs near the tip region for both wing models. While flow separation rapidly progresses inboard (toward the wing root) for the model without tubercles with increasing angle of attack, tubercles produce two types of vortical motions and block the inboard progression of flow separation, resulting in delayed stall from α = 8° to 15°. One of these two vortical structures is pairs of counter-rotating streamwise vortices evolving from hemi-spherical separation bubbles near the leading-edge troughs at pre-, near-, and post-stall angles of attack, and the other is asymmetric pairs of streamwise vortices evolving from separated flow regions after the mid-chord region at near-stall angle of attack. At a post-stall angle of attack (α = 16°), strong clockwise and counter-clockwise streamwise vortices are generated from foci at the root and tip near the trailing edge, respectively, and delay flow separation in the mid-span, resulting in a higher lift coefficient than that without tubercles.

RevDate: 2018-11-14

Bass K, PW Longest (2018)

Recommendations for Simulating Microparticle Deposition at Conditions Similar to the Upper Airways with Two-Equation Turbulence Models.

Journal of aerosol science, 119:31-50.

The development of a CFD model, from initial geometry to experimentally validated result with engineering insight, can be a time-consuming process that often requires several iterations of meshing and solver set-up. Applying a set of guidelines in the early stages can help to streamline the process and improve consistency between different models. The objective of this study was to determine both mesh and CFD solution parameters that enable the accurate simulation of microparticle deposition under flow conditions consistent with the upper respiratory airways including turbulent flow. A 90° bend geometry was used as a characteristic model that occurs throughout the airways and for which high-quality experimental aerosol deposition data is available in the transitional and turbulent flow regimes. Four meshes with varying degrees of near-wall resolution were compared, and key solver settings were applied to determine the parameters that minimize sensitivity to the near-wall (NW) mesh. The Low Reynolds number (LRN) k-ω model was used to resolve the turbulence field, which is a numerically efficient two-equation turbulence model, but has recently been considered overly simplistic. Some recent studies have used more complex turbulence models, such as Large Eddy Simulation (LES), to overcome the perceived weaknesses of two-equation models. Therefore, the secondary objective was to determine whether the more computationally efficient LRN k-ω model was capable of providing deposition results that were comparable to LES. Results show how NW mesh sensitivity is reduced through application of the Green-Gauss Node-based gradient discretization scheme and physically realistic near-wall corrections. Using the newly recommended meshing parameters and solution guidelines gives an excellent match to experimental data. Furthermore, deposition data from the LRN k-ω model compares favorably with LES results for the same characteristic geometry. In summary, this study provides a set of meshing and solution guidelines for simulating aerosol deposition in transitional and turbulent flows found in the upper respiratory airways using the numerically efficient LRN k-ω approach.

RevDate: 2018-10-23

Karakas F, D'Oliveira D, Maas AE, et al (2018)

Using a shell as a wing: pairing of dissimilar appendages in Atlantiid heteropod swimming.

The Journal of experimental biology pii:jeb.192062 [Epub ahead of print].

Atlantiid heteropods are zooplanktonic marine snails which have a calcium carbonate shell and single swimming fin. They actively swim to hunt prey and vertically migrate. Previous accounts of atlantiid heteropod swimming described these animals sculling with the swimming fin while the shell passively hung beneath the body. Here we show, via high speed stereophotogrammetric measurements of body, fin, and shell kinematics, that the atlantiid heteropod Atlanta selvagensis actively flaps both the swimming fin and shell in a highly coordinated wing-like manner in order to swim in the intermediate Reynolds number regime (Re=10-100). The fin and shell kinematics indicate that atlantiid heteropods use unsteady hydrodynamic mechanisms such as the clap and fling and delayed stall. Unique features of atlantid heteropod swimming include the coordinated pairing of dissimilar appendages, use of the clap and fling mechanism twice during each stroke cycle, and the fin's extremely large stroke amplitude which exceeds 180°.

RevDate: 2018-11-20

Astumian RD (2018)

Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility.

Accounts of chemical research, 51(11):2653-2661.

A molecular machine is a nanoscale device that provides a mechanism for coupling energy from two (or more) processes that in the absence of the machine would be independent of one another. Examples include walking of a protein in one direction along a polymeric track (process 1, driving "force" X1 = - F⃗· l⃗) and hydrolyzing ATP (process 2, driving "force" X2 = ΔμATP); or synthesis of ATP (process 1, X1 = -ΔμATP) and transport of protons from the periplasm to the cytoplasm across a membrane (process 2, X2 = ΔμH+); or rotation of a flagellum (process 1, X1 = -torque) and transport of protons across a membrane (process 2, X2 = ΔμH+). In some ways, the function of a molecular machine is similar to that of a macroscopic machine such as a car that couples combustion of gasoline to translational motion. However, the low Reynolds number regime in which molecular machines operate is very different from that relevant for macroscopic machines. Inertia is negligible in comparison to viscous drag, and omnipresent thermal noise causes the machine to undergo continual transition among many states even at thermodynamic equilibrium. Cyclic trajectories among the states of the machine that result in a change in the environment can be broken into two classes: those in which process 1 in either the forward or backward direction ([Formula: see text]) occurs and which thereby exchange work [Formula: see text] with the environment; and those in which process 2 in either the forward or backward direction ([Formula: see text]) occurs and which thereby exchange work [Formula: see text] with the evironment. These two types of trajectories, [Formula: see text] and [Formula: see text], overlap, i.e., there are some trajectories in which both process 1 and process 2 occur, and for which the work exchanged is [Formula: see text]. The four subclasses of overlap trajectories [(+1,+2), (+1,-2), (-1,+2), (-1,-2)] are the coupled processes. The net probabilities for process 1 and process 2 are designated π+2 - π-2 and π+1 - π-1, respectively. The probabilities [Formula: see text] for any single trajectory [Formula: see text] and [Formula: see text] for its microscopic reverse [Formula: see text] are related by microscopic reversibility (MR), [Formula: see text], an equality that holds arbitrarily far from thermodynamic equilibrium, i.e., irrespective of the magnitudes of X1 and X2, and where [Formula: see text]. Using this formalism, we arrive at a remarkably simple and general expression for the rates of the processes, [Formula: see text], i = 1, 2, where the angle brackets indicate an average over the ensemble of all microscopic reverse trajectories. Stochastic description of coupling is doubtless less familiar than typical mechanical depictions of chemical coupling in terms of ATP induced violent kicks, judo throws, force generation and power-strokes. While the mechanical description of molecular machines is comforting in its familiarity, conclusions based on such a phenomenological perspective are often wrong. Specifically, a "power-stroke" model (i.e., a model based on energy driven "promotion" of a molecular machine to a high energy state followed by directional relaxation to a lower energy state) that has been the focus of mechanistic discussions of biomolecular machines for over a half century is, for catalysis driven molecular machines, incorrect. Instead, the key principle by which catalysis driven motors work is kinetic gating by a mechanism known as an information ratchet. Amazingly, this same principle is that by which catalytic molecular systems undergo adaptation to new steady states while facilitating an exergonic chemical reaction.

RevDate: 2018-10-17

Zhang H, Liu C, Ou Y, et al (2018)

Development of a helical coagulation reactor for harvesting microalgae.

Journal of bioscience and bioengineering pii:S1389-1723(18)30625-X [Epub ahead of print].

In this study, an innovative helical coagulation reactor (HCR) was developed for harvesting microalgae by sedimentation with polyaluminium chloride (PAC). The effects of construction and hydrodynamic characteristics on harvesting performance were investigated. Results showed that a higher harvesting efficiency, 96.37%, was achieved for the large and compact flocs generated by the HCR, and the settling rate of flocs was substantially influenced by the velocity gradient (G) and the Reynolds number (Re). When the Reynolds number closed to the transition between laminar and turbulent flow (4000), the flocs settled faster (20.51 m h-1), although settling slowed as the Reynolds number increased further because of ruptured flocs. The settling rate of flocs could be further improved to 23.27 m h-1 by a pulse flow field, mainly due to larger and more compact flocs forming in the plug pipe flow. Furthermore, a comparative investigation of a mechanically agitated vessel and the HCR with the same Camp number (Gt) showed that the HCR achieved higher settling rates and a shorter residence time than those with a mechanical agitator. The HCR provided a uniform dissipation of energy and high velocity gradient while avoiding electrical and mechanical energy consumption, suggesting this reactor is an efficient and economic option for microalgae harvesting.

RevDate: 2018-10-17

Hong W, Shi H, Huang Z, et al (2019)

Design and Simulation of a Passive Micromixer with Gourd-Shaped Channel.

Journal of nanoscience and nanotechnology, 19(1):206-212.

A gourd-shaped contraction-expansion design is proposed for a passive planar micromixer in this study. The mixing performance of the micromixer is analyzed numerically and compared with a T-shaped planar micromixer. The gourd-shaped contraction-expansion structure can enhance the vortex-formation and mixing abilities of the micromixer. The numerical simulation reveals that the gourd-shaped structure can improved vortex generation and mixing efficiency within a high Reynolds number range. The micromixer with an optimized waist width of 50 μm reaches a mixing efficiency of approximately 83.25% and maintains a moderate pressure drop of 4860 Pa at Re = 100. This study can shed light on the design of new 2D micromixers from the point view of bionics.

