About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

04 Dec 2023 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Archaea


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 04 Dec 2023 at 01:30 Created: 


In 1977, Carl Woese and George Fox applied molecular techniques to biodiversity and discovered that life on Earth consisted of three, not two (prokaryotes and eukaryotes), major lineages, tracing back nearly to the very origin of life on Earth. The third lineage has come to be known as the Archaea. Organisms now considered Archaea were originally thought to be a kind of prokaryote, but Woese and Fox showed that they were as different from prokaryotes as they were from eukaryotes. To understand life on Earth one must also understand the Archaea .

Created with PubMed® Query: ( archaea[TITLE] OR archaebacteria[TITLE] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2023-12-02

Diaz GR, Gaire TN, Ferm P, et al (2023)

Effect of castration timing and weaning strategy on the taxonomic and functional profile of ruminal bacteria and archaea of beef calves.

Animal microbiome, 5(1):61.

BACKGROUND: Beef cattle experience several management challenges across their lifecycle. Castration and weaning, two major interventions in the early life of beef cattle, can have a substantial impact on animal performance. Despite the key role of the rumen microbiome on productive traits of beef cattle, the effect of castration timing and weaning strategy on this microbial community has not been formally described. We assessed the effect of four castration time windows (at birth, turnout, pre-weaning and weaning) and two weaning strategies (fence-line and truck transportation) on the rumen microbiome in a randomized controlled study with 32 male calves across 3 collection days (i.e., time points). Ruminal fluid samples were submitted to shotgun metagenomic sequencing and changes in the taxonomic (microbiota) and functional profile (metagenome) of the rumen microbiome were described.

RESULTS: Using a comprehensive yet stringent taxonomic classification approach, we identified 10,238 unique taxa classified under 40 bacterial and 7 archaeal phyla across all samples. Castration timing had a limited long-term impact on the rumen microbiota and was not associated with changes in alpha and beta diversity. The interaction of collection day and weaning strategy was associated with changes in the rumen microbiota, which experienced a significant decrease in alpha diversity and shifts in beta diversity within 48 h post-weaning, especially in calves abruptly weaned by truck transportation. Calves weaned using a fence-line weaning strategy had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and Ruminococcus genera compared to calves weaned by truck transportation. Some genes involved in the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had higher relative abundance in fence-line-weaned calves post-weaning. The antimicrobial resistance gene tetW consistently represented more than 50% of the resistome across time, weaning and castration groups, without significant changes in relative abundance.

CONCLUSIONS: Within the context of this study, castration timing had limited long-term effects on the rumen microbiota, while weaning strategy had short-term effects on the rumen microbiota and methane-associated metagenome, but not on the rumen resistome.

RevDate: 2023-12-02

Protasov E, Nonoh JO, Kästle Silva JM, et al (2023)

Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods.

Frontiers in microbiology, 14:1281628.

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

RevDate: 2023-11-29

Sun F, Wang Y, Wang Y, et al (2023)

Insights into the spatial distributions of bacteria, archaea, ammonia-oxidizing bacteria and archaea communities in sediments of Daya Bay, northern South China Sea.

Marine pollution bulletin, 198:115850 pii:S0025-326X(23)01285-7 [Epub ahead of print].

Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.

RevDate: 2023-11-29

Huber M, Vogel N, Borst A, et al (2023)

Unidirectional gene pairs in archaea and bacteria require overlaps or very short intergenic distances for translational coupling via termination-reinitiation and often encode subunits of heteromeric complexes.

Frontiers in microbiology, 14:1291523.

Genomes of bacteria and archaea contain a much larger fraction of unidirectional (serial) gene pairs than convergent or divergent gene pairs. Many of the unidirectional gene pairs have short overlaps of -4 nt and -1 nt. As shown previously, translation of the genes in overlapping unidirectional gene pairs is tightly coupled. Two alternative models for the fate of the post-termination ribosome predict either that overlaps or very short intergenic distances are essential for translational coupling or that the undissociated post-termination ribosome can scan through long intergenic regions, up to hundreds of nucleotides. We aimed to experimentally resolve the contradiction between the two models by analyzing three native gene pairs from the model archaeon Haloferax volcanii and three native pairs from Escherichia coli. A two reporter gene system was used to quantify the reinitiation frequency, and several stop codons in the upstream gene were introduced to increase the intergenic distances. For all six gene pairs from two species, an extremely strong dependence of the reinitiation efficiency on the intergenic distance was unequivocally demonstrated, such that even short intergenic distances of about 20 nt almost completely abolished translational coupling. Bioinformatic analysis of the intergenic distances in all unidirectional gene pairs in the genomes of H. volcanii and E. coli and in 1,695 prokaryotic species representative of 49 phyla showed that intergenic distances of -4 nt or -1 nt (= short gene overlaps of 4 nt or 1 nt) were by far most common in all these groups of archaea and bacteria. A small set of genes in E. coli, but not in H. volcanii, had intergenic distances of around +10 nt. Our experimental and bioinformatic analyses clearly show that translational coupling requires short gene overlaps, whereas scanning of intergenic regions by the post-termination ribosome occurs rarely, if at all. Short overlaps are enriched among genes that encode subunits of heteromeric complexes, and co-translational complex formation requiring precise subunit stoichiometry likely confers an evolutionary advantage that drove the formation and conservation of overlapping gene pairs during evolution.

RevDate: 2023-11-29
CmpDate: 2023-11-29

Mara P, Geller-McGrath D, Edgcomb V, et al (2023)

Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface.

Nature communications, 14(1):7768.

Previous studies of microbial communities in subseafloor sediments reported that microbial abundance and diversity decrease with sediment depth and age, and microbes dominating at depth tend to be a subset of the local seafloor community. However, the existence of geographically widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin (Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and archaea along thermal, geochemical and cell count gradients. We find that the composition and distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as temperatures remain moderate, but downcore increasing temperatures beyond ca. 45 ºC override other factors. Consistently, MAG size and diversity decrease with increasing temperature, indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition towards a specialized deep, hot biosphere.

RevDate: 2023-11-27
CmpDate: 2023-11-27

Yang Y, Liu H, Zhang Y, et al (2023)

Contribution of ammonia-oxidizing archaea and bacteria to nitrogen transformation in a soil fertilized with urea and organic amendments.

Scientific reports, 13(1):20722.

The contribution of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) is crucial for nitrogen transformation. The effects of four organic amendments (OAs) plus urea on soil nitrogen transformation and the contribution of the ammonia-oxidizing microbial community were investigated using an incubation experiment. The OAs plus urea treatments included pig manure plus urea (PM + U), wheat straw plus urea (WS + U), compost plus urea (CP + U) and improved-compost plus urea (IC + U), while no OAs and urea amended control was noted as CK. The abundance and composition of AOA and AOB were determined using high through-put sequencing. Compared with CK, the OA plus urea treatments significantly enhanced the amount of total mineralized nitrogen released during the incubation process. After incubation, the highest mineralized nitrogen and net nitrogen mineralization was under the PM + U treatment and the lowest was in the WS + U treatment. In conclusion, among all OA plus urea treatments, the microbial biomass nitrogen content was the highest in WS + U treatment and dissolved organic nitrogen content was the highest with the PM + U treatment. Additionally, the abundance of AOB was inhibited in comparison to that of AOA; however, AOB contributed more to nitrification than AOA. Soil NO3[-]-N and dissolved organic nitrogen were the principal components influencing the distribution of AOA and AOB. The result illustrated that the OAs plus urea, especially PM plus urea promoted mineralization to produce more dissolved organic nitrogen and NH4[+]-N, thus accelerating the growth of AOB to strengthen nitrification in soil.

RevDate: 2023-11-25

Zhang Z, Bo L, Wang S, et al (2023)

Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge.

Environmental research pii:S0013-9351(23)02543-4 [Epub ahead of print].

In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.

RevDate: 2023-11-25

Borrel G, Fadhlaoui K, Ben Hania W, et al (2023)

Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov.

Microorganisms, 11(11):.

The methanogenic strain Mx-05[T] was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05[T] were non-motile cocci, with a diameter range of 0.4-0.7 μm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05[T] required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05[T] grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9-8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L[-1] NaCl (optimum 0.12 mol.L[-1] NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood-Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05[T] as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05[T] (JCM 31474T).

RevDate: 2023-11-24

Tao S, Veen GFC, Zhang N, et al (2023)

Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea.

Microbiome, 11(1):261.

BACKGROUND: Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified.

RESULTS: Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios.

CONCLUSIONS: Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.

RevDate: 2023-11-24
CmpDate: 2023-11-23

Gomes-Filho JV, Breuer R, Morales-Filloy HG, et al (2023)

Identification of NAD-RNA species and ADPR-RNA decapping in Archaea.

Nature communications, 14(1):7597.

NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.

RevDate: 2023-11-21

Sarkar S, Kazarina A, Hansen PM, et al (2023)

Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in soil under precipitation gradients and land legacy.

bioRxiv : the preprint server for biology pii:2023.11.08.566028.

BACKGROUND: Global change has accelerated the nitrogen cycle. Soil nitrogen stock degradation by microbes leads to the release of various gases, including nitrous oxide (N 2 O), a potent greenhouse gas. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) participate in the soil nitrogen cycle, producing N 2 O. There are outstanding questions regarding the impact of environmental processes such as precipitation and land use legacy on AOA and AOB structurally, compositionally, and functionally. To answer these questions, we analyzed field soil cores and soil monoliths under varying precipitation profiles and land legacies.

RESULTS: We resolved 28 AOA and AOB metagenome assembled genomes (MAGs) and found that they were significantly higher in drier environments and differentially abundant in different land use legacies. We further dissected AOA and AOB functional potentials to understand their contribution to nitrogen transformation capabilities. We identified the involvement of stress response genes, differential metabolic functional potentials, and subtle population dynamics under different environmental parameters for AOA and AOB. We observed that AOA MAGs lacked a canonical membrane-bound electron transport chain and F-type ATPase but possessed A/A-type ATPase, while AOB MAGs had a complete complex III module and F-type ATPase, suggesting differential survival strategies of AOA and AOB.

CONCLUSIONS: The outcomes from this study will enable us to comprehend how drought-like environments and land use legacies could impact AOA- and AOB-driven nitrogen transformations in soil.

RevDate: 2023-11-19

Wolff P, Lechner A, Droogmans L, et al (2023)

Corrigendum: Identification of U[p]47 in three thermophilic archaea, one mesophilic archaeon, and one hyperthermophilic bacterium.

RNA (New York, N.Y.), 29(12):1973.

RevDate: 2023-11-14

Zhang IH, Borer B, Zhao R, et al (2023)

Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential.

bioRxiv : the preprint server for biology pii:2023.10.30.564641.

UNLABELLED: Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.

IMPORTANCE: Archaea from the DPANN superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the 3 global marine oxygen deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.

RevDate: 2023-11-14
CmpDate: 2023-11-14

Krawczyk A, Gosiewski T, Zapała B, et al (2023)

Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study.

Gut microbes, 15(2):2276806.

Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.

RevDate: 2023-11-13

Zhang T, He W, Liang Q, et al (2023)

Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea.

Frontiers in microbiology, 14:1241958.

Cold seeps on the continental margins are characterized by intense microbial activities that consume a large portion of methane by anaerobic methanotrophic archaea (ANME) through anaerobic oxidation of methane (AOM). Although ANMEs are known to contain unique ether lipids that may have an important function in marine carbon cycling, their full lipidomic profiles and functional distribution in particular cold-seep settings are still poorly characterized. Here, we combined the 16S rRNA gene sequencing and lipidomic approaches to analyze archaeal communities and their lipids in cold seep sediments with distinct methane supplies from the South China Sea. The archaeal community was dominated by ANME-1 in the moderate seepage area with strong methane emission. Low seepage area presented higher archaeal diversity covering Lokiarchaeia, Bathyarchaeia, and Thermoplasmata. A total of 55 core lipids (CLs) and intact polar lipids (IPLs) of archaea were identified, which included glycerol dialkyl glycerol tetraethers (GDGTs), hydroxy-GDGTs (OH-GDGTs), archaeol (AR), hydroxyarchaeol (OH-AR), and dihydroxyarchaeol (2OH-AR). Diverse polar headgroups constituted the archaeal IPLs. High concentrations of dissolved inorganic carbon (DIC) with depleted δ[13]CDIC and high methane index (MI) values based on both CLs (MICL) and IPLs (MIIPL) indicate that ANMEs were active in the moderate seepage area. The ANME-2 and ANME-3 clades were characterized by enhanced glycosidic and phosphoric diether lipids production, indicating their potential role in coupling carbon and phosphurus cycling in cold seep ecosystems. ANME-1, though representing a smaller proportion of total archaea than ANME-2 and ANME-3 in the low seepage area, showed a positive correlation with MIIPL, indicating a different mechanism contributing to the IPL-GDGT pool. This also suggests that MIIPL could be a sensitive index to trace AOM activities performed by ANME-1. Overall, our study expands the understanding of the archaeal lipid composition in the cold seep and improves the application of MI using intact polar lipids that potentially link to extent ANME activities.

RevDate: 2023-11-13

Manesh MJH, Willard DJ, Lewis AM, et al (2023)

Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us?.

Bioresource technology, 391(Pt B):129988 pii:S0960-8524(23)01416-5 [Epub ahead of print].

Elevated temperatures favor bioleaching processes through faster kinetics, more favorable mineral chemistry, lower cooling requirements, and less surface passivation. Extremely thermoacidophilic archaea from the order Sulfolobales exhibit novel mechanisms for bioleaching metals from ores and have great potential. Genome sequences of many extreme thermoacidophiles are now available and provide new insights into their biochemistry, metabolism, physiology and ecology as these relate to metal mobilization from ores. Although there are some molecular genetic tools available for extreme thermoacidophiles, further development of these is sorely needed to advance the study and application of these archaea for bioleaching applications. The evolving landscape for bioleaching technologies at high temperatures merits a closer look through a genomic lens at what is currently possible and what lies ahead in terms of new developments and emerging opportunities. The need for critical metals and the diminishing primary deposits for copper should provide incentives for high temperature bioleaching.

RevDate: 2023-11-10

Wang L, Wang Y, Huang X, et al (2022)

Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners.

ISME communications, 2(1):50.

The metabolism of methane in anoxic ecosystems is mainly mediated by methanogens and methane-oxidizing archaea (MMA), key players in global carbon cycling. Viruses are vital in regulating their host fate and ecological function. However, our knowledge about the distribution and diversity of MMA viruses and their interactions with hosts is rather limited. Here, by searching metagenomes containing mcrA (the gene coding for the α-subunit of methyl-coenzyme M reductase) from a wide variety of environments, 140 viral operational taxonomic units (vOTUs) that potentially infect methanogens or methane-oxidizing archaea were retrieved. Four MMA vOTUs (three infecting the order Methanobacteriales and one infecting the order Methanococcales) were predicted to cross-domain infect sulfate-reducing bacteria. By facilitating assimilatory sulfur reduction, MMA viruses may increase the fitness of their hosts in sulfate-depleted anoxic ecosystems and benefit from synthesis of the sulfur-containing amino acid cysteine. Moreover, cell-cell aggregation promoted by MMA viruses may be beneficial for both the viruses and their hosts by improving infectivity and environmental stress resistance, respectively. Our results suggest a potential role of viruses in the ecological and environmental adaptation of methanogens and methane-oxidizing archaea.

RevDate: 2023-11-03

Lv PL, Jia C, Guo X, et al (2023)

Microbial stratification protects denitrifying anaerobic methane oxidation archaea and bacteria from external oxygen shock in membrane biofilm reactor.

Bioresource technology, 391(Pt A):129966 pii:S0960-8524(23)01394-9 [Epub ahead of print].

Different gradients of dissolved oxygen (DO) regulate the microbial community and nitrogen removal pathways of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) coupled process in a batch biofilm reactor. Under completely anaerobic condition, approximately 72 mg NO3[-]-N/L was removed at a daily rate of 6.55 mg N/L, whereas a peak accumulation of 95 mg NO3[-]-N/L was observed during DO reached 0.5 mg/L. There is a decrease in the abundance of Candidatus Methylomirabilis (24.1%), Candidatus Methanoperedens (23.3%), and Candidatus Kuenenia (22.6%) to below 5% when DO levels reached 0.2 mg/L. Moreover, key genes associated with the reverse methanogenesis (mcrA) and anaerobic ammonium oxidase (hzo) decreased. These findings indicate that during oxygen shock, methanotrophs and denitrifiers replace Anammox bacteria on the outer sphere of the biofilm, whereas DAMO bacteria and archaea are protected from external oxygen shock due to the microbial stratification of biofilm.

RevDate: 2023-11-08

Vigneron A, Cruaud P, Lovejoy C, et al (2022)

Genomic evidence of functional diversity in DPANN archaea, from oxic species to anoxic vampiristic consortia.

ISME communications, 2(1):4.

DPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function. Thiosulfate oxidation potential was detected in aerobic Woesearchaeota, whereas diverse metabolic functions were identified in anaerobic DPANN archaea, including degradation and fermentation of cellular compounds, and sulfide and polysulfide reduction. We also found evidence for "vampiristic" metabolism in several MAGs, with genes coding for pore-forming toxins, peptidoglycan degradation, and RNA scavenging. The vampiristic MAGs co-occurred with other DPANNs having complementary metabolic capacities, leading to the possibility that DPANN form interspecific consortia that recycle microbial carbon, nutrients and complex molecules through a DPANN archaeal shunt, adding hidden novel complexity to anaerobic microbial food webs.

RevDate: 2023-11-08

Thomas CM, Taib N, Gribaldo S, et al (2021)

Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis.

ISME communications, 1(1):47.

Other than the Methanobacteriales and Methanomassiliicoccales, the characteristics of archaea that inhabit the animal microbiome are largely unknown. Methanimicrococcus blatticola, a member of the Methanosarcinales, currently reunites two unique features within this order: it is a colonizer of the animal digestive tract and can only reduce methyl compounds with H2 for methanogenesis, a increasingly recognized metabolism in the archaea and whose origin remains debated. To understand the origin of these characteristics, we have carried out a large-scale comparative genomic analysis. We infer the loss of more than a thousand genes in M. blatticola, by far the largest genome reduction across all Methanosarcinales. These include numerous elements for sensing the environment and adapting to more stable gut conditions, as well as a significant remodeling of the cell surface components likely involved in host and gut microbiota interactions. Several of these modifications parallel those previously observed in phylogenetically distant archaea and bacteria from the animal microbiome, suggesting large-scale convergent mechanisms of adaptation to the gut. Strikingly, M. blatticola has lost almost all genes coding for the H4MPT methyl branch of the Wood-Ljungdahl pathway (to the exception of mer), a phenomenon never reported before in any member of Class I or Class II methanogens. The loss of this pathway illustrates one of the evolutionary processes that may have led to the emergence of methyl-reducing hydrogenotrophic methanogens, possibly linked to the colonization of organic-rich environments (including the animal gut) where both methyl compounds and hydrogen are abundant.

RevDate: 2023-11-08

Huang L, Chakrabarti S, Cooper J, et al (2021)

Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil.

ISME communications, 1(1):19.

Nitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N2O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N2O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N2O yields between 0.18 and 0.41 ng N2O-N per µg NOx-N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral part of the nitrogen cycle in a highly fertile agricultural soil.

RevDate: 2023-11-08

Shafiee RT, Diver PJ, Snow JT, et al (2021)

Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches.

ISME communications, 1(1):1.

Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.

RevDate: 2023-11-02

Cheng M, Li XX, Tan S, et al (2023)

Salinigranum marinum sp. nov. and Halohasta salina sp. nov., halophilic archaea isolated from sediment of a marine saltern and inland saline soil.

International journal of systematic and evolutionary microbiology, 73(11):.

Two halophilic archaeal strains, ZS-10[T] and GSL13[T], were isolated from the Zhoushan marine saltern in Zhejiang, and an inland saline soil from the Tarim Basin, Xinjiang, PR China, respectively. The cells of strain ZS-10[T] were pleomorphic while those of strain GSL13[T] were rod-shaped. Both of them stained Gram-negative and formed red-pigmented colonies on agar plates and their cells lysed in distilled water. The optimum growth of strain ZS-10[T] was observed at 40 °C, 3.4 M NaCl, 0.03 M MgCl2 and pH 7.5, while that of strain GSL13[T] was at 37 °C, 3.1 M NaCl, 0.5 M MgCl2 and pH 7.5. Phylogenetic and phylogenomic analyses indicated that these two strains were related to Salinigranum and Halohasta, respectively. Strains ZS-10[T] and GSL13[T] could be differentiated from the current members of Salinigranum and Halohasta based on the comparison of diverse phenotypic characteristics. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values among strain ZS-10[T] and current species of Salinigranum were 75.8-78.6 %, 80.6-81.9 % and 24.3-26.1 %, respectively. These values between strain GSL13[T] and current species of Halohasta were 78.4-80.8 %, 79.8-82.8% and 22.7-25.7 %, respectively, clearly below the threshold values for species demarcation. The polar lipids of strain ZS-10[T] were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulphated mannosyl glucosyl diether (S-DGD-1), while those of strain GSL13[T] were phosphatidic acid, PG, PGP-Me, phosphatidylglycerol sulphate and S-DGD-1. The polar lipid profile of strain GSL13[T] was identical to those of Halohasta, whereas strain ZS-10[T] did not contain the minor glycolipids detected in the current Salinigranum species. The phenotypic, phylogenetic and genome-based results suggested that strains ZS-10[T] (=CGMCC 1.12868[T]=JCM 30241[T]) and GSL13[T] (=CGMCC 1.15214[T]=JCM 30841[T]) represent two novel species, for which the names Salinigranum marinum sp. nov. and Halohasta salina sp. nov. are proposed.

RevDate: 2023-11-02

Prakash O, Dodsworth JA, Dong X, et al (2023)

Corrigendum: Proposed minimal standards for description of methanogenic archaea.

International journal of systematic and evolutionary microbiology, 73(11):.

RevDate: 2023-11-02

Romero P, Belanche A, Jiménez E, et al (2023)

Rumen microbial degradation of bromoform from red seaweed (Asparagopsis taxiformis) and the impact on rumen fermentation and methanogenic archaea.

Journal of animal science and biotechnology, 14(1):133.

BACKGROUND: The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane (CH4) analogues, primarily bromoform (CHBr3). This study aimed to investigate the degradation process of CHBr3 from A. taxiformis in the rumen and whether this process is diet-dependent. An in vitro batch culture system was used according to a 2 × 2 factorial design, assessing two A. taxiformis inclusion rates [0 (CTL) and 2% DM diet (AT)] and two diets [high-concentrate (HC) and high-forage diet (HF)]. Incubations lasted for 72 h and samples of headspace and fermentation liquid were taken at 0, 0.5, 1, 3, 6, 8, 12, 16, 24, 48 and 72 h to assess the pattern of degradation of CHBr3 into dibromomethane (CH2Br2) and fermentation parameters. Additionally, an in vitro experiment with pure cultures of seven methanogens strains (Methanobrevibacter smithii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, Methanosarcina barkeri, Methanobrevibacter millerae, Methanothermobacter wolfei and Methanobacterium mobile) was conducted to test the effects of increasing concentrations of CHBr3 (0.4, 2, 10 and 50 µmol/L).

RESULTS: The addition of AT significantly decreased CH4 production (P = 0.002) and the acetate:propionate ratio (P = 0.003) during a 72-h incubation. The concentrations of CHBr3 showed a rapid decrease with nearly 90% degraded within the first 3 h of incubation. On the contrary, CH2Br2 concentration quickly increased during the first 6 h and then gradually decreased towards the end of the incubation. Neither CHBr3 degradation nor CH2Br2 synthesis were affected by the type of diet used as substrate, suggesting that the fermentation rate is not a driving factor involved in CHBr3 degradation. The in vitro culture of methanogens showed a dose-response effect of CHBr3 by inhibiting the growth of M. smithii, M. ruminantium, M. stadtmanae, M. barkeri, M. millerae, M. wolfei, and M. mobile.

CONCLUSIONS: The present work demonstrated that CHBr3 from A. taxiformis is quickly degraded to CH2Br2 in the rumen and that the fermentation rate promoted by different diets is not a driving factor involved in CHBr3 degradation.

RevDate: 2023-10-30
CmpDate: 2023-10-30

Ullah N, Yang N, Guan Z, et al (2023)

Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea.

Genes, 14(10):.

Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins.

RevDate: 2023-10-27

Notaro A, Zaretsky M, Molinaro A, et al (2023)

N-glycosylation in Archaea: Unusual sugars and unique modifications.

Carbohydrate research, 534:108963 pii:S0008-6215(23)00225-2 [Epub ahead of print].

Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.

RevDate: 2023-10-26

Yang J, Chen R, Peng Y, et al (2023)

The role of gut archaea in the pig gut microbiome: a mini-review.

Frontiers in microbiology, 14:1284603.

The gastrointestinal microbiota of swine harbors an essential but often overlooked component: the gut archaea. These enigmatic microorganisms play pivotal roles in swine growth, health, and yield quality. Recent insights indicate that the diversity of gut archaea is influenced by various factors including breed, age, and diet. Such factors orchestrate the metabolic interactions within the porcine gastrointestinal environment. Through symbiotic relationships with bacteria, these archaea modulate the host's energy metabolism and digestive processes. Contemporary research elucidates a strong association between the abundance of these archaea and economically significant traits in swine. This review elucidates the multifaceted roles of gut archaea in swine and underscores the imperative for strategic interventions to modulate their population and functionality. By exploring the probiotic potential of gut archaea, we envisage novel avenues to enhance swine growth, health, and product excellence. By spotlighting this crucial, yet under-investigated, facet of the swine gut microbiome, we aim to galvanize further scientific exploration into harnessing their myriad benefits.

RevDate: 2023-10-20

Liu H, Jing H, F Wang (2023)

Archaea predominate in the ammonia oxidation process in the sediments of the Yap and Mariana Trenches.

Frontiers in microbiology, 14:1268790.

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play an important role in oxidizing ammonia to nitrite in different marine environments; however, their relative contribution to ammonia oxidation in the deep-sea sediments is still largely unknown. Sediment samples from seamounts and the Challenger Deep along the arc of the Yap Trench and the Mariana Trench were used for the investigation of the geographical distribution of AOA and AOB at the cDNA level, with associated potential nitrification rates (PNRs) being measured. AOA was predominated by Candidatus Nitrosopumilus and Nitrosopumilaceae, while Methylophaga was the major group of AOB. Significantly higher transcript abundance of the AOA amoA gene than that of AOB appeared in all samples, corresponding to the much higher RNRs contributed to AOA. Both the total and AOA PNRs were significantly higher in the deeper layers due to the high sensitivity of AOA to ammonia and oxygen than in AOB. In the surface layers, TN and TOC had significant positive and negative effects on the distribution of the AOA amoA gene transcripts, respectively, while NH4+ concentration was positively correlated with the AOB amoA gene transcripts. Our study demonstrated that AOA played a more important role than AOB in the ammonia-oxidizing process that occurred in the sediments of the Yap and Mariana Trenches and would expand the understanding of their ecological contribution to the nitrification process and nitrogen flux of trenches.

RevDate: 2023-10-11

Cerna-Vargas JP, Gumerov VM, Krell T, et al (2023)

Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor.

Proceedings of the National Academy of Sciences of the United States of America, 120(42):e2305837120.

Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.

RevDate: 2023-10-10

Laird MG, Adlung N, Koivisto JJ, et al (2023)

Thiol-Disulfide Exchange Kinetics and Redox Potential of the Coenzyme M and Coenzyme B Heterodisulfide, an Electron Acceptor Coupled to Energy Conservation in Methanogenic Archaea.

Chembiochem : a European journal of chemical biology [Epub ahead of print].

Methanogenic and methanotrophic archaea play important roles in the global carbon cycle by interconverting CO2 and methane. To conserve energy from these metabolic pathways that happen close to the thermodynamic equilibrium, specific electron carriers have evolved to balance the redox potentials between key steps. Reduced ferredoxins required to activate CO2 are provided by energetical coupling to the reduction of the high-potential heterodisulfide (HDS) of coenzyme M (2-mercaptoethanesulfonate) and coenzyme B (7-mercaptoheptanoylthreonine phosphate). While the standard redox potential of this important HDS has been determined previously to be -143 mV (Tietze et al. 2003 DOI:10.1002/cbic.200390053), we have measured thiol disulfide exchange kinetics and reassessed this value by equilibrating thiol-disulfide mixtures of coenzyme M, coenzyme B and mercaptoethanol. We determined the redox potential of the HDS of coenzyme M and coenzyme B to be -16.4 ± 1.7 mV relative to the reference thiol mercaptoethanol (E0' = -264 mV). The resulting E0' values are -281 mV for the HDS, -271 mV for the homodisulfide of coenzyme M, and -270 mV for the homodisulfide of coenzyme B. We discuss the importance of these updated values for the physiology of methanogenic and methanotrophic archaea and their implications in terms of energy conservation.

RevDate: 2023-10-10

Hu X, Huang Y, Gu G, et al (2023)

Distinct patterns of distribution, community assembly and cross-domain co-occurrence of planktonic archaea in four major estuaries of China.

Environmental microbiome, 18(1):75.

BACKGROUND: Archaea are key mediators of estuarine biogeochemical cycles, but comprehensive studies comparing archaeal communities among multiple estuaries with unified experimental protocols during the same sampling periods are scarce. Here, we investigated the distribution, community assembly, and cross-domain microbial co-occurrence of archaea in surface waters across four major estuaries (Yellow River, Yangtze River, Qiantang River, and Pearl River) of China cross climatic zones (~ 1,800 km) during the winter and summer cruises.

RESULTS: The relative abundance of archaea in the prokaryotic community and archaeal community composition varied with estuaries, seasons, and stations (reflecting local environmental changes such as salinity). Archaeal communities in four estuaries were overall predominated by ammonia-oxidizing archaea (AOA) (aka. Marine Group (MG) I; primarily Nitrosopumilus), while the genus Poseidonia of Poseidoniales (aka. MGII) was occasionally predominant in Pearl River estuary. The cross-estuary dispersal of archaea was largely limited and the assembly mechanism of archaea varied with estuaries in the winter cruise, while selection governed archaeal assembly in all estuaries in the summer cruise. Although the majority of archaea taxa in microbial networks were peripherals and/or connectors, extensive and distinct cross-domain associations of archaea with bacteria were found across the estuaries, with AOA as the most crucial archaeal group. Furthermore, the expanded associations of MGII taxa with heterotrophic bacteria were observed, speculatively indicating the endogenous demand for co-processing high amount and diversity of organic matters in the estuarine ecosystem highly impacted by terrestrial/anthropogenic input, which is worthy of further study.

CONCLUSIONS: Our results highlight the lack of common patterns in the dynamics of estuarine archaeal communities along the geographic gradient, expanding the understanding of roles of archaea in microbial networks of this highly dynamic ecosystem.

RevDate: 2023-10-06

Salas E, Gorfer M, Bandian D, et al (2023)

Reevaluation and novel insights into amino sugar and neutral sugar necromass biomarkers in archaea, bacteria, fungi, and plants.

The Science of the total environment, 906:167463 pii:S0048-9697(23)06090-4 [Epub ahead of print].

Soil microbial necromass is an important contributor to soil organic matter (>50%) and it is largely composed of microbial residues. In soils, fragmented cell wall residues are mostly found in their polysaccharide forms of fungal chitin and bacterial peptidoglycan. Microbial necromass biomarkers, particularly amino sugars (AS) such as glucosamine (GlcN) and muramic acid (MurA) have been used to trace fungal and bacterial residues in soils, and to distinguish carbon (C) found in microbial residues from non-microbial organic C. Neutral sugars (NS), particularly the hexose/pentose ratio, have also been proposed as tracers of plant polysaccharides in soils. In our study, we extended the range of biomarkers to include AS and NS compounds in the biomass of 120 species belonging to archaea, bacteria, fungi, or plants. GlcN was the most common AS found in all taxa, contributing 42-91% to total AS content, while glucose was the most common NS found, contributing 56-79% to total NS. We identified talosaminuronic acid, found in archaeal pseudopeptidoglycan, as a new potential biomarker specific for Euryarchaeota. We compared the variability of these compounds between the different taxonomic groups using multivariate approaches, such as non-metric multidimensional scaling (NMDS) and partial least squares discriminant analysis (PLS-DA) and statistically evaluated their biomarker potential via indicator species analysis. Both NMDS and PLS-DA showcased the variability in the AS and NS contents between the different taxonomic groups, highlighting their potential as necromass residue biomarkers and allowing their extension from separating bacterial and fungal necromass to separating microbes from plants. Finally, we estimated new conversion factors where fungal GlcN is converted to fungal C by multiplying by 10 and MurA is converted to bacterial C by multiplying by 54. Conversion factors for talosaminuronic acid and galactosamine are also proposed to allow estimation of archaeal or all-microbial necromass residue C, respectively.

RevDate: 2023-09-29

Anonymous (2023)

Correction to: Putative nucleotide-based second messengers in archaea.

microLife, 4:uqad039 pii:uqad039.

[This corrects the article DOI: 10.1093/femsml/uqad027.].

RevDate: 2023-09-29
CmpDate: 2023-09-29

Kowalewicz-Kulbat M, Krawczyk KT, Szulc-Kielbik I, et al (2023)

Cytotoxic effects of halophilic archaea metabolites on ovarian cancer cell lines.

Microbial cell factories, 22(1):197.

BACKGROUND: Ovarian cancer is one of the most frequent and deadly gynaecological cancers, often resistant to platinum-based chemotherapy, the current standard of care. Halophilic microorganisms have been shown to produce a large variety of metabolites, some of which show toxicity to various cancer cell lines. However, none have yet been shown to be active against ovarian cancer cells. Here, we examined the effects of metabolites secreted by the halophilic archaea Halorhabdus rudnickae and Natrinema salaciae on various cancer cell lines, including ovarian cancer cell lines.

RESULTS: [1]H NMR analyses of Hrd. rudnickae and Nnm. salaciae culture supernatants contain a complex mixture of metabolites that differ between species, and even between two different strains of the same species, such as Hrd. rudnickae strains 64[T] and 66. By using the MTT and the xCELLigence RTCA assays, we found that the secreted metabolites of all three halophilic strains expressed cytotoxicity to the ovarian cancer cell lines, especially A2780, as well as its cisplatin-resistant derivative A2780cis, in a dose-dependent manner. The other tested cell lines A549, HepG2, SK-OV-3 and HeLa were only minimally, or not at all affected by the archaeal metabolites, and this was only seen with the MTT assay.

CONCLUSIONS: The halophilic archaea Hrd. rudnickae and Nnm. salaciae, isolated from a Polish salt mine and Lake Medee in the Mediterranean Sea, respectively, secrete metabolites that are active against ovarian cancer cells, including those that are resistant to cisplatin. This opens potential new possibilities for the treatment of these frequent and deadly gynaecological cancers.

RevDate: 2023-09-27

Liu WW, Pan P, NY Zhou (2023)

The presence of benzene ring activating CoA ligases for aromatics degradation in the ANaerobic MEthanotrophic (ANME) archaea.

Microbiology spectrum [Epub ahead of print].

Petroleum-source and black carbon-source aromatic compounds are present in the cold seep environments, where ANaerobic MEthanotrophic (ANME) archaea as the dominant microbial community mediates the anaerobic oxidation of methane to produce inorganic and organic carbon. Here, by predicting the aromatics catabolic pathways in ANME metagenome-assembled genomes, we provide genomic and biochemical evidences that ANME have the potential of metabolizing aromatics via the strategy of CoA activation of the benzene ring using phenylacetic acid and benzoate as the substrates. Two ring-activating enzymes phenylacetate-CoA ligase (PaaKANME) and benzoate-CoA ligase (BadAANME) are able to convert phenylacetate to phenylacetyl-CoA and benzoate to benzoyl-CoA in vitro, respectively. They are mesophilic, alkali resistance, and with broad substrate spectra showing different affinity with various substrates. An exploration of the relative gene abundance in ANME genomes and cold seep environments indicates that about 50% of ANME genomes contain PCL genes, and various bacteria and archaea contain PCL and BCL genes. The results provide evidences for the capability of heterotrophic metabolism of aromatic compounds by ANME. This has not only enhanced our understanding of the nutrient range of ANME but also helped to explore the additional ecological and biogeochemical significance of this ubiquitous sedimentary archaea in the carbon flow in the cold seep environments. IMPORTANCE ANaerobic MEthanotrophic (ANME) archaea is the dominant microbial community mediating the anaerobic oxidation of methane in the cold seep environments, where aromatic compounds are present. Then it is hypothesized that ANME may be involved in the metabolism of aromatics. Here, we provide genomic and biochemical evidences for the heterotrophic metabolism of aromatic compounds by ANME, enhancing our understanding of their nutrient range and also shedding light on the ecological and biogeochemical significance of these ubiquitous sedimentary archaea in carbon flow within cold seep environments. Overall, this study offers valuable insights into the metabolic capabilities of ANME and their potential contributions to the global carbon cycle.

RevDate: 2023-09-25

Medvedeva S, Borrel G, Krupovic M, et al (2023)

A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment.

Nature microbiology [Epub ahead of print].

Methanogenic archaea are major producers of methane, a potent greenhouse gas and biofuel, and are widespread in diverse environments, including the animal gut. The ecophysiology of methanogens is likely impacted by viruses, which remain, however, largely uncharacterized. Here we carried out a global investigation of viruses associated with all current diversity of methanogens by assembling an extensive CRISPR database consisting of 156,000 spacers. We report 282 high-quality (pro)viral and 205 virus-like/plasmid sequences assigned to hosts belonging to ten main orders of methanogenic archaea. Viruses of methanogens can be classified into 87 families, underscoring a still largely undiscovered genetic diversity. Viruses infecting gut-associated archaea provide evidence of convergence in adaptation with viruses infecting gut-associated bacteria. These viruses contain a large repertoire of lysin proteins that cleave archaeal pseudomurein and are enriched in glycan-binding domains (Ig-like/Flg_new) and diversity-generating retroelements. The characterization of this vast repertoire of viruses paves the way towards a better understanding of their role in regulating methanogen communities globally, as well as the development of much-needed genetic tools.

RevDate: 2023-09-25

Murali R, Yu H, Speth DR, et al (2023)

Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea.

PLoS biology, 21(9):e3002292 pii:PBIOLOGY-D-22-02613 [Epub ahead of print].

Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic (ANME) archaea in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.

RevDate: 2023-09-22
CmpDate: 2023-09-22

Tan S, Cheng M, Li XX, et al (2023)

Natronosalvus halobius gen. nov., sp. nov., Natronosalvus caseinilyticus sp. nov., Natronosalvus vescus sp. nov., Natronosalvus rutilus sp. nov. and Natronosalvus amylolyticus sp. nov., halophilic archaea isolated from salt lakes and soda lakes.

International journal of systematic and evolutionary microbiology, 73(9):.

Five halophilic archaeal strains (AGai3-5[T], KZCA101[T], CGA3[T], WLHS1[T] and WLHSJ1[T]) were isolated from salt lakes and soda lakes in PR China. These strains had low 16S rRNA gene similarities (91.3-96.0 %) to closely related species of the family Natrialbaceae and may represent a new genus of the family. Phylogenetic and phylogenomic analyses revealed that these strains formed a distinct clade, separate from the nearby genera Natronobiforma and Saliphagus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity (AAI) values among these five strains and the current members of the family Natrialbaceae were 72-90, 20-42 and 62-91 %, respectively, clearly below the threshold values for species demarcation. According to the critical value of AAI (≤76 %) proposed to differentiate genera within the family Natrialbaceae, it was further indicated that these strains represented a novel genus within the family. These strains could be distinguished from the related genera according to differential phenotypic characteristics. The major lipids of these strains were phosphatidic acid (PA), phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether (DGD-PA), sulphated DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains AGai3-5[T] (=CGMCC 1.16078[T]=JCM 33549[T]), KZCA101[T] (=CGMCC 1.17431[T]=JCM 35074[T]), CGA3[T] (=CGMCC 1.17463[T]=JCM 34318[T]), WLHS1[T] (=CGMCC 1.13780[T]=JCM 33562[T]) and WLHSJ1[T] (=CGMCC 1.13784[T]=JCM 33563[T]) represent five novel species of a new genus within the family Natrialbaceae, named Natronosalvus halobius gen. nov., sp. nov., Natronosalvus caseinilyticus sp. nov., Natronosalvus vescus sp. nov., Natronosalvus rutilus sp. nov. and Natronosalvus amylolyticus sp. nov., respectively.

RevDate: 2023-09-20

Volmer JG, McRae H, M Morrison (2023)

The evolving role of methanogenic archaea in mammalian microbiomes.

Frontiers in microbiology, 14:1268451.

Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.

RevDate: 2023-09-16

Soza-Bolaños AI, Domínguez-Pérez RA, Ayala-Herrera JL, et al (2023)

Presence of methanogenic archaea in necrotic root canals of patients with or without type 2 diabetes mellitus.

Australian endodontic journal : the journal of the Australian Society of Endodontology Inc [Epub ahead of print].

Theoretically, a necrotic root canal fulfils all requirements as a niche for methanogens to inhabit. However, their presence in it and its implication in apical periodontitis (AP) is controversial. Therefore, to contribute to ending the controversy, this study aimed to detect and compare methanogens' presence in two distinct niches with supposedly different microenvironments; both were necrotic root canals associated with AP but one from patients with type 2 diabetes mellitus (T2DM) while the other from non-diabetic patients. A clinical examination was performed on 65 T2DM patients and 73 non-diabetic controls. Samples from necrotic root canals were obtained, and methanogens were identified. The presence of methanogens was three times higher (27.6%) in the T2DM group than in non-diabetic patients (8.2%). In addition, methanogens' presence was associated with a higher prevalence of periapical symptoms.

RevDate: 2023-09-15

Wang W, Lei J, Li M, et al (2023)

Archaea are better adapted to antimony stress than their bacterial counterparts in Xikuangshan groundwater.

The Science of the total environment pii:S0048-9697(23)05624-3 [Epub ahead of print].

Archaea are important ecological components of microbial communities in various environments, but are currently poorly investigated in antimony (Sb) contaminated groundwater particularly on their ecological differences in comparison with bacteria. To address this issue, groundwater samples were collected from Xikuangshan aquifer along an Sb gradient and subjected to 16S rRNA gene amplicon sequencing and bioinformatic analysis. The results demonstrated that bacterial communities were more susceptibly affected by elevated Sb concentration than their archaeal counterparts, and the positive stimulation of Sb concentration on bacterial diversity coincided with the intermediate disturbance hypothesis. Overall, the balance of environmental variables (Sb, pH, and EC), competitive interactions, and stochastic events jointly regulated bacterial and archaeal communities. Linear fitting analysis revealed that Sb significantly drove the deterministic process (heterogeneous selection) of bacterial communities, whereas stochastic process (dispersal limitation) contributed more to archaeal community assembly. In contract, the assembly of Sb-resistant bacteria and archaea was dominated by the stochastic process (undominated), which implied the important role of diversification and drift instead of selection. Compared with Sb-resistant microorganisms, bacterial and archaeal communities showed lower niche width, which may result from the constraints of Sb concentration and competitive interaction. Moreover, Sb-resistant archaea had a higher niche than that of Sb-resistant bacteria via investing on flexible metabolic pathways such as organic metabolism, ammonia oxidation; and carbon fixation to enhance their competitiveness. Our results offered new insights into the ecological adaptation mechanisms of bacteria and archaea in Sb-contaminated groundwater.

RevDate: 2023-09-15
CmpDate: 2023-09-15

Deore KS, Dhakephalkar PK, SS Dagar (2023)

Phylogenetically and physiologically diverse methanogenic archaea inhabit the Indian hot spring environments.

Archives of microbiology, 205(10):332.

Mesophilic and thermophilic methanogens belonging to the hydrogenotrophic, methylotrophic, and acetotrophic groups were isolated from Indian hot spring environments using BY and BCYT growth media. Following initial Hinf I-based PCR-RFLP screening, 70 methanogens were sequenced to ascertain their identity. These methanogens were phylogenetically and physiologically diverse and represented different taxa distributed across three physiological groups, i.e., hydrogenotrophs (53), methylotrophs (14) and acetotrophs (3). Overall, methanogens representing three families, five genera, and ten species, including two putative novel species, were recognized. The highest number and diversity of methanogens was observed at 40 ℃, dominated by Methanobacterium (10; 3 species), Methanosarcina (9; 3 species), Methanothermobacter (7; 2 species), Methanomethylovorans (5; 1 species) and Methanoculleus (3; 1 species). Both putative novel methanogen species were isolated at 40 ℃ and belonged to the genera Methanosarcina and Methanobacterium. At 55 ℃, limited diversity was observed, and resulted in the isolation of only two genera of methanogens, i.e., Methanothermobacter (28; 2 species) and Methanosarcina (4; 1 species). At 70 ℃, only members of the genus Methanothermobacter (5; 2 species) were isolated, whereas no methanogen could be cultured at 85 ℃. Ours is the first study that documents the extensive range of cultivable methanogenic archaea inhabiting hot springs across various geothermal provinces of India.

RevDate: 2023-09-13

Zou D, Chen J, Zhang C, et al (2023)

Diversity and salinity adaptations of ammonia oxidizing archaea in three estuaries of China.

Applied microbiology and biotechnology [Epub ahead of print].

Ammonia-oxidizing archaea (AOA) are ubiquitously found in diverse habitats and play pivotal roles in the nitrogen and carbon cycle, especially in estuarine and coastal environments. Despite the fact that the diversity and distribution of AOA are thought to be tightly linked to habitats, little is known about the relationship that underpins their genomic traits, adaptive potentials, and ecological niches. Here, we have characterized and compared the AOA community in three estuaries of China using metagenomics. AOA were the dominant ammonia oxidizers in the three estuaries. Through phylogenetic analyses, five major AOA groups were identified, including the Nitrosomarinus-like, Nitrosopumilus-like, Aestuariumsis-like, Nitrosarchaeum-like, and Nitrosopelagicus-like groups. Statistical analyses showed that the aquatic and sedimentary AOA communities were mainly influenced by spatial factors (latitude and water depth) and environmental factors (salinity, pH, and dissolved oxygen) in estuaries, respectively. Compared to AOA dwelling in terrestrial and marine habitats, estuarine AOA encoded more genes involved in glucose and amino acid metabolism, transport systems, osmotic control, and cell motility. The low proteome isoelectric points (pI), high content of acidic amino acids, and the presence of potassium ion and mechanosensitive channels suggest a "salt-in" strategy for estuarine AOA to counteract high osmolarity in their surroundings. Our findings have indicated potential adaptation strategies and highlighted their importance in the estuarine nitrogen and carbon cycles. KEY POINTS: • Spatial and environmental factors influence water and sediment AOA respectively. • Estuarine AOA share low proteome isoelectric value and high acid amino acids content. • AOA adaptation to estuaries is likely resulted from their unique genomic features.

RevDate: 2023-09-12

Spang A (2023)

Uncovering the hidden world of nanosized archaea.

Nature reviews. Microbiology, 21(10):638.

RevDate: 2023-09-12

Oudova-Rivera B, Crombie AT, Murrell JC, et al (2023)

Alcohols as inhibitors of ammonia oxidising archaea and bacteria.

FEMS microbiology letters pii:7271388 [Epub ahead of print].

Ammonia oxidisers are key players in the global nitrogen cycle, and are responsible for the oxidation of ammonia to nitrite, which is further oxidised to nitrate by other microorganisms. Their activity can lead to adverse effects on some human-impacted environments, including water pollution through leaching of nitrate and emissions of the greenhouse gas nitrous oxide (N2O). Ammonia monooxygenase (AMO) is the key enzyme in microbial ammonia oxidation and shared by all groups of aerobic ammonia oxidisers. The AMO has not been purified in an active form, and much of what is known about its potential structure and function comes from studies on its interactions with inhibitors. The archaeal AMO is less well studied as ammonia oxidising archaea were discovered much more recently than their bacterial counterparts. The inhibition of ammonia oxidation by aliphatic alcohols (C1-C8) using the model terrestrial ammonia oxidising archaeon 'Candidatus Nitrosocosmicus franklandus' C13 and the ammonia oxidising bacterium Nitrosomonas europaea was examined in order to expand knowledge about the range of inhibitors of ammonia oxidisers. Methanol was the most potent specific inhibitor of the AMO in both ammonia oxidisers, with half-maximal inhibitory concentrations (IC50) of 0.19 mM and 0.31 mM, respectively. The inhibition was AMO-specific in 'Ca. N. franklandus' C13 in the presence of C1-C2 alcohols, and in N. europaea in the presence of C1-C3 alcohols. Higher chain-length alcohols caused non-specific inhibition and also inhibited hydroxylamine oxidation. Ethanol was tolerated by 'Ca. N. franklandus' C13 at a higher threshold concentration than other chain-length alcohols, with 80 mM ethanol being required for complete inhibition of ammonia oxidation.

RevDate: 2023-09-06
CmpDate: 2023-09-06

Vipindas PV, Jabir T, Venkatachalam S, et al (2023)

Vertical segregation and phylogenetic characterization of archaea and archaeal ammonia monooxygenase gene in the water column of the western Arctic Ocean.

Extremophiles : life under extreme conditions, 27(3):24.

Archaea constitute a substantial fraction of marine microbial biomass and play critical roles in the biogeochemistry of oceans. However, studies on their distribution and ecology in the Arctic Ocean are relatively scarce. Here, we studied the distributions of archaea and archaeal ammonia monooxygenase (amoA) gene in the western Arctic Ocean, using the amplicon sequencing approach from the sea surface to deep waters up to 3040 m depth. A total of five archaeal phyla, Nitrososphaerota, "Euryarchaeota", "Halobacteriota," "Nanoarchaeota", and Candidatus Thermoplasmatota, were detected. We observed a clear, depth-dependent vertical segregation among archaeal communities. Ca. Thermoplasmatota (66.8%) was the most dominant phylum in the surface waters. At the same time, Nitrososphaerota (55.9%) was dominant in the deep waters. Most of the amoA gene OTUs (99%) belonged to the Nitrosopumilales and were further clustered into five subclades ("NP-Alpha", "NP-Delta", "NP-Epsilon", "NP-Gamma", and "NP-Theta"). "NP-Epsilon" was the most dominant clade throughout the water column and "NP_Alpha" showed higher abundance only in the deeper water. Salinity and inorganic nutrient concentrations were the major factors that determined the vertical segregation of archaea. We anticipate that the observed differences in the vertical distribution of archaea might contribute to the compartmentalization of dark carbon fixation and nitrification in deeper water and organic matter degradation in surface waters of the Arctic Ocean.

RevDate: 2023-08-31

Di Giulio M (2023)

The absence of the evolutionary state of the Prokaryote would imply a polyphyletic origin of proteins and that LUCA, the ancestor of bacteria and that of archaea were progenotes.

Bio Systems pii:S0303-2647(23)00189-2 [Epub ahead of print].

I analysed the similarity gradient observed in protein families - of phylogenetically deep fundamental traits - of bacteria and archaea, ranging from cases such as the core of the DNA replication apparatus where there is no sequence similarity between the proteins involved, to cases in which, as in the translation initiation factors, only some proteins involved would be homologs, to cases such as for aminoacyl-tRNA synthetases in which most of the proteins involved would be homologs. This pattern of similarity between bacteria and archaea would seem to be a very clear indication of a transitional evolutionary stage that preceded both the Last Bacterial Common Ancestor and the Last Archaeal Common Ancestor, i.e. progenotic stages. Indeed, this similarity pattern would seem to exemplify an ongoing transition as all the evolutionary phases would be represented in it. Instead, in the cellular stage it is expected that these evolutionary phases should have already been overcome, i.e. completed, and therefore no longer detectable. In fact, if we had really been in the presence of the prokaryotic stage then we should not have observed this similarity pattern in proteins involved in defining the ancestral characters of bacteria and archaea, as the completion of the different cellular structures should have required a very low number of proteins to be late evolved in lineages leading to bacteria and archaea. Indeed, the already reached state of the Prokaryote would have determined complete cellular structures therefore a total absence of proteins to evolve independently in the two main phyletic lineages and able to complete the evolution of a particular character already evidently in a definitive state, which, on the other hand, does not appear to have been the case. All this would have prevented the formation of this pattern of similarity which instead would appear to be real. In conclusion, the existence of this pattern of similarity observed in the families of homologous proteins of bacteria and archaea would imply the absence of the evolutionary stage of the Prokaryote and consequently a progenotic status to be assigned to the LUCA. Indeed, the LUCA stage would have been a stage of evolutionary transition because it is belatedly marked by the presence of all the different evolutionary phases, evidently more easily interpretable within the definition of progenote than that of genote precisely because they are inherent in an evolutionary transition and not to an evolution that has already been achieved. Finally, I discuss the importance of these arguments for the polyphyletic origin of proteins.

RevDate: 2023-08-29

Xie L, Yu S, Lu X, et al (2023)

Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau.

Microorganisms, 11(8):.

Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.

RevDate: 2023-08-26

Garcia-Bonete MJ, Rajan A, Suriano F, et al (2023)

The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea.

Life (Basel, Switzerland), 13(8): pii:life13081765.

The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.

RevDate: 2023-08-12

Naitam MG, Ramakrishnan B, Grover M, et al (2023)

Rhizosphere-dwelling halophilic archaea: a potential candidate for alleviating salinity-associated stress in agriculture.

Frontiers in microbiology, 14:1212349.

Salinity is a serious environmental factor that impedes crop growth and drastically reduces yield. This study aimed to investigate the potential of halophilic archaea isolated from the Rann of Kutch to alleviate the negative impact of salinity on crop growth and yield. The halophilic archaea, which demonstrated high tolerance to salinity levels up to 4.5 M, were evaluated for their ability to promote plant growth in both salt-tolerant and salt-susceptible wheat cultivars. Our assessment focused on their capacity to solubilize essential nutrients, including phosphorus (14-61 mg L[-1]), potassium (37-78 mg L[-1]), and zinc (8-17 mg L[-1]), as well as their production of the phytohormone IAA (17.30 to 49.3 μg ml[-1]). To conduct the experiments, five wheat cultivars (two salt-tolerant and three salt-susceptible) were grown in triplicates using soft MS agar tubes (50 ml) and pots containing 10 kg of soil with an electrical conductivity (EC) of 8 dSm[-1]. Data were collected at specific time points: 21 days after sowing (DAS) for the MS agar experiment, 45 DAS for the pot experiment, and at the time of harvest. In the presence of haloarchaea, the inoculated treatments exhibited significant increases in total protein (46%), sugar (27%), and chlorophyll (31%) levels compared to the un-inoculated control. Furthermore, the inoculation led to an elevated accumulation of osmolyte proline (31.51%) and total carbohydrates (27.85%) while substantially reducing the activity of antioxidant enzymes such as SOD, catalase, and peroxidase by 57-76%, respectively. Notably, the inoculated treatments also showed improved plant vegetative growth parameters compared to the un-inoculated treatments. Interestingly, the positive effects of the halophilic archaea were more pronounced in the susceptible wheat cultivars than in the tolerant cultivars. These findings highlight the growth-promoting abilities of the halophilic archaeon Halolamina pelagica CDK2 and its potential to mitigate the detrimental effects of salinity. Consequently, further evaluation of this halophilic archaeon under field conditions is warranted to explore its potential use in the development of microbial inoculants.

RevDate: 2023-05-15
CmpDate: 2023-05-04

Taubner RS, Baumann LMF, Steiner M, et al (2023)

Lipidomics and Comparative Metabolite Excretion Analysis of Methanogenic Archaea Reveal Organism-Specific Adaptations to Varying Temperatures and Substrate Concentrations.

mSystems, 8(2):e0115922.

Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.

RevDate: 2023-08-09

Ren B, Wang W, Shen L, et al (2023)

Nitrogen fertilization rate affects communities of ammonia-oxidizing archaea and bacteria in paddy soils across different climatic zones of China.

The Science of the total environment, 902:166089 pii:S0048-9697(23)04714-9 [Epub ahead of print].

Nitrogen fertilization has important effects on nitrification. However, how the rate of nitrogen fertilization affects nitrification potential, as well as the communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), remains unclear. We performed a large-scale investigation of nitrification potential and ammonia-oxidizer communities in Chinese paddy fields at different nitrogen fertilization rates across different climatic zones. It was found that the nitrification potential at the high nitrogen fertilization rate (≥150 kg[-1] N ha[-1]) was 23.35 % higher than that at the intermediate rate (100-150 kg[-1] N ha[-1]) and 20.77 % higher than that at the low rate (< 100 kg[-1] N ha[-1]). The nitrification potential showed no significant variation among different nitrogen fertilization rates across climatic zones. Furthermore, the AOA and AOB amoA gene abundance at the high nitrogen fertilization rate was 481.67 % and 292.74 % higher (p < 0.05) than that at the intermediate rate, respectively. Correlation analysis demonstrated a significant positive correlation between AOB abundance and nitrification potential. AOA and AOB community composition differed significantly among nitrogen fertilization rates. Moreover, soil NH4[+] content, pH, water content, bulk density, and annual average temperature were regarded as key environmental factors influencing the community structure of ammonia-oxidizers. Taken together, the nitrogen fertilization rate had a significant impact on the communities of AOA and AOB but did not significantly alter the nitrification potential. Our findings provide new insights into the impact of nitrogen fertilization management on nitrification in rice paddy fields.

RevDate: 2023-07-29

Manfredini A, Malusà E, Pinzari F, et al (2023)

Quantification of nitrogen cycle functional genes from viable archaea and bacteria in paddy soil.

Journal of applied microbiology pii:7233727 [Epub ahead of print].

AIMS: One of the main challenges of culture-independent soil microbiology is distinguishing the microbial community's viable fraction from dead matter. Propidium monoazide (PMA) binds the DNA of dead cells, preventing its amplification. This dye could represent a robust means to overcome the drawbacks of other selective methods, such as RNA-based analyses.

METHODS AND RESULTS: We quantified functional genes from viable archaea and bacteria in soil by combining the use of PMA and qPCR. Four N-cycle-related functional genes (bacterial and archaeal ammonia monooxygenase, nitrate reductase and nitrite reductase) were successfully quantified from the living fraction of bacteria and archaea of a paddy soil. The protocol was also tested with pure bacterial cultures and soils with different physical and chemical properties.

CONCLUSIONS: The experiment results revealed a contrasting impact of mineral and organic fertilizers on the abundance of microbial genes related to the N cycle in paddy soil.

RevDate: 2023-07-29

Marín-Paredes R, Bolívar-Torres HH, Coronel-Gaytán A, et al (2023)

A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota.

Current issues in molecular biology, 45(7):5849-5864.

Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied.

RevDate: 2023-07-27

Esser SP, Rahlff J, Zhao W, et al (2023)

A predicted CRISPR-mediated symbiosis between uncultivated archaea.

Nature microbiology [Epub ahead of print].

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.

RevDate: 2023-07-26

Cai Y, Li H, Qu G, et al (2023)

Responses of applied voltages on the archaea microbial distribution in sludge digestion.

Chemosphere pii:S0045-6535(23)01906-9 [Epub ahead of print].

As the development of urban population led to the increase of domestic water consumption, consequently the generation of surplus sludge (SS) produced increasingly during sewage treatment processes. In order to enhance the SS resource utilization efficiency, an electricity-assisted anaerobic digestion (EAAD) system was employed to examine the alterations in the digestion broth and the characteristics of gas production. Additionally, the response of applied voltages on the distribution of archaeal community near various electrodes within the sludge was explored. The results revealed that the application of high voltages exceeding 3.0 V hindered the CH4 production but stimulated the CO2 generation. Subsequently, both CH4 and CO2 production were impeded by the applied voltages. Furthermore, the increased voltages significantly decreased the abundance of Methanomicrobia, Methanosaeta, and Methanosarcina, which were crucial determinants of CH4 content in biogas. Notably, the excessively high voltages intensities caused the AD process to halt and even inactivate the microbial flora. Interestingly, the distribution characteristics of archaeal community were influenced not only by the voltages intensity but also exhibited variations between the anode and cathode regions. Moreover, as the applied voltage intensified, the discrepancy of responses between the cathode and anode regions became more pronounced, offering novel theoretical and technical foundations for the advancement of electricity-assisted with AD technology.

RevDate: 2023-07-25

Williams AM, Jolley E, Santiago-Martínez MG, et al (2023)

In vivo structure probing of RNA in Archaea: Novel insights into the ribosome structure of Methanosarcina acetivorans.

RNA (New York, N.Y.) pii:rna.079687.123 [Epub ahead of print].

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.

RevDate: 2023-07-24
CmpDate: 2023-07-24

Kim YB, Whon TW, Kim JY, et al (2023)

In-depth metataxonomic investigation reveals low richness, high intervariability, and diverse phylotype candidates of archaea in the human urogenital tract.

Scientific reports, 13(1):11746.

The urogenital microbiota is the potential principal factor in the pathophysiology of urinary tract infection and the protection of urinary tract health. Little is known about the urogenital archaeome although several reports have indicated that the archaeomes of various regions of the human body are associated with health. Accordingly, we aimed to determine the presence and diversity of archaeomes in the human urogenital tract. To explore the urogenital archaeome, voided urine specimens from 373 asymptomatic Korean individuals were used. No difference was observed in body mass index, age, or gender, according to presence of archaea. Analysis of archaeal 16S rRNA gene amplicons of archaea positive samples consisted of simple community structures, including diverse archaea, such as the phyla Methanobacteriota, Thermoproteota, and Halobacteriota. Asymptomatic individuals showed high participant-dependent intervariability in their urogenital archaeomes. The mean relative archaeal abundance was estimated to be 0.89%, and fluorescence in situ hybridisation micrographs provided evidence of archaeal cells in the human urogenital tract. In addition, the urogenital archaeome shared partial taxonomic compositional characteristics with those of the other body sites. In this study, Methanobacteriota, Thermoproteota, and Halobacteriota were suggested as inhabitants of the human urogenital tract, and a distinct human urogenital archaeome was characterised. These findings expand our knowledge of archaea-host associations in the human urogenital tract and may lead to novel insights into the role of archaea in urinary tract health.

RevDate: 2023-07-19

Banas I, Esser SP, Turzynski V, et al (2023)

Spatio-functional organization in virocells of small uncultivated archaea from the deep biosphere.

The ISME journal [Epub ahead of print].

Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells.

RevDate: 2023-07-19

Bargiela R, Korzhenkov AA, McIntosh OA, et al (2023)

Evolutionary patterns of archaea predominant in acidic environment.

Environmental microbiome, 18(1):61.

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts.

RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales.

CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

RevDate: 2023-07-17

Feehan B, Ran Q, Dorman V, et al (2023)

Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea.

Animal microbiome, 5(1):35.

BACKGROUND: Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination.

RESULTS: We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.

RevDate: 2023-07-14

Wright CL, LE Lehtovirta-Morley (2023)

Nitrification and beyond: metabolic versatility of ammonia oxidising archaea.

The ISME journal [Epub ahead of print].

Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism, growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment. Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in the context of nitrifier ecology.

RevDate: 2023-07-14

Padilla-Vaca F, de la Mora J, García-Contreras R, et al (2023)

Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution.

Molecules (Basel, Switzerland), 28(13):.

The signal transduction paradigm in bacteria involves two-component systems (TCSs). Asgardarchaeota are archaea that may have originated the current eukaryotic lifeforms. Most research on these archaea has focused on eukaryotic-like features, such as genes involved in phagocytosis, cytoskeleton structure, and vesicle trafficking. However, little attention has been given to specific prokaryotic features. Here, the sequence and predicted structural features of TCS sensor kinases analyzed from two metagenome assemblies and a genomic assembly from cultured Asgardian archaea are presented. The homology of the sensor kinases suggests the grouping of Lokiarchaeum closer to bacterial homologs. In contrast, one group from a Lokiarchaeum and a meta-genome assembly from Candidatus Heimdallarchaeum suggest the presence of a set of kinases separated from the typical bacterial TCS sensor kinases. AtoS and ArcB homologs were found in meta-genome assemblies along with defined domains for other well-characterized sensor kinases, suggesting the close link between these organisms and bacteria that may have resulted in the metabolic link to the establishment of symbiosis. Several kinases are predicted to be cytoplasmic; some contain several PAS domains. The data shown here suggest that TCS kinases in Asgardian bacteria are witnesses to the transition from bacteria to eukaryotic organisms.

RevDate: 2023-07-10

Sun J, Zhang A, Zhang Z, et al (2023)

Distinct assembly processes and environmental adaptation of abundant and rare archaea in Arctic marine sediments.

Marine environmental research, 190:106082 pii:S0141-1136(23)00210-6 [Epub ahead of print].

Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.

RevDate: 2023-07-05

Kiledal EA, Shaw M, Polson SW, et al (2023)

Metagenomic Analysis of a Concrete Bridge Reveals a Microbial Community Dominated by Halophilic Bacteria and Archaea.

Microbiology spectrum [Epub ahead of print].

Concrete hosts a small but diverse microbiome that changes over time. Shotgun metagenomic sequencing would enable assessment of both the diversity and function of the microbial community in concrete, but a number of unique challenges make this difficult for concrete samples. The high concentration of divalent cations in concrete interferes with nucleic acid extraction, and the extremely low biomass in concrete means that DNA from laboratory contamination may be a large fraction of the sequence data. Here, we develop an improved method for DNA extraction from concrete, with higher yield and lower laboratory contamination. To show that this method provides DNA of sufficient quality and quantity to do shotgun metagenomic sequencing, DNA was extracted from a sample of concrete obtained from a road bridge and sequenced with an Illumina MiSeq system. This microbial community was dominated by halophilic Bacteria and Archaea, with enriched functional pathways related to osmotic stress responses. Although this was a pilot-scale effort, we demonstrate that metagenomic sequencing can be used to characterize microbial communities in concrete and that older concrete structures may host different microbes than recently poured concrete. IMPORTANCE Prior work on the microbial communities of concrete focused on the surfaces of concrete structures such as sewage pipes or bridge pilings, where thick biofilms were easy to observe and sample. Because the biomass inside concrete is so low, more recent analyses of the microbial communities inside concrete used amplicon sequencing methods to describe those communities. However, to understand the activity and physiology of microbes in concrete, or to develop living infrastructure, we must develop more direct methods of community analysis. The method developed here for DNA extraction and metagenomic sequencing can be used for analysis of microbial communities inside concrete and can likely be adapted for other cementitious materials.

RevDate: 2023-07-05
CmpDate: 2023-07-05

Li XX, Tan S, Cheng M, et al (2023)

Salinilacihabitans rarus gen. nov., sp. nov., Natrononativus amylolyticus gen. nov., sp. nov., Natronobeatus ordinarius gen. nov., sp. nov., and Halovivax gelatinilyticus sp. nov., halophilic archaea, isolated from a salt lake and soda lakes.

Extremophiles : life under extreme conditions, 27(2):15.

Four halophilic archaea strains, AD-4[T], CGA30[T], CGA73[T], and WLHSJ27[T], were isolated from a salt lake and two soda lakes located in different regions of China. The 16S rRNA and rpoB' gene sequence similarities among strains AD-4[T], CGA30[T], CGA73[T], WLHSJ27[T], and the current species of the family Natrialbaceae were 90.9-97.5% and 83.1-91.8%, respectively. The phylogenetic and phylogenomic analyses revealed that these four strains separated from existing genera in the family Natrialbaceae and formed distant branches. The ANI, isDDH, and AAI values among these four strains and the current members of the family Natrialbaceae were 72-79%, 20-25%, and 63-73%, respectively, much lower than the threshold values for species demarcation. Strains AD-4[T], CGA73[T], and WLHSJ27[T] may represent three novel genera of the family Natrialbaceae according to the cutoff value of AAI (≤ 76%) proposed to differentiate genera within the family Natrialbaceae. These four strains could be distinguished from the related genera according to differential phenotypic characteristics. The major phospholipids of these four strains were identical while their glycolipid profiles were diverse. DGD-1 is a major glycolipid found in strain AD-4[T], trace glycolipids, DGD-1, and S-DGD-1, and (or) S-TGD-1 was found in the other three strains. The major respiratory quinones detected in the four strains were menaquinone MK-8 and MK-8(H2). This polyphasic classification indicated that strains AD-4[T], CGA73[T], and WLHSJ27[T] represent three novel species of three new genera with the family Natrialbaceae, and strain CGA30[T] represents a novel species of Halovivax.

RevDate: 2023-07-03

Li B, Liang J, Phillips MA, et al (2023)

Neofunctionalization of S-adenosylmethionine decarboxylase into pyruvoyl-dependent L-ornithine and L-arginine decarboxylases is widespread in bacteria and archaea.

The Journal of biological chemistry pii:S0021-9258(23)02033-1 [Epub ahead of print].

S-Adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.

RevDate: 2023-06-30

Johnsen U, Ortjohann M, Reinhardt A, et al (2023)

Discovery of a novel transcriptional regulator of sugar catabolism in archaea.

Molecular microbiology [Epub ahead of print].

The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.

RevDate: 2023-06-30
CmpDate: 2023-06-30

Wang J, Qu YN, Evans PN, et al (2023)

Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs.

Science advances, 9(26):eadg6004.

Recent discoveries of methyl-coenzyme M reductase-encoding genes (mcr) in uncultured archaea beyond traditional euryarchaeotal methanogens have reshaped our view of methanogenesis. However, whether any of these nontraditional archaea perform methanogenesis remains elusive. Here, we report field and microcosm experiments based on [13]C-tracer labeling and genome-resolved metagenomics and metatranscriptomics, revealing that nontraditional archaea are predominant active methane producers in two geothermal springs. Archaeoglobales performed methanogenesis from methanol and may exhibit adaptability in using methylotrophic and hydrogenotrophic pathways based on temperature/substrate availability. A five-year field survey found Candidatus Nezhaarchaeota to be the predominant mcr-containing archaea inhabiting the springs; genomic inference and mcr expression under methanogenic conditions strongly suggested that this lineage mediated hydrogenotrophic methanogenesis in situ. Methanogenesis was temperature-sensitive , with a preference for methylotrophic over hydrogenotrophic pathways when incubation temperatures increased from 65° to 75°C. This study demonstrates an anoxic ecosystem wherein methanogenesis is primarily driven by archaea beyond known methanogens, highlighting diverse nontraditional mcr-containing archaea as previously unrecognized methane sources.

RevDate: 2023-06-28

Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, et al (2023)

Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era.

Marine drugs, 21(6): pii:md21060340.

Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.

RevDate: 2023-06-23

Carré L, Gonzalez D, Girard É, et al (2023)

Effects of chaotropic salts on global proteome stability in halophilic archaea: Implications for life signatures on Mars.

Environmental microbiology [Epub ahead of print].

Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2 , CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.

RevDate: 2023-06-21

Iacono R, De Lise F, Moracci M, et al (2023)

Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications.

Essays in biochemistry pii:233166 [Epub ahead of print].

(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.

RevDate: 2023-06-20

Jarrell KF, Albers SV, JNS Machado (2021)

A comprehensive history of motility and Archaellation in Archaea.

FEMS microbes, 2:xtab002.

Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.

RevDate: 2023-06-19

Pessi IS, Rutanen A, J Hultman (2022)

Candidatus Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/alpine distribution.

FEMS microbes, 3:xtac019.

Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle of polar soils. Here, we analyzed metagenomic data from tundra soils in Rásttigáisá, Norway, and recovered four metagenome-assembled genomes (MAGs) assigned to the genus 'UBA10452', an uncultured lineage of putative AOA in the order Nitrososphaerales ('terrestrial group I.1b'), phylum Thaumarchaeota. Analysis of other eight previously reported MAGs and publicly available amplicon sequencing data revealed that the UBA10452 lineage is predominantly found in acidic polar and alpine soils. In particular, UBA10452 MAGs were more abundant in highly oligotrophic environments such as mineral permafrost than in more nutrient-rich, vegetated tundra soils. UBA10452 MAGs harbour multiple copies of genes related to cold tolerance, particularly genes involved in DNA replication and repair. Based on the phylogenetic, biogeographic, and ecological characteristics of 12 UBA10452 MAGs, which include a high-quality MAG (90.8% complete, 3.9% redundant) with a nearly complete 16S rRNA gene, we propose a novel Candidatus genus, Ca. Nitrosopolaris, with four species representing clear biogeographic/habitat clusters.

RevDate: 2023-06-18

Elcheninov AG, Ugolkov YA, Elizarov IM, et al (2023)

Cellulose metabolism in halo(natrono)archaea: a comparative genomics study.

Frontiers in microbiology, 14:1112247.

Extremely halophilic archaea are one of the principal microbial community components in hypersaline environments. The majority of cultivated haloarchaea are aerobic heterotrophs using peptides or simple sugars as carbon and energy sources. At the same time, a number of novel metabolic capacities of these extremophiles were discovered recently among which is a capability of growing on insoluble polysaccharides such as cellulose and chitin. Still, polysaccharidolytic strains are in minority among cultivated haloarchaea and their capacities of hydrolyzing recalcitrant polysaccharides are hardly investigated. This includes the mechanisms and enzymes involved in cellulose degradation, which are well studied for bacterial species, while almost unexplored in archaea and haloarchaea in particular. To fill this gap, a comparative genomic analysis of 155 cultivated representatives of halo(natrono)archaea, including seven cellulotrophic strains belonging to the genera Natronobiforma, Natronolimnobius, Natrarchaeobius, Halosimplex, Halomicrobium and Halococcoides was performed. The analysis revealed a number of cellulases, encoded in the genomes of cellulotrophic strains but also in several haloarchaea, for which the capacity to grow on cellulose was not shown. Surprisingly, the cellulases genes, especially of GH5, GH9 and GH12 families, were significantly overrepresented in the cellulotrophic haloarchaea genomes in comparison with other cellulotrophic archaea and even cellulotrophic bacteria. Besides cellulases, the genes for GH10 and GH51 families were also abundant in the genomes of cellulotrophic haloarchaea. These results allowed to propose the genomic patterns, determining the capability of haloarchaea to grow on cellulose. The patterns helped to predict cellulotrophic capacity for several halo(natrono)archaea, and for three of them it was experimentally confirmed. Further genomic search revealed that glucose and cellooligosaccharides import occurred by means of porters and ABC (ATP-binding cassette) transporters. Intracellular glucose oxidation occurred through glycolysis or the semi-phosphorylative Entner-Dudoroff pathway which occurrence was strain-specific. Comparative analysis of CAZymes toolbox and available cultivation-based information allowed proposing two possible strategies used by haloarchaea capable of growing on cellulose: so-called specialists are more effective in degradation of cellulose while generalists are more flexible in nutrient spectra. Besides CAZymes profiles the groups differed in genome sizes, as well as in variability of mechanisms of import and central metabolism of sugars.

RevDate: 2023-06-15

Taglialegna A (2023)

A plasmid to modify Archaea.

Nature reviews. Microbiology [Epub ahead of print].

RevDate: 2023-06-15

Thompson TP, Busetti A, BF Gilmore (2023)

Quorum Sensing in Halorubrum saccharovorum Facilitates Cross-Domain Signaling between Archaea and Bacteria.

Microorganisms, 11(5): pii:microorganisms11051271.

Quorum Sensing (QS) is a well-studied intercellular communication mechanism in bacteria, regulating collective behaviors such as biofilm formation, virulence, and antibiotic resistance. However, cell-cell signaling in haloarchaea remains largely unexplored. The coexistence of bacteria and archaea in various environments, coupled with the known cell-cell signaling mechanisms in both prokaryotic and eukaryotic microorganisms and the presence of cell-cell signaling mechanisms in both prokaryotic and eukaryotic microorganisms, suggests a possibility for haloarchaea to possess analogous cell-cell signaling or QS systems. Recently, N-acylhomoserine lactone (AHL)-like compounds were identified in haloarchaea; yet, their precise role-for example, persister cell formation-remains ambiguous. This study investigated the capacity of crude supernatant extract from the haloarchaeon Halorubrum saccharovorum CSM52 to stimulate bacterial AHL-dependent QS phenotypes using bioreporter strains. Our findings reveal that these crude extracts induced several AHL-dependent bioreporters and modulated pyocyanin and pyoverdine production in Pseudomonas aeruginosa. Importantly, our study suggests cross-domain communication between archaea and bacterial pathogens, providing evidence for archaea potentially influencing bacterial virulence. Using Thin Layer Chromatography overlay assays, lactonolysis, and colorimetric quantification, the bioactive compound was inferred to be a chemically modified AHL-like compound or a diketopiperazine-like molecule, potentially involved in biofilm formation in H. saccharovorum CSM52. This study offers new insights into putative QS mechanisms in haloarchaea and their potential role in interspecies communication and coordination, thereby enriching our understanding of microbial interactions in diverse environments.

RevDate: 2023-06-15

Payá G, Bautista V, Camacho M, et al (2023)

Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain.

Microorganisms, 11(5): pii:microorganisms11051196.

The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.

RevDate: 2023-06-12

Tong Y, Wu X, Liu Y, et al (2023)

Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage.

Nature microbiology [Epub ahead of print].

Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.

RevDate: 2023-06-12

van der Does C, Braun F, Ren H, et al (2023)

Putative nucleotide-based second messengers in archaea.

microLife, 4:uqad027.

Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.

RevDate: 2023-06-11

Jia Z, Lipus D, Burckhardt O, et al (2023)

Enrichment of rare methanogenic Archaea shows their important ecological role in natural high-CO2 terrestrial subsurface environments.

Frontiers in microbiology, 14:1105259.

INTRODUCTION: Long-term stability of underground CO2 storage is partially affected by microbial activity but our knowledge of these effects is limited, mainly due to a lack of sites. A consistently high flux of mantle-derived CO2 makes the Eger Rift in the Czech Republic a natural analogue to underground CO2 storage. The Eger Rift is a seismically active region and H2 is produced abiotically during earthquakes, providing energy to indigenous microbial communities.

METHODS: To investigate the response of a microbial ecosystem to high levels of CO2 and H2, we enriched microorganisms from samples from a 239.5 m long drill core from the Eger Rift. Microbial abundance, diversity and community structure were assessed using qPCR and 16S rRNA gene sequencing. Enrichment cultures were set up with minimal mineral media and H2/CO2 headspace to simulate a seismically active period with elevated H2.

RESULTS AND DISCUSSION: Methane headspace concentrations in the enrichments indicated that active methanogens were almost exclusively restricted to enrichment cultures from Miocene lacustrine deposits (50-60 m), for which we observed the most significant growth. Taxonomic assessment showed microbial communities in these enrichments to be less diverse than those with little or no growth. Active enrichments were especially abundant in methanogens of the taxa Methanobacterium and Methanosphaerula. Concurrent to the emergence of methanogenic archaea, we also observed sulfate reducers with the metabolic ability to utilize H2 and CO2, specifically the genus Desulfosporosinus, which were able to outcompete methanogens in several enrichments. Low microbial abundance and a diverse non-CO2 driven microbial community, similar to that in drill core samples, also reflect the inactivity in these cultures. Significant growth of sulfate reducing and methanogenic microbial taxa, which make up only a small fraction of the total microbial community, emphasize the need to account for rare biosphere taxa when assessing the metabolic potential of microbial subsurface populations. The observation that CO2 and H2-utilizing microorganisms could only be enriched from a narrow depth interval suggests that factors such as sediment heterogeneity may also be important. This study provides new insight on subsurface microbes under the influence of high CO2 concentrations, similar to those found in CCS sites.

RevDate: 2023-06-05

Catchpole RJ, Barbe V, Magdelenat G, et al (2023)

A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea.

Nature microbiology [Epub ahead of print].

Conjugative plasmids are self-transmissible mobile genetic elements that transfer DNA between host cells via type IV secretion systems (T4SS). While T4SS-mediated conjugation has been well-studied in bacteria, information is sparse in Archaea and known representatives exist only in the Sulfolobales order of Crenarchaeota. Here we present the first self-transmissible plasmid identified in a Euryarchaeon, Thermococcus sp. 33-3. The 103 kbp plasmid, pT33-3, is seen in CRISPR spacers throughout the Thermococcales order. We demonstrate that pT33-3 is a bona fide conjugative plasmid that requires cell-to-cell contact and is dependent on canonical, plasmid-encoded T4SS-like genes. Under laboratory conditions, pT33-3 transfers to various Thermococcales and transconjugants propagate at 100 °C. Using pT33-3, we developed a genetic toolkit that allows modification of phylogenetically diverse Archaeal genomes. We demonstrate pT33-3-mediated plasmid mobilization and subsequent targeted genome modification in previously untransformable Thermococcales species, and extend this process to interphylum transfer to a Crenarchaeon.

RevDate: 2023-06-01

Zehnle H, Laso-Pérez R, Lipp J, et al (2023)

Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes.

Nature microbiology [Epub ahead of print].

Methanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (C5) and tetradecane (C14) at 70 °C using oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus Candidatus Alkanophaga activate the alkanes with Acrs and completely oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching sister clade to the methanotrophs ANME-1 and are closely related to the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable of sulfate reduction, Ca. Alkanophaga shuttle electrons released from alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium syntrophicum. These syntrophic consortia are potential key players in petroleum degradation in heated oil reservoirs.

RevDate: 2023-06-01

Hou G, Wazir ZG, Liu J, et al (2023)

Effects of sulfadiazine and Cu on soil potential nitrification and ammonia-oxidizing archaea and bacteria communities across different soils.

Frontiers in microbiology, 14:1153199.

INTRODUCTION: Sulfadiazine (SDZ) and copper (Cu) are frequently detected in agricultural soils, but little is known on their single or combined impact on ammonia oxidizing microbial community and function across different soils.

METHODS: In this study, a microcosm was conducted to distinguish the microbial ecotoxicity of SDZ and Cu across different soils by analyzing soil potential nitrification rate (PNR) and the amoA gene sequences.

RESULTS: The results showed that the single spiking of SDZ caused a consistent decrease of soil PNR among three tested soils, but no consistent synergistic inhibition of SDZ and Cu was observed across these soils. Moreover, across three tested soils, the distinct responses to the single or joint exposure of SDZ and Cu were found in amoA gene abundance, and diversity as well as the identified genus taxa of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Meanwhile, only the specific genus taxa of AOA or AOB consistently corresponded to the variation of soil PNR across different treated soils. The further principal component analysis (PCA) exhibited that the variable influence of SDZ and Cu on ammonia oxidizing microbial community and function was greatly dependent on soil type.

DISCUSSION: Therefore, in addition to ecological functionality and the specific prokaryotic taxa, soil microbial ecotoxicity of SDZ and Cu also was dependent on edaphic factors derived from soil types. This study proposes an integrative assessment of soil properties and multiple microbial targets to soil contamination management.

RevDate: 2023-05-31

Wang BB, Bao CX, Sun YP, et al (2023)

Halobacterium wangiae sp. nov. and Halobacterium zhouii sp. nov., two extremely halophilic archaea isolated from sediment of a salt lake and saline soil of an inland saltern.

International journal of systematic and evolutionary microbiology, 73(5):.

Two novel halophilic archaeal strains, Gai3-17[T] and XZYJT26[T], were isolated from the sediment of Gaize salt lake and the saline soil of Mangkang ancient solar saltern in Tibet, PR China, respectively. Strains Gai3-17[T] and XZYJT26[T] were related to each other (96.5 and 89.7% similarity, respectively) and showed 97.5-95.4 and 91.5-87.7% similarities to the current members of Halobacterium based on 16S rRNA and rpoB' genes. The phylogenomic analysis indicated that strains Gai3-17[T] and XZYJT26[T] formed two distinct clades and clustered with the Halobacterium species. The two strains can be differentiated from the type strains of the six species with validly published names based on several phenotypic characteristics. The phospholipids of the two strains were phosphatidic acid, phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. One major glycolipid, sulphated galactosyl mannosyl glucosyl diether, was detected in strain Gai3-17[T], while four glycolipids, mannosyl glucosyl diether, sulphated mannosyl glucosyl diether, disulphated mannosyl glucosyl diether and sulphated galactosyl mannosyl glucosyl diether were observed in strain XZYJT26[T]. The average nucleotide identity, digital DNA-DNA hybridization and amino acid identity values among the two strains and the members of Halobacterium were no more than 81, 25 and 77 %, respectively. These overall genome-related indices were below the threshold values for species boundary, indicating that strains Gai3-17[T] and XZYJT26[T] represent two novel species of Halobacterium. Thus, two novel species, Halobacterium wangiae sp. nov. and Halobacterium zhouii sp. nov., are proposed to accommodate strains Gai3-17[T] (=CGMCC 1.16101[T]=JCM 33551[T]) and XZYJT26[T] (=CGMCC 1.16682[T]=JCM 33556[T]), respectively.

RevDate: 2023-05-30

Ávila-Román J, Gómez-Villegas P, de Carvalho CCCR, et al (2023)

Up-Regulation of the Nrf2/HO-1 Antioxidant Pathway in Macrophages by an Extract from a New Halophilic Archaea Isolated in Odiel Saltworks.

Antioxidants (Basel, Switzerland), 12(5):.

The production of reactive oxygen species (ROS) plays an important role in the progression of many inflammatory diseases. The search for antioxidants with the ability for scavenging free radicals from the body cells that reduce oxidative damage is essential to prevent and treat these pathologies. Haloarchaea are extremely halophilic microorganisms that inhabit hypersaline environments, such as saltworks or salt lakes, where they have to tolerate high salinity, and elevated ultraviolet (UV) and infrared radiations. To cope with these extreme conditions, haloarchaea have developed singular mechanisms to maintain an osmotic balance with the medium, and are endowed with unique compounds, not found in other species, with bioactive properties that have not been fully explored. This study aims to assess the potential of haloarchaea as a new source of natural antioxidant and anti-inflammatory agents. A carotenoid-producing haloarchaea was isolated from Odiel Saltworks (OS) and identified on the basis of its 16S rRNA coding gene sequence as a new strain belonging to the genus Haloarcula. The Haloarcula sp. OS acetone extract (HAE) obtained from the biomass contained bacterioruberin and mainly C18 fatty acids, and showed potent antioxidant capacity using ABTS assay. This study further demonstrates, for the first time, that pretreatment with HAE of lipopolysaccharide (LPS)-stimulated macrophages results in a reduction in ROS production, a decrease in the pro-inflammatory cytokines TNF-α and IL-6 levels, and up-regulation of the factor Nrf2 and its target gene heme oxygenase-1 (HO-1), supporting the potential of the HAE as a therapeutic agent in the treatment of oxidative stress-related inflammatory diseases.

RevDate: 2023-05-25

Liu J, Soler N, Gorlas A, et al (2021)

Extracellular membrane vesicles and nanotubes in Archaea.

microLife, 2:uqab007.

Membrane-bound extracellular vesicles (EVs) are secreted by cells from all three domains of life and their implication in various biological processes is increasingly recognized. In this review, we summarize the current knowledge on archaeal EVs and nanotubes, and emphasize their biological significance. In archaea, the EVs and nanotubes have been largely studied in representative species from the phyla Crenarchaeota and Euryarchaeota. The archaeal EVs have been linked to several physiological processes such as detoxification, biomineralization and transport of biological molecules, including chromosomal, viral or plasmid DNA, thereby taking part in genome evolution and adaptation through horizontal gene transfer. The biological significance of archaeal nanotubes is yet to be demonstrated, although they could participate in EV biogenesis or exchange of cellular contents. We also discuss the biological mechanisms leading to EV/nanotube biogenesis in Archaea. It has been recently demonstrated that, similar to eukaryotes, EV budding in crenarchaea depends on the ESCRT machinery, whereas the mechanism of EV budding in euryarchaeal lineages, which lack the ESCRT-III homologues, remains unknown.

RevDate: 2023-05-22
CmpDate: 2023-05-22

Ma X, Hu Y, Li XX, et al (2023)

Halomicroarcula laminariae sp. nov. and Halomicroarcula marina sp. nov., extremely halophilic archaea isolated from salted brown alga Laminaria and coastal saline-alkali lands.

International journal of systematic and evolutionary microbiology, 73(5):.

Four extremely halophilic archaeal strains, LYG-108[T], LYG-24, DT1[T] and YSSS71, were isolated from salted Laminaria produced in Lianyungang and saline soil from the coastal beach at Jiangsu, PR China. The four strains were found to be related to the current species of Halomicroarcula (showing 88.1-98.5% and 89.3-93.6% similarities, respectively) as revealed by phylogenetic analysis based on 16S rRNA and rpoB' genes. These phylogenies were fully supported by the phylogenomic analysis, and the overall genome-related indexes (average nucleotide identity, DNA-DNA hybridization and average amino acid identity) among these four strains and the Halomicroarcula species were 77-84 %, 23-30 % and 71-83 %, respectively, clearly below the threshold values for species demarcation. Additionally, the phylogenomic and comparative genomic analyses revealed that Halomicroarcula salina YGH18[T] is related to the current species of Haloarcula rather than those of Halomicroarcula, Haloarcula salaria Namwong et al. 2011 is a later heterotypic synonym of Haloarcula argentinensis Ihara et al. 1997, and Haloarcula quadrata Oren et al. 1999 is a later heterotypic synonym of Haloarcula marismortui Oren et al. 1990. The major polar lipids of strains LYG-108[T], LYG-24, DT1[T] and YSSS71 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate, sulphated mannosyl glucosyl diether and additional glycosyl-cardiolipins. All these results showed that strains LYG-108[T] (=CGMCC 1.13607[T]=JCM 32950[T]) and LYG-24 (=CGMCC 1.13605=JCM 32949) represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula laminariae sp. nov. is proposed; strains DT1[T] (=CGMCC 1.18928[T]=JCM 35414[T]) and YSSS71 (=CGMCC 1.18783=JCM 34915) also represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula marina sp. nov. is proposed.

RevDate: 2023-05-18

Wang Z, Li Y, Zheng W, et al (2023)

Ammonia oxidizing archaea and bacteria respond to different manure application rates during organic vegetable cultivation in Northwest China.

Scientific reports, 13(1):8064.

Ammonia oxidization is a critical process in nitrogen cycling that involves ammonia oxidizing archaea (AOA) and bacteria (AOB). However, the effects of different manure amounts on ammonia-oxidizing microorganisms (AOMs) over the course of organic vegetables production remains unclear. We used the amoA gene to evaluated AOMs abundance and community structure in organic vegetable fields. Quantitative PCR revealed that AOB were more abundant than AOA. Among them, the amoA copy number of AOB treated with 900 kgN ha[-1] was 21.3 times that of AOA. The potential nitrification rate was significantly correlated with AOB abundance (P < 0.0001) but not with AOA, suggesting that AOB might contribute more to nitrification than AOA. AOB sequences were classified into Nitrosomonas and Nitrosospira, and AOA into Nitrosopumilus and Nitrososphaera. Nitrosomonas and Nitrosopumilus were predominant in treatments that received manure nitrogen at ≥ 900 kg ha[-1] (52.7-56.5%) and when manure was added (72.7-99.8%), respectively, whereas Nitrosospira and Nitrososphaera occupied more than a half percentage in those that received ≤ 600 kg ha[-1] (58.4-84.9%) and no manure (59.6%). A similar manure rate resulted in more identical AOMs' community structures than greater difference manure rate. The bacterial amoA gene abundances and ratios of AOB and AOA showed significantly positive correlations with soil electrical conductivity, total carbon and nitrogen, nitrate, phosphorus, potassium, and organic carbon, indicating that these were potential key factors influencing AOMs. This study explored the AOMs' variation in organic vegetable fields in Northwest China and provided a theoretical basis and reference for the subsequent formulation of proper manure management.

RevDate: 2023-05-17

Dondjou DT, Diedhiou AG, Mbodj D, et al (2023)

Rice developmental stages modulate rhizosphere bacteria and archaea co-occurrence and sensitivity to long-term inorganic fertilization in a West African Sahelian agro-ecosystem.

Environmental microbiome, 18(1):42.

BACKGROUND: Rhizosphere microbial communities are important components of the soil-plant continuum in paddy field ecosystems. These rhizosphere communities contribute to nutrient cycling and rice productivity. The use of fertilizers is a common agricultural practice in rice paddy fields. However, the long-term impact of the fertilizers usage on the rhizosphere microbial communities at different rice developmental stages remains poorly investigated. Here, we examined the effects of long-term (27 years) N and NPK-fertilization on bacterial and archaeal community inhabiting the rice rhizosphere at three developmental stages (tillering, panicle initiation and booting) in the Senegal River Delta.

RESULTS: We found that the effect of long-term inorganic fertilization on rhizosphere microbial communities varied with the rice developmental stage, and between microbial communities in their response to N and NPK-fertilization. The microbial communities inhabiting the rice rhizosphere at panicle initiation appear to be more sensitive to long-term inorganic fertilization than those at tillering and booting stages. However, the effect of developmental stage on microbial sensitivity to long-term inorganic fertilization was more pronounced for bacterial than archaeal community. Furthermore, our data reveal dynamics of bacteria and archaea co-occurrence patterns in the rice rhizosphere, with differentiated bacterial and archaeal pivotal roles in the microbial inter-kingdom networks across developmental stages.

CONCLUSIONS: Our study brings new insights on rhizosphere bacteria and archaea co-occurrence and the long-term inorganic fertilization impact on these communities across developmental stages in field-grown rice. It would help in developing strategies for the successful manipulation of microbial communities to improve rice yields.

RevDate: 2023-05-17

Aparici D, Esclapez J, Bautista V, et al (2023)

Archaea: current and potential biotechnological applications.

Research in microbiology pii:S0923-2508(23)00055-4 [Epub ahead of print].

Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.

RevDate: 2023-05-16

Romero R, Gervasi MT, DiGiulio DB, et al (2023)

Are bacteria, fungi, and archaea present in the midtrimester amniotic fluid?.

Journal of perinatal medicine [Epub ahead of print].

OBJECTIVES: This study was conducted to determine whether bacteria, fungi, or archaea are detected in the amniotic fluid of patients who underwent midtrimester amniocentesis for clinical indications.

METHODS: Amniotic fluid samples from 692 pregnancies were tested by using a combination of culture and end-point polymerase chain reaction (PCR) techniques. Intra-amniotic inflammation was defined as an interleukin-6 concentration >2,935 pg/mL.

RESULTS: Microorganisms were detected in 0.3% (2/692) of cases based on cultivation, 1.73% (12/692) based on broad-range end-point PCR, and 2% (14/692) based on the combination of both methods. However, most (13/14) of these cases did not have evidence of intra-amniotic inflammation and delivered at term. Therefore, a positive culture or end-point PCR in most patients appears to have no apparent clinical significance.

CONCLUSIONS: Amniotic fluid in the midtrimester of pregnancy generally does not contain bacteria, fungi, or archaea. Interpretation of amniotic fluid culture and molecular microbiologic results is aided by the assessment of the inflammatory state of the amniotic cavity. The presence of microorganisms, as determined by culture or a microbial signal in the absence of intra-amniotic inflammation, appears to be a benign condition.

RevDate: 2023-05-16

Grünberger F, Jüttner M, Knüppel R, et al (2023)

Nanopore-based RNA sequencing deciphers the formation, processing, and modification steps of rRNA intermediates in Archaea.

RNA (New York, N.Y.) pii:rna.079636.123 [Epub ahead of print].

Ribosomal RNA (rRNA) maturation in archaea is a complex multi-step process that requires well-defined endo- and exoribonuclease activities to generate fully mature linear rRNAs. However, technical challenges prevented detailed mapping of rRNA processing steps and a systematic analysis of rRNA maturation pathways across the tree of life. In this study, we employed long-read (PCR)-cDNA and direct RNA nanopore-based sequencing to study rRNA maturation in three archaeal model organisms, namely the Euryarchaea Haloferax volcanii and Pyrococcus furiosus and the Crenarchaeon Sulfolobus acidocaldarius. Compared to standard short-read protocols, nanopore sequencing facilitates simultaneous readout of 5'- and 3'-positions, which is required for the classification of rRNA processing intermediates. More specifically, we i) accurately detect and describe rRNA maturation stages by analysis of terminal read positions of cDNA reads and thereupon ii) explore the stage-dependent installation of the KsgA-mediated dimethylations in Haloferax volcanii using basecalling and signal characteristics of direct RNA reads. Due to the single-molecule sequencing capacity of nanopore sequencing, we could detect hitherto unknown intermediates with high confidence, revealing details about the maturation of archaea-specific circular rRNA intermediates. Taken together, our study delineates common principles and unique features of rRNA processing in euryarchaeal and crenarchaeal representatives, thereby significantly expanding our understanding of rRNA maturation pathways in archaea.

RevDate: 2023-05-15
CmpDate: 2023-05-15

Pallen MJ, Rodriguez-R LM, NF Alikhan (2023)

Corrigendum: Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database.

International journal of systematic and evolutionary microbiology, 73(5):.

RevDate: 2023-05-08

Demey LM, Gumerov VM, Xing J, et al (2023)

Transmembrane Transcription Regulators Are Widespread in Bacteria and Archaea.

Microbiology spectrum [Epub ahead of print].

To adapt and proliferate, bacteria must sense and respond to the ever-changing environment. Transmembrane transcription regulators (TTRs) are a family of one-component transcription regulators that respond to extracellular information and influence gene expression from the cytoplasmic membrane. How TTRs function to modulate expression of their target genes while localized to the cytoplasmic membrane remains poorly understood. In part, this is due to a lack of knowledge regarding the prevalence of TTRs among prokaryotes. Here, we show that TTRs are highly diverse and prevalent throughout bacteria and archaea. Our work demonstrates that TTRs are more common than previously appreciated and are enriched within specific bacterial and archaeal phyla and that many TTRs have unique transmembrane region properties that can facilitate association with detergent-resistant membranes. IMPORTANCE One-component signal transduction systems are the major class of signal transduction systems among bacteria and are commonly cytoplasmic. TTRs are a group of unique one-component signal transduction systems that influence transcription from the cytoplasmic membrane. TTRs have been implicated in a wide array of biological pathways critical for both pathogens and human commensal organisms but were considered to be rare. Here, we demonstrate that TTRs are in fact highly diverse and broadly distributed in bacteria and archaea. Our findings suggest that transcription factors can access the chromosome and influence transcription from the membrane in both archaea and bacteria. This study challenges thus the commonly held notion that signal transduction systems require a cytoplasmic transcription factor and highlights the importance of the cytoplasmic membrane in directly influencing signal transduction.

RevDate: 2023-04-28

Hodgskiss LH, Melcher M, Kerou M, et al (2023)

Correction to: Unexpected complexity of the ammonia monooxygenase in archaea.

RevDate: 2023-04-26

Jaffe AL, Castelle CJ, JF Banfield (2023)

Habitat Transition in the Evolution of Bacteria and Archaea.

Annual review of microbiology [Epub ahead of print].

Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study. Expected final online publication date for the Annual Review of Microbiology, Volume 77 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2023-04-26

Chen X, Molenda O, Brown CT, et al (2023)

"Candidatus Nealsonbacteria" Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture.

Applied and environmental microbiology [Epub ahead of print].

The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.

RevDate: 2023-04-26

Prakash O, Dodsworth JA, Dong X, et al (2023)

Proposed minimal standards for description of methanogenic archaea.

International journal of systematic and evolutionary microbiology, 73(4):.

Methanogenic archaea are a diverse, polyphyletic group of strictly anaerobic prokaryotes capable of producing methane as their primary metabolic product. It has been over three decades since minimal standards for their taxonomic description have been proposed. In light of advancements in technology and amendments in systematic microbiology, revision of the older criteria for taxonomic description is essential. Most of the previously recommended minimum standards regarding phenotypic characterization of pure cultures are maintained. Electron microscopy and chemotaxonomic methods like whole-cell protein and lipid analysis are desirable but not required. Because of advancements in DNA sequencing technologies, obtaining a complete or draft whole genome sequence for type strains and its deposition in a public database are now mandatory. Genomic data should be used for rigorous comparison to close relatives using overall genome related indices such as average nucleotide identity and digital DNA-DNA hybridization. Phylogenetic analysis of the 16S rRNA gene is also required and can be supplemented by phylogenies of the mcrA gene and phylogenomic analysis using multiple conserved, single-copy marker genes. Additionally, it is now established that culture purity is not essential for studying prokaryotes, and description of Candidatus methanogenic taxa using single-cell or metagenomics along with other appropriate criteria is a viable alternative. The revisions to the minimal criteria proposed here by the members of the Subcommittee on the Taxonomy of Methanogenic Archaea of the International Committee on Systematics of Prokaryotes should allow for rigorous yet practical taxonomic description of these important and diverse microbes.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

Some Archaea thrive in extreme places around the planet such as in thermal pools, hot vents at the bottom of the sea, extremely salty water, and even in underground oil reserves. Others are found in the intestines of animals and in plankton, tiny organisms that form a feeding reserve for larger marine life. Once grouped with bacteria, the DNA of this fascinating group is sufficiently different that scientists have proposed that they should have a sixth kingdom of their own. This book examines the three main divisions into which members of the diverse Archaea kingdom are grouped according to their unusual biology. It also explains why little in general is known about them, and why further classification of Archaea is so difficult.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )