About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

21 Nov 2018 at 01:44
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Taste-Aversion Learning


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 21 Nov 2018 at 01:44 Created: 

Taste-Aversion Learning

The notion of "conditioned taste aversions" refers to animals' ability to preferentially associate taste with illness, despite the passage of a significant time between ingestion and illness. When first described, this pattern seemed so at variance with the tenets of classical learning theory that one early reviewer claimed "results like that are no more likely than birdshit in a cuckoo clock." Now, however, the reality of the phenomenon is well established and has demonstrated relevance in practical areas ranging from rodent control to chemotherapy.

Created with PubMed® Query: "taste aversion" or "bait shyness" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-11-17

Delay ER, Weaver B, Lane DR, et al (2018)

Dried bonito dashi: Contributions of mineral salts and organic acids to the taste of dashi.

Physiology & behavior pii:S0031-9384(18)31022-9 [Epub ahead of print].

Dried bonito dashi is often used in Japanese cuisine with a number of documented positive health effects. Its major taste is thought to be umami, elicited by inosine 5'-monophosphate (IMP) and L-amino acids. Previously we found that lactic acid, a major component of dried bonito dashi, enhanced the contribution of many of these amino acids to the taste of dried bonito dashi, and reduced the contribution of other amino acids. In addition to amino acids, dried bonito dashi also has a significant mineral salt component. The present study used conditioned taste aversion methods with mice (all had compromised olfactory systems) to compare the taste qualities of dried bonito dashi with four salts (NaCl, KCl, CaCl2 and MgCl2), with and without lactic acid or citric acid. A conditioned taste aversion to 25% dried bonitio dashi generalized significantly to NaCl and KCl, with or without 0.9% lactic acid added but not when citric acid was added. Generalization of the CTA to dried bonito dashi was much stronger to the divalent salts, but when either lactic acid or citric acid was added, this aversion was eliminated. These results suggest that these salts contribute to the complex taste of dried bonito dashi and that both organic acids appear able to modify the tastes of divalent salts.

RevDate: 2018-11-08

Bernal-Gamboa R, Rosas JM, J Nieto (2018)

Extinction makes acquisition context-specific in conditioned taste aversion regardless of the context where acquisition and testing take place.

Journal of experimental psychology. Animal learning and cognition, 44(4):385-395.

Retrieval of a flavor-illness association has been found to show contextual dependence when the association is learned after a nontarget flavor-illness association has been extinguished in what has been named as the extinction makes acquisition context-specific (EMACS) effect. Four experiments were designed to further explore the EMACS effect in conditioned taste aversion. Experiments 1 and 2 replicated the EMACS effect using rats that did not experience extinction, and rats that underwent extinction of a different flavor as controls. Experiments 3 and 4 found that the experience of extinction with the nontarget Flavor X in a given context (A) led to context-specificity of performance to the target Flavor Y both, when Y was trained in a highly familiar context (B) and tested in the context where X had been trained (Context A, Experiment 3), and when the test was conducted in a less familiar context (C) where no cues or outcomes were presented before (Experiment 4). These results are consistent with the idea that the experience of extinction encourages organism's attention to the contexts, making retrieval of new learning context-specific. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

RevDate: 2018-11-08

Thrailkill EA, Trask S, Vidal P, et al (2018)

Stimulus control of actions and habits: A role for reinforcer predictability and attention in the development of habitual behavior.

Journal of experimental psychology. Animal learning and cognition, 44(4):370-384.

Goal-directed actions are instrumental behaviors whose performance depends on the organism's knowledge of the reinforcing outcome's value. In contrast, habits are instrumental behaviors that are insensitive to the outcome's current value. Although habits in everyday life are typically controlled by stimuli that occasion them, most research has studied habits using free-operant procedures in which no discrete stimuli are present to occasion the response. We therefore studied habit learning when rats were reinforced for lever pressing on a random-interval 30-s schedule in the presence of a discriminative stimulus (S) but not in its absence. In Experiment 1, devaluing the reinforcer with taste aversion conditioning weakened instrumental responding in a 30-s S after 4, 22, and 66 sessions of instrumental training. Even extensive practice thus produced goal-directed action, not habit. Experiments 2 and 3 contrastingly found habit when the duration of S was increased from 30 s to 8 min. Experiment 4 then found habit with the 30-s S when it always contained a reinforcer; goal-directed action was maintained when reinforcers were earned at the same rate but occurred in only 50% of Ss (as in the previous experiments). The results challenge the view that habits are an inevitable consequence of repeated reinforcement (as in the law of effect) and instead suggest that discriminated habits develop when the reinforcer becomes predictable. Under those conditions, organisms may pay less attention to their behavior, much as they pay less attention to signals associated with predicted reinforcers in Pavlovian conditioning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

RevDate: 2018-10-30

Yasumatsu K, Iwata S, Inoue M, et al (2018)

Fatty acid taste quality information via GPR120 in the anterior tongue of mice.

Acta physiologica (Oxford, England) [Epub ahead of print].

AIM: To elucidate whether fatty acid taste has a quality that does not overlap with other primary qualities, we investigated potential neuron types coding fatty acid information and how GPR120 is involved.

METHODS: Single fibre recordings in the chorda tympani (CT) nerve and behavioural response measurements using a conditioned taste aversion paradigm were performed in GPR120-knockout (KO) and wild-type (WT) mice.

RESULTS: Single fibres can be classified into fatty acid (F)-, S-, M-, electrolyte (E)-, Q-, and N-type groups according to the maximal response among oleic acid, sucrose, monopotassium glutamate (MPG), HCl, quinine hydrochloride, and NaCl, respectively. Among fibres, 4.0% in GPR120-KO and 17.9% in WT mice showed a maximal response to oleic acid (F-type). Furthermore, half or more of S- and M-type fibres showed responses to fatty acids in both mouse strains, although the thresholds in KO mice were significantly higher and impulse frequencies lower than those in WT mice. GPR120-KO mice conditioned to avoid linoleic acid showed generalized stimulus avoidances for MPG, indicating qualitative similarity between linoleic acid and MPG. The KO mice showed a higher generalization threshold for linoleic acid than that of WT mice.

CONCLUSION: Fatty acid taste is suggested to have a unique quality owing to the discovery of F-type fibres, with GPR120 involved in neural information pathways for a unique quality and palatable taste qualities in the mouse CT nerve. GPR120 plays roles in distinguishing fatty acid taste from other primary tastes and the detection of low linoleic acid concentrations. This article is protected by copyright. All rights reserved.

RevDate: 2018-10-25

Schoenberg HL, Sola EX, Seyller E, et al (2018)

Female rats express habitual behavior earlier in operant training than males.

Behavioral neuroscience pii:2018-53433-001 [Epub ahead of print].

Habitual behavior can be advantageous by increasing the availability of cognitive resources for use in other tasks. However, habitual behaviors are problematic when they are coopted to prolong the maladaptive responding present in several psychopathologies such as substance abuse, dysregulated fear responding in posttraumatic stress disorder, and obsessive-compulsive disorder. Although sex differences exist in the occurrence or progression of these psychopathologies, there are no studies that compare the development of habitual behavior systematically in male and female animals. In the present study, male and female rats were identically trained on a variable interval 30-s (VI 30-s) schedule of reinforcement to nose-poke for sucrose pellet reinforcers. Subsequently, the sucrose was devalued in one half of the animals by pairing its presentation with injections of lithium chloride (LiCl) to induce nausea, thus conditioning a taste aversion. Habitual behavior was operationalized as continued operant responding in an extinction test following devaluation of the sucrose reinforcer. Successful devaluation was confirmed with both a consumption and reacquisition test. Given identical training to 240 sucrose pellets, female rats demonstrate habitual behavior whereas male rats remain goal-directed. Additionally, females are habitual after 200 or 160 reinforcers earned on a VI 30-s schedule, but remain goal-directed at 120 and 80 reinforcers on this schedule. These data suggest that behavioral flexibility may be compromised in female rats compared to males due to accelerated habit formation in females. These results are important because sex differences are present in several psychopathologies, which may be related to differences in the development of habitual behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

RevDate: 2018-10-22

Chen JY, Campos CA, Jarvie BC, et al (2018)

Parabrachial CGRP Neurons Establish and Sustain Aversive Taste Memories.

Neuron pii:S0896-6273(18)30834-1 [Epub ahead of print].

Food aversions develop when the taste of a novel food is associated with sickness, which often occurs after food poisoning or chemotherapy treatment. We identified calcitonin-gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) as sufficient and necessary for establishing a conditioned taste aversion (CTA). Photoactivating projections from CGRPPBN neurons to either the central nucleus of the amygdala or the bed nucleus of the stria terminalis can also induce robust CTA. CGRPPBN neurons undergo plasticity following CTA, and inactivation of either Arc or Grin1 (genes involved in memory consolidation) prevents establishment of a strong CTA. Calcium imaging reveals that the novel food re-activates CGRPPBN neurons after conditioning. Inhibition of these neurons or inactivation of the Grin1 gene after conditioning attenuates CTA expression. Our results indicate that CGRPPBN neurons not only play a key role for learning food aversions but also contribute to the maintenance and expression of those memories.

RevDate: 2018-10-18

Arthurs J, Lin JY, S Reilly (2018)

Inhibiting gustatory thalamus or medial amygdala has opposing effects on taste neophobia.

Neurobiology of learning and memory pii:S1074-7427(18)30237-5 [Epub ahead of print].

Taste neophobia is a feeding system defense mechanism that limits consumption of an unknown, and therefore potentially dangerous, edible until the post-ingestive consequences are experienced. We found that transient pharmacological inhibition (induced with the GABA agonists baclofen and muscimol) of the gustatory thalamus (GT; Experiment 1), but not medial amygdala (MeA; Experiment 2), during exposure to a novel saccharin solution attenuated taste neophobia. In Experiment 3 we found that inhibition of MeA neurons (induced with the chemogenetic receptor hM4DGi) enhanced the expression of taste neophobia whereas excitation of MeA neurons (with hM3DGq) had no influence of taste neophobia. Overall, these results refine the temporal involvement of the GT in the occurrence of taste neophobia and support the hypothesis that neuronal excitation in the GT is necessary for taste neophobia. Conversely, we show that chemogenetically, but not pharmacologically, inhibiting MeA neurons is sufficient to exaggerate the expression of taste neophobia.

RevDate: 2018-10-16

Flores VL, Parmet T, Mukherjee N, et al (2018)

The role of the gustatory cortex in incidental experience-evoked enhancement of later taste learning.

Learning & memory (Cold Spring Harbor, N.Y.), 25(11):587-600 pii:25/11/587.

The strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with "incidental" stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival. We have recently begun to fill this void using conditioned taste aversion (CTA), wherein an animal learns to avoid a taste that has been associated with malaise. We previously demonstrated that incidental exposure to salty and sour tastes (taste preexposure-TPE) enhances aversions learned later to sucrose. Here, we investigate the neurobiology underlying this phenomenon. First, we use immediate early gene (c-Fos) expression to identify gustatory cortex (GC) as a site at which TPE specifically increases the neural activation caused by taste-malaise pairing (i.e., TPE did not change c-Fos induced by either stimulus in isolation). Next, we use site-specific infection with the optical silencer Archaerhodopsin-T to show that GC inactivation during TPE inhibits the expected enhancements of both learning and CTA-related c-Fos expression, a full day later. Thus, we conclude that GC is almost certainly a vital part of the circuit that integrates incidental experience into later associative learning.

RevDate: 2018-10-13

Kivell BM, Paton KF, Kumar N, et al (2018)

Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents.

Molecules (Basel, Switzerland), 23(10): pii:molecules23102602.

The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited.

RevDate: 2018-10-09

Tai S, Vasiljevik T, Sherwood AM, et al (2018)

Assessment of rimonabant-like adverse effects of purported CB1R neutral antagonist / CB2R agonist aminoalkylindole derivatives in mice.

Drug and alcohol dependence, 192:285-293 pii:S0376-8716(18)30617-3 [Epub ahead of print].

BACKGROUND: Cannabinoids may be useful in the treatment of CNS disorders including drug abuse and addiction, where both CB1R antagonists / inverse agonists and CB2R agonists have shown preclinical efficacy. TV-5-249 and TV-6-41, two novel aminoalkylindoles with dual action as neutral CB1R antagonists and CB2R agonists, previously attenuated abuse-related effects of ethanol in mice.

PURPOSE: To further characterize these drugs, TV-5-249 and TV-6-41 were compared with the CB1R antagonist / inverse agonist rimonabant in assays relevant to adverse effects and cannabinoid withdrawal.

PROCEDURES AND FINDINGS: The cannabinoid tetrad confirmed that TV-5-249 and TV-6-41 were devoid of CB1R agonist effects at behaviorally-relevant doses, and neither of the novel drugs induced rimonabant-like scratching. Generalized aversive effects were assessed, and rimonabant and TV-5-249 induced taste aversion, but TV-6-41 did not. Schedule-controlled responding and observation of somatic signs were used to assess withdrawal-like effects precipitated by rimonabant or TV-6-41 in mice previously treated with the high-efficacy CB1R agonist JWH-018 or vehicle. Rimonabant and TV-6-41 dose-dependently suppressed response rates in all subjects, but TV-6-41 did so more potently in JWH-018-treated mice than in vehicle-treated mice, while rimonabant equally suppressed responding in both groups. Importantly, rimonabant elicited dramatic withdrawal signs, but TV-6-41 did not.

CONCLUSIONS: These findings suggest differences in both direct adverse effects and withdrawal-related effects elicited by rimonabant, TV-5-249, and TV-6-41, which could relate to neutral CB1R antagonism, CB2R agonism, or a combination of both. Both mechanisms should be explored and exploited in future drug design efforts to develop pharmacotherapies for drug dependence.

RevDate: 2018-10-08

Molero-Chamizo A (2018)

Effects of extensive amygdaloid lesions on conditioned taste aversion in rats.

Acta neurobiologiae experimentalis, 78(3):242-250.

The role of the amygdala in the acquisition of conditioned taste aversion (CTA) is unclear. The lesion studies that have explored specific nuclei of the amygdala point to a probable involvement of the basolateral amygdala, but it remains unclear whether the function of the amygdala in CTA is limited to the activity of the basolateral amygdala. In the current study, extensive bilateral lesions of the amygdala were performed in Wistar rats to explore if the destruction of the amygdala affects the acquisition of CTA, as has been reported with selective lesions of the basolateral amygdala. The magnitude of the taste aversion of animals with extensive lesions of the amygdala was compared with those of animals with similar lesions of the striatum (a structure apparently unrelated to CTA) and animals without lesions. Taste aversion was analyzed by the one‑bottle test and two‑bottle choice test. The results of the one‑bottle test indicated that amygdaloid lesions significantly reduced the magnitude of taste aversion compared with that of animals without lesions. Animals with lesions of the amygdala also showed a greater preference for the conditioned taste stimulus, but this preference did not reach statistical significance. Besides the effect on CTA, animals with amygdaloid lesions showed no evidence of taste neophobia on the day of conditioning. These findings suggest that amygdaloid lesions may affect CTA by disrupting the perception of novelty during conditioning in a manner similar to the effect reported with basolateral lesions.

RevDate: 2018-10-04

Nakajima S (2018)

Food aversion learning based on voluntary running in non-deprived rats: a technique for establishing aversive conditioning with minimized discomfort.

Experimental animals [Epub ahead of print].

This article presents an experimental preparation for establishing conditioned food aversion (CFA) by voluntary wheel running in rats with laboratory chow and water freely available. In Experiment 1, unfamiliar food (raisins) was avoided by rats when they first encountered it. This neophobic food avoidance was habituated by repeated tests; the rats gradually increased their raisin consumption. However, the consumption remained suppressed in rats that accessed the raisins after wheel running. This finding implies that running yielded CFA, which suppressed consumption of the unfamiliar food rather than increasing it. Because running generated kaolin clay ingestion, which is a behavioral marker of nausea, it is suggested that the running-based CFA was mediated by weak gastrointestinal discomfort. Experiment 2 supported the claim that the suppressed consumption is due to running-based CFA by showing the specificity of food suppression. Demonstration of CFA based on voluntary activity in non-deprived rats will contribute to basic research on learning and memory as an alternative technique for studying aversive conditioning with minimized discomfort in animals.

RevDate: 2018-09-29

Soto J, Keeley A, Keating AV, et al (2018)

Rats can predict aversiveness of Active Pharmaceutical Ingredients.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V pii:S0939-6411(18)30463-6 [Epub ahead of print].

Taste is crucial for patient acceptability and compliance with prescribed medicines, in particular with pediatric patients. Evaluating the taste of new active pharmaceutical ingredients (APIs) is therefore essential to put in place adequate taste-masking techniques, if needed, which will lead to acceptable palatable formulations. Thus, there is an urgent need to develop and optimize taste assessment methods that could be used at different stages of the drug development process. The aim of this study was to investigate the suitability of the rat brief-access taste aversion (BATA) model as a screening tool for assessment of APIs aversiveness that could predict human taste responses. Presently, the taste intensity of nine marketed APIs known to have different levels of bitter intensity (quinine hydrochloride dihydrate, 6-n-propylthiouracil, sildenafil citrate, diclofenac sodium, ranitidine hydrochloride, caffeine citrate, isoniazid, telbivudine and paracetamol) was investigated at different overlapping concentrations with two in vivo taste assessment methods: the rat BATA model and human taste panels with the intention of determining the drugs' concentrations to produce half of the maximal rating. Overall there was a strong correlation (R2 = 0.896) between rats IC50 and humans EC50 values. This correlation verifies the BATA model as a rapid and reliable tool for quantitative assessment of API aversiveness. A comparable ranking order was obtained mainly for high and medium aversive compounds, whereas it was less aligned for weakly aversive compounds. It was nonetheless possible to propose a classification of poor taste intensity determined in rats that would predict human taste tolerability.

RevDate: 2018-09-16

Rodríguez-Blanco LA, Rivera-Olvera A, ML Escobar (2018)


Behavioural brain research pii:S0166-4328(18)30939-2 [Epub ahead of print].

The current view of the neurobiology of learning and memory suggests that long-term memory (LTM) depends not only on the de novo protein synthesis but also on the synthesis of mRNA even hours after the acquisition of memory, as well as that the regulation of transcription through the histone acetylation is essential for the memory establishment. Our previous studies showed that protein synthesis inhibition around the time of training and 5 to 7 hours after acquisition in the insular cortex (IC) prevents the consolidation of conditioned taste aversion (CTA), a well-established learning and memory paradigm in which an animal learns to associate a novel taste with nausea. However, the participation of mRNA synthesis and the epigenetic regulation through histone acetylation in this process remains unexplored. In the present study we evaluated the effect of the inhibition of transcription as well as deacetylation of histones at two temporal windows on the consolidation of CTA. Thus, immediately or seven hours after CTA acquisition animals received a microinfusion of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) or MS-275 in the IC, respectively. The present results show that transcription inhibition immediately and 7 hours after acquisition impairs the CTA memory consolidation, whereas the inhibition of histone deacetylation strengths this memory at those temporal windows. These findings reveal that CTA memory requires recurrent rounds of transcriptional modulation events in the IC in order to consolidate this memory trace, demonstrating that transcriptional and epigenetic modulation substantially contribute to memory-consolidation-related functions performed by a neocortical area even several hours after memory acquisition.

RevDate: 2018-09-02

Lin JY, Arthurs J, S Reilly (2018)

The effects of amygdala and cortical inactivation on taste neophobia.

Neurobiology of learning and memory pii:S1074-7427(18)30214-4 [Epub ahead of print].

The current study examined the effects of transient inactivation of the basolateral amygdala (BLA; Experiment 1) and gustatory cortex (GC; Experiment 2) on the expression of taste neophobia and its recovery. We found that inactivation (induced by infusions of baclofen/muscimol) of each structure before exposure to a novel saccharin (0.5%) solution elevated intake on Trial 1 (i.e., taste neophobia was attenuated) and, surprisingly, decreased intake on Trial 2. It seems unlikely that this intake reduction on Trial 2 can be attributed to taste aversion learning caused by drug infusions because in the subsequent experiments with the same set of the implanted animals, the rats did not decrease intake when baclofen/muscimol was infused after taste presentation on Trial 1. The latter result suggests that BLA or GC inactivation that attenuates taste neophobia may also impair memory consolidation of a safe taste experience.

RevDate: 2018-08-21

Weera MM, Agim ZS, Cannon JR, et al (2018)

Genetic correlations between nicotine Reinforcement-Related behaviors and propensity toward high or low alcohol preference in two replicate mouse lines.

Genes, brain, and behavior [Epub ahead of print].

Common genetic factors may contribute to the high co-morbidity between tobacco smoking and alcohol use disorder. Here, we assessed behavioral and biological effects of nicotine in replicate mouse lines selectively-bred for high (HAP2/3) or low alcohol preference (LAP2/3). In Experiment 1, free-choice oral nicotine and quinine intake were assessed in HAP2/3 and LAP2/3 mice. Effects of nicotinic acetylcholine receptor blockade by mecamylamine on nicotine intake in HAP2 mice were also examined. In Experiment 2, HAP2/3 and LAP2/3 mice were tested for differences in sensitivity to nicotine-induced taste conditioning. In Experiment 3, the effects of a single nicotine injection on nucleus accumbens and dorsal striatum monoamine levels in HAP2/3 and LAP2/3 mice were tested. In Experiment 1, HAP2/3 mice showed greater nicotine intake and intake ratio than LAP2/3 mice. There were no line differences in quinine intake. Mecamylamine reduced nicotine intake and intake ratio in HAP2 mice. In Experiment 2, HAP2/3 mice showed weaker nicotine-induced conditioned taste aversion compared to LAP2/3 mice. In Experiment 3, nicotine treatment increased nucleus accumbens dopamine turnover across both HAP2/3 and LAP2/3 mouse lines. These results show that there is a positive genetic correlation between oral alcohol intake (high alcohol intake/preference selection phenotype) and oral nicotine intake and a negative genetic correlation between oral alcohol intake and sensitivity to nicotine-induced conditioned taste aversion. This article is protected by copyright. All rights reserved.

RevDate: 2018-08-21

Moschak TM, Wang X, RM Carelli (2018)

A neuronal ensemble in the rostral agranular insula tracks cocaine-induced devaluation of natural reward and predicts cocaine seeking.

The Journal of neuroscience : the official journal of the Society for Neuroscience pii:JNEUROSCI.1195-18.2018 [Epub ahead of print].

In substance use disorders, negative affect associated with drug withdrawal can elicit strong drug craving and promote relapse. One brain region implicated in those processes is the rostral agranular insular cortex (RAIC), although precisely how this region encodes negative affect associated with drug seeking is unknown. Here, a preclinical model was used where RAIC activity was examined in male Sprague Dawley rats during intraoral infusions of a sweet (saccharin) paired with impending, but delayed access to cocaine self-administration, and for comparative purposes, during the sweet predicting saline self-administration or injection of lithium chloride (LiCl), or during intraoral infusions of a bitter taste (quinine). Consistent with previous work, cocaine-paired saccharin, LiCl-paired saccharin and quinine all elicited aversive taste reactivity. However, the aversive taste reactivity elicited by the cocaine-paired tastant was qualitatively different from that evoked by the other two agents. Further, differences in taste reactivity were reflected in RAIC cell firing, where distinct shifts in neural signaling were observed specifically following cocaine- but not LiCl conditioning. Notably, low motivation for cocaine (indicated by low loading and slower latencies to lever press) was correlated with this shift in RAIC signaling, but aversive (gaping) responses were not. Collectively, these findings indicate that cocaine-paired tastants elicit unique aspects of aversive behaviors that differ from traditional conditioned taste aversion (LiCl) or quinine, and that the RAIC plays a role in modulating drug seeking behaviors driven by drug-induced dysphoria (craving), but not negative affect per se.SIGNIFICANCE STATEMENTIn substance use disorders, negative affect associated with drug cues can elicit craving and promote relapse; however, the underlying neurocircuitry of this phenomenon is unknown. Here, we investigated the role of the rostral agranular insula cortex (RAIC) in these processes using a preclinical model wherein intraoral delivery of a sweet is paired with delayed access to cocaine self-administration. The taste comes to elicit negative affect that predicts heightened drug-seeking. Here, we found that a population of RAIC neurons became inhibited during presentation of the cocaine-paired tastant (when negative affect is high), and that this inhibitory neural profile predicted lower drug-seeking. These findings suggest that the RAIC may function to oppose cue-induced cocaine craving and help reduce motivation for the drug.

RevDate: 2018-08-17

Kubilius RA, Kaplick PM, CT Wotjak (2018)

Highway to hell or magic smoke? The dose-dependence of Δ9-THC in place conditioning paradigms.

Learning & memory (Cold Spring Harbor, N.Y.), 25(9):446-454 pii:25/9/446.

The prerequisites for responsible cannabis use are at the heart of current inquiries into cannabis decriminalization by policy makers as well as academic and nonacademic stakeholders at a global scale. Δ9-tetrahydrocannabinol (Δ9-THC), the prime psychoactive compound of the cannabis sativa, as well as cannabimimetics that resemble the pharmacological properties and psychological effects of Δ9-THC, lend themselves handsomely to the preclinical scrutiny of reward-related behavior because they carry marked translational value. Although a functional dichotomy of the psychological effects of Δ9-THC (rewarding versus aversive) has been abundantly reported in place conditioning (PC) paradigms, and might be best attributed to a dose-dependence of Δ9-THC, most PC studies with Δ9-THC feature no significant effects at all. Therefore, after decades of rigorous research, it still remains undetermined whether Δ9-THC generally exerts rewarding or aversive effects in rodents. Here, we set out to extrapolate the commonly alleged dose-dependence of the rewarding and aversive effects of Δ9-THC from the existing literature, at the behavioral pharmacological level of analysis. Specifically, our meta-analysis investigated: (i) the alleged bidirectional effects and dose-dependence of Δ9-THC in the PC test; (ii) methodological inconsistencies between PC studies; and (iii) other pharmacological studies on cannabinoids (i.e., dopamine release, anxiety, stress, conditioned taste aversion, catalepsy) to substantiate the validity of PC findings. Our findings suggest that: (i) Δ9-THC dose-dependently generates rewarding (1 mg/kg) and aversive (5 mg/kg) effects in PC; (ii) an inconsistent use of priming injections hampers a clear establishment of the rewarding effects of Δ9-THC in PC tests and might explain the seemingly contradictory plethora of nonsignificant THC studies in the PC test; and (iii) other pharmacological studies on Δ9-THC substantiate the dose-dependent biphasic effects of Δ9-THC in PC. A standardized experimental design would advance evidence-based practice in future PC studies with Δ9-THC and facilitate the pointed establishment of rewarding and aversive effects of the substance.

RevDate: 2018-08-15

Agee LA, MH Monfils (2018)

Effect of demonstrator reliability and recency of last demonstration on acquisition of a socially transmitted food preference.

Royal Society open science, 5(6):172391 pii:rsos172391.

In the social transmission of food preference paradigm, naive observer rats acquire safety information about novel food sources in the environment through social interaction with a demonstrator rat that has recently eaten said food. Research into the behavioural mechanisms governing this form of learning has found that observers show increased reliance on socially acquired information when the state of the environment makes personal examination of their surroundings risky. We aimed to (1) determine whether reliance on social information would decrease if previous reliance on social learning was unsuccessful, and (2) whether reliance on the specific demonstrator that had transmitted poor information would similarly decrease. By inducing illness in observers following consumption of a socially demonstrated food, we created an environmental situation in which reliance on socially acquired information was maladaptive. We found that under these conditions, observers showed no change in their reliance on a specific demonstrator or socially learned information in general. Our experiment also unexpectedly produced results showing that recent demonstrators were more influential in later transmissions than demonstrators that had been learned from less recently. Notably, this effect only emerged when the observer simultaneously interacted with both demonstrators, indicating that demonstrators must be in direct competition for this effect to manifest.

RevDate: 2018-08-07

Gartner SN, Klockars A, Prosser C, et al (2018)

Identification of central mechanisms underlying anorexigenic effects of intraperitoneal L-tryptophan.

Neuroreport [Epub ahead of print].

A free essential amino acid, L-tryptophan (TRP), administered through a diet or directly into the gut, decreases food intake by engaging neural mechanisms. The ability of intragastric TRP to cross into the general circulation and through the blood-brain barrier, at least partly underlies hypophagia. It is unclear although, whether TRP's anorexigenic effects and accompanying neural processes occur in the absence of the initial action of TRP on the gut mucosa. Here, we addressed this issue by using a fundamental approach of examining effects of intraperitoneally administered TRP on feeding and neuronal activation in rats. We found that 30 mg/kg, intraperitoneal, TRP decreases deprivation-induced intake of standard chow and thirst-driven water intake. A 100 mg/kg dose was necessary to suppress consumption of palatable chow and of sucrose and saccharin solutions in nondeprived animals. Intraperitoneally TRP did not induce a conditioned taste aversion; thus, its anorexigenic effects were unrelated to sickness/malaise. c-Fos mapping in feeding-related brain sites revealed TRP-induced changes in the dorsal vagal complex, hypothalamic paraventricular and supraoptic nuclei and in the basolateral amygdala. TRP enhanced activation of hypothalamic neurons synthesizing an anorexigen, oxytocin (OT). Pharmacological blockade of the OT receptor with a blood-brain barrier -penetrant antagonist, L-368,899, attenuated TRP-induced decrease in deprivation-induced chow intake, but not in thirst-driven water consumption. We conclude that TRP triggers anorexigenic action and underlying neural responses even when it does not directly contact the gut mucosa. TRP requires OT to decrease energy intake, whereas OT is nonobligatory in TRP's effects on drinking behavior.

RevDate: 2018-07-23

Chambers KC (2018)

Conditioned taste aversions.

World journal of otorhinolaryngology - head and neck surgery, 4(1):92-100 pii:S2095-8811(18)30026-X.

When one becomes ill after consuming a meal, there is a propensity to target a particular taste as the cause of the illness. The qualities of the taste most likely targeted include more novel, less preferred, and higher protein content. This association between a particular taste and illness is a form of learning that is termed conditioned taste aversion (CTA). A consequence of the learned association is that the taste will become aversive. When experiencing the taste again, individuals will show aversive reactions such as expressions of loathing, will experience mimicked illness sensations such as nausea, and subsequently, will avoid further exposure to the taste. The ability to acquire CTA occurs across species and across ages within a species. In the rat animal model, however, age differences exist in the capability of acquiring CTAs when increasingly longer intervals are imposed between consumption of a novel sweet solution and onset of illness. Pups have a decreased ability compared to young adults while aged rats have an increased ability. Evidence suggests that the failure of pups to acquire CTA at longer intervals is due to an immature retrieval mechanism and the facilitated ability of aged rats is due to a compromised clock mechanism that tracks the passage of time. Learned taste-illness association serves the critical function of informing individuals of the toxic nature of certain foods, thus preventing further illness and potentially death. Additionally, it contributes to the hypophagia observed during cancer chemotherapy and may contribute to the hypophagia found while suffering from bacterial infection, chronic medical conditions such as cancer, and restrictive food intake disorders such as anorexia nervosa.

RevDate: 2018-07-20

Loney GC, Pautassi RM, Kapadia D, et al (2018)

Nicotine affects ethanol-conditioned taste, but not place, aversion in a simultaneous conditioning procedure.

Alcohol (Fayetteville, N.Y.), 71:47-55 pii:S0741-8329(17)31011-X [Epub ahead of print].

The conditioned taste aversion (CTA) induced by ethanol is a key factor limiting ethanol intake. Nicotine, a drug co-consumed with ethanol, may decrease this aversion by modulating the unconditioned effects of ethanol or by disrupting the association between ethanol and its associated cues. This study analyzed ethanol-induced CTA and conditioned place aversion (CPA) in Long-Evans rats with subchronic exposure to nicotine. The rats were treated with nicotine (0.0 or 0.4 mg/kg) three times before conditioning (on lickometer training sessions 3, 4, and 5) and across conditioning days. During the conditioning the rats were given ethanol (1.3 g/kg) preceded and followed by presentation of a taste (NaCl) and tactile (rod or hole floors) conditioned stimulus (CS+), respectively. On CS- conditioning days, the rats were given vehicle and exposed to alternative stimuli. Three CTA and CPA testing sessions were then conducted. It was found that nicotine reduced ethanol-induced CTA and enhanced locomotor activity, but did not significantly modify the magnitude of ethanol-induced CPA. The effects of nicotine on CTA were observed during both conditioning and testing sessions, and were specific to the NaCl CS+, having no effect on reactivity to water. The dissociation between the effect of nicotine on ethanol-induced CTA and CPA suggests that nicotine does not alter ethanol's motivational properties by generally increasing its positive rewarding effects, nor does it blunt all aversive-like responses to this drug. Instead, nicotine may impede ethanol-induced CTA induced by ethanol by disrupting the neural underpinnings of this specific form of associative learning.

RevDate: 2018-07-11

Lavi K, Jacobson GA, Rosenblum K, et al (2018)

Encoding of Conditioned Taste Aversion in Cortico-Amygdala Circuits.

Cell reports, 24(2):278-283.

Avoidance of potentially toxic food by means of conditioned taste aversion is critical for survival of many animals. However, the underlying neuronal mechanisms are poorly understood. Here, using two-photon calcium imaging of defined gustatory cortex neurons in vivo, we show that conditioned taste aversion dynamically shifts neuronal population coding by stimulus-specific recruitment of neurons that project to the basolateral amygdala.

RevDate: 2018-07-01

Aonuma H, Totani Y, Sakakibara M, et al (2018)

Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability.

Biophysics and physicobiology, 15:129-135 pii:15_129.

To find a causal mechanism of learning and memory is a heuristically important topic in neuroscience. In the pond snail Lymnaea stagnalis, the following experimental facts have accrued regarding a classical conditioning procedure known as conditioned taste aversion (CTA): (1) one-day food-deprived Dutch snails have superior CTA memory formation; (2) the one-day food-deprived snails have a low monoamine content (e.g., serotonin, dopamine, octopamine) in their central nervous system (CNS); (3) fed or five-day food-deprived snails have poorer CTA memory and a higher monoamine content; (4) the Dutch snails form better CTA memory than the Canadian TC1 strain; and, (5) the F1 cross snails between the Dutch and Canadian TC1 strains also form poor CTA memory. Here, in one-day food-deprived snails, we measured the monoamine content in the CNSs of the 3 populations. In most instances, the monoamine content of the Dutch strain was lower than in the other two populations. The F1 cross snails had the highest monoamine content. A lower monoamine content is correlated with the better CTA memory formation.

RevDate: 2018-06-22

Angulo R (2018)

Pre-exposure Schedule Effects on Generalization of Taste Aversion and Palatability for Thirsty and Not Thirsty Rats.

Frontiers in psychology, 9:878.

The study reported four experiments aiming to test the effects of the pre-exposure schedule and water deprivation on the generalization of a conditioned taste aversion in rats, with a particular focus on testing whether or not the concurrent schedule might enhance generalization. In two experiments, non-water-deprived rats received concurrent, intermixed, or blocked exposure to a sweet-acid solution and a salty-acid solution before conditioning of one of these compounds and testing of both flavors. During pre-exposure, the rats consumed a greater amount of the sweet-acid solution than the salty-acid solution (Experiments 1 and 2), consumption of the former increasing during pre-exposure while consumption of the latter decreased (Experiment 1). Furthermore, consumption of the salty-acid solution was lower during concurrent than intermixed or blocked pre-exposure (Experiment 1 and 2) while consumption of the sweet-acid solution was greater during intermixed than concurrent or blocked pre-exposure (Experiment 1). It is discussed whether the pre-exposure schedule might modify stimulus perception beyond the mere enhancement of stimulus differentiation, by, for instance, affecting the palatability of gustatory stimuli. Evidence for enhanced generalization after concurrent pre-exposure was not found for either deprived (Experiments 1, 2, and 3) or non-deprived rats (Experiments 3 and 4), with deprivation leading to a general increase in consumption of both the conditioned and test flavors. This then raised the question of whether or not concurrent pre-exposure to flavors always increases generalization between them. The present study highlights the importance of this issue for various accounts of perceptual learning.

RevDate: 2018-06-29

Caynas-Rojas S, Rodríguez-García G, Delint-Ramírez I, et al (2018)

Differential function of medial prefrontal cortex catecholaminergic receptors after long-term sugar consumption.

Behavioural brain research pii:S0166-4328(18)30038-X [Epub ahead of print].

The medial prefrontal cortex (mPFC) has reciprocal projections with many cerebral structures that are crucial in the control of food ingestion behavior and reward processing; Thus the mPFC has an important function in taste memory recognition. Previous results indicate that long-term consumption of sugar produces changes in appetitive re-learning and suggest that this could trigger an escalating consumption due to the inability to learn new negative consequences related to the same taste. Further evidence suggests that general identity reward value could be encoded in the mPFC. Therefore, the purpose of this study was to evaluate in rats whether after 21 days of sugar consumption the increase in sweet taste preference and latent inhibition of conditioned taste aversion (CTA) were affected differentially by pharmacological activation or blockage of dopaminergic and β-adrenergic receptors, in the mPFC, during CTA acquisition. Results showed that after long-term sugar exposure, mPFC activation of β-adrenergic receptors with clenbuterol delayed aversive memory extinction, but the blockade with propranolol or activation of dopaminergic receptors with apomorphine increased CTA latent inhibition and accelerated aversive memory extinction only after acute sugar exposure. Only dopaminergic blockade with haloperidol prevented sweet taste preference expression after long-term sugar consumption, increased CTA latent inhibition and accelerated extinction after acute sugar exposure. Taken together, the present data provide evidence that catecholaminergic receptors in the mPFC after prolonged sugar consumption underwent functional changes related to re-learning and new aversive taste learning.

RevDate: 2018-06-04

Vera-Rivera G, Miranda MI, Rangel-Hernández JA, et al (2018)

Effects of caloric or non-caloric sweetener long-term consumption on taste preferences and new aversive learning.

Nutritional neuroscience [Epub ahead of print].

Food palatability and caloric content are crucial factors in guiding diet choice and amount consumed; as a result, sweet caloric tastes are associated with a positive hedonic value. Recent evidence in rodents indicates that consumption of artificial (non-caloric) sweeteners, in which sweet taste is dissociated from normal caloric consequences, could induce changes in energy and body weight regulation, suggesting that sweeteners not only modify intake and appetitive behavior, but could also change taste-learning processes. Particularly, there are different properties in some artificial sweeteners, like saccharin, that might differ from sugar in the reward responses that, after long-term consumption, could also be associated with the inability to learn new negative consequences related to the same taste. Thus, the main goal of this study was to determine, in adult rats, the effects of long-term consumption (14 days) of sugar or saccharin, on taste preference, on new aversive learning, i.e. latent inhibition (LI) of conditioned taste aversion (CTA), and appetitive taste re-learning after aversive taste associations. The results showed that 14 days' exposure to sugar, but not to saccharin, induced a significant increment in the LI of CTA and that taste preference is rapidly recovered during the next 3 days (e.g. CTA extinctions), indicating that long-term sugar consumption significantly accelerates aversive memory extinction during appetitive re-learning of a specific sweet taste; furthermore, high familiarization to sugar, but not to saccharin, promotes appetitive learning for the same taste. Overall, the results indicate that long-term consumption of sugar, but not saccharin, produces changes in appetitive re-learning and suggests that long-term sugar consumption could trigger escalating consumption due to the inability to learn new negative consequences associated with the same taste.

RevDate: 2018-07-02

Varnon CA, Dinges CW, Black TE, et al (2018)

Failure to Find Ethanol-Induced Conditioned Taste Aversion in Honey Bees (Apis mellifera L.).

Alcoholism, clinical and experimental research, 42(7):1260-1270.

BACKGROUND: Conditioned taste aversion (CTA) learning is a highly specialized form of conditioning found across taxa that leads to avoidance of an initially neutral stimulus, such as taste or odor, that is associated with, but is not the cause of, a detrimental health condition. This study examines if honey bees (Apis mellifera L.) develop ethanol (EtOH)-induced CTA.

METHODS: Restrained bees were first administered a sucrose solution that was cinnamon scented, lavender scented, or unscented, and contained either 0, 2.5, 5, 10, or 20% EtOH. Then, 30 minutes later, we used a proboscis extension response (PER) conditioning procedure where the bees were taught to associate either cinnamon odor, lavender odor, or an air-puff with repeated sucrose feedings. For some bees, the odor of the previously consumed EtOH solution was the same as the odor associated with sucrose in the conditioning procedure. If bees are able to learn EtOH-induced CTA, they should show an immediate low level of response to odors previously associated with EtOH.

RESULTS: We found that bees did not develop CTA despite the substantial inhibitory and aversive effects EtOH has on behavior. Instead, bees receiving a conditioning odor that was previously associated with EtOH showed an immediate high level of response. While this demonstrates bees are capable of one-trial learning common to CTA experiments, this high level of response is the opposite of what would occur if the bees developed a CTA. Responding on subsequent trials also showed a general inhibitory effect of EtOH. Finally, we found that consumption of cinnamon extract reduced the effects of EtOH.

CONCLUSIONS: The honey bees' lack of learned avoidance to EtOH mirrors that seen in human alcoholism. These findings demonstrate the usefulness of honey bees as an insect model for EtOH consumption.

RevDate: 2018-06-08

Risco S, C Mediavilla (2018)

Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala.

Behavioural brain research, 348:192-200.

In industrialized societies, food intake is largely determined by its hedonic characteristics, which can be modified by our experience via taste learning. In this learning, the hedonic value of a neutral flavor changes after its association with a motivationally significant stimulus. Experiment 1 analyzes the effect of orexin administration (53 and 107 ng) in the ventral tegmental area (VTA) on hedonic intake through acquisition of a flavor-taste preference and a flavor-taste aversion. Accordingly, animals underwent four one-bottle acquisition sessions with unilateral application of orexin-A or saline in the VTA at 10 min before a 15-min flavor intake period. Preference and aversion were tested by a two-bottle test containing the flavors used for CS+ and CS-. Results indicate that intra-VTA orexin strengthens flavor-taste conditioned flavor preference (CFP) by saccharin but does not facilitate flavor-taste aversion induced by association of a neutral flavor with the unpalatable taste of quinine. Experiment 2 examines the acquisition of a flavor-taste preference after co-administration of an effective dose of orexin-A in the VTA and of D1-like dopamine receptor antagonist SCH23390 (6 and 12 nmol) in the central nucleus of the amygdala (CeA). SCH23390 impedes the CFP strengthening observed after intra-VTA orexin administration, indicating that this effect may be mediated by dopaminergic receptors in the CeA. These data suggest that the simultaneous presentation of a flavor and a hedonically positive taste may be detected by orexinergic neurons that activate dopamine-releasing neurons of the VTA, thereby reinforcing the positive signals required to develop a taste preference.

RevDate: 2018-04-25

Koh MT, Ahrens PS, M Gallagher (2018)

A greater tendency for representation mediated learning in a ketamine mouse model of schizophrenia.

Behavioral neuroscience, 132(2):106-113.

Representation mediated learning is a behavioral paradigm that could be used to potentially capture psychotic symptoms including hallucinations and delusions in schizophrenia. In studies of mediated learning, representations of prior experience can enter into current associations. Using a ketamine model of schizophrenia, we investigated whether mice exposed to ketamine during late adolescence subsequently showed an increased tendency to use a representation of a prior gustatory experience to form associations in learning. Mice were given prior experience of an odor and a taste presented together. The odor was subsequently presented alone with gastrointestinal illness induced by a lithium chloride injection. A consumption test was then given to assess whether the taste, despite its absence during conditioning, entered into an association with the induced illness. Such learning would be mediated via a representation of the taste activated by the odor. Our results showed that control mice displayed no aversion to the taste following the procedures just described, but mice that had been treated developmentally with ketamine exhibited a significant taste aversion, suggesting a greater propensity for mediated learning. Complementary to that finding, ketamine-exposed mice also showed a greater susceptibility to mediated extinction. Chronic treatment with the antipsychotic drug, risperidone, in ketamine-exposed mice attenuated mediated learning, a finding that may be related to its known efficacy in reducing the positive symptoms of schizophrenia. These data provide a setting with potential relevance to preclinical research on schizophrenia, to study the neural mechanisms underlying a propensity for aberrant associations and assessment of therapeutics. (PsycINFO Database Record

RevDate: 2018-04-13

Rivera-Olvera A, Nelson-Mora J, Gonsebatt ME, et al (2018)

Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: Calcineurin participation.

Neurobiology of learning and memory pii:S1074-7427(18)30087-X [Epub ahead of print].

Accumulating evidence indicates that homeostatic plasticity mechanisms dynamically adjust synaptic strength to promote stability that is crucial for memory storage. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. We have also reported that induction of LTP in the Bla-IC pathway modifies the CTA extinction. Memoryextinction involves the formation of a new associativememorythat inhibits a previously conditioned association. The aim of the present study was to analyze the effect of CTA extinction on the ability to induce subsequent LTP in the Bla-IC projection in vivo. Thus, 48 h after CTA extinction animals received high frequency stimulation in order to induce IC-LTP. Our results show that extinction training allows the induction but not the maintenance of IC-LTP. In addition, with the purpose of exploring part of the mechanisms involved in this process and since a body of evidence suggests that protein phosphatase calcineurin (CaN) is involved in the extinction of some behavioral tasks, we analyzed the participation of this phosphatase. The present results show that extinction training increases the CaN expression in the IC, as well as that the inhibition of this phosphatase reverts the effects of the CTA-extinction on the IC-LTP. These findings reveal that CTA extinction promotes a homeostatic regulation of subsequent IC synaptic plasticity maintenance through increases in CaN levels.

RevDate: 2018-04-01

Garcia-Burgos D, Maglieri S, Vögele C, et al (2018)

How Does Food Taste in Anorexia and Bulimia Nervosa? A Protocol for a Quasi-Experimental, Cross-Sectional Design to Investigate Taste Aversion or Increased Hedonic Valence of Food in Eating Disorders.

Frontiers in psychology, 9:264.

Background: Despite on-going efforts to better understand dysregulated eating, the olfactory-gustatory deficits and food preferences in eating disorders (ED), and the mechanisms underlying the perception of and responses to food properties in anorexia nervosa (AN) and bulimia nervosa (BN) remain largely unknown; both during the course of the illness and compared to healthy populations. It is, therefore, necessary to systematically investigate the gustatory perception and hedonics of taste in patients with AN and BN. To this end, we will examine whether aversions to the taste of high-calorie food is related to the suppression of energy intake in restricting-type AN, and whether an increased hedonic valence of sweet, caloric-dense foods may be part of the mechanisms triggering binge-eating episodes in BN. In addition, the role of cognitions influencing these mechanisms will be examined. Method: In study 1, four mixtures of sweet-fat stimuli will be presented in a sensory two-alternative forced-choice test involving signal detection analysis. In study 2, a full-scale taste reactivity test will be carried out, including psychophysiological and behavioral measures to assess subtle and covert hedonic changes. We will compare the responses of currently-ill AN and BN patients to those who have recovered from AN and BN, and also to those of healthy normal-weight and underweight individuals without any eating disorder pathology. Discussion: If taste response profiles are differentially linked to ED types, then future studies should investigate whether taste responsiveness represents a useful diagnostic measure in the prevention, assessment and treatment of EDs. The expected results on cognitive mechanisms in the top-down processes of food hedonics will complement current models and contribute to the refinement of interventions to change cognitive aspects of taste aversions, to establish functional food preferences and to better manage food cravings associated with binge-eating episodes. No trial registration was required for this protocol, which was approved by the Swiss ethics committee (CER-VD, n° 2016-02150) and the Ethics Review Panel of the University of Luxembourg.

RevDate: 2018-05-07

Yoshida Y, Kawabata F, Kawabata Y, et al (2018)

Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens.

Physiology & behavior, 191:29-36.

Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue.

RevDate: 2018-04-10
CmpDate: 2018-04-10

Tingley R, Ward-Fear G, Schwarzkopf L, et al (2017)

New Weapons in the Toad Toolkit: A Review of Methods to Control and Mitigate the Biodiversity Impacts of Invasive Cane Toads (Rhinella Marina).

The Quarterly review of biology, 92(2):123-149.

Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad’s vulnerability to desiccation—a strategy that could be significantly enhanced through the introduction of sedentary, range-core genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity.

RevDate: 2018-06-29

Brox BW, BA Ellenbroek (2018)

A genetic reduction in the serotonin transporter differentially influences MDMA and heroin induced behaviours.

Psychopharmacology, 235(7):1907-1914.

BACKGROUND: Despite ongoing study and research to better understand drug addiction, it continues to be a heavy burden. Only a small percentage of individuals who take drugs of abuse go on to develop addiction. However, there is growing evidence to suggest that a reduction in the serotonin transporter may play an important role for those that transition to compulsive drug taking. Studies have demonstrated that reduced serotonin transporter function potentiates self-administration of psychostimulant drugs ("ecstasy," MDMA; cocaine); however, additional research revealed no differences between genotypes when the opioid heroin was self-administered. These results suggest that a reduction in the serotonin transporter may confer susceptibility to the development of addiction to some classes of drugs but not others. Importantly, the mechanism underlying facilitated psychostimulant self-administration is currently unknown.

METHODS: Therefore, to continue investigating the relationship between compromised serotonergic function and different classes of drugs, a series of experiments was conducted investigating locomotor activity (LMA) and conditioned taste aversion (CTA) in the serotonin transporter knockout (SERT KO) rat model.

RESULTS: MDMA-induced hyperactivity was reduced, while MDMA-induced CTA was enhanced, in SERT KO rats. However, there were no genotype differences in heroin-induced behaviours.

CONCLUSIONS: These results reinforce the idea that a reduction in the serotonin transporter drives differential effects between disparate classes of drugs of abuse.

RevDate: 2018-03-26

Klockars OA, Klockars A, Levine AS, et al (2018)

Oxytocin administration in the basolateral and central nuclei of amygdala moderately suppresses food intake.

Neuroreport, 29(6):504-510.

Oxytocin (OT) at acting central nuclei decreases meal size and reduces intake of palatable sweet solutions. It remains largely unclear as to which brain sites mediate OT's effect on palatability versus energy or the combination of those aspects of consumption. Here, we expanded the search for sites that mediate anorexigenic properties of OT by focusing on two subdivisions of the amygdala, its central (CNA) and basolateral (BLA) nuclei. We injected OT directly into the BLA or CNA in rats and assessed intake of standard chow induced by energy deprivation and intake of sweet solutions in nondeprived animals. We examined whether these effects are reversible by OT receptor (OTr) antagonism and whether OT presence in BLA or CNA induces taste aversion. We also determined the effect of energy deprivation and exposure to sweet saccharin on BLA and CNA expression of OTr mRNA. OT administration in BLA at 0.3 μg and in CNA at 1 μg reduced standard chow intake after deprivation by ~25%. Only administration of OT in BLA was effective in suppressing consumption of sucrose and saccharin solutions. The anorexigenic effects of OT in BLA and CNA were attenuated by OTr antagonist, L-368,899, pretreatment. OT at anorexigenic doses did not promote acquisition of taste aversion. BLA OTr mRNA expression was affected by exposure to palatable saccharin, whereas that of CNA OTr, by energy deprivation. OT in the amygdala moderately decreases food intake. The functional relationship between amygdalar OT and energy intake versus palatability-driven intake depends on the discrete localization of the OTr within this complex structure.

RevDate: 2018-05-18

Richardson RA, Michener PN, TR Schachtman (2018)

Effects of extinction of a nontarget CS on performance to a target CS.

Behavioural processes pii:S0376-6357(17)30434-5 [Epub ahead of print].

When a target conditioned stimulus (CS A) is paired with an unconditioned stimulus in the presence of a second, conditioned stimulus (CS B) during compound conditioning trials, the associative strength of CS B can influence the magnitude of the conditioned response (CR) to CS A. For example, extinction of the competing, nontarget CS B can influence the CR to CS A. An enhancement of the CR to the target CS A due to extinction of the nontarget CS B after compound conditioning is sometimes referred to as "recovery from overshadowing" - a type of retrospective revaluation. The present experiments examined retrospective revaluation effects using a conditioned taste aversion procedure. The experiments obtained an effect on the CR to CS A following extinction of CS B. The results are discussed with respect to the comparator hypothesis, within-compound associations, and retrieval as well as other relationships between the target CS and nontarget CS.

RevDate: 2018-04-26

Dadam F, Zádor F, Caeiro X, et al (2018)

The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling.

Journal of neuroendocrinology, 30(4):e12585.

Numerous studies demonstrate the significant role of central β-endorphin and its receptor, the μ-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia.

RevDate: 2018-03-31

Gartner SN, Aidney F, Klockars A, et al (2018)

Intragastric preloads of l-tryptophan reduce ingestive behavior via oxytocinergic neural mechanisms in male mice.

Appetite, 125:278-286.

Human and laboratory animal studies suggest that dietary supplementation of a free essential amino acid, l-tryptophan (TRP), reduces food intake. It is unclear whether an acute gastric preload of TRP decreases consumption and whether central mechanisms underlie TRP-driven hypophagia. We examined the effect of TRP administered via intragastric gavage on energy- and palatability-induced feeding in mice. We sought to identify central mechanisms through which TRP suppresses appetite. Effects of TRP on consumption of energy-dense and energy-dilute tastants were established in mice stimulated to eat by energy deprivation or palatability. A conditioned taste aversion (CTA) paradigm was used to assess whether hypophagia is unrelated to sickness. c-Fos immunohistochemistry was employed to detect TRP-induced activation of feeding-related brain sites and of oxytocin (OT) neurons, a crucial component of satiety circuits. Also, expression of OT mRNA was assessed with real-time PCR. The functional importance of OT in mediating TRP-driven hypophagia was substantiated by showing the ability of OT receptor blockade to abolish TRP-induced decrease in feeding. TRP reduced intake of energy-dense standard chow in deprived animals and energy-dense palatable chow in sated mice. Anorexigenic doses of TRP did not cause a CTA. TRP failed to affect intake of palatable yet calorie-dilute or noncaloric solutions (10% sucrose, 4.1% Intralipid or 0.1% saccharin) even for TRP doses that decreased water intake in thirsty mice. Fos analysis revealed that TRP increases activation of several key feeding-related brain areas, especially in the brain stem and hypothalamus. TRP activated hypothalamic OT neurons and increased OT mRNA levels, whereas pretreatment with an OT antagonist abolished TRP-driven hypophagia. We conclude that intragastric TRP decreases food and water intake, and TRP-induced hypophagia is partially mediated via central circuits that encompass OT.

RevDate: 2018-04-26

Blednov YA, Da Costa AJ, Harris RA, et al (2018)

Apremilast Alters Behavioral Responses to Ethanol in Mice: II. Increased Sedation, Intoxication, and Reduced Acute Functional Tolerance.

Alcoholism, clinical and experimental research, 42(5):939-951.

BACKGROUND: In our companion paper, we reported that the phosphodiesterase type 4 inhibitor apremilast reduced ethanol (EtOH) intake and preference in different drinking models in male and female C57BL/6J mice. In this study, we measured the effects of apremilast on other behaviors that are correlated with EtOH consumption.

METHODS: The effects of apremilast (20 mg/kg) on the following behaviors were studied in male and female C57BL/6J mice: locomotor response to a novel situation; EtOH- and lithium chloride (LiCl)-induced conditioned taste aversion (CTA) to saccharin; conditioned place preference (CPP) and conditioned place avoidance (CPA) to EtOH; severity of handling-induced convulsions after EtOH administration; EtOH-induced anxiolytic-like behavior in the elevated plus maze; duration of EtOH-induced loss of righting reflex (LORR); recovery from EtOH-induced motor impairment on the rotarod; and acute functional tolerance (AFT) to EtOH's ataxic effects.

RESULTS: Apremilast did not change the acquisition of EtOH-induced CPP, severity of acute withdrawal from EtOH, or EtOH's anxiolytic-like effect. Apremilast did not alter the extinction of EtOH- or LiCl-induced CTA, but may interfere with acquisition of CTA to EtOH. Apremilast increased the acquisition of CPA to EtOH, reduced locomotor responses to a novel situation, and prolonged the duration of LORR and the recovery from acute motor incoordination induced by EtOH. The longer recovery from the ataxic effect may be attributed to reduced development of AFT to EtOH.

CONCLUSIONS: Our results suggest that apremilast increases the duration of EtOH intoxication by reducing AFT. Apremilast also reduces some aspects of general reward and increases EtOH's aversive properties, which might also contribute to its ability to reduce EtOH drinking.

RevDate: 2018-05-30

Tooley J, Marconi L, Alipio JB, et al (2018)

Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula-Tegmental Circuitry and Constrain Reward Seeking.

Biological psychiatry, 83(12):1012-1023.

BACKGROUND: The ability to appropriately integrate and respond to rewarding and aversive stimuli is essential for survival. The ventral pallidum (VP) plays a critical role in processing both rewarding and aversive stimuli. However, the VP is a heterogeneous structure, and how VP subpopulations integrate into larger reward networks to ultimately modulate these behaviors is not known. We identify a noncanonical population of glutamatergic VP neurons that play a unique role in responding to aversive stimuli and constraining inappropriate reward seeking.

METHODS: Using neurochemical, genetic, and electrophysiological approaches, we characterized glutamatergic VP neurons (n = 4-8 mice/group). We performed patch clamp and in vivo electrophysiology recordings in the lateral habenula, rostromedial tegmental nucleus, and ventral tegmental area to determine the effect of glutamatergic VP neuron activation in these target regions (n = 6-10 mice/group). Finally, we selectively optogenetically stimulated glutamatergic VP neurons in a real-time place preference task and ablated these neurons using a virally expressed caspase to determine their necessity for reward seeking.

RESULTS: Glutamatergic VP neurons exhibit little overlap with cholinergic or gamma-aminobutyric acidergic markers, the canonical VP subtypes, and exhibit distinct membrane properties. Glutamatergic VP neurons innervate and increase firing activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons. While nonselective optogenetic stimulation of the VP induced a robust place preference, selective activation of glutamatergic VP neurons induced a place avoidance. Viral ablation of glutamatergic VP neurons increased reward responding and abolished taste aversion to sucrose.

CONCLUSIONS: Glutamatergic VP neurons constitute a noncanonical subpopulation of VP neurons. These glutamatergic VP neurons increase activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons and adaptively constrain reward seeking.

RevDate: 2018-03-11

Nakajima S (2018)

Clay eating attenuates lithium-based taste aversion learning in rats: A remedial effect of kaolin on nausea.

Physiology & behavior, 188:199-204.

Kaolin clay eating has been considered as a marker of nausea in rats, because a variety of treatments, which evoke nausea in humans, generate consumption of kaolin clay in rats. The present study with two experiments replicated kaolin clay ingestion induced by an injection of emetic lithium chloride (LiCl). The LiCl injection, however, did not generate eating of wooden objects in rats. The present study also provides a new finding that consumption of kaolin clay alleviates rats' taste aversion learning caused by an LiCl injection. This finding is congruent with the contention that consumption of kaolin clay is not only a useful index of, but also an effective remedy for, drug-induced nausea in rats.

RevDate: 2018-02-17

Reed C, Baba H, Zhu Z, et al (2017)

A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor.

Frontiers in pharmacology, 8:993.

RevDate: 2018-03-23

Guzmán-Ramos K, Venkataraman A, Morin JP, et al (2018)

Differential requirement of de novo Arc protein synthesis in the insular cortex and the amygdala for safe and aversive taste long-term memory formation.

Behavioural brain research, 342:89-93.

Several immediate early genes products are known to be involved in the facilitation of structural and functional modifications at distinct synapses activated through experience. The IEG-encoded protein Arc (activity regulated cytoskeletal-associated protein) has been widely implicated in long-term memory formation and stabilization. In this study, we sought to evaluate a possible role for de novo Arc protein synthesis in the insular cortex (IC) and in the amygdala (AMY) during long-term taste memory formation. We found that acute inhibition of Arc protein synthesis through the infusion of antisense oligonucleotides administered in the IC before a novel taste presentation, affected consolidation of a safe taste memory trace (ST) but spared consolidation of conditioned taste aversion (CTA). Conversely, blocking Arc synthesis within the AMY impaired CTA consolidation but had no effect on ST long-term memory formation. Our results suggest that Arc-dependent plasticity during taste learning is required within distinct structures of the medial temporal lobe, depending on the emotional valence of the memory trace.

RevDate: 2018-03-09

Aonuma H, Totani Y, Kaneda M, et al (2018)

Effects of 5-HT and insulin on learning and memory formation in food-deprived snails.

Neurobiology of learning and memory, 148:20-29.

The pond snail Lymnaea stagnalis learns conditioned taste aversion (CTA) and consolidates it into long-term memory (LTM). How well they learn and form memory depends on the degree of food deprivation. Serotonin (5-HT) plays an important role in mediating feeding, and insulin enhances the memory consolidation process following CTA training. However, the relationship between these two signaling pathways has not been addressed. We measured the 5-HT content in the central nervous system (CNS) of snails subjected to different durations of food deprivation. One-day food-deprived snails, which exhibit the best learning and memory, had the lowest 5-HT content in the CNS, whereas 5-day food-deprived snails, which do not learn, had a high 5-HT content. Immersing 1-day food-deprived snails in 5-HT impaired learning and memory by causing an increase in 5-HT content, and that the injection of insulin into these snails reversed this impairment. We conclude that insulin rescues the CTA deficit and this may be due to a decrease in the 5-HT content in the CNS of Lymnaea.

RevDate: 2018-03-24

Li N, Song G, Wang Y, et al (2018)

Blocking constitutive activity of GHSR1a in the lateral amygdala facilitates acquisition of conditioned taste aversion.

Neuropeptides, 68:22-27.

Ghrelin is a circulating peptide hormone promoting feeding and regulating energy metabolism in human and rodents. Ghrelin functions by binding to its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), which are widely distributed throughout the brain including the amygdala, a brain region important for regulating valenced behavior, such as aversion. Interestingly, GHSR1a was once characterized by highly constitutive, ligand-independent activity. However, the physiological importance of such ligand-independent signaling on aversive memory processing has not been tested yet. Here, we applied [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-Substance P (D-SP), a full inverse agonist for GHSR1a, into the lateral amygdala (LA) and investigated the effect of blocking GHSR1a constitutive activity on conditioned taste aversion (CTA) in rats. We found that intra-LA infusion of a single low dose of D-SP (8ng/0.5μl/side) facilitates CTA acquisition. Moreover, pre-administration of a high dose of D-SP into the LA abolishes the suppressive effect of exogenous ghrelin on CTA acquisition. In contrast, pre-administration of the same dose of D-SP does not affect the suppression of substance P, a potent neurokinin-1 (NK1) receptor ligand, on CTA. Therefore, our data indicated that the spontaneous or basal activity of GHSR1a signaling in the LA might interfere with CTA memory formation. D-SP decreases the constitutive activity of GHSR1a and thus facilitates CTA. Altogether, our present findings along with previous results support the idea that ghrelin/GHSR1a signaling in the LA circuit blocks conditioned taste aversion.

RevDate: 2017-12-19

Juárez-Muñoz Y, Ramos-Languren LE, ML Escobar (2017)

CaMKII Requirement for in Vivo Insular Cortex LTP Maintenance and CTA Memory Persistence.

Frontiers in pharmacology, 8:822.

Calcium-calmodulin/dependent protein kinase II (CaMKII) plays an essential role in LTP induction, but since it has the capacity to remain persistently activated even after the decay of external stimuli it has been proposed that it can also be necessary for LTP maintenance and therefore for memory persistence. It has been shown that basolateral amygdaloid nucleus (Bla) stimulation induces long-term potentiation (LTP) in the insular cortex (IC), a neocortical region implicated in the acquisition and retention of conditioned taste aversion (CTA). Our previous studies have demonstrated that induction of LTP in the Bla-IC pathway before CTA training increased the retention of this task. Although it is known that IC-LTP induction and CTA consolidation share similar molecular mechanisms, little is known about the molecular actors that underlie their maintenance. The purpose of the present study was to evaluate the role of CaMKII in the maintenance of in vivo Bla-IC LTP as well as in the persistence of CTA long-term memory (LTM). Our results show that acute microinfusion of myr-CaMKIINtide, a selective inhibitor of CaMKII, in the IC of adult rats during the late-phase of in vivo Bla-IC LTP blocked its maintenance. Moreover, the intracortical inhibition of CaMKII 24 h after CTA acquisition impairs CTA-LTM persistence. Together these results indicate that CaMKII is a central key component for the maintenance of neocortical synaptic plasticity as well as for persistence of CTA-LTM.

RevDate: 2018-07-06
CmpDate: 2018-07-06

Hurtado MM, García R, A Puerto (2017)

Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task.

Acta neurobiologiae experimentalis, 77(3):236-243.

The parabrachial complex has been related to the processing of both rewarding and aversive signals. This pontine area is activated after the gastrointestinal administration of rewarding nutrients, in taste aversion learning, and in response to the reinforcing and aversive effects of some drugs of abuse. Electrical stimulation of this region can induce, in different animals, preference or aversion behaviors towards a place in a rectangular three-chamber maze task. This study examined the effect of tiapride, a D2/D3 receptor antagonist, on the aversive or rewarding effects induced by electrical stimulation of the external lateral parabrachial subnucleus (NLPBe). As previously observed, administration of tiapride interrupted the aversive effect induced by NLPBe electrical stimulation. However, in contrast to the effects of dopamine antagonists on other rewarding systems, tiapride did not impair the place preference induced by NLPBe stimulation, an activation effect that is subject to tolerance. Tiapride administration also appeared to have no effect on the horizontal motor activity (crossings) of the electrically stimulated animals. We discuss the specific relevance of parabrachial reward with respect to other reinforcing brain components or systems, especially in relation to the preference effect of drugs of abuse, such as opiates, after dopamine antagonist administration.

RevDate: 2018-04-12

Hojo R, Takaya M, Yasuda A, et al (2018)

Examination of validity of a conditioned odor aversion (COA) procedure using low-dose of organic solvent as an applied procedure of the conditioned taste aversion.

Industrial health, 56(2):141-149.

Smell of very low dose of chemical might evoke subjective physical symptoms in human by some process of learning named the aversion conditioning. But few scientific evidences of the hypothesis have been reported so far. Validity of conditioned odor aversion (COA) using low-doses of organic solvent as odor conditioned stimulus (CS) was examined. In conditioning phase, water-deprived male Sprague-Dawley rats were presented low, medium or high dose solution for 30 min followed by 0.3 M Lithium Chloride (LiCl) solution or saline injection. The xylene solution and drink water were simultaneously provided on the next day as two-bottle test. Consumption of medium dose of xylene solution was significantly decreased in LiCl injection group as compared with saline group. There was no difference between LiCl and saline injected animals in low group. Animals in high dose did not access to xylene even on the conditioning. These results indicate that animals showed high sensitivity for discrimination against concentration of xylene and that the medium dose of xylene functioned as the CS. We concluded that the COA used in the present study may be one of useful procedures to investigate olfaction of animal.

RevDate: 2018-06-20
CmpDate: 2018-06-20

Molero-Chamizo A (2018)

Changes in the time of day of conditioning with respect to the pre-exposure interfere with the latent inhibition of conditioned taste aversion in rats.

Behavioural processes, 146:22-26.

In rats, the reduction of the magnitude of a conditioned taste aversion (CTA) that occurs after taste pre-exposures (that is, the latent inhibition of CTA) can be attenuated by contextual changes of the external cues in the conditioning stage. Similarly, circadian internal cues such as those induced by the time of day may also modulate the magnitude of the taste aversion. Under a long period of temporal-contextual habituation, the latent inhibition of CTA is reduced if the pre-exposure and conditioning stages occur at different times of day. However, it is unknown if this effect is consistent when different changes in the time of day of conditioning with respect to the pre-exposure are compared. In this study, the effect of two different changes in the time of day of conditioning (one from morning to evening, and one from evening to morning) on the latent inhibition of CTA was compared with the response of a typical latent inhibition group without temporal change between stages, and with control groups without pre-exposures. The results indicate that the latent inhibition of CTA of both groups with temporal change between pre-exposure and conditioning is significantly reduced when compared with the latent inhibition of the group without temporal change. These findings suggest that the temporal context may be a critical cue for the latent inhibition of CTA, and they show that different changes in the time of day of conditioning interfere similarly with this learning.

RevDate: 2018-05-27

Kislal S, DA Blizard (2018)

Acquisition and retention of conditioned aversions to context and taste in laboratory mice.

Learning & behavior, 46(2):198-212.

We compared the rate of acquisition and strength of retention of conditioned context aversion (CCA) with conditioned taste aversion (CTA) using pigmented, genetically heterogeneous mice (derived from Large and Small strains). Extending previous findings, in Experiment 1, mice accustomed to drinking from large glass bottles in the colony room learned to avoid graduated tubes after a single conditioning trial when drinking from these novel tubes was paired with injections of LiCl. The results also showed that CCA could be developed even when there was a 30-minute delay between conditioned stimulus and unconditioned stimulus. Retention of the aversion lasted for 4 weeks in both Immediate and Delay groups. Studies of conditioned saccharin aversion were conducted in Experiment 2. CTA acquisition was very similar to that observed in CCA and duration of aversion retention was similar in the CCA and CTA Delay groups, although at least 2 weeks longer in the Immediate group. Thus, CCA acquisition and retention characteristics are closer to those seen for CTA than has previously been reported. In Experiment 3, we examined whether albino mice (which are known to have weaker visual abilities compared to pigmented mice) would develop CCA comparable to those of pigmented mice. The development of conditioned aversion and its duration of retention was similar in albinos and pigmented mice. Nonspecific aversion emerged as an important contributor to strength of aversion during retention trials in both CCA and CTA paradigms with pigmented (but not albino) mice and deserves additional scrutiny in this field of inquiry.

RevDate: 2018-05-27

Nakajima S (2018)

Running-based pica and taste avoidance in rats.

Learning & behavior, 46(2):182-197.

Running in an activity wheel generates pica behavior (kaolin clay intake) in rats. Wheel running also results in Pavlovian conditioned avoidance of the taste solution consumed immediately before the running. Since pica has been considered a behavioral marker of nausea in rats, these findings suggest that wheel running induces nausea, which is the underlying physiological state for establishing taste avoidance. This article reports a replication of running-based pica in rats (Experiment 1) and concurrent demonstrations of running-based pica and taste avoidance in the same animals (Experiments 2 and 3). Also shown is that pica does not alleviate running-based taste avoidance (Experiment 3). Another finding is that pica is generated by a nausea-inducing lithium chloride injection but not by a pain-inducing hypertonic saline injection (Experiment 4). These results, when taken together, support the hypothesis that pica behavior generated by wheel running reflects nausea in rats.

RevDate: 2018-01-06

Cheung LC, Nguyen M, Tang E, et al (2018)

Taste evaluation of a novel midazolam tablet for pediatric patients: In vitro drug dissolution, in vivo animal taste aversion and clinical taste perception profiles.

International journal of pharmaceutics, 535(1-2):194-200.

Harmonized methodologies are urgently required for the taste evaluation of novel pediatric medicines. This study utilized in vitro, in vivo and clinical data to evaluate the palatability of a novel midazolam chocolate tablet. In vitro dissolution experiments showed the crushed tablet to release within 5 min 1.68 mg of midazolam into simulated saliva. This translated to a drug level of 0.84 mg/ml in the oral cavity, which would be higher than the midazolam bitterness detection threshold concentration of 0.03 mg/ml determined in a rat 'brief access taste aversion' (BATA) model. The visual analogue scale scores of patients aged 4-16 years prescribed with midazolam pre-surgery showed a clear preference for the midazolam chocolate tablets (3.35 ± 1.04, n = 20) compared to the control midazolam solution (1.47 ± 0.62, n = 17). The clinical data was in agreement with the in vivo rodent data in showing the novel chocolate tablet matrix to be effective at taste-masking the bitter midazolam.

RevDate: 2018-07-09
CmpDate: 2018-07-09

Lee MJ, Sung HY, Jo H, et al (2017)

Ionotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila.

Molecules and cells, 40(10):787-795.

Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent Na+ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent Na+-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-Na+ attraction. Our work extends the physiological implications of Ir76b from low-Na+ attraction to high-Na+ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of Na+-evoked gustation coded in heterogeneous Ir76b-positive GRNs.

RevDate: 2018-05-03
CmpDate: 2018-05-03

Torrealba F, Madrid C, Contreras M, et al (2017)

Plasticity in the Interoceptive System.

Advances in experimental medicine and biology, 1015:59-74.

The most outstanding manifestations of the plastic capacities of brain circuits and their neuronal and synaptic components in the adult CNS are learning and memory. A reduced number of basic plastic mechanisms underlie learning capacities at many levels and regions of the brain. The interoceptive system is no exception, and some of the most studied behavioral changes that involve learning and memory engage the interoceptive pathways at many levels of their anatomical and functional organization.In this chapter, we will review four examples of learning, mostly in rats, where the interoceptive system has a role. In the case of conditioned taste aversion, the interoceptive system is of outstanding importance. In drug addiction, the role of the insular cortex - the highest level of the interoceptive system- is unusual and complex, as many forebrain regions are engaged by the process of addiction. In the third example, neophobia, the gustatory region of the insular cortex plays a major role. Finally, the role of different areas of the insular cortex in different processes of aversive memory, particularly fear conditioning, will be reviewed.

RevDate: 2018-06-18
CmpDate: 2018-06-18

Rodriguez JA, Fehrentz JA, Martinez J, et al (2018)

The GHR-R antagonist JMV 2959 neither induces malaise nor alters the malaise property of LiCl in the adult male rat.

Physiology & behavior, 183:46-48.

The orexigenic peptide ghrelin (GHR) interacts with ghrelin receptors (GHR-Rs) to modulate brain reinforcement and feeding circuits. Pharmacological inactivation of GHR-Rs via administration of the drug JMV 2959 attenuates the rewarding/reinforcing effects of several drugs of abuse including alcohol, morphine, amphetamine and nicotine. One view of these results is that inactivation of GHR-Rs taps into brain reinforcement/feeding circuits acted upon by drugs of abuse. An alternate explanation is that JMV 2959 may induce malaise, which in turn may limit reinforcement as well as food ingestion. This is a variable of interest given that nicotine alone can induce malaise which may be enhanced by JMV 2959. In the present study, we assessed the capacity of JMV 2959 to produce malaise using a conditioned taste aversion (CTA) task. Adult male rats were allowed to consume a 0.1% sodium saccharin solution and then injected IP with either vehicle, 0.4mg/kg nicotine, 3mg/kg JMV 2959, a combination of 0.4mg/kg nicotine and 3mg/kg JMV 2959, or 32mg/kg lithium chloride (a positive control known to support induction of CTA). Lithium chloride produced a robust avoidance of the saccharin solution in subsequent 2 bottle (water and saccharin) tests, whereas JMV 2959 alone did not induce CTA. The combination of JMV 2959 and nicotine induced a moderate degree of CTA that was similar to that produced by nicotine alone. These results suggest that JMV 2959 is unlikely to limit either reinforcement or food ingestion via induction of malaise.

RevDate: 2018-03-23
CmpDate: 2018-02-07

Ward M, Norman H, MS D'Souza (2018)

Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

Behavioural brain research, 338:56-65.

Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine.

RevDate: 2018-07-02
CmpDate: 2018-07-02

Song G, Zhu Q, Han F, et al (2018)

Local infusion of ghrelin into the lateral amygdala blocks extinction of conditioned taste aversion in rats.

Neuroscience letters, 662:71-76.

Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. Our previous study showed that ghrelin locally infused into the lateral amygdala (LA) activates its receptor GHS-R1a and blocks acquisition of conditioned taste aversion (CTA) in rats. In this study, we further investigated the effect of ghrelin/GHS-R1a signaling on extinction of CTA. We found that local infusion of ghrelin (5μM, 0.5μl/side) into the LA not only interfered with CTA memory formation, but also the extinction of CTA memory. Pre-administration of GHS-R1a antagonist blocked ghrelin's effect on both CTA acquisition and extinction. However, pre-treatment with PI3K inhibitor only abolished the inhibitory effect of ghrelin on acquisition, but not on extinction. Altogether, our data indicated that ghrelin/GHS-R1a signaling in the LA circuit modulates both acquisition and extinction of CTA, the two forms of taste aversion processes with distinct mechanisms may also share certain molecular and circuit components in common.

RevDate: 2017-12-19

Vandaele Y, Pribut HJ, PH Janak (2017)

Lever Insertion as a Salient Stimulus Promoting Insensitivity to Outcome Devaluation.

Frontiers in integrative neuroscience, 11:23.

Flexible and efficient decision-making in complex environments can be achieved through constant interactions between the goal-directed and habitual systems. While goal-directed behavior is considered dependent upon Response-Outcome (R-O) associations, habits instead rely on Stimulus-Response (S-R) associations. However, the stimuli that support the S-R association underlying habitual responding in typical instrumental procedures are poorly defined. To resolve this issue, we designed a discrete-trials procedure, in which rats must wait for lever insertion and complete a sequence of five lever presses to obtain a reward (20% sucrose or grain-based pellets). Lever insertion thus constituted an audio-visual stimulus signaling the opportunity for reward. Using sensory-specific satiety-induced devaluation, we found that rats trained with grain-based pellets remained sensitive to outcome devaluation over the course of training with this procedure whereas rats trained with a solution of 20% sucrose rapidly developed habit, and that insensitivity to outcome devaluation in rats trained with sucrose did not result from a bias in general satiety. Importantly, although rats trained with pellets were sensitive to satiety-induced devaluation, their performance was not affected by degradation of instrumental contingency and devaluation by conditioned taste aversion (CTA), suggesting that these rats may also have developed habitual responding. To test whether the discrete-trials procedure biases subjects towards habitual responding, we compared discrete-trials to free-running instrumental responding, and found that rats trained with sucrose in a fixed-ratio 5 (FR5) procedure with continuous presentation of the lever were goal-directed. Together, these results demonstrate that discrete presentations of a stimulus predictive of reward availability promoted the formation of S-R habit in rats trained with liquid sucrose. Further research is necessary to explain inconsistencies in sensitivity to outcome devaluation when rats are trained with grain-based pellets.

RevDate: 2017-10-01

Sunada H, Totani Y, Nakamura R, et al (2017)

Two Strains of Lymnaea stagnalis and the Progeny from Their Mating Display Differential Memory-Forming Ability on Associative Learning Tasks.

Frontiers in behavioral neuroscience, 11:161.

The pond snail Lymnaea stagnalis learns and forms long-term memory (LTM) following both operant conditioning of aerial respiratory behavior and classical conditioning of taste aversive behavior. In the present study, we examined whether there are interstrain differences in the ability to form LTM following these two types of conditioning. A strain of Lymnaea (TC1) collected in Alberta, Canada exhibits superior memory-forming ability following aerial respiratory operant conditioning compared to a laboratory-reared strain of Lymnaea from Netherlands known as the Dutch strain. We asked whether the offspring of the Canadian TC1 and Dutch snails (i.e., filial 1 (F1) cross snails) would have the superior memory ability and found, rather, that their memory ability was average like the Dutch snails. That is, the Canadian TC1 snails have superior ability for LTM formation following aerial respiratory operant conditioning, but the Dutch and the generated F1 cross have average ability for memory forming. We next examined the Canadian TC1, Dutch and F1 cross snails for their ability to learn and form memory following conditioned taste aversion (CTA). All three populations showed similar associative CTA responses. However, both LTM formation and the ratio of good-to-poor performers in the memory retention test were much better in the Dutch snails than the Canadian TC1 and F1 cross snails. The memory abilities of the Canadian TC1 and F1 cross snails were average. Our present findings, therefore, suggest that snails of different strains have different memory abilities, and the F1 cross snails do not inherit the memory ability from the smart strain. To our knowledge, there have been a limited number of studies examining differences in memory ability among invertebrate strains, with the exception of studies using mutant flies.

RevDate: 2018-06-08
CmpDate: 2018-06-08

Molero-Chamizo A, GN Rivera-Urbina (2017)

Effects of lesions in different nuclei of the amygdala on conditioned taste aversion.

Experimental brain research, 235(11):3517-3526.

Conditioned taste aversion (CTA) is an adaptive learning that depends on brain mechanisms not completely identified. The amygdala is one of the structures that make up these mechanisms, but the involvement of its nuclei in the acquisition of CTA is unclear. Lesion studies suggest that the basolateral complex of the amygdala, including the basolateral and lateral amygdala, could be involved in CTA. The central amygdala has also been considered as an important nucleus for the acquisition of CTA in some studies. However, to the best of our knowledge, the effect of lesions of the basolateral complex of the amygdala on the acquisition of CTA has not been directly compared with the effect of lesions of the central and medial nuclei of the amygdala. The aim of this study is to compare the effect of lesions of different nuclei of the amygdala (the central and medial amygdala and the basolateral complex) on the acquisition of taste aversion in male Wistar rats. The results indicate that lesions of the basolateral complex of the amygdala reduce the magnitude of the CTA when compared with lesions of the other nuclei and with animals without lesions. These findings suggest that the involvement of the amygdala in the acquisition of CTA seems to depend particularly on the integrity of the basolateral complex of the amygdala.

RevDate: 2017-08-31

Kwok DWS, RA Boakes (2017)

Situational relevance: Context as a factor in serial overshadowing of taste aversion learning.

Quarterly journal of experimental psychology (2006) [Epub ahead of print].

In a serial overshadowing procedure a target stimulus, A, is followed after an interval by a potentially interfering stimulus, B, and this is then followed by an unconditioned stimulus, US. Revusky (1977) proposed that the degree to which B overshadows conditioning of A depends on whether or not the two events take place in the same context. To test this proposal two experiments used a 1-trial long-delay conditioned taste aversion (CTA) procedure; sucrose served as the target taste (A) and dilute hydrochloric acid (HCl) as the overshadowing taste (B), with lithium chloride injection providing the US. In Experiment 1 these tastes were novel; weaker overshadowing by HCl of an aversion to sucrose was found when the two tastes were presented in different contexts. Experiment 2 tested whether the effect of pre-exposure to HCl, thereby rendering it less effective in overshadowing a sucrose aversion, was also context-dependent. In the conditioning session rats again received either context-same or context-different presentations of sucrose and HCl. However, for some rats HCl was pre-exposed in the same context to which it was later presented during conditioning (Consistent), while others were pre-exposed to HCl in a different context to the one in which it was presented during conditioning (Inconsistent). The Inconsistent group produced greater overshadowing than the Consistent group and thus confirmed that the latent inhibition effect was also context dependent. This study supports Revusky's (1977) idea of situational relevance.

RevDate: 2018-05-14
CmpDate: 2018-05-14

Arthurs J, Lin JY, Ocampo R, et al (2017)

Lactose malabsorption and taste aversion learning.

Physiology & behavior, 180:39-44.

Consumption of foods can be suppressed by two feeding system defense mechanisms: conditioned taste aversion (CTA) or taste avoidance learning (TAL). There is a debate in the literature about which form of intake suppression is caused by various aversive stimuli. For instance, illness-inducing stimuli like lithium chloride are the gold standard for producing CTA and external (or peripheral) painful stimuli, such as footshock, are the traditional model of TAL. The distinction between CTA and TAL, which have identical effects on intake, is based on differential effects on palatability. That is, CTA involves a decrease in both intake and palatability, whereas TAL suppresses intake without influencing palatability. We evaluated whether lactose, which causes gastrointestinal pain in adult rats, produces CTA or TAL. Using lick pattern analysis to simultaneously measure intake and palatability (i.e., lick cluster size and initial lick rate), we found that pairing saccharin with intragastric infusions of lactose suppressed both the intake and palatability of saccharin. These results support the conclusion that gastrointestinal pain produced by lactose malabsorption produces a CTA, not TAL as had previously been suggested. Furthermore, these findings encourage the view that the CTA mechanism is broadly tuned to defend against the ingestion of foods with aversive post-ingestive effects.

RevDate: 2018-06-13
CmpDate: 2018-06-13

Sasaki T, Yasoshima Y, Matsui S, et al (2017)

Intraperitoneal injection of d-serine inhibits high-fat diet intake and preference in male mice.

Appetite, 118:120-128.

d-serine is a co-agonist of the N-methyl d-aspartate (NMDA) receptor, an important modulator of glutamatergic excitatory synaptic transmission. We previously reported that oral d-serine ingestion inhibited the intake of highly preferred food and promoted the intake of less preferred food in mice. Here, we analyzed the effects of intraperitoneal (IP) d-serine injections on feeding behavior in mice. We assessed the effects of d-serine during both the acquisition and maintenance of a preference for high-fat diets (HFDs). Aversiveness of IP d-serine was analyzed in the conditioned taste aversion paradigm. The effects on food intake were assessed by providing liquid meals with different fat contents. Finally, we measured brain d-serine and l-serine levels after d-serine administration. We found that IP-injected d-serine effectively inhibited the acquisition of a HFD preference, but failed to prevent expression of a previously learned HFD preference. IP-injected d-serine was not sufficient to condition taste aversion. The effect on HFD preference acquisition was associated with increases in d-serine levels in the cerebral cortex, hypothalamus, and cerebellum. IP-injected d-serine most effectively inhibited the intake of liquid meals with high fat content. This effect was dose-dependent, but the responses varied significantly among male C57BL/6J mice. The differential responses to d-serine were consistent among multiple trials in each mouse. In summary, IP-injected d-serine inhibited HFD intake and the acquisition of an HFD preference. Individual mice with the same genetic background showed different sensitivities to d-serine; thus, d-serine sensitivity may be associated with unidentified traits.

RevDate: 2018-04-30
CmpDate: 2018-04-30

Miranda MI, Rangel-Hernández JA, Vera-Rivera G, et al (2017)

The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption.

Neuroscience, 359:142-150.

The nucleus accumbens (NAcc) is a forebrain region that may significantly contribute to the integration of taste and visceral signals during food consumption. Changes in dopamine release in the NAcc have been observed during consumption of a sweet taste and during compulsive consumption of dietary sugars, suggesting that NAcc dopaminergic transmission is strongly correlated with taste familiarity and the hedonic value content. NAcc core and shell nuclei are differentially involved during and after sugar exposure and, particularly, previous evidence suggests that dopamine D2 receptors could be related with the strength of the latent inhibition (LI) of conditioned taste aversion (CTA), which depends on the length of the taste stimulus pre-exposure. Thus, the objective of this work was to evaluate, after long-term exposure to sugar, the function of dopaminergic D2 receptors in the NAcc core during taste memory retrieval preference test, and during CTA. Adult rats were exposed during 14days to 10% sugar solution as a single liquid ad libitum. NAcc core bilateral injections of D2 dopamine receptor antagonist, haloperidol (1μg/μL), were made before third preference test and CTA acquisition. We found that sugar was similarly preferred after 3 acute presentations or 14days of continued sugar consumption and that haloperidol did not disrupt this appetitive memory retrieval. Nevertheless, D2 receptors antagonism differentially affects aversive memory formation after acute or long-term sugar consumption. These results demonstrate that NAcc dopamine D2 receptors have a differential function during CTA depending on the degree of sugar familiarity.

RevDate: 2018-05-31
CmpDate: 2018-05-31

Molero-Chamizo A, GN Rivera-Urbina (2017)

Effects of temporal contexts and contextual habituation on latent inhibition.

Psicothema, 29(3):346-351.

BACKGROUND: Latent inhibition of conditioned taste aversion (CTA) is sensitive to external and internal cues. Time of day can serve as an internal cue, and latent inhibition may be reduced if the pre-exposure and conditioning stages occur at different times of day. This contextual cue attributed to a change in the time of day may reveal a temporal specificity of latent inhibition. Although the habituation period to spatial contexts is a determinant variable for the spatial specificity of latent inhibition of CTA, the influence of contextual-temporal familiarity (time of day) on latent inhibition of CTA has not been explored through direct comparisons between different periods of habituation to the temporal context.

METHOD: Two different periods of contextual habituation (short vs. long) previous to taste pre-exposures were compared in Wistar rats to analyze the influence of these periods on the temporal specificity of latent inhibition of CTA.

RESULTS: A long period of habituation, in relation to a short period, facilitated the effect of a change of the time of day between pre-exposure and conditioning on the magnitude of taste aversion.

CONCLUSIONS: A long habituation to temporal contexts facilitates the temporal specificity of latent inhibition of CTA.

RevDate: 2018-01-03
CmpDate: 2018-01-03

Münster M, Mohamed-Ahmed AHA, Immohr LI, et al (2017)

Comparative in vitro and in vivo taste assessment of liquid praziquantel formulations.

International journal of pharmaceutics, 529(1-2):310-318.

The taste of pharmaceuticals strongly affects the compliance of patients. This study investigated the applicability of the electronic tongue and rodent brief-access taste aversion (BATA) model for the bitter compound praziquantel (PZQ) and taste masked liquid formulations for PZQ. In a comparative study maltodextrin (MD) Kleptose® linecaps 17 was selected as an alternative taste masking agent to two cyclodextrins; hydroxypropyl-beta-cyclodextrin (HP-β-CD) and sulfobutyl ether-beta-cyclodextrin (SBE-β-CD). A phase solubility study showed the highest affinity and solubilization capabilities for SBE-β-CD over HP-β-CD and MD, suggesting the highest taste masking ability for SBE-β-CD. No reliable results were achieved for PZQ with the Insent electronic tongue. Thus this system was not used for further evaluation of solutions with MD and CDs to confirm the results of the solubility study. In contrast the BATA model demonstrated conclusive responses for the aversiveness of PZQ. The concentration of PZQ inhibiting 50% of water lick numbers (called IC50 value) was 0.06mg/ml. In contrast to the phase solubility study, the MD enabled an equal taste masking effect in vivo in comparison to both CDs. Moreover HP-β-CD showed superior taste masking capabilities for PZQ compared to SBE-β-CD as the SBE-β-CD itself was less acceptable for the rodents than HP-β-CD. In conclusion, the BATA model was identified as a more efficient taste assessment tool for the pure PZQ and liquid formulations in contrast to the electronic tongue and the phase solubility study.

RevDate: 2018-02-17

Keating AV, Soto J, Tuleu C, et al (2018)

Solid state characterisation and taste masking efficiency evaluation of polymer based extrudates of isoniazid for paediatric administration.

International journal of pharmaceutics, 536(2):536-546.

Hot melt extrusion has gained considerable attention as a novel technique for taste masking of bitter APIs. The aim of this study was to investigate whether hot melt extrusion could be used to develop taste masked formulations of isoniazid and also to evaluate and correlate different taste assessment methods Two polymers with different physico-chemical properties, Soluplus and Eudragit E-PO were chosen as carriers for the drug. Eudragit E-PO has already been widely used for taste masking due to its selective release properties, while Soluplus has not been studied in this regard but provides a useful comparator of a polymer that should release the drug reasonably efficiently. Polymeric formulations of isoniazid were produced with drug loadings of 20% and 30% w/w. The solid state characteristics of the formulations were assessed by differential scanning calorimetry and powder X-ray diffraction. The taste of isoniazid was assessed using the rodent Brief Access Taste Aversion (BATA) model, while formulations were assessed using the electronic tongue and dissolution under simulated oral conditions. Investigation into the drug loading effect with these two polymers showed that all Soluplus based extrudates with drug loading up to 30% w/w were fully amorphous while Eudragit E-PO based extrudates contained crystalline drug as demonstrated by both DSC and PXRD, dependent on loading. BATA testing of isoniazid gave an IC50 value, i.e. the dose of drug which inhibits 50% of licks, of 11.1mg/mL. Taste assessment of the formulations using both simulated oral drug release and the electronic tongue demonstrated that Eudragit E-PO based formulations had a better taste masking efficiency than Soluplus. This is due to the fact that significantly less isoniazid is released from the Eudragit E-PO based formulations under oral conditions.

RevDate: 2018-04-23
CmpDate: 2018-04-23

Roman CW, Sloat SR, RD Palmiter (2017)

A tale of two circuits: CCKNTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions.

Neuroscience, 358:316-324.

Cholecystokinin (CCK)-expressing neurons within the nucleus of the solitary tract (CCKNTS) of the mouse are responsive to satiety signals and their chemogenetic activation suppresses appetite. Optogenetic activation of CCKNTS axon terminals within either the parabrachial nucleus (PBN) or the paraventricular nucleus of the hypothalamus (PVH) is sufficient to suppress feeding. An interesting dichotomy has been revealed when assessing the motivational valence of these two circuits. Activating CCKNTS cell bodies is aversive as demonstrated by conditioned taste aversion and place-preference assays. Activation of the CCKNTS→PBN pathway is also aversive; however, stimulating the CCKNTS→PVH pathway is appetitive when assayed using a real-time, place-preference task. Thus, these two projections from CCKNTS neurons reduce food intake through opposite motivational states; one pathway signals positive valence (CCKNTS→PVH) and the other signals negative valence (CCKNTS→PBN).

RevDate: 2018-05-18
CmpDate: 2018-05-18

Shoshan N, Segev A, Abush H, et al (2017)

Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity.

Hippocampus, 27(10):1093-1109.

Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal-dependent memory is compromised while amygdala-dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long-term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light-dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long-term potentiation (LTP) in the CA1, (iii) impaired hippocampal-dependent short-term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala-dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55-212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal- and amygdala-dependent processes. Moreover, the effects of WIN55-212,2 and URB597 on Ext and acoustic startle were prevented by co-administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55-212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1 receptors, in the opposite effects of severe stress on memory and plasticity in the hippocampus and amygdala.

RevDate: 2018-05-29
CmpDate: 2018-05-29

Fernández MS, Báez B, Bordón A, et al (2017)

Short-term selection for high and low ethanol intake yields differential sensitivity to ethanol's motivational effects and anxiety-like responses in adolescent Wistar rats.

Progress in neuro-psychopharmacology & biological psychiatry, 79(Pt B):220-233.

Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F0) and filial generation 1 (F1), F2, and F3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F2 and F3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F2 and F3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating effects, and enhanced innate anxiety.

RevDate: 2017-06-26

Dwyer DM, Gasalla P, M López (2017)

Partial reinforcement and conditioned taste aversion: No evidence for resistance to extinction.

Quarterly journal of experimental psychology (2006) [Epub ahead of print].

RevDate: 2018-05-09
CmpDate: 2018-05-09

Blednov YA, Borghese CM, Ruiz CI, et al (2017)

Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

Neuropharmacology, 123:201-209.

Genes encoding the ρ1/2 subunits of GABAA receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABAA ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans.

RevDate: 2018-01-04
CmpDate: 2017-12-12

He AB, Chang YC, Meng AWY, et al (2017)

Re-evaluation of the reward comparison hypothesis for alcohol abuse.

Behavioural brain research, 332:218-222.

This study examined whether various doses of ethanol induced reward or aversion and then evaluated Grigson's reward comparison hypothesis (1997). Rats were given a 0.1% saccharin solution (conditioned stimulus 1 [CS1]) 15min prior to administration of a 0, 0.05, 0.125, 0.20, 0.35, or 0.50g/kg dose of ethanol (unconditioned stimulus [US]). The rats were then exposed to a paired compartment (CS2) for 30min. The low dose of 0.05g/kg ethanol did not induce conditioned suppression (i.e., conditioned taste aversion [CTA]) or conditioned place preference (CPP). The dose of 0.125g/kg ethanol induced CPP but not CTA. High doses of ethanol, including 0.35g/kg and 0.50g/kg, produced CTA but not CPP. The middle dose of 0.20g/kg ethanol simultaneously induced CTA and CPP. As a result, the reward comparison hypothesis cannot explain the present finding that the middle dose of ethanol induced CTA and CPP. Meanwhile, the high doses of ethanol induced motivationally aversive CTA but not rewarding CPP. The reward comparison hypothesis should be updated further.

RevDate: 2017-09-20
CmpDate: 2017-09-20

Eddy MC, Eschle BK, ER Delay (2017)

Comparison of the Tastes of L-Alanine and Monosodium Glutamate in C57BL/6J Wild Type and T1r3 Knockout Mice.

Chemical senses, 42(7):563-573.

Previous research showed that L-alanine and monosodium L-glutamate elicit similar taste sensations in rats. This study reports the results of behavioral experiments designed to compare the taste capacity of C57BL/6J wild type and T1r3- mice for these 2 amino acids. In conditioned taste aversion (CTA) experiments, wild-type mice exhibited greater sensitivity than knockout mice for both L-amino acids, although knockout mice were clearly able to detect both amino acids at 50 mM and higher concentrations. Generalization of CTA between L-alanine and L-glutamate was bidirectionally equivalent for both mouse genotypes, indicating that both substances elicited similar tastes in both genotypes. This was verified by the discrimination experiments in which both mouse genotypes performed at or near chance levels at 75 and 150 mM. Above 150 mM, discrimination performance improved, suggesting the taste qualities of the 2 L-amino acids are not identical. No differences between knockout and wild-type mice in discrimination ability were detected. These results indicate that while the T1r3 receptor is important for tasting L-alanine and L-glutamate, other receptors are also important for tasting these amino acids.

RevDate: 2018-04-02
CmpDate: 2018-04-02

Bala M, Gupta V, J Prasad (2017)

A standardized Hippophae extract (SBL-1) counters neuronal tissue injuries and changes in neurotransmitters: implications in radiation protection.

Pharmaceutical biology, 55(1):1833-1842.

CONTEXT: Effects of a radioprotective, standardized leaf extract (code SBL-1) from traditional medicinal plant, sea buckthorn [Hippophae rhamnoides L. (Elaeagnaceae)], on neurotransmitters and brain injuries in rats showing radiation-induced conditioned taste aversion (CTA), are not known. Understanding CTA in rats is important because its process is considered parallel to nausea and vomiting in humans.

OBJECTIVE: This study investigated the levels of neurotransmitters, antioxidant defences and histological changes in rats showing radiation CTA, and their modification by SBL-1.

MATERIALS AND METHODS: The inbred male Sprague-Dawley rats (age 65 days, weighing 190 ± 10 g) were used. Saccharin-preferring rats were selected using standard procedure and divided into groups. Group I (untreated control) was administered sterile water, group II was 60Co-γ-irradiated (2 Gy), and group III was administered SBL-1 before irradiation. Observations were recorded up to day 5.

RESULTS: Irradiation (2 Gy) caused (i) non-recoverable CTA (≥ 64.7 ± 5.0%); (ii) degenerative changes in cerebral cortex, amygdala and hippocampus; (iii) increases in brain dopamine (DA, 63.4%), norepinephrine (NE, 157%), epinephrine (E, 233%), plasma NE (103%) and E (160%); and (iv) decreases in brain superoxide dismutase (67%), catalase (60%) and glutathione (51%). SBL-1 treatment (12 mg/kg body weight) 30 min before irradiation (i) countered brain injuries, (ii) reduced CTA (38.7 ± 3.0%, day 1) and (iii) normalized brain DA, NE, E, superoxide dismutase, catalase and CTA from day 3 onwards.

DISCUSSION AND CONCLUSION: Radiation CTA was coupled with brain injuries, disturbances in neurotransmitters and antioxidant defences. SBL-1 pretreatment countered these disturbances, indicating neuroprotective action.

RevDate: 2017-11-28
CmpDate: 2017-09-21

Sun H, Yan J, Sun B, et al (2017)

Taste sensitivity to sucrose is lower in outbred Sprague-Dawley phenotypic obesity-prone rats than obesity-resistant rats.

Biochemical and biophysical research communications, 489(2):155-163.

The purpose of the present study was to better understand the role of sweet taste perception in dietary behavior and body weight in outbred Sprague-Dawley phenotypic obesity-prone and obesity-resistant rats by measuring sucrose taste sensitivity using a conditioned taste aversion paradigm. Rats were given a high fat diet for 2 weeks and were assigned as obesity-prone (P, upper tertile) or obesity-resistant (R, lower tertile) based on weight gain. Each group was then given either chow (C, 10% fat) or the high fat diet (F, 46% fat) for the remainder of the experiment (∼18 weeks) such that there were four groups - obesity-prone on chow (C-P), obesity-prone on high fat (H-P), obesity-resistant on chow (C-R), obesity-resistant on high fat (H-R). The sucrose sensitivity of phenotypic obesity-prone rats is lower than that of obesity-resistant rats in either H-fed or C-fed group, and all H-fed rats were more sensitivity than their C-fed counterparts (H-P vs. C-P; H-R vs. C-R). Body weight gain and total calories intake of phenotypic obesity-prone rats are more than that of obesity-resistant rats. The results suggest that lower sucrose taste sensitivity may contribute to body weight gain and total calories intake of phenotypic obesity-prone rats compared to obesity-resistant rats, and there is correlation between the change in the sweet taste threshold and diet treatment.

RevDate: 2018-07-20
CmpDate: 2018-07-20

Abegg K, Bernasconi L, Hutter M, et al (2017)

Ghrelin receptor inverse agonists as a novel therapeutic approach against obesity-related metabolic disease.

Diabetes, obesity & metabolism, 19(12):1740-1750.

AIMS: Ghrelin is implicated in the control of energy balance and glucose homeostasis. The ghrelin receptor exhibits ligand-independent constitutive activity, which can be pharmacologically exploited to induce inverse ghrelin actions. Because ghrelin receptor inverse agonists (GHSR-IA) might be effective for the treatment of obesity-related metabolic disease, we tested 2 novel synthetic compounds GHSR-IA1 and GHSR-IA2.

MATERIALS AND METHODS: In functional cell assays, electrophysiogical and immunohistochemical experiments, we demonstrated inverse agonist activity for GHSR-IA1 and GHSR-IA2. We used healthy mice, Zucker diabetic fatty (ZDF) rats and diet-induced obese (DIO) mice to explore effects on food intake (FI), body weight (BW), conditioned taste aversion (CTA), oral glucose tolerance (OGT), pancreatic islet morphology, hepatic steatosis (HS), and blood lipids.

RESULTS: Both compounds acutely reduced FI in mice without inducing CTA. Chronic GHSR-IA1 increased metabolic rate in chow-fed mice, suppressed FI, and improved OGT in ZDF rats. Moreover, the progression of islet hyperplasia to fibrosis in ZDF rats slowed down. GHSR-IA2 reduced FI and BW in DIO mice, and reduced fasting and stimulated glucose levels compared with pair-fed and vehicle-treated mice. GHSR-IA2-treated DIO mice showed decreased blood lipids. GHSR-IA1 treatment markedly decreased HS in DIO mice.

CONCLUSIONS: Our study demonstrates therapeutic actions of novel ghrelin receptor inverse agonists, suggesting a potential to treat obesity-related metabolic disorders including diabetes mellitus.

RevDate: 2018-03-26
CmpDate: 2018-03-26

Rorabaugh B, Seeley S, Evans M, et al (2017)

Differential behavioral effects of nicotine in adult male and female rats with a history of prenatal methamphetamine exposure.

Neuroscience letters, 651:116-122.

The goal of the current study was to assess the effects of prenatal methamphetamine (MA)/saline exposure on nicotine-induced stimulant and aversive effects in both male and female adult rats. The aversive effects of nicotine were assessed using the nicotine-induced conditioned taste aversion model (0.4mg/kg, base), while the stimulant effects of nicotine were measured by assessing changes in spontaneous locomotor activity after subcutaneous administration of different doses of nicotine (0, 0.1 & 0.4mg/kg, base). The aversive effects of nicotine were significantly decreased in male, but not in female rats with a history of prenatal MA exposure compared to respective saline controls. No influence of prenatal MA exposure was observed on nicotine-induced increase in locomotor activity in either male or female rats. In conclusion, males with a history of prenatal MA exposure may be more vulnerable to nicotine addiction due to a decrease in nicotine-induced aversive effects.

RevDate: 2018-03-26
CmpDate: 2018-03-26

Aonuma H, Kaneda M, Hatakeyama D, et al (2017)

Weak involvement of octopamine in aversive taste learning in a snail.

Neurobiology of learning and memory, 141:189-198.

The pond snail Lymnaea stagnalis is capable of learning taste aversion by pairing presentations of a sucrose solution and an electric shock and consolidating it into long-term memory (LTM), which is referred to as conditioned taste aversion (CTA). We asked here if the neurotransmitter octopamine is involved in CTA. We first determined the levels of octopamine and its catabolites in the central nervous system (CNS) of snails with varying degrees of food deprivation, because CTA grades are correlated with degrees of food deprivation. We next manipulated the octopamine signaling using both an agonist and an antagonist of octopamine receptors and correlated their respective effects with CTA grades. We found that snails with the least amount of food-deprivation obtained the best CTA grade and had low levels of octopamine; whereas the most severely food-deprived snails did not form CTA and had the highest CNS octopamine levels. In modestly food-deprived snails, octopamine application increased the basal level of feeding response to a sucrose solution, and it did not obstruct CTA formation. Application of phentolamine, an octopamine receptor antagonist, to the most severely food-deprived snails decreased the basal level of feeding elicited by sucrose, but it did not enhance CTA formation. We conclude that octopamine involvement in CTA formation in Lymnaea is at best weak, and that the changes in CNS octopamine content are an epiphenomenon.

RevDate: 2018-06-15
CmpDate: 2018-02-07

Sheth C, Furlong TM, Keefe KA, et al (2017)

The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption.

Behavioural brain research, 328:195-208.

The lateral habenula (LHb) is an epithalamic brain region implicated in aversive processing via negative modulation of midbrain dopamine (DA) and serotonin (5-HT) systems. Given the role of the LHb in inhibiting DA and 5-HT systems, it is thought to be involved in various psychiatric pathologies, including drug addiction. In support, it has been shown that LHb plays a critical role in cocaine- and ethanol-related behaviors, most likely by mediating drug-induced aversive conditioning. In our previous work, we showed that LHb lesions increased voluntary ethanol consumption and operant ethanol self-administration and blocked yohimbine-induced reinstatement of ethanol self-administration. LHb lesions also attenuated ethanol-induced conditioned taste aversion suggesting that a mechanism for the increased intake of ethanol may be reduced aversion learning. However, whether afferents to the LHb are required for mediating effects of the LHb on these behaviors remained to be investigated. Our present results show that lesioning the fiber bundle carrying afferent inputs to the LHb, the stria medullaris (SM), increases voluntary ethanol consumption, suggesting that afferent structures projecting to the LHb are important for mediating ethanol-directed behaviors. We then chose two afferent structures as the focus of our investigation. We specifically studied the role of the inputs from the lateral hypothalamus (LH) and ventral pallidum (VP) to the LHb in ethanol-directed behaviors. Our results show that the LH-LHb projection is necessary for regulating voluntary ethanol consumption. These results are an important first step towards understanding the functional role of afferents to LHb with regard to ethanol consumption.

RevDate: 2018-05-22
CmpDate: 2018-05-04

Gasalla P, Soto A, Dwyer DM, et al (2017)

Blocking of flavor-nausea learning by non-flavor cues: Assessment through orofacial reactivity responses.

Journal of experimental psychology. Animal learning and cognition, 43(2):171-182.

We investigated, using orofacial reactivity assessment, whether nonflavor context cues can elicit conditioned aversive reactions, and also whether context cues interfere, through blocking, with the reduction in taste palatability during taste aversion conditioning. Experiment 1 showed that a context previously paired with LiCl evoked aversive orofacial reactions, and also attenuated the reduction in palatability of a saccharin solution which was paired with LiCl in that context. In Experiment 2, this blocking effect was abolished when the rats were given nonreinforced exposure to the previously LiCl-paired context (context extinction) before aversive conditioning of the saccharin in compound with the context. These results confirm that context stimuli can elicit conditioned aversive reactions in the absence of any flavor component, and demonstrate that context cues can interfere with the affective aspects of taste aversion learning. Thus nonflavor cues appear to engage the same processes as taste cues in aversion learning. These results are consistent with the idea that taste aversion learning is governed by general associative mechanisms and the special properties of nausea, rather than by a selective mechanism for poison-avoidance. (PsycINFO Database Record

RevDate: 2018-07-01

Egervari G, T Rahman (2017)

Increased firing of lateral habenula neurons mediates ethanol aversion: potential implications for substance use disorders.

The Journal of physiology, 595(13):4135-4136.

RevDate: 2017-10-06
CmpDate: 2017-10-06

Soto A, Gasalla P, Begega A, et al (2017)

c-Fos activity in the insular cortex, nucleus accumbens and basolateral amygdala following the intraperitoneal injection of saccharin and lithium chloride.

Neuroscience letters, 647:32-37.

This study examined c-Fos expression in selected brain areas consequent to intraperitoneal (IP) administration of saccharin and lithium chloride. Rats were tested for aversion to the saccharin as measured by flavor consumption and orofacial reactions in the taste reactivity (TR) test. It was found that intraperitoneal conditioning resulted in the reduction in voluntary consumption but not in the production of aversive orofacial responses to the saccharin. The immunohistochemistry quantification revealed increased c-Fos activity in the insular cortex, the shell and core regions of the nucleus accumbens, and the basolateral nucleus of the amygdala. These results show that a conditioned taste aversion can be induced without direct oropharyngeal gustatory stimulation at the time of conditioning. In addition, this study provide evidence of increased neural activity in response to intraperitoneal saccharin injections.

RevDate: 2018-03-27
CmpDate: 2018-01-08

Huang TN, YP Hsueh (2017)

Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice.

Journal of psychiatry & neuroscience : JPN, 42(1):37-47.

BACKGROUND: Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase (CASK) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability.

METHODS: Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein-protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N-methyl-D-aspartate receptor subunit 2B (Grin2b) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein-protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice.

RESULTS: The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal.

LIMITATIONS: The functions of other CASK protein interactions cannot be addressed using CASK T740A mice.

CONCLUSION: Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility.

RevDate: 2018-03-12
CmpDate: 2018-03-12

Albanell E, Manuelian CL, Rovai M, et al (2017)

Using long-term averted goats for selective grazing in olive groves.

Animal : an international journal of animal bioscience, 11(10):1832-1838.

Conditioned taste aversion (CTA) is a useful tool to modify animal feed preferences, allowing the implementation of selective grazing to control weeds in tree orchards without damaging the trees or affecting fruit production. LiCl is commonly used for inducing CTA. However, studies investigating the long-term persistence of CTA by LiCl in small ruminants are scarce. With this aim, we evaluated the efficiency of two LiCl doses (AV1 and AV2, 175 and 200 mg/kg BW, respectively) and a control (C, 0 mg/kg BW) for averting non-lactating dairy goats (n=15) to olive tree leaves. Aversion induction was reinforced on day 9 in those goats that consumed >10 g of olive leaves. Mid-term aversion effectiveness was assessed by five double-choice feeding tests (days 16, 24, 31, 38 and 53) of 30 min each, where 100 g of olive leaves were offered side-by-side with 390 g of Italian rye-grass (as-fed). Long-term aversion effectiveness was assessed in C, AV1 and AV2 goats by grazing for 30 min in paddocks with a simulated olive tree (days 59, 90, 121, 182 and 420). Moreover, C and AV2 goats were compared under on-field conditions (days 143, 211 and 363) in a commercial olive grove also for 30 min. The CTA proved to be established with a single LiCl dose in all goats and persisted for 4 and 55 days in AV1 and AV2 goats, respectively (P<0.001). However, 80% AV1 and 20% AV2 goats needed to be reinforced at day 9. When grazing under simulated olive tree and commercial olive grove conditions, the CTA goats, especially AV2 group, avoided the contact with the olive trees and minimally used a bipedal stance to feed leaves, than control goats. On average, time proportion spent consuming olive leaves and sprouts was much greater (P<0.05) for C (50.7±9.1%) than for AV1 (14.4±3.9%) and AV2 (3.1±0.9%). In conclusion, the 200 mg LiCl/kg BW dose was more effective than the 175 mg LiCl/kg BW dose for inducing an effective long-term CTA to olive tree leaves in goats.

RevDate: 2018-05-30
CmpDate: 2017-09-08

Gaykema RP, Newmyer BA, Ottolini M, et al (2017)

Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight.

The Journal of clinical investigation, 127(3):1031-1045.

Peptides derived from pre-proglucagon (GCG peptides) act in both the periphery and the CNS to change food intake, glucose homeostasis, and metabolic rate while playing a role in anxiety behaviors and physiological responses to stress. Although the actions of GCG peptides produced in the gut and pancreas are well described, the role of glutamatergic GGC peptide-secreting hindbrain neurons in regulating metabolic homeostasis has not been investigated. Here, we have shown that chemogenetic stimulation of GCG-producing neurons reduces metabolic rate and food intake in fed and fasted states and suppresses glucose production without an effect on glucose uptake. Stimulation of GCG neurons had no effect on corticosterone secretion, body weight, or conditioned taste aversion. In the diet-induced obese state, the effects of GCG neuronal stimulation on gluconeogenesis were lost, while the food intake-lowering effects remained, resulting in reductions in body weight and adiposity. Our work suggests that GCG peptide-expressing neurons can alter feeding, metabolic rate, and glucose production independent of their effects on hypothalamic pituitary-adrenal (HPA) axis activation, aversive conditioning, or insulin secretion. We conclude that GCG neurons likely stimulate separate populations of downstream cells to produce a change in food intake and glucose homeostasis and that these effects depend on the metabolic state of the animal.

RevDate: 2018-03-26
CmpDate: 2018-03-26

Lückemann L, Unteroberdörster M, Kirchhof J, et al (2017)

Applications and limitations of behaviorally conditioned immunopharmacological responses.

Neurobiology of learning and memory, 142(Pt A):91-98.

The importance of placebo responses for the treatment of various medical conditions has increasingly been recognized, whereas knowledge and systematic application in clinical settings are still sparse. One possible application for placebo responses in pharmacotherapy is given by learning paradigms, such as behaviorally conditioned immunosuppression, aiming at drug dose reduction while maintaining therapeutic efficacy of drug treatment. In an established learning paradigm of conditioned taste aversion/avoidance (CTA) in both, rats and humans, respectively, a novel-tasting drinking solution (conditioned stimulus, CS) is paired with an injection of the immunosuppressive drug cyclosporine A (CsA) as unconditioned stimulus (US). The conditioned response, evoked by re-presenting the CS alone at a later time, is reflected by avoidance behavior of consuming the solution (conditioned taste aversion; CTA) and a diminished interleukin (IL)-2 and interferon (IFN)-γ cytokine production as well as mRNA expression of rat splenic T cells or human peripheral T lymphocytes, closely mimicking the immunosuppressive effects of CsA. However, due to unreinforced CS-re-exposure conditioned responses progressively decreases over time (extinction), reflecting a considerable challenge for potential clinical applications of this learned immunosuppression. The present article discusses and critically reviews actual approaches, applications but also limitations of learning paradigms in immune pharmacotherapy.

RevDate: 2018-07-16
CmpDate: 2018-02-12

Kim H, Kirkhart C, K Scott (2017)

Long-range projection neurons in the taste circuit of Drosophila.

eLife, 6:.

Taste compounds elicit innate feeding behaviors and act as rewards or punishments to entrain other cues. The neural pathways by which taste compounds influence innate and learned behaviors have not been resolved. Here, we identify three classes of taste projection neurons (TPNs) in Drosophila melanogaster distinguished by their morphology and taste selectivity. TPNs receive input from gustatory receptor neurons and respond selectively to sweet or bitter stimuli, demonstrating segregated processing of different taste modalities. Activation of TPNs influences innate feeding behavior, whereas inhibition has little effect, suggesting parallel pathways. Moreover, two TPN classes are absolutely required for conditioned taste aversion, a learned behavior. The TPNs essential for conditioned aversion project to the superior lateral protocerebrum (SLP) and convey taste information to mushroom body learning centers. These studies identify taste pathways from sensory detection to higher brain that influence innate behavior and are essential for learned responses to taste compounds.

RevDate: 2017-06-22
CmpDate: 2017-06-22

Sunada H, Lukowiak K, E Ito (2017)

Cerebral Giant Cells are Necessary for the Formation and Recall of Memory of Conditioned Taste Aversion in Lymnaea.

Zoological science, 34(1):72-80.

The pond snail Lymnaea stagnalis can acquire conditioned taste aversion (CTA) as a long-term memory. CTA is caused by the temporal pairing of a stimulus, such as sucrose (the conditioned stimulus; CS), with another stimulus, such as electric shock (the unconditioned stimulus; US). Previous studies have demonstrated changes in both cellular and molecular properties in a pair of neurons known as the cerebral giant cells (CGCs), suggesting that these neurons play a key role in CTA. Here we examined the necessity of the pair of CGC somata for the learning, memory formation and memory recall of CTA by using the soma ablation technique. There was no difference in the feeding response elicited by the CS before and after ablation of the CGC somata. Ablation of the CGC somata before taste-aversion training resulted in the learning acquisition, but the memory formation was not observed 24 h later. We next asked whether memory was present when the CGC somata were ablated 24 h after taste-aversion training. The memory was present before performing the somata ablation. However, when we tested snails five days after somata ablation, the memory recall was not present. Together the data show that: 1) the somata of the CGCs are not necessary for learning acquisition; 2) the somata are necessary for memory formation; and 3) the somata are necessary for memory recall. That is, these results demonstrate that the CGCs function in the long-term memory of CTA in Lymnaea.

RevDate: 2017-08-16

Veysi A, Vatandoost H, Yaghoobi-Ershadi MR, et al (2016)

Rodenticide Comparative Effect of Klerat® and Zinc Phosphide for Controlling Zoonotic Cutaneous Leishmaniasis in Central Iran.

Iranian journal of parasitology, 11(4):471-479.

BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected disease with public health importance that is common in many rural areas of Iran. In recent years, behavioral resistance and/or bait shyness against the common rodenticide among reservoir hosts of ZCL have been reported. The aim of this study was to evaluate the effectiveness of Klerat® and zinc phosphide against natural reservoir of ZCL.

METHODS: This survey was carried out in four villages located 45 to 95 km far from Esfahan City Esfahan province, central Iran from April to November 2011. The rodent burrows were counted destroyed and reopened holes baited around all villages. Effect of rodent control operation on the main vector density and incidence of ZCL were evaluated.

RESULTS: The reduction rate of rodent burrows after intervention calculated to be at 62.8% in Klerat® and 58.15% in zinc phosphide treated areas. Statistical analysis showed no difference between the densities of the vector in indoors and outdoors in intervention and control areas. The incidence of the disease between treated and control areas after intervention was statistically different (P< 0.05).

CONCLUSION: Klerat® could be a suitable alternative for zinc phosphide in a specific condition such as behavior resistance or occurrence of bait shyness.

RevDate: 2017-10-18
CmpDate: 2017-10-18

Yokose J, Okubo-Suzuki R, Nomoto M, et al (2017)

Overlapping memory trace indispensable for linking, but not recalling, individual memories.

Science (New York, N.Y.), 355(6323):398-403.

Memories are not stored in isolation from other memories but are integrated into associative networks. However, the mechanisms underlying memory association remain elusive. Using two amygdala-dependent behavioral paradigms-conditioned taste aversion (CTA) and auditory-cued fear conditioning (AFC)-in mice, we found that presenting the conditioned stimulus used for the CTA task triggered the conditioned response of the AFC task after natural coreactivation of the memories. This was accompanied through an increase in the overlapping neuronal ensemble in the basolateral amygdala. Silencing of the overlapping ensemble suppressed CTA retrieval-induced freezing. However, retrieval of the original CTA or AFC memory was not affected. A small population of coshared neurons thus mediates the link between memories. They are not necessary for recalling individual memories.

RevDate: 2018-07-19
CmpDate: 2017-09-07

Sanchís-Ollé M, Ortega-Sánchez JA, Belda X, et al (2017)

Lithium-induced malaise does not interfere with adaptation of the hypothalamic-pituitary-adrenal axis to stress.

Progress in neuro-psychopharmacology & biological psychiatry, 75:77-83.

We have recently demonstrated that adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to repeated exposure to a stressor does not follow the rules of habituation and can be fully expressed after a single experience with severe stressors. In the present work we tested the hypothesis that adaptation could be impaired if animals experience malaise during initial exposure to the stressor. To this end, animals were allowed to drink saccharin for 30min before being exposed for 3h to immobilization on boards (IMO), a severe stressor; then they were given either saline or lithium ip after the first hour of IMO. Stress-naïve rats followed exactly the same procedure except IMO. Exposure to IMO caused a strong activation of the HPA axis whereas the effect of lithium was modest. Both IMO and lithium administration resulted in conditioned taste aversion to saccharin when evaluated 4days later. When all animals were exposed to IMO 6days later, reduced HPA response and less impact on body weight was observed in the two groups previously exposed to IMO as compared with stress-naïve rats. Therefore, lithium administration during the first IMO exposure did not affect adaptation of the HPA axis and weight gain. These results indicate that malaise per se only weakly activated the HPA axis and argue against the hypothesis that signs of physical malaise during exposure to the stressor could impair HPA adaptation.

RevDate: 2017-12-18
CmpDate: 2017-06-29

Yamaguchi E, Yasoshima Y, T Shimura (2017)

Systemic administration of anorexic gut peptide hormones impairs hedonic-driven sucrose consumption in mice.

Physiology & behavior, 171:158-164.

A number of reports suggest that gut hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY(3-36) (PYY3-36), which are released postprandially, suppress homeostatic food intake and result in satiety and the termination of feeding. However, it remains unclear whether these peptide hormones also suppress non-homeostatic consumption of palatable foods or fluids. To examine whether gut hormones reduce hedonically motivated sugar consumption, we assessed the effects of intraperitoneal administration of these gut hormones on the consumption of a highly palatable sucrose solution, using a mouse model we previously established for binge-like sucrose overconsumption (Yasoshima and Shimura, 2015). To reduce homeostatic hunger, chow was available at nighttime prior to testing. After a limited-access training procedure for 10days, during which access to both sucrose and chow were controlled, on the test day, control mice injected with saline consumed significantly more sucrose than during the pre-training period. In contrast, sucrose consumption on the test day in the mice injected with CCK-8 (2 and 4μg/kg), GLP-1 (500 and 1000nmol/kg), or PYY3-36 (12.5 and 25nmol/kg) was significantly less than that in saline-injected mice. In a separate cohort of mice, the higher doses of CCK-8 and GLP-1 and a greater dose of PYY3-36 (50nmol/kg) did not produce conditioned taste aversion to saccharin, suggesting that the doses of exogenous hormones in the present study do not cause aversive visceral distress. The present findings suggest that the systemic administration of these three gut hormones suppresses hedonic-driven sugar consumption due to the anorexic, but not aversive-visceral, effects of these hormones.

RevDate: 2018-03-26
CmpDate: 2018-03-26

Rodríguez-Durán LF, Martínez-Moreno A, ML Escobar (2017)

Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD.

Neurobiology of learning and memory, 142(Pt A):85-90.

The history of activity of a given neuron has been proposed to bidirectionally influence its future response to synaptic inputs. In particular, induction of synaptic plasticity expressions such as long-term potentiation (LTP) and long-term depression (LTD) modifies the performance of several behavioral tasks. Our previous studies in the insular cortex (IC), a neocortical region that has been related to acquisition and retention of conditioned taste aversion (CTA), have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC pathway before CTA training enhances the retention of this task. In addition, we reported that CTA training triggers a persistent impairment in the ability to induce in vivo LTP in the IC. The aim of the present study was to investigate whether LTD can be induced in the Bla-IC projection in vivo, as well as, whether the extinction of CTA is bidirectionally modified by previous synaptic plasticity induction in this pathway. Thus, rats received 900 train pulses (five 250μs pulses at 250Hz) delivered at 1Hz in the Bla-IC projection in order to induce LTD or 10 trains of 100Hz/1s with an intertrain interval of 20s in order to induce LTP. Seven days after surgery, rats were trained in the CTA task including the extinction trials. Our results show that the Bla-IC pathway is able to express in vivo LTD in an N-Methyl-D-aspartate (NMDA) receptor-dependent manner. Induction of LTD in the Bla-IC projection previous to CTA training facilitates the extinction of this task. Conversely, LTP induction enhances CTA retention. The present results show the bidirectional modulation of CTA extinction in response to IC-LTP and LTD, providing evidence of the homeostatic adaptation of taste learning.

RevDate: 2017-08-24
CmpDate: 2017-08-24

Yasoshima Y, T Shimura (2017)

Midazolam impairs the retrieval of conditioned taste aversion via opioidergic transmission in mice.

Neuroscience letters, 636:64-69.

Midazolam is a benzodiazepine agonist that affects the acquisition, retention, and retrieval of malaise-induced conditioned taste aversion (CTA) in rats. Our previous study suggested that the palatability-enhancing rather than amnesic effects of midazolam were responsible for impaired retrieval of conditioned aversion to palatable conditioned stimuli (CSs). However, it remains unclear whether this effect is opioid-dependent. In the present study, we examined the involvement of opioid signaling with the ability of peripheral midazolam administration to transiently impair CTA retrieval in mice. CTA was established by pairing 5mM saccharin ingestion (conditioned stimulus, CS) with an intraperitoneal (i.p.) injection of 0.15M lithium chloride (LiCl, 2% body weight) (unconditioned stimulus) for two consecutive days. Conditioned mice that received midazolam (1.5mg/kg, i.p.) before the first retention test consumed significantly more saccharin (CS) than conditioned mice that received vehicle (phosphate-buffered physiological saline, PBS; i.p.). On the next day, both conditioned groups showed strong aversions to the CS. Next, naloxone, an opioid receptor antagonist, was peripherally administered prior to the midazolam injection before the retention test. Pre-administration of naloxone but not PBS attenuated midazolam-induced increases in CS intake. Finally, we examined aversive orofacial taste reactions (TRs) to an oral infusion of the CS with pre-administration of naloxone or PBS prior to midazolam using a taste reactivity test. Conditioned mice that received midazolam showed significantly longer latencies to express aversive orofacial TRs than those that received PBS. Pre-administration of naloxone eliminated the effect of midazolam on latency to express aversive TRs. Taken together, these data suggest that midazolam activates opioidergic transmission and opioid-dependent palatability enhancement of the CS to eliminate conditioned aversion to a sweet taste.

RevDate: 2018-03-05
CmpDate: 2018-02-09

Osorio-Gómez D, Guzmán-Ramos K, F Bermúdez-Rattoni (2017)

Memory trace reactivation and behavioral response during retrieval are differentially modulated by amygdalar glutamate receptors activity: interaction between amygdala and insular cortex.

Learning & memory (Cold Spring Harbor, N.Y.), 24(1):14-23 pii:24/1/14.

The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the gustatory zone of the IC during CTA retrieval. Additionally, it has been reported that the amygdala-IC interaction is highly involved in CTA memory establishment. Therefore, we evaluated the effects of infusions of an AMPA receptor antagonist (CNQX) and a NMDA receptor antagonist (APV) into the amygdala on CTA retrieval and IC neurotransmitter levels. Infusion of APV into the amygdala impaired glutamate augmentation within the IC, whereas dopamine and norepinephrine levels augmentation persisted and a reliable CTA expression was observed. Conversely, CNQX infusion into the amygdala impaired the aversion response, as well as norepinephrine and dopamine augmentations in the IC. Interestingly, CNQX infusion did not affect glutamate elevation in the IC. To evaluate the functional meaning of neurotransmitters elevations within the IC on CTA response, we infused specific antagonists for the AMPA, NMDA, D1, and β-adrenergic receptor before retrieval. Results showed that activation of AMPA, D1, and β-adrenergic receptors is necessary for CTA expression, whereas NMDA receptors are not involved in the aversion response.

RevDate: 2017-09-19

Nilsson A, Wilhelms DB, Mirrasekhian E, et al (2017)

Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent.

Brain, behavior, and immunity, 61:236-243.

Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.

RevDate: 2017-02-20

Li WG, Liu MG, Deng S, et al (2016)

ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion.

Nature communications, 7:13770 pii:ncomms13770.

Acid-sensing ion channel 1a (ASIC1a) has been shown to play important roles in synaptic plasticity, learning and memory. Here we identify a crucial role for ASIC1a in long-term depression (LTD) at mouse insular synapses. Genetic ablation and pharmacological inhibition of ASIC1a reduced the induction probability of LTD without affecting that of long-term potentiation in the insular cortex. The disruption of ASIC1a also attenuated the extinction of established taste aversion memory without altering the initial associative taste learning or its long-term retention. Extinction of taste aversive memory led to the reduced insular synaptic efficacy, which precluded further LTD induction. The impaired LTD and extinction learning in ASIC1a null mice were restored by virus-mediated expression of wild-type ASIC1a, but not its ion-impermeable mutant, in the insular cortices. Our data demonstrate the involvement of an ASIC1a-mediated insular synaptic depression mechanism in extinction learning, which raises the possibility of targeting ASIC1a to manage adaptive behaviours.

RevDate: 2017-01-24
CmpDate: 2017-01-24

Gaillard D, JM Stratford (2016)

Measurement of Behavioral Taste Responses in Mice: Two-Bottle Preference, Lickometer, and Conditioned Taste-Aversion Tests.

Current protocols in mouse biology, 6(4):380-407.

The natural like and dislike of foods based on taste is one of the most easily observed behaviors in animals. Animals eat palatable foods and reject aversive foods, which makes measurement of taste perception possible using various behavioral techniques. Three different methods to accurately measure taste behavior are described here. First, two-bottle preference tests evaluate whether a taste compound (tastant) is preferred over water. Second, lickometer tests quantify the like and dislike for multiple concentrations of the same tastant or multiple tastants at the same time. Finally, conditioned taste aversion tests accurately determine the perceived taste threshold for palatable tastants. Together, these diverse methods enable researchers to observe and measure behavioral taste responses in mice to any tastant. © 2016 by John Wiley & Sons, Inc.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )