picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
25 Sep 2020 at 01:30
HITS:
3812
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 25 Sep 2020 at 01:30 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2020-09-24
CmpDate: 2020-09-24

Wolfe AE, Moskowitz JE, Franklin CL, et al (2020)

Interactions of Segmented Filamentous Bacteria (Candidatus Savagella) and bacterial drivers in colitis-associated colorectal cancer development.

PloS one, 15(7):e0236595.

Colorectal cancer (CRC) risk is influenced by host genetics, sex, and the gut microbiota. Using a genetically susceptible mouse model of CRC induced via inoculation with pathobiont Helicobacter spp. and demonstrating variable tumor incidence, we tested the ability of the Th17-enhancing commensal Candidatus Savagella, more commonly denoted as Segmented Filamentous Bacteria (SFB), to influence the incidence and severity of colitis-associated CRC in male and female mice. To document the composition of the gut microbiota during CRC development and identify taxa associated with disease, fecal samples were collected before and throughout disease development and characterized via 16S rRNA sequencing. While there were no significant SFB-dependent effects on disease incidence or severity, SFB was found to exert a sex-dependent protective effect in male mice. Furthermore, SFB stabilized the GM against Helicobacter-induced changes post-inoculation, resulting in a shift in disease association from Helicobacter spp. to Escherichia coli. These data support sex-dependent SFB-mediated effects on CRC risk, and highlight the complex community dynamics within the GM during exposure to inflammatory pathobionts.

RevDate: 2020-09-22
CmpDate: 2020-09-22

Jo J, Oh J, C Park (2020)

Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists.

Journal of microbiology (Seoul, Korea), 58(3):176-192.

Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted ("shotgun") sequencing of all ("meta") microbial genomes ("genomic") present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.

RevDate: 2020-09-21
CmpDate: 2020-09-21

Flannery JE, Stagaman K, Burns AR, et al (2020)

Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior.

mBio, 11(1):.

Psychosocial environments impact normative behavioral development in children, increasing the risk of problem behaviors and psychiatric disorders across the life span. Converging evidence demonstrates that early normative development is affected by the gut microbiome, which itself can be altered by early psychosocial environments. However, much of our understanding of the gut microbiome's role in early development stems from nonhuman animal models and predominately focuses on the first years of life, during peri- and postnatal microbial colonization. As a first step to identify if these findings translate to humans and the extent to which these relationships are maintained after initial microbial colonization, we conducted a metagenomic investigation among a cross-sectional sample of early school-aged children with a range of adverse experiences and caregiver stressors and relationships. Our results indicate that the taxonomic and functional composition of the gut microbiome correlates with behavior during a critical period of child development. Furthermore, our analysis reveals that both socioeconomic risk exposure and child behaviors associate with the relative abundances of specific taxa (e.g., Bacteroides and Bifidobacterium species) as well as functional modules encoded in their genomes (e.g., monoamine metabolism) that have been linked to cognition and health. While we cannot infer causality within this study, these findings suggest that caregivers may moderate the gut microbiome's link to environment and behaviors beyond the first few years of life.IMPORTANCE Childhood is a formative period of behavioral and biological development that can be modified, for better or worse, by the psychosocial environment that is in part determined by caregivers. Not only do our own genes and the external environment influence such developmental trajectories, but the community of microbes living in, on, and around our bodies-the microbiome-plays an important role as well. By surveying the gut microbiomes of a cross-sectional cohort of early school-aged children with a range of psychosocial environments and subclinical mental health symptoms, we demonstrated that caregiving behaviors modified the child gut microbiome's association to socioeconomic risk and behavioral dysregulation.

RevDate: 2020-09-21
CmpDate: 2020-09-21

Carini P, Delgado-Baquerizo M, Hinckley ES, et al (2020)

Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities.

mBio, 11(1):.

Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.

RevDate: 2020-09-21
CmpDate: 2020-09-21

Zhang Y, Zhao R, Shi D, et al (2019)

Characterization of the circulating microbiome in acute-on-chronic liver failure associated with hepatitis B.

Liver international : official journal of the International Association for the Study of the Liver, 39(7):1207-1216.

BACKGROUND: Patients with hepatitis B-related acute-on-chronic liver failure (HB-ACLF) may have an increased circulating microbial burden. This study aimed to assess circulating microbial load and composition and to explore the association between the circulating microbiome and both systemic inflammation (SI) and clinical outcome in HB-ACLF.

METHODS: Plasma from 50 HB-ACLF patients, 23 healthy controls and 25 patients with compensated liver cirrhosis (C-LC) was analysed for chemokines/cytokines and bacterial DNA and further analysed by 16S rDNApyrosequencing. Linear discriminant analysis effect size (LEfSe) and inferred metagenomics analyses were performed.

RESULTS: The circulating bacterial DNA was significantly increased in HB-ACLF patients compared to that in the control groups. The overall microbial diversity was significantly decreased in HB-ACLF patients. HB-ACLF patients were enriched with Moraxellaceae, Sulfurovum, Comamonas and Burkholderiaceae but were depleted in Actinobacteria, Deinococcus-Thermus, Alphaproteobacteria, Xanthomonadaceae and Enterobacteriaceae compared to controls. Network analysis revealed a direct positive correlation between Burkholderiaceae and chemokine IP-10 in HB-ACLF patients. The relative abundance of Prevotellaceae independently predicted 28-day mortality. Inferred functional metagenomics predicted an enrichment of bacteria with genes related to methane, alanine, aspartate, glutamate, pyrimidine, purine and energy metabolism.

CONCLUSIONS: HB-ACLF patients display increased circulating microbial burden, altered microbiome composition and a shift in microbiome functionality. The alteration in circulating microbiota is associated with SI and clinical outcome in HB-ACLF.

RevDate: 2020-09-21
CmpDate: 2020-09-21

Liu Y, Zheng Z, Yu L, et al (2019)

Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments.

Scientific reports, 9(1):3453.

Intestinal microbiota plays a crucial role in immune development and disease progression in mammals from birth onwards. The gastrointestinal tract of newborn mammals is rapidly colonized by microbes with tremendous biomass and diversity. Understanding how this complex of segmental communities evolves in different gastrointestinal sites over time has great biological significance and medical implications. However, most previous reports examining intestinal microbiota have focused on fecal samples, a strategy that overlooks the spatial microbial dynamics in different intestinal segments. Using intestinal digesta from six intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of newborn piglets, we herein conducted a large-scale 16S rRNA gene sequencing-based study to characterize the segmental dynamics of porcine gut microbiota at eight postnatal intervals (days 1, 7, 14, 21, 28, 35, 120 and 180). A total of 4,465 OTUs were obtained and showed that the six intestinal segments could be divided into three parts; in the duodenum-jejunum section, the most abundant genera included Lactobacillus and Bacteroides; in the ileum, Fusobacterium and Escherichia; and in the cecum-rectum section, Prevotella. Although the microbial communities of the piglets were similar among the six intestinal segments on postnatal day 1, they evolved and quickly differentiated at later intervals. An examination of time-dependent alterations in the dominant microbes revealed that the microbiome in the large intestine was very different from and much more stable than that in the small intestine. The gut microbiota in newborn piglets exhibited apparent temporal and spatial variations in different intestinal segments. The database of gut microbes in piglets could be a referable resource for future studies on mammalian gut microbiome development in early host growth phases.

RevDate: 2020-09-19

Hemmat-Jou MH, Safari-Sinegani AA, Che R, et al (2020)

Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil.

Environmental science and pollution research international pii:10.1007/s11356-020-10824-x [Epub ahead of print].

This study aimed to identify the microbial communities, resistance genes, and resistance systems in an Iranian mine soil polluted with toxic trace elements (TTE). The polluted soil samples were collected from a mining area and compared against non-polluted (control) collected soils from the vicinity of the mine. The soil total DNA was extracted and sequenced, and bioinformatic analysis of the assembled metagenomes was conducted to identify soil microbial biodiversity, TTE resistance genes, and resistance systems. The results of the employed shotgun approach indicated that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus was significantly higher in the TTE-polluted soils compared with those in the control soils, while the relative abundance of Actinobacteria and Acidobacteria was significantly lower in the polluted soils. The high concentration of TTE increased the ratio of archaea to bacteria and decreased the alpha diversity in the polluted soils compared with the control soils. Canonical correspondence analysis (CCA) demonstrated that heavy metal pollution was the major driving factor in shaping microbial communities compared with any other soil characteristics. In the identified heavy metal resistome (HV-resistome) of TTE-polluted soils, major functional pathways were carbohydrates metabolism, stress response, amino acid and derivative metabolism, clustering-based subsystems, iron acquisition and metabolism, cell wall synthesis and capsulation, and membrane transportation. Ten TTE resistance systems were identified in the HV-resistome of TTE-polluted soils, dominated by "P-type ATPases," "cation diffusion facilitators," and "heavy metal efflux-resistance nodulation cell division (HME-RND)." Most of the resistance genes (69%) involved in resistance systems are affiliated to cell wall, outer membrane, periplasm, and cytoplasmic membrane. The finding of this study provides insight into the microbial community in Iranian TTE-polluted soils and their resistance genes and systems.

RevDate: 2020-09-19

Milani C, Alessandri G, Mancabelli L, et al (2020)

Deciphering the impact of diet and host physiology on the mammalian gut microbiome by multi-omics approaches.

Applied and environmental microbiology pii:AEM.01864-20 [Epub ahead of print].

In recent years various studies have demonstrated that the gut microbiota influences host metabolism. However, these studies were primarily focused on a single or a limited range of host species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut microbiota members as a result of host-microbe co-evolution events. In the current study, the microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of the fecal microbiomes of 24 mammals and subsequent statistical analyses were performed to assess the impact of host diet and corresponding physiology of the digestive system on gut microbiota composition and functionality. Functional data was confirmed and extended through metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the analyses performed in this study support the notion that the metabolic features of the mammalian gut microbiota have adopted to maximize energy extraction from the host's diet.ImportanceDiet and host physiology have been recognized as main factors affecting both taxonomic composition and functional features of the mammalian gut microbiota. However, very few studies have investigated the bacterial biodiversity of mammals involving large sample numbers that correspond to multiple mammalian species, thus resulting in an incomplete understanding of the functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in order to assess how diet and host physiology impacts on the intestinal microbial community by selecting specific microbial players. Conversely, the application of shotgun metagenomics and metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on both metabolic features and transcriptional responses of the intestinal bacterial community based on different diets.

RevDate: 2020-09-18
CmpDate: 2020-09-18

Frankel-Bricker J, Buerki S, Feris KP, et al (2020)

Influences of a Prolific Gut Fungus (Zancudomyces culisetae) on Larval and Adult Mosquito (Aedes aegypti)-Associated Microbiota.

Applied and environmental microbiology, 86(3):.

Adult mosquitoes inherit a bacterial community from larvae via transstadial transmission, an understudied process that may influence host-microbe interactions. Microbes contribute to important host life history traits, and analyzing transmitted microbial communities, the interrelationship between larval and adult-associated microbiota, and factors influencing host-microbe relationships provides targets for research. During its larval stage, the yellow fever mosquito (Aedes aegypti) hosts the trichomycete gut fungus Zancudomyces culisetae, and fungal colonization coincides with environmental perturbations in the digestive tract microecosystem. Natural populations are differentially exposed to fungi, thereby potentially harboring distinct microbiota and experiencing disparate host-microbe interactions. This study's objectives were to characterize larval and initial adult microbiomes, investigate variation in diversity and distribution of microbial communities across individuals, and assess whether larval fungal colonization impacted microbiomes at these developmental stages. Laboratory-based fungal infestation assays, sequencing of 16S rRNA gene amplicons, and bacterial load quantification protocols revealed that initial adult microbiomes varied in diversity and distribution. Larval fungal colonization had downstream effects on initial adult microbiomes, significantly reducing microbial community variation, shifting relative abundances of certain bacterial families, and influencing transstadial transmission outcomes of particular genera. Further, abundances of several families consistently decreased in adults relative to levels in larvae, possibly reflecting impacts of host development on specific bacterial taxa. These findings demonstrated that a prolific gut fungus impacted mosquito-associated microbiota at two developmental stages in an insect connected with global human health.IMPORTANCE Mosquitoes are widespread vectors of numerous human pathogens and harbor microbiota known to affect host phenotypic traits. However, little research has directly investigated how bacterial communities associated with larvae and adults are connected. We characterized whole-body bacterial communities in mosquito larvae preceding pupation and in newly emerged adults, and investigated whether a significant biotic factor, fungal colonization of the larval hindgut, impacted these microbiomes. Results showed that fungal colonization reduced microbial community variation across individuals and differentially impacted the outcomes of transstadial transmission for certain bacterial genera, revealing downstream effects of the fungus on initial adult microbiomes. The importance of our research is in providing a thorough comparative analysis of whole-body microbiota harbored in larvae and adults of the yellow fever mosquito (Aedes aegypti) and in demonstrating the important role a widespread gut fungus played in a host-associated microbiome.

RevDate: 2020-09-18
CmpDate: 2020-09-18

Guirro M, Herrero P, Costa A, et al (2019)

Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity.

Journal of proteomics, 209:103489.

Metaproteomics has emerged as a new, revolutionary approach to study gut microbiota functionality, but the lack of consistent studies in this field due to the great complexity of samples has prompted to search new strategies to achieve better metaproteome characterization. Some steps in sample preparation and data analysis procedures are critical for obtaining accurate results, therefore protein extraction buffers, digestion procedures and fractionation steps were tested here. Initially, two lysis buffers were used to improve protein extraction, two common digestion protocols were compared, and fractionation processes were employed at both the peptide and protein levels. The combination of these procedures resulted in five different methodologies; SDS buffer, in-gel digestion and fractionation at the peptide level provided the best results. Finally, the metaproteomics workflow was tested in a real case study with obese rats, in which a metagenomics study was previously performed. Important differences in protein levels were observed between groups that were potentially related to the taxonomical family, indicating that functional processes are modulated by the microbiota. Therefore, in addition to the necessity of combining different metaomics approaches, an optimized metaproteomics workflow such as the presented in this study is required to obtain a better understanding of the microbiota function. SIGNIFICANCE: Gut microbiota has emerged as an important factor with affects the health balance in host. To study its function new methodologies are necessary and the most appropriate one seems to be metaproteomics. The lack of studies in this field requires a deeply research in the most accurate workflow to better comprehend such complex samples. In this paper, five different methodologies have been compared, mainly in the most critical steps in classical proteomics and the methodology chosen was validated in a real case study in obese animals.

RevDate: 2020-09-17
CmpDate: 2020-09-17

Liu Y, Bible PW, Zou B, et al (2020)

CSMD: a computational subtraction-based microbiome discovery pipeline for species-level characterization of clinical metagenomic samples.

Bioinformatics (Oxford, England), 36(5):1577-1583.

MOTIVATION: Microbiome analyses of clinical samples with low microbial biomass are challenging because of the very small quantities of microbial DNA relative to the human host, ubiquitous contaminating DNA in sequencing experiments and the large and rapidly growing microbial reference databases.

RESULTS: We present computational subtraction-based microbiome discovery (CSMD), a bioinformatics pipeline specifically developed to generate accurate species-level microbiome profiles for clinical samples with low microbial loads. CSMD applies strategies for the maximal elimination of host sequences with minimal loss of microbial signal and effectively detects microorganisms present in the sample with minimal false positives using a stepwise convergent solution. CSMD was benchmarked in a comparative evaluation with other classic tools on previously published well-characterized datasets. It showed higher sensitivity and specificity in host sequence removal and higher specificity in microbial identification, which led to more accurate abundance estimation. All these features are integrated into a free and easy-to-use tool. Additionally, CSMD applied to cell-free plasma DNA showed that microbial diversity within these samples is substantially broader than previously believed.

CSMD is freely available at https://github.com/liuyu8721/csmd.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2020-09-17
CmpDate: 2020-09-17

Breitwieser FP, SL Salzberg (2020)

Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification.

Bioinformatics (Oxford, England), 36(4):1303-1304.

SUMMARY: Pavian is a web application for exploring classification results from metagenomics experiments. With Pavian, researchers can analyze, visualize and transform results from various classifiers-such as Kraken, Centrifuge and MethaPhlAn-using interactive data tables, heatmaps and Sankey flow diagrams. An interactive alignment coverage viewer can help in the validation of matches to a particular genome, which can be crucial when using metagenomics experiments for pathogen detection.

Pavian is implemented in the R language as a modular Shiny web app and is freely available under GPL-3 from http://github.com/fbreitwieser/pavian.

RevDate: 2020-09-17
CmpDate: 2020-09-17

McDonnell K, Waters N, Howley E, et al (2020)

Chordomics: a visualization tool for linking function to phylogeny in microbiomes.

Bioinformatics (Oxford, England), 36(4):1309-1310.

SUMMARY: The overarching aim of microbiome analysis is to uncover the links between microbial phylogeny and function in order to access ecosystem functioning. This can be done using several experimental strategies targeting different biomolecules, including DNA (metagenomics), RNA (metatranscriptomics) and proteins (metaproteomics). Despite the importance of linking microbial function to phylogeny there are currently no visualization tools that effectively integrate this information. Chordomics is a Shiny-based application for linked -omics data analysis, allowing users to visualize microbial function and phylogeny on a single plot and compare datasets across time and environments.

Chordomics is available on GitHub: https://github.com/kevinmcdonnell6/chordomics; software is coded in R and JavaScript and a demonstration version is available at https://kmcd.shinyapps.io/ChordomicsDemo/.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2020-09-17
CmpDate: 2020-09-17

Michels N (2019)

Biological underpinnings from psychosocial stress towards appetite and obesity during youth: research implications towards metagenomics, epigenomics and metabolomics.

Nutrition research reviews, 32(2):282-293.

Psychosocial stress, uncontrolled eating and obesity are three interrelated epidemiological phenomena already present during youth. This broad narrative conceptual review summarises main biological underpinnings of the stress-diet-obesity pathway and how new techniques can further knowledge. Cortisol seems the main biological factor from stress towards central adiposity; and diet, physical activity and sleep are the main behavioural pathways. Within stress-diet, the concepts of comfort food and emotional eating are highlighted, as cortisol affects reward pathways and appetite brain centres with a role for insulin, leptin, neuropeptide Y (NPY), endocannabinoids, orexin and gastrointestinal hormones. More recently researched biological underpinnings are microbiota, epigenetic modifications and metabolites. First, the gut microbiota reaches the stress-regulating and appetite-regulating brain centres via the gut-brain axis. Second, epigenetic analyses are recommended as diet, obesity, stress and gut microbiota can change gene expression which then affects appetite, energy homeostasis and stress reactivity. Finally, metabolomics would be a good technique to disentangle stress-diet-obesity interactions as multiple biological pathways are involved. Saliva might be an ideal biological matrix as it allows metagenomic (oral microbiota), epigenomic and metabolomic analyses. In conclusion, stress and diet/obesity research should be combined in interdisciplinary collaborations with implementation of several -omics analyses.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Vancuren SJ, Dos Santos SJ, Hill JE, et al (2020)

Evaluation of variant calling for cpn60 barcode sequence-based microbiome profiling.

PloS one, 15(7):e0235682.

Amplification and sequencing of conserved genetic barcodes such as the cpn60 gene is a common approach to determining the taxonomic composition of microbiomes. Exact sequence variant calling has been proposed as an alternative to previously established methods for aggregation of sequence reads into operational taxonomic units (OTU). We investigated the utility of variant calling for cpn60 barcode sequences and determined the minimum sequence length required to provide species-level resolution. Sequence data from the 5´ region of the cpn60 barcode amplified from the human vaginal microbiome (n = 45), and a mock community were used to compare variant calling to de novo assembly of reads, and mapping to a reference sequence database in terms of number of OTU formed, and overall community composition. Variant calling resulted in microbiome profiles that were consistent in apparent composition to those generated with the other methods but with significant logistical advantages. Variant calling is rapid, achieves high resolution of taxa, and does not require reference sequence data. Our results further demonstrate that 150 bp from the 5´ end of the cpn60 barcode sequence is sufficient to provide species-level resolution of microbiota.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Santos-Cortez RLP, Bhutta MF, Earl JP, et al (2020)

Panel 3: Genomics, precision medicine and targeted therapies.

International journal of pediatric otorhinolaryngology, 130 Suppl 1:109835.

OBJECTIVE: To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media.

DATA SOURCES: PubMed articles published since the last meeting in June 2015 up to June 2019.

REVIEW METHODS: A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members.

CONCLUSION: Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media.

IMPLICATIONS FOR PRACTICE: In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Chevrette MG, J Handelsman (2020)

From Metagenomes to Molecules: Innovations in Functional Metagenomics Unlock Hidden Chemistry in the Human Microbiome.

Biochemistry, 59(6):729-730.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Marsh RL, Aho C, Beissbarth J, et al (2020)

Panel 4: Recent advances in understanding the natural history of the otitis media microbiome and its response to environmental pressures.

International journal of pediatric otorhinolaryngology, 130 Suppl 1:109836.

OBJECTIVE: To perform a comprehensive review of otitis media microbiome literature published between 1st July 2015 and 30th June 2019.

DATA SOURCES: PubMed database, National Library of Medicine.

REVIEW METHODS: Key topics were assigned to each panel member for detailed review. Draft reviews were collated and circulated for discussion when the panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019. The final draft was prepared with input from all panel members.

CONCLUSIONS: Much has been learned about the different types of bacteria (including commensals) present in the upper respiratory microbiome, but little is known about the virome and mycobiome. A small number of studies have investigated the middle ear microbiome; however, current data are often limited by small sample sizes and methodological heterogeneity between studies. Furthermore, limited reporting of sample collection methods mean that it is often difficult to determine whether bacteria detected in middle ear fluid specimens originated from the middle ear or the external auditory canal. Recent in vitro studies suggest that bacterial interactions in the nasal/nasopharyngeal microbiome may affect otitis media pathogenesis by modifying otopathogen behaviours. Impacts of environmental pressures (e.g. smoke, nutrition) and clinical interventions (e.g. vaccination, antibiotics) on the upper respiratory and middle ear microbiomes remain poorly understood as there are few data.

IMPLICATIONS FOR PRACTICE: Advances in understanding bacterial dynamics in the upper airway microbiome are driving development of microbiota-modifying therapies to prevent or treat disease (e.g. probiotics). Further advances in otitis media microbiomics will likely require technological improvements that overcome the current limitations of OMICs technologies when applied to low volume and low biomass specimens that potentially contain high numbers of host cells. Improved laboratory models are needed to elucidate mechanistic interactions among the upper respiratory and middle ear microbiomes. Minimum reporting standards are critically needed to improve inter-study comparisons and enable future meta-analyses.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Hertel J, Harms AC, Heinken A, et al (2019)

Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson's Disease.

Cell reports, 29(7):1767-1777.e8.

Parkinson's disease (PD) exhibits systemic effects on the human metabolism, with emerging roles for the gut microbiome. Here, we integrate longitudinal metabolome data from 30 drug-naive, de novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naive PD cohort, and prospective data from the general population. Our key results are (1) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls; (2) dopaminergic medication showed strong lipidomic signatures; (3) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with PD incidence in the general population; and (4) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, which is consistent with the changed metabolome. The multi-omics integration reveals PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Sommers P, Fontenele RS, Kringen T, et al (2019)

Single-Stranded DNA Viruses in Antarctic Cryoconite Holes.

Viruses, 11(11):.

Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics. Half of the assembled metagenomes cluster with those in the viral family Microviridae (n = 7), and the rest with unclassified circular replication associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses (n = 7). An additional 18 virus-like circular molecules encoding either a Rep, a capsid protein gene, or other unidentified but viral-like open reading frames were identified. The samples from which the genomes were identified show a strong gradient in microbial diversity and abundances, and the number of viral genomes detected in each sample mirror that gradient. Additionally, one of the CRESS genomes assembled here shares ~90% genome-wide pairwise identity with a virus identified from a freshwater pond on the McMurdo Ice Shelf (Antarctica). Otherwise, the similarity of these viruses to those previously identified is relatively low. Together, these patterns are consistent with the presence of a unique regional virome present in fresh water host populations of the McMurdo Dry Valley region.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Kim KJ, Park J, Park SC, et al (2020)

Phylogenetic tree-based microbiome association test.

Bioinformatics (Oxford, England), 36(4):1000-1006.

MOTIVATION: Ecological patterns of the human microbiota exhibit high inter-subject variation, with few operational taxonomic units (OTUs) shared across individuals. To overcome these issues, non-parametric approaches, such as the Mann-Whitney U-test and Wilcoxon rank-sum test, have often been used to identify OTUs associated with host diseases. However, these approaches only use the ranks of observed relative abundances, leading to information loss, and are associated with high false-negative rates. In this study, we propose a phylogenetic tree-based microbiome association test (TMAT) to analyze the associations between microbiome OTU abundances and disease phenotypes. Phylogenetic trees illustrate patterns of similarity among different OTUs, and TMAT provides an efficient method for utilizing such information for association analyses. The proposed TMAT provides test statistics for each node, which are combined to identify mutations associated with host diseases.

RESULTS: Power estimates of TMAT were compared with existing methods using extensive simulations based on real absolute abundances. Simulation studies showed that TMAT preserves the nominal type-1 error rate, and estimates of its statistical power generally outperformed existing methods in the considered scenarios. Furthermore, TMAT can be used to detect phylogenetic mutations associated with host diseases, providing more in-depth insight into bacterial pathology.

The 16S rRNA amplicon sequencing metagenomics datasets for colorectal carcinoma and myalgic encephalomyelitis/chronic fatigue syndrome are available from the European Nucleotide Archive (ENA) database under project accession number PRJEB6070 and PRJEB13092, respectively. TMAT was implemented in the R package. Detailed information is available at http://healthstat.snu.ac.kr/software/tmat.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Trachsel J, Briggs C, Gabler NK, et al (2019)

Dietary Resistant Potato Starch Alters Intestinal Microbial Communities and Their Metabolites, and Markers of Immune Regulation and Barrier Function in Swine.

Frontiers in immunology, 10:1381.

Interactions between diet, the microbiota, and the host set the ecological conditions in the gut and have broad implications for health. Prebiotics are dietary compounds that may shift conditions toward health by promoting the growth of beneficial microbes that produce metabolites capable of modulating host cells. This study's objective was to assess how a dietary prebiotic could impact host tissues via modulation of the intestinal microbiota. Pigs fed a diet amended with 5% resistant potato starch (RPS) exhibited alterations associated with gut health relative to swine fed an unamended control diet (CON). RPS intake increased abundances of anaerobic Clostridia in feces and several tissues, as well as intestinal concentrations of butyrate. Functional gene amplicons suggested bacteria similar to Anaerostipes hadrus were stimulated by RPS intake. The CON treatment exhibited increased abundances of several genera of Proteobacteria (which utilize respiratory metabolisms) in several intestinal locations. RPS intake increased the abundance of regulatory T cells in the cecum, but not periphery, and cecal immune status alterations were indicative of enhanced mucosal defenses. A network analysis of host and microbial changes in the cecum revealed that regulatory T cells positively correlated with butyrate concentration, luminal IgA concentration, expression of IL-6 and DEF1B, and several mucosa-associated bacterial taxa. Thus, the administration of RPS modulated the microbiota and host immune status, altering markers of cecal barrier function and immunological tolerance, and suggesting a reduced niche for bacterial respiration.

RevDate: 2020-09-14
CmpDate: 2020-09-14

Gupta P, Vakhlu J, Sharma YP, et al (2020)

Metagenomic insights into the fungal assemblages of the northwest Himalayan cold desert.

Extremophiles : life under extreme conditions, 24(5):749-758.

Psychrophilic fungi are a critical biotic component in cold deserts that serves a central role in nutrient recycling and biogeochemical cycles. Despite their ecological significance, culture-independent studies on psychrophilic mycobiome are limited. In the present study, the fungal diversity patterns across the Drass, an Indian cold desert in the Himalaya, were indexed by targeted amplicon pyrosequencing (ITS). In the Drass dataset, Ascomycota was represented by 92 genera, while 22 genera represented Basidiomycota. The most abundant genus was Conocybe (20.46%). Most of the identified genera were reported in the literature to be prolific extracellular hydrolytic enzyme producers. To identify whether the Drass fungal assemblages share similarities to other cold deserts, these were further compared to Antarctic and Arctic cold deserts. Comparative analysis across the three cold deserts indicated the dominance of Dikarya (Ascomycota and Basidiomycota). The observed alpha diversity, Shannon index as well as Pielou's evenness was highest in the Antarctic followed by Drass and Arctic datasets. The genera Malassezia, Preussia, Pseudogymnoascus, Cadophora, Geopora, Monodictys, Tetracladium, Titaea, Mortierella, and Cladosporium were common to all the cold deserts. Furthermore, Conocybe was represented predominantly in Drass. Interestingly, the genus Conocybe has not been previously reported from any other studies on Antarctic or Arctic biomes. To the best of our knowledge, this is the first fungal metagenome study in Drass soil. Our analysis shows that despite the similarities of low temperature among the cold deserts, a significant differential abundance of fungal communities prevails in the global cold deserts.

RevDate: 2020-09-14
CmpDate: 2020-09-14

Deaton J, Yu FB, SR Quake (2019)

Mini-Metagenomics and Nucleotide Composition Aid the Identification and Host Association of Novel Bacteriophage Sequences.

Advanced biosystems, 3(11):e1900108.

A broad spectrum of metagenomic and single cell sequencing techniques have become popular for dissecting environmental microbial diversity, leading to the characterization of thousands of novel microbial lineages. In addition to recovering bacterial and archaeal genomes, metagenomic assembly can also produce genomes of viruses that infect microbial cells. Because of their diversity, lack of marker genes, and small genome size, identifying novel bacteriophage sequences from metagenomic data is often challenging, especially when the objective is to establish phage-host relationships. The present work describes a computational approach that uses supervised learning to classify metagenomic contigs as phage or non-phage as well as assigning phage taxonomy based on tetranucleotide frequencies. Furthermore, the method assigns phage-host relationships using co-occurrence statistics derived from a recently developed mini-metagenomic experimental technique. This work evaluates method performance at identifying viral contigs and predicting taxonomic classification using publicly available references. Then, using two mini-metagenomic datasets, over 100 novel phage contigs from hot spring samples of Yellowstone National Park are identified and assigned to putative microbial hosts. Results of this work demonstrate the value of combining viral sequence identification with mini-metagenomic experimental methods to understand the microbial ecosystem.

RevDate: 2020-09-14
CmpDate: 2020-09-14

A Duarte M, F Silva JM, R Brito C, et al (2019)

Faecal Virome Analysis of Wild Animals from Brazil.

Viruses, 11(9):.

The Brazilian Cerrado fauna shows very wide diversity and can be a potential viral reservoir. Therefore, the animal's susceptibility to some virus can serve as early warning signs of potential human virus diseases. Moreover, the wild animal virome of this biome is unknown. Based on this scenario, high-throughput sequencing contributes a robust tool for the identification of known and unknown virus species in this environment. In the present study, faeces samples from cerrado birds (Psittacara leucophthalmus, Amazona aestiva, and Sicalis flaveola) and mammals (Didelphis albiventris, Sapajus libidinosus, and Galictis cuja) were collected at the Veterinary Hospital, University of Brasília. Viral nucleic acid was extracted, submitted to random amplification, and sequenced by Illumina HiSeq platform. The reads were de novo assembled, and the identities of the contigs were evaluated by Blastn and tblastx searches. Most viral contigs analyzed were closely related to bacteriophages. Novel archaeal viruses of the Smacoviridae family were detected. Moreover, sequences of members of Adenoviridae, Anelloviridae, Circoviridae, Caliciviridae, and Parvoviridae families were identified. Complete and nearly complete genomes of known anelloviruses, circoviruses, and parvoviruses were obtained, as well as putative novel species. We demonstrate that the metagenomics approach applied in this work was effective for identification of known and putative new viruses in faeces samples from Brazilian Cerrado fauna.

RevDate: 2020-09-14
CmpDate: 2020-09-14

Rocchetti G, Senizza A, Gallo A, et al (2019)

In vitro large intestine fermentation of gluten-free rice cookies containing alfalfa seed (Medicago sativa L.) flour: A combined metagenomic/metabolomic approach.

Food research international (Ottawa, Ont.), 120:312-321.

Alfalfa seed flour (ASF) at different inclusion levels (0% as control, 30% and 45% w/w) was used to prepare rice flour-based gluten-free (GF) cookies (CK). Samples underwent a simulated in vitro digestion and fermentation process. The comprehensive changes in the phenolic profiles were evaluated during 48 h of fermentation by means of untargeted UHPLC-QTOF mass spectrometry followed by multivariate statistics. Furthermore, the modifications in microbial profile and the production of short chain fatty acids (SCFA) were investigated. Cookies presenting 30% (30-CK) and 45% (45-CK) ASF possessed the greater total phenolic content when compared to the control, being 0.42 and 0.56 mg/g versus 0.15 mg/g, respectively. The orthogonal projection to latent structure discriminant analysis, applied to untargeted metabolomics-based data, showed a clear modulation of the profile in phenolic metabolites over time (from 8 up to 48 h of in vitro fermentation). In this regard, the in vitro fermentation of 30-CK and 45-CK resulted in the maximum increase in lignans and phenolic acids, whose bioaccessibility at 24 h of in vitro fermentation was 16.2% and 12.2%, respectively. In addition, the metagenomic sequencing approach allowed to identify in Clostridiaceae, Ruminococcaceae, Lachnospiraceae and Streptococcaceae the most represented bacterial populations during the in vitro fermentation. A greater total SCFA production (p < .05) was recorded overtime for all ASF-enriched cookies when compared to the control. Therefore, ASF proved to be an excellent alternative to common non-wheat cereal flours (such as pseudocereals or legumes) for improving possible health-promoting properties in GF cookie formulation.

RevDate: 2020-09-11

Saary P, Mitchell AL, RD Finn (2020)

Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC.

Genome biology, 21(1):244 pii:10.1186/s13059-020-02155-4.

Microbial eukaryotes constitute a significant fraction of biodiversity and have recently gained more attention, but the recovery of high-quality metagenomic assembled eukaryotic genomes is limited by the current availability of tools. To help address this, we have developed EukCC, a tool for estimating the quality of eukaryotic genomes based on the automated dynamic selection of single copy marker gene sets. We demonstrate that our method outperforms current genome quality estimators, particularly for estimating contamination, and have applied EukCC to datasets derived from two different environments to enable the identification of novel eukaryote genomes, including one from the human skin.

RevDate: 2020-09-10
CmpDate: 2020-09-10

Tackmann J, Matias Rodrigues JF, C von Mering (2019)

Rapid Inference of Direct Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data.

Cell systems, 9(3):286-296.e8.

The availability of large-scale metagenomic sequencing data can facilitate the understanding of microbial ecosystems in unprecedented detail. However, current computational methods for predicting ecological interactions are hampered by insufficient statistical resolution and limited computational scalability. They also do not integrate metadata, which can reduce the interpretability of predicted ecological patterns. Here, we present FlashWeave, a computational approach based on a flexible Probabilistic Graphical Model framework that integrates metadata and predicts direct microbial interactions from heterogeneous microbial abundance data sets with hundreds of thousands of samples. FlashWeave outperforms state-of-the-art methods on diverse benchmarking challenges in terms of runtime and accuracy. We use FlashWeave to analyze a cross-study data set of 69,818 publicly available human gut samples and produce, to the best of our knowledge, the largest and most diverse network of predicted, direct gastrointestinal microbial interactions to date. FlashWeave is freely available for download here: https://github.com/meringlab/FlashWeave.jl.

RevDate: 2020-09-10
CmpDate: 2020-09-10

Ata B, Yildiz S, Turkgeldi E, et al (2019)

The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls.

Scientific reports, 9(1):2204.

Dysbiosis in the genital tract or gut microbiome can be associated with endometriosis. We sampled vaginal, cervical and gut microbiota from 14 women with histology proven stage 3/4 endometriosis and 14 healthy controls. The V3 and V4 regions of the 16S rRNA gene were amplified following the 16S Metagenomic Sequencing Library Preparation. Despite overall similar vaginal, cervical and intestinal microbiota composition between stage 3/4 endometriosis group and controls, we observed differences at genus level. The complete absence of Atopobium in the vaginal and cervical microbiota of the stage 3/4 endometriosis group was noteworthy. In the cervical microbiota, Gardnerella, Streptococcus, Escherichia, Shigella, and Ureoplasma, all of which contain potentially pathogenic species, were increased in stage 3/4 endometriosis. More women in the stage 3/4 endometriosis group had Shigella/Escherichia dominant stool microbiome. Further studies can clarify whether the association is causal, and whether dysbiosis leads to endometriosis or endometriosis leads to dysbiosis.

RevDate: 2020-09-09

El-Hossary EM, Abdel-Halim M, Ibrahim ES, et al (2020)

Natural Products Repertoire of the Red Sea.

Marine drugs, 18(9): pii:md18090457.

Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.

RevDate: 2020-09-09

Iacono R, Cobucci-Ponzano B, De Lise F, et al (2020)

Spatial Metagenomics of Three Geothermal Sites in Pisciarelli Hot Spring Focusing on the Biochemical Resources of the Microbial Consortia.

Molecules (Basel, Switzerland), 25(17): pii:molecules25174023.

Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Shamsaddini A, Dadkhah K, PM Gillevet (2020)

BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline.

PloS one, 15(6):e0234860.

Current microbiome applications require substantial bioinformatics expertise to execute. As microbiome clinical diagnostics are being developed, there is a critical need to implement computational tools and applications that are user-friendly for the medical community to understand microbiome correlation with the health. To address this need, we have developed BiomMiner (pronounced as "biominer"), an automated pipeline that provides a comprehensive analysis of microbiome data. The pipeline finds taxonomic signatures of microbiome data and compiles actionable clinical report that allows clinicians and biomedical scientists to efficiently perform statistical analysis and data mining on the large microbiome datasets. BiomMiner generates web-enabled visualization of the analysis results and is specifically designed to facilitate the use of microbiome datasets in clinical applications.

RevDate: 2020-09-09
CmpDate: 2020-09-09

He Z, Pan L, Zhang M, et al (2020)

Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place Litopenaeus vannamei ponds.

Journal of applied microbiology, 129(2):243-255.

AIMS: The present study aimed to reveal microbial relationship between shrimp intestine and ambient in higher place shrimp ponds from the aspects of composition and function.

METHODS AND RESULTS: Metagenome and 16S rRNA gene sequencing were used to compare microbial compositions and functions of water, effluent and shrimp intestine in higher place Litopenaeus vannamei ponds. Although the three groups had similar dominant phyla, such as Proteobacteria, Bacteroidetes and Tenericutes, their bacterial compositions at the genus level were obviously different. Compared to effluent and intestine, the relative abundance of Vibrio as common opportunistic pathogen for shrimp was significantly higher in water. However, cluster analysis showed that intestinal microbial composition was more similar to that of effluent than water. Metagenomic data showed that the predominant microbial functions in the three groups were mostly related to energy production and biosynthesis, while carbohydrate metabolism was relatively enriched in intestinal microbiota. More importantly, Proteobacteria played a critical role in carbon metabolism and biosynthesis of amino acids in the three habitats, and Vibrio had the most functions related to bacterial virulence and infection.

CONCLUSIONS: Shrimp intestinal microbiota had a close correlation with the ambient microbiota in both structure and function. As the most dominant phylum, Proteobacteria was very important for microbiota communication and nutrient cycling in higher place shrimp ponds. Moreover, due to the pathogenicity, it was necessary to monitor the abundant changes of Vibrio in water to decrease the risk of shrimp disease outbreaks.

These above results may be helpful to comprehensively understand the characteristics and functions of microbiota in higher place shrimp ponds, thereby providing basic information for developing the management strategies of entire microbiota to sustain shrimp health.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Imanishi I, Uchiyama J, Tsukui T, et al (2019)

Therapeutic Potential of an Endolysin Derived from Kayvirus S25-3 for Staphylococcal Impetigo.

Viruses, 11(9):.

Impetigo is a contagious skin infection predominantly caused by Staphylococcus aureus. Decontamination of S. aureus from the skin is becoming more difficult because of the emergence of antibiotic-resistant strains. Bacteriophage endolysins are less likely to invoke resistance and can eliminate the target bacteria without disturbance of the normal microflora. In this study, we investigated the therapeutic potential of a recombinant endolysin derived from kayvirus S25-3 against staphylococcal impetigo in an experimental setting. First, the recombinant S25-3 endolysin required an incubation period of over 15 minutes to exhibit efficient bactericidal effects against S. aureus. Second, topical application of the recombinant S25-3 endolysin decreased the number of intraepidermal staphylococci and the size of pustules in an experimental mouse model of impetigo. Third, treatment with the recombinant S25-3 endolysin increased the diversity of the skin microbiota in the same mice. Finally, we revealed the genus-specific bacteriolytic effect of recombinant S25-3 endolysin against staphylococci, particularly S. aureus, among human skin commensal bacteria. Therefore, topical treatment with recombinant S25-3 endolysin can be a promising disease management procedure for staphylococcal impetigo by efficient bacteriolysis of S. aureus while improving the cutaneous bacterial microflora.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Zhang J, W Lin (2019)

Scalable estimation and regularization for the logistic normal multinomial model.

Biometrics, 75(4):1098-1108.

Clustered multinomial data are prevalent in a variety of applications such as microbiome studies, where metagenomic sequencing data are summarized as multinomial counts for a large number of bacterial taxa per subject. Count normalization with ad hoc zero adjustment tends to result in poor estimates of abundances for taxa with zero or small counts. To account for heterogeneity and overdispersion in such data, we suggest using the logistic normal multinomial (LNM) model with an arbitrary correlation structure to simultaneously estimate the taxa compositions by borrowing information across subjects. We overcome the computational difficulties in high dimensions by developing a stochastic approximation EM algorithm with Hamiltonian Monte Carlo sampling for scalable parameter estimation in the LNM model. The ill-conditioning problem due to unstructured covariance is further mitigated by a covariance-regularized estimator with a condition number constraint. The advantages of the proposed methods are illustrated through simulations and an application to human gut microbiome data.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Petersen C, Wankhade UD, Bharat D, et al (2019)

Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice.

The Journal of nutritional biochemistry, 66:63-69.

Gut microbiota contributes to the biological activities of berry anthocyanins by transforming them into bioactive metabolites, and anthocyanins support the growth of specific bacteria, indicating a two-way relationship between anthocyanins and microbiota. In the present study, we tested the hypothesis that strawberry supplementation alters gut microbial ecology in diabetic db/db mice. Control (db/+) and diabetic (db/db) mice (7 weeks old) consumed standard diet or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for 10 weeks. Colon contents were used to isolate bacterial DNA. V4 variable region of 16S rRNA gene was amplified. Data analyses were performed using standardized pipelines (QIIME 1.9 and R packages). Differences in predictive metagenomics function were identified by PICRUSt. Principal coordinate analyses confirmed that the microbial composition was significantly influenced by both host genotype and strawberry consumption. Further, α-diversity indices and β-diversity were different at the phylum and genus levels, and genus and operational taxonomical units levels, respectively (P<.05). At the phylum level, strawberry supplementation decreased the abundance of Verrucomicrobia in db/db + SB vs. db/db mice (P<.05). At the genus level, db/db mice exhibited a decrease in the abundance of Bifidobacterium, and strawberry supplementation increased Bifidobacterium in db/db + SB vs. db/db mice (P<.05). PICRUSt revealed significant differences in 45 predicted metabolic functions among the 3 groups. Our study provides evidence for marked changes in the composition and functional potential of the gut microbiome with strawberry supplementation in diabetic mice. Importantly, strawberry supplementation increased the abundance of beneficial bacteria Bifidobacterium which play a pivotal role in the metabolism of anthocyanins.

RevDate: 2020-09-08

Bandini F, Misci C, Taskin E, et al (2020)

Biopolymers modulate microbial communities in municipal organic waste digestion.

FEMS microbiology ecology pii:5902845 [Epub ahead of print].

The development of biopolymers has raised issues about their recalcitrance in the environment. Their disposal is mainly carried out with the organic fraction of municipal solid waste (OFMSW) through thermophilic anaerobic digestion and aerobic composting, bioprocesses aimed at turning organic matter into biogas and compost. However, the effects of biopolymers on OFMSW treatment, on the final compost and on the microbial communities involved are partly unexplored. In this study, the OFMSW treatment was reproduced on a laboratory-scale respecting real plant conditions and testing the impacts of mixing polylactic acid (PLA) and starch-based bioplastic (SBB) separately. The dynamics of bacterial, archaeal and fungal communities during the process was screened by high-throughput sequencing (HTS) of phylogenetic amplicons. SBB showed a minor and heterogeneous microbial diversity between the anaerobic and aerobic phases. Contrariwise, PLA treatment resulted in wider and more diverse bacterial and fungal communities for the compost and the aerobic biofilm. Since the biodiversity in compost may play a crucial role in its stability and safety, the modulation of environmental microbial communities induced by higher concentrations of PLA in OFMSW treatment can pose relevant issues.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Chng KR, Li C, Bertrand D, et al (2020)

Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment.

Nature medicine, 26(6):941-951.

Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Moss EL, Maghini DG, AS Bhatt (2020)

Complete, closed bacterial genomes from microbiomes using nanopore sequencing.

Nature biotechnology, 38(6):701-707.

Microbial genomes can be assembled from short-read sequencing data, but the assembly contiguity of these metagenome-assembled genomes is constrained by repeat elements. Correct assignment of genomic positions of repeats is crucial for understanding the effect of genome structure on genome function. We applied nanopore sequencing and our workflow, named Lathe, which incorporates long-read assembly and short-read error correction, to assemble closed bacterial genomes from complex microbiomes. We validated our approach with a synthetic mixture of 12 bacterial species. Seven genomes were completely assembled into single contigs and three genomes were assembled into four or fewer contigs. Next, we used our methods to analyze metagenomics data from 13 human stool samples. We assembled 20 circular genomes, including genomes of Prevotella copri and a candidate Cibiobacter sp. Despite the decreased nucleotide accuracy compared with alternative sequencing and assembly approaches, our methods improved assembly contiguity, allowing for investigation of the role of repeat elements in microbial function and adaptation.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Bonning BC (2020)

The Insect Virome: Opportunities and Challenges.

Current issues in molecular biology, 34:1-12.

The insect virome is composed of a myriad of viruses. Both field populations and laboratory colonies of insects harbour diverse viruses, including viruses that infect the insect itself, viruses of microbes associated with the insect, and viruses associated with ingested materials. Metagenomics analysis for identification of virus-derived sequences has allowed for new appreciation of the extent and diversity of the insect virome. The complex interactions between insect viruses and host antiviral immune pathways (RNA interference and apoptosis), and between viruses and other members of the microbiome (e.g. Wolbachia) are becoming apparent. In this chapter, an overview of the diversity of viruses in insects and recent virus discovery research for specific insects and insect-derived cell lines is provided. The opportunities and challenges associated with the insect virome, including the potential impacts of viruses on both research and insect management programs are also addressed.

RevDate: 2020-09-05

Joulian C, Fonti V, Chapron S, et al (2020)

Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia.

Research in microbiology pii:S0923-2508(20)30081-4 [Epub ahead of print].

Pyrite-bearing coal wastes are responsible of the formation of acid mine drainage (AMD), and their management to mitigate environmental impacts is a challenge to the coal mine industry in Europe and worldwide. The European CEReS project sought to develop a generic co-processing strategy to reuse and recycle coal wastes, based on removal of AMD generating potential through bioleaching. Chemolitoautotrophic iron- and sulfur-oxidizing microbial consortia were enriched from a Polish coal waste at 30°C and 48°C, but not 42°C. Pyrite leaching yield, determined from bioleaching tests in 2-L stirred bioreactors, was best with the 48°C endogenous consortium (80%), then the 42°C exogenous BRGM-KCC consortium (71%), and finally the 30°C endogenous consortium (50%). 16S rRNA gene-targeted metagenomics from five surface locations on the dump waste revealed a microbial community adapted to the site context, composed of iron- and/or sulfur-oxidizing genera thriving in low pH and metal rich environments and involved in AMD generation. All together, the results confirmed the predisposition of the pyritic coal waste to bioleaching and the potential of endogenous microorganisms for efficient bioleaching at 48°C. The good leaching yields open the perspective to optimize further and scale-up the bioleaching process.

RevDate: 2020-09-04

Saccò M, Blyth AJ, Humphreys WF, et al (2020)

Refining trophic dynamics through multi-factor Bayesian mixing models: A case study of subterranean beetles.

Ecology and evolution, 10(16):8815-8826 pii:ECE36580.

Food web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (δ13C and δ15N) with radiocarbon data (Δ14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (δ13C, δ15N, and Δ14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased-and species-specific-predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Yang L, Hou K, Zhang B, et al (2020)

Preservation of the fecal samples at ambient temperature for microbiota analysis with a cost-effective and reliable stabilizer EffcGut.

The Science of the total environment, 741:140423.

With the increasing researches on the role of gut microbiota in human health and disease, appropriate storage method of fecal samples at ambient temperature would conveniently guarantee the precise and reliable microbiota results. Nevertheless, less choice of stabilizer that is cost-efficient and feasible to be used in longer preservation period obstructed the large-scale metagenomics studies. Here, we evaluated the efficacy of a guanidine isothiocyanate-based reagent method EffcGut and compared it with the other already used storage method by means of 16S rRNA gene sequencing technology. We found that guanidine isothiocyanate-based reagent method at ambient temperature was not inferior to OMNIgene·GUT OM-200 and it could retain the similar bacterial community as that of -80 °C within 24 weeks. Furthermore, bacterial diversity and community structure difference were compared among different sample fraction (supernatant, suspension and precipitate) preserved in EffcGut and -80 °C. We found that supernatant under the preservation of EffcGut retained the similar community structure and composition as that of the low temperature preservation method.

RevDate: 2020-09-04
CmpDate: 2020-09-04

Ajene IJ, Khamis FM, van Asch B, et al (2020)

Microbiome diversity in Diaphorina citri populations from Kenya and Tanzania shows links to China.

PloS one, 15(6):e0235348.

The Asian citrus psyllid (Diaphorina citri) is a key pest of Citrus spp. worldwide, as it acts as a vector for "Candidatus Liberibacter asiaticus (Las)", the bacterial pathogen associated with the destructive Huanglongbing (HLB) disease. Recent detection of D. citri in Africa and reports of Las-associated HLB in Ethiopia suggest that the citrus industry on the continent is under imminent threat. Endosymbionts and gut bacteria play key roles in the biology of arthropods, especially with regards to vector-pathogen interactions and resistance to antibiotics. Thus, we aim to profile the bacterial genera and to identify antibiotic resistance genes within the microbiome of different populations worldwide of D. citri. The metagenome of D. citri was sequenced using the Oxford Nanopore full-length 16S metagenomics protocol, and the "What's in my pot" (WIMP) analysis pipeline. Microbial diversity within and between D. citri populations was assessed, and antibiotic resistance genes were identified using the WIMP-ARMA workflow. The most abundant genera were key endosymbionts of D. citri ("Candidatus Carsonella", "Candidatus Profftella", and Wolbachia). The Shannon diversity index showed that D. citri from Tanzania had the highest diversity of bacterial genera (1.92), and D. citri from China had the lowest (1.34). The Bray-Curtis dissimilarity showed that China and Kenya represented the most diverged populations, while the populations from Kenya and Tanzania were the least diverged. The WIMP-ARMA analyses generated 48 CARD genes from 13 bacterial species in each of the populations. Spectinomycin resistance genes were the most frequently found, with an average of 65.98% in all the populations. These findings add to the knowledge on the diversity of the African D. citri populations and the probable introduction source of the psyllid in these African countries.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Yuan J, Chen C, Cui J, et al (2019)

Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae.

Cell metabolism, 30(4):675-688.e7.

The underlying etiology of nonalcoholic fatty liver disease (NAFLD) is believed to be quite varied. Changes in the gut microbiota have been investigated and are believed to contribute to at least some cases of the disease, though a causal relationship remains unclear. Here, we show that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is associated with up to 60% of individuals with NAFLD in a Chinese cohort. Transfer of clinical isolates of HiAlc Kpn by oral gavage into mice induced NAFLD. Likewise, fecal microbiota transplant (FMT) into mice using a HiAlc-Kpn-strain-containing microbiota isolated from an individual with NASH induced NAFLD. However, selective elimination of the HiAlc Kpn strain before FMT prevented NAFLD in the recipient mice. These results suggest that at least in some cases of NAFLD an alteration in the gut microbiome drives the condition due to excess endogenous alcohol production.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Cabral DJ, Penumutchu S, Reinhart EM, et al (2019)

Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome.

Cell metabolism, 30(4):800-823.e7.

Although antibiotics disturb the structure of the gut microbiota, factors that modulate these perturbations are poorly understood. Bacterial metabolism is an important regulator of susceptibility in vitro and likely plays a large role within the host. We applied a metagenomic and metatranscriptomic approach to link antibiotic-induced taxonomic and transcriptional responses within the murine microbiome. We found that antibiotics significantly alter the expression of key metabolic pathways at the whole-community and single-species levels. Notably, Bacteroides thetaiotaomicron, which blooms in response to amoxicillin, upregulated polysaccharide utilization. In vitro, we found that the sensitivity of this bacterium to amoxicillin was elevated by glucose and reduced by polysaccharides. Accordingly, we observed that dietary composition affected the abundance and expansion of B. thetaiotaomicron, as well as the extent of microbiome disruption with amoxicillin. Our work indicates that the metabolic environment of the microbiome plays a role in the response of this community to antibiotics.

RevDate: 2020-09-02
CmpDate: 2020-09-02

Sakanaka M, Gotoh A, Yoshida K, et al (2019)

Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation.

Nutrients, 12(1):.

The infant's gut microbiome is generally rich in the Bifidobacterium genus. The mother's milk contains natural prebiotics, called human milk oligosaccharides (HMOs), as the third most abundant solid component after lactose and lipids, and of the different gut microbes, infant gut-associated bifidobacteria are the most efficient in assimilating HMOs. Indeed, the fecal concentration of HMOs was found to be negatively correlated with the fecal abundance of Bifidobacterium in infants. Given these results, two HMO molecules, 2'-fucosyllactose and lacto-N-neotetraose, have recently been industrialized to fortify formula milk. As of now, however, our knowledge about the HMO consumption pathways in infant gut-associated bifidobacteria is still incomplete. The recent studies indicate that HMO assimilation abilities significantly vary among different Bifidobacterium species and strains. Therefore, to truly maximize the effects of prebiotic and probiotic supplementation in commercialized formula, we need to understand HMO consumption behaviors of bifidobacteria in more detail. In this review, we summarized how different Bifidobacterium species/strains are equipped with varied gene sets required for HMO assimilation. We then examined the correlation between the abundance of the HMO-related genes and bifidobacteria-rich microbiota formation in the infant gut through data mining analysis of a deposited fecal microbiome shotgun sequencing dataset. Finally, we shortly described future perspectives on HMO-related studies.

RevDate: 2020-09-02
CmpDate: 2020-09-02

Vera-Gargallo B, Chowdhury TR, Brown J, et al (2019)

Spatial distribution of prokaryotic communities in hypersaline soils.

Scientific reports, 9(1):1769.

Increasing salinization in wetland systems is a major threat to ecosystem services carried out by microbial communities. Thus, it is paramount to understand how salinity drives both microbial community structures and their diversity. Here we evaluated the structure and diversity of the prokaryotic communities from a range of highly saline soils (EC1:5 from 5.96 to 61.02 dS/m) from the Odiel Saltmarshes and determined their association with salinity and other soil physicochemical features by analyzing 16S rRNA gene amplicon data through minimum entropy decomposition (MED). We found that these soils harbored unique communities mainly composed of halophilic and halotolerant taxa from the phyla Euryarchaeota, Proteobacteria, Balneolaeota, Bacteroidetes and Rhodothermaeota. In the studied soils, several site-specific properties were correlated with community structure and individual abundances of particular sequence variants. Salinity had a secondary role in shaping prokaryotic communities in these highly saline samples since the dominant organisms residing in them were already well-adapted to a wide range of salinities. We also compared ESV-based results with OTU-clustering derived ones, showing that, in this dataset, no major differences in ecological outcomes were obtained by the employment of one or the other method.

RevDate: 2020-09-01

Xue CX, Liu J, Lea-Smith DJ, et al (2020)

Insights into the Vertical Stratification of Microbial Ecological Roles across the Deepest Seawater Column on Earth.

Microorganisms, 8(9): pii:microorganisms8091309.

The Earth's oceans are a huge body of water with physicochemical properties and microbial community profiles that change with depth, which in turn influences their biogeochemical cycling potential. The differences between microbial communities and their functional potential in surface to hadopelagic water samples are only beginning to be explored. Here, we used metagenomics to investigate the microbial communities and their potential to drive biogeochemical cycling in seven different water layers down the vertical profile of the Challenger Deep (0-10,500 m) in the Mariana Trench, the deepest natural point in the Earth's oceans. We recovered 726 metagenome-assembled genomes (MAGs) affiliated to 27 phyla. Overall, biodiversity increased in line with increased depth. In addition, the genome size of MAGs at ≥4000 m layers was slightly larger compared to those at 0-2000 m. As expected, surface waters were the main source of primary production, predominantly from Cyanobacteria. Intriguingly, microbes conducting an unusual form of nitrogen metabolism were identified in the deepest waters (>10,000 m), as demonstrated by an enrichment of genes encoding proteins involved in dissimilatory nitrate to ammonia conversion (DNRA), nitrogen fixation and urea transport. These likely facilitate the survival of ammonia-oxidizing archaea α lineage, which are typically present in environments with a high ammonia concentration. In addition, the microbial potential for oxidative phosphorylation and the glyoxylate shunt was enhanced in >10,000 m waters. This study provides novel insights into how microbial communities and their genetic potential for biogeochemical cycling differs through the Challenger deep water column, and into the unique adaptive lifestyle of microbes in the Earth's deepest seawater.

RevDate: 2020-09-01

Marin-Gómez W, Grande MJ, Pérez-Pulido R, et al (2020)

Changes in the Bacterial Diversity of Human Milk during Late Lactation Period (Weeks 21 to 48).

Foods (Basel, Switzerland), 9(9): pii:foods9091184.

Breast milk from a single mother was collected during a 28-week lactation period. Bacterial diversity was studied by amplicon sequencing analysis of the V3-V4 variable region of the 16S rRNA gene. Firmicutes and Proteobacteria were the main phyla detected in the milk samples, followed by Actinobacteria and Bacteroidetes. The proportion of Firmicutes to Proteobacteria changed considerably depending on the sampling week. A total of 411 genera or higher taxons were detected in the set of samples. Genus Streptococcus was detected during the 28-week sampling period, at relative abundances between 2.0% and 68.8%, and it was the most abundant group in 14 of the samples. Carnobacterium and Lactobacillus had low relative abundances. At the genus level, bacterial diversity changed considerably at certain weeks within the studied period. The weeks or periods with lowest relative abundance of Streptococcus had more diverse bacterial compositions including genera belonging to Proteobacteria that were poorly represented in the rest of the samples.

RevDate: 2020-09-01
CmpDate: 2020-09-01

Wang J, J Zhou (2020)

The effects of offshore petroleum exploitation on microbial community and antibiotic resistome of adjacent marine sediments.

Water science and technology : a journal of the International Association on Water Pollution Research, 81(12):2501-2510.

The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons. However, the total abundance and diversity of ARGs in marine sediments were not significantly affected by offshore petroleum exploitation. This study is the first attempt to analyze the impact of offshore petroleum exploitation on the spread of antibiotic resistance.

RevDate: 2020-09-01
CmpDate: 2020-09-01

Appolinario LR, Tschoeke D, Calegario G, et al (2020)

Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil).

The Science of the total environment, 740:139556.

The Campos Basin (100,000 km2) is located on the continental shelf of southeastern Brazil. Despite the significant oil and gas industrial activities underway in the Campos Basin, scarce information is available regarding the hydrocarbon contents and microbial communities in the deep-sea sediments. To gain new insights on these aspects, we first obtained deep-sea sediment samples with different degrees of oil exposure. We obtained samples from a seabed fissure (N = 28), surroundings (250 m to 500 m from the fissure; N = 24), and a control area (N = 4). We used shotgun metagenomics to characterize the taxonomic and metabolic diversity and analyzed biogeochemical parameters (metal and oil concentration) of all samples. The high levels of unresolved complex mixture of hydrocarbons in the fissure indicate a potentially recent petrogenic contribution in these sediments. The fissure area was found to have a higher abundance of hydrocarbonoclastic bacterial genera and hydrocarbon degradation genes. These bacteria may be used as biosensors of sediment contamination. The effects of oil contamination, mainly around the fissure, are less clear at 250 m and 500 m, suggesting that the surroundings may not have been heavily affected by the oil leakage. Our study demonstrates that metagenomics can disclose biosensors for environmental monitoring.

RevDate: 2020-08-31
CmpDate: 2020-08-31

Kang X, Cui Y, Shen T, et al (2020)

Changes of root microbial populations of natively grown plants during natural attenuation of V-Ti magnetite tailings.

Ecotoxicology and environmental safety, 201:110816.

Mine tailings contain dangerously high levels of toxic metals which pose a constant threat to local ecosystems. Few naturally grown native plants can colonize tailings site and the existence of their root-associated microbial populations is poorly understood. The objective of this study was to give further insights into the interactions between native plants and their microbiota during natural attenuation of abandoned V-Ti magnetite mine tailings. In the present work, we first examined the native plants' potential for phytoremediation using plant/soil analytical methods and then investigated the root microbial communities and their inferred functions using 16 S rRNA-based metagenomics. It was found that in V-Ti magnetite mine tailings the two dominant plants Bothriochloa ischaemum and Typha angustifolia were able to increase available nitrogen in the rhizosphere soil by 23.3% and 53.7% respectively. The translocation factors (TF) for both plants indicated that B. ischaemum was able to accumulate Pb (TF = 1.212), while T. angustifolia was an accumulator of Mn (TF = 2.502). The microbial community structure was more complex in the soil associated with T. angustifolia than with B. ischaemum. The presence of both plants significantly reduced the population of Acinetobacter. Specifically, B. ischaemum enriched Massilia, Opitutus and Hydrogenophaga species while T. angustifolia significantly increased rhizobia species. Multivariate analyses revealed that among all tested soil variables Fe and total organic carbon (TOC) could be the key factors in shaping the microbial structure. The putative functional analysis indicated that soil sample of B. ischaemum was abundant with nitrate/nitrite reduction-related functions while that of T. angustifolia was rich in nitrogen fixing functions. The results indicate that these native plants host a diverse range of soil microbes, whose community structure can be shaped by plant types and soil variables. It is also possible that these plants can be used to improve soil nitrogen content and serve as bioaccumulators for Pb or Mn for phytoremediation purposes.

RevDate: 2020-08-31
CmpDate: 2020-08-31

Guitor AK, Raphenya AR, Klunk J, et al (2019)

Capturing the Resistome: a Targeted Capture Method To Reveal Antibiotic Resistance Determinants in Metagenomes.

Antimicrobial agents and chemotherapy, 64(1):.

Identification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Database, we designed a set of 37,826 probes to specifically target over 2,000 nucleotide sequences associated with antibiotic resistance in clinically relevant bacteria. Testing of this probe set on DNA libraries generated from multidrug-resistant bacteria to selectively capture resistance genes reproducibly produced higher numbers of reads on target at a greater length of coverage than shotgun sequencing. We also identified additional resistance gene sequences from human gut microbiome samples that sequencing alone was not able to detect. Our method to capture the resistome enables a sensitive means of gene detection in diverse environments where genes encoding antibiotic resistance represent less than 0.1% of the metagenome.

RevDate: 2020-08-31
CmpDate: 2020-08-31

Colman DR, Lindsay MR, Amenabar MJ, et al (2019)

The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems.

Astrobiology, 19(12):1505-1522.

Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.

RevDate: 2020-08-31
CmpDate: 2020-08-31

McCombe PA, Henderson RD, Lee A, et al (2019)

Gut microbiota in ALS: possible role in pathogenesis?.

Expert review of neurotherapeutics, 19(9):785-805.

Introduction: The gut microbiota has important roles in maintaining human health. The microbiota and its metabolic byproducts could play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Areas covered: The authors evaluate the methods of assessing the gut microbiota, and also review how the gut microbiota affects the various physiological functions of the gut. The authors then consider how gut dysbiosis could theoretically affect the pathogenesis of ALS. They present the current evidence regarding the composition of the gut microbiota in ALS and in rodent models of ALS. Finally, the authors review therapies that could improve gut dysbiosis in the context of ALS. Expert opinion: Currently reported studies suggest some instances of gut dysbiosis in ALS patients and mouse models; however, these studies are limited, and more information with well-controlled larger datasets is required to make a definitive judgment about the role of the gut microbiota in ALS pathogenesis. Overall this is an emerging field that is worthy of further investigation. The authors advocate for larger studies using modern metagenomic techniques to address the current knowledge gaps.

RevDate: 2020-08-28
CmpDate: 2020-08-28

Fremin BJ, Sberro H, AS Bhatt (2020)

MetaRibo-Seq measures translation in microbiomes.

Nature communications, 11(1):3268.

No method exists to measure large-scale translation of genes in uncultured organisms in microbiomes. To overcome this limitation, we develop MetaRibo-Seq, a method for simultaneous ribosome profiling of tens to hundreds of organisms in microbiome samples. MetaRibo-Seq was benchmarked against gold-standard Ribo-Seq in a mock microbial community and applied to five different human fecal samples. Unlike RNA-Seq, Ribo-Seq signal of a predicted gene suggests it encodes a translated protein. We demonstrate two applications of this technique: First, MetaRibo-Seq identifies small genes, whose identification until now has been challenging. For example, MetaRibo-Seq identifies 2,091 translated, previously unannotated small protein families from five fecal samples, more than doubling the number of small proteins predicted to exist in this niche. Second, the combined application of RNA-Seq and MetaRibo-Seq identifies differences in the translation of transcripts. In summary, MetaRibo-Seq enables comprehensive translational profiling in microbiomes and identifies previously unannotated small proteins.

RevDate: 2020-08-28
CmpDate: 2020-08-28

Zhang W, Li J, Lu S, et al (2019)

Gut microbiota community characteristics and disease-related microorganism pattern in a population of healthy Chinese people.

Scientific reports, 9(1):1594.

China's population accounts for about 1/5th of the world's total population. Owing to differences in environment, race, living habits, and other factors, the structure of the intestinal flora of Chinese individuals is expected to have unique features; however, this has not been thoroughly examined. Here, we collected faecal samples from healthy adults living in three cities of China and investigated their gut microbiome using metagenomics and bioinformatics technology. We found that 11 core bacterial genera were present in all of the Chinese faecal samples; moreover, several patient characteristics (age, region, body mass index, physical exercise, smoking habits, and alcoholic drink, and yogurt consumption) were found to have different effects on the gut microbiome of healthy Chinese people. We also examined the distribution patterns of disease-related microorganisms (DRMs), revealing which DRMs can potentially be used as markers for assessment of health risk. We also developed a program called "Guthealthy" for evaluating the health status associated with the microbiome and DRM pattern in the faecal samples. The microbiota data obtained in this study will provide a basis for a healthy gut microbiome composition in the Chinese population.

RevDate: 2020-08-28
CmpDate: 2020-08-28

Okazaki F, Zang L, Nakayama H, et al (2019)

Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish.

Scientific reports, 9(1):867.

Understanding the gut microbiota in metabolic disorders, including type 2 diabetes mellitus (T2DM), is now gaining importance due to its potential role in disease risk and progression. We previously established a zebrafish model of T2DM, which shows glucose intolerance with insulin resistance and responds to anti-diabetic drugs. In this study, we analysed the gut microbiota of T2DM zebrafish by deep sequencing the 16S rRNA V3-V4 hypervariable regions, and imputed a functional profile using predictive metagenomic tools. While control and T2DM zebrafish were fed with the same kind of feed, the gut microbiota in T2DM group was less diverse than that of the control. Predictive metagenomics profiling using PICRUSt revealed functional alternation of the KEGG pathways in T2DM zebrafish. Several amino acid metabolism pathways (arginine, proline, and phenylalanine) were downregulated in the T2DM group, similar to what has been previously reported in humans. In summary, we profiled the gut microbiome in T2DM zebrafish, which revealed functional similarities in gut bacterial environments between these zebrafish and T2DM affected humans. T2DM zebrafish can become an alternative model organism to study host-bacterial interactions in human obesity and related diseases.

RevDate: 2020-08-27
CmpDate: 2020-08-27

Kondratenko Y, Korobeynikov A, A Lapidus (2020)

CDSnake: Snakemake pipeline for retrieval of annotated OTUs from paired-end reads using CD-HIT utilities.

BMC bioinformatics, 21(Suppl 12):303 pii:10.1186/s12859-020-03591-6.

BACKGROUND: Illumina paired-end reads are often used for 16S analysis in metagenomic studies. Since DNA fragment size is usually smaller than the sum of lengths of paired reads, reads can be merged for downstream analysis. In spite of development of several tools for merging of paired-end reads, poor quality at the 3' ends within the overlapping region prevents the accurate combining of significant portion of read pairs. Recently CD-HIT-OTU-Miseq was presented as a new approach for 16S analysis using the paired-end reads, it completely avoids the reads merging process due to separate clustering of paired reads. CD-HIT-OTU-Miseq is a set of tools which are supposed to be successively launched by auxiliary shell scripts. This launch mode is not suitable for processing of big amounts of data generated in modern omics experiments. To solve this issue we created CDSnake - Snakemake pipeline utilizing CD-HIT tools for easier consecutive launch of CD-HIT-OTU-Miseq tools for complete processing of paired end reads in metagenomic studies. Usage of pipeline make 16S analysis easier due to one-command launch and helps to yield reproducible results.

RESULTS: We benchmarked our pipeline against two commonly used pipelines for OTU retrieval, incorporated into popular workflow for microbiome analysis, QIIME2 - DADA2 and deblur. Three mock datasets having highly overlapping paired-end 2 × 250 bp reads were used for benchmarking - Balanced, HMP, and Extreme. CDSnake outputted less OTUs than DADA2 and deblur. However, on Balanced and HMP datasets number of OTUs outputted by CDSnake was closer to real number of strains which were used for mock community generation, than those outputted by DADA2 and deblur. Though generally slower than other pipelines, CDSnake outputted higher total counts, preserving more information from raw data. Inheriting this properties from original CD-HIT-OTU-MiSeq utilities, CDSnake made their usage handier due to simple scalability, easier automated runs and other Snakemake benefits.

CONCLUSIONS: We developed Snakemake pipeline for OTU-MiSeq utilities, which simplified and automated data analysis. Benchmarking showed that this approach is capable to outperform popular tools in certain conditions.

RevDate: 2020-08-26
CmpDate: 2020-08-26

Wang S, Yan Z, Wang P, et al (2020)

Comparative metagenomics reveals the microbial diversity and metabolic potentials in the sediments and surrounding seawaters of Qinhuangdao mariculture area.

PloS one, 15(6):e0234128.

Qinhuangdao coastal area is an important mariculture area in North China. Microbial communities play an important role in driving biogeochemical cycle and energy flow. It is necessary to identify the microbial communities and their functions in the coastal mariculture area of Qinhuangdao. In this study, the microbial community compositions and their metabolic potentials in the sediments and their surrounding seawaters of Qinhuangdao mariculture area were uncovered by the 16S rRNA gene amplicon sequencing and metagenomic shotgun sequencing approaches. The results of amplicon sequencing showed that Gammaproteobacteria and Alphaproteobacteria were predominant classes. Our datasets showed a clear shift in microbial taxonomic groups and the metabolic pathways in the sediments and surrounding seawaters. Metagenomic analysis showed that purine metabolism, ABC transporters, and pyrimidine metabolism were the most abundant pathways. Genes related to two-component system, TCA cycle and nitrogen metabolism exhibited higher abundance in sediments compared with those in seawaters. The presence of cadmium-resistant genes and ABC transporters suggested the ability of microorganisms to resist the toxicity of cadmium. In summary, this study provides comprehensive and significant differential signatures in the microbial community and metabolic pathways in Qinhuangdao mariculture area, and can develop effective microbial indicators to monitor mariculture area in the future.

RevDate: 2020-08-25
CmpDate: 2020-08-25

Cao L, Gurevich A, Alexander KL, et al (2019)

MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities.

Cell systems, 9(6):600-608.e4.

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural products that contain antibiotics and a variety of other bioactive compounds. The existing methods for discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to discovering specific classes of RiPPs from small datasets, and these methods fail to handle unknown post-translational modifications. Here, we present MetaMiner, a software tool for addressing these challenges that is compatible with large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial communities, including human microbiome and lichen microbiome, and microorganisms isolated from the International Space Station.

RevDate: 2020-08-25
CmpDate: 2020-08-25

Modha S, Hughes J, Bianco G, et al (2019)

Metaviromics Reveals Unknown Viral Diversity in the Biting Midge Culicoides impunctatus.

Viruses, 11(9):.

Biting midges (Culicoides species) are vectors of arboviruses and were responsible for the emergence and spread of Schmallenberg virus (SBV) in Europe in 2011 and are likely to be involved in the emergence of other arboviruses in Europe. Improved surveillance and better understanding of risks require a better understanding of the circulating viral diversity in these biting insects. In this study, we expand the sequence space of RNA viruses by identifying a number of novel RNA viruses from Culicoides impunctatus (biting midge) using a meta-transcriptomic approach. A novel metaviromic pipeline called MetaViC was developed specifically to identify novel virus sequence signatures from high throughput sequencing (HTS) datasets in the absence of a known host genome. MetaViC is a protein centric pipeline that looks for specific protein signatures in the reads and contigs generated as part of the pipeline. Several novel viruses, including an alphanodavirus with both segments, a novel relative of the Hubei sobemo-like virus 49, two rhabdo-like viruses and a chuvirus, were identified in the Scottish midge samples. The newly identified viruses were found to be phylogenetically distinct to those previous known. These findings expand our current knowledge of viral diversity in arthropods and especially in these understudied disease vectors.

RevDate: 2020-08-24

Kirubakaran R, ArulJothi KN, Revathi S, et al (2020)

Emerging priorities for microbial metagenome research.

Bioresource technology reports, 11:100485.

Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Waterworth SC, Flórez LV, Rees ER, et al (2020)

Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome.

mBio, 11(1):.

Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Raj AS, Shanahan ER, Tran CD, et al (2019)

Dysbiosis of the Duodenal Mucosal Microbiota Is Associated With Increased Small Intestinal Permeability in Chronic Liver Disease.

Clinical and translational gastroenterology, 10(8):e00068.

OBJECTIVES: Chronic liver disease (CLD) is associated with both alterations of the stool microbiota and increased small intestinal permeability. However, little is known about the role of the small intestinal mucosa-associated microbiota (MAM) in CLD. The aim of this study was to evaluate the relationship between the duodenal MAM and both small intestinal permeability and liver disease severity in CLD.

METHODS: Subjects with CLD and a disease-free control group undergoing routine endoscopy underwent duodenal biopsy to assess duodenal MAM by 16S rRNA gene sequencing. Small intestinal permeability was assessed by a dual sugar (lactulose: rhamnose) assay. Other assessments included transient elastography, endotoxemia, serum markers of hepatic inflammation, dietary intake, and anthropometric measurements.

RESULTS: Forty-six subjects (35 with CLD and 11 controls) were assessed. In subjects with CLD, the composition (P = 0.02) and diversity (P < 0.01) of the duodenal MAM differed to controls. Constrained multivariate analysis and linear discriminate effect size showed this was due to Streptococcus-affiliated lineages. Small intestinal permeability was significantly higher in CLD subjects compared to controls. In CLD, there were inverse correlations between microbial diversity and both increased small intestinal permeability (r = -0.41, P = 0.02) and serum alanine aminotransferase (r = -0.35, P = 0.04). Hepatic stiffness was not associated with the MAM.

DISCUSSION: In CLD, there is dysbiosis of the duodenal MAM and an inverse correlation between microbial diversity and small intestinal permeability.

TRANSLATIONAL IMPACT: Strategies to ameliorate duodenal MAM dysbiosis may ameliorate intestinal barrier dysfunction and liver injury in CLD.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Parvathi A, Jasna V, Aswathy VK, et al (2020)

Dominance of Wolbachia sp. in the deep-sea sediment bacterial metataxonomic sequencing analysis in the Bay of Bengal, Indian Ocean.

Genomics, 112(1):1030-1041.

The Bay of Bengal, located in the north-eastern part of the Indian Ocean is world's largest bay occupying an area of ~8,39,000 mile2. The variability in bacterial community structure and function in sediment ecosystems of the Bay of Bengal is examined by Illumina high-throughput metagenomic sequencing. Of five metataxonomics data sets presented, two (SD1 and SD2) were from stations close to the shore and three (SD4, SD5, and SD6) were from the deep-sea (~3000 m depth). Phylum Proteobacteria (90.27 to 92.52%) dominated the deep-sea samples, whereas phylum Firmicutes (65.35 to 90.98%) dominated the coastal samples. Comparative analysis showed that coastal and deep-sea sediments showed distinct microbial communities. Wolbachia species, belonging to class Alphaproteobacteria was the most dominant species in the deep-sea sediments. The gene functions of bacterial communities were predicted for deep-sea and coastal sediment ecosystems. The results indicated that deep-sea sediment bacterial communities were involved in metabolic activities like dehalogenation and sulphide oxidation.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Knudsen C, Neyrinck AM, Lanthier N, et al (2019)

Microbiota and nonalcoholic fatty liver disease: promising prospects for clinical interventions?.

Current opinion in clinical nutrition and metabolic care, 22(5):393-400.

PURPOSE OF REVIEW: Nonalcoholic fatty liver disease (NAFLD) is becoming the most important cause of chronic liver disease in Western countries but no pharmacological therapy is currently available. Growing evidence suggests that the microbiota plays a role in the occurrence and evolution of this disease, namely through the production of bioactive metabolites.

RECENT FINDINGS: Omics technologies (metagenomic, metabolomic, and phenomic data) allow providing a robust prediction of steatosis. More than just correlations, causative effects of certain bacterial metabolites have been evidenced in vitro and in rodent models. Butyrate has been shown to be a potent metabolic and inflammatory modulator in the liver. Several aromatic amino-acids such as phenylacetic acid, imidazole propionate, and 3-(4-hydroxyphenyl)lactate have been identified as potential inducers of steatosis and hepatic inflammation, whereas indolic compounds (indole and indole-3-acetate) seem to preserve liver integrity. Current clinical trials aim at evaluating the efficacy of novel approaches (functional foods, prebiotic and probiotics, and fecal microbial transplants).

SUMMARY: The microbiota brings new hopes in the management of nonalcoholic fatty liver diseases, including nonalcoholic steatohepatitis. Adequate intervention studies in targeted patients are needed to unravel the relevance of such approaches in the management of those liver diseases.

RevDate: 2020-08-24
CmpDate: 2020-08-24

You YA, Kwon EJ, Choi SJ, et al (2019)

Vaginal microbiome profiles of pregnant women in Korea using a 16S metagenomics approach.

American journal of reproductive immunology (New York, N.Y. : 1989), 82(1):e13124.

PROBLEM: The stability and dominance of Lactobacillus spp. in vaginal fluid are important for reproductive health. However, the characterization of the vaginal microbiota of women with preterm labor (PTL) or preterm premature rupture of membranes (P-PROM), and its association with preterm birth (PTB) are poorly understood.

METHOD OF STUDY: We collected vaginal fluid from women at risk of PTB (n = 58) in five university hospitals in Korea. We performed a hierarchical clustering analysis and classification according to the Lactobacillus spp. and Lactobacillus abundance using Illumina MiSeq sequencing of 16S rRNA gene amplicons.

RESULTS: Women at risk for PTB caused by P-PROM had greater bacterial richness and diversity at the time of admission than those with PTL (P < 0.05). However, they were not significantly different between term and preterm samples. In the classification by Lactobacillus spp., the community commonly dominated by Bacteroides and Lactobacillus crispatus was found for the first time in pregnant women in Korea, and all women with this community delivered preterm. Intriguingly, women with an abundance of Weissella in a Bacteroides-dominant community delivered at term. Moreover, in the classification by Lactobacillus proportion, the abundances of Weissella and Rickettsiales were associated with term deliveries, but the abundances of Bacteroides and Escherichia-Shigella were associated with PTBs (P < 0.05).

CONCLUSION: This result suggests that Lactobacillus abundance-based classification of vaginal fluid may reveal the microbiome associated with PTB. Further studies are needed to investigate the mechanism underlying the link between the microbiome and PTB.

RevDate: 2020-08-20

Vidanaarachchi R, Shaw M, Tang SL, et al (2020)

IMPARO: inferring microbial interactions through parameter optimisation.

BMC molecular and cell biology, 21(Suppl 1):34 pii:10.1186/s12860-020-00269-y.

BACKGROUND: Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.

RESULTS: In this paper we present IMPARO, a method for inferring microbial interactions through parameter optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome which have been previously observed in in-vitro experiments.

CONCLUSIONS: IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.

RevDate: 2020-08-21
CmpDate: 2020-08-21

Butler ÉM, Chiavaroli V, Derraik JGB, et al (2020)

Maternal bacteria to correct abnormal gut microbiota in babies born by C-section.

Medicine, 99(30):e21315.

INTRODUCTION: There is evidence that caesarean section (CS) is associated with increased risk of childhood obesity, asthma, and coeliac disease. The gut microbiota of CS-born babies differs to those born vaginally, possibly due to reduced exposure to maternal vaginal bacteria during birth. Vaginal seeding is a currently unproven practice intended to reduce such differences, so that the gut microbiota of CS-born babies is similar to that of babies born vaginally. Our pilot study, which uses oral administration as a novel form of vaginal seeding, will assess the degree of maternal strain transfer and overall efficacy of the procedure for establishing normal gut microbiota development.

METHODS AND ANALYSIS: Protocol for a single-blinded, randomized, placebo-controlled pilot study of a previously untested method of vaginal seeding (oral administration) in 30 CS-born babies. A sample of maternal vaginal bacteria is obtained prior to CS, and mixed with 5 ml sterile water to obtain a supernatant. Healthy babies are randomized at 1:1 to receive active treatment (3 ml supernatant) or placebo (3 ml sterile water). A reference group of 15 non-randomized vaginal-born babies are also being recruited. Babies' stool samples will undergo whole metagenomic shotgun sequencing to identify potential differences in community structure between CS babies receiving active treatment compared to those receiving placebo at age 1 month (primary outcome). Secondary outcomes include differences in overall gut community between CS groups (24 hours, 3 months); similarity of CS-seeded and placebo gut profiles to vaginally-born babies (24 hours, 1 and 3 months); degree of maternal vaginal strain transfer in CS-born babies (24 hours, 1 and 3 months); anthropometry (1 and 3 months) and body composition (3 months).

ETHICS AND DISSEMINATION: Ethics approval by the Northern A Health and Disability Ethics Committee (18/NTA/49). Results will be published in peer-reviewed journals and presented at international conferences.

REGISTRATION: Australian New Zealand Clinical Trials Registry (ACTRN12618000339257).

RevDate: 2020-08-21
CmpDate: 2020-08-21

Zhou W, Spoto M, Hardy R, et al (2020)

Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin.

Cell, 180(3):454-470.e18.

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.

RevDate: 2020-08-21
CmpDate: 2020-08-21

Peña-Gonzalez A, Soto-Girón MJ, Smith S, et al (2019)

Metagenomic Signatures of Gut Infections Caused by Different Escherichia coli Pathotypes.

Applied and environmental microbiology, 85(24):.

Escherichia coli is a leading contributor to infectious diarrhea and child mortality worldwide, but it remains unknown how alterations in the gut microbiome vary for distinct E. coli pathotype infections and whether these signatures can be used for diagnostic purposes. Further, the majority of enteric diarrheal infections are not diagnosed with respect to their etiological agent(s) due to technical challenges. To address these issues, we devised a novel approach that combined traditional, isolate-based and molecular-biology techniques with metagenomics analysis of stool samples and epidemiological data. Application of this pipeline to children enrolled in a case-control study of diarrhea in Ecuador showed that, in about half of the cases where an E. coli pathotype was detected by culture and PCR, E. coli was likely not the causative agent based on the metagenome-derived low relative abundance, the level of clonality, and/or the virulence gene content. Our results also showed that diffuse adherent E. coli (DAEC), a pathotype that is generally underrepresented in previous studies of diarrhea and thus, thought not to be highly virulent, caused several small-scale diarrheal outbreaks across a rural to urban gradient in Ecuador. DAEC infections were uniquely accompanied by coelution of large amounts of human DNA and conferred significant shifts in the gut microbiome composition relative to controls or infections caused by other E. coli pathotypes. Our study shows that diarrheal infections can be efficiently diagnosed for their etiological agent and categorized based on their effects on the gut microbiome using metagenomic tools, which opens new possibilities for diagnostics and treatment.IMPORTANCEE. coli infectious diarrhea is an important contributor to child mortality worldwide. However, diagnosing and thus treating E. coli infections remain challenging due to technical and other reasons associated with the limitations of the traditional culture-based techniques and the requirement to apply Koch's postulates. In this study, we integrated traditional microbiology techniques with metagenomics and epidemiological data in order to identify cases of diarrhea where E. coli was most likely the causative disease agent and evaluate specific signatures in the disease-state gut microbiome that distinguish between diffuse adherent, enterotoxigenic, and enteropathogenic E. coli pathotypes. Therefore, our methodology and results should be highly relevant for diagnosing and treating diarrheal infections and have important applications in public health.

RevDate: 2020-08-21
CmpDate: 2020-08-21

Wang J, Khokhar I, Ren C, et al (2019)

Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia.

Journal of hazardous materials, 380:120881.

Three bacterial consortia, named YC-SY1, YC-BJ1 and YC-GZ1, were enriched from different areas of China. Bacterial consortia YC-SY1, YC-BJ1 and YC-GZ1 could efficiently degrade triphenyl phosphate (TPhP) (100 mg/L) by approximately 79.4%, 99.8% and 99.6%, tricresyl phosphate (TCrP) by 90.6%, 91.9% and 96.3%, respectively, within 4 days. And they could retain high degrading efficiency under a broad range of temperature (15-40 ℃), pH (6.0-10.0) and salinity (0-4%). A total of 10 bacterial isolates were selected and investigated their degradation capacity. Among these isolates, two were significantly superior to the others. Strain Rhodococcus sp. YC-JH2 could utilize TPhP (50 mg/L) as sole carbon source for growth with 37.36% degradation within 7 days. Strain Sphingopyxis sp. YC-JH3 could efficiently degrade 96.2% of TPhP (50 mg/L) within 7 days, except that no cell growth was observed. Combined with 16S diversity analysis, our results suggest that the effective components of three bacterial consortia responsible for TPhP and TCrP degradation were almost the same, that is, bacteria capable of degrading TPhP and TCrP are limited, in this study, the most efficient component is Sphingopyxis. This study provides abundant microorganism sources for research on organophosphorus flame retardants (OPFRs) metabolism and bioremediation towards OPFRs-contaminated environments.

RevDate: 2020-08-19
CmpDate: 2020-08-19

Banchi E, Ametrano CG, Tordoni E, et al (2020)

Environmental DNA assessment of airborne plant and fungal seasonal diversity.

The Science of the total environment, 738:140249.

Environmental DNA (eDNA) metabarcoding and metagenomics analyses can improve taxonomic resolution in biodiversity studies. Only recently, these techniques have been applied in aerobiology, to target bacteria, fungi and plants in airborne samples. Here, we present a nine-month aerobiological study applying eDNA metabarcoding in which we analyzed simultaneously airborne diversity and variation of fungi and plants across five locations in North and Central Italy. We correlated species composition with the ecological characteristics of the sites and the seasons. The most abundant taxa among all sites and seasons were the fungal genera Cladosporium, Alternaria, and Epicoccum and the plant genera Brassica, Corylus, Cupressus and Linum, the latter being much more variable among sites. PERMANOVA and indicator species analyses showed that the plant diversity from air samples is significantly correlated with seasons, while that of fungi varied according to the interaction between seasons and sites. The results consolidate the performance of a new eDNA metabarcoding pipeline for the simultaneous amplification and analysis of airborne plant and fungal particles. They also highlight the promising complementarity of this approach with more traditional biomonitoring frameworks and routine reports of air quality provided by environmental agencies.

RevDate: 2020-08-19
CmpDate: 2020-08-19

Flores-Orozco D, Patidar R, Levin DB, et al (2020)

Effect of mesophilic anaerobic digestion on the resistome profile of dairy manure.

Bioresource technology, 315:123889.

The effect of mesophilic anaerobic digestion (AD) on the resistome profile of manures from two different dairy farms was evaluated using a metagenomic approach. A total of 187 unique Antibiotic resistance genes (ARGs) for 17 different classes of antibiotics were detected in raw (undigested) manures. The results indicate that regardless of the origin of the dairy manure, mesophilic AD was capable of reducing or enriching the relative abundance of some ARGs. The main driver of these changes was strongly correlated with the evolution of the microbial community during the AD process. Putative ARG hosts were suggested by analyses of the co-occurrence of microbial groups and ARGs. Finally, network analyses revealed that mesophilic AD could also reduce the co-occurrence of different groups of ARGs potentially located in the same genetic elements. Our results provide valuable insights into the microbial mechanisms driving the diversity and abundance of ARGs during mesophilic AD.

RevDate: 2020-08-18
CmpDate: 2020-08-18

Pham TP, Tidjani Alou M, Bachar D, et al (2019)

Gut Microbiota Alteration is Characterized by a Proteobacteria and Fusobacteria Bloom in Kwashiorkor and a Bacteroidetes Paucity in Marasmus.

Scientific reports, 9(1):9084 pii:10.1038/s41598-019-45611-3.

Kwashiorkor and marasmus are considered to be two different clinical diseases resulting from severe malnutrition, but this distinction has been questioned. In a previous study comparing children with kwashiorkor and healthy children from Niger and Senegal, we found a dramatic gut microbiota alteration with a predominant depletion of anaerobes and enrichment in Proteobacteria and Fusobacteria in kwashiorkor. However, it remained unknown whether this association was related to malnutrition or was a specific feature of kwashiorkor. In this continuation study, we added 7 new marasmus subjects and 71,162 new colonies from the same countries. Our results showed that, compared to marasmus, the kwashiorkor gut microbiota was characterized by an increased proportion of Proteobacteria (culturomics, Marasmus 5.0%, Kwashiorkor 16.7%, p < 0.0001; metagenomics, Marasmus 14.7%, Kwashiorkor 22.0%, p = 0.001), but there was a decreased proportion of Bacteroidetes in marasmus (culturomics, Marasmus 0.8%, Kwashiorkor 6.5%, p = 0.001; metagenomics, Marasmus 5.4%, Kwashiorkor 7.0%, p = 0.03). Fusobacterium was more frequently cultured from kwashiorkor. All detected potential pathogenic species were enriched in the kwashiorkor gut microbiota. These results provide a biological basis to support the usage of an antibiotic therapy more effective in suppressing the overgrowth of bacterial communities resistant to penicillin, combined with antioxidants and probiotics for nutritional recovery therapies, particularly for kwashiorkor.

RevDate: 2020-08-17

Thompson AR, Geisen S, BJ Adams (2020)

Shotgun metagenomics reveal a diverse assemblage of protists in a model Antarctic soil ecosystem.

Environmental microbiology [Epub ahead of print].

The soils of the McMurdo Dry Valleys (MDV) of Antarctica are established models for understanding fundamental processes in soil ecosystem functioning (e.g. ecological tipping points, community structuring, and nutrient cycling) because the extreme physical environment drastically reduces biodiversity and ecological complexity. Understanding the functioning of MDV soils requires in-depth knowledge of the diversity of MDV soil species. Protists, which contribute significantly to soil ecosystem functioning worldwide, remain poorly characterized in the MDV. To better assess the diversity of MDV protists, we performed shotgun metagenomics on 18 sites representing a variety of landscape features and edaphic variables. Our results show MDV soil protists are diverse at both the genus (155 of 281 eukaryote genera) and family (120) levels, but comprise only 6% of eukaryotic reads. Protists are structured by moisture, total N, and distance from the local coast, and possess limited richness in arid (<5% moisture) and at high elevation sites, known drivers of communities in the MDV. High relative diversity and broad distribution of protists in our study promotes these organisms as key members of MDV soil microbiomes and the MDV as a useful system for understanding the contribution of soil protists to the structure of soil microbiomes. SIGNIFICANCE: The McMurdo Dry Valley ecosystem is an established model for understanding the relationship between soil biodiversity and fundamental ecosystem processes, but the diversity and physical drivers of protists in this system are poorly understood. This paper lays the groundwork for integrating the biodiversity and ecology of soil protists into a comprehensive ecological framework of the McMurdo Dry Valley ecosystem and contributes to our understanding of the biodiversity of protist communities in polar regions. This article is protected by copyright. All rights reserved.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Polster SP, Sharma A, Tanes C, et al (2020)

Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma.

Nature communications, 11(1):2659.

Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have been implicated in CA pathogenesis, and pilot study had suggested potential microbiome differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We here assess microbiome differences in a larger cohort of human subjects with and without CA, and among subjects with different clinical features, and conduct more definitive microbial analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial species in CA patients is shown, consistent with postulated permissive microbiome driving CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome differences are related to CA clinical behavior. Weighted combinations of microbiome signatures and plasma inflammatory biomarkers enhance associations with disease severity and hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome in a human neurovascular disease.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Chakraborty A, Ruff SE, Dong X, et al (2020)

Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres.

Proceedings of the National Academy of Sciences of the United States of America, 117(20):11029-11037.

Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Zhao F, Zhou G, Liu X, et al (2019)

Dietary Protein Sources Differentially Affect the Growth of Akkermansia muciniphila and Maintenance of the Gut Mucus Barrier in Mice.

Molecular nutrition & food research, 63(23):e1900589.

SCOPE: The gut microbiota plays an essential role in linking diet to host health. The specific role of different dietary proteins on the gut microbiota and health is less understood. Here, the impact of proteins derived from chicken and soy on the gut microbiota and host gut barrier in C57BL/6 mice is investigated.

METHODS AND RESULTS: Specific-pathogen-free and germ-free mice are assigned to either a chicken- or a soy protein-based diet for 4 weeks. Compared with a chicken-protein-based diet, intake of a soy-protein-based diet reduces the abundance of A. muciniphila and the number of goblet cells, lowers the level of Muc2 mRNA, and decreases the thickness of the mucus layer in the colon of specific-pathogen-free mice. In germ-free mice, colonization with A. muciniphila combined with intake of a chicken-protein-based diet results in a higher expression of the Muc2 mRNA in colon, and surprisingly, an increased potential for oxidative phosphorylation in A. muciniphila compared with colonized mice fed a soy-protein-based diet.

CONCLUSION: These findings suggest possible mutually beneficial interactions between the growth and function of A. muciniphila and host mucus barrier in response to intake of a chicken-protein-based diet contrasting the intake of a soy-protein-based diet.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Deng L, Silins R, Castro-Mejía JL, et al (2019)

A Protocol for Extraction of Infective Viromes Suitable for Metagenomics Sequencing from Low Volume Fecal Samples.

Viruses, 11(7):.

The human gut microbiome (GM) plays an important role in human health and diseases. However, while substantial progress has been made in understanding the role of bacterial inhabitants of the gut, much less is known regarding the viral component of the GM. Bacteriophages (phages) are viruses attacking specific host bacteria and likely play important roles in shaping the GM. Although metagenomic approaches have led to the discoveries of many new viruses, they remain largely uncultured as their hosts have not been identified, which hampers our understanding of their biological roles. Existing protocols for isolation of viromes generally require relatively high input volumes and are generally more focused on extracting nucleic acids of good quality and purity for down-stream analysis, and less on purifying viruses with infective capacity. In this study, we report the development of an efficient protocol requiring low sample input yielding purified viromes containing phages that are still infective, which also are of sufficient purity for genome sequencing. We validated the method through spiking known phages followed by plaque assays, qPCR, and metagenomic sequencing. The protocol should facilitate the process of culturing novel viruses from the gut as well as large scale studies on gut viromes.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Santiago-Rodriguez TM, EB Hollister (2019)

Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut.

Viruses, 11(7):.

The virome is comprised of endogenous retroviruses, eukaryotic viruses, and bacteriophages and is increasingly being recognized as an essential part of the human microbiome. The human virome is associated with Type-1 diabetes (T1D), Type-2 diabetes (T2D), Inflammatory Bowel Disease (IBD), Human Immunodeficiency Virus (HIV) infection, and cancer. Increasing evidence also supports trans-kingdom interactions of viruses with bacteria, small eukaryotes and host in disease progression. The present review focuses on virus ecology and biology and how this translates mostly to human gut virome research. Current challenges in the field and how the development of bioinformatic tools and controls are aiding to overcome some of these challenges are also discussed. Finally, the present review also focuses on how human gut virome research could result in translational and clinical studies that may facilitate the development of therapeutic approaches.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Visnovska T, Biggs PJ, Schmeier S, et al (2019)

Metagenomics and transcriptomics data from human colorectal cancer.

Scientific data, 6(1):116 pii:10.1038/s41597-019-0117-3.

Colorectal cancer is a heterogenous and mostly sporadic disease, the development of which is associated with microbial dysbiosis. Recent advances in subtype classification have successfully stratified the disease using molecular profiling. To understand potential relationships between molecular mechanisms differentiating the subtypes of colorectal cancer and composition of gut microbial community, we classified a set of 34 tumour samples into molecular subtypes using RNA-sequencing gene expression profiles and determined relative abundances of bacterial taxonomic groups. To identify bacterial community composition, 16S rRNA amplicon metabarcoding was used as well as whole genome metagenomics of the non-human part of RNA-sequencing data. The generated data expands the collection of the data sources related to the disease and connects molecular aspects of the cancer with environmental impact of microbial community.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Luiken REC, Van Gompel L, Munk P, et al (2019)

Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries.

The Journal of antimicrobial chemotherapy, 74(9):2596-2604.

OBJECTIVES: To determine associations between farm- and flock-level antimicrobial usage (AMU), farm biosecurity status and the abundance of faecal antimicrobial resistance genes (ARGs) on broiler farms.

METHODS: In the cross-sectional pan-European EFFORT study, conventional broiler farms were visited and faeces, AMU information and biosecurity records were collected. The resistomes of pooled faecal samples were determined by metagenomic analysis for 176 farms. A meta-analysis approach was used to relate total and class-specific ARGs (expressed as fragments per kb reference per million bacterial fragments, FPKM) to AMU (treatment incidence per DDD, TIDDDvet) per country and subsequently across all countries. In a similar way, the association between biosecurity status (Biocheck.UGent) and the resistome was explored.

RESULTS: Sixty-six (38%) flocks did not report group treatments but showed a similar resistome composition and roughly similar ARG levels to antimicrobial-treated flocks. Nevertheless, we found significant positive associations between β-lactam, tetracycline, macrolide and lincosamide, trimethoprim and aminoglycoside antimicrobial flock treatments and ARG clusters conferring resistance to the same class. Similar associations were found with purchased products. In gene-level analysis for β-lactams and macrolides, lincosamides and streptogramins, a significant positive association was found with the most abundant gene clusters blaTEM and erm(B). Little evidence was found for associations with biosecurity.

CONCLUSIONS: The faecal microbiome in European broilers contains a high diversity of ARGs, even in the absence of current antimicrobial selection pressure. Despite this, the relative abundance of genes and the composition of the resistome is positively related to AMU in European broiler farms for several antimicrobial classes.

RevDate: 2020-08-14
CmpDate: 2020-08-14

Bonilla-Rosso G, Steiner T, Wichmann F, et al (2020)

Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota.

Proceedings of the National Academy of Sciences of the United States of America, 117(13):7355-7362.

The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.

RevDate: 2020-08-13
CmpDate: 2020-08-13

Lawrence D, Baldridge MT, SA Handley (2019)

Phages and Human Health: More Than Idle Hitchhikers.

Viruses, 11(7):.

Bacteriophages, or phages, are viruses that infect bacteria and archaea. Phages have diverse morphologies and can be coded in DNA or RNA and as single or double strands with a large range of genome sizes. With the increasing use of metagenomic sequencing approaches to analyze complex samples, many studies generate massive amounts of "viral dark matter", or sequences of viral origin unable to be classified either functionally or taxonomically. Metagenomic analysis of phages is still in its infancy, and uncovering novel phages continues to be a challenge. Work over the past two decades has begun to uncover key roles for phages in different environments, including the human gut. Recent studies in humans have identified expanded phage populations in both healthy infants and in inflammatory bowel disease patients, suggesting distinct phage activity during development and in specific disease states. In this review, we examine our current knowledge of phage biology and discuss recent efforts to improve the analysis and discovery of novel phages. We explore the roles phages may play in human health and disease and discuss the future of phage research.

RevDate: 2020-08-12
CmpDate: 2020-08-12

Tian M, Chen M, Bao Y, et al (2019)

Microbial contributions to bronchial asthma occurrence in children: A metagenomic study.

Journal of cellular biochemistry, 120(8):13853-13860.

Bronchial asthma, a common chronic respiratory disease in children, is traditionally regarded as a noninfectious disease. Current hypotheses, however, argue that asthma can be caused by microbial infection. We, therefore, hypothesize that a variety of microbes are more commonly found in the sputum of children with asthma, and these microbes may contribute to the occurrence and development of asthma. The present study proposes to use metagenomic approach to explore microbial diversity and to identify the microbial community characteristics of sputum from children with asthma. We found that microbial communities in the sputum of children differed significantly between asthmatics and controls. Kruskal-Wallis testing showed that 16 phyla, 104 genera, and 159 species were significantly downregulated, whereas two phyla including Platyhelminthes phylum and Chordata phylum, two genera including Spirometra genus and Homo sapiens, and the Spirometra erinaceieuropaei species were significantly upregulated in asthma patients compared with controls (P < 0.05). Among them, H. sapiens and S. erinaceieuropaei exhibited 2.3- and 2.0-fold overabundance in asthmatics vs controls, respectively. Meanwhile, metastats assay demonstrated that 31 phyla, 400 genera, and 813 species were significantly downregulated, whereas two phyla, 10 genera, and 16 species were significantly upregulated in asthma patients compared with controls (P < 0.05). Among them, Tetrahymena thermophila and Candidatus Zinderia insecticola exhibited 4.7-fold overabundance in asthmatics vs controls. Our study establishes a link between microbial infection and the mechanisms leading to asthma development, which will be useful for developing novel diagnostic biomarkers and aiding in the prevention and control of asthma.

RevDate: 2020-08-11
CmpDate: 2020-08-11

Tikariha H, HJ Purohit (2020)

Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics.

Archives of microbiology, 202(6):1269-1274.

Environmental factors and available nutrients influence microbial communities, and with that, there exists a dynamic shift in community structure and hierarchy in wastewater treatment systems. Of the various factors, the availability and gradient of oxygen selectively enrich a typical microbial community and also form the community stratification which could be established through metagenomics studies. In recent years, metagenomics with various sets of bioinformatics tools has assisted in exploration and better insight into the organization and relation of the taxonomical and functional composition and associate physiological intelligence of the microbial communities. The microbial communities, under defined conditions acquire a typical hierarchy with flexible but active network of the metabolic route, which ensures the survival needs of every member residing in that community and their abundance. This knowledge of community functional organization defines the rule in designing and improving biodegradation processes in case of both aerobic and anaerobic systems.

RevDate: 2020-08-11
CmpDate: 2020-08-11

Deutscher AT, Chapman TA, Shuttleworth LA, et al (2019)

Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs.

BMC microbiology, 19(Suppl 1):287.

BACKGROUND: The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field.

METHODS: We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota.

RESULTS: Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies' gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts' development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies.

CONCLUSIONS: Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs.

RevDate: 2020-08-11
CmpDate: 2020-08-11

Wang J, Gu X, Yang J, et al (2019)

Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia.

Frontiers in cellular and infection microbiology, 9:409.

Objective: To characterize the gut microbiota in patients with preeclampsia (PE) compared with healthy controls. Methods: We analyzed and compared the microbiota communities in the feces of 48 PE patients with 48 age-, gestational weeks-, and pre-pregnancy body mass index-matched healthy controls using 16S rRNA gene sequencing, and also we tested fecal and plasma lipopolysaccharide (LPS) and plasma trimethylamine-N-oxide (TMAO) concentration levels in the two groups. Results: Compared with the control group, microbial alpha diversity was lower in the PE group, but there was no statistically significant difference between the two groups. At the phylum level, Firmicutes (51.64% PE vs. 59.62% Control, P < 0.05), Bacteroidetes (40.51% PE vs. 34.81% Control, P< 0.05), Proteobacteria (4.51% PE vs. 2.56% Control, P < 0.05), and Actinobacteria (2.90% PE vs. 1.77% Control, P < 0.05), exhibited significant differences between the PE group and the control group. LEfSe analysis found 17 differentially abundant taxa between the two groups. PICRUSt analysis found that in the KEGG pathways, the microbial gene functions related to LPS biosynthesis were higher in the fecal microbiome of the PE group. The fecal and plasma LPS concentrations and plasma TMAO concentrations of PE patients were higher than those of the healthy controls. Conclusion: PE patients had gut microbiota dysbiosis and increased plasma LPS and TMAO levels, which will lead to a better understanding of the relationship between the gut microbiota and PE.

RevDate: 2020-08-11
CmpDate: 2020-08-11

Zhou K, Zhang R, Sun J, et al (2019)

Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.

Applied and environmental microbiology, 85(22):.

In deep-sea hydrothermal vent environments, sulfur-oxidizing bacteria belonging to the clade SUP05 are crucial symbionts of invertebrate animals. Marine viruses, as the most abundant biological entities in the ocean, play essential roles in regulating the sulfur metabolism of the SUP05 bacteria. To date, vent sponge-associated SUP05 and their phages have not been well documented. The current study analyzed microbiomes of Haplosclerida sponges from hydrothermal vents in the Okinawa Trough and recovered the dominant SUP05 genome, designated VS-SUP05. Phylogenetic analysis showed that VS-SUP05 was closely related to endosymbiotic SUP05 strains from mussels living in deep-sea hydrothermal vent fields. Homology and metabolic pathway comparisons against free-living and symbiotic SUP05 strains revealed that the VS-SUP05 genome shared many features with the deep-sea mussel symbionts. Supporting a potentially symbiotic lifestyle, the VS-SUP05 genome contained genes involved in the synthesis of essential amino acids and cofactors that are desired by the host. Analysis of sponge-associated viral sequences revealed putative VS-SUP05 phages, all of which were double-stranded viruses belonging to the families Myoviridae, Siphoviridae, Podoviridae, and Microviridae Among the phage sequences, one contig contained metabolic genes (iscR, iscS, and iscU) involved in iron-sulfur cluster formation. Interestingly, genome sequence comparison revealed horizontal transfer of the iscS gene among phages, VS-SUP05, and other symbiotic SUP05 strains, indicating an interaction between marine phages and SUP05 symbionts. Overall, our findings confirm the presence of SUP05 bacteria and their phages in sponges from deep-sea vents and imply a beneficial interaction that allows adaptation of the host sponge to the hydrothermal vent environment.IMPORTANCE Chemosynthetic SUP05 bacteria dominate the microbial communities of deep-sea hydrothermal vents around the world, SUP05 bacteria utilize reduced chemical compounds in vent fluids and commonly form symbioses with invertebrate organisms. This symbiotic relationship could be key to adapting to such unique and extreme environments. Viruses are the most abundant biological entities on the planet and have been identified in hydrothermal vent environments. However, their interactions with the symbiotic microbes of the SUP05 clade, along with their role in the symbiotic system, remain unclear. Here, using metagenomic sequence-based analyses, we determined that bacteriophages may support metabolism in SUP05 bacteria and play a role in the sponge-associated symbiosis system in hydrothermal vent environments.

RevDate: 2020-08-10

Khamis FM, Ombura FLO, Akutse KS, et al (2020)

Insights in the Global Genetics and Gut Microbiome of Black Soldier Fly, Hermetia illucens: Implications for Animal Feed Safety Control.

Frontiers in microbiology, 11:1538.

The utilization of the black soldier fly (BSF) Hermetia illucens L. for recycling organic waste into high-quality protein and fat biomass for animal feeds has gained momentum worldwide. However, information on the genetic diversity and environmental implications on safety of the larvae is limited. This study delineates genetic variability and unravels gut microbiome complex of wild-collected and domesticated BSF populations from six continents using mitochondrial COI gene and 16S metagenomics. All sequences generated from the study linked to H. illucens accessions KM967419.1, FJ794355.1, FJ794361.1, FJ794367.1, KC192965.1, and KY817115.1 from GenBank. Phylogenetic analyses of the sequences generated from the study and rooted by GenBank accessions of Hermetia albitarsis Fabricius and Hermetia sexmaculata Macquart separated all samples into three branches, with H. illucens and H. sexmaculata being closely related. Genetic distances between H. illucens samples from the study and GenBank accessions of H. illucens ranged between 0.0091 and 0.0407 while H. sexmaculata and H. albitarsis samples clearly separated from all H. illucens by distances of 0.1745 and 0.1903, respectively. Genetic distance matrix was used to generate a principal coordinate plot that further confirmed the phylogenetic clustering. Haplotype network map demonstrated that Australia, United States 1 (Rhode Island), United States 2 (Colorado), Kenya, and China shared a haplotype, while Uganda shared a haplotype with GenBank accession KC192965 BSF from United States. All other samples analyzed had individual haplotypes. Out of 481,695 reads analyzed from 16S metagenomics, four bacterial families (Enterobactereaceae, Dysgonomonadaceae, Wohlfahrtiimonadaceae, and Enterococcaceae) were most abundant in the BSF samples. Alpha-diversity, as assessed by Shannon index, showed that the Kenyan and Thailand populations had the highest and lowest microbe diversity, respectively; while microbial diversity assessed through Bray Curtis distance showed United States 3 (Maysville) and Netherlands populations to be the most dissimilar. Our findings on genetic diversity revealed slight phylogeographic variation between BSF populations across the globe. The 16S data depicted larval gut bacterial families with economically important genera that might pose health risks to both animals and humans. This study recommends pre-treatment of feedstocks and postharvest measures of the harvested BSF larvae to minimize risk of pathogen contamination along the insect-based feed value chain.

RevDate: 2020-08-10
CmpDate: 2020-08-10

Kouchaki S, Tapinos A, DL Robertson (2019)

A signal processing method for alignment-free metagenomic binning: multi-resolution genomic binary patterns.

Scientific reports, 9(1):2159.

Algorithms in bioinformatics use textual representations of genetic information, sequences of the characters A, T, G and C represented computationally as strings or sub-strings. Signal and related image processing methods offer a rich source of alternative descriptors as they are designed to work in the presence of noisy data without the need for exact matching. Here we introduce a method, multi-resolution local binary patterns (MLBP) adapted from image processing to extract local 'texture' changes from nucleotide sequence data. We apply this feature space to the alignment-free binning of metagenomic data. The effectiveness of MLBP is demonstrated using both simulated and real human gut microbial communities. Sequence reads or contigs can be represented as vectors and their 'texture' compared efficiently using machine learning algorithms to perform dimensionality reduction to capture eigengenome information and perform clustering (here using randomized singular value decomposition and BH-tSNE). The intuition behind our method is the MLBP feature vectors permit sequence comparisons without the need for explicit pairwise matching. We demonstrate this approach outperforms existing methods based on k-mer frequencies. The signal processing method, MLBP, thus offers a viable alternative feature space to textual representations of sequence data. The source code for our Multi-resolution Genomic Binary Patterns method can be found at https://github.com/skouchaki/MrGBP .

RevDate: 2020-08-07
CmpDate: 2020-08-07

Curtis K, Stewart CJ, Robinson M, et al (2019)

Insular resting state functional connectivity is associated with gut microbiota diversity.

The European journal of neuroscience, 50(3):2446-2452.

The gut microbiota has recently gained attention as a possible modulator of brain activity. A number of reports suggest that the microbiota may be associated with neuropsychiatric conditions such as major depressive disorder, autism and anxiety. The gut microbiota is thought to influence the brain via vagus nerve signalling, among other possible mechanisms. The insula processes and integrates these vagal signals. To determine if microbiota diversity and structure modulate brain activity, we collected faecal samples and examined insular function using resting state functional connectivity (RSFC). Thirty healthy participants (non-smokers, tobacco smokers and electronic cigarette users, n = 10 each) were studied. We found that the RSFC between the insula and several regions (frontal pole left, lateral occipital cortex right, lingual gyrus right and cerebellum 4, 5 and vermis 9) were associated with bacterial microbiota diversity and structure. In addition, two specific bacteria genera, Prevotella and Bacteroides, were specifically different in tobacco smokers and also associated with insular connectivity. In conclusion, we show that insular connectivity is associated with microbiome diversity, structure and at least two specific bateria genera. Furthemore, this association is potentially modulated by tobacco smoking, although the sample sizes for the different smoking groups were small and this result needs validation in a larger cohort. While replication is necessary, the microbiota is a readily accessible therapeutic target for modulating insular connectivity, which has previously been shown to be abnormal in anxiety and tobacco use disorders.

RevDate: 2020-08-06
CmpDate: 2020-08-06

Tong Y, Zheng L, Qing P, et al (2019)

Oral Microbiota Perturbations Are Linked to High Risk for Rheumatoid Arthritis.

Frontiers in cellular and infection microbiology, 9:475.

Oral microbial dysbiosis is known to increase susceptibility of an individual to develop rheumatoid arthritis (RA). Individuals at-risk of RA may undergo different phases of disease progression. In this study, we aim to investigate whether and whereby the oral microbiome communities alter prior to symptoms of RA. Seventy-nine saliva samples were collected from 29 high-risk individuals, who were positive for anti-citrullinated protein antibodies (ACPA) and have no clinical arthritis, 27 RA patients and 23 healthy controls (HCs). The salivary microbiome was examined using 16S ribosomal RNA gene sequencing. Alpha and beta diversity analysis and the linear discriminant analysis were applied to examine the bacterial diversity, community structure and discriminatory taxa between three groups, respectively. The correlation between salivary bacteria and autoantibodies were analyzed. In the "pre-clinical" stages, salivary microbial diversity was significantly reduced comparing to RA patients and HCs. In contrast to HCs, like RA patients, individuals at high-risk for RA showed a reduction in the abundance of genus Defluviitaleaceae_UCG-011 and the species Neisseria oralis, but an expansion of Prevotella_6. Unexpectedly, the relative abundance of Porphyromonas gingivalis, reported as opportunistic pathogens for RA development, was significantly decreased in high-risk individuals. Additionally, we identified four genera in the saliva from high-risk individuals positively correlated with serum ACPA titers, and the other two genera inversely displayed. In summary, we observed a characteristic compositional change of salivary microbes in individuals at high-risk for RA, suggesting that oral microbiota dysbiosis occurs in the "pre-clinical" stage of RA and are correlated with systemic autoimmune features.

RevDate: 2020-08-06
CmpDate: 2020-08-06

Goloshchapov OV, Olekhnovich EI, Sidorenko SV, et al (2019)

Long-term impact of fecal transplantation in healthy volunteers.

BMC microbiology, 19(1):312.

BACKGROUND: Fecal microbiota transplantation (FMT) has been recently approved by FDA for the treatment of refractory recurrent clostridial colitis (rCDI). Success of FTM in treatment of rCDI led to a number of studies investigating the effectiveness of its application in the other gastrointestinal diseases. However, in the majority of studies the effects of FMT were evaluated on the patients with initially altered microbiota. The aim of our study was to estimate effects of FMT on the gut microbiota composition in healthy volunteers and to monitor its long-term outcomes.

RESULTS: We have performed a combined analysis of three healthy volunteers before and after capsule FMT by evaluating their general condition, adverse clinical effects, changes of basic laboratory parameters, and several immune markers. Intestinal microbiota samples were evaluated by 16S rRNA gene and shotgun sequencing. The data analysis demonstrated profound shift towards the donor microbiota taxonomic composition in all volunteers. Following FMT, all the volunteers exhibited gut colonization with donor gut bacteria and persistence of this effect for almost ∼1 year of observation. Transient changes of immune parameters were consistent with suppression of T-cell cytotoxicity. FMT was well tolerated with mild gastrointestinal adverse events, however, one volunteer developed a systemic inflammatory response syndrome.

CONCLUSIONS: The FMT leads to significant long-term changes of the gut microbiota in healthy volunteers with the shift towards donor microbiota composition and represents a relatively safe procedure to the recipients without long-term adverse events.

RevDate: 2020-08-05
CmpDate: 2020-08-05

Kleyer H, Tecon R, D Or (2019)

Rapid Shifts in Bacterial Community Assembly under Static and Dynamic Hydration Conditions in Porous Media.

Applied and environmental microbiology, 86(1):.

The complexity of natural soils presents a challenge to the systematic identification and disentanglement of governing processes that shape natural bacterial communities. Studies have highlighted the critical role of the soil aqueous phase in shaping interactions among soil bacterial communities. To quantify and improve the attributability of soil aqueous-phase effects, we introduced a synthetic and traceable bacterial community to simple porous microcosms and subjected the community to constant or dynamic hydration conditions. The results were expressed in terms of absolute abundance and show species-specific responses to hydration and nutrient conditions. Hydration dynamics exerted a significant influence on the fraction of less-abundant species, especially after extended incubation periods. Phylogenetic relationships did not explain the group of most abundant species. The ability to quantify species-level dynamics in a bacterial community offers an important step toward deciphering the links between community composition and functions in dynamic terrestrial environments.IMPORTANCE The composition and activity of soil bacteria are central to various ecosystem services and soil biogeochemical cycles. A key factor for soil bacterial activity is soil hydration, which is in a constant state of change due to rainfall, drainage, plant water uptake, and evaporation. These dynamic changes in soil hydration state affect the structure and function of soil bacterial communities in complex ways often unobservable in natural soil. We designed an experimental system that retains the salient features of hydrated soil yet enables systematic evaluation of changes in a representative bacterial community in response to cycles of wetting and drying. The study shows that hydration cycles affect community abundance, yet most changes in composition occur with the less-abundant species (while the successful ones remain dominant). This research offers a new path for an improved understanding of bacterial community assembly in natural environments, including bacterial growth, maintenance, and death, with a special focus on the role of hydrological factors.

RevDate: 2020-08-05
CmpDate: 2020-08-05

Ye L, Chan EWC, S Chen (2019)

Selective and suppressive effects of antibiotics on donor and recipient bacterial strains in gut microbiota determine transmission efficiency of blaNDM-1-bearing plasmids.

The Journal of antimicrobial chemotherapy, 74(7):1867-1875.

OBJECTIVES: To test whether antibiotics of different functional categories exhibit differential potential in promoting transmission of MDR-encoding plasmids among members of the gut microbiome.

METHODS: Rats inoculated with blaNDM-1-bearing Klebsiella pneumoniae were subjected to treatment with different types of antibiotics. The structural changes in the gastrointestinal (GI) tract microbiome were determined by 16S rRNA sequencing and analysis. In addition, the efficiency of transmission of blaNDM-1-bearing plasmids to different subtypes of GI tract Escherichia coli was also confirmed in vitro.

RESULTS: We showed that drugs that are commonly used to treat Gram-negative bacterial infections, such as ampicillin and amoxicillin, could enrich both carbapenem-resistant Enterobacteriaceae (CRE) and antibiotic-susceptible E. coli in the GI tract, thereby promoting transmission of the blaNDM-1-bearing plasmid in the gut microbiome. In contrast, meropenem was found to minimize the population of CRE in the gut microbiome, hence treatment with this drug exhibited drastically lower potential to promote transmission of the blaNDM-1-bearing plasmid to the recipient strains. We further showed that an increased population size of Proteobacteria due to a suppressive effect on Firmicutes is a key factor in enhancing the efficiency of transmission of the blaNDM-1-bearing plasmid and hence dissemination of carbapenem-resistant strains.

CONCLUSIONS: This study depicted for the first time the effect of different antibiotics on the structure of the rat GI tract microbiome, which in turn determined the pattern and rate of transmission of the blaNDM-1-bearing plasmid. Such findings can help establish new guidelines for prudent antibiotic usage to minimize the chance of dissemination of mobile resistance elements among members of the GI tract microbiome.

RevDate: 2020-08-04
CmpDate: 2020-08-04

Mauras A, Wopereis H, Yeop I, et al (2019)

Gut microbiota from infant with cow's milk allergy promotes clinical and immune features of atopy in a murine model.

Allergy, 74(9):1790-1793.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )