About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

20 Jul 2024 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 20 Jul 2024 at 01:30 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-07-19
CmpDate: 2024-07-17

Pérez-Prieto I, Vargas E, Salas-Espejo E, et al (2024)

Gut microbiome in endometriosis: a cohort study on 1000 individuals.

BMC medicine, 22(1):294.

BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease.

METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis.

RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R [2] < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05).

CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.

RevDate: 2024-07-19
CmpDate: 2024-07-17

Dong Y, Chen R, Graham EB, et al (2024)

Eco-evolutionary strategies for relieving carbon limitation under salt stress differ across microbial clades.

Nature communications, 15(1):6013.

With the continuous expansion of saline soils under climate change, understanding the eco-evolutionary tradeoff between the microbial mitigation of carbon limitation and the maintenance of functional traits in saline soils represents a significant knowledge gap in predicting future soil health and ecological function. Through shotgun metagenomic sequencing of coastal soils along a salinity gradient, we show contrasting eco-evolutionary directions of soil bacteria and archaea that manifest in changes to genome size and the functional potential of the soil microbiome. In salt environments with high carbon requirements, bacteria exhibit reduced genome sizes associated with a depletion of metabolic genes, while archaea display larger genomes and enrichment of salt-resistance, metabolic, and carbon-acquisition genes. This suggests that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. These findings suggest divergent directions in eco-evolutionary adaptations to soil saline stress amongst microbial clades and serve as a foundation for understanding the response of soil microbiomes to escalating climate change.

RevDate: 2024-07-19

Kosch TA, Torres-Sánchez M, Liedtke HC, et al (2024)

The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation.

bioRxiv : the preprint server for biology.

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomics resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomics resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as critical models for understanding widespread genomic characteristics, including evolutionary genome expansions and contractions given they have the largest range in genome sizes of any animal taxon and multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The advent of long-read sequencing technologies, along with computational techniques that enhance scaffolding capabilities and streamline computational workload is now enabling the ability to overcome some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC) in early 2023. This burgeoning community already has more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and outline how the AGC can enable amphibian genomics research to "leap" to the next level.

RevDate: 2024-07-17
CmpDate: 2024-07-17

Dhariwal A, Rajar P, Salvadori G, et al (2024)

Prolonged hospitalization signature and early antibiotic effects on the nasopharyngeal resistome in preterm infants.

Nature communications, 15(1):6024.

Respiratory pathogens, commonly colonizing nasopharynx, are among the leading causes of death due to antimicrobial resistance. Yet, antibiotic resistance determinants within nasopharyngeal microbial communities remain poorly understood. In this prospective cohort study, we investigate the nasopharynx resistome development in preterm infants, assess early antibiotic impact on its trajectory, and explore its association with clinical covariates using shotgun metagenomics. Our findings reveal widespread nasopharyngeal carriage of antibiotic resistance genes (ARGs) with resistomes undergoing transient changes, including increased ARG diversity, abundance, and composition alterations due to early antibiotic exposure. ARGs associated with the critical nosocomial pathogen Serratia marcescens persist up to 8-10 months of age, representing a long-lasting hospitalization signature. The nasopharyngeal resistome strongly correlates with microbiome composition, with inter-individual differences and postnatal age explaining most of the variation. Our report on the collateral effects of antibiotics and prolonged hospitalization underscores the urgency of further studies focused on this relatively unexplored reservoir of pathogens and ARGs.

RevDate: 2024-07-17
CmpDate: 2024-07-17

Daddy Gaoh S, Alusta P, Lee YJ, et al (2024)

A Comparative Metagenomic Analysis of Specified Microorganisms in Groundwater for Non-Sterilized Pharmaceutical Products.

Current microbiology, 81(9):273.

In pharmaceutical manufacturing, ensuring product safety involves the detection and identification of microorganisms with human pathogenic potential, including Burkholderia cepacia complex (BCC), Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Clostridium sporogenes, Candida albicans, and Mycoplasma spp., some of which may be missed or not identified by traditional culture-dependent methods. In this study, we employed a metagenomic approach to detect these taxa, avoiding the limitations of conventional cultivation methods. We assessed the groundwater microbiome's taxonomic and functional features from samples collected at two locations in the spring and summer. All datasets comprised 436-557 genera with Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Cyanobacteria accounting for > 95% of microbial DNA sequences. The aforementioned species constituted less than 18.3% of relative abundance. Escherichia and Salmonella were mainly detected in Hot Springs, relative to Jefferson, while Clostridium and Pseudomonas were mainly found in Jefferson relative to Hot Springs. Multidrug resistance efflux pumps and BlaR1 family regulatory sensor-transducer disambiguation dominated in Hot Springs and in Jefferson. These initial results provide insight into the detection of specified microorganisms and could constitute a framework for the establishment of comprehensive metagenomic analysis for the microbiological evaluation of pharmaceutical-grade water and other non-sterile pharmaceutical products, ensuring public safety.

RevDate: 2024-07-17
CmpDate: 2024-07-17

Zhang P, Shi H, Guo R, et al (2024)

Metagenomic analysis reveals altered gut virome and diagnostic potential in pancreatic cancer.

Journal of medical virology, 96(7):e29809.

Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.

RevDate: 2024-07-18
CmpDate: 2024-07-17

Bashir Z, Hugerth LW, Krog MC, et al (2024)

Investigations of microbiota composition and neuroactive pathways in association with symptoms of stress and depression in a cohort of healthy women.

Frontiers in cellular and infection microbiology, 14:1324794.

BACKGROUND: Despite mounting evidence of gut-brain involvement in psychiatric conditions, functional data remain limited, and analyses of other microbial niches, such as the vaginal microbiota, are lacking in relation to mental health. This aim of this study was to investigate if the connections between the gut microbiome and mental health observed in populations with a clinical diagnosis of mental illness extend to healthy women experiencing stress and depressive symptoms. Additionally, this study examined the functional pathways of the gut microbiota according to the levels of psychological symptoms. Furthermore, the study aimed to explore potential correlations between the vaginal microbiome and mental health parameters in young women without psychiatric diagnoses.

METHODS: In this cross-sectional study, 160 healthy Danish women (aged 18-40 years) filled out questionnaires with validated scales measuring symptoms of stress and depression and frequency of dietary intake. Fecal and vaginal microbiota samples were collected at the beginning of the menstrual cycle and vaginal samples were also collected at cycle day 8-12 and 18-22. Shotgun metagenomic profiling of the gut and vaginal microbiome was performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for functional profiling and 56 Gut Brain Modules were analyzed in the fecal samples.

RESULTS: The relative abundance in the gut of the genera Escherichia, Parabacteroides, and Shigella was higher in women with elevated depressive symptoms. Women with high perceived stress showed a tendency of increased abundance of Escherichia, Shigella, and Blautia. Amongst others, the potentially pathogenic genera, Escherichia and Shigella correlate with alterations in the neuroactive pathways such as the glutamatergic, GABAeric, dopaminergic, and Kynurenine pathways. Vaginosis symptoms were more prevalent in women reporting high levels of stress and depressive symptoms.

CONCLUSIONS: The findings of this study support the concept of a microbiota-associated effect on the neuroactive pathways even in healthy young women. This suggest, that targeting the gut microbiome could be a promising approach for future psychiatric interventions.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Popov IV, Koopmans B, K Venema (2024)

Modulation of human gut microbiota by linear and branched fructooligosaccharides in an in vitro colon model (TIM-2).

Journal of applied microbiology, 135(7):.

AIMS: This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne), respectively on human microbiota composition, diversity, and metabolism.

METHODS AND RESULTS: To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control.

CONCLUSIONS: The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Davido B, Watson AR, de Truchis P, et al (2024)

Bacterial diversity and specific taxa are associated with decolonization of carbapenemase-producing enterobacterales after fecal microbiota transplantation.

The Journal of infection, 89(2):106216.

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage.

METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT.

RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders.

CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Bhat AH, Tak H, Ganai BA, et al (2024)

Beyond parasitism: Exploring the microbial profile of Haemonchus contortus and its predilection site (abomasum) in Kashmir Merino sheep.

Veterinary parasitology, 330:110243.

Gastrointestinal helminth infection, particularly by Haemonchus contortus, poses significant challenges to sheep farming worldwide. While anthelmintic drugs have been traditional control measures, the emergence of resistance calls for alternative strategies. Understanding the interaction between parasites, host, and their microbiome is crucial for management of helminth infection. This study intricately explores the interactions between microbial communities in Kashmir Merino sheep infected with H. contortus, to understand the complex interplay between host, parasite, and their microbiome. Sheep abomasal contents and H. contortus were collected from infected and control groups, processed for DNA extraction, and subjected to metagenomic sequencing of the 16 S rRNA gene. Downstream analysis unveils distinct microbial patterns, where Proteobacteria were dominant in H. contortus, while Bacteroidota and Firmicutes prevailed in the sheep abomasum. The revelation of unique genera and shifts in diversity indices underscored helminth-induced disruptions in the host. Beta diversity analysis further showed significant variations in bacterial profiles, providing insights into the intricate host, parasite, and microbiome dynamics. Additionally, this study elucidated the presence of pathogenic bacteria within H. contortus, accentuating their potential role in exacerbating sheep health issues. This finding underscores the complexity of the host-parasite-microbiome interaction showing helminth-induced microbiome alterations of the host.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Farooq S, Talat A, AU Khan (2024)

Letter to the Editor: Identification of Mcr-9.1 and Mcr-10.1 Colistin Resistance Genes in Neonates from Publicly Available Gut Metagenomic Data.

Microbial drug resistance (Larchmont, N.Y.), 30(7):314-316.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Syafarina I, Mazaya M, Indrawati A, et al (2024)

Skin Microbial Composition and Genetic Mutation Analysis in Precision Medicine for Epidermolysis Bullosa.

Current drug targets, 25(6):404-415.

Epidermolysis bullosa (EB) is an inherited skin disease representing a spectrum of rare genetic disorders. These conditions share the common trait that causes fragile skin, resulting in the development of blisters and erosions. The inheritance follows an autosomal pattern, and the array of clinical presentations leads to significant physical suffering, considerable morbidity, and mortality. Despite EB having no cure, effectively managing EB remains an exceptional challenge due to its rarity and complexity, occasionally casting a profound impact on the lives of affected individuals. Considering that EB management requires a multidisciplinary approach, this sometimes worsens the condition of patients with EB due to inappropriate handling. Thus, more appropriate and precise treatment management of EB is essentially needed. Advanced technology in medicine and health comes into the bioinformatics era. Including treatment for skin diseases, omics-based approaches aim to evaluate and handle better disease management and treatment. In this work, we review several approaches regarding the implementation of omics-based technology, including genetics, pathogenic mutation, skin microbiomics, and metagenomics analysis for EB. In addition, we highlight recent updates on the potential of metagenomics analysis in precision medicine for EB.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Vázquez L, Cabrera-Rubio R, Tamames J, et al (2023)

Assessment of short-read shotgun sequencing and microbiome analysis of faecal samples to discriminate between equol producers and non-producers.

Beneficial microbes, 14(3):255-268.

Among the isoflavones and isoflavone-derived metabolites, equol, which in the human gut is synthesised from daidzein by minority bacterial populations, shows the strongest estrogenic and antioxidant activity. The beneficial effects on human health of isoflavone consumption might be partially or indeed totally attributable to this equol. Although some of the bacterial strains involved in its formation have been identified, the interplay between the composition and functionality of the gut microbiota and equol producer phenotype has hardly been studied. In this study, after shotgun metagenomic sequencing, different pipelines for the taxonomic and functional annotation of sequencing data were used in the search for similarities and differences in the faecal metagenome of equol-producing (n=3) and non-producing (n=2) women, with special focus on equol-producing taxa and their equol-associated genes. The taxonomic profiles of the samples differed significantly depending on the analytical method followed, although the microbial diversity detected by each tool was very similar at the phylum, genus and species levels. Equol-producing taxa were detected in both equol producers and non-producers, but no correlation between the abundance of equol-producing taxa and the equol producing/non-producing phenotype was found. Indeed, functional metagenomic analysis was unable to identify the genes involved in equol production, even in samples from equol producers. By aligning equol operons with the collected metagenomics data, a small number of reads mapping to equol-associated sequences were recognised in samples from both equol producers and equol non-producers, but only two reads mapping onto equol reductase-encoding genes in a sample from an equol producer. In conclusion, the taxonomic analysis of metagenomic data might not be suitable for detecting and quantifying equol-producing microbes in human faeces. Functional analysis of the data might provide an alternative. However, to detect the genetic makeup of the minority gut populations, more extensive sequencing than that achieved in the present study might be required.

RevDate: 2024-07-16
CmpDate: 2024-07-16

Darabi A, Sobhani S, Aghdam R, et al (2024)

AFITbin: a metagenomic contig binning method using aggregate l-mer frequency based on initial and terminal nucleotides.

BMC bioinformatics, 25(1):241.

BACKGROUND: Using next-generation sequencing technologies, scientists can sequence complex microbial communities directly from the environment. Significant insights into the structure, diversity, and ecology of microbial communities have resulted from the study of metagenomics. The assembly of reads into longer contigs, which are then binned into groups of contigs that correspond to different species in the metagenomic sample, is a crucial step in the analysis of metagenomics. It is necessary to organize these contigs into operational taxonomic units (OTUs) for further taxonomic profiling and functional analysis. For binning, which is synonymous with the clustering of OTUs, the tetra-nucleotide frequency (TNF) is typically utilized as a compositional feature for each OTU.

RESULTS: In this paper, we present AFIT, a new l-mer statistic vector for each contig, and AFITBin, a novel method for metagenomic binning based on AFIT and a matrix factorization method. To evaluate the performance of the AFIT vector, the t-SNE algorithm is used to compare species clustering based on AFIT and TNF information. In addition, the efficacy of AFITBin is demonstrated on both simulated and real datasets in comparison to state-of-the-art binning methods such as MetaBAT 2, MaxBin 2.0, CONCOT, MetaCon, SolidBin, BusyBee Web, and MetaBinner. To further analyze the performance of the purposed AFIT vector, we compare the barcodes of the AFIT vector and the TNF vector.

CONCLUSION: The results demonstrate that AFITBin shows superior performance in taxonomic identification compared to existing methods, leveraging the AFIT vector for improved results in metagenomic binning. This approach holds promise for advancing the analysis of metagenomic data, providing more reliable insights into microbial community composition and function.

AVAILABILITY: A python package is available at: https://github.com/SayehSobhani/AFITBin .

RevDate: 2024-07-16

Wu W-C, Pan Y-F, Zhou W-D, et al (2024)

Meta-transcriptomic analysis of companion animal infectomes reveals their diversity and potential roles in animal and human disease.

mSphere [Epub ahead of print].

UNLABELLED: Companion animals such as cats and dogs harbor diverse microbial communities that can potentially impact human health due to close and frequent contact. To better characterize their total infectomes and assess zoonotic risks, we characterized the overall infectomes of companion animals (cats and dogs) and evaluated their potential zoonotic risks. Meta-transcriptomic analyses were performed on 239 samples from cats and dogs collected across China, identifying 24 viral species, 270 bacterial genera, and two fungal genera. Differences in the overall microbiome and infectome composition were compared across different animal species (cats or dogs), sampling sites (rectal or oropharyngeal), and health status (healthy or diseased). Diversity analyses revealed that viral abundance was generally higher in diseased animals compared to healthy ones, while differences in microbial composition were mainly driven by sampling site, followed by animal species and health status. Disease association analyses validated the pathogenicity of known pathogens and suggested potential pathogenic roles of previously undescribed bacteria and newly discovered viruses. Cross-species transmission analyses identified seven pathogens shared between cats and dogs, such as alphacoronavirus 1, which was detected in both oropharyngeal and rectal swabs albeit with differential pathogenicity. Further analyses showed that some viruses, like alphacoronavirus 1, harbored multiple lineages exhibiting distinct pathogenicity, tissue, or host preferences. Ultimately, a systematic evolutionary screening identified 27 potential zoonotic pathogens in this sample set, with far more bacterial than viral species, implying potential health threats to humans. Overall, our meta-transcriptomic analysis reveals a landscape of actively transcribing microorganisms in major companion animals, highlighting key pathogens, those with the potential for cross-species transmission, and possible zoonotic threats.

IMPORTANCE: This study provides a comprehensive characterization of the entire community of infectious microbes (viruses, bacteria, and fungi) in companion animals like cats and dogs, termed the "infectome." By analyzing hundreds of samples from across China, the researchers identified numerous known and novel pathogens, including 27 potential zoonotic agents that could pose health risks to both animals and humans. Notably, some of these zoonotic pathogens were detected even in apparently healthy pets, highlighting the importance of surveillance. The study also revealed key microbial factors associated with respiratory and gastrointestinal diseases in pets, as well as potential cross-species transmission events between cats and dogs. Overall, this work sheds light on the complex microbial landscapes of companion animals and their potential impacts on animal and human health, underscoring the need for monitoring and management of these infectious agents.

RevDate: 2024-07-17
CmpDate: 2024-07-16

Chang T, Gavelis GS, Brown JM, et al (2024)

Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton.

Microbiome, 12(1):126.

BACKGROUND: Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.

RESULTS: We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.

CONCLUSIONS: Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.

RevDate: 2024-07-17
CmpDate: 2024-07-15

Takeda M, Y Doki (2024)

[The Power of the Gut Microbiome: Exploring New Perspectives in Colorectal Cancer Therapy].

Gan to kagaku ryoho. Cancer & chemotherapy, 51(6):608-612.

The gut microbiome is involved in host physiology, including nutrition, metabolism, and immunity. It was recently known that dysbiosis of the gut microbiome has been implicated in several human diseases such as inflammatory bowel disease. It is altered by environmental factors such as diet, habit and lifestyle and has been directly and indirectly linked to the development and progression of colorectal cancer(CRC). Fusobacterium(F.)nucleatum, which causes periodontal disease, has been shown to play an important role in the initiation and development of CRC, although not as clearly as Helicobacter(H.) pylori in gastric cancer. Therefore, gut bacteria hold promise as a potential therapeutic approach to prevent or treat CRC. Although its clinical usefulness has not yet been demonstrated, future research such as metagenomics may open new avenues for CRC treatment with gut bacteria. Here, we reviewed the role of the gut microbial community in the development, progression, and prevention of colorectal carcinogenesis.

RevDate: 2024-07-17
CmpDate: 2024-07-15

Núñez-Muñoz LA, Sánchez-García ME, Calderón-Pérez B, et al (2024)

Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials.

Microbial ecology, 87(1):93.

Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and β-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Nilsen M, Nygaard UC, Brodin P, et al (2024)

Gut bacteria at 6 months of age are associated with immune cell status in 1-year-old children.

Scandinavian journal of immunology, 99(4):e13346.

Age-related gut bacterial changes during infancy have been widely studied, but it remains still unknown how these changes are associated with immune cell composition. This study's aim was to explore if the temporal development of gut bacteria during infancy prospectively affects immune cell composition. Faecal bacteria and short-chain fatty acids were analysed from 67 PreventADALL study participants at four timepoints (birth to 12 months) using reduced metagenome sequencing and gas chromatography. Immune cell frequencies were assessed using mass cytometry in whole blood samples at 12 months. The infants clustered into four groups based on immune cell composition: clusters 1 and 2 showed a high relative abundance of naïve cells, cluster 3 exhibited increased abundance of classical- and non-classical monocytes and clusters 3 and 4 had elevated neutrophil levels. At all age groups, we did observe significant associations between the gut microbiota and immune cell clusters; however, these were generally from low abundant species. Only at 6 months of age we observed significant associations between abundant (>8%) species and immune cell clusters. Bifidobacterium adolescentis and Porphyromonadaceae are associated with cluster 1, while Bacteroides fragilis and Bifidobacterium longum are associated with clusters 3 and 4 respectively. These species have been linked to T-cell polarization and maturation. No significant correlations were found between short-chain fatty acids and immune cell composition. Our findings suggest that abundant gut bacteria at 6 months may influence immune cell frequencies at 12 months, highlighting the potential role of gut microbiota in shaping later immune cell composition.

RevDate: 2024-07-17
CmpDate: 2024-07-17

Tang S, Wu G, Liu Y, et al (2024)

Guild-level signature of gut microbiome for diabetic kidney disease.

mBio, 15(7):e0073524.

UNLABELLED: Current microbiome signatures for chronic diseases such as diabetic kidney disease (DKD) are mainly based on low-resolution taxa such as genus or phyla and are often inconsistent among studies. In microbial ecosystems, bacterial functions are strain specific, and taxonomically different bacteria tend to form co-abundance functional groups called guilds. Here, we identified guild-level signatures for DKD by performing in-depth metagenomic sequencing and conducting genome-centric and guild-based analysis on fecal samples from 116 DKD patients and 91 healthy subjects. Redundancy analysis on 1,543 high-quality metagenome-assembled genomes (HQMAGs) identified 54 HQMAGs that were differentially distributed among the young healthy control group, elderly healthy control group, early-stage DKD patients (EDG), and late-stage DKD patients (LDG). Co-abundance network analysis classified the 54 HQMAGs into two guilds. Compared to guild 2, guild 1 contained more short-chain fatty acid biosynthesis genes and fewer genes encoding uremic toxin indole biosynthesis, antibiotic resistance, and virulence factors. Guild indices, derived from the total abundance of guild members and their diversity, delineated DKD patients from healthy subjects and between different severities of DKD. Age-adjusted partial Spearman correlation analysis showed that the guild indices were correlated with DKD disease progression and with risk indicators of poor prognosis. We further validated that the random forest classification model established with the 54 HQMAGs was also applicable for classifying patients with end-stage renal disease and healthy subjects in an independent data set. Therefore, this genome-level, guild-based microbial analysis strategy may identify DKD patients with different severity at an earlier stage to guide clinical interventions.

IMPORTANCE: Traditionally, microbiome research has been constrained by the reliance on taxonomic classifications that may not reflect the functional dynamics or the ecological interactions within microbial communities. By transcending these limitations with a genome-centric and guild-based analysis, our study sheds light on the intricate and specific interactions between microbial strains and diabetic kidney disease (DKD). We have unveiled two distinct microbial guilds with opposite influences on host health, which may redefine our understanding of microbial contributions to disease progression. The implications of our findings extend beyond mere association, providing potential pathways for intervention and opening new avenues for patient stratification in clinical settings. This work paves the way for a paradigm shift in microbiome research in DKD and potentially other chronic kidney diseases, from a focus on taxonomy to a more nuanced view of microbial ecology and function that is more closely aligned with clinical outcomes.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Zhang G, Wang H, Zhang Z, et al (2024)

Highly accurate classification and discovery of microbial protein-coding gene functions using FunGeneTyper: an extensible deep learning framework.

Briefings in bioinformatics, 25(4):.

High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an extensible framework with two new deep learning models (i.e., FunTrans and FunRep), structured databases, and supporting resources for achieving highly accurate (Accuracy > 0.99, F1-score > 0.97) and fine-grained classification of antibiotic resistance genes (ARGs) and virulence factor genes. Using an experimentally confirmed dataset of ARGs comprising remote homologous sequences as the test set, our framework achieves by-far-the-best performance in the discovery of new ARGs from human gut (F1-score: 0.6948), wastewater (0.6072), and soil (0.5445) microbiomes, beating the state-of-the-art bioinformatics tools and sequence alignment-based (F1-score: 0.0556-0.5065) and domain-based (F1-score: 0.2630-0.5224) annotation approaches. Furthermore, our framework is implemented as a lightweight, privacy-preserving, and plug-and-play neural network module, facilitating its versatility and accessibility to developers and users worldwide. We anticipate widespread utilization of FunGeneTyper (https://github.com/emblab-westlake/FunGeneTyper) for precise classification of protein-coding gene functions and the discovery of numerous valuable enzymes. This advancement will have a significant impact on various fields, including microbiome research, biotechnology, metagenomics, and bioinformatics.

RevDate: 2024-07-16
CmpDate: 2024-07-15

Enagbonma BJ, Fadiji AE, OO Babalola (2024)

Anthropogenic fertilization influences a shift in barley rhizosphere microbial communities.

PeerJ, 12:e17303.

BACKGROUND: Anthropogenic mediations contribute a significant role in stimulating positive reactions in soil-plant interactions; however, methodical reports on how anthropogenic activities impact soil microorganism-induced properties and soil health are still inadequate. In this study, we evaluated the influence of anthropogenic fertilization of farmland soil on barley rhizosphere microbial community structure and diversity, and the significant impacts on agro-ecosystem productivity. This will help validate the premise that soil amendment with prolonged synthetic fertilizers can lead to a significant reduction in bacterial abundance and diversity, while soils amended with organic fertilizers elicit the succession of the native soil microbial community and favor the growth of copiotrophic bacteria.

METHODS: The total metagenomic DNA was extracted from soils obtained from the barley rhizosphere under chemical fertilization (CB), organic fertilization (OB), and bulk soil (NB). Subsequently, these samples were sequenced using an amplicon-based sequencing approach, and the raw sequence dataset was examined using a metagenomic rast server (MG-RAST).

RESULTS: Our findings showed that all environments (CB, OB, and NB) shared numerous soil bacterial phyla but with different compositions. However, Bacteroidetes, Proteobacteria, and Actinobacteria predominated in the barley rhizosphere under chemical fertilization, organic fertilization, and bulk soils, respectively. Alpha and beta diversity analysis showed that the diversity of bacteria under organic barley rhizosphere was significantly higher and more evenly distributed than bacteria under chemical fertilization and bulk soil.

CONCLUSION: Understanding the impact of conventional and organic fertilizers on the structure, composition, and diversity of the rhizosphere microbiome will assist in soil engineering to enhance microbial diversity in the agroecosystem.

RevDate: 2024-07-16
CmpDate: 2024-07-14

Kang L, Song Y, Mackelprang R, et al (2024)

Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau.

Nature communications, 15(1):5920.

Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.

RevDate: 2024-07-16
CmpDate: 2024-07-16

Zhuo T, Yu K, Chai B, et al (2024)

Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study.

Environmental research, 257:119250.

Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO4[3-], H2S) in freshwater lakes at the functional gene level.

RevDate: 2024-07-16
CmpDate: 2024-07-16

Peng J, Wang D, He P, et al (2024)

Seasonal dynamics of antibiotic resistance genes and mobile genetic elements in a subtropical coastal ecosystem: Implications for environmental health risks.

Environmental research, 257:119298.

Antibiotic resistance poses a considerable global public health concern, leading to heightened rates of illness and mortality. However, the impact of seasonal variations and environmental factors on the health risks associated with antibiotic resistance genes (ARGs) and their assembly mechanisms is not fully understood. Based on metagenomic sequencing, this study investigated the antibiotic resistome, mobile genetic elements (MGEs), and microbiomes in a subtropical coastal ecosystem of the Beibu Gulf, China, over autumn and winter, and explored the factors influencing seasonal changes in ARG and MGE abundance and diversity. Results indicated that ARG abundance and diversity were higher in winter than in autumn, with beta-lactam and multidrug resistance genes being the most diverse and abundant, respectively. Similarly, MGE abundance and diversity increased in winter and were strongly correlated with ARGs. In contrast, more pronounced associations between microbial communities, especially archaea, and the antibiotic resistome were observed in autumn than in winter. The co-occurrence network identified multiple interactions between MGEs and various multidrug efflux pumps in winter, suggesting a potential for ARG dissemination. Multivariate correlation analyses and path modeling indicated that environmental factors driving microbial community changes predominantly influenced antibiotic resistome assembly in autumn, while the relative importance of MGEs increased significantly in winter. These findings suggest an elevated health risk associated with antimicrobial resistance in the Beibu Gulf during winter, attributed to the dissemination of ARGs by horizontal gene transfer. The observed seasonal variations highlight the dynamic nature of antibiotic resistance dissemination in coastal ecosystems, emphasizing the need for comprehensive surveillance and management measures to address the growing threat of antimicrobial resistance in vulnerable environments.

RevDate: 2024-07-14

Tischer M, C Bleidorn (2024)

Further evidence of low infection frequencies of Wolbachia in soil arthropod communities.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases pii:S1567-1348(24)00092-3 [Epub ahead of print].

Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.

RevDate: 2024-07-13
CmpDate: 2024-07-13

Das BK, Chakraborty HJ, Kumar V, et al (2024)

Comparative metagenomic analysis from Sundarbans ecosystems advances our understanding of microbial communities and their functional roles.

Scientific reports, 14(1):16218.

The Sundarbans mangrove, located at the mouth of the Ganges and Brahmaputra Rivers, is the world's largest tidal mangrove forest. These mangroves are also one of the most striking sources of microbial diversity, essential in productivity, conservation, nutrient cycling, and rehabilitation. Hence, the main objective of this study was to use metagenome analysis and provide detailed insight into microbial communities and their functional roles in the Sundarbans mangrove ecosystem. A comparative analysis was also done with a non-mangrove region of the Sundarbans ecosystem to assess the capability of the environmental parameters to explain the variation in microbial community composition. The study found several dominant bacteria, viz., Alphaproteobacteria, Actinomycetota, Bacilli, Clostridia, Desulfobacterota, Gammaproteobacteria, and Nitrospira, from the mangrove region. The mangrove sampling site reports several salt-tolerant bacteria like Alkalibacillus haloalkaliphilus, Halomonas anticariensis, and Salinivibrio socompensis. We found some probiotic species, viz., Bacillus clausii, Lactobacillus curvatus, Vibrio mediterranei and Vibrio fluvialis, from the Sundarbans mangrove. Nitrifying bacteria in Sundarbans soils were Nitrococcus mobilis, Nitrosococcus oceani, Nitrosomonas halophila, Nitrospirade fluvii, and others. Methanogenic archaea, viz., Methanoculleus marisnigri, Methanobrevibacter gottschalkii, and Methanolacinia petrolearia, were highly abundant in the mangroves as compared to the non-mangrove soils. The identified methanotrophic bacterial species, viz., Methylobacter tundripaludum, Methylococcus capsulatus, Methylophaga thiooxydans, and Methylosarcina lacus are expected to play a significant role in the degradation of methane in mangrove soil. Among the bioremediation bacterial species identified, Pseudomonas alcaligenes, Pseudomonas mendocina, Paracoccus denitrificans, and Shewanella putrefaciens play a significant role in the remediation of environmental pollution. Overall, our study shows for the first time that the Sundarbans, the largest mangrove ecosystem in the world, has a wide range of methanogenic archaea, methanotrophs, pathogenic, salt-tolerant, probiotic, nitrifying, and bioremediation bacteria.

RevDate: 2024-07-13
CmpDate: 2024-07-13

Knjaz M, Baricevic A, Tankovic MS, et al (2024)

First regional reference database of northern Adriatic diatom transcriptomes.

Scientific reports, 14(1):16209.

Marine microbial communities form the basis for the functioning of marine ecosystems and the conservation of biodiversity. With the application of metagenomics and metatranscriptomics in marine environmental studies, significant progress has been made in analysing the functioning of microbial communities as a whole. These molecular techniques are highly dependent on reliable, well-characterised, comprehensive and taxonomically diverse sequenced reference transcriptomes of microbial organisms. Here we present a set of 12 individual transcriptome assemblies derived from 6 representative diatom species from the northern Adriatic Sea grown under 2 environmentally relevant growth conditions (phosphate replete vs. phosphate deprived). After filtering the reads and assembly, an average number of 64,932 transcripts per assembly was obtained, of which an average of 8856 were assigned to functionally known proteins. Of all assigned transcripts, an average of 6483 proteins were taxonomically assigned to diatoms (Bacillariophyta). On average, a higher number of assigned proteins was detected in the transcriptome assemblies of diatoms grown under replete media condition. On average, 50% of the mapped proteins were shared between the two growth conditions. All recorded proteins in the dataset were classified into 24 COG categories, with approximately 25% belonging to the unknown function and the remaining 75% belonging to all other categories. The resulting diatom reference database for the northern Adriatic, focussing on the response to nutrient limitation as characteristic for the region and predicted for the future world oceans, provides a valuable resource for analysing environmental metatranscriptome and metagenome data. Each northern Adriatic transcriptome can also be used by itself as a reference database for the (meta)transcriptomes and gene expression studies of the associated species that will be generated in the future.

RevDate: 2024-07-13

Zeng H, Wang Y, Zhao Z, et al (2024)

Travertine deposition rather than tourism activity is the primary contributor to the microplastic risks in alpine karst lakes.

Journal of hazardous materials, 476:135192 pii:S0304-3894(24)01771-0 [Epub ahead of print].

Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.

RevDate: 2024-07-15
CmpDate: 2024-07-13

Min M, Egli C, RK Sivamani (2024)

The Gut and Skin Microbiome and Its Association with Aging Clocks.

International journal of molecular sciences, 25(13):.

Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Núñez-Montero K, Leal K, Rojas-Villalta D, et al (2024)

16s gene metagenomic characterization in healthy stallion semen.

Research in veterinary science, 176:105354.

Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Chen P, Wang R, Lei J, et al (2024)

Urolithin B protects mice from diet-induced obesity, insulin resistance, and intestinal inflammation by regulating gut microbiota composition.

Food & function, 15(14):7518-7533.

The increasing prevalence of obesity and type 2 diabetes (T2D) signifies the failure of conventional treatments for these diseases. The gut microbiota has been proposed as a key player in the pathophysiology of diet-induced T2D. Urolithin B (Uro B), a gut microbiota-derived polyphenol metabolite, exerts several beneficial health effects. In this study, we investigated the metabolic effects of Uro B on high-fat/high-sucrose (HFHS)-fed mice and determined whether its antidiabetic effects are related to the modulation of the gut microbiota. C57BL/6J mice were fed either a chow or HFHS diet. HFHS-fed mice were administered daily with either a vehicle (water) or different doses of Uro B (100 or 200 mg kg[-1]) for eight weeks. The composition of the gut microbiota was assessed by 16S rRNA sequencing. The results showed that Uro B treatment reduced HFHS-induced weight gain and visceral obesity and decreased liver weight and triglyceride accumulation associated with blunted hepatic oxidative stress and inflammation. Furthermore, Uro B administration improved insulin sensitivity as revealed by improved insulin tolerance, a lower homeostasis model assessment of insulin resistance, and decreased glucose-induced hyperinsulinemia during the oral glucose tolerance test. Uro B treatment was found to lower the intestinal triglyceride content and alleviate intestinal inflammation and oxidative stress. Remarkably, Uro B treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in metagenomic samples. In conclusion, Uro B exerts beneficial metabolic effects by alleviating HFHS diet-induced features of metabolic syndrome, which is associated with a proportional increase in the population of Akkermansia spp.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Sánchez-Terrón G, Martínez R, Morcuende D, et al (2024)

Pomegranate supplementation alleviates dyslipidemia and the onset of non-alcoholic fatty liver disease in Wistar rats by shifting microbiota and producing urolithin-like microbial metabolites.

Food & function, 15(14):7348-7363.

Non-alcoholic fatty liver disease (NAFLD), obesity and related chronic diseases are major non-communicable diseases with high mortality rates worldwide. While dietary sugars are known to be responsible for insulin resistance and metabolic syndrome (MetS), the underlying pathophysiological effects of sustained fructose consumption require further elucidation. We hypothesize that certain bioactive compounds (i.e. punicalagin and ellagic acid) from dietary pomegranate could counteract the harmful effects of sustained fructose consumption in terms of obesity and liver damage. The present study aimed to elucidate both the molecular mechanisms involved in the pathophysiology associated with fructose intake and the effect of a punicalagin-rich commercial pomegranate dietary supplement (P) used as a nutritional strategy to alleviate fructose-induced metabolic impairments. Thus, nineteen Wistar rats fed on a basal commercial feed were supplemented with either 30% (w/v) fructose in drinking water (F; n = 7) or 30% (w/v) fructose solution plus 0.2% (w/v) P (F + P; n = 6) for 10 weeks. The results were compared to those from a control group fed on the basal diet and provided with drinking water (C; n = 6). Body weight and energy intake were registered weekly. P supplementation decreased fat depots, counteracted the dyslipidemia caused by F and improved markers of liver injury including steatosis. The study of the microbiota by metagenomics and urine by untargeted MS-based metabolomics revealed microbial metabolites from P that may be responsible for these health benefits.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Dunham SJB, Avelar-Barragan J, Rothman JA, et al (2024)

Sex-specific associations between AD genotype and the microbiome of human amyloid beta knock-in (hAβ-KI) mice.

Alzheimer's & dementia : the journal of the Alzheimer's Association, 20(7):4935-4950.

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome.

METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAβ-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD).

RESULTS: Eighteen-month female (but not male) hAβ-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAβ-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups.

DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAβ-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD.

HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAβ-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAβ-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Karadayı B, Karaismailoğlu B, Karadayı S, et al (2024)

The uselessness of using salivary microbiota in forensic identification purposes of a person with recent antibiotic use.

Legal medicine (Tokyo, Japan), 69:102338.

The detection of microbial flora changes in saliva samples because of antibiotic use through advanced molecular genetic analysis is important for forensic and clinical applications. This study aims to reveal the variability in the microbial structure of human saliva after antibiotic use with metagenomic analysis techniques from a forensic point of view. Within the scope of the study, saliva samples were collected from patients who were under the effect of regional anesthesia to be administered a standardized course of antibiotic therapy that lasted for a week. The analysis was conducted on 56 saliva samples from 14 individuals over four different time intervals. Isolation of the 16S rRNA region and PCR analysis were performed prior to sequence analysis to determine the microbiome structure of the samples at phylum, genus, and species levels. As expected, changes were observed in bacterial species found in saliva samples after administration of antibiotics and this was linked to the specific type of antibiotics that were administered. This change was statistically significant for Firmicutes, Spirochetes, and Verrucomicrobiota. Furthermore, although the oral microbiome tends to return to its former state at the phylum and genus level within a 4-week period after the start of antibiotic use, it is observed that the change, especially in some bacterial species, still continues. The findings of this study show that because of the inability of stabilization at species-level in a period of 4 weeks from the start of antibiotic use, it is not suitable to assess saliva samples at species-level for forensic identification.

RevDate: 2024-07-13
CmpDate: 2024-07-13

Liu Y, Kou C, Chen J, et al (2024)

The Response of the Gut Physiological Function and Microbiome of a Wild Freshwater Fish (Megalobrama terminalis) to Alterations in Reproductive Behavior.

International journal of molecular sciences, 25(13):.

The fish gut microbiome is well known for its role in degrading nutrients to improve the host's digestion and absorption efficiency. In this study, we focused on the core physiological adaptability during the various reproductive stages of the black Amur bream (Megalobrama terminalis) to explore the interaction mechanisms among the fish host gut mucosal structure, gut enzyme activity, and gut microbial metabolism in the course of the host's reproductive cycle. Our findings showed that M. terminalis exhibited locomotion metabolic type (aids in sporting) in the reproductive stage, and a change to visceral metabolic type (aids in digestion) during non-reproductive and post-reproductive stage phases. The impact of metabolic type selection and energy demand during various reproductive stages on fish nutrition strategy and digestive function was substantial. Our resulted showed that mitochondria in intestinal epithelial cells of reproductive M. terminalis appeared autophagy phenomenon, and the digestive enzyme activities in the intestines of reproductive M. terminalis were lower than those in the non-reproductive and post-reproductive individuals. Moreover, these differences in nutrition strategy have a prominent impact on the gut microbiome of reproductive M. terminalis, compared to non-reproductive and post-reproductive samples. Our findings showed that reproductive females had lower levels of alpha diversity compared to non-reproductive and post-reproductive females. Our results also showed a greater functional variety and an increase in functional genes related to carbohydrate, lipid, amino acid, cofactors, and vitamin metabolic pathways in the NRS and PRS group. It is noteworthy that an enrichment of genes encoding putative enzymes implicated in the metabolism of taurine and hypotaurine was observed in the RS samples. Our findings illustrated that the stability and resilience of the gut bacterial community could be shaped in the wild fish host-microbiome interactions during reproductive life history.

RevDate: 2024-07-13

Guo Y, Garber PA, Yang Y, et al (2024)

The Conservation Implications of the Gut Microbiome for Protecting the Critically Endangered Gray Snub-Nosed Monkey (Rhinopithecus brelichi).

Animals : an open access journal from MDPI, 14(13):.

The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from October to December) and spring (from January to March) to understand differences in seasonal nutrient intake patterns. Snub-nosed monkeys are foregut fermenters and consume difficult-to-digest carbohydrates and lichen. To examine the digestive adaptations of gray snub-nosed monkeys, we collected 14 fresh fecal samples for DNA analysis during the winter and spring. Based on 16S rRNA sequencing, metagenomic sequencing, and functional metagenomic analyses, we identified that Firmicutes, Actinobacteria, Verrucomicrobia, and Bacteroidetes constitute a keystone bacterial group in the gut microbiota during winter and spring and are responsible for degrading cellulose. Moreover, the transition in dietary composition from winter to spring was accompanied by changes in gut microbiota composition, demonstrating adaptive responses to varying food sources and availability. In winter, the bacterial species of the genera Streptococcus were found in higher abundance. At the functional level, these bacteria are involved in fructose and mannose metabolism and galactose metabolism c-related pathways, which facilitate the breakdown of glycogen, starch, and fiber found in fruits, seeds, and mature leaves. During spring, there was an increased abundance of bacteria species from the Prevotella and Lactobacillus genera, which aid the digestion of protein-rich buds. Combined, these findings reveal how the gut microbiota adjusts to fluctuations in energy balance and nutrient intake across different seasons in this critically endangered species. Moreover, we also identified Pseudomonas in two samples; the presence of potential pathogens within the gut could pose a risk to other troop members. Our findings highlight the necessity of a conservation plan that focuses on protecting vegetation and implementing measures to prevent disease transmission for this critically endangered species.

RevDate: 2024-07-12
CmpDate: 2024-07-13

Sun Y, Gan Z, Wang X, et al (2024)

Integrative metagenomic, transcriptomic, and proteomic analysis reveal the microbiota-host interplay in early-stage lung adenocarcinoma among non-smokers.

Journal of translational medicine, 22(1):652.

BACKGROUND: The incidence of early-stage lung adenocarcinoma (ES-LUAD) is steadily increasing among non-smokers. Previous research has identified dysbiosis in the gut microbiota of patients with lung cancer. However, the local microbial profile of non-smokers with ES-LUAD remains largely unknown. In this study, we systematically characterized the local microbial community and its associated features to enable early intervention.

METHODS: A prospective collection of ES-LUAD samples (46 cases) and their corresponding normal tissues adjacent to the tumor (41 cases), along with normal lung tissue samples adjacent to pulmonary bullae in patients with spontaneous pneumothorax (42 cases), were subjected to ultra-deep metagenomic sequencing, host transcriptomic sequencing, and proteomic sequencing. The obtained omics data were subjected to both individual and integrated analysis using Spearman correlation coefficients.

RESULTS: We concurrently detected the presence of bacteria, fungi, and viruses in the lung tissues. The microbial profile of ES-LUAD exhibited similarities to NAT but demonstrated significant differences from the healthy controls (HCs), characterized by an overall reduction in species diversity. Patients with ES-LUAD exhibited local microbial dysbiosis, suggesting the potential pathogenicity of certain microbial species. Through multi-omics correlations, intricate local crosstalk between the host and local microbial communities was observed. Additionally, we identified a significant positive correlation (rho > 0.6) between Methyloversatilis discipulorum and GOLM1 at both the transcriptional and protein levels using multi-omics data. This correlated axis may be associated with prognosis. Finally, a diagnostic model composed of six bacterial markers successfully achieved precise differentiation between patients with ES-LUAD and HCs.

CONCLUSIONS: Our study depicts the microbial spectrum in patients with ES-LUAD and provides evidence of alterations in lung microbiota and their interplay with the host, enhancing comprehension of the pathogenic mechanisms that underlie ES-LUAD. The specific model incorporating lung microbiota can serve as a potential diagnostic tool for distinguishing between ES-LUAD and HCs.

RevDate: 2024-07-12
CmpDate: 2024-07-12

He C, Fucich D, Sosa A, et al (2024)

Deep metagenomic sequencing unveils novel SAR202 lineages and their vertical adaptation in the ocean.

Communications biology, 7(1):853.

SAR202 bacteria in the Chloroflexota phylum are abundant and widely distributed in the ocean. Their genome coding capacities indicate their potential roles in degrading complex and recalcitrant organic compounds in the ocean. However, our understanding of their genomic diversity, vertical distribution, and depth-related metabolisms is still limited by the number of assembled SAR202 genomes. In this study, we apply deep metagenomic sequencing (180 Gb per sample) to investigate microbial communities collected from six representative depths at the Bermuda Atlantic Time Series (BATS) station. We obtain 173 SAR202 metagenome-assembled genomes (MAGs). Intriguingly, 154 new species and 104 new genera are found based on these 173 SAR202 genomes. We add 12 new subgroups to the current SAR202 lineages. The vertical distribution of 20 SAR202 subgroups shows their niche partitioning in the euphotic, mesopelagic, and bathypelagic oceans, respectively. Deep-ocean SAR202 bacteria contain more genes and exhibit more metabolic potential for degrading complex organic substrates than those from the euphotic zone. With deep metagenomic sequencing, we uncover many new lineages of SAR202 bacteria and their potential functions which greatly deepen our understanding of their diversity, vertical profile, and contribution to the ocean's carbon cycling, especially in the deep ocean.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Su X, Huang X, Zhang Y, et al (2024)

Nitrifying niche in estuaries is expanded by the plastisphere.

Nature communications, 15(1):5866.

The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using [15]N- and [13]C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Melchior PP, Reiss E, Payne Z, et al (2024)

Analysis of the northern pitcher plant (Sarracenia purpurea L.) phytotelm bacteriome throughout a temperate region growing season.

PloS one, 19(7):e0306602.

The insectivorous Northern Pitcher Plant, Sarracenia purpurea, recruits a dynamic biotic community in the rainwater collected by its pitcher-shaped leaves. Insect capture and degradation within the pitcher fluid (phytotelma) has been well documented as a mechanism for supplementing the plant's nitrogen, phosphorous, and micronutrient requirements. Metagenomic studies have shown a diverse microbiome in this phytotelm environment, including taxa that contribute metabolically to prey digestion. In this investigation, we used high-throughput 16S rDNA sequencing and bioinformatics to analyze the S. purpurea phytotelm bacteriome as it changes through the growing season (May-September) in plants from the north-central region of the species' native range. Additionally, we used molecular techniques to detect and quantify bacterial nitrogenase genes (nifH) in all phytotelm samples to explore the hypothesis that diazotrophy is an additional mechanism of supplying biologically available nitrogen to S. purpurea. The results of this study indicate that while prokaryote diversity remains relatively stable in plants at different locations within our region, diversity changes significantly as the growing season progresses. Furthermore, nifH genes were detected at biologically significant concentrations in one hundred percent of samples, suggesting that nitrogen fixation may be an important contributor to the S. purpurea nutrient budget.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Van Den Bossche T, Verschaffelt P, Vande Moortele T, et al (2024)

Biodiversity Analysis of Metaproteomics Samples with Unipept: A Comprehensive Tutorial.

Methods in molecular biology (Clifton, N.J.), 2836:183-215.

Metaproteomics has become a crucial omics technology for studying microbiomes. In this area, the Unipept ecosystem, accessible at https://unipept.ugent.be , has emerged as a valuable resource for analyzing metaproteomic data. It offers in-depth insights into both taxonomic distributions and functional characteristics of complex ecosystems. This tutorial explains essential concepts like Lowest Common Ancestor (LCA) determination and the handling of peptides with missed cleavages. It also provides a detailed, step-by-step guide on using the Unipept Web application and Unipept Desktop for thorough metaproteomics analyses. By integrating theoretical principles with practical methodologies, this tutorial empowers researchers with the essential knowledge and tools needed to fully utilize metaproteomics in their microbiome studies.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Leech SM, Borg DJ, Rae KM, et al (2024)

Delivery mode is a larger determinant of infant gut microbiome composition at 6 weeks than exposure to peripartum antibiotics.

Microbial genomics, 10(7):.

Background. Previous research has shown that delivery mode can shape infant gut microbiome composition. However, mothers delivering by caesarean section routinely receive prophylactic antibiotics prior to delivery, resulting in antibiotic exposure to the infant via the placenta. Previously, only a small number of studies have examined the effect of delivery mode versus antibiotic exposure on the infant gut microbiome with mixed findings.Objective. We aimed to determine the effect of delivery mode compared to antibiotic use during labour and delivery on the infant and maternal gut microbiome at 6 weeks post-partum.Methodology. Twenty-five mother-infant dyads were selected from the longitudinal Queensland Family Cohort Study. The selected dyads comprised nine vaginally delivered infants without antibiotics, seven vaginally delivered infants exposed to antibiotics and nine infants born by caesarean section with routine maternal prophylactic antibiotics. Shotgun-metagenomic sequencing of DNA from stool samples collected at 6 weeks post-partum from mother and infant was used to assess microbiome composition.Results. Caesarean section infants exhibited decreases in Bacteroidetes (ANCOM-BC q<0.0001, MaAsLin 2 q=0.041), changes to several functional pathways and altered beta diversity (R [2]=0.056, P=0.029), while minimal differences due to antibiotic exposure were detected. For mothers, caesarean delivery (P=0.0007) and antibiotic use (P=0.016) decreased the evenness of the gut microbiome at 6 weeks post-partum without changing beta diversity. Several taxa in the maternal microbiome were altered in association with antibiotic use, with few differentially abundant taxa associated with delivery mode.Conclusion. For infants, delivery mode appears to have a larger effect on gut microbiome composition at 6 weeks post-partum than intrapartum antibiotic exposure. For mothers, both delivery mode and intrapartum antibiotic use have a small effect on gut microbiome composition at 6 weeks post-partum.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Arikan M, T Muth (2024)

gNOMO2: a comprehensive and modular pipeline for integrated multi-omics analyses of microbiomes.

GigaScience, 13:.

BACKGROUND: In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline.

RESULTS: Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The functionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives.

CONCLUSIONS: gNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, offering novel insights in both host-associated and free-living microbiome research. gNOMO2 is available freely at https://github.com/muzafferarikan/gNOMO2.

RevDate: 2024-07-11
CmpDate: 2024-07-11

Zomer A, Ingham CJ, von Meijenfeldt FAB, et al (2024)

Structural color in the bacterial domain: The ecogenomics of a 2-dimensional optical phenotype.

Proceedings of the National Academy of Sciences of the United States of America, 121(29):e2309757121.

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.

RevDate: 2024-07-12
CmpDate: 2024-07-11

Schaible GA, Jay ZJ, Cliff J, et al (2024)

Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells.

PLoS biology, 22(7):e3002638.

Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Parab AS, CS Manohar (2024)

Insights into the seasonal changes in the taxonomic and functional diversity of bacteria in the eastern Arabian Sea: Shotgun metagenomics approach.

Marine environmental research, 199:106616.

The eastern Arabian Sea (EAS) is known for its unique oceanographic features such as the seasonal monsoonal winds, upwelling of nutrient-rich waters and a significant increase in primary productivity during the monsoon season. In this study, we utilised the shotgun metagenomics approach to determine the seasonal variations in bacterial taxonomic and functional profiles during the non-monsoon and monsoon seasons in the EAS. Significant seasonal variations in the bacterial community structure were observed at the phylum and genera levels. These findings also correspond with seasonal shifts in the functional profiles of the bacterial communities based on the variations of genes encoding enzymes associated with different metabolic pathways. Pronounced seasonal variation of bacterial taxa was evident with an increased abundance of Idiomarina, Marinobacter, Psychrobacter and Alteromonas of Proteobacteria, Bacillus and Staphylococcus of Firmicutes during the non-monsoon season. These taxa were linked to elevated nucleotide and amino acid biosynthesis, amino acid and lipid degradation. Conversely, during the monsoon, the taxa composition changed with Alteromonas, Candidatus Pelagibacter of Proteobacteria and Cyanobacteria Synechococcus; contributing largely to the amino acid and lipid biosynthesis, fermentation and inorganic nutrient metabolism which was evident from functional analysis. Regression analysis confirmed that increased seasonal primary productivity significantly influenced the abundance of genes associated with carbohydrate, protein and lipid metabolism. These highlight the pivotal role of seasonal changes in primary productivity in shaping the bacterial communities, their functional profiles and driving the biogeochemical cycling in the EAS.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Yang Y, Olah P, Radai Z, et al (2024)

Exploratory multi-omics analysis reveals host-microbe interactions associated with disease severity in psoriatic skin.

EBioMedicine, 105:105222.

BACKGROUND: Psoriasis (Pso) is a chronic inflammatory skin disease that poses both physical and psychological challenges. Dysbiosis of the skin microbiome has been implicated in Pso, yet a comprehensive multi-omics analysis of host-microbe interactions is still lacking. To bridge this gap, we conducted an exploratory study by adopting the integrated approach that combines whole metagenomic shotgun sequencing with skin transcriptomics.

METHODS: This was a cross-sectional study, adult patients with plaque-type Psoriasis (Pso) and healthy volunteers were included. Skin microbiota samples and biopsies were collected from both lesional and non-lesional skin areas on the lower back. Weighted Gene Correlation Network Analysis (WGCNA) was employed for co-expression network analysis, and cell deconvolution was conducted to estimate cell fractions. Taxonomic and functional features of the microbiome were identified using whole metagenomic shotgun sequencing. Association between host genes and microbes was analyzed using Spearman correlation.

FINDINGS: Host anti-viral responses and interferon-related networks were identified and correlated with the severity of psoriasis. The skin microbiome showed a greater prevalence of Corynebacterium simulans in the PASI severe-moderate groups, which correlated with interferon-induced host genes. Two distinct psoriatic clusters with varying disease severities were identified. Variations in the expression of cell apoptosis-associated antimicrobial peptides (AMPs) and microbial aerobic respiration I pathway may partly account for these differences in disease severity.

INTERPRETATION: Our multi-omics analysis revealed for the first time anti-viral responses and the presence of C. simulans associated with psoriasis severity. It also identified two psoriatic subtypes with distinct AMP and metabolic pathway expression. Our study provides new insights into understanding the host-microbe interaction in psoriasis and lays the groundwork for developing subtype-specific strategies for managing this chronic skin disease.

FUNDING: The research has received funding from the FP7 (MAARS-Grant 261366) and the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 821511 (BIOMAP). The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA. This publication reflects only the author's view and the JU is not responsible for any use that may be made of the information it contains. GAM was supported by a scholarship provided by CAPES-PRINT, financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Brazilian Government Agency). The authors thank all patients who participated in our study.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Ling CW, Deng K, Yang Y, et al (2024)

Mapping the gut microecological multi-omics signatures to serum metabolome and their impact on cardiometabolic health in elderly adults.

EBioMedicine, 105:105209.

BACKGROUND: Mapping gut microecological features to serum metabolites (SMs) will help identify functional links between gut microbiome and cardiometabolic health.

METHODS: This study encompassed 836-1021 adults over 9.7 year in a cohort, assessing metabolic syndrome (MS), carotid atherosclerotic plaque (CAP), and other metadata triennially. We analyzed mid-term microbial metagenomics, targeted fecal and serum metabolomics, host genetics, and serum proteomics.

FINDINGS: Gut microbiota and metabolites (GMM) accounted for 15.1% overall variance in 168 SMs, with individual GMM factors explaining 5.65%-10.1%, host genetics 3.23%, and sociodemographic factors 5.95%. Specifically, GMM elucidated 5.5%-49.6% variance in the top 32 GMM-explained SMs. Each 20% increase in the 32 metabolite score (derived from the 32 SMs) correlated with 73% (95% confidence interval [CI]: 53%-95%) and 19% (95% CI: 11%-27%) increases in MS and CAP incidences, respectively. Among the 32 GMM-explained SMs, sebacic acid, indoleacetic acid, and eicosapentaenoic acid were linked to MS or CAP incidence. Serum proteomics revealed certain proteins, particularly the apolipoprotein family, mediated the relationship between GMM-SMs and cardiometabolic risks.

INTERPRETATION: This study reveals the significant influence of GMM on SM profiles and illustrates the intricate connections between GMM-explained SMs, serum proteins, and the incidence of MS and CAP, providing insights into the roles of gut dysbiosis in cardiometabolic health via regulating blood metabolites.

FUNDING: This study was jointly supported by the National Natural Science Foundation of China, Key Research and Development Program of Guangzhou, 5010 Program for Clinical Research of Sun Yat-sen University, and the 'Pioneer' and 'Leading goose' R&D Program of Zhejiang.

RevDate: 2024-07-12

Nanetti E, Scicchitano D, Palladino G, et al (2024)

The Alpine ibex (Capra ibex) gut microbiome, seasonal dynamics, and potential application in lignocellulose bioconversion.

iScience, 27(7):110194.

Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings revealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout to fully exploit the available food. Besides confirming the importance of the host-associated microbiome in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level genome bins and identified minimal gut microbiome community modules of 11-14 interacting strains as a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds, such as volatile fatty acids.

RevDate: 2024-07-10
CmpDate: 2024-07-10

Zhao JT, Zhang Y, Wang XW, et al (2024)

Long-term effects of fecal microbiota transplantation on gut microbiota after Helicobacter pylori eradication with bismuth quadruple therapy: A randomized controlled trial.

Helicobacter, 29(4):e13079.

BACKGROUND: Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known.

MATERIALS AND METHODS: This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment.

RESULTS: A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group.

CONCLUSIONS: The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.

RevDate: 2024-07-11
CmpDate: 2024-07-10

Jin LX, Fang YP, Xia CM, et al (2024)

Helicobacter pylori infection alters gastric microbiota structure and biological functions in patients with gastric ulcer or duodenal ulcer.

World journal of gastroenterology, 30(24):3076-3085.

BACKGROUND: Helicobacter pylori (H. pylori) infection is closely associated with gastrointestinal diseases. Our preliminary studies have indicated that H. pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer (GU) or duodenal ulcer (DU).

AIM: To investigate the contributions of H. pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases.

METHODS: Patients with H. pylori infection and either GU or DU, and healthy individuals without H. pylori infection were included. Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing. The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed.

RESULTS: Compared with that in the healthy individuals, the gastric mucosal microbiota in the H. pylori-positive patients with GU was dominated by H. pylori, with significantly reduced biodiversity. The intergroup differential functions, which were enriched in the H. pylori-positive GU patients, were all derived from H. pylori, particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones. A significant enrichment of the uibE gene was detected in the synthesis pathway. There was no significant difference in microbial diversity between the H. pylori-positive DU patients and healthy controls.

CONCLUSION: H. pylori infection significantly alters the gastric microbiota structure, diversity, and biological functions, which may be important contributing factors for GU.

RevDate: 2024-07-12
CmpDate: 2024-07-10

Yao G, Zhao Z, Yang C, et al (2024)

Evaluating the probiotic effects of spraying lactiplantibacillus plantarum P-8 in neonatal piglets.

BMC microbiology, 24(1):253.

BACKGROUND: Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets.

RESULTS: The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum.

CONCLUSION: Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.

RevDate: 2024-07-12
CmpDate: 2024-07-12

Shukla R, Tsuchiya Y, Behari A, et al (2024)

Metagenomic Analysis of Biliary Microbial Flora in Patients with Gallbladder Cancer or Gallstones-Associated Chronic Cholecystitis.

Cancer investigation, 42(6):478-490.

Biliary dysbiosis is associated with gallbladder cancer (GBC). We aimed to look for biliary bacteria specifically detected in GBC patients. We used 16S rRNA-based metagenomic analysis to elucidate biliary microbiota in 30 GBC and 30 gallstones-associated chronic cholecystitis patients. Relative abundance of five genera, Streptococcus, Enterococcus, Halomonas, Escherichia and Caulobacter was significantly associated with GBC. Of 15-species, 7 were detected significantly higher in GBC, Streptococcus anginosus, Streptococcus constellatus, Streptococcus intermedius, Actinomyces bowdenii, Actinomyces israelii, Actinomyces gerencseriae, and Escherichia fergusonii were biosafety level-2 infectious bacteria; other 8 species were biosafety level-1 bacteria. These bacterial species may be involved in pathogenesis of GBC.

RevDate: 2024-07-11
CmpDate: 2024-07-08

Wei Y, Li J, Zhu B, et al (2024)

Metagenomic comparison of intestinal microbiota between normal and liver fibrotic rhesus macaques (Macaca mulatta).

Scientific reports, 14(1):15677.

Liver fibrosis is an important pathological process in chronic liver disease and cirrhosis. Recent studies have found a close association between intestinal microbiota and the development of liver fibrosis. To determine whether there are differences in the intestinal microbiota between rhesus macaques with liver fibrosis (MG) and normal rhesus macaques (MN), fecal samples were collected from 8 male MG and 12 male MN. The biological composition of the intestinal microbiota was then detected using 16S rRNA gene sequencing. The results revealed statistically significant differences in ASVs and Chao1 in the alpha-diversity and the beta-diversity of intestinal microbiota between MG and MN. Both groups shared Prevotella and Lactobacillus as common dominant microbiota. However, beneficial bacteria such as Lactobacillus were significantly less abundant in MG (P = 0.02). Predictive functional analysis using PICRUSt2 gene prediction revealed that MG exhibited a higher relative abundance of functions related to substance transport and metabolic pathways. This study may provide insight into further exploration of the mechanisms by which intestinal microbiota affect liver fibrosis and its potential future use in treating liver fibrosis.

RevDate: 2024-07-11
CmpDate: 2024-07-08

Zachariasen T, Russel J, Petersen C, et al (2024)

MAGinator enables accurate profiling of de novo MAGs with strain-level phylogenies.

Nature communications, 15(1):5734.

Metagenomic sequencing has provided great advantages in the characterisation of microbiomes, but currently available analysis tools lack the ability to combine subspecies-level taxonomic resolution and accurate abundance estimation with functional profiling of assembled genomes. To define the microbiome and its associations with human health, improved tools are needed to enable comprehensive understanding of the microbial composition and elucidation of the phylogenetic and functional relationships between the microbes. Here, we present MAGinator, a freely available tool, tailored for profiling of shotgun metagenomics datasets. MAGinator provides de novo identification of subspecies-level microbes and accurate abundance estimates of metagenome-assembled genomes (MAGs). MAGinator utilises the information from both gene- and contig-based methods yielding insight into both taxonomic profiles and the origin of genes and genetic content, used for inference of functional content of each sample by host organism. Additionally, MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs, providing a framework to identify clade-level differences.

RevDate: 2024-07-10
CmpDate: 2024-07-07

Lee S, I Lee (2024)

Comprehensive assessment of machine learning methods for diagnosing gastrointestinal diseases through whole metagenome sequencing data.

Gut microbes, 16(1):2375679.

The gut microbiome, linked significantly to host diseases, offers potential for disease diagnosis through machine learning (ML) pipelines. These pipelines, crucial in modeling diseases using high-dimensional microbiome data, involve selecting profile modalities, data preprocessing techniques, and classification algorithms, each impacting the model accuracy and generalizability. Despite whole metagenome shotgun sequencing (WMS) gaining popularity for human gut microbiome profiling, a consensus on the optimal methods for ML pipelines in disease diagnosis using WMS data remains elusive. Addressing this gap, we comprehensively evaluated ML methods for diagnosing Crohn's disease and colorectal cancer, using 2,553 fecal WMS samples from 21 case-control studies. Our study uncovered crucial insights: gut-specific, species-level taxonomic features proved to be the most effective for profiling; batch correction was not consistently beneficial for model performance; compositional data transformations markedly improved the models; and while nonlinear ensemble classification algorithms typically offered superior performance, linear models with proper regularization were found to be more effective for diseases that are linearly separable based on microbiome data. An optimal ML pipeline, integrating the most effective methods, was validated for generalizability using holdout data. This research offers practical guidelines for constructing reliable disease diagnostic ML models with fecal WMS data.

RevDate: 2024-07-11
CmpDate: 2024-07-11

Wang S, Liu Y, Tam WH, et al (2024)

Maternal gestational diabetes mellitus associates with altered gut microbiome composition and head circumference abnormalities in male offspring.

Cell host & microbe, 32(7):1192-1206.e5.

The impact of gestational diabetes mellitus (GDM) on maternal or infant microbiome trajectory remains poorly understood. Utilizing large-scale longitudinal fecal samples from 264 mother-baby dyads, we present the gut microbiome trajectory of the mothers throughout pregnancy and infants during the first year of life. GDM mothers had a distinct microbiome diversity and composition during the gestation period. GDM leaves fingerprints on the infant's gut microbiome, which are confounded by delivery mode. Further, Clostridium species positively correlate with a larger head circumference at month 12 in male offspring but not females. The gut microbiome of GDM mothers with male fetuses displays depleted gut-brain modules, including acetate synthesis I and degradation and glutamate synthesis II. The gut microbiome of female infants of GDM mothers has higher histamine degradation and dopamine degradation. Together, our integrative analysis indicates that GDM affects maternal and infant gut composition, which is associated with sexually dimorphic infant head growth.

RevDate: 2024-07-11
CmpDate: 2024-07-11

Kumbhari A, Cheng TNH, Ananthakrishnan AN, et al (2024)

Discovery of disease-adapted bacterial lineages in inflammatory bowel diseases.

Cell host & microbe, 32(7):1147-1162.e12.

Gut bacteria are implicated in inflammatory bowel disease (IBD), but the strains driving these associations are unknown. Large-scale studies of microbiome evolution could reveal the imprint of disease on gut bacteria, thus pinpointing the strains and genes that may underlie inflammation. Here, we use stool metagenomes of thousands of IBD patients and healthy controls to reconstruct 140,000 strain genotypes, revealing hundreds of lineages enriched in IBD. We demonstrate that these strains are ancient, taxonomically diverse, and ubiquitous in humans. Moreover, disease-associated strains outcompete their healthy counterparts during inflammation, implying long-term adaptation to disease. Strain genetic differences map onto known axes of inflammation, including oxidative stress, nutrient biosynthesis, and immune evasion. Lastly, the loss of health-associated strains of Eggerthella lenta was predictive of fecal calprotectin, a biomarker of disease severity. Our work identifies reservoirs of strain diversity that may impact inflammatory disease and can be extended to other microbiome-associated diseases.

RevDate: 2024-07-11
CmpDate: 2024-07-11

Lu Y, Zhang L, Liu X, et al (2024)

Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity.

Integrative zoology, 19(4):662-682.

The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.

RevDate: 2024-07-11
CmpDate: 2024-07-11

Zhao J, Feng T, An X, et al (2024)

Livestock grazing is associated with the gut microbiota and antibiotic resistance genes in sympatric plateau pika (Ochotona curzoniae).

Integrative zoology, 19(4):646-661.

With the overuse of antibiotics in health care and animal husbandry, antibiotic resistance becomes a serious threat to public health. Antibiotic residues from veterinary medicine have increased the dissemination of antibiotic resistance genes (ARGs) by horizontal gene transfer globally, leading to the enrichment of ARGs in wildlife. Plateau pika (Ochotona curzoniae) is a small herbivore endemic to the Qinghai-Tibetan Plateau. Previous studies reveal that pika evolves a coprophagy behavior toward cohabitated yak, which makes the pika population a potential reservoir of ARGs. Yet, little is known about the resistome of pika under different grazing intensities. Here, we sampled the cecum content of pika from three different grazing intensity areas in the Qinghai-Tibetan Plateau to evaluate the effect of grazing on its gut microbiota and resistome. By using the 16S full-length amplicon and metagenomic sequencing, our study revealed that livestock grazing significantly altered the gut microbial community of plateau pika as compared to prohibited grazing areas. We found bacterial lineage Prevotellaceae, Lachnospirales, and RF39 increased in grazing areas. Analysis of the resistome revealed that pika from continuous grazing areas enriched a higher abundance of colistin (MCR) and streptogramin (vat) resistance genes. Moreover, we observed significant correlations between the gut microbial community, ARGs, and mobile genetic element profiles, hinting that pika gut microbiota was an important shaping force of the resistome. In future studies, the continuous monitoring of wildlife gut resistome and environmental antibiotic residues is imperative for a better understanding and for tackling the horizontal gene transfer of ARGs across the wildlife-livestock interface.

RevDate: 2024-07-10
CmpDate: 2024-07-07

Villani A, Fontana A, Panebianco C, et al (2024)

A powerful machine learning approach to identify interactions of differentially abundant gut microbial subsets in patients with metastatic and non-metastatic pancreatic cancer.

Gut microbes, 16(1):2375483.

Pancreatic cancer has a dismal prognosis, as it is often diagnosed at stage IV of the disease and is characterized by metastatic spread. Gut microbiota and its metabolites have been suggested to influence the metastatic spread by modulating the host immune system or by promoting angiogenesis. To date, the gut microbial profiles of metastatic and non-metastatic patients need to be explored. Taking advantage of the 16S metagenomic sequencing and the PEnalized LOgistic Regression Analysis (PELORA) we identified clusters of bacteria with differential abundances between metastatic and non-metastatic patients. An overall increase in Gram-negative bacteria in metastatic patients compared to non-metastatic ones was identified using this method. Furthermore, to gain more insight into how gut microbes can predict metastases, a machine learning approach (iterative Random Forest) was performed. Iterative Random Forest analysis revealed which microorganisms were characterized by a different level of relative abundance between metastatic and non-metastatic patients and established a functional relationship between the relative abundance and the probability of having metastases. At the species level, the following bacteria were found to have the highest discriminatory power: Anaerostipes hadrus, Coprobacter secundus, Clostridium sp. 619, Roseburia inulinivorans, Porphyromonas and Odoribacter at the genus level, and Rhodospirillaceae, Clostridiaceae and Peptococcaceae at the family level. Finally, these data were intertwined with those from a metabolomics analysis on fecal samples of patients with or without metastasis to better understand the role of gut microbiota in the metastatic process. Artificial intelligence has been applied in different areas of the medical field. Translating its application in the field of gut microbiota analysis may help fully exploit the potential information contained in such a large amount of data aiming to open up new supportive areas of intervention in the management of cancer.

RevDate: 2024-07-11
CmpDate: 2024-07-06

Huang X, Zeng J, Li S, et al (2024)

16S rRNA, metagenomics and 2bRAD-M sequencing to decode human thanatomicrobiome.

Scientific data, 11(1):736.

Microorganisms are essential in the decomposition of corpses and play a significant role in forensic science. However, previous studies have primarily focused on animal remains, specifically the gut, skin, and burial environment. Insufficient research has been conducted on the microbiota of human cadavers, especially in cases of advanced decomposition and additional tissues, resulting in a lack of relevant reference data. In this study, the microbiota of eight cadavers at different stages of decomposition were detected using 16S rRNA, metagenomic sequencing and 2bRAD-M sequencing. Nine different sites, including oral and nasal cavities, heart, liver, spleen, lung, kidney, muscle and gut, were analysed and the efficacy of these methods was evaluated. The results showed that 16S rRNA sequencing was the most cost-effective method for the study of cadavers in the early stages of decomposition, whereas for cadaveric tissues in the late stages of decomposition, 2bRAD-M could overcome host contamination more effectively than metagenomic sequencing. This paves the way for new opportunities in data retrieval and promotes in-depth investigations into the microbiota.

RevDate: 2024-07-08
CmpDate: 2024-07-06

Wang X, Sun J, Zhang X, et al (2024)

Metagenomics reveals unique gut mycobiome biomarkers in psoriasis.

Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI), 30(7):e13822.

PURPOSE: In present, the diagnosis of psoriasis is mainly based on the patient's typical clinical manifestations, dermoscopy and skin biopsy, and unlike other immune diseases, psoriasis lacks specific indicators in the blood. Therefore, we are required to search novel biomarkers for the diagnosis of psoriasis.

METHODS: In this study, we analyzed the composition and the differences of intestinal fungal communities composition between psoriasis patients and healthy individuals in order to find the intestinal fungal communities associated with the diagnosis of psoriasis. We built a machine learning model and identified potential microbial markers for the diagnosis of psoriasis.

RESULTS: The results of AUROC (area under ROC) showed that Aspergillus puulaauensis (AUROC = 0.779), Kazachstania africana (AUROC = 0.750) and Torulaspora delbrueckii (AUROC = 0.745) had high predictive ability (AUROC > 0.7) for predicting psoriasis, While Fusarium keratoplasticum (AUROC = 0.670) was relatively lower (AUROC < 0.7).

CONCLUSION: The strategy based on the prediction of intestinal fungal communities provides a new idea for the diagnosis of psoriasis and is expected to become an auxiliary diagnostic method for psoriasis.

RevDate: 2024-07-10
CmpDate: 2024-07-10

You HS, Park JY, Seo H, et al (2024)

Increasing correlation between oral and gastric microbiota during gastric carcinogenesis.

The Korean journal of internal medicine, 39(4):590-602.

BACKGROUND/AIMS: Recent research has increasingly focused on the role of the gastric microbiome in the development of gastric cancer. We aimed to investigate the changes in the microbiome during gastric carcinogenesis in structural and functional aspects, with a specific focus on the association between oral and gastric microbiomes.

METHODS: We collected saliva, gastric juice, and gastric tissue samples from 141 patients at different stages of gastric carcinogenesis and processed them for microbiome analysis using 16S rRNA gene profiling. The alpha and beta diversities were analyzed, and the differences in microbiome composition and function profiles were analyzed among the groups, as well as the correlation between changes in the oral and gastric microbiomes during carcinogenesis.

RESULTS: We observed significant differences in microbial diversity and composition between the disease and control groups, primarily in the gastric juice. Specific bacterial strains, including Schaalia odontolytica, Streptococcus cristatus, and Peptostreptococcus stomatis, showed a significant increase in abundance in the gastric juice in the low-grade dysplasia and gastric cancer groups. Notably, the correlation between the oral and gastric microbiota compositions, increased as the disease progressed. Predictive analysis of the metagenomic functional profiles revealed changes in functional pathways that may be associated with carcinogenesis (ABC transport and two-component systems).

CONCLUSION: During gastric carcinogenesis, the abundance of oral commensals associated with cancer increased in the stomach. The similarity in microbial composition between the stomach and oral cavity also increased, implying a potential role of oral-gastric bacterial interactions in gastric cancer development.

RevDate: 2024-07-10
CmpDate: 2024-07-10

Balasundaram D, Veerasamy V, Sylvia Singarayar M, et al (2024)

Therapeutic potential of probiotics in gut microbial homeostasis and Rheumatoid arthritis.

International immunopharmacology, 137:112501.

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint damage. Existing treatment options primarily focus on managing symptoms and slowing disease progression, often with side effects and limitations. The gut microbiome, a vast community of microorganisms present in the gastrointestinal tract, plays a crucial role in health and disease. Recent research suggests a bidirectional relationship between the gut microbiome and RA, highlighting its potential as a therapeutic option. This review focuses on the interaction between the gut microbiome and RA development, by discussing how dysbiosis, an imbalance in gut bacteria, can contribute to RA through multiple mechanisms such as molecular mimicry, leaky gut, and metabolic dysregulation. Probiotics, live microorganisms with health benefits, are emerging as promising tools for managing RA. They can prevent the negative effects of dysbiosis by displacing harmful bacteria, producing anti-inflammatory metabolites like short-chain fatty acids (SCFA), Directly influencing immune cells, and modifying host metabolism. animal and clinical studies demonstrate the potential of probiotics in improving RA symptoms and disease outcomes. However, further research is needed to optimize probiotic strains, dosages, and treatment protocols for personalized and effective management of RA. This review summarizes the current understanding of the gut microbiome and its role in RA and discusses future research directions. In addition to the established role of gut dysbiosis in RA, emerging strategies like fecal microbiota transplantation, prebiotics, and postbiotics offer exciting possibilities. However, individual variations in gut composition necessitate personalized treatment plans. Long-term effects and clear regulations need to be established. Future research focusing on metagenomic analysis, combination therapies, and mechanistic understanding will unlock the full potential of gut microbiome modulation for effective RA management.

RevDate: 2024-07-10
CmpDate: 2024-07-10

Chen X, Wei J, Li Z, et al (2024)

Dysregulation of Gut Microbiota-Derived Neuromodulatory Amino Acid Metabolism in Human Immunodeficiency Virus-Associated Neurocognitive Disorder: An Integrative Metagenomic and Metabolomic Analysis.

Annals of neurology, 96(2):306-320.

OBJECTIVE: Although accumulating evidence implicating altered gut microbiota in human immunodeficiency virus (HIV) infection and neurodegenerative disorders; however, the association between dysbiosis of the gut microbiota and metabolites in the pathogenesis of HIV-associated neurocognitive disorder (HAND) remains unclear.

METHODS: Fecal and plasma samples were obtained from 3 cohorts (HAND, HIV-non-HAND, and healthy controls), metagenomic analysis and metabolomic profiling were performed to investigate alterations in the gut microbial composition and circulating metabolites in HAND.

RESULTS: The gut microbiota of people living with HIV (PLWH) had an increased relative abundance of Prevotella and a decreased relative abundance of Bacteroides. In contrast, Prevotella and Megamonas were substantially decreased, and Bacteroides and Phocaeicola were increased in HAND patients. Moreover, untargeted metabolomics identified several neurotransmitters and certain amino acids associated with neuromodulation, and the differential metabolic pathways of amino acids associated with neurocognition were depleted in HAND patients. Notably, most neuromodulatory metabolites are associated with an altered abundance of specific gut bacteria.

INTERPRETATION: Our findings provide new insights into the intricate interplay between the gut and microbiome-brain axis in the pathogenesis of HAND, highlighting the potential for developing novel therapeutic strategies that specifically target the gut microbiota. ANN NEUROL 2024;96:306-320.

RevDate: 2024-07-09
CmpDate: 2024-07-09

Kortman GAM, Hester ER, Schaafsma A, et al (2024)

Gut microbiome composition and functionality impact the responsiveness to a dairy-based product containing galacto-oligosaccharides for improving sleep quality in adults.

Beneficial microbes, 15(4):373-385.

Sleep quality and duration can be impacted by diet, and has been linked to gut microbiota composition and function as the result of communication via the microbiota-gut-brain axis. As one strategy to improve sleep quality could be through the modulation of the gut microbiome, we assessed the effects of a dairy-based product containing whey protein, galacto-oligosaccharides, tryptophan, vitamins and minerals after a 3 weeks intervention on gut microbiota composition and (gut-brain related) functions on basis of 67 healthy subjects with moderate sleep disturbances. Associations of the gut microbiota with sleep quality and with response/non-response to the treatment were revealed by shotgun metagenomics sequencing of faecal DNA samples, and subsequent analyses of microbiota taxonomy and generic functionality. A database of manually curated Gut-Brain Modules (GBMs) was applied to analyse specific microbial functions/pathways that have the potential to interact with the brain. A moderate discriminating effect of the DP treatment on gut microbiota composition was revealed which could be mainly attributed to a decrease in Pseudomonas resinovorans, Flintibacter sp. KGM00164, Intestinimonas butyriciproducens, and Flavonifractor plautii. As interindividual variance in microbiota composition could have given rise to a heterogenous responsiveness of the subjects in the intervention group, we zoomed in on the differences between responders and non-responders. A significant difference in baseline microbiota composition between responders and non-responders was apparent, showing lower Bifidobacterium longum and Bifidobacterium adolescentis, and higher Faecalibacterium prausnitzii relative abundances in responders. The findings provide leads with respect to the effectiveness and potential underlying mechanisms of mode of action in sleep improvement that could support future nutritional interventions to aid sleep improvement.

RevDate: 2024-07-08
CmpDate: 2024-07-06

Zuppi M, Vatanen T, Wilson BC, et al (2024)

Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity.

Microbiome, 12(1):122.

BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition.

RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time.

CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome.

TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.

RevDate: 2024-07-08
CmpDate: 2024-07-05

Yan W, Wang D, Wang Y, et al (2024)

Metatranscriptomics-guided genome-scale metabolic reconstruction reveals the carbon flux and trophic interaction in methanogenic communities.

Microbiome, 12(1):121.

BACKGROUND: Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry.

RESULTS: In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role.

CONCLUSION: Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.

RevDate: 2024-07-08
CmpDate: 2024-07-08

Güven Gülhan Ü, Nikerel E, Çakır T, et al (2024)

Species-level identification of enterotype-specific microbial markers for colorectal cancer and adenoma.

Molecular omics, 20(6):397-416.

Enterotypes have been shown to be an important factor for population stratification based on gut microbiota composition, leading to a better understanding of human health and disease states. Classifications based on compositional patterns will have implications for personalized microbiota-based solutions. There have been limited enterotype based studies on colorectal adenoma and cancer. Here, an enterotype-based meta-analysis of fecal shotgun metagenomic studies was performed, including 1579 samples of healthy controls (CTR), colorectal adenoma (ADN) and colorectal cancer (CRC) in total. Gut microbiota of healthy people were clustered into three enterotypes (Ruminococcus-, Bacteroides- and Prevotella-dominated enterotypes). Reference-based enterotype assignments were performed for CRC and ADN samples, using the supervised machine learning algorithm, K-nearest neighbors. Differential abundance analyses and random forest classification were conducted on each enterotype between healthy controls and CRC-ADN groups, revealing novel enterotype-specific microbial markers for non-invasive CRC screening strategies. Furthermore, we identified microbial species unique to each enterotype that play a role in the production of secondary bile acids and short-chain fatty acids, unveiling the correlation between cancer-associated gut microbes and dietary patterns. The enterotype-based approach in this study is promising in elucidating the mechanisms of differential gut microbiome profiles, thereby improving the efficacy of personalized microbiota-based solutions.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Łopucki R, Sajnaga E, Kalwasińska A, et al (2024)

Green spaces contribute to structural resilience of the gut microbiota in urban mammals.

Scientific reports, 14(1):15508.

The gut microbiome of wild animals is subject to various environmental influences, including those associated with human-induced alterations to the environment. We investigated how the gut microbiota of a synurbic rodent species, the striped field mouse (Apodemus agrarius), change in cities of varying sizes, seeking the urban microbiota signature for this species. Fecal samples for analysis were collected from animals living in non-urbanized areas and green spaces of different-sized cities (Poland). Metagenomic 16S rRNA gene sequencing and further bioinformatics analyses were conducted. Significant differences in the composition of gut microbiomes among the studied populations were found. However, the observed changes were dependent on local habitat conditions, without strong evidence of a correlation with the size of the urbanized area. The results suggest that ecological detachment from a more natural, non-urban environment does not automatically lead to the development of an "urban microbiome" model in the studied rodent. The exposure to the natural environment in green spaces may serve as a catalyst for microbiome transformations, providing a previously underestimated contribution to the maintenance of native gut microbial communities in urban mammals.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Lee J, Wellenstein K, Rahnavard A, et al (2024)

Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice.

Proceedings of the National Academy of Sciences of the United States of America, 121(28):e2318691121.

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Wu EH, L Qiao (2024)

[Microbial metaproteomics--From sample processing to data acquisition and analysis].

Se pu = Chinese journal of chromatography, 42(7):658-668.

Microorganisms are closely associated with human diseases and health. Understanding the composition and function of microbial communities requires extensive research. Metaproteomics has recently become an important method for throughout and in-depth study of microorganisms. However, major challenges in terms of sample processing, mass spectrometric data acquisition, and data analysis limit the development of metaproteomics owing to the complexity and high heterogeneity of microbial community samples. In metaproteomic analysis, optimizing the preprocessing method for different types of samples and adopting different microbial isolation, enrichment, extraction, and lysis schemes are often necessary. Similar to those for single-species proteomics, the mass spectrometric data acquisition modes for metaproteomics include data-dependent acquisition (DDA) and data-independent acquisition (DIA). DIA can collect comprehensive peptide information from a sample and holds great potential for future development. However, data analysis for DIA is challenged by the complexity of metaproteome samples, which hinders the deeper coverage of metaproteomes. The most important step in data analysis is the construction of a protein sequence database. The size and completeness of the database strongly influence not only the number of identifications, but also analyses at the species and functional levels. The current gold standard for metaproteome database construction is the metagenomic sequencing-based protein sequence database. A public database-filtering method based on an iterative database search has been proven to have strong practical value. The peptide-centric DIA data analysis method is a mainstream data analysis strategy. The development of deep learning and artificial intelligence will greatly promote the accuracy, coverage, and speed of metaproteomic analysis. In terms of downstream bioinformatics analysis, a series of annotation tools that can perform species annotation at the protein, peptide, and gene levels has been developed in recent years to determine the composition of microbial communities. The functional analysis of microbial communities is a unique feature of metaproteomics compared with other omics approaches. Metaproteomics has become an important component of the multi-omics analysis of microbial communities, and has great development potential in terms of depth of coverage, sensitivity of detection, and completeness of data analysis.

RevDate: 2024-07-04
CmpDate: 2024-07-05

Dong Y, Chen WH, XM Zhao (2024)

VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes.

Genome biology, 25(1):177.

Identifying viruses from metagenomes is a common step to explore the virus composition in the human gut. Here, we introduce VirRep, a hybrid language representation learning framework, for identifying viruses from human gut metagenomes. VirRep combines a context-aware encoder and an evolution-aware encoder to improve sequence representation by incorporating k-mer patterns and sequence homologies. Benchmarking on both simulated and real datasets with varying viral proportions demonstrates that VirRep outperforms state-of-the-art methods. When applied to fecal metagenomes from a colorectal cancer cohort, VirRep identifies 39 high-quality viral species associated with the disease, many of which cannot be detected by existing methods.

RevDate: 2024-07-06
CmpDate: 2024-07-04

de Freitas STF, Silva FG, Bessa LA, et al (2024)

Low microbial diversity, yeast prevalence, and nematode-trapping fungal presence in fungal colonization and leaf microbiome of Serjania erecta.

Scientific reports, 14(1):15456.

Medicinal plant microbiomes undergo selection due to secondary metabolite presence. Resident endophytic/epiphytic microorganisms directly influence plant's bioactive compound synthesis. Hypothesizing low microbial diversity in Serjania erecta leaves, we assessed leaf colonization by epiphytic and endophytic fungi. Given its traditional medicinal importance, we estimated diversity in the endophytic fungal microbiome. Analyses included scanning electron microscopy (SEM), isolation of cultivable species, and metagenomics. Epiphytic fungi interacted with S. erecta leaf tissues, horizontally transmitted via stomata/trichome bases, expressing traits for nematode trapping. Cultivable endophytic fungi, known for phytopathogenic habits, didn't induce dysbiosis symptoms. This study confirms low leaf microbiome diversity in S. erecta, with a tendency towards more fungal species, likely due to antibacterial secondary metabolite selection. The classification of Halicephalobus sp. sequence corroborated the presence of nematode eggs on the epidermal surface of S. erecta by SEM. In addition, we confirmed the presence of methanogenic archaea and a considerable number of methanotrophs of the genus Methylobacterium. The metagenomic study of endophytic fungi highlighted plant growth-promoting yeasts, mainly Malassezia, Leucosporidium, Meyerozyma, and Hannaella. Studying endophytic fungi and S. erecta microbiomes can elucidate their impact on beneficial bioactive compound production, on the other hand, it is possible that the bioactive compounds produced by this plant can recruit specific microorganisms, impacting the biological system.

RevDate: 2024-07-04
CmpDate: 2024-07-04

Xing Y, Liu Y, Sha S, et al (2024)

Multikingdom characterization of gut microbiota in patients with rheumatoid arthritis and rheumatoid arthritis-associated interstitial lung disease.

Journal of medical virology, 96(7):e29781.

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.

RevDate: 2024-07-04
CmpDate: 2024-07-04

Mehra P, A Kumar (2024)

Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology.

Cell biochemistry and function, 42(5):e4063.

The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Rosell-Díaz M, Petit-Gay A, Molas-Prat C, et al (2024)

Metformin-induced changes in the gut microbiome and plasma metabolome are associated with cognition in men.

Metabolism: clinical and experimental, 157:155941.

BACKGROUND: An altered gut microbiome characterized by reduced abundance of butyrate producing bacteria and reduced gene richness is associated with type 2 diabetes (T2D). An important complication of T2D is increased risk of cognitive impairment and dementia. The biguanide metformin is a commonly prescribed medication for the control of T2D and metformin treatment has been associated with a significant reduction in the risk of dementia and improved cognition, particularly in people with T2D.

AIM: To investigate the associations of metformin use with cognition exploring potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively.

METHODS: We explored two independent cohorts: an observational study (Aging Imageomics) and a phase IV, randomized, double-blind, parallel-group, randomized pilot study (MEIFLO). From the two studies, we analyzed four study groups: (1) individuals with no documented medical history or medical treatment (n = 172); (2) people with long-term T2D on metformin monotherapy (n = 134); (3) people with long-term T2D treated with oral hypoglycemic agents other than metformin (n = 45); (4) a newly diagnosed T2D subjects on metformin monotherapy (n = 22). Analyses were also performed stratifying by sex.

RESULTS: Several bacterial species belonging to the Proteobacteria (Escherichia coli) and Verrucomicrobia (Akkermansia muciniphila) phyla were positively associated with metformin treatment, while bacterial species belonging to the Firmicutes phylum (Romboutsia timonensis, Romboutsia ilealis) were negatively associated. Due to the consistent increase in A. muciniphila and decrease in R.ilealis in people with T2D subjects treated with metformin, we investigated the association between this ratio and cognition. In the entire cohort of metformin-treated T2D subjects, the A.muciniphila/R.ilealis ratio was not significantly associated with cognitive test scores. However, after stratifying by sex, the A.muciniphila/R. ilealis ratio was significantly and positively associated with higher memory scores and improved memory in men. Metformin treatment was associated with an enrichment of microbial pathways involved in the TCA cycle, and butanoate, arginine, and proline metabolism in both cohorts. The bacterial genes involved in arginine metabolism, especially in production of glutamate (astA, astB, astC, astD, astE, putA), were enriched following metformin intake. In agreement, in the metabolomics analysis, metformin treatment was strongly associated with the amino acid proline, a metabolite involved in the metabolism of glutamate.

CONCLUSIONS: The beneficial effects of metformin may be mediated by changes in the composition of the gut microbiota and microbial-host-derived co-metabolites.

RevDate: 2024-07-06
CmpDate: 2024-07-06

Pourafshar S, Sharma B, Allen J, et al (2024)

Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease.

Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation, 34(4):302-312.

OBJECTIVE: The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD).

DESIGN AND METHODS: We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m[2] or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing.

RESULTS: Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m[2]. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02.

CONCLUSIONS: We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.

RevDate: 2024-07-05
CmpDate: 2024-07-03

Montgomery TL, Wang Q, Mirza A, et al (2024)

Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis.

Scientific reports, 14(1):15292.

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.

RevDate: 2024-07-05
CmpDate: 2024-07-03

Mac Aogáin M, Dicker AJ, Mertsch P, et al (2024)

Infection and the microbiome in bronchiectasis.

European respiratory review : an official journal of the European Respiratory Society, 33(173):.

Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.

RevDate: 2024-07-05
CmpDate: 2024-07-03

Wang Y, Bi S, Li X, et al (2024)

Perturbations in gut microbiota composition in schizophrenia.

PloS one, 19(7):e0306582.

Schizophrenia is a severe, complex and long-term psychiatric disorder with unclear etiology. Gut microbes influence the central nervous system via the gut-brain axis. Consequently, investigations of the relationship between gut microbes and schizophrenia are warranted. This study involved 29 patients with schizophrenia and 30 age-matched normal controls. After 16S rRNA gene sequencing and whole-genome shotgun metagenomic sequencing, we analyzed microbial diversity, composition, and function. According to 16S rRNA and metagenomic gene sequencing results, patients with schizophrenia had higher abundances of Clostridium and Megasphaera. Functional analysis showed that sphingolipid, phosphonates and phosphinates, as well as glutamine metabolism were associated with the occurrence and development of schizophrenia. Our data suggest that the gut microbiota exerts an effect on patients with schizophrenia, providing valuable insights into the potential regulation of in the context of this disorder.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Cao S, Ren X, Zhang G, et al (2024)

Gut microbiota metagenomics and mediation of phenol degradation in Bactrocera minax (Diptera, Tephritidae).

Pest management science, 80(8):3935-3944.

BACKGROUND: Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations.

RESULTS: We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae.

CONCLUSION: In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.

RevDate: 2024-07-05
CmpDate: 2024-07-05

Zou S, Chen Z, Tan Y, et al (2024)

Microbiomes detected by cerebrospinal fluid metagenomic next-generation sequencing among patients with and without HIV with suspected central nervous system infection.

HIV medicine, 25(7):794-804.

BACKGROUND: Opportunistic infections in the central nervous system (CNS) can be a serious threat to people living with HIV. Early aetiological diagnosis and targeted treatment are crucial but difficult. Metagenomic next-generation sequencing (mNGS) has significant advantages over traditional detection methods. However, differences in the cerebrospinal fluid (CSF) microbiome profiles of patients living with and without HIV with suspected CNS infections using mNGS and conventional testing methods have not yet been adequately evaluated.

METHODS: We conducted a retrospective cohort study in the first hospital of Changsha between January 2019 and June 2022 to investigate the microbiomes detected using mNGS of the CSF of patients living with and without HIV with suspected CNS infections. The pathogens causing CNS infections were concurrently identified using both mNGS and traditional detection methods. The spectrum of pathogens identified was compared between the two groups.

RESULTS: Overall, 173 patients (140 with and 33 without HIV) with suspected CNS infection were enrolled in our study. In total, 106 (75.7%) patients with and 16 (48.5%) patients without HIV tested positive with mNGS (p = 0.002). Among the enrolled patients, 71 (50.7%) with HIV and five (15.2%) without HIV tested positive for two or more pathogens (p < 0.001). Patients with HIV had significantly higher proportions of fungus (20.7% vs. 3.0%, p = 0.016) and DNA virus (59.3% vs. 21.2%, p < 0.001) than those without HIV. Epstein-Barr virus (33.6%) was the most commonly identified potential pathogen in the CSF of patients living with HIV using mNGS, followed by cytomegalovirus (20.7%) and torque teno virus (13.8%). The top three causative pathogens identified in patients without HIV were Streptococcus (18.2%), Epstein-Barr virus (12.1%), and Mycobacterium tuberculosis (9.1%). In total, 113 patients living with HIV were diagnosed as having CNS infections. The rate of pathogen detection in people living with HIV with a CNS infection was significantly higher with mNGS than with conventional methods (93.8% vs. 15.0%, p < 0.001).

CONCLUSION: CSF microbiome profiles differ between patients living with and without HIV with suspected CNS infection. mNGS is a powerful tool for the diagnosis of CNS infection among people living with HIV, especially in those with mixed infections.

RevDate: 2024-07-04
CmpDate: 2024-07-03

Bredon M, Danne C, Pham HP, et al (2024)

Faecalibaterium prausnitzii strain EXL01 boosts efficacy of immune checkpoint inhibitors.

Oncoimmunology, 13(1):2374954.

Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). A high level of Faecalibacterium prausnitzii have been associated with a positive response to ICI in multiple cancer types. Here, based on fecal shotgun metagenomics data, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that a high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In MCA205 tumor-bearing mice, administration of F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain did not induce any change in fecal microbiota diversity or composition, suggesting a direct effect on immune cells in the small intestine. F. prausnitzii strain EXL01 will be evaluated as an adjuvant to ICI in multiple cancers in the near future.

RevDate: 2024-07-04
CmpDate: 2024-07-02

Kifle BA, Sime AM, Gemeda MT, et al (2024)

Shotgun metagenomic insights into secondary metabolite biosynthetic gene clusters reveal taxonomic and functional profiles of microbiomes in natural farmland soil.

Scientific reports, 14(1):15096.

Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.

RevDate: 2024-07-02
CmpDate: 2024-07-02

Pan H, Wattiez R, D Gillan (2024)

Soil Metaproteomics for Microbial Community Profiling: Methodologies and Challenges.

Current microbiology, 81(8):257.

Soil represents a complex and dynamic ecosystem, hosting a myriad of microorganisms that coexist and play vital roles in nutrient cycling and organic matter transformation. Among these microorganisms, bacteria and fungi are key members of the microbial community, profoundly influencing the fate of nitrogen, sulfur, and carbon in terrestrial environments. Understanding the intricacies of soil ecosystems and the biological processes orchestrated by microbial communities necessitates a deep dive into their composition and metabolic activities. The advent of next-generation sequencing and 'omics' techniques, such as metagenomics and metaproteomics, has revolutionized our understanding of microbial ecology and the functional dynamics of soil microbial communities. Metagenomics enables the identification of microbial community composition in soil, while metaproteomics sheds light on the current biological functions performed by these communities. However, metaproteomics presents several challenges, both technical and computational. Factors such as the presence of humic acids and variations in extraction methods can influence protein yield, while the absence of high-resolution mass spectrometry and comprehensive protein databases limits the depth of protein identification. Notwithstanding these limitations, metaproteomics remains a potent tool for unraveling the intricate biological processes and functions of soil microbial communities. In this review, we delve into the methodologies and challenges of metaproteomics in soil research, covering aspects such as protein extraction, identification, and bioinformatics analysis. Furthermore, we explore the applications of metaproteomics in soil bioremediation, highlighting its potential in addressing environmental challenges.

RevDate: 2024-07-04
CmpDate: 2024-07-04

Li L, Flores M, Salvador A, et al (2024)

Impact of paprika and dextrose addition on dry cured loins microbiota and its effect on aroma development.

International journal of food microbiology, 421:110782.

The impact of paprika and dextrose addition on the surface of dry cured loins was analysed attending to differences in microbiota composition and aroma profile. Three different types of loins containing either dextrose (D), paprika (P) or a mixture of dextrose and paprika (DP) were manufactured. The loins were characterized using physic-chemical parameters, free amino acids, volatile compounds and aroma sensorial analysis, as well as applying microbiological counts and metagenomics of the 16S rRNA gene and its rDNA region. The analysis of volatile compounds clearly distinguished all loins, whereas the total content of free amino acids only separated P from D and DP loins. The main sensory differences were linked to paprika addition, which increased the perception of paprika and smoky odors as well as cured, savoury and cheesy notes. Microbial counts analysis could not differentiate between the three loin types; however, metagenomics analysis revealed clear differences in key bacterial and fungal genera among the three loins. Paprika addition favoured dominance of Latilactobacillus in the microbiota of P loins. On the contrary, dextrose addition caused the dominance of Staphylococcus in the microbiota of D loins. In DP loins, both genera were similarly represented in the bacterial community. Regarding fungi, large differences could be observed within the P and D loins, whereas the proportion of Debaryomyces in DP loins increased. The microbiota composition of DP loins controlled the lipid oxidation phenomenon, reducing the generation of derived volatiles producing rancid notes and increase the volatile compounds derived from amino acids such as branched aldehydes, pyrazines and pyrroles, providing particular aroma notes to the loins.

RevDate: 2024-07-04
CmpDate: 2024-07-04

Hirsch P, Molano LG, Engel A, et al (2024)

Mibianto: ultra-efficient online microbiome analysis through k-mer based metagenomics.

Nucleic acids research, 52(W1):W407-W414.

Quantifying microbiome species and composition from metagenomic assays is often challenging due to its time-consuming nature and computational complexity. In Bioinformatics, k-mer-based approaches were long established to expedite the analysis of large sequencing data and are now widely used to annotate metagenomic data. We make use of k-mer counting techniques for efficient and accurate compositional analysis of microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing or complete data exchange. It handles diverse sequencing platforms, including short single-end, paired-end, and long read technologies. Our sketch-based workflow significantly reduces the data volume transferred from the user to the server (up to 99.59% size reduction) to subsequently perform taxonomic profiling with enhanced efficiency and privacy. Mibianto offers functionality beyond k-mer quantification; it supports advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standardization of computational workflows, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic studies. Mibianto is freely available without the need for a login at: https://www.ccb.uni-saarland.de/mibianto.

RevDate: 2024-07-03
CmpDate: 2024-07-02

Koci O, Russell RK, Shaikh MG, et al (2024)

CViewer: a Java-based statistical framework for integration of shotgun metagenomics with other omics datasets.

Microbiome, 12(1):117.

BACKGROUND: Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration.

RESULTS: In this study, we have developed a Java-based statistical framework (https://github.com/KociOrges/cviewer) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships.

CONCLUSIONS: CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.

RevDate: 2024-07-03
CmpDate: 2024-07-02

Qiu H, Kan C, Han F, et al (2024)

Metagenomic and metabolomic analysis showing the adverse risk-benefit trade-off of the ketogenic diet.

Lipids in health and disease, 23(1):207.

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity.

METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents.

RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity.

CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.

RevDate: 2024-07-03
CmpDate: 2024-07-02

Li W, Cheng L, He X, et al (2024)

Gut fungi of black-necked cranes (Grus nigricollis) respond to dietary changes during wintering.

BMC microbiology, 24(1):232.

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis).

RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal.

CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.

RevDate: 2024-07-02
CmpDate: 2024-07-01

Kallapura G, Prakash AS, Sankaran K, et al (2024)

Microbiota based personalized nutrition improves hyperglycaemia and hypertension parameters and reduces inflammation: a prospective, open label, controlled, randomized, comparative, proof of concept study.

PeerJ, 12:e17583.

BACKGROUND: Recent studies suggest that gut microbiota composition, abundance and diversity can influence many chronic diseases such as type 2 diabetes. Modulating gut microbiota through targeted nutrition can provide beneficial effects leading to the concept of personalized nutrition for health improvement. In this prospective clinical trial, we evaluated the impact of a microbiome-based targeted personalized diet on hyperglycaemic and hyperlipidaemic individuals. Specifically, BugSpeaks[®]-a microbiome profile test that profiles microbiota using next generation sequencing and provides personalized nutritional recommendation based on the individual microbiota profile was evaluated.

METHODS: A total of 30 participants with type 2 diabetes and hyperlipidaemia were recruited for this study. The microbiome profile of the 15 participants (test arm) was evaluated using whole genome shotgun metagenomics and personalized nutritional recommendations based on their microbiota profile were provided. The remaining 15 participants (control arm) were provided with diabetic nutritional guidance for 3 months. Clinical and anthropometric parameters such as HbA1c, systolic/diastolic pressure, c-reactive protein levels and microbiota composition were measured and compared during the study.

RESULTS: The test arm (microbiome-based nutrition) showed a statistically significant decrease in HbA1c level from 8.30 (95% confidence interval (CI), [7.74-8.85]) to 6.67 (95% CI [6.2-7.05]), p < 0.001 after 90 days. The test arm also showed a 5% decline in the systolic pressure whereas the control arm showed a 7% increase. Incidentally, a sub-cohort of the test arm of patients with >130 mm Hg systolic pressure showed a statistically significant decrease of systolic pressure by 14%. Interestingly, CRP level was also found to drop by 19.5%. Alpha diversity measures showed a significant increase in Shannon diversity measure (p < 0.05), after the microbiome-based personalized dietary intervention. The intervention led to a minimum two-fold (Log2 fold change increase in species like Phascolarctobacterium succinatutens, Bifidobacterium angulatum, and Levilactobacillus brevis which might have a beneficial role in the current context and a similar decrease in species like Alistipes finegoldii, and Sutterella faecalis which have been earlier shown to have some negative effects in the host. Overall, the study indicated a net positive impact of the microbiota based personalized dietary regime on the gut microbiome and correlated clinical parameters.

RevDate: 2024-07-03
CmpDate: 2024-07-03

du Preez LL, van der Walt E, Valverde A, et al (2024)

A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana).

Animal genetics, 55(4):621-643.

The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.

RevDate: 2024-07-03
CmpDate: 2024-07-03

Nasseri SA, Lazarski AC, Lemmer IL, et al (2024)

An alternative broad-specificity pathway for glycan breakdown in bacteria.

Nature, 631(8019):199-206.

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms[1] to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities[2]. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and β stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.

RevDate: 2024-07-03
CmpDate: 2024-07-03

Tierney BT, Kim J, Overbey EG, et al (2024)

Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight.

Nature microbiology, 9(7):1661-1675.

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals. Using paired metagenomics and metatranscriptomics alongside single-nuclei immune cell profiling, we characterized time-dependent, multikingdom microbiome changes across 750 samples and 10 body sites before, during and after spaceflight at eight timepoints. We found that most alterations were transient across body sites; for example, viruses increased in skin sites mostly during flight. However, longer-term shifts were observed in the oral microbiome, including increased plaque-associated bacteria (for example, Fusobacteriota), which correlated with immune cell gene expression. Further, microbial genes associated with phage activity, toxin-antitoxin systems and stress response were enriched across multiple body sites. In total, this study reveals in-depth characterization of microbiome and immune response shifts experienced by astronauts during short-term spaceflight and the associated changes to the living environment, which can help guide future missions, spacecraft design and space habitat planning.

RevDate: 2024-07-03
CmpDate: 2024-07-03

Liu Y, Fachrul M, Inouye M, et al (2024)

Harnessing human microbiomes for disease prediction.

Trends in microbiology, 32(7):707-719.

The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.

RevDate: 2024-07-02
CmpDate: 2024-07-01

Li Y, Qi X, Wang Q, et al (2024)

Comprehensive analysis of key host gene-microbe networks in the cecum tissues of the obese rabbits induced by a high-fat diet.

Frontiers in cellular and infection microbiology, 14:1407051.

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.