RevDate: 2018-11-03
CmpDate: 2018-10-17

Sun B, Wang P, Luo J, et al (2018)

A Flexible Hot-Film Sensor Array for Underwater Shear Stress and Transition Measurement.

Sensors (Basel, Switzerland), 18(10): pii:s18103469.

A flexible hot-film sensor array for wall shear stress, flow separation, and transition measurement has been fabricated and implemented in experiments. Parylene C waterproof layer is vapor phase deposited to encapsulate the sensor. Experimental studies of shear stress and flow transition on a flat plate have been undertaken in a water tunnel with the sensor array. Compared with the shear stress derived from velocity profile and empirical formulas, the measuring errors of the hot-film sensors are less than 5%. In addition, boundary layer transition of the flat plate has also been detected successfully. Ensemble-averaged mean, normalized root mean square, and power spectra of the sensor output voltage indicate that the Reynolds number when transition begins at where the sensor array located is 1.82 × 10⁵, 50% intermittency transition is 2.52 × 10⁵, and transition finishes is 3.96 × 10⁵. These results have a good agreement with the transition Reynolds numbers, as measured by the Laser Doppler Velocimetry (LDV) system.

RevDate: 2018-10-10

Tiwari A, SS Chauhan (2018)

Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.

Cardiovascular engineering and technology pii:10.1007/s13239-018-00379-x [Epub ahead of print].

PURPOSE: Most of the previously studied non-Newtonian blood flow models considered blood viscosity to be constant but for correct measurement of flow rate and flow resistance, the hematocrit dependent viscosity will be better as various literature suggested the variable nature of blood viscosity. Present work concerns the steady and pulsatile nature of blood flow through constricted blood vessels. Two-fluid model for blood is considered with the suspension of all the RBCs (erythrocytes) in the core region as a non-Newtonian (Herschel-Bulkley) fluid and the plasma in the cell free region near wall as a Newtonian fluid. No slip condition on the wall and radially varying viscosity has been taken.

METHODS: For steady flow the analytical approach has been taken to obtain the exact solution. Regular perturbation expansion method has been used to solve the governing equations for pulsatile flow up to first order of approximation by assuming the pulsatile Reynolds number to be very small (much less than unity).

RESULTS: Flow rate, wall shear stress and velocity profile have been graphically analyzed and compared with constant viscosity model. A noteworthy observation of the present study is that rise in viscosity index leads to decay in velocity, velocity of plug flow region, flow rate while flow resistance increases with rising viscosity index (m). The results for Power-law fluid (PL), Bingham-plastic fluid (BP), Newtonian fluid (NF) are found as special cases from this model. Like the constant viscosity model, it has been also observed that the velocity, flow rate and plug core velocity of two-fluid model are higher than the single-fluid model for variable viscosity.

CONCLUSIONS: The two-phase fluid model is more significant than the single-fluid model. Effect of viscosity parameter on various hemodynamical quantities has been obtained. It is also concluded that a rising viscosity parameter (varying nature of viscosity) significantly distinguishes the single and two-fluid models in terms of changes in blood flow resistance. The outcome of present study may leave a significant impact on analyzing blood flow through small blood vessels with constriction, where correct measurement of flow rate and flow resistance for medical treatment is very important.

RevDate: 2018-11-14

Karathanassis IK, Trickett K, Koukouvinis P, et al (2018)

Illustrating the effect of viscoelastic additives on cavitation and turbulence with X-ray imaging.

Scientific reports, 8(1):14968 pii:10.1038/s41598-018-32996-w.

The effect of viscoelastic additives on the topology and dynamics of the two-phase flow arising within an axisymmetric orifice with a flow path constriction along its main axis has been investigated employing high-flux synchrotron radiation. X-ray Phase Contrast Imaging (XPCI) has been conducted to visualise the cavitating flow of different types of diesel fuel within the orifice. An additised blend containing Quaternary Ammonium Salt (QAS) additives with a concentration of 500 ppm has been comparatively examined against a pure (base) diesel compound. A high-flux, 12 keV X-ray beam has been utilised to obtain time resolved radiographs depicting the vapour extent within the orifice from two views (side and top) with reference to its main axis. Different test cases have been examined for both fuel types and for a range of flow conditions characterised by Reynolds number of 35500 and cavitation numbers (CN) lying in the range 3.0-7.7. It has been established that the behaviour of viscoelastic micelles in the regions of shear flow is not consistent depending on the cavitation regimes encountered. Namely, viscoelastic effects enhance vortical (string) cavitation, whereas hinder cloud cavitation. Furthermore, the use of additised fuel has been demonstrated to suppress the level of turbulence within the orifice.

RevDate: 2018-10-30

de Matos DB, Barbosa MPR, Leite OM, et al (2018)

Characterization of a tubular electrochemical reactor for the degradation of the commercial diuron herbicide.

Environmental technology [Epub ahead of print].

After designing and constructing an electrochemical reactor with concentric electrodes and tangential feed (RECT), it is necessary to characterize it and to study its performance. The experimental study of the residence time distribution (RTD) was conducted for flow rates of 2.78 × 10-6 m3 s-1, 8.33 × 10-6 m3 s-1 and 13.9 × 10-6 m3 s-1. According to the values obtained from the Pe number (0.67-1.52), the RECT fits as tubular with great dispersion. The determined empirical correlation (Sh = 18.16 Re0.50 Sc0.33) showed a laminar flow behavior in the range of Reynolds number (Re) between 23 and 117. In order to use RECT in effluent treatment, an electrochemical oxidation study of the Diuron model molecule (Nortox®) was performed to analyze reactor performance in a closed system with total reflux. A decay kinetics of pseudo-first order was associated with the decay of the concentration of diuron and 30% mineralization in 180 min of process were obtained, having a total volume of 4 × 10-3 m3 and an initial concentration of commercial Diuron in 215.83 mg dm-3. Eleven by-products were identified by HPLC-MS analysis and, from this, it was possible to propose a route of degradation of the diuron. From these observations, it can be inferred that the studied electrochemical reactor had applicability in the degradation of recalcitrant compounds, as is the case of commercial diuron. Make some changes in the electrochemical reactor studied and other advanced oxidative processes, such as electro-Fenton, can be associated with the studied system to achieve a better conversion efficiency.

RevDate: 2018-11-23

Waldrop LD, He Y, S Khatri (2018)

What Can Computational Modeling Tell Us about the Diversity of Odor-Capture Structures in the Pancrustacea?.

Journal of chemical ecology, 44(12):1084-1100.

A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents.

RevDate: 2018-10-20

Fu Q, Chen H, Liao Q, et al (2018)

Drag reduction and shear-induced cells migration behavior of microalgae slurry in tube flow.

Bioresource technology, 270:38-45.

To optimize the designing of microalgae slurry pumping system and enhance the efficiency of microalgae products production, the flow characteristics of microalgae slurries (Chlorella pyrenoidosa) in tube flow were for the first time investigated combining experiments and numerical simulation. The drag reduction behavior of microalgae slurry in the fully developed laminar flow regime was studied. In addition, the transition Reynolds number of microalgae slurries from laminar flow to turbulent flow was about 1000-1300, which was similar to the expression of two-phase flow. To provide a further understanding of flow feature of microalgae slurries in tube, a two-phase mixture model was proposed by considering the heterogeneity of concentration due to the shear-induced microalgae cells migration behavior. Simulation results revealed that the heterogeneous distribution of concentration was affected by average velocity and volume fraction of microalgae slurries, significantly affecting the flow resistance and flow stability of microalgae slurry in the tube flow.

RevDate: 2018-10-22

Bergersen AW, Mortensen M, K Valen-Sendstad (2018)

The FDA nozzle benchmark: "In theory there is no difference between theory and practice, but in practice there is".

International journal for numerical methods in biomedical engineering [Epub ahead of print].

The utility of flow simulations relies on the robustness of computational fluid dynamics (CFD) solvers and reproducibility of results. The aim of this study was to validate the Oasis CFD solver against in vitro experimental measurements of jet breakdown location from the FDA nozzle benchmark at Reynolds number 3500, which is in the particularly challenging transitional regime. Simulations were performed on meshes consisting of 5, 10, 17, and 28 million (M) tetrahedra, with Δt = 10-5 seconds. The 5M and 10M simulation jets broke down in reasonable agreement with the experiments. However, the 17M and 28M simulation jets broke down further downstream. But which of our simulations are "correct"? From a theoretical point of view, they are all wrong because the jet should not break down in the absence of disturbances. The geometry is axisymmetric with no geometrical features that can generate angular velocities. A stable flow was supported by linear stability analysis. From a physical point of view, a finite amount of "noise" will always be present in experiments, which lowers transition point. To replicate noise numerically, we prescribed minor random angular velocities (approximately 0.31%), much smaller than the reported flow asymmetry (approximately 3%) and model accuracy (approximately 1%), at the inlet of the 17M simulation, which shifted the jet breakdown location closer to the measurements. Hence, the high-resolution simulations and "noise" experiment can potentially explain discrepancies in transition between sometimes "sterile" CFD and inherently noisy "ground truth" experiments. Thus, we have shown that numerical simulations can agree with experiments, but for the wrong reasons.

RevDate: 2018-11-14

Wan G, Jin C, Trase I, et al (2018)

Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling.

Sensors (Basel, Switzerland), 18(9): pii:s18092973.

Helical structures are ubiquitous in natural and engineered systems across multiple length scales. Examples include DNA molecules, plants' tendrils, sea snails' shells, and spiral nanoribbons. Although this symmetry-breaking shape has shown excellent performance in elastic springs or propulsion generation in a low-Reynolds-number environment, a general principle to produce a helical structure with programmable geometry regardless of length scales is still in demand. In recent years, inspired by the chiral opening of Bauhinia variegata's seedpod and the coiling of plant's tendril, researchers have made significant breakthroughs in synthesizing state-of-the-art 3D helical structures through creating intrinsic curvatures in 2D rod-like or ribbon-like precursors. The intrinsic curvature results from the differential response to a variety of external stimuli of functional materials, such as hydrogels, liquid crystal elastomers, and shape memory polymers. In this review, we give a brief overview of the shape transformation mechanisms of these two plant's structures and then review recent progress in the fabrication of biomimetic helical structures that are categorized by the stimuli-responsive materials involved. By providing this survey on important recent advances along with our perspectives, we hope to solicit new inspirations and insights on the development and fabrication of helical structures, as well as the future development of interdisciplinary research at the interface of physics, engineering, and biology.

RevDate: 2018-11-14
CmpDate: 2018-09-19

Daddi-Moussa-Ider A, Löwen H, S Gekle (2018)

Creeping motion of a solid particle inside a spherical elastic cavity⋆.

The European physical journal. E, Soft matter, 41(9):104 pii:10.1140/epje/i2018-11715-7.

On the basis of the linear hydrodynamic equations, we present an analytical theory for the low-Reynolds-number motion of a solid particle moving inside a larger spherical elastic cavity which can be seen as a model system for a fluid vesicle. In the particular situation where the particle is concentric with the cavity, we use the stream function technique to find exact analytical solutions of the fluid motion equations on both sides of the elastic cavity. In this particular situation, we find that the solution of the hydrodynamic equations is solely determined by membrane shear properties and that bending does not play a role. For an arbitrary position of the solid particle within the spherical cavity, we employ the image solution technique to compute the axisymmetric flow field induced by a point force (Stokeslet). We then obtain analytical expressions of the leading-order mobility function describing the fluid-mediated hydrodynamic interactions between the particle and the confining elastic cavity. In the quasi-steady limit of vanishing frequency, we find that the particle self-mobility function is higher than that predicted inside a rigid no-slip cavity. Considering the cavity motion, we find that the pair-mobility function is determined only by membrane shear properties. Our analytical predictions are supplemented and validated by fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied forcing frequencies.

RevDate: 2018-08-24

Molony D, Park J, Zhou L, et al (2018)

Bulk Flow and Near Wall Hemodynamics of the Rabbit Aortic Arch: A 4D PC-MRI Derived CFD Study.

Journal of biomechanical engineering pii:2698120 [Epub ahead of print].

Animal models offer a flexible experimental environment for studying atherosclerosis. The mouse is the most commonly used animal, however, the underlying hemodynamics in larger animals such as the rabbit are far closer to that of humans. The aortic arch is a vessel with complex helical flow and highly heterogeneous shear stress patterns which may influence where atherosclerotic lesions form. A better understanding of intra-species flow variation and the impact of geometry on flow may improve our understanding of where disease forms. In this work we use Magnetic Resonance Angiography (MRA) and 4D Phase contrast magnetic resonance imaging (PC-MRI) to image and measure blood velocity in the rabbit aortic arch. Measured flow rates from the PC-MRI were used as boundary conditions in computational fluid dynamics models of the arches. Helical flow, cross flow index (CFI) and time-averaged wall shear stress (TAWSS) were determined from the simulated flow field. Both traditional geometric metrics and shape modes derived from statistical shape analysis were analyzed with respect to flow helicity. High CFI and low TAWSS were found to co-localize in the ascending aorta and to a lesser extent on the inner curvature of the aortic arch. The Reynolds number was linearly associated with an increase in helical flow intensity (R=0.85, p<.05). Both traditional and statistical shape analysis correlated with increased helical flow symmetry. However, a stronger correlation was obtained from the statistical shape analysis demonstrating its potential for discerning the role of shape in hemodynamic studies.

RevDate: 2018-11-16
CmpDate: 2018-11-16

Krastev VK, Amati G, Succi S, et al (2018)

On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures.

The European physical journal. E, Soft matter, 41(8):95 pii:10.1140/epje/i2018-11703-y.

In this work, we perform fully three-dimensional numerical simulations of the flow field surrounding cylindrical structures characterized by different types of corrugated surface. The simulations are carried out using the Lattice Boltzmann Method (LBM), considering a flow regime with a Reynolds number [Formula: see text]. The fluid-dynamic wake structure and stability are investigated by means of PSD analyses of the velocity components and by visual inspection of the vortical coherent structure evolution. Moreover, the energy dissipation of the flow is assessed by considering an equivalent discharge coefficient [Formula: see text], which measures the total pressure losses of the flow moving around the various layout under investigation. Outcomes from our study demonstrate that the helical ridges augment energy dissipation, but might also have a role in the passive control of the characteristic frequencies of the unsteady wake flow.

RevDate: 2018-09-14

Lee YJ, KB Lua (2018)

Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.

Bioinspiration & biomimetics, 13(6):066003.

The wing-wake interaction of flapping wings while hovering has been investigated, with the focus on the difference in wing-wake interaction between 2D and 3D flapping wings. Numerical simulations are conducted at a Reynolds number of 100, and the flapping configurations are divided into the 2D, quasi-3D and 3D categories. Variations of the aspect ratio and Rossby number allow the flapping configuration to morph gradually between categories. The wing-wake interaction mechanisms are identified and the effect of three-dimensionality on these mechanisms is discussed. Three-dimensionality affects wing-wake interaction through four primary aerodynamic mechanisms, namely, induced jet, downwash/upwash, leading-edge vortex (LEV) shedding due to vortex pairing, and the formation of a closely attached LEV. The first two mechanisms are well-established in the literature. With regard to the LEV shedding mechanism, it is revealed that the interaction between the LEV and the residue vortex from the previous stroke plays an important role in the early vortex shedding of 2D flapping wings. This effect diminishes with increasing three-dimensionality. With regard to the mechanism of the closely attached LEV, the wake encourages the formation of an LEV that is closely attached to the wing's top surface, which is beneficial to lift generation. This closely attached LEV mechanism accounts for most of the lift enhancement that arises from wake effects. Three-dimensionality alters the efficacy of the different aerodynamic mechanisms. Consequently, the dual peak lift coefficient pattern typically seen on 2D flapping wings transforms into the single peak lift coefficient pattern of the 3D flapping wing. It is also demonstrated that the mean lift enhancement due to wing-wake interaction diminishes rapidly when three-dimensionality is introduced. Results suggest that, for wings with parameters close to those of natural flyers, wing-wake interaction yields marginal lift enhancement and a small increase in energy consumption.

RevDate: 2018-11-27
CmpDate: 2018-11-27

Espeso DR, Martínez-García E, Carpio A, et al (2018)

Dynamics of Pseudomonas putida biofilms in an upscale experimental framework.

Journal of industrial microbiology & biotechnology, 45(10):899-911.

Exploitation of biofilms for industrial processes requires them to adopt suitable physical structures for rendering them efficient and predictable. While hydrodynamics could be used to control material features of biofilms of the platform strain Pseudomonas putida KT2440 there is a dearth of experimental data on surface-associated growth behavior in such settings. Millimeter scale biofilm patterns formed by its parental strain P. putida mt-2 under different Reynolds numbers (Re) within laminar regime were analyzed using an upscale experimental continuous cultivation assembly. A tile-scan image acquisition process combined with a customized image analysis revealed patterns of dense heterogeneous structures at Re = 1000, but mostly flattened coverings sparsely patched for Re < 400. These results not only fix the somewhat narrow hydrodynamic regime under which P. putida cells form stable coatings on surfaces destined for large-scale processes, but also provide useful sets of parameters for engineering catalytic biofilms based on this important bacterium as a cell factory.

RevDate: 2018-09-27

Lee J, Estlack Z, Somaweera H, et al (2018)

A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells.

Lab on a chip, 18(19):2946-2954.

To precisely investigate the mechanobiological responses of valvular endothelial cells, we developed a microfluidic flow profile generator using a pneumatically-actuated micropump consisting of microvalves of various sizes. By controlling the closing pressures and the actuation times of these microvalves, we modulated the magnitude and frequency of the shear stress to mimic mitral and aortic inflow profiles with frequencies in the range of 0.8-2 Hz and shear stresses up to 20 dyn cm-2. To demonstrate this flow profile generator, aortic inflow with an average of 5.9 dyn cm-2 shear stress at a frequency of 1.2 Hz with a Reynolds number of 2.75, a Womersley number of 0.27, and an oscillatory shear index (OSI) value of 0.2 was applied to porcine aortic valvular endothelial cells (PAVECs) for mechanobiological studies. The cell alignment, cell elongation, and alpha-smooth muscle actin (αSMA) expression of PAVECs under perfusion, steady flow, and aortic inflow conditions were analyzed to determine their shear-induced cell migration and trans-differentiation. In this morphological and immunocytochemical study, we found that the PAVECs elongated and aligned themselves perpendicular to the directions of the steady flow and the aortic inflow. In contrast, under perfusion with a fluidic shear stress of 0.47 dyn cm-2, the PAVECs elongated and aligned themselves parallel to the direction of flow. The PAVECs exposed to the aortic inflow upregulated their αSMA-protein expression to a greater degree than those exposed to perfusion and steady flow. By comparing these results to those of previous studies of pulsatile flow, we also found that the ratio of positive to negative shear stress plays an important role in determining PAVECs' trans-differentiation and adaptation to flow. This microfluidic cardiac flow profile generator will enable future valvular mechanobiological studies to determine the roles of magnitude and frequency of shear stresses.

RevDate: 2018-10-23
CmpDate: 2018-08-20

Gao J, J Katz (2018)

Self-calibrated microscopic dual-view tomographic holography for 3D flow measurements.

Optics express, 26(13):16708-16725.

This paper introduces the application of microscopic dual-view tomographic holography (M-DTH) to measure the 3D position and motion of micro-particles located in dense suspensions. Pairing of elongated traces of the same particle in the two inclined reconstructed fields requires precise matching of the entire sample volume that accounts for the inherent distortions in each view. It is achieved by an iterative volumetric self-calibration method, consisting of mapping one view onto the next, dividing the sample volume into slabs, and cross-correlating the two views. Testing of the procedures using synthetic particle fields with imposed distortion and realistic errors in particle locations shows that the self-calibration method achieves a 3D uncertainty of about 1µm, a third of the particle diameter. Multiplying the corrected intensity fields is used for truncating the elongated traces, whose centers are located within 1µm of the exact value. Without correction, only a small fraction of the traces even overlap. The distortion correction also increases the number of intersecting traces in experimental data along with their intensity. Application of this method for 3D velocity measurements is based on the centroids of the truncated/shortened particle traces. Matching of these traces in successive fields is guided by several criteria, including results of volumetric cross-correlation of the multiplied intensity fields. The resulting 3D velocity distribution is substantially more divergence-free, i.e., satisfies conservation of mass, compared to analysis performed using single-view data. Sample application of the new method shows the 3D flow structure around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent boundary layer.

RevDate: 2018-08-21
CmpDate: 2018-08-21

Mathai V, Huisman SG, Sun C, et al (2018)

Dispersion of Air Bubbles in Isotropic Turbulence.

Physical review letters, 121(5):054501.

Bubbles play an important role in the transport of chemicals and nutrients in many natural and industrial flows. Their dispersion is crucial to understanding the mixing processes in these flows. Here we report on the dispersion of millimetric air bubbles in a homogeneous and isotropic turbulent flow with a Taylor Reynolds number from 110 to 310. We find that the mean squared displacement (MSD) of the bubbles far exceeds that of fluid tracers in turbulence. The MSD shows two regimes. At short times, it grows ballistically (∝τ^{2}), while at larger times, it approaches the diffusive regime where the MSD∝τ. Strikingly, for the bubbles, the ballistic-to-diffusive transition occurs one decade earlier than for the fluid. We reveal that both the enhanced dispersion and the early transition to the diffusive regime can be traced back to the unsteady wake-induced motion of the bubbles. Further, the diffusion transition for bubbles is not set by the integral timescale of the turbulence (as it is for fluid tracers and microbubbles), but instead, by a timescale of eddy crossing of the rising bubbles. The present findings provide a Lagrangian perspective towards understanding mixing in turbulent bubbly flows.

RevDate: 2018-08-21
CmpDate: 2018-08-21

Oettinger D, Ault JT, Stone HA, et al (2018)

Invisible Anchors Trap Particles in Branching Junctions.

Physical review letters, 121(5):054502.

We combine numerical simulations and an analytic approach to show that the capture of finite, inertial particles during flow in branching junctions is due to invisible, anchor-shaped three-dimensional flow structures. These Reynolds-number-dependent anchors define trapping regions that confine particles to the junction. For a wide range of Stokes numbers, these structures occupy a large part of the flow domain. For flow in a V-shaped junction, at a critical Stokes number, we observe a topological transition due to the merger of two anchors into one. From a stability analysis, we identify the parameter region of particle sizes and densities where capture due to anchors occurs.

RevDate: 2018-10-23
CmpDate: 2018-08-21

Karaminejad S, Askari MH, M Ashjaee (2018)

Temperature field investigation of hydrogen/air and syngas/air axisymmetric laminar flames using Mach-Zehnder interferometry.

Applied optics, 57(18):5057-5067.

In this study, the optical method of Mach-Zehnder interferometry (MZI) is utilized in order to explore the flame structure and temperature field of syngas/air and hydrogen/air flames. Two axisymmetric burners with inner diameters of 4 mm and 6 mm are used for temperature field measurement of hydrogen and syngas, respectively. The effects of fuel composition, equivalence ratio, and Reynolds number (Re) are investigated at ambient condition (P=0.87 bar, T=300 K). Three different H2/CO fuel compositions with hydrogen fractions of 30%, 50%, and 100% are studied. Temperature profiles are reported at four different sections above the burner tip. Measured temperatures using the interferometry method are compared with thermocouple data and good agreement between them is observed. The results obtained in this investigation indicated that the MZI can be applied for accurate determination of flame front and temperature field, especially for high-temperature flames where other methods cannot be properly utilized. Analyses of the data reduction method revealed that the exact determination of the refractive index distribution and reference temperature is critical for accurate determination of the temperature field. The results indicated that by increasing the Re, the maximum flame temperature is enhanced. Increasing the equivalence ratio leads to expansion of the flame radial distribution (at the same distance from the burner tip). At higher distances from the burner tip, temperature increases uniformly from the flame boundary toward the flame axis, while at lower heights it shows reduction at the burner axis. By increasing the CO content of fuel, the maximum flame temperature increases at all equivalence ratios except at the stoichiometric condition, where SH100 illustrates the highest maximum flame temperature.

RevDate: 2018-11-14

Bhat SS, Zhao J, Sheridan J, et al (2018)

The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size.

Royal Society open science, 5(7):172197 pii:rsos172197.

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.

RevDate: 2018-08-08

Gilmer GG, Deshpande V, Chou CL, et al (2018)

Flow Resistance along the Rat Renal Tubule.

American journal of physiology. Renal physiology [Epub ahead of print].

The Reynolds number in the renal tubule is extremely low, consistent with laminar flow. Consequently, luminal flow can be described by the Hagen-Poiseuille laminar flow equation. This equation calculates the volumetric flow rate from values of the axial pressure gradient and flow resistance, which is dependent on the length and diameter of each renal tubule segment. Our goal was to calculate the pressure drop along each segment of the renal tubule and determine the points of highest resistance. When the Hagen-Poiseuille equation was used for rat superficial nephrons based on known flow rates, tubule lengths, and diameters for each renal tubule segment, it was found that maximum pressure drop occurred in two segments: the thin descending limbs of Henle and the inner medullary collecting ducts. The high resistance in the thin descending limbs is due to their small diameters. The steep pressure drop observed in the inner medullary collecting ducts is due to the convergent structure of the tubules, which channels flow into fewer and fewer tubules toward the papillary tip. For short-looped nephrons, the calculated glomerular capsular pressure matched measured values, even with the high collecting duct flow rates seen in water diuresis, providing that tubule compliance was taken into account. In long-looped nephrons, the greater length of thin limb segments is compensated for by a larger luminal diameter. Simulation of the effect of proximal diuretics, viz. acetazolamide or SGLT2-inhibitors, predicts a substantial back pressure in Bowman's capsule, which may contribute to observed decreases in glomerular filtration rate.

RevDate: 2018-09-05

Mateos-Maroto A, Guerrero-Martínez A, Rubio RG, et al (2018)

Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism.

ACS applied materials & interfaces, 10(35):29367-29377.

Some biological microorganisms can crawl or swim due to coordinated motions of their cytoskeleton or the flagella located inside their bodies, which push the cells forward through intracellular forces. To date, there is no demonstration of synthetic systems propelling at low Reynolds number via the precise actuation of the material confined within an enclosing lipid membrane. Here, we report lipid vesicles and other more complex self-assembled biohybrid structures able to propel due to the advection flows generated by the actuated rotation of the superparamagnetic particles they contain. The proposed swimming and release strategies, based on cooperative hydrodynamic mechanisms and near-infrared laser pulse-triggered destabilization of the phospholipid membranes, open new possibilities for the on-command transport of minute quantities of drugs, fluid or nano-objects. The lipid membranes protect the confined substances from the outside environment during transportation, thus enabling them to work in physiological conditions.

RevDate: 2018-11-14

Vidal EAG, Zeidberg LD, EJ Buskey (2018)

Development of Swimming Abilities in Squid Paralarvae: Behavioral and Ecological Implications for Dispersal.

Frontiers in physiology, 9:954.

This study investigates the development of swimming abilities and its relationship with morphology, growth, and nourishment of reared Doryteuthis opalescens paralarvae from hatching to 60 days of age. Paralarvae (2.5-11 mm mantle length - ML) were videotaped, and their behavior quantified throughout development using computerized motion analysis. Hatchlings swim dispersed maintaining large nearest neighbor distances (NND, 8.7 ML), with swimming speeds (SS) of 3-8 mm s-1 and paths with long horizontal displacements, resulting in high net to gross displacement ratios (NGDR). For 15-day-old paralarvae, swimming paths are more consistent between jets, growth of fins, length, and mass increases. The swimming pattern of 18-day-old paralarvae starved for 72 h exhibited a significant reduction in mean SS and inability to perform escape jets. A key morphological, behavioral, and ecological transition occurs at about 6 mm ML (>35-day old), when there is a clear change in body shape, swimming performance, and behavior, paths are more regularly repeated and directional swimming is evident, suggesting that morphological changes incur in swimming performance. These squid are able to perform sustained swimming and hover against a current at significantly closer NND (2.0 ML), as path displacement is reduced and maneuverability increases. As paralarvae reach 6-7 mm ML, they are able to attain speeds up to 562 mm s-1 and to form schools. Social feeding interactions (kleptoparasitism) are often observed prior to the formation of schools. Schools are always formed within areas of high flow gradient in the tanks and are dependent on squid size and current speed. Fin development is a requisite for synchronized and maneuverable swimming of schooling early juveniles. Although average speeds of paralarvae are within intermediate Reynolds numbers (Re < 100), they make the transition to the inertia-dominated realm during escape jets of high propulsion (Re > 3200), transitioning from plankton to nekton after their first month of life. The progressive development of swimming capabilities and social interactions enable juvenile squid to school, while also accelerates learning, orientation and cognition. These observations indicate that modeling of the lifecycle should include competency to exert influence over small currents and dispersal patterns after the first month of life.

RevDate: 2018-10-12
CmpDate: 2018-10-12

Gritti F (2018)

High-resolution turbulent flow chromatography.

Journal of chromatography. A, 1570:135-147.

The resolution power of turbulent flow chromatography using carbon dioxide as the mobile phase and coated (crosslinked methyl phenyl polysiloxane) open tube columns (OTCs) as the stationary phase was investigated under retentive conditions (0

RevDate: 2018-11-14

Rosti ME, Omidyeganeh M, A Pinelli (2018)

Numerical Simulation of a Passive Control of the Flow Around an Aerofoil Using a Flexible, Self Adaptive Flaplet.

Flow, turbulence and combustion, 100(4):1111-1143.

Self-activated feathers are used by almost all birds to adapt their wing characteristics to delay stall or to moderate its adverse effects (e.g., during landing or sudden increase in angle of attack due to gusts). Some of the feathers are believed to pop up as a consequence of flow separation and to interact with the flow and produce beneficial modifications of the unsteady vorticity field. The use of self adaptive flaplets in aircrafts, inspired by birds feathers, requires the understanding of the physical mechanisms leading to the mentioned aerodynamic benefits and the determination of the characteristics of optimal flaps including their size, positioning and ideal fabrication material. In this framework, this numerical study is divided in two parts. Firstly, in a simplified scenario, we determine the main characteristics that render a flap mounted on an aerofoil at high angle of attack able to deliver increased lift and improved aerodynamic efficiency, by varying its length, position and its natural frequency. Later on, a detailed direct numerical simulation analysis is used to understand the origin of the aerodynamic benefits introduced by the flaplet movement induced by the interaction with the flow field. The parametric study that has been carried out, reveals that an optimal flap can deliver a mean lift increase of about 20% on a NACA0020 aerofoil at an incidence of 20 o degrees. The results obtained from the direct numerical simulation of the flow field around the aerofoil equipped with the optimal flap at a chord Reynolds number of 2 × 104 shows that the flaplet movement is mainly induced by a cyclic passage of a large recirculation bubble on the aerofoil suction side. In turns, when the flap is pushed downward, the induced plane jet displaces the trailing edge vortices further downstream, away from the wing, moderating the downforce generated by those vortices and regularising the shedding cycle that appears to be much more organised when the optimal flaplet configuration is selected.

RevDate: 2018-08-02

Vernet JA, Örlü R, Söderblom D, et al (2018)

Plasma Streamwise Vortex Generators for Flow Separation Control on Trucks: A Proof-of-concept Experiment.

Flow, turbulence and combustion, 100(4):1101-1109.

An experimental study of the effect of Dielectric Barrier Discharge plasma actuators on the flow separation on the A-pillar of a modern truck under cross-wind conditions has been carried out. The experiments were done in a wind tunnel with a 1:6 scale model of a tractor-trailer combination. The actuators were used as vortex generators positioned on the A-pillar on the leeward side of the tractor and the drag force was measured with a wind-tunnel balance. The results show that the effect at the largest yaw angle (9 degrees) can give a drag reduction of about 20% and that it results in a net power reduction. At lower yaw angles the reduction was smaller. The present results were obtained at a lower Reynolds number and a lower speed than for real driving conditions so it is still not yet confirmed if a similar positive result can be obtained in full scale.

RevDate: 2018-11-14

Ahmadi S, Roccon A, Zonta F, et al (2018)

Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface.

Flow, turbulence and combustion, 100(4):979-993.

In this work we study the turbulence modulation in a viscosity-stratified two-phase flow using Direct Numerical Simulation (DNS) of turbulence and the Phase Field Method (PFM) to simulate the interfacial phenomena. Specifically we consider the case of two immiscible fluid layers driven in a closed rectangular channel by an imposed mean pressure gradient. The present problem, which may mimic the behaviour of an oil flowing under a thin layer of different oil, thickness ratio h2/h1 = 9, is described by three main flow parameters: the shear Reynolds number Reτ (which quantifies the importance of inertia compared to viscous effects), the Weber number We (which quantifies surface tension effects) and the viscosity ratio λ = ν1/ν2 between the two fluids. For this first study, the density ratio of the two fluid layers is the same (ρ2 = ρ1), we keep Reτ and We constant, but we consider three different values for the viscosity ratio: λ = 1, λ = 0.875 and λ = 0.75. Compared to a single phase flow at the same shear Reynolds number (Reτ = 100), in the two phase flow case we observe a decrease of the wall-shear stress and a strong turbulence modulation in particular in the proximity of the interface. Interestingly, we observe that the modulation of turbulence by the liquid-liquid interface extends up to the top wall (i.e. the closest to the interface) and produces local shear stress inversions and flow recirculation regions. The observed results depend primarily on the interface deformability and on the viscosity ratio between the two fluids (λ).

RevDate: 2018-08-02

Sundstrom LRJ, MJ Cervantes (2018)

On the Similarity of Pulsating and Accelerating Turbulent Pipe Flows.

Flow, turbulence and combustion, 100(2):417-436.

The near-wall region of an unsteady turbulent pipe flow has been investigated experimentally using hot-film anemometry and two-component particle image velocimetry. The imposed unsteadiness has been pulsating, i.e., when a non-zero mean turbulent flow is perturbed by sinusoidal oscillations, and near-uniformly accelerating in which the mean flow ramped monotonically between two turbulent states. Previous studies of accelerating flows have shown that the time evolution between the two turbulent states occurs in three stages. The first stage is associated with a minimal response of the Reynolds shear stress and the ensemble-averaged mean flow evolves essentially akin to a laminar flow undergoing the same change in flow rate. During the second stage, the turbulence responds rapidly to the new flow conditions set by the acceleration and the laminar-like behavior rapidly disappears. During the final stage, the flow adapts to the conditions set by the final Reynolds number. In here, it is shown that the time-development of the ensemble-averaged wall shear stress and turbulence during the accelerating phase of a pulsating flow bears marked similarity to the first two stages of time-development exhibited by a near-uniformly accelerating flow. The stage-like time-development is observed even for a very low forcing frequency; ω + = ω ν / u ¯ τ 2 = 0.00073 (or equivalently, l s + = 2 / ω + = 52), at an amplitude of pulsation of 0.5. Some previous studies have considered the flow to be quasi-steady at l s + = 52 ; however, the forcing amplitude has been smaller in those studies. The importance of the forcing amplitude is reinforced by the time-development of the ensemble-averaged turbulence field. For, the near-wall response of the Reynolds stresses showed a dependence on the amplitude of pulsation. Thus, it appears to exist a need to seek alternative similarity parameters, taking the amplitude of pulsation into account, if the response of different flow quantities in a pulsating flow are to be classified correctly.

RevDate: 2018-07-25

Dey KK (2018)

Dynamic Coupling at Low Reynolds Number.

Angewandte Chemie (International ed. in English) [Epub ahead of print].

Collective and emergent behaviors of active colloidal assemblies provide useful insights into the statistical physics of out-of-equilibrium systems. Colloidal suspensions containing microscopic active swimmers have recently been studied with much vigor to understand principles of energy transfer at low Reynolds number conditions. Using molecules of active enzymes and ångström sized organometallic catalysts it has further been demonstrated that energy can be transferred even by molecules to their surroundings, influencing substantially the overall dynamics of the systems. Monitoring the diffusion of non-reacting tracers dispersed in active solutions, it has been shown that the nature of energy transfer in systems containing different swimmers is surprisingly similar - irrespective of their differences in sizes, modes of energy transduction and propulsion strategies. These observations provide motivation not only to characterize reaction generated force fields under complex fluidic environment but also to look for possible similarity in their behavior across multiple length scales. This review discusses research results obtained so far in this direction, highlighting the common features observed regarding dynamic coupling of swimmers with their surroundings. Activity-induced force generation and its collective effects are expected to find wide importance in transport and organization of materials at smaller length scales. Underscoring the nature of reaction generated perturbations, especially under crowded cytosolic conditions, is further likely to advance our knowledge of intracellular mechanics of small molecules during various metabolic processes and chemical transformations.

RevDate: 2018-08-08

Oh S, H Choi (2018)

A predictive model of the drag coefficient for a revolving wing at low Reynolds number.

Bioinspiration & biomimetics, 13(5):054001.

A predictive model of the drag coefficient for a revolving wing at low Reynolds number is suggested. Unlike the previous model (Wang et al 2016 J. Fluid Mech. 800 688-719), the present model includes a viscous drag on the wing from laminar boundary layer theory and thus predicts the drag force more accurately at low angles of attack and low Reynolds numbers. Also, in determining the model constants, we consider the attack angle of π/4 at which the resultant force on the wing is assumed to be perpendicular to the wing chord. The present aerodynamic model more accurately predicts drag forces of four different revolving wings than the existing ones.

RevDate: 2018-07-31

Dai L, He G, Zhang X, et al (2018)

Intermittent locomotion of a fish-like swimmer driven by passive elastic mechanism.

Bioinspiration & biomimetics, 13(5):056011.

The intermittent locomotion performance of a fish-like elastic swimmer is studied numerically in this paper. The actuation is imposed only at the head and the locomotion is indirectly driven by passive elastic mechanism. For intermittent swimming, certain time durations of passive coasting are interspersed between two half-periods of active bursting. To facilitate the comparison of energy efficiencies in continuous and intermittent swimming at the same cruising speed, we consider both intermittent swimming at various duty cycles and also continuous swimming at reduced actuation frequencies. The result indicates that the intermittent style is more economical than the continuous style only when the cruising Reynolds number is sufficiently large and the duty cycle is moderate. We also explore the passive tail-beating pattern and wake structure for intermittent swimming. It is found that the kinematics of the tail contains a preparatory burst phase which lies in between the active bursting and the passive coasting phases. Three vortex streets are found in the wake structures behind the intermittent swimmers. The two oblique streets consist of strong vortex dipoles and the horizontal street is made up of weak vortices. The results of this study can provide some insight into the burst-and-coast swimming of fish and also inform the design of efficient bio-mimetic under-water vehicles.

RevDate: 2018-11-01
CmpDate: 2018-11-01

Tang Y, Zhu DZ, B van Duin (2018)

Note on sediment removal efficiency in oil-grit separators.

Water science and technology : a journal of the International Association on Water Pollution Research, 2017(3):729-735.

Oil-grit separators (OGSs) are one type of best management practice, designed to remove oil and grit from stormwater runoff (e.g., from parking lots and paved roads). This note examines scaling parameters for OGS removal efficiency. Three dimensionless parameters are chosen as scaling parameters: Hazen number (Ha), Reynolds number (Re) and Froude number (Fr). The Hazen number is a ratio of hydraulic residence time to particle settling time. The Reynolds number measures the surrounding turbulence effects on sediment removal efficiency. The Froude number represents the ratio of inertial and gravitational forces, which indicates the influence of gravity on fluid motion. The collected data from the literature on sediment removal in OGSs can be represented by a single curve when the Hazen, Reynolds, and Froude numbers are combined into a new scaling parameter (HRF = Ha(Re/Fr)). A general form is proposed to correlate the sediment removal efficiency with this new parameter. This generalized prediction method can be used as a preliminary performance indicator for OGS units. The obtained curve can also be used to adjust raw laboratory and field measurement data to improve the evaluation of the performance of various OGSs.

RevDate: 2018-07-20
CmpDate: 2018-07-20

Fraternale F, Domenicale L, Staffilani G, et al (2018)

Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space.

Physical review. E, 97(6-1):063102.

This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge's procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech. 2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number-Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.

RevDate: 2018-11-14
CmpDate: 2018-09-17

Mutlu BR, Edd JF, M Toner (2018)

Oscillatory inertial focusing in infinite microchannels.

Proceedings of the National Academy of Sciences of the United States of America, 115(30):7682-7687.

Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting. Therefore, it has been utilized in numerous biomedical applications including phenotypic cell screening, blood fractionation, and rare-cell isolation. Nonetheless, the applications of this technology have been limited to larger bioparticles such as blood cells, circulating tumor cells, and stem cells, because smaller particles require drastically longer channels for inertial focusing, which increases the pressure requirement and the footprint of the device to the extent that the system becomes unfeasible. Inertial manipulation of smaller bioparticles such as fungi, bacteria, viruses, and other pathogens or blood components such as platelets and exosomes is of significant interest. Here, we show that using oscillatory microfluidics, inertial focusing in practically "infinite channels" can be achieved, allowing for focusing of micron-scale (i.e. hundreds of nanometers) particles. This method enables manipulation of particles at extremely low particle Reynolds number (Rep < 0.005) flows that are otherwise unattainable by steady-flow inertial microfluidics (which has been limited to Rep > ∼10-1). Using this technique, we demonstrated that synthetic particles as small as 500 nm and a submicron bacterium, Staphylococcus aureus, can be inertially focused. Furthermore, we characterized the physics of inertial microfluidics in this newly enabled particle size and Rep range using a Peclet-like dimensionless number (α). We experimentally observed that α > 1 is required to overcome diffusion and be able to inertially manipulate particles.

RevDate: 2018-11-14
CmpDate: 2018-07-10

Musacchio S, Cencini M, Plan ELCVM, et al (2018)

Enhancement of mixing by rodlike polymers.

The European physical journal. E, Soft matter, 41(7):84 pii:10.1140/epje/i2018-11692-9.

We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two dimensions, by means of numerical simulations of a rheological model for the polymer solution. The flow is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number is lower than the critical value for inertial instabilities, the rotational dynamics of the polymers generates a chaotic flow similar to the so-called elastic-turbulence regime observed in extensible polymer solutions. The temporal decay of the variance of the scalar field and its gradients shows that this chaotic flow strongly enhances mixing.

RevDate: 2018-08-04
CmpDate: 2018-07-24

Bell GRR, SR Collins (2018)

"Rho"ing a Cellular Boat with Rearward Membrane Flow.

Developmental cell, 46(1):1-3.

The physicist Edward Purcell wrote in 1977 about mechanisms that cells could use to propel themselves in a low Reynolds number environment. Reporting in Developmental Cell, O'Neill et al. (2018) provide direct evidence for one of these mechanisms by optogenetically driving the migration of cells suspended in liquid through RhoA activation.

RevDate: 2018-07-20
CmpDate: 2018-07-20

Bukowicki M, ML Ekiel-Jeżewska (2018)

Different bending models predict different dynamics of sedimenting elastic trumbbells.

Soft matter, 14(28):5786-5799.

The main goal of this paper is to examine theoretically and numerically the impact of a chosen bending model on the dynamics of elastic filaments settling in a viscous fluid under gravity at low-Reynolds-number. We use the bead-spring approximation of a filament and the Rotne-Prager mobility matrix to describe hydrodynamic interactions between the beads. We analyze the dynamics of trumbbells, for which bending angles are typically larger than for thin and long filaments. Each trumbbell is made of three beads connected by springs and it exhibits a bending resistance, described by the harmonic or - alternatively - by the 'cosine' (also called the Kratky-Porod) bending models, both often used in the literature. Using the harmonic bending potential, and coupling it to the spring potential by the Young's modulus, we find simple benchmark solutions: stable stationary configurations of a single elastic trumbbell and attraction of two elastic trumbbells towards a periodic long-lasting orbit. As the most significant result of this paper, we show that for very elastic trumbbells at the same initial conditions, the Kratky-Porod bending potential can lead to qualitatively and quantitatively different spurious dynamics, with artificially large bending angles and unrealistic shapes. We point out that for the bead models of an elastic filament, the range of applicability of the Kratky-Porod model might not go beyond bending angles smaller than π/2 for touching beads and beyond an even much lower value for beads well-separated from each other. The existence of stable stationary configurations of elastic trumbbells and a family of periodic oscillations of two elastic trumbbells are very important findings on their own.

RevDate: 2018-07-02
CmpDate: 2018-07-02

Kawata T, PH Alfredsson (2018)

Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence.

Physical review letters, 120(24):244501.

Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.

RevDate: 2018-11-14

Jardin T, T Colonius (2018)

On the lift-optimal aspect ratio of a revolving wing at low Reynolds number.

Journal of the Royal Society, Interface, 15(143):.

Lentink & Dickinson (2009 J. Exp. Biol.212, 2705-2719. (doi:10.1242/jeb.022269)) showed that rotational acceleration stabilized the leading-edge vortex on revolving, low aspect ratio (AR) wings and hypothesized that a Rossby number of around 3, which is achieved during each half-stroke for a variety of hovering insects, seeds and birds, represents a convergent high-lift solution across a range of scales in nature. Subsequent work has verified that, in particular, the Coriolis acceleration plays a key role in LEV stabilization. Implicit in these results is that there exists an optimal AR for wings revolving about their root, because it is otherwise unclear why, apart from possible morphological reasons, the convergent solution would not occur for an even lower Rossby number. We perform direct numerical simulations of the flow past revolving wings where we vary the AR and Rossby numbers independently by displacing the wing root from the axis of rotation. We show that the optimal lift coefficient represents a compromise between competing trends with competing time scales where the coefficient of lift increases monotonically with AR, holding Rossby number constant, but decreases monotonically with Rossby number, when holding AR constant. For wings revolving about their root, this favours wings of AR between 3 and 4.

RevDate: 2018-06-19

Maldaner CH, Quinn PM, Cherry JA, et al (2018)

Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods.

Journal of contaminant hydrology, 214:75-86.

A straddle-packer system for use in boreholes in fractured rock was modified to investigate the average linear groundwater velocity (v¯f) in fractures under ambient flow conditions. This packer system allows two different tests to be conducted in the same interval between packers without redeploying the system: (1) forced gradient hydraulic tests to determine the interval transmissivity (T), and (2) borehole dilution experiments to determine the groundwater flow rate (Qt) across the test interval. The constant head step test method provides assurance that flow is Darcian when determining T for each interval and identifies the flow rate at the onset of non-Darcian flow. The critical Reynolds number method uses this flow rate to provide the number of hydraulically active fractures (N) in each interval, the average hydraulic aperture for the test interval and the effective bulk fracture porosity. The borehole dilution method provides Qt values for the interval at the time of the test, and v¯f can be estimated from Qt using the flow area derived from the hydraulic tests. The method was assessed by application to seven test intervals in a borehole 73 m deep in a densely fractured dolostone aquifer used for municipal water supply. The critical Reynolds number method identified one or two fractures in each test interval (1.1 m long), which provided v¯f values in the range of 10 to 8000 m/day. This velocity range is consistent with values reported in the literature for ambient flow in this aquifer. However, when hydraulically active fractures in each interval is identified and measured from acoustic and optical televiewer logs, the calculated v¯f values are unreasonably low as are the calculated values of the hydraulic gradient needed to provide the Qt value for each tested interval. The combination of hydraulic and dilution tests in the same interval is an improved method to obtain values of groundwater velocity in fractured rock aquifers.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Ngoma J, Philippe P, Bonelli S, et al (2018)

Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods.

Physical review. E, 97(5-1):052902.

We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.

RevDate: 2018-06-22
CmpDate: 2018-06-22

Baker NT, Pothérat A, Davoust L, et al (2018)

Inverse and Direct Energy Cascades in Three-Dimensional Magnetohydrodynamic Turbulence at Low Magnetic Reynolds Number.

Physical review letters, 120(22):224502.

This experimental study analyzes the relationship between the dimensionality of turbulence and the upscale or downscale nature of its energy transfers. We do so by forcing low-Rm magnetohydrodynamic turbulence in a confined channel, while precisely controlling its dimensionality by means of an externally applied magnetic field. We first identify a specific length scale l[over ^]_{⊥}^{c} that separates smaller 3D structures from larger quasi-2D ones. We then show that an inverse energy cascade of horizontal kinetic energy along horizontal scales is always observable at large scales, and that it extends well into the region of 3D structures. At the same time, a direct energy cascade confined to the smallest and strongly 3D scales is observed. These dynamics therefore appear not to be simply determined by the dimensionality of individual scales, nor by the forcing scale, unlike in other studies. In fact, our findings suggest that the relationship between kinematics and dynamics is not universal and may strongly depend on the forcing and dissipating mechanisms at play.

RevDate: 2018-11-14

Parise JAR, FEM Saboya (2018)

Experimental data on transport coefficients for developing laminar flow in isosceles triangular ducts using the naphthalene sublimation technique.

Data in brief, 18:1350-1359 pii:S2352-3409(18)30303-2.

The data presented in this article are related to the research article entitled "Transport coefficients for developing laminar flow in isosceles triangular ducts" (Parise and Saboya, 1999) [1]. The article describes an experiment involving the determination of transport coefficients in the laminar entrance region of 30°, 45°, 60° and 90° isosceles triangular ducts. Data were obtained by application of the naphthalene sublimation technique in conjunction with the heat to mass transfer analogy. Experimental conditions (duct sides made of naphthalene and base made of metal) simulated developing velocity and temperature fields in an isosceles triangular duct with isothermal lateral walls and adiabatic base. The Reynolds number ranged from 100 to 1800 and the duct length to hydraulic diameter ratio, from 2 to 40. The experiment consisted of mounting a test section (triangular duct) with the lateral walls made of naphthalene. Air was forced past the test section and naphthalene walls were weighed prior and after each data run, providing the rate of mass transfer for given flow conditions. Raw data, for a total of 77 experimental runs, include: test section geometry, air flow and mass transfer conditions. Processed data comprise the relevant non-dimensional groups, namely: Reynolds, non-dimensional axial duct length and Sherwood numbers.

RevDate: 2018-06-13

McCombe D, JD Ackerman (2018)

Collector Motion Affects Particle Capture in Physical Models and in Wind Pollination.

The American naturalist, 192(1):81-93.

Particle capture is important for ecological processes in aquatic and terrestrial ecosystems. The current model is based on a stationary collector for which predictions about capture efficiency (η; flux of captured particles ∶ flux of particles) are based on the collector flow environment (i.e., collector Reynolds number, Rec; inertial force ∶ viscous force). This model does not account for the movement of collectors in nature. We examined the effect of collector motion (transverse and longitudinal to the flow) on η using a cylindrical model in the lab and the grass species Phleum pratense in the field. Collector motion increased η (up to 400% and 20% in the lab and field, respectively) and also affected the spatial distribution of particles on collectors, especially at low Rec. The effect was greatest for collectors moving transversely at large magnitude, which encountered more particles with higher relative momentum. These results, which differ from the stationary model, can be predicted by considering both Rec and the particle dynamics given by the Stokes number (Stk; particle stopping distance ∶ collector radius) and helped to resolve an existing controversy about pollination mechanisms. Collector motion should be considered in wind pollination and other ecological processes involving particle capture.

RevDate: 2018-08-06
CmpDate: 2018-08-06

Gritti F, M Fogwill (2018)

Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide.

Journal of chromatography. A, 1564:176-187.

The average dispersion coefficients, Da¯, of two small molecules (acetonitrile and coronene) were measured under laminar, transient, and sustained turbulent flow regimes along fused silica open tubular capillary (OTC) columns (180 μm inner diameter by 20 m length). Carbon dioxide was used as the mobile phase at room temperature (296 K) and at average pressures in the range from 1500 to 2700 psi. The Reynolds number (Re) was increased from 600 to 5000. The measurement of Da¯ is based on the observed plate height of the non-retained analytes as a function of the applied Reynolds number. Da¯ values are directly estimated from the best fit of the general Golay HETP equation to the experimental plate height curves. The experimental data revealed that under a pre-turbulent flow regime (Re < 2000), Da¯ is 2-6 times larger (3.5 × 10-4 cm2/s) than the bulk diffusion coefficients Dm of the analyte (1.6 × 10-4 and 5.8 × 10-5 cm2/s for acetonitrile and coronene, respectively). This result was explained by the random formation of decaying or vanishing turbulent puffs under pre-turbulent flow regime. Yet, the peak width remains controlled exclusively by the slow mass transfer in the mobile phase across the inner diameter (i.d.) of the OTC. Under sustained turbulent flow regime (Re > 2500), Da¯ is about four to five orders of magnitude larger than Dm. The experimental data slightly overestimated the turbulent dispersion coefficients predicted by Flint-Eisenklam model (Da¯=4 cm2/s). The discrepancy is explained by the approximate nature of the general Golay equation, which assumes that Da¯ is strictly uniform across the entire i.d. of the OTC. In fact, both the viscous and buffer wall layers, in which viscous effects dominate inertial effects, cannot be considered as fully developed turbulent regions. Remarkably, the mass transfer mechanism in OTC under sustained turbulent flow regime is not only controlled by longitudinal dispersion but also by a slow mass transfer in the mobile phase across the thick buffer layer and the thin viscous layer. Altogether, these layers occupy as much as 35% of the OTC volume at Re = 4000. From a theoretical viewpoint, the general Golay HETP equation is only an approximate model which should be refined based on the actual profile of the analyte dispersion coefficient across the OTC i.d. In practice, the measured plate height of non-retained analytes under sustained turbulent flow of carbon dioxide are two orders of magnitude smaller than those expected under hypothetical laminar flow regime.

RevDate: 2018-11-14
CmpDate: 2018-07-30

Kaiser SC, Werner S, Jossen V, et al (2018)

Power Input Measurements in Stirred Bioreactors at Laboratory Scale.

Journal of visualized experiments : JoVE.

The power input in stirred bioreactors is an important scaling-up parameter and can be measured through the torque that acts on the impeller shaft during rotation. However, the experimental determination of the power input in small-scale vessels is still challenging due to relatively high friction losses inside typically used bushings, bearings and/or shaft seals and the accuracy of commercially available torque meters. Thus, only limited data for small-scale bioreactors, in particular single-use systems, is available in the literature, making comparisons among different single-use systems and their conventional counterparts difficult. This manuscript provides a protocol on how to measure power inputs in benchtop scale bioreactors over a wide range of turbulence conditions, which can be described by the dimensionless Reynolds number (Re). The aforementioned friction losses are effectively reduced by the use of an air bearing. The procedure on how to set up, conduct and evaluate a torque-based power input measurement, with special focus on cell culture typical agitation conditions with low to moderate turbulence (100 < Re < 2·104), is described in detail. The power input of several multi-use and single-use bioreactors is provided by the dimensionless power number (also called Newton number, P0), which is determined to be in the range of P0 ≈ 0.3 and P0 ≈ 4.5 for the maximum Reynolds numbers in the different bioreactors.

RevDate: 2018-11-14

Herbig BA, Yu X, SL Diamond (2018)

Using microfluidic devices to study thrombosis in pathological blood flows.

Biomicrofluidics, 12(4):042201 pii:001891BMF.

Extreme flows can exist within pathological vessel geometries or mechanical assist devices which create complex forces and lead to thrombogenic problems associated with disease. Turbulence and boundary layer separation are difficult to obtain in microfluidics due to the low Reynolds number flow in small channels. However, elongational flows, extreme shear rates and stresses, and stagnation point flows are possible using microfluidics and small perfusion volumes. In this review, a series of microfluidic devices used to study pathological blood flows are described. In an extreme stenosis channel pre-coated with fibrillar collagen that rapidly narrows from 500 μm to 15 μm, the plasma von Willebrand Factor (VWF) will elongate and assemble into thick fiber bundles on the collagen. Using a micropost-impingement device, plasma flow impinging on the micropost generates strong elongational and wall shear stresses that trigger the growth of a VWF bundle around the post (no collagen required). Using a stagnation-point device to mimic the zone near flow reattachment, blood can be directly impinged upon a procoagulant surface of collagen and the tissue factor. Clots formed at the stagnation point of flow impingement have a classic core-shell architecture where the core is highly activated (P-selectin positive platelets and fibrin rich). Finally, within occlusive clots that fill a microchannel, the Darcy flow driven by ΔP/L > 70 mm-Hg/mm-clot is sufficient to drive NETosis of entrapped neutrophils, an event not requiring either thrombin or fibrin. Novel microfluidic devices are powerful tools to access physical environments that exist in human disease.

RevDate: 2018-05-23

Montoya Segnini J, Bocanegra Evans H, L Castillo (2018)

Flow Recirculation in Cartilaginous Ring Cavities of Human Trachea Model.

Journal of aerosol medicine and pulmonary drug delivery [Epub ahead of print].

BACKGROUND: Despite the prevailing assumption of "smooth trachea walls" in respiratory fluid dynamics research, recent investigations have demonstrated that cartilaginous rings in the trachea and main bronchi have a significant effect on the flow behavior and in particle deposition. However, there is not enough detailed information about the underlying physics of the interaction between the cartilage rings and the flow.

MATERIALS AND METHODS: This study presents an experimental observation of a simplified Weibel-based model of the human trachea and bronchi with cartilaginous rings. A transparent model and refractive index-matching methods were used to observe the flow, particularly near the wall. The flow was seeded with tracers to perform particle image velocimetry and particle tracking velocimetry to quantify the effect the rings have on the flow near the trachea and bronchi walls. The experiments were carried out with a flow rate comparable with a resting state (trachea-based Reynolds number of ReD = 2650).

RESULTS: The results present a previously unknown phenomenon in the cavities between the cartilaginous rings: a small recirculation is observed in the upstream side of the cavities throughout the trachea. This recirculation is due to the adverse pressure gradient created by the expansion, which traps particles within the ring cavity, thus affecting the treatment of patients suffering from lung disease and other respiratory conditions.

CONCLUSIONS: The detection of recirculation zones in the cartilage ring cavities sheds light on the particle deposition mechanism and helps explain results from previous studies that have observed an enhancement of particle deposition in models with cartilage rings. These results bring to light the importance of including cartilage rings in experimental, numerical, and theoretical models to better understand particle deposition in the trachea and bronchi. In addition, the results provide scientists and medical staff with new insights for improving drug delivery.

RevDate: 2018-11-14
CmpDate: 2018-10-15

Bordones AD, Leroux M, Kheyfets VO, et al (2018)

Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.

Annals of biomedical engineering, 46(9):1309-1324.

Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Zhu B, Ji Z, Lou Z, et al (2018)

Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall.

Physical review. E, 97(3-1):033110.

The torque in the Taylor-Couette flow for radius ratios η≥0.97, with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Re_{i}=2×10^{5}, corresponding to the Taylor number up to Ta=5×10^{10}. The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G, at a given Re_{i} and η, is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993)10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973)10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) Nu_{ω} in the smooth cases exhibits an effective scaling of Nu_{ω}∼Ta^{0.39} in the ultimate regime, which occurs at a lower Taylor number, Ta≈3.5×10^{7}, than the well-explored η=0.714 case (at Ta≈3×10^{8}). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η=0.97 and 0.985, there is a peak before this exponent appears.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Liang H, Xu J, Chen J, et al (2018)

Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows.

Physical review. E, 97(3-1):033309.

In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Oyama N, Teshigawara K, Molina JJ, et al (2018)

Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids.

Physical review. E, 97(3-1):032611.

The collective dynamics of externally driven N_{p}-colloidal systems (1≤N_{p}≤4) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with N_{p}=3, we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally. The dynamical mode transition was analyzed in detail from the following two viewpoints: (1) spectrum analysis of the time evolution of a tagged particle velocity and (2) the relative acceleration of the doublet cluster with respect to the singlet particle. For a system with N_{p}=4, we found similar dynamical mode transitions from the doublet-singlet-singlet mode to the triplet-singlet mode and further to the quartet mode.

RevDate: 2018-11-14

Markwalter CE, RK Prud'homme (2018)

Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation.

Journal of pharmaceutical sciences, 107(9):2465-2471.

Flash NanoPrecipitation is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially designed geometries such as a confined impinging jets mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds number allowed accurate scaling between the 2 MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Sanjeevi SKP, Zarghami A, JT Padding (2018)

Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows.

Physical review. E, 97(4-1):043305.

Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.

RevDate: 2018-07-10
CmpDate: 2018-07-10

Mahalinkam R, Gong F, AS Khair (2018)

Reduced-order model for inertial locomotion of a slender swimmer.

Physical review. E, 97(4-1):043102.

The inertial locomotion of an elongated model swimmer in a Newtonian fluid is quantified, wherein self-propulsion is achieved via steady tangential surface treadmilling. The swimmer has a length 2l and a circular cross section of longitudinal profile aR(z), where a is the characteristic width of the cross section, R(z) is a dimensionless shape function, and z is a dimensionless coordinate, normalized by l, along the centerline of the body. It is assumed that the swimmer is slender, ε=a/l≪1. Hence, we utilize slender-body theory to analyze the Navier-Stokes equations that describe the flow around the swimmer. Therefrom, we compute an asymptotic approximation to the swimming speed, U, as U/u_{s}=1-β[V(Re)-1/2∫_{-1}^{1}zlnR(z)dz]/ln(1/ε)+O[1/ln^{2}(1/ε)], where u_{s} is the characteristic speed of the surface treadmilling, Re is the Reynolds number based on the body length, and β is a dimensionless parameter that differentiates between "pusher" (propelled from the rear, β<0) and "puller" (propelled from the front, β>0) -type swimmers. The function V(Re) increases monotonically with increasing Re; hence, fluid inertia causes an increase (decrease) in the swimming speed of a pusher (puller). Next, we demonstrate that the power expenditure of the swimmer increases monotonically with increasing Re. Further, the power expenditures of a puller and pusher with the same value of |β| are equal. Therefore, pushers are superior in inertial locomotion as compared to pullers, in that they achieve a faster swimming speed for the same power expended. Finally, it is demonstrated that the flow structure predicted from our reduced-order model is consistent with that from direct numerical simulation of swimmers at intermediate Re.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )