Other Sites:
Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About: RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE
RJR: Recommended Bibliography 30 Mar 2023 at 01:57 Created:
Telomeres
Wikipedia: A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Its name is derived from the Greek nouns telos (τέλος) "end" and merοs (μέρος, root: μερ-) "part". For vertebrates, the sequence of nucleotides in telomeres is TTAGGG, with the complementary DNA strand being AATCCC, with a single-stranded TTAGGG overhang. This sequence of TTAGGG is repeated approximately 2,500 times in humans. In humans, average telomere length declines from about 11 kilobases at birth to less than 4 kilobases in old age,[3] with average rate of decline being greater in men than in women. During chromosome replication, the enzymes that duplicate DNA cannot continue their duplication all the way to the end of a chromosome, so in each duplication the end of the chromosome is shortened (this is because the synthesis of Okazaki fragments requires RNA primers attaching ahead on the lagging strand). The telomeres are disposable buffers at the ends of chromosomes which are truncated during cell division; their presence protects the genes before them on the chromosome from being truncated instead. The telomeres themselves are protected by a complex of shelterin proteins, as well as by the RNA that telomeric DNA encodes.
Created with PubMed® Query: telomere.q.txt NOT pmcbook NOT ispreviousversion
Citations The Papers (from PubMed®)
RevDate: 2023-03-29
Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance.
Nature communications, 14(1):1756.
Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following recombination-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.
Additional Links: PMID-36991019
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36991019,
year = {2023},
author = {Li, F and Wang, Y and Hwang, I and Jang, JY and Xu, L and Deng, Z and Yu, EY and Cai, Y and Wu, C and Han, Z and Huang, YH and Huang, X and Zhang, L and Yao, J and Lue, NF and Lieberman, PM and Ying, H and Paik, J and Zheng, H},
title = {Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance.},
journal = {Nature communications},
volume = {14},
number = {1},
pages = {1756},
pmid = {36991019},
issn = {2041-1723},
abstract = {Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following recombination-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.},
}
RevDate: 2023-03-29
Influence of exposure to pesticides on telomere length and pregnancy outcome: Diethylphosphates but not Dimethylphosphates are associated with accelerated telomere attrition in a Palestinian cohort.
Ecotoxicology and environmental safety, 256:114801 pii:S0147-6513(23)00305-6 [Epub ahead of print].
Exposure to environmental pesticides during pregnancy is associated with adverse health outcomes such as low birth weight and impaired neuro-development. In this study, we assessed maternal leukocyte telomere lengths (TL) in Palestinian pregnant women and compared the data with urinary organophosphate concentrations, demographic, lifestyle and dietary factors, birth weight, body length, gestational age, and head circumference. Women with high urine levels of creatinine adjusted diethylphosphate(DE)derived pesticide metabolites DEP, DETP or DEDTP had shorter telomeres (p = 0.05). Women living in proximity to agricultural fields had shorter telomeres compared to women not living in proximity to agricultural fields (p = 0.011). Regular consumption of organic food was associated with shorter telomeres (p = 0.01), whereas the consumption of other vegetables such as artichokes was rather associated with longer telomeres. By contrast, urine levels of dimethylphosphate(DM)-derived pesticide metabolites DMTP and DMDTP were associated with lower birth weight (p = 0.05) but not with shrter telomeres. In conclusion organophosphate pesticides and living in proximity to agriculture are associated with shorter TL, likely due to higher consumption of contaminated fruits and vegetables and/or the transport of pesticides to non-treatment sites. DE and DM substituted pesticides seem to have different effects on telomeres and development.
Additional Links: PMID-36989559
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36989559,
year = {2023},
author = {Ali, JH and Abdeen, Z and Azmi, K and Berman, T and Jager, K and Barnett-Itzhaki, Z and Walter, M},
title = {Influence of exposure to pesticides on telomere length and pregnancy outcome: Diethylphosphates but not Dimethylphosphates are associated with accelerated telomere attrition in a Palestinian cohort.},
journal = {Ecotoxicology and environmental safety},
volume = {256},
number = {},
pages = {114801},
doi = {10.1016/j.ecoenv.2023.114801},
pmid = {36989559},
issn = {1090-2414},
abstract = {Exposure to environmental pesticides during pregnancy is associated with adverse health outcomes such as low birth weight and impaired neuro-development. In this study, we assessed maternal leukocyte telomere lengths (TL) in Palestinian pregnant women and compared the data with urinary organophosphate concentrations, demographic, lifestyle and dietary factors, birth weight, body length, gestational age, and head circumference. Women with high urine levels of creatinine adjusted diethylphosphate(DE)derived pesticide metabolites DEP, DETP or DEDTP had shorter telomeres (p = 0.05). Women living in proximity to agricultural fields had shorter telomeres compared to women not living in proximity to agricultural fields (p = 0.011). Regular consumption of organic food was associated with shorter telomeres (p = 0.01), whereas the consumption of other vegetables such as artichokes was rather associated with longer telomeres. By contrast, urine levels of dimethylphosphate(DM)-derived pesticide metabolites DMTP and DMDTP were associated with lower birth weight (p = 0.05) but not with shrter telomeres. In conclusion organophosphate pesticides and living in proximity to agriculture are associated with shorter TL, likely due to higher consumption of contaminated fruits and vegetables and/or the transport of pesticides to non-treatment sites. DE and DM substituted pesticides seem to have different effects on telomeres and development.},
}
RevDate: 2023-03-29
TELOMERE BIOLOGY AND RIBOSOME BIOGENESIS: STRUCTURAL AND FUNCTIONAL INTERCONNECTIONS.
Biochemistry and cell biology = Biochimie et biologie cellulaire [Epub ahead of print].
Telomeres are the nucleoprotein structures which play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase which replenishes telomeric DNA lost during replication are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional non-canonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing crosstalk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Additional Links: PMID-36989538
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36989538,
year = {2023},
author = {Valeeva, LR and Abdulkina, LR and Agabekian, IA and Shakirov, EV},
title = {TELOMERE BIOLOGY AND RIBOSOME BIOGENESIS: STRUCTURAL AND FUNCTIONAL INTERCONNECTIONS.},
journal = {Biochemistry and cell biology = Biochimie et biologie cellulaire},
volume = {},
number = {},
pages = {},
doi = {10.1139/bcb-2022-0383},
pmid = {36989538},
issn = {1208-6002},
abstract = {Telomeres are the nucleoprotein structures which play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase which replenishes telomeric DNA lost during replication are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional non-canonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing crosstalk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.},
}
RevDate: 2023-03-29
Very Low and High Levels of Vitamin D Are Associated with Shorter Leukocyte Telomere Length in 148,321 UK Biobank Participants.
Nutrients, 15(6): pii:nu15061474.
Background: Shorter leukocyte telomere length (LTL) is observed in multiple age-related diseases, which are also associated with vitamin D deficiency (i.e., osteosarcopenia, neurocognitive disorders, cancer, osteoarthritis, etc.), suggesting a close association between vitamin D and LTL. In this study, we examined the relationship between vitamin D levels and LTL in older participants of the UK Biobank. Methods: Data were collected from the UK Biobank. Participants aged 60 and older (n = 148,321) were included. Baseline LTL was measured using a multiplex qPCR technique and expressed as the ratio of the telomere amplification product (T) to that of a single-copy gene (S) (T/S ratio). Serum 25-hydroxyvitamin D (25OHD) was stratified by z score and linked to LTL in a linear regression model adjusting for covariates. Results: Compared to the medium level, a low (in the range of 16.6 nmol/L, 29.7 nmol/L) or extremely low (≤16.6 nmol/L) level of serum 25OHD was associated with shorter LTL: 0.018 SD (standardized β = -0.018, 95% CI -0.033 to -0.003, p = 0.022) and 0.048 SD (standardized β = -0.048, 95% CI -0.083 to -0.014, p = 0.006), respectively. Additionally, the high serum 25OHD groups (>95.9 nmol/L) had 0.038 SD (standardized β = -0.038, 95% CI -0.072 to -0.004, p = 0.030) shorter mean LTL than the group with medium 25OHD levels. The associations above were adjusted for multiple variables. Conclusions: In this population-based study, we identified an inverted U-shape relationship between LTL and vitamin D status. Our findings could be affected by unmeasured confounders. Whether high or low vitamin D-associated shorter LTL is mechanistically related to age-related conditions remains to be elucidated.
Additional Links: PMID-36986204
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36986204,
year = {2023},
author = {Kuo, CL and Kirk, B and Xiang, M and Pilling, LC and Kuchel, GA and Kremer, R and Duque, G},
title = {Very Low and High Levels of Vitamin D Are Associated with Shorter Leukocyte Telomere Length in 148,321 UK Biobank Participants.},
journal = {Nutrients},
volume = {15},
number = {6},
pages = {},
doi = {10.3390/nu15061474},
pmid = {36986204},
issn = {2072-6643},
support = {NR018963-01A1/NH/NIH HHS/United States ; },
abstract = {Background: Shorter leukocyte telomere length (LTL) is observed in multiple age-related diseases, which are also associated with vitamin D deficiency (i.e., osteosarcopenia, neurocognitive disorders, cancer, osteoarthritis, etc.), suggesting a close association between vitamin D and LTL. In this study, we examined the relationship between vitamin D levels and LTL in older participants of the UK Biobank. Methods: Data were collected from the UK Biobank. Participants aged 60 and older (n = 148,321) were included. Baseline LTL was measured using a multiplex qPCR technique and expressed as the ratio of the telomere amplification product (T) to that of a single-copy gene (S) (T/S ratio). Serum 25-hydroxyvitamin D (25OHD) was stratified by z score and linked to LTL in a linear regression model adjusting for covariates. Results: Compared to the medium level, a low (in the range of 16.6 nmol/L, 29.7 nmol/L) or extremely low (≤16.6 nmol/L) level of serum 25OHD was associated with shorter LTL: 0.018 SD (standardized β = -0.018, 95% CI -0.033 to -0.003, p = 0.022) and 0.048 SD (standardized β = -0.048, 95% CI -0.083 to -0.014, p = 0.006), respectively. Additionally, the high serum 25OHD groups (>95.9 nmol/L) had 0.038 SD (standardized β = -0.038, 95% CI -0.072 to -0.004, p = 0.030) shorter mean LTL than the group with medium 25OHD levels. The associations above were adjusted for multiple variables. Conclusions: In this population-based study, we identified an inverted U-shape relationship between LTL and vitamin D status. Our findings could be affected by unmeasured confounders. Whether high or low vitamin D-associated shorter LTL is mechanistically related to age-related conditions remains to be elucidated.},
}
RevDate: 2023-03-29
Instant Coffee Is Negatively Associated with Telomere Length: Finding from Observational and Mendelian Randomization Analyses of UK Biobank.
Nutrients, 15(6): pii:nu15061354.
Telomere length, as a biomarker of accelerated aging, is closely related to many chronic diseases. We aimed to explore the association between coffee consumption and telomere length. Our study included 468,924 participants from the UK Biobank. Multivariate linear models (observational analyses) were conducted to evaluate the associations of coffee intake, instant coffee intake, and filtered coffee intake with telomere length. In addition, we evaluated the causality of these associations in Mendelian randomization (MR) analyses by four methods (inverse-variance weighted (IVW), MR pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger, and weighted median). Observational analyses indicated that coffee intake and instant coffee intake were negatively correlated with telomere length, which was equal to 0.12 year of age-related decrease in telomere length for each additional cup of coffee intake (p < 0.001), and 0.38 year of age-related decrease in telomere length for each additional cup of instant coffee intake (p < 0.001), respectively. There was no significant correlation between filtered coffee and telomere length (p = 0.862). Mendelian randomization analyses supported the results of observational analyses. Coffee intake was found to have a causal effect on telomere length through weighted median analysis (p = 0.022), and instant coffee intake had a causal effect on telomere length through IVW analysis (p = 0.019) and MR-PRESSO analysis (p = 0.028). No causal relationship was found between filtered coffee intake and telomere length (p > 0.05). Coffee intake, particularly instant coffee, was found to have an important role in shortening telomere length.
Additional Links: PMID-36986083
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36986083,
year = {2023},
author = {Wei, Y and Li, Z and Lai, H and Lu, P and Zhang, B and Song, L and Zhang, L and Shen, M},
title = {Instant Coffee Is Negatively Associated with Telomere Length: Finding from Observational and Mendelian Randomization Analyses of UK Biobank.},
journal = {Nutrients},
volume = {15},
number = {6},
pages = {},
doi = {10.3390/nu15061354},
pmid = {36986083},
issn = {2072-6643},
abstract = {Telomere length, as a biomarker of accelerated aging, is closely related to many chronic diseases. We aimed to explore the association between coffee consumption and telomere length. Our study included 468,924 participants from the UK Biobank. Multivariate linear models (observational analyses) were conducted to evaluate the associations of coffee intake, instant coffee intake, and filtered coffee intake with telomere length. In addition, we evaluated the causality of these associations in Mendelian randomization (MR) analyses by four methods (inverse-variance weighted (IVW), MR pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger, and weighted median). Observational analyses indicated that coffee intake and instant coffee intake were negatively correlated with telomere length, which was equal to 0.12 year of age-related decrease in telomere length for each additional cup of coffee intake (p < 0.001), and 0.38 year of age-related decrease in telomere length for each additional cup of instant coffee intake (p < 0.001), respectively. There was no significant correlation between filtered coffee and telomere length (p = 0.862). Mendelian randomization analyses supported the results of observational analyses. Coffee intake was found to have a causal effect on telomere length through weighted median analysis (p = 0.022), and instant coffee intake had a causal effect on telomere length through IVW analysis (p = 0.019) and MR-PRESSO analysis (p = 0.028). No causal relationship was found between filtered coffee intake and telomere length (p > 0.05). Coffee intake, particularly instant coffee, was found to have an important role in shortening telomere length.},
}
RevDate: 2023-03-29
High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview.
International journal of molecular sciences, 24(6): pii:ijms24065699.
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Additional Links: PMID-36982772
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36982772,
year = {2023},
author = {M'Kacher, R and Colicchio, B and Junker, S and El Maalouf, E and Heidingsfelder, L and Plesch, A and Dieterlen, A and Jeandidier, E and Carde, P and Voisin, P},
title = {High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview.},
journal = {International journal of molecular sciences},
volume = {24},
number = {6},
pages = {},
doi = {10.3390/ijms24065699},
pmid = {36982772},
issn = {1422-0067},
abstract = {In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.},
}
RevDate: 2023-03-29
Sedentary Behaviour and Telomere Length Shortening during Early Childhood: Evidence from the Multicentre Prospective INMA Cohort Study.
International journal of environmental research and public health, 20(6): pii:ijerph20065134.
Sedentary behaviour (SB) may be related to telomere length (TL) attrition due to a possible pro-inflammatory effect. This study examined the association between parent-reported sedentary behaviour (SB) and leukocyte TL at the age of 4 and telomere tracking from 4 to 8 years. In the Spanish birth cohort Infancia y Medio Ambiente (INMA) project, we analysed data from children who attended follow-up visits at age 4 (n = 669) and 8 (n = 530). Multiple robust regression models were used to explore the associations between mean daily hours of SB (screen time, other sedentary activities, and total SB) at 4 years categorised into tertiles and TL at 4 years and difference in TL rank between age 4 and 8, respectively. At the age of 4, the results showed that children with the highest screen time (1.6-5.0 h/day) had a shorter TL of -3.9% (95% CI: -7.4, -0.4; p = 0.03) compared with children in the lowest tertile (0.0-1.0 h/day). Between 4 and 8 years, a higher screen time (highest tertile group vs. lowest tertile) was associated with a decrease in the LTL rank of -1.9% (95% CI: -3.8, -0.1; p = 0.03) from 4 to 8 years. Children exposed to a higher screen time at 4 years were more prone to have shorter TL at 4 and between 4 and 8 years of age. This study supports the potential negative effect of SB during childhood on cellular longevity.
Additional Links: PMID-36982042
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36982042,
year = {2023},
author = {Prieto-Botella, D and Martens, DS and Valera-Gran, D and Subiza-Pérez, M and Tardón, A and Lozano, M and Casas, M and Bustamante, M and Jimeno-Romero, A and Fernández-Somoano, A and Llop, S and Vrijheid, M and Nawrot, TS and Navarrete-Muñoz, EM},
title = {Sedentary Behaviour and Telomere Length Shortening during Early Childhood: Evidence from the Multicentre Prospective INMA Cohort Study.},
journal = {International journal of environmental research and public health},
volume = {20},
number = {6},
pages = {},
doi = {10.3390/ijerph20065134},
pmid = {36982042},
issn = {1660-4601},
abstract = {Sedentary behaviour (SB) may be related to telomere length (TL) attrition due to a possible pro-inflammatory effect. This study examined the association between parent-reported sedentary behaviour (SB) and leukocyte TL at the age of 4 and telomere tracking from 4 to 8 years. In the Spanish birth cohort Infancia y Medio Ambiente (INMA) project, we analysed data from children who attended follow-up visits at age 4 (n = 669) and 8 (n = 530). Multiple robust regression models were used to explore the associations between mean daily hours of SB (screen time, other sedentary activities, and total SB) at 4 years categorised into tertiles and TL at 4 years and difference in TL rank between age 4 and 8, respectively. At the age of 4, the results showed that children with the highest screen time (1.6-5.0 h/day) had a shorter TL of -3.9% (95% CI: -7.4, -0.4; p = 0.03) compared with children in the lowest tertile (0.0-1.0 h/day). Between 4 and 8 years, a higher screen time (highest tertile group vs. lowest tertile) was associated with a decrease in the LTL rank of -1.9% (95% CI: -3.8, -0.1; p = 0.03) from 4 to 8 years. Children exposed to a higher screen time at 4 years were more prone to have shorter TL at 4 and between 4 and 8 years of age. This study supports the potential negative effect of SB during childhood on cellular longevity.},
}
RevDate: 2023-03-29
Work-Related Psychosocial Factors and Global Cognitive Function: Are Telomere Length and Low-Grade Inflammation Potential Mediators of This Association?.
International journal of environmental research and public health, 20(6): pii:ijerph20064929.
The identification of modifiable factors that could maintain cognitive function is a public health priority. It is thought that some work-related psychosocial factors help developing cognitive reserve through high intellectual complexity. However, they also have well-known adverse health effects and are considered to be chronic psychosocial stressors. Indeed, these stressors could increase low-grade inflammation and promote oxidative stress associated with accelerated telomere shortening. Both low-grade inflammation and shorter telomeres have been associated with a cognitive decline. This study aimed to evaluate the total, direct, and indirect effects of work-related psychosocial factors on global cognitive function overall and by sex, through telomere length and an inflammatory index. A random sample of 2219 participants followed over 17 years was included in this study, with blood samples and data with cognitive function drawn from a longitudinal study of 9188 white-collar workers (51% female). Work-related psychosocial factors were evaluated according to the Demand-Control-Support and the Effort-Reward Imbalance (ERI) models. Global cognitive function was evaluated with the validated Montreal Cognitive Assessment (MoCA). Telomere length and inflammatory biomarkers were measured using standardised protocols. The direct and indirect effects were estimated using a novel mediation analysis method developed for multiple correlated mediators. Associations were observed between passive work or low job control, and shorter telomeres among females, and between low social support at work, ERI or iso-strain, and a higher inflammatory index among males. An association was observed with higher cognitive performance for longer telomeres, but not for the inflammatory index. Passive work overall, and low reward were associated with lower cognitive performance in males; whereas, high psychological demand in both males and females and high job strain in females were associated with a higher cognitive performance. However, none of these associations were mediated by telomere length or the inflammatory index. This study suggests that some work-related psychosocial factors could be associated with shorter telomeres and low-grade inflammation, but these associations do not explain the relationship between work-related psychosocial factors and global cognitive function. A better understanding of the biological pathways, by which these factors affect cognitive function, could guide future preventive strategies to maintain cognitive function and promote healthy aging.
Additional Links: PMID-36981836
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36981836,
year = {2023},
author = {Duchaine, CS and Brisson, C and Diorio, C and Talbot, D and Maunsell, E and Carmichael, PH and Giguère, Y and Gilbert-Ouimet, M and Trudel, X and Ndjaboué, R and Vézina, M and Milot, A and Mâsse, B and Dionne, CE and Laurin, D},
title = {Work-Related Psychosocial Factors and Global Cognitive Function: Are Telomere Length and Low-Grade Inflammation Potential Mediators of This Association?.},
journal = {International journal of environmental research and public health},
volume = {20},
number = {6},
pages = {},
doi = {10.3390/ijerph20064929},
pmid = {36981836},
issn = {1660-4601},
support = {201403MOP-32544-BCA-CFBA-52569 to DL and CB, and 201810GSD-422016-DRB-CFBA-280487 to CSD/CAPMC/CIHR/Canada ; },
abstract = {The identification of modifiable factors that could maintain cognitive function is a public health priority. It is thought that some work-related psychosocial factors help developing cognitive reserve through high intellectual complexity. However, they also have well-known adverse health effects and are considered to be chronic psychosocial stressors. Indeed, these stressors could increase low-grade inflammation and promote oxidative stress associated with accelerated telomere shortening. Both low-grade inflammation and shorter telomeres have been associated with a cognitive decline. This study aimed to evaluate the total, direct, and indirect effects of work-related psychosocial factors on global cognitive function overall and by sex, through telomere length and an inflammatory index. A random sample of 2219 participants followed over 17 years was included in this study, with blood samples and data with cognitive function drawn from a longitudinal study of 9188 white-collar workers (51% female). Work-related psychosocial factors were evaluated according to the Demand-Control-Support and the Effort-Reward Imbalance (ERI) models. Global cognitive function was evaluated with the validated Montreal Cognitive Assessment (MoCA). Telomere length and inflammatory biomarkers were measured using standardised protocols. The direct and indirect effects were estimated using a novel mediation analysis method developed for multiple correlated mediators. Associations were observed between passive work or low job control, and shorter telomeres among females, and between low social support at work, ERI or iso-strain, and a higher inflammatory index among males. An association was observed with higher cognitive performance for longer telomeres, but not for the inflammatory index. Passive work overall, and low reward were associated with lower cognitive performance in males; whereas, high psychological demand in both males and females and high job strain in females were associated with a higher cognitive performance. However, none of these associations were mediated by telomere length or the inflammatory index. This study suggests that some work-related psychosocial factors could be associated with shorter telomeres and low-grade inflammation, but these associations do not explain the relationship between work-related psychosocial factors and global cognitive function. A better understanding of the biological pathways, by which these factors affect cognitive function, could guide future preventive strategies to maintain cognitive function and promote healthy aging.},
}
RevDate: 2023-03-29
Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies.
Genes, 14(3): pii:genes14030715.
Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.
Additional Links: PMID-36980987
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36980987,
year = {2023},
author = {Holesova, Z and Krasnicanova, L and Saade, R and Pös, O and Budis, J and Gazdarica, J and Repiska, V and Szemes, T},
title = {Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
doi = {10.3390/genes14030715},
pmid = {36980987},
issn = {2073-4425},
abstract = {Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.},
}
RevDate: 2023-03-29
The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia.
Genes, 14(3): pii:genes14030691.
Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.
Additional Links: PMID-36980962
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36980962,
year = {2023},
author = {da Mota, THA and Camargo, R and Biojone, ER and Guimarães, AFR and Pittella-Silva, F and de Oliveira, DM},
title = {The Relevance of Telomerase and Telomere-Associated Proteins in B-Acute Lymphoblastic Leukemia.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
doi = {10.3390/genes14030691},
pmid = {36980962},
issn = {2073-4425},
abstract = {Telomeres and telomerase are closely linked to uncontrolled cellular proliferation, immortalization and carcinogenesis. Telomerase has been largely studied in the context of cancer, including leukemias. Deregulation of human telomerase gene hTERT is a well-established step in leukemia development. B-acute lymphoblastic leukemia (B-ALL) recovery rates exceed 90% in children; however, the relapse rate is around 20% among treated patients, and 10% of these are still incurable. This review highlights the biological and clinical relevance of telomerase for B-ALL and the implications of its canonical and non-canonical action on signaling pathways in the context of disease and treatment. The physiological role of telomerase in lymphocytes makes the study of its biomarker potential a great challenge. Nevertheless, many works have demonstrated that high telomerase activity or hTERT expression, as well as short telomeres, correlate with poor prognosis in B-ALL. Telomerase and related proteins have been proven to be promising pharmacological targets. Likewise, combined therapy with telomerase inhibitors may turn out to be an alternative strategy for B-ALL.},
}
RevDate: 2023-03-29
TERRA and Telomere Maintenance in the Yeast Saccharomyces cerevisiae.
Genes, 14(3): pii:genes14030618.
Telomeres are structures made of DNA, proteins and RNA found at the ends of eukaryotic linear chromosomes. These dynamic nucleoprotein structures protect chromosomal tips from end-to-end fusions, degradation, activation of damage checkpoints and erroneous DNA repair events. Telomeres were thought to be transcriptionally silent regions because of their constitutive heterochromatin signature until telomeric long non-coding RNAs (LncRNAs) were discovered. One of them, TERRA (TElomeric Repeat-containing RNA), starts in the subtelomeric regions towards the chromosome ends from different telomeres and has been extensively studied in many evolutionarily distant eukaryotes. Changes in TERRA's expression can lead to telomeric dysfunction, interfere with the replicative machinery and impact telomere length. TERRA also co-localizes in vivo with telomerase, and can form RNA:DNA hybrid structures called R-loops, which have been implicated in the onset of senescence and the alternative lengthening of telomere (ALT) pathway. Yet, the molecular mechanisms involving TERRA, as well as its function, remain elusive. Here, we review the current knowledge of TERRA transcription, structure, expression, regulation and its multiple telomeric and extra-telomeric functions in the budding yeast Saccharomyces cerevisiae.
Additional Links: PMID-36980890
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36980890,
year = {2023},
author = {Zeinoun, B and Teixeira, MT and Barascu, A},
title = {TERRA and Telomere Maintenance in the Yeast Saccharomyces cerevisiae.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
doi = {10.3390/genes14030618},
pmid = {36980890},
issn = {2073-4425},
abstract = {Telomeres are structures made of DNA, proteins and RNA found at the ends of eukaryotic linear chromosomes. These dynamic nucleoprotein structures protect chromosomal tips from end-to-end fusions, degradation, activation of damage checkpoints and erroneous DNA repair events. Telomeres were thought to be transcriptionally silent regions because of their constitutive heterochromatin signature until telomeric long non-coding RNAs (LncRNAs) were discovered. One of them, TERRA (TElomeric Repeat-containing RNA), starts in the subtelomeric regions towards the chromosome ends from different telomeres and has been extensively studied in many evolutionarily distant eukaryotes. Changes in TERRA's expression can lead to telomeric dysfunction, interfere with the replicative machinery and impact telomere length. TERRA also co-localizes in vivo with telomerase, and can form RNA:DNA hybrid structures called R-loops, which have been implicated in the onset of senescence and the alternative lengthening of telomere (ALT) pathway. Yet, the molecular mechanisms involving TERRA, as well as its function, remain elusive. Here, we review the current knowledge of TERRA transcription, structure, expression, regulation and its multiple telomeric and extra-telomeric functions in the budding yeast Saccharomyces cerevisiae.},
}
RevDate: 2023-03-29
Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease.
Genes, 14(3): pii:genes14030609.
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Additional Links: PMID-36980881
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36980881,
year = {2023},
author = {Hill, C and Duffy, S and Coulter, T and Maxwell, AP and McKnight, AJ},
title = {Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
doi = {10.3390/genes14030609},
pmid = {36980881},
issn = {2073-4425},
abstract = {The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.},
}
RevDate: 2023-03-29
Telomere Transcription in MLL-Rearranged Leukemia Cell Lines: Increased Levels of TERRA Associate with Lymphoid Lineage and Are Independent of Telomere Length and Ploidy.
Biomedicines, 11(3): pii:biomedicines11030925.
Telomere transcription into telomeric repeat-containing RNA (TERRA) is an integral component of all aspects of chromosome end protection consisting of telomerase- or recombination-dependent telomere elongation, telomere capping, and the preservation of the (sub)telomeric heterochromatin structure. The chromatin modifier and transcriptional regulator MLL binds to telomeres and regulates TERRA transcription in telomere length homeostasis and response to telomere dysfunction. MLL fusion proteins (MLL-FPs), the product of MLL rearrangements in leukemia, also bind to telomeric chromatin. However, an effect on telomere transcription in MLL-rearranged (MLL-r) leukemia has not yet been evaluated. Here, we show increased UUAGGG repeat-containing RNA levels in MLL-r acute lymphoblastic leukemia (ALL) when compared to non-MLL-r ALL and myeloid leukemia. MLL rearrangements do not affect telomere length and UUAGGG repeat-containing RNA levels correlate with mean telomere length and reflect increased levels of TERRA. Furthermore, high levels of TERRA in MLL-r ALL occur in the presence of telomerase activity and are independent of ploidy, an underestimated source of variation on the overall transcriptome size in a cell. This MLL rearrangement-dependent and lymphoid lineage-associated increase in levels of TERRA supports a sustained telomere transcription by MLL-FPs that correlates with marked genomic stability previously reported in pediatric MLL-r ALL.
Additional Links: PMID-36979904
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36979904,
year = {2023},
author = {Caslini, C and Serna, A},
title = {Telomere Transcription in MLL-Rearranged Leukemia Cell Lines: Increased Levels of TERRA Associate with Lymphoid Lineage and Are Independent of Telomere Length and Ploidy.},
journal = {Biomedicines},
volume = {11},
number = {3},
pages = {},
doi = {10.3390/biomedicines11030925},
pmid = {36979904},
issn = {2227-9059},
abstract = {Telomere transcription into telomeric repeat-containing RNA (TERRA) is an integral component of all aspects of chromosome end protection consisting of telomerase- or recombination-dependent telomere elongation, telomere capping, and the preservation of the (sub)telomeric heterochromatin structure. The chromatin modifier and transcriptional regulator MLL binds to telomeres and regulates TERRA transcription in telomere length homeostasis and response to telomere dysfunction. MLL fusion proteins (MLL-FPs), the product of MLL rearrangements in leukemia, also bind to telomeric chromatin. However, an effect on telomere transcription in MLL-rearranged (MLL-r) leukemia has not yet been evaluated. Here, we show increased UUAGGG repeat-containing RNA levels in MLL-r acute lymphoblastic leukemia (ALL) when compared to non-MLL-r ALL and myeloid leukemia. MLL rearrangements do not affect telomere length and UUAGGG repeat-containing RNA levels correlate with mean telomere length and reflect increased levels of TERRA. Furthermore, high levels of TERRA in MLL-r ALL occur in the presence of telomerase activity and are independent of ploidy, an underestimated source of variation on the overall transcriptome size in a cell. This MLL rearrangement-dependent and lymphoid lineage-associated increase in levels of TERRA supports a sustained telomere transcription by MLL-FPs that correlates with marked genomic stability previously reported in pediatric MLL-r ALL.},
}
RevDate: 2023-03-29
Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample.
Biomedicines, 11(3): pii:biomedicines11030730.
This study aimed to explore the role of telomere length in three different diabetes types: latent autoimmune diabetes of adulthood (LADA), latent autoimmune diabetes in the young (LADY), and type 2 diabetes mellitus (T2DM). A total of 115 patients were included, 72 (62.61%) had LADA, 30 (26.09%) had T2DM, and 13 (11.30%) had LADY. Telomere length was measured using real-time Polymerase Chain Reaction. For statistical analysis, we used the ANOVA test, X2 test, and the Mann-Whitney U test. Patients with T2DM had higher BMI compared to LADA and LADY groups, with a BMI average of 31.32 kg/m[2] (p = 0.0235). While the LADA group had more patients with comorbidities, there was not a statistically significant difference (p = 0.3164, p = 0.3315, p = 0.3742 for each of the previously mentioned conditions). There was a difference between those patients with T2DM who took metformin plus any other oral antidiabetic agent and those who took metformin plus insulin, the ones who had longer telomeres. LADA patients had shorter telomeres compared to T2DM patients but not LADY patients. Furthermore, T2DM may have longer telomeres thanks to the protective effects of both metformin and insulin, despite the higher BMI in this group.
Additional Links: PMID-36979709
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36979709,
year = {2023},
author = {Cuevas Diaz, P and Nicolini, H and Nolasco-Rosales, GA and Juarez Rojop, I and Tovilla-Zarate, CA and Rodriguez Sanchez, E and Genis-Mendoza, AD},
title = {Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample.},
journal = {Biomedicines},
volume = {11},
number = {3},
pages = {},
doi = {10.3390/biomedicines11030730},
pmid = {36979709},
issn = {2227-9059},
abstract = {This study aimed to explore the role of telomere length in three different diabetes types: latent autoimmune diabetes of adulthood (LADA), latent autoimmune diabetes in the young (LADY), and type 2 diabetes mellitus (T2DM). A total of 115 patients were included, 72 (62.61%) had LADA, 30 (26.09%) had T2DM, and 13 (11.30%) had LADY. Telomere length was measured using real-time Polymerase Chain Reaction. For statistical analysis, we used the ANOVA test, X2 test, and the Mann-Whitney U test. Patients with T2DM had higher BMI compared to LADA and LADY groups, with a BMI average of 31.32 kg/m[2] (p = 0.0235). While the LADA group had more patients with comorbidities, there was not a statistically significant difference (p = 0.3164, p = 0.3315, p = 0.3742 for each of the previously mentioned conditions). There was a difference between those patients with T2DM who took metformin plus any other oral antidiabetic agent and those who took metformin plus insulin, the ones who had longer telomeres. LADA patients had shorter telomeres compared to T2DM patients but not LADY patients. Furthermore, T2DM may have longer telomeres thanks to the protective effects of both metformin and insulin, despite the higher BMI in this group.},
}
RevDate: 2023-03-29
Impact of Bariatric Surgery on the Stability of the Genetic Material, Oxidation, and Repair of DNA and Telomere Lengths.
Antioxidants (Basel, Switzerland), 12(3): pii:antiox12030760.
Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.
Additional Links: PMID-36979008
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36979008,
year = {2023},
author = {Ferk, F and Mišík, M and Ernst, B and Prager, G and Bichler, C and Mejri, D and Gerner, C and Bileck, A and Kundi, M and Langie, S and Holzmann, K and Knasmueller, S},
title = {Impact of Bariatric Surgery on the Stability of the Genetic Material, Oxidation, and Repair of DNA and Telomere Lengths.},
journal = {Antioxidants (Basel, Switzerland)},
volume = {12},
number = {3},
pages = {},
doi = {10.3390/antiox12030760},
pmid = {36979008},
issn = {2076-3921},
abstract = {Obesity causes genetic instability, which plays a key-role in the etiology of cancer and aging. We investigated the impact of bariatric surgery (BS) on DNA repair, oxidative DNA damage, telomere lengths, alterations of antioxidant enzymes and, selected proteins which reflect inflammation. The study was realized with BS patients (n = 35). DNA damage, base oxidation, BER, and NER were measured before and 1 month and 6 months after surgery with the single-cell gel electrophoresis technique. SOD and GPx were quantified spectrophotometrically, malondealdehyde (MDA) was quantified by HPLC. Telomere lengths were determined with qPCR, and plasma proteome profiling was performed with high-resolution mass spectrophotometry. Six months after the operations, reduction of body weight by 27.5% was observed. DNA damage decreased after this period, this effect was paralleled by reduced formation of oxidized DNA bases, a decline in the MDA levels and of BER and NER, and an increase in the telomere lengths. The activities of antioxidant enzymes were not altered. Clear downregulation of certain proteins (CRP, SAA1) which reflect inflammation and cancer risks was observed. Our findings show that BS causes reduced oxidative damage of DNA bases, possibly as a consequence of reduction of inflammation and lipid peroxidation, and indicate that the surgery has beneficial long-term health effects.},
}
RevDate: 2023-03-29
Telomere Attrition in Chronic Kidney Diseases.
Antioxidants (Basel, Switzerland), 12(3): pii:antiox12030579.
Telomeres are dynamic DNA nucleoprotein structures located at the end of chromosomes where they maintain genomic stability. Due to the end replication problem, telomeres shorten with each cell division. Critically short telomeres trigger cellular senescence, which contributes to various degenerative and age-related diseases, including chronic kidney diseases (CKDs). Additionally, other factors such as oxidative stress may also contribute to accelerated telomere shortening. Indeed, telomeres are highly susceptible to oxidative damage due to their high guanine content. Here, we provide a comprehensive review of studies examining telomere length (TL) in CKDs to highlight the association between TL and the development and progression of CKDs in humans. We then focus on studies investigating TL in patients receiving kidney replacement therapy. The mechanisms of the relationship between TL and CKD are not fully understood, but a shorter TL has been associated with decreased kidney function and the progression of nephropathy. Interestingly, telomere lengthening has been observed in some patients in longitudinal studies. Hemodialysis has been shown to accelerate telomere erosion, whereas the uremic milieu is not reversed even in kidney transplantation patients. Overall, this review aims to provide insights into the biological significance of telomere attrition in the pathophysiology of kidney disease, which may contribute to the development of new strategies for the management of patients with CKDs.
Additional Links: PMID-36978826
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36978826,
year = {2023},
author = {Levstek, T and Trebušak Podkrajšek, K},
title = {Telomere Attrition in Chronic Kidney Diseases.},
journal = {Antioxidants (Basel, Switzerland)},
volume = {12},
number = {3},
pages = {},
doi = {10.3390/antiox12030579},
pmid = {36978826},
issn = {2076-3921},
abstract = {Telomeres are dynamic DNA nucleoprotein structures located at the end of chromosomes where they maintain genomic stability. Due to the end replication problem, telomeres shorten with each cell division. Critically short telomeres trigger cellular senescence, which contributes to various degenerative and age-related diseases, including chronic kidney diseases (CKDs). Additionally, other factors such as oxidative stress may also contribute to accelerated telomere shortening. Indeed, telomeres are highly susceptible to oxidative damage due to their high guanine content. Here, we provide a comprehensive review of studies examining telomere length (TL) in CKDs to highlight the association between TL and the development and progression of CKDs in humans. We then focus on studies investigating TL in patients receiving kidney replacement therapy. The mechanisms of the relationship between TL and CKD are not fully understood, but a shorter TL has been associated with decreased kidney function and the progression of nephropathy. Interestingly, telomere lengthening has been observed in some patients in longitudinal studies. Hemodialysis has been shown to accelerate telomere erosion, whereas the uremic milieu is not reversed even in kidney transplantation patients. Overall, this review aims to provide insights into the biological significance of telomere attrition in the pathophysiology of kidney disease, which may contribute to the development of new strategies for the management of patients with CKDs.},
}
RevDate: 2023-03-27
[Progress in the study of alternative lengthening of telomeres and prognosis of pancreatic neuroendocrine tumors].
Zhonghua bing li xue za zhi = Chinese journal of pathology, 52(4):431-434.
Additional Links: PMID-36973214
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36973214,
year = {2023},
author = {Zhang, KJ and Zhang, ZH},
title = {[Progress in the study of alternative lengthening of telomeres and prognosis of pancreatic neuroendocrine tumors].},
journal = {Zhonghua bing li xue za zhi = Chinese journal of pathology},
volume = {52},
number = {4},
pages = {431-434},
doi = {10.3760/cma.j.cn112151-20220701-00570},
pmid = {36973214},
issn = {0529-5807},
}
RevDate: 2023-03-27
Telomere-related genes as potential biomarkers to predict endometriosis and immune response: Development of a machine learning-based risk model.
Frontiers in medicine, 10:1132676.
INTRODUCTION: Endometriosis (EM) is an aggressive, pleomorphic, and common gynecological disease. Its clinical presentation includes abnormal menstruation, dysmenorrhea, and infertility, which seriously affect the patient's quality of life. However, the pathogenesis underlying EM and associated regulatory genes are unknown.
METHODS: Telomere-related genes (TRGs) were uploaded from TelNet. RNA-sequencing (RNA-seq) data of EM patients were obtained from three datasets (GSE5108, GSE23339, and GSE25628) in the GEO database, and a random forest approach was used to identify telomere signature genes and build nomogram prediction models. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the pathways involved in the action of the signature genes. Finally, the CAMP database was used to screen drugs for potential use in EM treatment.
RESULTS: Fifteen total genes were screened as EM-telomere differentially expressed genes. Further screening by machine learning obtained six genes as characteristic predictive of EM. Immuno-infiltration analysis of the telomeric genes showed that expressions including macrophages and natural killer cells were significantly higher in cluster A. Further enrichment analysis showed that the differential genes were mainly enriched in biological pathways like cell cycle and extracellular matrix. Finally, the Connective Map database was used to screen 11 potential drugs for EM treatment.
DISCUSSION: TRGs play a crucial role in EM development, and are associated with immune infiltration and act on multiple pathways, including the cell cycle. Telomere signature genes can be valuable predictive markers for EM.
Additional Links: PMID-36968845
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36968845,
year = {2023},
author = {Zhang, H and Kong, W and Xie, Y and Zhao, X and Luo, D and Chen, S and Pan, Z},
title = {Telomere-related genes as potential biomarkers to predict endometriosis and immune response: Development of a machine learning-based risk model.},
journal = {Frontiers in medicine},
volume = {10},
number = {},
pages = {1132676},
pmid = {36968845},
issn = {2296-858X},
abstract = {INTRODUCTION: Endometriosis (EM) is an aggressive, pleomorphic, and common gynecological disease. Its clinical presentation includes abnormal menstruation, dysmenorrhea, and infertility, which seriously affect the patient's quality of life. However, the pathogenesis underlying EM and associated regulatory genes are unknown.
METHODS: Telomere-related genes (TRGs) were uploaded from TelNet. RNA-sequencing (RNA-seq) data of EM patients were obtained from three datasets (GSE5108, GSE23339, and GSE25628) in the GEO database, and a random forest approach was used to identify telomere signature genes and build nomogram prediction models. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the pathways involved in the action of the signature genes. Finally, the CAMP database was used to screen drugs for potential use in EM treatment.
RESULTS: Fifteen total genes were screened as EM-telomere differentially expressed genes. Further screening by machine learning obtained six genes as characteristic predictive of EM. Immuno-infiltration analysis of the telomeric genes showed that expressions including macrophages and natural killer cells were significantly higher in cluster A. Further enrichment analysis showed that the differential genes were mainly enriched in biological pathways like cell cycle and extracellular matrix. Finally, the Connective Map database was used to screen 11 potential drugs for EM treatment.
DISCUSSION: TRGs play a crucial role in EM development, and are associated with immune infiltration and act on multiple pathways, including the cell cycle. Telomere signature genes can be valuable predictive markers for EM.},
}
RevDate: 2023-03-27
Identifying effects of genetic obesity exposure on leukocyte telomere length using Mendelian randomization.
PeerJ, 11:e15085.
BACKGROUND: Observational studies have shown that obesity is closely associated with leukocyte telomere length (LTL). However, the causal relationship between obesity and LTL remains unclear. This study investigated the causal relationship between obesity and LTL through the Mendelian randomization approach.
MATERIALS AND METHODS: The genome-wide association study (GWAS) summary data of several studies on obesity-related traits with a sample size of more than 600,000 individuals were extracted from the UK Biobank cohort. The summary-level data of LTL-related GWAS (45 6,717 individuals) was obtained from the IEU Open GWAS database. An inverse-variance-weighted (IVW) algorithm was utilized as the primary MR analysis method. Sensitivity analyses were conducted via MR-Egger regression, IVW regression, leave-one-out test, MR-pleiotropy residual sum, and outlier methods.
RESULTS: High body mass index was correlated with a short LTL, and the odds ratio (OR) was 0.957 (95% confidence interval [CI] 0.942-0.973, p = 1.17E-07). The six body fat indexes (whole body fat mass, right leg fat mass, left leg fat mass, right arm fat mass, left arm fat mass, and trunk fat mass) were consistently inversely associated with LTL. Multiple statistical sensitive analysis approaches showed that the adverse effect of obesity on LTL was steady and dependable.
CONCLUSION: The current study provided robust evidence supporting the causal assumption that genetically caused obesity is negatively associated with LTL. The findings may facilitate the formulation of persistent strategies for maintaining LTL.
Additional Links: PMID-36967999
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36967999,
year = {2023},
author = {Wan, B and Ma, N and Lv, C},
title = {Identifying effects of genetic obesity exposure on leukocyte telomere length using Mendelian randomization.},
journal = {PeerJ},
volume = {11},
number = {},
pages = {e15085},
pmid = {36967999},
issn = {2167-8359},
abstract = {BACKGROUND: Observational studies have shown that obesity is closely associated with leukocyte telomere length (LTL). However, the causal relationship between obesity and LTL remains unclear. This study investigated the causal relationship between obesity and LTL through the Mendelian randomization approach.
MATERIALS AND METHODS: The genome-wide association study (GWAS) summary data of several studies on obesity-related traits with a sample size of more than 600,000 individuals were extracted from the UK Biobank cohort. The summary-level data of LTL-related GWAS (45 6,717 individuals) was obtained from the IEU Open GWAS database. An inverse-variance-weighted (IVW) algorithm was utilized as the primary MR analysis method. Sensitivity analyses were conducted via MR-Egger regression, IVW regression, leave-one-out test, MR-pleiotropy residual sum, and outlier methods.
RESULTS: High body mass index was correlated with a short LTL, and the odds ratio (OR) was 0.957 (95% confidence interval [CI] 0.942-0.973, p = 1.17E-07). The six body fat indexes (whole body fat mass, right leg fat mass, left leg fat mass, right arm fat mass, left arm fat mass, and trunk fat mass) were consistently inversely associated with LTL. Multiple statistical sensitive analysis approaches showed that the adverse effect of obesity on LTL was steady and dependable.
CONCLUSION: The current study provided robust evidence supporting the causal assumption that genetically caused obesity is negatively associated with LTL. The findings may facilitate the formulation of persistent strategies for maintaining LTL.},
}
RevDate: 2023-03-26
Effects of folate on telomere length and chromosome stability of human fibroblasts and melanoma cells in vitro: A comparison of folic acid and 5-methyltetrahydrofolate.
Mutagenesis pii:7086137 [Epub ahead of print].
Telomere length (TL), which is maintained by hTERT (component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay.Results showed that abnormal TL elongation was observed in FA and 5-MeTHF deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA deficient condition but was significantly elongated under the 5-MeTHF deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.
Additional Links: PMID-36966355
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36966355,
year = {2023},
author = {Wang, H and Ni, J and Guo, X and Xue, J and Wang, X},
title = {Effects of folate on telomere length and chromosome stability of human fibroblasts and melanoma cells in vitro: A comparison of folic acid and 5-methyltetrahydrofolate.},
journal = {Mutagenesis},
volume = {},
number = {},
pages = {},
doi = {10.1093/mutage/gead007},
pmid = {36966355},
issn = {1464-3804},
abstract = {Telomere length (TL), which is maintained by hTERT (component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay.Results showed that abnormal TL elongation was observed in FA and 5-MeTHF deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA deficient condition but was significantly elongated under the 5-MeTHF deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.},
}
RevDate: 2023-03-24
Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model.
Oncology reports, 49(5):.
PIN1 is the only known enzyme capable of recognizing and isomerizing the phosphorylated Serine/Threonine‑Proline motif. Through this mechanism, PIN1 controls diverse cellular functions, including telomere maintenance. Both PIN1 overexpression and its involvement in oncogenic pathways are involved in several cancer types, including glioblastoma (GBM), a lethal disease with poor therapeutic resources. However, knowledge of the role of PIN1 in GBM is limited. Thus, the present work aimed to study the role of PIN1 as a telomere/telomerase regulator and its contribution to tumor biology. PIN1 knockout (KO) LN‑229 cell variant using CRISPR/Cas9 was developed and compared with PIN1 LN‑229 expressing cells. To study the effect of PIN1 absence, status of NF‑κB pathway was evaluated by luciferase reporter gene assay and quantitative PCR. Results revealed that PIN1 deletion in GBM cells diminished the active levels of NF‑κB and decrease the transcription of il‑8 and htert genes. Then, telomere/telomerase related processes were studied by RQ‑TRAP assay and telomere length determination by qPCR, obtaining a reduction both in telomerase activity as in telomere length in PIN1 KO cells. In addition, measurement of SA β‑galactosidase and caspase‑3 activities revealed that loss of PIN1 triggers senescence and apoptosis. Finally, migration, cell cycle progression and tumorigenicity were studied by flow cytometry/western blot, Transwell assay and in vivo experiments, respectively. PIN1 deletion decreased migration as well as cell cycle progression by increasing doubling time and also resulted in the loss of LN‑229 cell ability to form tumors in mice. These results highlight the role of PIN1 in telomere homeostasis and GBM progression, which supports PIN1 as a potential molecular target for the development of novel therapeutic agents for GBM treatment.
Additional Links: PMID-36960859
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36960859,
year = {2023},
author = {Maggio, J and Cardama, GA and Armando, RG and Balcone, L and Sobol, NT and Gomez, DE and Mengual Gómez, DL},
title = {Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model.},
journal = {Oncology reports},
volume = {49},
number = {5},
pages = {},
doi = {10.3892/or.2023.8528},
pmid = {36960859},
issn = {1791-2431},
abstract = {PIN1 is the only known enzyme capable of recognizing and isomerizing the phosphorylated Serine/Threonine‑Proline motif. Through this mechanism, PIN1 controls diverse cellular functions, including telomere maintenance. Both PIN1 overexpression and its involvement in oncogenic pathways are involved in several cancer types, including glioblastoma (GBM), a lethal disease with poor therapeutic resources. However, knowledge of the role of PIN1 in GBM is limited. Thus, the present work aimed to study the role of PIN1 as a telomere/telomerase regulator and its contribution to tumor biology. PIN1 knockout (KO) LN‑229 cell variant using CRISPR/Cas9 was developed and compared with PIN1 LN‑229 expressing cells. To study the effect of PIN1 absence, status of NF‑κB pathway was evaluated by luciferase reporter gene assay and quantitative PCR. Results revealed that PIN1 deletion in GBM cells diminished the active levels of NF‑κB and decrease the transcription of il‑8 and htert genes. Then, telomere/telomerase related processes were studied by RQ‑TRAP assay and telomere length determination by qPCR, obtaining a reduction both in telomerase activity as in telomere length in PIN1 KO cells. In addition, measurement of SA β‑galactosidase and caspase‑3 activities revealed that loss of PIN1 triggers senescence and apoptosis. Finally, migration, cell cycle progression and tumorigenicity were studied by flow cytometry/western blot, Transwell assay and in vivo experiments, respectively. PIN1 deletion decreased migration as well as cell cycle progression by increasing doubling time and also resulted in the loss of LN‑229 cell ability to form tumors in mice. These results highlight the role of PIN1 in telomere homeostasis and GBM progression, which supports PIN1 as a potential molecular target for the development of novel therapeutic agents for GBM treatment.},
}
RevDate: 2023-03-24
Thymidine nucleotide metabolism controls human telomere length.
Nature genetics [Epub ahead of print].
Telomere length in humans is associated with lifespan and severe diseases, yet the genetic determinants of telomere length remain incompletely defined. Here we performed genome-wide CRISPR-Cas9 functional telomere length screening and identified thymidine (dT) nucleotide metabolism as a limiting factor in human telomere maintenance. Targeted genetic disruption using CRISPR-Cas9 revealed multiple telomere length control points across the thymidine nucleotide metabolism pathway: decreasing dT nucleotide salvage via deletion of the gene encoding nuclear thymidine kinase (TK1) or de novo production by knockout of the thymidylate synthase gene (TYMS) decreased telomere length, whereas inactivation of the deoxynucleoside triphosphohydrolase-encoding gene SAMHD1 lengthened telomeres. Remarkably, supplementation with dT alone drove robust telomere elongation by telomerase in cells, and thymidine triphosphate stimulated telomerase activity in a substrate-independent manner in vitro. In induced pluripotent stem cells derived from patients with genetic telomere biology disorders, dT supplementation or inhibition of SAMHD1 promoted telomere restoration. Our results demonstrate a critical role of thymidine metabolism in controlling human telomerase and telomere length, which may be therapeutically actionable in patients with fatal degenerative diseases.
Additional Links: PMID-36959362
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36959362,
year = {2023},
author = {Mannherz, W and Agarwal, S},
title = {Thymidine nucleotide metabolism controls human telomere length.},
journal = {Nature genetics},
volume = {},
number = {},
pages = {},
pmid = {36959362},
issn = {1546-1718},
abstract = {Telomere length in humans is associated with lifespan and severe diseases, yet the genetic determinants of telomere length remain incompletely defined. Here we performed genome-wide CRISPR-Cas9 functional telomere length screening and identified thymidine (dT) nucleotide metabolism as a limiting factor in human telomere maintenance. Targeted genetic disruption using CRISPR-Cas9 revealed multiple telomere length control points across the thymidine nucleotide metabolism pathway: decreasing dT nucleotide salvage via deletion of the gene encoding nuclear thymidine kinase (TK1) or de novo production by knockout of the thymidylate synthase gene (TYMS) decreased telomere length, whereas inactivation of the deoxynucleoside triphosphohydrolase-encoding gene SAMHD1 lengthened telomeres. Remarkably, supplementation with dT alone drove robust telomere elongation by telomerase in cells, and thymidine triphosphate stimulated telomerase activity in a substrate-independent manner in vitro. In induced pluripotent stem cells derived from patients with genetic telomere biology disorders, dT supplementation or inhibition of SAMHD1 promoted telomere restoration. Our results demonstrate a critical role of thymidine metabolism in controlling human telomerase and telomere length, which may be therapeutically actionable in patients with fatal degenerative diseases.},
}
RevDate: 2023-03-23
Prenatal environment impacts telomere length in newborn dairy heifers.
Scientific reports, 13(1):4672.
Telomere length is associated with longevity and survival in multiple species. In human population-based studies, multiple prenatal factors have been described to be associated with a newborn's telomere length. In the present study, we measured relative leukocyte telomere length in 210 Holstein Friesian heifers, within the first ten days of life. The dam's age, parity, and milk production parameters, as well as environmental factors during gestation were assessed for their potential effect on telomere length. We found that for both primi- and multiparous dams, the telomere length was 1.16% shorter for each day increase in the calf's age at sampling (P = 0.017). The dam's age at parturition (P = 0.045), and the median temperature-humidity index (THI) during the third trimester of gestation (P = 0.006) were also negatively associated with the calves' TL. Investigating multiparous dams separately, only the calf's age at sampling was significantly and negatively associated with the calves' TL (P = 0.025). Results of the present study support the hypothesis that in cattle, early life telomere length is influenced by prenatal factors. Furthermore, the results suggest that selecting heifers born in winter out of young dams might contribute to increased longevity in dairy cattle.
Additional Links: PMID-36949104
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36949104,
year = {2023},
author = {Meesters, M and Van Eetvelde, M and Martens, DS and Nawrot, TS and Dewulf, M and Govaere, J and Opsomer, G},
title = {Prenatal environment impacts telomere length in newborn dairy heifers.},
journal = {Scientific reports},
volume = {13},
number = {1},
pages = {4672},
pmid = {36949104},
issn = {2045-2322},
abstract = {Telomere length is associated with longevity and survival in multiple species. In human population-based studies, multiple prenatal factors have been described to be associated with a newborn's telomere length. In the present study, we measured relative leukocyte telomere length in 210 Holstein Friesian heifers, within the first ten days of life. The dam's age, parity, and milk production parameters, as well as environmental factors during gestation were assessed for their potential effect on telomere length. We found that for both primi- and multiparous dams, the telomere length was 1.16% shorter for each day increase in the calf's age at sampling (P = 0.017). The dam's age at parturition (P = 0.045), and the median temperature-humidity index (THI) during the third trimester of gestation (P = 0.006) were also negatively associated with the calves' TL. Investigating multiparous dams separately, only the calf's age at sampling was significantly and negatively associated with the calves' TL (P = 0.025). Results of the present study support the hypothesis that in cattle, early life telomere length is influenced by prenatal factors. Furthermore, the results suggest that selecting heifers born in winter out of young dams might contribute to increased longevity in dairy cattle.},
}
RevDate: 2023-03-22
Telomere length and brain imaging phenotypes in UK Biobank.
PloS one, 18(3):e0282363 pii:PONE-D-22-27282.
Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.
Additional Links: PMID-36947528
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36947528,
year = {2023},
author = {Topiwala, A and Nichols, TE and Williams, LZJ and Robinson, EC and Alfaro-Almagro, F and Taschler, B and Wang, C and Nelson, CP and Miller, KL and Codd, V and Samani, NJ and Smith, SM},
title = {Telomere length and brain imaging phenotypes in UK Biobank.},
journal = {PloS one},
volume = {18},
number = {3},
pages = {e0282363},
doi = {10.1371/journal.pone.0282363},
pmid = {36947528},
issn = {1932-6203},
abstract = {Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.},
}
RevDate: 2023-03-22
Child maltreatment and telomere length in middle and older age: retrospective cohort study of 141 748 UK Biobank participants.
The British journal of psychiatry : the journal of mental science pii:S0007125023000338 [Epub ahead of print].
BACKGROUND: There is evidence that child maltreatment is associated with shorter telomere length in early life.
AIMS: This study aims to examine if child maltreatment is associated with telomere length in middle- and older-age adults.
METHOD: This was a retrospective cohort study of 141 748 UK Biobank participants aged 37-73 years at recruitment. Leukocyte telomere length was measured with quantitative polymerase chain reaction, and log-transformed and scaled to have unit standard deviation. Child maltreatment was recalled by participants. Linear regression was used to analyse the association.
RESULTS: After adjusting for sociodemographic characteristics, participants with three or more types of maltreatment presented with the shortest telomere lengths (β = -0.05, 95% CI -0.07 to -0.03; P < 0.0001), followed by those with two types of maltreatment (β = -0.02, 95% CI -0.04 to 0.00; P = 0.02), referent to those who had none. When adjusted for depression and post-traumatic stress disorder, the telomere lengths of participants with three or more types of maltreatment were still shorter (β = -0.04, 95% CI -0.07 to -0.02; P = 0.0008). The telomere lengths of those with one type of maltreatment were not significantly different from those who had none. When mutually adjusted, physical abuse (β = -0.05, 95% CI -0.07 to -0.03; P < 0.0001) and sexual abuse (β = -0.02, 95% CI -0.04 to 0.00; P = 0.02) were independently associated with shorter telomere length.
CONCLUSIONS: Our findings showed that child maltreatment is associated with shorter telomere length in middle- and older-aged adults, independent of sociodemographic and mental health factors.
Additional Links: PMID-36946056
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36946056,
year = {2023},
author = {Zhou, Z and Lo, CKM and Chan, KL and Chung, RSY and Pell, JP and Minnis, H and Shiels, PG and Ip, P and Ho, FK},
title = {Child maltreatment and telomere length in middle and older age: retrospective cohort study of 141 748 UK Biobank participants.},
journal = {The British journal of psychiatry : the journal of mental science},
volume = {},
number = {},
pages = {1-5},
doi = {10.1192/bjp.2023.33},
pmid = {36946056},
issn = {1472-1465},
abstract = {BACKGROUND: There is evidence that child maltreatment is associated with shorter telomere length in early life.
AIMS: This study aims to examine if child maltreatment is associated with telomere length in middle- and older-age adults.
METHOD: This was a retrospective cohort study of 141 748 UK Biobank participants aged 37-73 years at recruitment. Leukocyte telomere length was measured with quantitative polymerase chain reaction, and log-transformed and scaled to have unit standard deviation. Child maltreatment was recalled by participants. Linear regression was used to analyse the association.
RESULTS: After adjusting for sociodemographic characteristics, participants with three or more types of maltreatment presented with the shortest telomere lengths (β = -0.05, 95% CI -0.07 to -0.03; P < 0.0001), followed by those with two types of maltreatment (β = -0.02, 95% CI -0.04 to 0.00; P = 0.02), referent to those who had none. When adjusted for depression and post-traumatic stress disorder, the telomere lengths of participants with three or more types of maltreatment were still shorter (β = -0.04, 95% CI -0.07 to -0.02; P = 0.0008). The telomere lengths of those with one type of maltreatment were not significantly different from those who had none. When mutually adjusted, physical abuse (β = -0.05, 95% CI -0.07 to -0.03; P < 0.0001) and sexual abuse (β = -0.02, 95% CI -0.04 to 0.00; P = 0.02) were independently associated with shorter telomere length.
CONCLUSIONS: Our findings showed that child maltreatment is associated with shorter telomere length in middle- and older-aged adults, independent of sociodemographic and mental health factors.},
}
RevDate: 2023-03-22
Early Environment and Telomeres: a Long-Term Toxic Relationship.
Current environmental health reports [Epub ahead of print].
PURPOSE OF REVIEW: Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children's TL and discuss potential long-term effects.
RECENT FINDINGS: Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals' health throughout life.
Additional Links: PMID-36944821
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36944821,
year = {2023},
author = {Herrera-Moreno, JF and Prada, D and Baccarelli, AA},
title = {Early Environment and Telomeres: a Long-Term Toxic Relationship.},
journal = {Current environmental health reports},
volume = {},
number = {},
pages = {},
pmid = {36944821},
issn = {2196-5412},
abstract = {PURPOSE OF REVIEW: Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children's TL and discuss potential long-term effects.
RECENT FINDINGS: Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals' health throughout life.},
}
RevDate: 2023-03-21
Childhood maltreatment and leukocyte telomere length in men and women with chronic illness: an evaluation of moderating and mediating influences.
Psychological medicine pii:S0033291722003543 [Epub ahead of print].
BACKGROUND: Childhood maltreatment can result in lifelong psychological and physical sequelae, including coronary artery disease (CAD). Mechanisms leading to increased risk of illness may involve emotional dysregulation and shortened leukocyte telomere length (LTL).
METHODS: To evaluate whether (1) childhood maltreatment is associated with shorter LTL among older adults with CAD or other chronic illnesses; (2) sex and/or CAD status influence these results; and (3) symptoms of anxiety, depression, and stress moderate or mediate the association between childhood maltreatment and LTL, men and women (N = 1247; aged 65 ± 7.2 years) with and without CAD completed validated questionnaires on childhood maltreatment, symptoms of depression, anxiety, and perceived stress. LTL was measured using quantitative polymerase chain reaction. Analyses included bivariate correlations, hierarchical regressions, and moderation/mediation analyses, controlling for sociodemographic and lifestyle variables.
RESULTS: Childhood maltreatment was associated with significantly shorter LTL (r = -0.059, p = 0.038, b = -0.016, p = 0.005). This relation was not moderated by depression, anxiety, nor perceived stress, though there was mitigated evidence for absence of a maltreatment-LTL relation in men with CAD. Stress perception (but not anxiety or depression) partially mediated the relation between childhood maltreatment and LTL [Indirect effect, b = -0.0041, s.e. = 0.002, 95% CI (-0.0085 to -0.0002)].
CONCLUSIONS: Childhood maltreatment was associated with accelerated biological aging independently of patient characteristics. Emotional dysregulation resulting in chronic stress may contribute to this process. Whether stress management or other interventions may help prevent or slow premature aging in those who have suffered maltreatment requires study.
Additional Links: PMID-36943406
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36943406,
year = {2022},
author = {Connor, A and Starnino, L and Busque, L and Tardif, JC and Bourgoin, V and Dubé, MP and Busseuil, D and D'Antono, B},
title = {Childhood maltreatment and leukocyte telomere length in men and women with chronic illness: an evaluation of moderating and mediating influences.},
journal = {Psychological medicine},
volume = {},
number = {},
pages = {1-11},
doi = {10.1017/S0033291722003543},
pmid = {36943406},
issn = {1469-8978},
abstract = {BACKGROUND: Childhood maltreatment can result in lifelong psychological and physical sequelae, including coronary artery disease (CAD). Mechanisms leading to increased risk of illness may involve emotional dysregulation and shortened leukocyte telomere length (LTL).
METHODS: To evaluate whether (1) childhood maltreatment is associated with shorter LTL among older adults with CAD or other chronic illnesses; (2) sex and/or CAD status influence these results; and (3) symptoms of anxiety, depression, and stress moderate or mediate the association between childhood maltreatment and LTL, men and women (N = 1247; aged 65 ± 7.2 years) with and without CAD completed validated questionnaires on childhood maltreatment, symptoms of depression, anxiety, and perceived stress. LTL was measured using quantitative polymerase chain reaction. Analyses included bivariate correlations, hierarchical regressions, and moderation/mediation analyses, controlling for sociodemographic and lifestyle variables.
RESULTS: Childhood maltreatment was associated with significantly shorter LTL (r = -0.059, p = 0.038, b = -0.016, p = 0.005). This relation was not moderated by depression, anxiety, nor perceived stress, though there was mitigated evidence for absence of a maltreatment-LTL relation in men with CAD. Stress perception (but not anxiety or depression) partially mediated the relation between childhood maltreatment and LTL [Indirect effect, b = -0.0041, s.e. = 0.002, 95% CI (-0.0085 to -0.0002)].
CONCLUSIONS: Childhood maltreatment was associated with accelerated biological aging independently of patient characteristics. Emotional dysregulation resulting in chronic stress may contribute to this process. Whether stress management or other interventions may help prevent or slow premature aging in those who have suffered maltreatment requires study.},
}
RevDate: 2023-03-21
SCARECROW maintains the stem cell niche in Arabidopsis roots by ensuring telomere integrity.
Plant physiology pii:7081637 [Epub ahead of print].
Stem cells are the ultimate source of cells for various tissues and organs, and thus are essential for postembryonic plant growth and development. SCARECROW (SCR) is a plant-specific transcription regulator well known for its role in stem-cell renewal in plant roots, but the mechanism by which SCR exerts this function remains unclear. To address this question, we carried out a genetic screen for mutants that no longer express SCR in the stem-cell niche of Arabidopsis (Arabidopsis thaliana) roots and characterized one of these mutants. Molecular genetics methods allowed us to pinpoint the causal mutation in this mutant in TELOMERIC PATHWAYS IN ASSOCIATION WITH STN 1 (TEN1), encoding a factor that protects telomere ends. Interestingly, TEN1 expression was dramatically reduced in the scr mutant. Telomerase, as well as STN1 and CONSERVED TELOMERE MAINTENANCE COMPONENT 1 (CTC1), components of the same protein complex as TEN1, were also dramatically downregulated in scr. Loss of STN1, CTC1, and telomerase caused defects in root stem cells. These results together suggest that SCR maintains root stem cells by promoting expression of genes that ensure genome integrity. Supporting this conclusion, we demonstrated that the scr mutant accumulates more DNA damage than wild-type Arabidopsis and that this problem is aggravated after exposure to zeocin, a DNA damage reagent. Finally, we identified two previously uncharacterized motifs in TEN1 and provide evidence that a conserved amino acid residue in one of the motifs is indispensable for TEN1 function. SCR thus provides a connection between genome integrity and stem-cell maintenance in Arabidopsis roots.
Additional Links: PMID-36943300
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36943300,
year = {2023},
author = {Wang, B and Shi, X and Gao, J and Liao, R and Fu, J and Bai, J and Cui, H},
title = {SCARECROW maintains the stem cell niche in Arabidopsis roots by ensuring telomere integrity.},
journal = {Plant physiology},
volume = {},
number = {},
pages = {},
doi = {10.1093/plphys/kiad181},
pmid = {36943300},
issn = {1532-2548},
abstract = {Stem cells are the ultimate source of cells for various tissues and organs, and thus are essential for postembryonic plant growth and development. SCARECROW (SCR) is a plant-specific transcription regulator well known for its role in stem-cell renewal in plant roots, but the mechanism by which SCR exerts this function remains unclear. To address this question, we carried out a genetic screen for mutants that no longer express SCR in the stem-cell niche of Arabidopsis (Arabidopsis thaliana) roots and characterized one of these mutants. Molecular genetics methods allowed us to pinpoint the causal mutation in this mutant in TELOMERIC PATHWAYS IN ASSOCIATION WITH STN 1 (TEN1), encoding a factor that protects telomere ends. Interestingly, TEN1 expression was dramatically reduced in the scr mutant. Telomerase, as well as STN1 and CONSERVED TELOMERE MAINTENANCE COMPONENT 1 (CTC1), components of the same protein complex as TEN1, were also dramatically downregulated in scr. Loss of STN1, CTC1, and telomerase caused defects in root stem cells. These results together suggest that SCR maintains root stem cells by promoting expression of genes that ensure genome integrity. Supporting this conclusion, we demonstrated that the scr mutant accumulates more DNA damage than wild-type Arabidopsis and that this problem is aggravated after exposure to zeocin, a DNA damage reagent. Finally, we identified two previously uncharacterized motifs in TEN1 and provide evidence that a conserved amino acid residue in one of the motifs is indispensable for TEN1 function. SCR thus provides a connection between genome integrity and stem-cell maintenance in Arabidopsis roots.},
}
RevDate: 2023-03-20
Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA.
Nucleic acids research pii:7080832 [Epub ahead of print].
Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.
Additional Links: PMID-36940725
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36940725,
year = {2023},
author = {Rose, AM and Goncalves, T and Cunniffe, S and Geiller, HEB and Kent, T and Shepherd, S and Ratnaweera, M and O'Sullivan, RJ and Gibbons, RJ and Clynes, D},
title = {Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA.},
journal = {Nucleic acids research},
volume = {},
number = {},
pages = {},
doi = {10.1093/nar/gkad150},
pmid = {36940725},
issn = {1362-4962},
support = {/AMS_/Academy of Medical Sciences/United Kingdom ; },
abstract = {Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.},
}
RevDate: 2023-03-19
SAMHD1 restricts the deoxyguanosine triphosphate pool contributing to telomere stability in telomerase-positive cells.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 37(4):e22883.
SAMHD1 (Sterile alpha motif and histidine/aspartic acid domain-containing protein 1) is a dNTP triphosphohydrolase crucial in the maintenance of balanced cellular dNTP pools, which support genome integrity. In SAMHD1 deficient fibroblasts isolated from Aicardi-Goutières Syndrome (AGS) patients, all four DNA precursors are increased and markedly imbalanced with the largest effect on dGTP, a key player in the modulation of telomerase processivity. Here, we present data showing that SAMHD1, by restricting the dGTP pool, contributes to telomere maintenance in hTERT-immortalized human fibroblasts from AGS patients as well as in telomerase positive cancer cell lines. Only in cells expressing telomerase, the lack of SAMHD1 causes excessive lengthening of telomeres and telomere fragility, whereas primary fibroblasts lacking both SAMHD1 and telomerase enter normally into senescence. Telomere lengthening observed in SAMHD1 deficient but telomerase proficient cells is a gradual process, in accordance with the intrinsic property of telomerase of adding only a few tens of nucleotides for each cycle. Therefore, only a prolonged exposure to high dGTP content causes telomere over-elongation. hTERT-immortalized AGS fibroblasts display also high fragility of chromosome ends, a marker of telomere replication stress. These results not only demonstrate the functional importance of dGTP cellular level but also reveal the critical role played by SAMHD1 in restraining telomerase processivity and safeguarding telomere stability.
Additional Links: PMID-36934410
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36934410,
year = {2023},
author = {D'Aronco, G and Ferraro, P and Sassano, V and Dagostino, C and Biancotto, M and Palumbo, E and Presot, E and Russo, A and Bianchi, V and Rampazzo, C},
title = {SAMHD1 restricts the deoxyguanosine triphosphate pool contributing to telomere stability in telomerase-positive cells.},
journal = {FASEB journal : official publication of the Federation of American Societies for Experimental Biology},
volume = {37},
number = {4},
pages = {e22883},
doi = {10.1096/fj.202300122R},
pmid = {36934410},
issn = {1530-6860},
abstract = {SAMHD1 (Sterile alpha motif and histidine/aspartic acid domain-containing protein 1) is a dNTP triphosphohydrolase crucial in the maintenance of balanced cellular dNTP pools, which support genome integrity. In SAMHD1 deficient fibroblasts isolated from Aicardi-Goutières Syndrome (AGS) patients, all four DNA precursors are increased and markedly imbalanced with the largest effect on dGTP, a key player in the modulation of telomerase processivity. Here, we present data showing that SAMHD1, by restricting the dGTP pool, contributes to telomere maintenance in hTERT-immortalized human fibroblasts from AGS patients as well as in telomerase positive cancer cell lines. Only in cells expressing telomerase, the lack of SAMHD1 causes excessive lengthening of telomeres and telomere fragility, whereas primary fibroblasts lacking both SAMHD1 and telomerase enter normally into senescence. Telomere lengthening observed in SAMHD1 deficient but telomerase proficient cells is a gradual process, in accordance with the intrinsic property of telomerase of adding only a few tens of nucleotides for each cycle. Therefore, only a prolonged exposure to high dGTP content causes telomere over-elongation. hTERT-immortalized AGS fibroblasts display also high fragility of chromosome ends, a marker of telomere replication stress. These results not only demonstrate the functional importance of dGTP cellular level but also reveal the critical role played by SAMHD1 in restraining telomerase processivity and safeguarding telomere stability.},
}
RevDate: 2023-03-18
The effects of exercise and diet on oxidative stress and telomere length in breast cancer survivors.
Breast cancer research and treatment [Epub ahead of print].
PURPOSE: Cancer and its treatments accelerate biological aging. This analysis tested the hypothesis that exercise and diet reduce oxidative stress and prevent telomere shortening in breast cancer survivors.
METHODS: In a 2 × 2 factorial design, 342 breast cancer survivors who were insufficiently physically active and had overweight or obesity at enrollment were randomized to one of four treatment groups for 52 weeks: control, exercise alone, diet alone, or exercise plus diet. The endpoints of this analysis were the change from baseline to week 52 in 8-iso-prostaglandin F2α (8-iso-PGF2α) and lymphocyte telomere length.
RESULTS: Baseline telomere length was shorter than age-adjusted normative values (median difference: - 1.8 kilobases; 95% CI - 2.4, - 1.1); equivalent to 21 years (95% CI 17, 25) of accelerated chronological aging. Compared to control, exercise alone did not change 8-iso-PGF2α [9.9%; 95% confidence interval (CI) - 1.0, 20.8] or telomere length (13.8%; 95% CI - 15.6, 43.3). Compared to control, diet alone was associated with reduced 8-iso-PGF2α (- 10.5%; 95% CI - 19.5, - 1.5) but did not change telomere length (12.1%; 95% CI - 17.2, 41.3). Compared to control, exercise plus diet was associated with reduced 8-iso-PGF2α (- 9.8%; 95% CI - 18.7, - 0.9) but did not change telomere length (- 8.5%; 95% CI - 32.1, 15.2). Change in 8-iso-PGF2α did not correlate with change in telomere length (r = 0.07; 95% CI - 0.07, 0.20).
CONCLUSION: In breast cancer survivors, diet alone or exercise plus diet were associated with reduced oxidative stress but did not change telomere length. This analysis may inform future trials that aim to optimize healthy aging in cancer survivors.
Additional Links: PMID-36933050
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36933050,
year = {2023},
author = {Brown, JC and Sturgeon, K and Sarwer, DB and Troxel, AB and DeMichele, AM and Denlinger, CS and Schmitz, KH},
title = {The effects of exercise and diet on oxidative stress and telomere length in breast cancer survivors.},
journal = {Breast cancer research and treatment},
volume = {},
number = {},
pages = {},
pmid = {36933050},
issn = {1573-7217},
abstract = {PURPOSE: Cancer and its treatments accelerate biological aging. This analysis tested the hypothesis that exercise and diet reduce oxidative stress and prevent telomere shortening in breast cancer survivors.
METHODS: In a 2 × 2 factorial design, 342 breast cancer survivors who were insufficiently physically active and had overweight or obesity at enrollment were randomized to one of four treatment groups for 52 weeks: control, exercise alone, diet alone, or exercise plus diet. The endpoints of this analysis were the change from baseline to week 52 in 8-iso-prostaglandin F2α (8-iso-PGF2α) and lymphocyte telomere length.
RESULTS: Baseline telomere length was shorter than age-adjusted normative values (median difference: - 1.8 kilobases; 95% CI - 2.4, - 1.1); equivalent to 21 years (95% CI 17, 25) of accelerated chronological aging. Compared to control, exercise alone did not change 8-iso-PGF2α [9.9%; 95% confidence interval (CI) - 1.0, 20.8] or telomere length (13.8%; 95% CI - 15.6, 43.3). Compared to control, diet alone was associated with reduced 8-iso-PGF2α (- 10.5%; 95% CI - 19.5, - 1.5) but did not change telomere length (12.1%; 95% CI - 17.2, 41.3). Compared to control, exercise plus diet was associated with reduced 8-iso-PGF2α (- 9.8%; 95% CI - 18.7, - 0.9) but did not change telomere length (- 8.5%; 95% CI - 32.1, 15.2). Change in 8-iso-PGF2α did not correlate with change in telomere length (r = 0.07; 95% CI - 0.07, 0.20).
CONCLUSION: In breast cancer survivors, diet alone or exercise plus diet were associated with reduced oxidative stress but did not change telomere length. This analysis may inform future trials that aim to optimize healthy aging in cancer survivors.},
}
RevDate: 2023-03-18
Loss of SUN1 function in spermatocytes disrupts the attachment of telomeres to the nuclear envelope and contributes to non-obstructive azoospermia in humans.
Human genetics [Epub ahead of print].
One of the most severe forms of infertility in humans, caused by gametogenic failure, is non-obstructive azoospermia (NOA). Approximately, 20-30% of men with NOA may have single-gene mutations or other genetic variables that cause this disease. While a range of single-gene mutations associated with infertility has been identified in prior whole-exome sequencing (WES) studies, current insight into the precise genetic etiology of impaired human gametogenesis remains limited. In this paper, we described a proband with NOA who experienced hereditary infertility. WES analyses identified a homozygous variant in the SUN1 (Sad1 and UNC84 domain containing 1) gene [c. 663C > A: p.Tyr221X] that segregated with infertility. SUN1 encodes a LINC complex component essential for telomeric attachment and chromosomal movement. Spermatocytes with the observed mutations were incapable of repairing double-strand DNA breaks or undergoing meiosis. This loss of SUN1 functionality contributes to significant reductions in KASH5 levels within impaired chromosomal telomere attachment to the inner nuclear membrane. Overall, our results identify a potential genetic driver of NOA pathogenesis and provide fresh insight into the role of the SUN1 protein as a regulator of prophase I progression in the context of human meiosis.
Additional Links: PMID-36933034
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36933034,
year = {2023},
author = {Meng, Q and Shao, B and Zhao, D and Fu, X and Wang, J and Li, H and Zhou, Q and Gao, T},
title = {Loss of SUN1 function in spermatocytes disrupts the attachment of telomeres to the nuclear envelope and contributes to non-obstructive azoospermia in humans.},
journal = {Human genetics},
volume = {},
number = {},
pages = {},
pmid = {36933034},
issn = {1432-1203},
abstract = {One of the most severe forms of infertility in humans, caused by gametogenic failure, is non-obstructive azoospermia (NOA). Approximately, 20-30% of men with NOA may have single-gene mutations or other genetic variables that cause this disease. While a range of single-gene mutations associated with infertility has been identified in prior whole-exome sequencing (WES) studies, current insight into the precise genetic etiology of impaired human gametogenesis remains limited. In this paper, we described a proband with NOA who experienced hereditary infertility. WES analyses identified a homozygous variant in the SUN1 (Sad1 and UNC84 domain containing 1) gene [c. 663C > A: p.Tyr221X] that segregated with infertility. SUN1 encodes a LINC complex component essential for telomeric attachment and chromosomal movement. Spermatocytes with the observed mutations were incapable of repairing double-strand DNA breaks or undergoing meiosis. This loss of SUN1 functionality contributes to significant reductions in KASH5 levels within impaired chromosomal telomere attachment to the inner nuclear membrane. Overall, our results identify a potential genetic driver of NOA pathogenesis and provide fresh insight into the role of the SUN1 protein as a regulator of prophase I progression in the context of human meiosis.},
}
RevDate: 2023-03-18
Effects of folate on telomere length and chromosome stability of human fibroblasts and melanoma cells in vitro: A comparison of folic acid and 5-methyltetrahydrofolate.
Mutagenesis pii:7080254 [Epub ahead of print].
Telomere length (TL), which is maintained by hTERT (component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay.Results showed that abnormal TL elongation was observed in FA and 5-MeTHF deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA deficient condition but was significantly elongated under the 5-MeTHF deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.
Additional Links: PMID-36932659
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36932659,
year = {2023},
author = {Wang, H and Ni, J and Guo, X and Xue, J and Wang, X},
title = {Effects of folate on telomere length and chromosome stability of human fibroblasts and melanoma cells in vitro: A comparison of folic acid and 5-methyltetrahydrofolate.},
journal = {Mutagenesis},
volume = {},
number = {},
pages = {},
doi = {10.1093/mutage/gead004},
pmid = {36932659},
issn = {1464-3804},
abstract = {Telomere length (TL), which is maintained by hTERT (component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay.Results showed that abnormal TL elongation was observed in FA and 5-MeTHF deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA deficient condition but was significantly elongated under the 5-MeTHF deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.},
}
RevDate: 2023-03-18
Telomere length associates with chronological age and mortality across racially diverse pulmonary fibrosis cohorts.
Nature communications, 14(1):1489.
Pulmonary fibrosis (PF) is characterized by profound scarring and poor survival. We investigated the association of leukocyte telomere length (LTL) with chronological age and mortality across racially diverse PF cohorts. LTL measurements among participants with PF stratified by race/ethnicity were assessed in relation to age and all-cause mortality, and compared to controls. Generalized linear models were used to evaluate the age-LTL relationship, Cox proportional hazards models were used for hazard ratio estimation, and the Cochran-Armitage test was used to assess quartiles of LTL. Standardized LTL shortened with increasing chronological age; this association in controls was strengthened in PF (R = -0.28; P < 0.0001). In PF, age- and sex-adjusted LTL below the median consistently predicted worse mortality across all racial groups (White, HR = 2.21, 95% CI = 1.79-2.72; Black, HR = 2.22, 95% CI = 1.05-4.66; Hispanic, HR = 3.40, 95% CI = 1.88-6.14; and Asian, HR = 2.11, 95% CI = 0.55-8.23). LTL associates uniformly with chronological age and is a biomarker predictive of mortality in PF across racial groups.
Additional Links: PMID-36932145
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36932145,
year = {2023},
author = {Adegunsoye, A and Newton, CA and Oldham, JM and Ley, B and Lee, CT and Linderholm, AL and Chung, JH and Garcia, N and Zhang, D and Vij, R and Guzy, R and Jablonski, R and Bag, R and Voogt, RS and Ma, SF and Sperling, AI and Raghu, G and Martinez, FJ and Strek, ME and Wolters, PJ and Garcia, CK and Pierce, BL and Noth, I},
title = {Telomere length associates with chronological age and mortality across racially diverse pulmonary fibrosis cohorts.},
journal = {Nature communications},
volume = {14},
number = {1},
pages = {1489},
pmid = {36932145},
issn = {2041-1723},
abstract = {Pulmonary fibrosis (PF) is characterized by profound scarring and poor survival. We investigated the association of leukocyte telomere length (LTL) with chronological age and mortality across racially diverse PF cohorts. LTL measurements among participants with PF stratified by race/ethnicity were assessed in relation to age and all-cause mortality, and compared to controls. Generalized linear models were used to evaluate the age-LTL relationship, Cox proportional hazards models were used for hazard ratio estimation, and the Cochran-Armitage test was used to assess quartiles of LTL. Standardized LTL shortened with increasing chronological age; this association in controls was strengthened in PF (R = -0.28; P < 0.0001). In PF, age- and sex-adjusted LTL below the median consistently predicted worse mortality across all racial groups (White, HR = 2.21, 95% CI = 1.79-2.72; Black, HR = 2.22, 95% CI = 1.05-4.66; Hispanic, HR = 3.40, 95% CI = 1.88-6.14; and Asian, HR = 2.11, 95% CI = 0.55-8.23). LTL associates uniformly with chronological age and is a biomarker predictive of mortality in PF across racial groups.},
}
RevDate: 2023-03-16
Longitudinal telomere dynamics within natural lifespans of a wild bird.
Scientific reports, 13(1):4272.
Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h[2] = 0.21), which was higher than the heritabilities of early-life TL (h[2] = 0.14) and later-life TL measurements (h[2] = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.
Additional Links: PMID-36922555
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36922555,
year = {2023},
author = {Pepke, ML and Kvalnes, T and Wright, J and Araya-Ajoy, YG and Ranke, PS and Boner, W and Monaghan, P and Sæther, BE and Jensen, H and Ringsby, TH},
title = {Longitudinal telomere dynamics within natural lifespans of a wild bird.},
journal = {Scientific reports},
volume = {13},
number = {1},
pages = {4272},
pmid = {36922555},
issn = {2045-2322},
abstract = {Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h[2] = 0.21), which was higher than the heritabilities of early-life TL (h[2] = 0.14) and later-life TL measurements (h[2] = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.},
}
RevDate: 2023-03-13
Experimental ectoparasite removal has a sex-specific effect on nestling telomere length.
Ecology and evolution, 13(3):e9861.
Parasites are a strong selective force that can influence fitness-related traits. The length of chromosome-capping telomeres can be used to assess the long-term costs of parasitism, as telomere loss accelerates in response to environmental stressors and often precedes poorer survival prospects. Here, we explored the sex-specific effects of ectoparasite removal on morphology and telomere length in nestling tree swallows (Tachycineta bicolor). To do so, we experimentally removed blow fly (Protocalliphora spp.) larvae from nests using Permethrin, a broad-spectrum insecticide. Compared to water-treated controls, insecticide treatment of nests had a sex-biased effect on blood telomere length: ectoparasite removal resulted in significantly longer telomeres in males but not females. While this treatment did not influence nestling body mass, it was associated with reduced feather development regardless of sex. This may reflect a relaxed pressure to fledge quickly in the absence of parasites, or alternatively, could be a negative side effect of permethrin on morphology. Exploring robust sex-specific telomere dynamics in response to early-life environmental pressures such as parasitism will shed light on sexual dimorphism in adult life histories and aging.
Additional Links: PMID-36911306
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36911306,
year = {2023},
author = {Wolf, SE and Zhang, S and Clotfelter, ED},
title = {Experimental ectoparasite removal has a sex-specific effect on nestling telomere length.},
journal = {Ecology and evolution},
volume = {13},
number = {3},
pages = {e9861},
pmid = {36911306},
issn = {2045-7758},
abstract = {Parasites are a strong selective force that can influence fitness-related traits. The length of chromosome-capping telomeres can be used to assess the long-term costs of parasitism, as telomere loss accelerates in response to environmental stressors and often precedes poorer survival prospects. Here, we explored the sex-specific effects of ectoparasite removal on morphology and telomere length in nestling tree swallows (Tachycineta bicolor). To do so, we experimentally removed blow fly (Protocalliphora spp.) larvae from nests using Permethrin, a broad-spectrum insecticide. Compared to water-treated controls, insecticide treatment of nests had a sex-biased effect on blood telomere length: ectoparasite removal resulted in significantly longer telomeres in males but not females. While this treatment did not influence nestling body mass, it was associated with reduced feather development regardless of sex. This may reflect a relaxed pressure to fledge quickly in the absence of parasites, or alternatively, could be a negative side effect of permethrin on morphology. Exploring robust sex-specific telomere dynamics in response to early-life environmental pressures such as parasitism will shed light on sexual dimorphism in adult life histories and aging.},
}
RevDate: 2023-03-13
Activation of telomerase activity and telomere elongation of host cells by Theileria annulata infection.
Frontiers in microbiology, 14:1128433.
Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.
Additional Links: PMID-36910209
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36910209,
year = {2023},
author = {Liu, J and Zhao, S and Li, Z and Zhang, Z and Zhao, B and Guan, G and Yin, H and Luo, J},
title = {Activation of telomerase activity and telomere elongation of host cells by Theileria annulata infection.},
journal = {Frontiers in microbiology},
volume = {14},
number = {},
pages = {1128433},
pmid = {36910209},
issn = {1664-302X},
abstract = {Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.},
}
RevDate: 2023-03-11
Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres.
International journal of molecular sciences, 24(5): pii:ijms24055027.
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Additional Links: PMID-36902458
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36902458,
year = {2023},
author = {Shepelev, N and Dontsova, O and Rubtsova, M},
title = {Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres.},
journal = {International journal of molecular sciences},
volume = {24},
number = {5},
pages = {},
doi = {10.3390/ijms24055027},
pmid = {36902458},
issn = {1422-0067},
abstract = {Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.},
}
RevDate: 2023-03-09
Phase separation properties of RPA combine high-affinity ssDNA binding with dynamic condensate functions at telomeres.
Nature structural & molecular biology [Epub ahead of print].
RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.
Additional Links: PMID-36894693
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36894693,
year = {2023},
author = {Spegg, V and Panagopoulos, A and Stout, M and Krishnan, A and Reginato, G and Imhof, R and Roschitzki, B and Cejka, P and Altmeyer, M},
title = {Phase separation properties of RPA combine high-affinity ssDNA binding with dynamic condensate functions at telomeres.},
journal = {Nature structural & molecular biology},
volume = {},
number = {},
pages = {},
pmid = {36894693},
issn = {1545-9985},
abstract = {RPA has been shown to protect single-stranded DNA (ssDNA) intermediates from instability and breakage. RPA binds ssDNA with sub-nanomolar affinity, yet dynamic turnover is required for downstream ssDNA transactions. How ultrahigh-affinity binding and dynamic turnover are achieved simultaneously is not well understood. Here we reveal that RPA has a strong propensity to assemble into dynamic condensates. In solution, purified RPA phase separates into liquid droplets with fusion and surface wetting behavior. Phase separation is stimulated by sub-stoichiometric amounts of ssDNA, but not RNA or double-stranded DNA, and ssDNA gets selectively enriched in RPA condensates. We find the RPA2 subunit required for condensation and multi-site phosphorylation of the RPA2 N-terminal intrinsically disordered region to regulate RPA self-interaction. Functionally, quantitative proximity proteomics links RPA condensation to telomere clustering and integrity in cancer cells. Collectively, our results suggest that RPA-coated ssDNA is contained in dynamic RPA condensates whose properties are important for genome organization and stability.},
}
RevDate: 2023-03-09
Functional association between telomeres, oxidation and mitochondria.
Frontiers in reproductive health, 5:1107215.
Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.
Additional Links: PMID-36890798
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36890798,
year = {2023},
author = {Moustakli, E and Zikopoulos, A and Sakaloglou, P and Bouba, I and Sofikitis, N and Georgiou, I},
title = {Functional association between telomeres, oxidation and mitochondria.},
journal = {Frontiers in reproductive health},
volume = {5},
number = {},
pages = {1107215},
pmid = {36890798},
issn = {2673-3153},
abstract = {Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.},
}
RevDate: 2023-03-09
Longer leukocyte telomere length increases cardiovascular mortality in type 2 diabetes patients.
Journal of diabetes [Epub ahead of print].
AIMS: Leukocyte telomere length (LTL), as a biomarker of biological aging, is associated with the prevalence and complications of diabetes. This study aims to investigate the associations between LTL and all-cause and cause-specific mortality in patients with type 2 diabetes.
METHODS: All participants with baseline LTL records were included from the National Health and Nutrition Examination Survey 1999-2002. Death status and its causes were ascertained for National Death Index based on International Classification of Diseases, Tenth Revision code. Cox proportional hazards regression models were established to estimate the hazard ratios (HRs) of LTL associating with all-cause and cause-specific mortality.
RESULTS: The study enrolled 804 diabetic patients with the mean follow-up of 14.9 ± 2.59 years. There were 367 (45.6%) all-cause deaths, 80 (10.0%) cardiovascular deaths, and 42 (5.2%) cancer-related deaths. Longer LTL was associated with reduced all-cause mortality, whereas this association disappeared after adjusting for other variables. Compared with the lowest tertiles of LTL, the multivariable-adjusted hazard ratio of cardiovascular mortality was 2.11 (95% confidence interval [CI] 1.31-3.39; p < .05) in the highest tertiles. In terms of cancer mortality, the highest tertile was negatively correlated with the risk of cancer mortality (HR 0.58 [95% CI 0.37, 0.91], p < .05).
CONCLUSION: In conclusion, LTL was independently associated with the risk of cardiovascular mortality in patients with type 2 diabetes and was negatively correlated with the risk of cancer mortality. Telomere length may be a predictor of cardiovascular mortality in diabetes.
Additional Links: PMID-36890680
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36890680,
year = {2023},
author = {Chen, Z and Shen, Y and He, J and Shen, Y and Zhu, W and Wu, X and Xiao, M},
title = {Longer leukocyte telomere length increases cardiovascular mortality in type 2 diabetes patients.},
journal = {Journal of diabetes},
volume = {},
number = {},
pages = {},
doi = {10.1111/1753-0407.13376},
pmid = {36890680},
issn = {1753-0407},
abstract = {AIMS: Leukocyte telomere length (LTL), as a biomarker of biological aging, is associated with the prevalence and complications of diabetes. This study aims to investigate the associations between LTL and all-cause and cause-specific mortality in patients with type 2 diabetes.
METHODS: All participants with baseline LTL records were included from the National Health and Nutrition Examination Survey 1999-2002. Death status and its causes were ascertained for National Death Index based on International Classification of Diseases, Tenth Revision code. Cox proportional hazards regression models were established to estimate the hazard ratios (HRs) of LTL associating with all-cause and cause-specific mortality.
RESULTS: The study enrolled 804 diabetic patients with the mean follow-up of 14.9 ± 2.59 years. There were 367 (45.6%) all-cause deaths, 80 (10.0%) cardiovascular deaths, and 42 (5.2%) cancer-related deaths. Longer LTL was associated with reduced all-cause mortality, whereas this association disappeared after adjusting for other variables. Compared with the lowest tertiles of LTL, the multivariable-adjusted hazard ratio of cardiovascular mortality was 2.11 (95% confidence interval [CI] 1.31-3.39; p < .05) in the highest tertiles. In terms of cancer mortality, the highest tertile was negatively correlated with the risk of cancer mortality (HR 0.58 [95% CI 0.37, 0.91], p < .05).
CONCLUSION: In conclusion, LTL was independently associated with the risk of cardiovascular mortality in patients with type 2 diabetes and was negatively correlated with the risk of cancer mortality. Telomere length may be a predictor of cardiovascular mortality in diabetes.},
}
RevDate: 2023-03-08
A new path to alternative lengthening of telomeres?.
Additional Links: PMID-36883676
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36883676,
year = {2023},
author = {Becher, OJ},
title = {A new path to alternative lengthening of telomeres?.},
journal = {Neuro-oncology},
volume = {},
number = {},
pages = {},
doi = {10.1093/neuonc/noad054},
pmid = {36883676},
issn = {1523-5866},
}
RevDate: 2023-03-07
Association between telomere length and hepatocellular carcinoma risk: A Mendelian randomization study.
Cancer medicine [Epub ahead of print].
BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer threatening the public health globally. Although HCC has been associated with the telomere length (TL), the causal relationship between them is not well understood. Therefore, we attempted to explore the linear causal relationship between TL and HCC through Mendelian randomization (MR) analysis among Asian and European populations.
METHODS: The summary statistics of TL-associated single nucleotide polymorphisms (SNPs) were obtained from a genome-wide association study (GWAS) in the Asian population (N = 23,096). The data of TL-associated SNPs in the European population (N = 472,174) and the GWAS summary statistics of HCC in the Asian population (1866 cases, 195,745 controls) as well as the European population (168 cases, 372,016 controls) were downloaded from the public GWAS database. Two-sample MR was performed using inverse variance weighting (IVW), weighted median estimate, MR-Egger regression, weighted-mode estimate, and simple-mode estimate methods. Sensitivity analysis was performed to text the primary results' robustness.
RESULTS: Nine SNPs associated with TL in Asian populations and 98 SNPs in European populations were selected as instrumental variables. No linear causal relationship between heritable TL and the HCC risk was recorded in the Asian (IVW analysis odds ratio [OR] = 1.023, 95% confidence interval [CI] 0.745, 1.405, p = 0.887) and European populations (IVW analysis OR = 0.487, 95% CI 0.180, 1.320, p = 0.157). Other methods also achieved similar outcomes. Sensitivity analysis was performed and revealed no heterogeneity and horizontal pleiotropy.
CONCLUSIONS: No linear causal association was recorded between heritable TL and HCC in Asian and European populations.
Additional Links: PMID-36880214
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36880214,
year = {2023},
author = {Yang, C and Wu, X and Chen, S and Xiang, B},
title = {Association between telomere length and hepatocellular carcinoma risk: A Mendelian randomization study.},
journal = {Cancer medicine},
volume = {},
number = {},
pages = {},
doi = {10.1002/cam4.5702},
pmid = {36880214},
issn = {2045-7634},
abstract = {BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer threatening the public health globally. Although HCC has been associated with the telomere length (TL), the causal relationship between them is not well understood. Therefore, we attempted to explore the linear causal relationship between TL and HCC through Mendelian randomization (MR) analysis among Asian and European populations.
METHODS: The summary statistics of TL-associated single nucleotide polymorphisms (SNPs) were obtained from a genome-wide association study (GWAS) in the Asian population (N = 23,096). The data of TL-associated SNPs in the European population (N = 472,174) and the GWAS summary statistics of HCC in the Asian population (1866 cases, 195,745 controls) as well as the European population (168 cases, 372,016 controls) were downloaded from the public GWAS database. Two-sample MR was performed using inverse variance weighting (IVW), weighted median estimate, MR-Egger regression, weighted-mode estimate, and simple-mode estimate methods. Sensitivity analysis was performed to text the primary results' robustness.
RESULTS: Nine SNPs associated with TL in Asian populations and 98 SNPs in European populations were selected as instrumental variables. No linear causal relationship between heritable TL and the HCC risk was recorded in the Asian (IVW analysis odds ratio [OR] = 1.023, 95% confidence interval [CI] 0.745, 1.405, p = 0.887) and European populations (IVW analysis OR = 0.487, 95% CI 0.180, 1.320, p = 0.157). Other methods also achieved similar outcomes. Sensitivity analysis was performed and revealed no heterogeneity and horizontal pleiotropy.
CONCLUSIONS: No linear causal association was recorded between heritable TL and HCC in Asian and European populations.},
}
RevDate: 2023-03-07
Maternal Serum Vitamin E Levels and its Association with Cord Blood Telomere Length and Mitochondrial DNA Copy Number in Preterm Premature Rupture of Membranes.
Journal of obstetrics and gynaecology of India, 73(1):9-14.
BACKGROUND AND OBJECTIVE: Oxidative stress is one of the pathophysiological factors of pPROM and Vit. E being antioxidant may have preventive role. Study was conducted to estimate maternal serum vitamin E levels and cord blood oxidative stress markers in pPROM cases.
METHODS: This was a case-control study including 40 pPROM cases and 40 controls. Maternal serum vitamin E levels were measured at recruitment. Cord blood was collected at delivery for estimation of telomere length and mtDNA copy number as oxidative stress markers. Levels were compared using student's t test or Mann Whitney test. For correlation Pearson coefficient was used.
RESULTS: Maternal serum vitamin E levels were normal in pPROM cases. Cord blood telomere length was more in pPROM than controls (428.99 ± 290.65 vs 322.35 ± 180.33) (p value 0.05). Cord blood mtDNA copy number was more in pPROM than controls (516.46 ± 443.55 vs 384.77 ± 328.27) (p value 0.13) though it was not significant. mtDNA copy number had negative correlation with Vit. E levels but it was statistically not significant (p value 0.49). There was no association of vitamin E levels with telomere length (p value 0.95).
INTERPRETATION AND CONCLUSION: pPROM was not associated with vitamin E deficiency. There was insignificant oxidative stress in cord blood as measured by mtDNA copy number but cord blood telomere length measurement did not detect any oxidative stress in pPPROM cases.
Additional Links: PMID-36879937
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36879937,
year = {2023},
author = {Kumari, R and Suneja, A and Mehndiratta, M and Guleria, K and Malik, R},
title = {Maternal Serum Vitamin E Levels and its Association with Cord Blood Telomere Length and Mitochondrial DNA Copy Number in Preterm Premature Rupture of Membranes.},
journal = {Journal of obstetrics and gynaecology of India},
volume = {73},
number = {1},
pages = {9-14},
pmid = {36879937},
issn = {0971-9202},
abstract = {BACKGROUND AND OBJECTIVE: Oxidative stress is one of the pathophysiological factors of pPROM and Vit. E being antioxidant may have preventive role. Study was conducted to estimate maternal serum vitamin E levels and cord blood oxidative stress markers in pPROM cases.
METHODS: This was a case-control study including 40 pPROM cases and 40 controls. Maternal serum vitamin E levels were measured at recruitment. Cord blood was collected at delivery for estimation of telomere length and mtDNA copy number as oxidative stress markers. Levels were compared using student's t test or Mann Whitney test. For correlation Pearson coefficient was used.
RESULTS: Maternal serum vitamin E levels were normal in pPROM cases. Cord blood telomere length was more in pPROM than controls (428.99 ± 290.65 vs 322.35 ± 180.33) (p value 0.05). Cord blood mtDNA copy number was more in pPROM than controls (516.46 ± 443.55 vs 384.77 ± 328.27) (p value 0.13) though it was not significant. mtDNA copy number had negative correlation with Vit. E levels but it was statistically not significant (p value 0.49). There was no association of vitamin E levels with telomere length (p value 0.95).
INTERPRETATION AND CONCLUSION: pPROM was not associated with vitamin E deficiency. There was insignificant oxidative stress in cord blood as measured by mtDNA copy number but cord blood telomere length measurement did not detect any oxidative stress in pPPROM cases.},
}
RevDate: 2023-03-06
Association of germline variants in telomere maintenance genes (POT1, TERF2IP, ACD, and TERT) with spitzoid morphology in familial melanoma: A multi-center case series.
JAAD international, 11:43-51.
BACKGROUND: Spitzoid morphology in familial melanoma has been associated with germline variants in POT1, a telomere maintenance gene (TMG), suggesting a link between telomere biology and spitzoid differentiation.
OBJECTIVE: To assess if familial melanoma cases associated with germline variants in TMG (POT1, ACD, TERF2IP, and TERT) commonly exhibit spitzoid morphology.
METHODS: In this case series, melanomas were classified as having spitzoid morphology if at least 3 of 4 dermatopathologists reported this finding in ≥25% of tumor cells. Logistic regression was used to calculate odds ratios (OR) of spitzoid morphology compared to familial melanomas from unmatched noncarriers that were previously reviewed by a National Cancer Institute dermatopathologist.
RESULTS: Spitzoid morphology was observed in 77% (23 of 30), 75% (3 of 4), 50% (2 of 4), and 50% (1 of 2) of melanomas from individuals with germline variants in POT1, TERF2IP, ACD, and TERT, respectively. Compared to noncarriers (n = 139 melanomas), POT1 carriers (OR = 225.1, 95% confidence interval: 51.7-980.5; P < .001) and individuals with TERF2IP, ACD, and TERT variants (OR = 82.4, 95% confidence interval: 21.3-494.6; P < .001) had increased odds of spitzoid morphology.
LIMITATIONS: Findings may not be generalizable to nonfamilial melanoma cases.
CONCLUSION: Spitzoid morphology in familial melanoma could suggest germline alteration of TMG.
Additional Links: PMID-36876055
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36876055,
year = {2023},
author = {Goldstein, AM and Qin, R and Chu, EY and Elder, DE and Massi, D and Adams, DJ and Harms, PW and Robles-Espinoza, CD and Newton-Bishop, JA and Bishop, DT and Harland, M and Holland, EA and Cust, AE and Schmid, H and Mann, GJ and Puig, S and Potrony, M and Alos, L and Nagore, E and Millán-Esteban, D and Hayward, NK and Broit, N and Palmer, JM and Nathan, V and Berry, EG and Astiazaran-Symonds, E and Yang, XR and Tucker, MA and Landi, MT and Pfeiffer, RM and Sargen, MR},
title = {Association of germline variants in telomere maintenance genes (POT1, TERF2IP, ACD, and TERT) with spitzoid morphology in familial melanoma: A multi-center case series.},
journal = {JAAD international},
volume = {11},
number = {},
pages = {43-51},
pmid = {36876055},
issn = {2666-3287},
abstract = {BACKGROUND: Spitzoid morphology in familial melanoma has been associated with germline variants in POT1, a telomere maintenance gene (TMG), suggesting a link between telomere biology and spitzoid differentiation.
OBJECTIVE: To assess if familial melanoma cases associated with germline variants in TMG (POT1, ACD, TERF2IP, and TERT) commonly exhibit spitzoid morphology.
METHODS: In this case series, melanomas were classified as having spitzoid morphology if at least 3 of 4 dermatopathologists reported this finding in ≥25% of tumor cells. Logistic regression was used to calculate odds ratios (OR) of spitzoid morphology compared to familial melanomas from unmatched noncarriers that were previously reviewed by a National Cancer Institute dermatopathologist.
RESULTS: Spitzoid morphology was observed in 77% (23 of 30), 75% (3 of 4), 50% (2 of 4), and 50% (1 of 2) of melanomas from individuals with germline variants in POT1, TERF2IP, ACD, and TERT, respectively. Compared to noncarriers (n = 139 melanomas), POT1 carriers (OR = 225.1, 95% confidence interval: 51.7-980.5; P < .001) and individuals with TERF2IP, ACD, and TERT variants (OR = 82.4, 95% confidence interval: 21.3-494.6; P < .001) had increased odds of spitzoid morphology.
LIMITATIONS: Findings may not be generalizable to nonfamilial melanoma cases.
CONCLUSION: Spitzoid morphology in familial melanoma could suggest germline alteration of TMG.},
}
RevDate: 2023-03-06
Causal relationship between atrial fibrillation and leukocyte telomere length: A two sample, bidirectional Mendelian randomization study.
Frontiers in cardiovascular medicine, 10:1093255.
BACKGROUND: Atrial fibrillation (AF) is an age-related disease, while telomeres play a central role in aging. But the relationship between AF and telomere length (LTL) is still controversial. This study aims to examine the potential causal association between AF and LTL by using Mendelian randomization (MR).
METHODS: Bidirectional two-sample MR, expression and protein quantitative trait loci (eQTL and pQTL)-based MR were performed using genetic variants from United Kingdom Biobank, FinnGen, and a meta-analysis study, which comprised nearly 1 million participants in the Atrial Fibrillation Study and 470,000 participants in the Telomere Length Study. Apart from the inverse variance weighted (IVW) approach as the main MR analysis, complementary analysis approaches and sensitivity analysis were applied.
RESULTS: The forward MR revealed a significant causal estimate for the genetically predicted AF with LTL shortening [IVW: odds ratio (OR) = 0.989, p = 0.007; eQTL-IVW: OR = 0.988, p = 0.005; pQTL-IVW: OR = 0.975, p < 0.005]. But in the reverse MR analysis, genetically predicted LTL has no significant correlation with AF (IVW: OR = 0.995, p = 0.916; eQTL-IVW: OR = 0.999, p = 0.995; pQTL-IVW: OR = 1.055, p = 0.570). The FinnGen replication data yielded similar findings. Sensitivity analysis ensured the stability of the results.
CONCLUSION: The presence of AF leads to LTL shortening rather than the other way around. Aggressive intervention for AF may delay the telomere attrition.
Additional Links: PMID-36873417
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36873417,
year = {2023},
author = {Sha, Z and Hou, T and Zhou, T and Dai, Y and Bao, Y and Jin, Q and Ye, J and Lu, Y and Wu, L},
title = {Causal relationship between atrial fibrillation and leukocyte telomere length: A two sample, bidirectional Mendelian randomization study.},
journal = {Frontiers in cardiovascular medicine},
volume = {10},
number = {},
pages = {1093255},
pmid = {36873417},
issn = {2297-055X},
abstract = {BACKGROUND: Atrial fibrillation (AF) is an age-related disease, while telomeres play a central role in aging. But the relationship between AF and telomere length (LTL) is still controversial. This study aims to examine the potential causal association between AF and LTL by using Mendelian randomization (MR).
METHODS: Bidirectional two-sample MR, expression and protein quantitative trait loci (eQTL and pQTL)-based MR were performed using genetic variants from United Kingdom Biobank, FinnGen, and a meta-analysis study, which comprised nearly 1 million participants in the Atrial Fibrillation Study and 470,000 participants in the Telomere Length Study. Apart from the inverse variance weighted (IVW) approach as the main MR analysis, complementary analysis approaches and sensitivity analysis were applied.
RESULTS: The forward MR revealed a significant causal estimate for the genetically predicted AF with LTL shortening [IVW: odds ratio (OR) = 0.989, p = 0.007; eQTL-IVW: OR = 0.988, p = 0.005; pQTL-IVW: OR = 0.975, p < 0.005]. But in the reverse MR analysis, genetically predicted LTL has no significant correlation with AF (IVW: OR = 0.995, p = 0.916; eQTL-IVW: OR = 0.999, p = 0.995; pQTL-IVW: OR = 1.055, p = 0.570). The FinnGen replication data yielded similar findings. Sensitivity analysis ensured the stability of the results.
CONCLUSION: The presence of AF leads to LTL shortening rather than the other way around. Aggressive intervention for AF may delay the telomere attrition.},
}
RevDate: 2023-03-04
The interplay between telomeric complex members and BCR::ABL1 oncogenic tyrosine kinase in the maintenance of telomere length in chronic myeloid leukemia.
Journal of cancer research and clinical oncology [Epub ahead of print].
PURPOSE: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by recurrent genetic aberration in leukemic stem cells, namely Philadelphia chromosome caused by reciprocal translocation t(9;22)(q34;q11). In our study, we analyzed the telomeric complex expression and function in the molecular pathogenesis of CML.
METHODS: We employed CD34+ primary leukemic cells, comprising both leukemic stem and progenitor cell populations, isolated from peripheral blood or bone marrow of CML patients in chronic and blastic phase to analyze the telomere length and telomeric-associated proteins.
RESULTS: The reduction in telomere length during disease progression was correlated with increased expression of BCR::ABL1 transcript and the dynamic changes were neither associated with the enzymatic activity of telomerase nor with gene copy number and expression of telomerase subunits. Increased expression of BCR::ABL1 was positively correlated with expression of TRF2, RAP1, TPP1, DKC1, TNKS1, and TNKS2 genes.
CONCLUSIONS: The dynamics of telomere length changes in CD34+ CML cells is dependent on the expression level of BCR::ABL, which promotes the expression of certain shelterins including RAP1 and TRF2, as well as TNKS, and TNKS2, and results in telomere shortening regardless of telomerase activity. Our results may allow better understanding of the mechanisms responsible for the genomic instability of leukemic cells and CML progression.
Additional Links: PMID-36871092
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36871092,
year = {2023},
author = {Deręgowska, A and Pępek, M and Solarska, I and Machnicki, MM and Pruszczyk, K and Dudziński, M and Niesiobędzka-Krężel, J and Seferyńska, I and Sawicki, W and Wnuk, M and Stokłosa, T},
title = {The interplay between telomeric complex members and BCR::ABL1 oncogenic tyrosine kinase in the maintenance of telomere length in chronic myeloid leukemia.},
journal = {Journal of cancer research and clinical oncology},
volume = {},
number = {},
pages = {},
pmid = {36871092},
issn = {1432-1335},
abstract = {PURPOSE: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by recurrent genetic aberration in leukemic stem cells, namely Philadelphia chromosome caused by reciprocal translocation t(9;22)(q34;q11). In our study, we analyzed the telomeric complex expression and function in the molecular pathogenesis of CML.
METHODS: We employed CD34+ primary leukemic cells, comprising both leukemic stem and progenitor cell populations, isolated from peripheral blood or bone marrow of CML patients in chronic and blastic phase to analyze the telomere length and telomeric-associated proteins.
RESULTS: The reduction in telomere length during disease progression was correlated with increased expression of BCR::ABL1 transcript and the dynamic changes were neither associated with the enzymatic activity of telomerase nor with gene copy number and expression of telomerase subunits. Increased expression of BCR::ABL1 was positively correlated with expression of TRF2, RAP1, TPP1, DKC1, TNKS1, and TNKS2 genes.
CONCLUSIONS: The dynamics of telomere length changes in CD34+ CML cells is dependent on the expression level of BCR::ABL, which promotes the expression of certain shelterins including RAP1 and TRF2, as well as TNKS, and TNKS2, and results in telomere shortening regardless of telomerase activity. Our results may allow better understanding of the mechanisms responsible for the genomic instability of leukemic cells and CML progression.},
}
RevDate: 2023-03-03
Telomere attrition and genomic instability in unexplained recurrent pregnancy loss in humans: A preliminary study.
Mutation research. Genetic toxicology and environmental mutagenesis, 886:503580.
Genome instability is defined as an elevated rate of DNA damage and mutations as a result of exposure to potential direct and indirect mutagens. This current investigation was designed to elucidate the genomic instability among couples experiencing unexplained recurrent pregnancy loss (uRPL). A cohort of 1272 individuals with history of unexplained RPL with normal karyotype was retrospectively screened for levels of intracellular ROS production, baseline genomic instability and telomere functionality. The experimental outcome was compared with 728 fertile control individuals. In this study, it was perceived that individuals with uRPL exhibited higher intracellular oxidative stress, along with higher basal levels of genomic instability as compared with the fertile controls. This observation elucidates the role of genomic instability as well as involvement of telomeres in cases of uRPL. It was also observed that higher oxidative stress might be associated with DNA damage and telomere dysfunction resulting in genomic instability among subjects with unexplained RPL. This study highlighted the assessment of genomic instability status in individuals experiencing uRPL.
Additional Links: PMID-36868694
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36868694,
year = {2023},
author = {Chakraborty, A and Roy, S and Hande, MP and Banerjee, B},
title = {Telomere attrition and genomic instability in unexplained recurrent pregnancy loss in humans: A preliminary study.},
journal = {Mutation research. Genetic toxicology and environmental mutagenesis},
volume = {886},
number = {},
pages = {503580},
doi = {10.1016/j.mrgentox.2022.503580},
pmid = {36868694},
issn = {1879-3592},
abstract = {Genome instability is defined as an elevated rate of DNA damage and mutations as a result of exposure to potential direct and indirect mutagens. This current investigation was designed to elucidate the genomic instability among couples experiencing unexplained recurrent pregnancy loss (uRPL). A cohort of 1272 individuals with history of unexplained RPL with normal karyotype was retrospectively screened for levels of intracellular ROS production, baseline genomic instability and telomere functionality. The experimental outcome was compared with 728 fertile control individuals. In this study, it was perceived that individuals with uRPL exhibited higher intracellular oxidative stress, along with higher basal levels of genomic instability as compared with the fertile controls. This observation elucidates the role of genomic instability as well as involvement of telomeres in cases of uRPL. It was also observed that higher oxidative stress might be associated with DNA damage and telomere dysfunction resulting in genomic instability among subjects with unexplained RPL. This study highlighted the assessment of genomic instability status in individuals experiencing uRPL.},
}
RevDate: 2023-03-02
PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment.
Communications biology, 6(1):234.
Telomeres are nucleoprotein structures at eukaryotic chromosome termini. Their stability is preserved by a six-protein complex named shelterin. Among these, TRF1 binds telomere duplex and assists DNA replication with mechanisms only partly clarified. Here we found that poly (ADP-ribose) polymerase 1 (PARP1) interacts and covalently PARylates TRF1 in S-phase modifying its DNA affinity. Therefore, genetic and pharmacological inhibition of PARP1 impairs the dynamic association of TRF1 and the bromodeoxyuridine incorporation at replicating telomeres. Inhibition of PARP1 also affects the recruitment of WRN and BLM helicases in TRF1 containing complexes during S-phase, triggering replication-dependent DNA-damage and telomere fragility. This work unveils an unprecedented role for PARP1 as a "surveillant" of telomere replication, which orchestrates protein dynamics at proceeding replication fork.
Additional Links: PMID-36864251
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36864251,
year = {2023},
author = {Maresca, C and Dello Stritto, A and D'Angelo, C and Petti, E and Rizzo, A and Vertecchi, E and Berardinelli, F and Bonanni, L and Sgura, A and Antoccia, A and Graziani, G and Biroccio, A and Salvati, E},
title = {PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment.},
journal = {Communications biology},
volume = {6},
number = {1},
pages = {234},
pmid = {36864251},
issn = {2399-3642},
abstract = {Telomeres are nucleoprotein structures at eukaryotic chromosome termini. Their stability is preserved by a six-protein complex named shelterin. Among these, TRF1 binds telomere duplex and assists DNA replication with mechanisms only partly clarified. Here we found that poly (ADP-ribose) polymerase 1 (PARP1) interacts and covalently PARylates TRF1 in S-phase modifying its DNA affinity. Therefore, genetic and pharmacological inhibition of PARP1 impairs the dynamic association of TRF1 and the bromodeoxyuridine incorporation at replicating telomeres. Inhibition of PARP1 also affects the recruitment of WRN and BLM helicases in TRF1 containing complexes during S-phase, triggering replication-dependent DNA-damage and telomere fragility. This work unveils an unprecedented role for PARP1 as a "surveillant" of telomere replication, which orchestrates protein dynamics at proceeding replication fork.},
}
RevDate: 2023-03-02
Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT).
Journal of Cancer, 14(3):417-433.
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Additional Links: PMID-36860927
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36860927,
year = {2023},
author = {Sun, H and Chen, G and Guo, B and Lv, S and Yuan, G},
title = {Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT).},
journal = {Journal of Cancer},
volume = {14},
number = {3},
pages = {417-433},
pmid = {36860927},
issn = {1837-9664},
abstract = {Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.},
}
RevDate: 2023-03-01
Long-term dietary DHA intervention prevents telomere attrition and lipid disturbance in telomerase-deficient male mice.
European journal of nutrition [Epub ahead of print].
PURPOSE: Previous evidence indicated anti-ageing potential of docosahexaenoic acid (DHA), but the underlying mechanism remains unclear. We investigated protective effect of DHA on telomere attrition and lipid disturbance in male mice with premature ageing caused by telomerase deficiency.
METHODS: Wild-type (WT) and fourth-generation telomerase-deficient (G4 Terc[-/-], Terc knockout, KO) male mice (C57BL/6, 2 months old) were fed control diet (WT-C and KO-C groups) or DHA-enriched diet containing 0.80% DHA by weight (WT-DHA and KO-DHA groups) for 10 months. The ageing phenotypes and metabolic level [carbon dioxide emission, oxygen consumption, and respiratory exchange ratio (RER)] were assessed at the end of the experiment. Telomere length in various tissues and the hepatic gene and protein expression for regulating lipid synthesis and lipolysis were measured. Data were tested using one- or two-factor ANOVA.
RESULTS: In KO male mice, DHA prevented weight loss, corrected high RER, and reduced fat loss. Telomere shortening was reduced by 22.3%, 25.5%, and 13.5% in heart, liver, and testes of the KO-DHA group compared with those in the KO-C group. The KO-DHA group exhibited higher gene transcription involved in glycerol-3-phosphate pathway [glycerol-3-phosphate acyltransferase (Gpat)], lower gene expression of β-oxidation [carnitine palmitoyltransferase 1a (Cpt1a)], and upregulation of proteins in lipid synthesis [mammalian target of rapamycin complex 1 (mTORC1) and sterol responsive element binding protein 1 (SREBP1)] in liver than the KO-C group.
CONCLUSION: Long-term DHA intervention attenuates telomere attrition and promotes lipid synthesis via the tuberous sclerosis complex 2 (TSC2)-mTORC1-SREBP1 pathway in KO male mice.
Additional Links: PMID-36859557
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36859557,
year = {2023},
author = {Chen, J and Wu, S and Wu, Y and Zhuang, P and Zhang, Y and Jiao, J},
title = {Long-term dietary DHA intervention prevents telomere attrition and lipid disturbance in telomerase-deficient male mice.},
journal = {European journal of nutrition},
volume = {},
number = {},
pages = {},
pmid = {36859557},
issn = {1436-6215},
abstract = {PURPOSE: Previous evidence indicated anti-ageing potential of docosahexaenoic acid (DHA), but the underlying mechanism remains unclear. We investigated protective effect of DHA on telomere attrition and lipid disturbance in male mice with premature ageing caused by telomerase deficiency.
METHODS: Wild-type (WT) and fourth-generation telomerase-deficient (G4 Terc[-/-], Terc knockout, KO) male mice (C57BL/6, 2 months old) were fed control diet (WT-C and KO-C groups) or DHA-enriched diet containing 0.80% DHA by weight (WT-DHA and KO-DHA groups) for 10 months. The ageing phenotypes and metabolic level [carbon dioxide emission, oxygen consumption, and respiratory exchange ratio (RER)] were assessed at the end of the experiment. Telomere length in various tissues and the hepatic gene and protein expression for regulating lipid synthesis and lipolysis were measured. Data were tested using one- or two-factor ANOVA.
RESULTS: In KO male mice, DHA prevented weight loss, corrected high RER, and reduced fat loss. Telomere shortening was reduced by 22.3%, 25.5%, and 13.5% in heart, liver, and testes of the KO-DHA group compared with those in the KO-C group. The KO-DHA group exhibited higher gene transcription involved in glycerol-3-phosphate pathway [glycerol-3-phosphate acyltransferase (Gpat)], lower gene expression of β-oxidation [carnitine palmitoyltransferase 1a (Cpt1a)], and upregulation of proteins in lipid synthesis [mammalian target of rapamycin complex 1 (mTORC1) and sterol responsive element binding protein 1 (SREBP1)] in liver than the KO-C group.
CONCLUSION: Long-term DHA intervention attenuates telomere attrition and promotes lipid synthesis via the tuberous sclerosis complex 2 (TSC2)-mTORC1-SREBP1 pathway in KO male mice.},
}
RevDate: 2023-03-01
Relationship between common telomere length-related genetic variations, telomere length and risk of anti-tuberculosis drug-induced hepatotoxicity in Chinese Han population: As assessed for causality using the updated RUCAM.
Fundamental & clinical pharmacology [Epub ahead of print].
OBJECTIVE: Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is a significant threat to tuberculosis control, and two recent studies indicated leukocyte telomere length (LTL) might be a potential biomarker for ATDH. This study aimed to investigate the relationship between common telomere length-related genetic variations, LTL and risk of ATDH in Eastern Chinese anti-tuberculosis treatment patients.
METHODS: A 1:4 matched case-control study was conducted among 79 ATDH cases assessed for causality using the updated RUCAM and 316 controls. LTL was determined by quantitative real-time PCR, and nine SNPs involved in telomere biology reported by previous GWAS were assessed. Conditional logistic regression model was used to estimate the association between genotypes and risk of ATDH with odds ratios (ORs) and 95% confidence intervals (CIs).
RESULTS: The average RUCAM score of cases was 7.1. The average LTL in cases was significantly shorter than that in controls (median=1.239 vs. 1.481, P=0.032). Differences in the distribution of LTL were statistically significant among three genotypes of SNP rs2736098 (CC vs. CT vs. TT, median=1.544 vs. 1.356 vs. 1.337, P=0.026) and rs2853677 (AA vs. AG vs. GG, median=1.511 vs. 1.544 vs. 1.159, P=0.005) in TERT. SNP rs7675998 in NAF1 was statistically associated with the risk of ATDH under the dominant model (adjusted OR=1.725, 95%CI: 1.021-2.913, P=0.042).
CONCLUSIONS: This is the first study to investigate the relationship of LTL, common telomere length-related variations, and risk of ATDH. SNP rs2736098 and rs2853677 in TERT were significantly associated with LTL, and SNP rs7675998 in NAF1 may be associated with ATDH in Chinese population.
Additional Links: PMID-36855016
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36855016,
year = {2023},
author = {Chen, X and Hao, Z and Pan, H and Liu, W and Lu, L and Zhang, M and He, X and Yi, H and Tang, S},
title = {Relationship between common telomere length-related genetic variations, telomere length and risk of anti-tuberculosis drug-induced hepatotoxicity in Chinese Han population: As assessed for causality using the updated RUCAM.},
journal = {Fundamental & clinical pharmacology},
volume = {},
number = {},
pages = {},
doi = {10.1111/fcp.12885},
pmid = {36855016},
issn = {1472-8206},
abstract = {OBJECTIVE: Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is a significant threat to tuberculosis control, and two recent studies indicated leukocyte telomere length (LTL) might be a potential biomarker for ATDH. This study aimed to investigate the relationship between common telomere length-related genetic variations, LTL and risk of ATDH in Eastern Chinese anti-tuberculosis treatment patients.
METHODS: A 1:4 matched case-control study was conducted among 79 ATDH cases assessed for causality using the updated RUCAM and 316 controls. LTL was determined by quantitative real-time PCR, and nine SNPs involved in telomere biology reported by previous GWAS were assessed. Conditional logistic regression model was used to estimate the association between genotypes and risk of ATDH with odds ratios (ORs) and 95% confidence intervals (CIs).
RESULTS: The average RUCAM score of cases was 7.1. The average LTL in cases was significantly shorter than that in controls (median=1.239 vs. 1.481, P=0.032). Differences in the distribution of LTL were statistically significant among three genotypes of SNP rs2736098 (CC vs. CT vs. TT, median=1.544 vs. 1.356 vs. 1.337, P=0.026) and rs2853677 (AA vs. AG vs. GG, median=1.511 vs. 1.544 vs. 1.159, P=0.005) in TERT. SNP rs7675998 in NAF1 was statistically associated with the risk of ATDH under the dominant model (adjusted OR=1.725, 95%CI: 1.021-2.913, P=0.042).
CONCLUSIONS: This is the first study to investigate the relationship of LTL, common telomere length-related variations, and risk of ATDH. SNP rs2736098 and rs2853677 in TERT were significantly associated with LTL, and SNP rs7675998 in NAF1 may be associated with ATDH in Chinese population.},
}
RevDate: 2023-02-28
Independent and Joint Association of Leukocyte Telomere Length and Lifestyle Score With Incident Stroke.
Additional Links: PMID-36852686
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36852686,
year = {2023},
author = {Zhang, H and Lai, X and Fang, Q and Ma, L and Liu, M and Yang, H and Guo, W and He, M and Yang, L and Zhang, X},
title = {Independent and Joint Association of Leukocyte Telomere Length and Lifestyle Score With Incident Stroke.},
journal = {Stroke},
volume = {},
number = {},
pages = {},
doi = {10.1161/STROKEAHA.122.041126},
pmid = {36852686},
issn = {1524-4628},
}
RevDate: 2023-02-28
Subchronic Low-Dose Methylmercury Exposure Accelerated Cerebral Telomere Shortening in Relevant with Declined Urinary aMT6s Level in Rats.
Toxics, 11(2): pii:toxics11020191.
Methylmercury (MeHg) is a global pollutant with established toxic effects on the central nervous system (CNS). However, early events and early-warning biomarkers of CNS damage following exposure to low-dose MeHg are still lacking. This study aimed to investigate whether subchronic low-dose MeHg exposure had adverse effects on the cerebral telomere length, as well as serum melatonin and its urinary metabolite 6-sulfatoxymelatonin (aMT6s) in rats. Sixteen male Sprague Dawley rats were divided into two groups. Group I was the control group. In group II, rats were exposed to MeHg by gavage at a dose of 0.1 mg/kg/day for 3 months. This study revealed that MeHg exposure resulted in impairment of learning and memory ability, a slightly reduced number of neurons and an irregular arrangement of neurons in the hippocampus. It also significantly accelerated telomere shortening in the cerebral cortex, hippocampus and hypothalamus. Moreover, MeHg exposure decreased the levels of melatonin in serum and aMT6s in urine, partly by suppressing the synthesis of 5-hydroxytryptamine (5-HT) in the brain but promoted the expression of melatonin-catalyzing AANAT and ASMT. Importantly, cerebral telomere length was positively correlated with MT and aMT6s after MeHg exposure. These results suggested that the shortened telomere length in the brain may be an early event in MeHg-induced CNS toxicity, and the level of aMT6s in urine may serve as an early-warning biomarker for MeHg-induced CNS damage.
Additional Links: PMID-36851065
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36851065,
year = {2023},
author = {Wu, X and Li, P and Tao, J and Chen, X and Zhang, A},
title = {Subchronic Low-Dose Methylmercury Exposure Accelerated Cerebral Telomere Shortening in Relevant with Declined Urinary aMT6s Level in Rats.},
journal = {Toxics},
volume = {11},
number = {2},
pages = {},
doi = {10.3390/toxics11020191},
pmid = {36851065},
issn = {2305-6304},
abstract = {Methylmercury (MeHg) is a global pollutant with established toxic effects on the central nervous system (CNS). However, early events and early-warning biomarkers of CNS damage following exposure to low-dose MeHg are still lacking. This study aimed to investigate whether subchronic low-dose MeHg exposure had adverse effects on the cerebral telomere length, as well as serum melatonin and its urinary metabolite 6-sulfatoxymelatonin (aMT6s) in rats. Sixteen male Sprague Dawley rats were divided into two groups. Group I was the control group. In group II, rats were exposed to MeHg by gavage at a dose of 0.1 mg/kg/day for 3 months. This study revealed that MeHg exposure resulted in impairment of learning and memory ability, a slightly reduced number of neurons and an irregular arrangement of neurons in the hippocampus. It also significantly accelerated telomere shortening in the cerebral cortex, hippocampus and hypothalamus. Moreover, MeHg exposure decreased the levels of melatonin in serum and aMT6s in urine, partly by suppressing the synthesis of 5-hydroxytryptamine (5-HT) in the brain but promoted the expression of melatonin-catalyzing AANAT and ASMT. Importantly, cerebral telomere length was positively correlated with MT and aMT6s after MeHg exposure. These results suggested that the shortened telomere length in the brain may be an early event in MeHg-induced CNS toxicity, and the level of aMT6s in urine may serve as an early-warning biomarker for MeHg-induced CNS damage.},
}
RevDate: 2023-02-27
The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases.
Experimental gerontology pii:S0531-5565(23)00053-0 [Epub ahead of print].
Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.
Additional Links: PMID-36849001
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36849001,
year = {2023},
author = {Liu, S and Nong, W and Ji, L and Zhuge, X and Wei, H and Luo, M and Zhou, L and Chen, S and Zhang, S and Lei, X and Huang, H},
title = {The regulatory feedback of inflammatory signaling and telomere/telomerase complex dysfunction in chronic inflammatory diseases.},
journal = {Experimental gerontology},
volume = {},
number = {},
pages = {112132},
doi = {10.1016/j.exger.2023.112132},
pmid = {36849001},
issn = {1873-6815},
abstract = {Inflammation is believed to play a role in the progression of numerous human diseases. Research has shown that inflammation and telomeres are involved in a feedback regulatory loop: inflammation increases the rate of telomere attrition, leading to telomere dysfunction, while telomere components also participate in regulating the inflammatory response. However, the specific mechanism behind this feedback loop between inflammatory signaling and telomere/telomerase complex dysfunction has yet to be fully understood. This review presents the latest findings on this topic, with a particular focus on the detailed regulation and molecular mechanisms involved in the progression of aging, various chronic inflammatory diseases, cancers, and different stressors. Several feedback loops between inflammatory signaling and telomere/telomerase complex dysfunction, including NF-κB-TERT feedback, NF-κB-RAP1 feedback, NF-κB-TERC feedback, STAT3-TERT feedback, and p38 MAPK-shelterin complex-related gene feedback, are summarized. Understanding the latest discoveries of this feedback regulatory loop can help identify novel potential drug targets for the suppression of various inflammation-associated diseases.},
}
RevDate: 2023-02-27
A Multivitamin Mixture Protects against Oxidative Stress-Mediated Telomere Shortening.
Journal of dietary supplements [Epub ahead of print].
Telomeres are nucleotide repeat sequences located at the end of chromosomes that protect them from degradation and maintain chromosomal stability. Telomeres shorten with each cell division; hence telomere length is associated with aging and longevity. Numerous lifestyle factors have been identified that impact the rate of telomere shortening; high vitamin consumption has been associated with longer telomere length, whereas oxidative stress is associated with telomere shortening. In this paper, we sought to determine if a multivitamin mixture containing both vitamins and a blend of polyphenolic compounds, could reduce telomere shortening consequent to an oxidative stress (10 uM H2O2 for 8 weeks) in a primary fibroblast cell culture model. Under conditions of oxidative stress, the median and 20[th] percentile telomere length were significantly greater (p < 0.05), and the percentage of critically short telomeres (<3000 bp) was significantly less (p < 0.05) in cells treated with the multivitamin mixture at 4, 15 and 60 ug/ml compared to control (0 ug/ml). Median and 20[th] percentile telomere shortening rate was also reduced under the same conditions (p < 0.05). Taken together, these findings demonstrate that the multivitamin mixture protects against oxidative stress-mediated telomere shortening in cell culture, findings which may have implications in human health.
Additional Links: PMID-36847305
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36847305,
year = {2023},
author = {Levy, MA and Tian, J and Gandelman, M and Cheng, H and Tsapekos, M and Crego, SR and Maddela, R and Sinnott, R},
title = {A Multivitamin Mixture Protects against Oxidative Stress-Mediated Telomere Shortening.},
journal = {Journal of dietary supplements},
volume = {},
number = {},
pages = {1-18},
doi = {10.1080/19390211.2023.2179153},
pmid = {36847305},
issn = {1939-022X},
abstract = {Telomeres are nucleotide repeat sequences located at the end of chromosomes that protect them from degradation and maintain chromosomal stability. Telomeres shorten with each cell division; hence telomere length is associated with aging and longevity. Numerous lifestyle factors have been identified that impact the rate of telomere shortening; high vitamin consumption has been associated with longer telomere length, whereas oxidative stress is associated with telomere shortening. In this paper, we sought to determine if a multivitamin mixture containing both vitamins and a blend of polyphenolic compounds, could reduce telomere shortening consequent to an oxidative stress (10 uM H2O2 for 8 weeks) in a primary fibroblast cell culture model. Under conditions of oxidative stress, the median and 20[th] percentile telomere length were significantly greater (p < 0.05), and the percentage of critically short telomeres (<3000 bp) was significantly less (p < 0.05) in cells treated with the multivitamin mixture at 4, 15 and 60 ug/ml compared to control (0 ug/ml). Median and 20[th] percentile telomere shortening rate was also reduced under the same conditions (p < 0.05). Taken together, these findings demonstrate that the multivitamin mixture protects against oxidative stress-mediated telomere shortening in cell culture, findings which may have implications in human health.},
}
RevDate: 2023-02-27
The evolution of early-life telomere length, pace-of-life and telomere-chromosome length dynamics in birds.
Molecular ecology [Epub ahead of print].
Telomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early-life telomere length is an evolutionary labile trait across 57 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomeres are significantly shorter in fast-lived than in slow-lived species, suggesting that telomere length may have evolved to mediate trade-offs between physiological requirements underlying the diversity of pace-of-life strategies in birds. This association was attenuated when excluding studies that may include interstitial telomeres in the estimation of mean telomere length. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the hypothesis that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early-life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 31 bird species. These associations were strengthened when excluding highly influential outliers. However, sensitivity analyses suggested that they were susceptible to sample size effects and not robust to the exclusion of studies that may include interstitial telomeres. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10-fold variation in telomere lengths observed among birds.
Additional Links: PMID-36847070
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36847070,
year = {2023},
author = {Pepke, ML and Ringsby, TH and Eisenberg, DTA},
title = {The evolution of early-life telomere length, pace-of-life and telomere-chromosome length dynamics in birds.},
journal = {Molecular ecology},
volume = {},
number = {},
pages = {},
doi = {10.1111/mec.16907},
pmid = {36847070},
issn = {1365-294X},
abstract = {Telomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early-life telomere length is an evolutionary labile trait across 57 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomeres are significantly shorter in fast-lived than in slow-lived species, suggesting that telomere length may have evolved to mediate trade-offs between physiological requirements underlying the diversity of pace-of-life strategies in birds. This association was attenuated when excluding studies that may include interstitial telomeres in the estimation of mean telomere length. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the hypothesis that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early-life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 31 bird species. These associations were strengthened when excluding highly influential outliers. However, sensitivity analyses suggested that they were susceptible to sample size effects and not robust to the exclusion of studies that may include interstitial telomeres. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10-fold variation in telomere lengths observed among birds.},
}
RevDate: 2023-02-27
Telomeres cooperate in zygotic genome activation by affecting DUX4/Dux transcription.
iScience, 26(3):106158.
Zygotic genome activation (ZGA) is initiated once the genome chromatin state is organized in the newly formed zygote. Telomeres are specialized chromatin structures at the ends of chromosomes and are reset during early embryogenesis, while the details and significance of telomere changes in preimplantation embryos remain unclear. We demonstrated that the telomere length was shortened in the minor ZGA stage and significantly elongated in the major ZGA stage of human and mouse embryos. Expression of the ZGA pioneer factor DUX4/Dux was negatively correlated with the telomere length. ATAC sequencing data revealed that the chromatin accessibility peaks on the DUX4 promoter region (i.e., the subtelomere of chromosome 4q) were transiently augmented in human minor ZGA. Reduction of telomeric heterochromatin H3K9me3 in the telomeric region also synergistically activated DUX4 expression with p53 in human embryonic stem cells. We propose herein that telomeres regulate the expression of DUX4/Dux through chromatin remodeling and are thereby involved in ZGA.
Additional Links: PMID-36843839
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36843839,
year = {2023},
author = {Zhang, X and Zhang, C and Zhou, D and Zhang, T and Chen, X and Ren, J and He, C and Meng, F and Zhou, Q and Yang, Q and Dai, C and Lin, G and Zeng, S and Leng, L},
title = {Telomeres cooperate in zygotic genome activation by affecting DUX4/Dux transcription.},
journal = {iScience},
volume = {26},
number = {3},
pages = {106158},
pmid = {36843839},
issn = {2589-0042},
abstract = {Zygotic genome activation (ZGA) is initiated once the genome chromatin state is organized in the newly formed zygote. Telomeres are specialized chromatin structures at the ends of chromosomes and are reset during early embryogenesis, while the details and significance of telomere changes in preimplantation embryos remain unclear. We demonstrated that the telomere length was shortened in the minor ZGA stage and significantly elongated in the major ZGA stage of human and mouse embryos. Expression of the ZGA pioneer factor DUX4/Dux was negatively correlated with the telomere length. ATAC sequencing data revealed that the chromatin accessibility peaks on the DUX4 promoter region (i.e., the subtelomere of chromosome 4q) were transiently augmented in human minor ZGA. Reduction of telomeric heterochromatin H3K9me3 in the telomeric region also synergistically activated DUX4 expression with p53 in human embryonic stem cells. We propose herein that telomeres regulate the expression of DUX4/Dux through chromatin remodeling and are thereby involved in ZGA.},
}
RevDate: 2023-02-25
Telomere Length as a New Risk Marker of Early-Onset Colorectal Cancer.
International journal of molecular sciences, 24(4): pii:ijms24043526.
Early-onset colorectal cancer (EOCRC; age younger than 50 years) incidence has been steadily increasing in recent decades worldwide. The need for new biomarkers for EOCRC prevention strategies is undeniable. In this study, we aimed to explore whether an aging factor, such as telomere length (TL), could be a useful tool in EOCRC screening. The absolute leukocyte TL from 87 microsatellite stable EOCRC patients and 109 healthy controls (HC) with the same range of age, was quantified by Real Time Quantitative PCR (RT-qPCR). Then, leukocyte whole-exome sequencing (WES) was performed to study the status of the genes involved in TL maintenance (hTERT, TERC, DKC1, TERF1, TERF2, TERF2IP, TINF2, ACD, and POT1) in 70 sporadic EOCRC cases from the original cohort. We observed that TL was significantly shorter in EOCRC patients than in healthy individuals (EOCRC mean: 122 kb vs. HC mean: 296 kb; p < 0.001), suggesting that telomeric shortening could be associated with EOCRC susceptibility. In addition, we found a significant association between several SNPs of hTERT (rs79662648), POT1 (rs76436625, rs10263573, rs3815221, rs7794637, rs7784168, rs4383910, and rs7782354), TERF2 (rs251796 and rs344152214), and TERF2IP (rs7205764) genes and the risk of developing EOCRC. We consider that the measurement of germline TL and the status analysis of telomere maintenance related genes polymorphisms at early ages could be non-invasive methods that could facilitate the early identification of individuals at risk of developing EOCRC.
Additional Links: PMID-36834938
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36834938,
year = {2023},
author = {Martel-Martel, A and Corchete, LA and Martí, M and Vidal-Tocino, R and Hurtado, E and Álvaro, E and Jiménez, F and Jiménez-Toscano, M and Balaguer, F and Sanz, G and López, I and Hernández-Villafranca, S and Ballestero, A and Vivas, A and Melone, S and Pastor, C and Brandáriz, L and Gómez-Marcos, MA and Cruz-Hernández, JJ and Perea, J and González-Sarmiento, R},
title = {Telomere Length as a New Risk Marker of Early-Onset Colorectal Cancer.},
journal = {International journal of molecular sciences},
volume = {24},
number = {4},
pages = {},
doi = {10.3390/ijms24043526},
pmid = {36834938},
issn = {1422-0067},
abstract = {Early-onset colorectal cancer (EOCRC; age younger than 50 years) incidence has been steadily increasing in recent decades worldwide. The need for new biomarkers for EOCRC prevention strategies is undeniable. In this study, we aimed to explore whether an aging factor, such as telomere length (TL), could be a useful tool in EOCRC screening. The absolute leukocyte TL from 87 microsatellite stable EOCRC patients and 109 healthy controls (HC) with the same range of age, was quantified by Real Time Quantitative PCR (RT-qPCR). Then, leukocyte whole-exome sequencing (WES) was performed to study the status of the genes involved in TL maintenance (hTERT, TERC, DKC1, TERF1, TERF2, TERF2IP, TINF2, ACD, and POT1) in 70 sporadic EOCRC cases from the original cohort. We observed that TL was significantly shorter in EOCRC patients than in healthy individuals (EOCRC mean: 122 kb vs. HC mean: 296 kb; p < 0.001), suggesting that telomeric shortening could be associated with EOCRC susceptibility. In addition, we found a significant association between several SNPs of hTERT (rs79662648), POT1 (rs76436625, rs10263573, rs3815221, rs7794637, rs7784168, rs4383910, and rs7782354), TERF2 (rs251796 and rs344152214), and TERF2IP (rs7205764) genes and the risk of developing EOCRC. We consider that the measurement of germline TL and the status analysis of telomere maintenance related genes polymorphisms at early ages could be non-invasive methods that could facilitate the early identification of individuals at risk of developing EOCRC.},
}
RevDate: 2023-02-25
Short Telomere Lesions with Dysplastic Metaplasia Histology May Represent Precancerous Lesions of Helicobacter pylori-Positive Gastric Mucosa.
International journal of molecular sciences, 24(4): pii:ijms24043182.
Gastric cancers are strongly associated with Helicobacter pylori infection, with intestinal metaplasia characterizing the background mucosa in most cases. However, only a subset of intestinal metaplasia cases proceed to carcinogenesis, and the characteristics of high-risk intestinal metaplasia that link it with gastric cancer are still unclear. We examined telomere reduction in five gastrectomy specimens using fluorescence in situ hybridization, and identified areas with localized telomere loss (outside of cancerous lesions), which were designated as short telomere lesions (STLs). Histological analyses indicated that STLs were characteristic of intestinal metaplasia accompanied by nuclear enlargement but lacking structural atypia, which we termed dysplastic metaplasia (DM). A review of gastric biopsy specimens from 587 H. pylori-positive patients revealed 32 cases of DM, 13 of which were classified as high-grade based on the degree of nuclear enlargement. All high-grade DM cases exhibited a telomere volume reduced to less than 60% of that of lymphocytes, increased stemness, and telomerase reverse transcriptase (TERT) expression. Two patients (15%) exhibited low levels of p53 nuclear retention. After a 10-year follow-up, 7 (54%) of the high-grade DM cases had progressed to gastric cancer. These results suggest that DM is characterized by telomere shortening, TERT expression, and stem cell proliferation, and high-grade DM is a high-grade intestinal metaplasia that likely represents a precancerous lesion of gastric cancer. High-grade DM is expected to effectively prevent progression to gastric cancer in H. pylori-positive patients.
Additional Links: PMID-36834592
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36834592,
year = {2023},
author = {Fujiwara-Tani, R and Takagi, T and Mori, S and Kishi, S and Nishiguchi, Y and Sasaki, T and Ikeda, M and Nagai, K and Bhawal, UK and Ohmori, H and Fujii, K and Kuniyasu, H},
title = {Short Telomere Lesions with Dysplastic Metaplasia Histology May Represent Precancerous Lesions of Helicobacter pylori-Positive Gastric Mucosa.},
journal = {International journal of molecular sciences},
volume = {24},
number = {4},
pages = {},
doi = {10.3390/ijms24043182},
pmid = {36834592},
issn = {1422-0067},
abstract = {Gastric cancers are strongly associated with Helicobacter pylori infection, with intestinal metaplasia characterizing the background mucosa in most cases. However, only a subset of intestinal metaplasia cases proceed to carcinogenesis, and the characteristics of high-risk intestinal metaplasia that link it with gastric cancer are still unclear. We examined telomere reduction in five gastrectomy specimens using fluorescence in situ hybridization, and identified areas with localized telomere loss (outside of cancerous lesions), which were designated as short telomere lesions (STLs). Histological analyses indicated that STLs were characteristic of intestinal metaplasia accompanied by nuclear enlargement but lacking structural atypia, which we termed dysplastic metaplasia (DM). A review of gastric biopsy specimens from 587 H. pylori-positive patients revealed 32 cases of DM, 13 of which were classified as high-grade based on the degree of nuclear enlargement. All high-grade DM cases exhibited a telomere volume reduced to less than 60% of that of lymphocytes, increased stemness, and telomerase reverse transcriptase (TERT) expression. Two patients (15%) exhibited low levels of p53 nuclear retention. After a 10-year follow-up, 7 (54%) of the high-grade DM cases had progressed to gastric cancer. These results suggest that DM is characterized by telomere shortening, TERT expression, and stem cell proliferation, and high-grade DM is a high-grade intestinal metaplasia that likely represents a precancerous lesion of gastric cancer. High-grade DM is expected to effectively prevent progression to gastric cancer in H. pylori-positive patients.},
}
RevDate: 2023-02-25
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion.
International journal of molecular sciences, 24(4): pii:ijms24043179.
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.
Additional Links: PMID-36834587
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36834587,
year = {2023},
author = {Deng, S and Yang, M and Su, J and Cui, N and Wu, S and Zhang, G and Wang, L and Hou, Y and Chai, Y and Yu, B},
title = {Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion.},
journal = {International journal of molecular sciences},
volume = {24},
number = {4},
pages = {},
doi = {10.3390/ijms24043179},
pmid = {36834587},
issn = {1422-0067},
abstract = {The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.},
}
RevDate: 2023-02-25
Telomere Length, a New Biomarker of Male (in)Fertility? A Systematic Review of the Literature.
Genes, 14(2): pii:genes14020425.
Male factors are suspected in around half cases of infertility, of which up to 40% are diagnosed as idiopathic. In the context of a continuously increased resort to ART and increased decline of semen parameters, it is of greatest interest to evaluate an additional potential biomarker of sperm quality. According to PRISMA guidelines, this systematic review of the literature selected studies evaluating telomere length in sperm and/or in leukocytes as a potential male fertility biomarker. Twenty-two publications (3168 participants) were included in this review of experimental evidence. For each study, authors determined if there was a correlation between telomere length and semen parameters or fertility outcomes. Of the 13 studies concerning sperm telomere length (STL) and semen parameters, ten found an association between short STL and altered parameters. Concerning the impact of STL on ART results, the data are conflicting. However, eight of the 13 included studies about fertility found significantly longer sperm telomeres in fertile men than in infertile men. In leukocytes, the seven studies reported conflicting findings. Shorter sperm telomeres appear to be associated with altered semen parameters or male infertility. Telomere length may be considered as a new molecular marker of spermatogenesis and sperm quality, and thus is related to male fertility potential. However, additional studies are needed to define the place of the STL in the assessment of individual fertility.
Additional Links: PMID-36833352
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36833352,
year = {2023},
author = {Fattet, AJ and Chaillot, M and Koscinski, I},
title = {Telomere Length, a New Biomarker of Male (in)Fertility? A Systematic Review of the Literature.},
journal = {Genes},
volume = {14},
number = {2},
pages = {},
doi = {10.3390/genes14020425},
pmid = {36833352},
issn = {2073-4425},
abstract = {Male factors are suspected in around half cases of infertility, of which up to 40% are diagnosed as idiopathic. In the context of a continuously increased resort to ART and increased decline of semen parameters, it is of greatest interest to evaluate an additional potential biomarker of sperm quality. According to PRISMA guidelines, this systematic review of the literature selected studies evaluating telomere length in sperm and/or in leukocytes as a potential male fertility biomarker. Twenty-two publications (3168 participants) were included in this review of experimental evidence. For each study, authors determined if there was a correlation between telomere length and semen parameters or fertility outcomes. Of the 13 studies concerning sperm telomere length (STL) and semen parameters, ten found an association between short STL and altered parameters. Concerning the impact of STL on ART results, the data are conflicting. However, eight of the 13 included studies about fertility found significantly longer sperm telomeres in fertile men than in infertile men. In leukocytes, the seven studies reported conflicting findings. Shorter sperm telomeres appear to be associated with altered semen parameters or male infertility. Telomere length may be considered as a new molecular marker of spermatogenesis and sperm quality, and thus is related to male fertility potential. However, additional studies are needed to define the place of the STL in the assessment of individual fertility.},
}
RevDate: 2023-02-25
Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road.
Genes, 14(2): pii:genes14020348.
Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.
Additional Links: PMID-36833275
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36833275,
year = {2023},
author = {Barnes, RP and Thosar, SA and Opresko, PL},
title = {Telomere Fragility and MiDAS: Managing the Gaps at the End of the Road.},
journal = {Genes},
volume = {14},
number = {2},
pages = {},
doi = {10.3390/genes14020348},
pmid = {36833275},
issn = {2073-4425},
support = {R35ES030396/NH/NIH HHS/United States ; K99ES033771/NH/NIH HHS/United States ; R01CA207342/NH/NIH HHS/United States ; },
abstract = {Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.},
}
RevDate: 2023-02-25
Association of Telomere Length with Colorectal Cancer Risk and Prognosis: A Systematic Review and Meta-Analysis.
Cancers, 15(4): pii:cancers15041159.
(1) Background: Colorectal cancer risk and survival have previously been associated with telomere length in peripheral blood leukocytes and tumor tissue. A systematic review and meta-analysis of the literature was conducted. The PubMed, Embase, and Web of Science databases were searched through March 2022. (2) Methods: Relevant studies were identified through database searching following PRISMA guidelines. Risk estimates were extracted from identified studies; meta-analyses were conducted using random effects models. (3) Results: Fourteen studies were identified (eight on risk; six on survival) through systematic review. While no association was observed between circulating leukocyte telomere length and the risk of colorectal cancer [overall OR (95% CI) = 1.01 (0.82-1.24)], a worse survival for those with shorter telomeres in leukocytes and longer telomeres in tumor tissues was observed [Quartile1/Quartile2-4 overall HR (95% CI) = 1.41 (0.26-7.59) and 0.82 (0.69-0.98), respectively]. (4) Conclusions: Although there was no association with colorectal cancer risk, a poorer survival was observed among those with shorter leukocyte telomere length. Future larger studies evaluating a potentially non-linear relationship between telomeres and colorectal cancer are needed.
Additional Links: PMID-36831502
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36831502,
year = {2023},
author = {Pauleck, S and Sinnott, JA and Zheng, YL and Gadalla, SM and Viskochil, R and Haaland, B and Cawthon, RM and Hoffmeister, A and Hardikar, S},
title = {Association of Telomere Length with Colorectal Cancer Risk and Prognosis: A Systematic Review and Meta-Analysis.},
journal = {Cancers},
volume = {15},
number = {4},
pages = {},
doi = {10.3390/cancers15041159},
pmid = {36831502},
issn = {2072-6694},
abstract = {(1) Background: Colorectal cancer risk and survival have previously been associated with telomere length in peripheral blood leukocytes and tumor tissue. A systematic review and meta-analysis of the literature was conducted. The PubMed, Embase, and Web of Science databases were searched through March 2022. (2) Methods: Relevant studies were identified through database searching following PRISMA guidelines. Risk estimates were extracted from identified studies; meta-analyses were conducted using random effects models. (3) Results: Fourteen studies were identified (eight on risk; six on survival) through systematic review. While no association was observed between circulating leukocyte telomere length and the risk of colorectal cancer [overall OR (95% CI) = 1.01 (0.82-1.24)], a worse survival for those with shorter telomeres in leukocytes and longer telomeres in tumor tissues was observed [Quartile1/Quartile2-4 overall HR (95% CI) = 1.41 (0.26-7.59) and 0.82 (0.69-0.98), respectively]. (4) Conclusions: Although there was no association with colorectal cancer risk, a poorer survival was observed among those with shorter leukocyte telomere length. Future larger studies evaluating a potentially non-linear relationship between telomeres and colorectal cancer are needed.},
}
RevDate: 2023-02-25
Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review.
Biomedicines, 11(2): pii:biomedicines11020598.
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Additional Links: PMID-36831134
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36831134,
year = {2023},
author = {Hernández-Álvarez, D and Rosado-Pérez, J and Gavia-García, G and Arista-Ugalde, TL and Aguiñiga-Sánchez, I and Santiago-Osorio, E and Mendoza-Núñez, VM},
title = {Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review.},
journal = {Biomedicines},
volume = {11},
number = {2},
pages = {},
doi = {10.3390/biomedicines11020598},
pmid = {36831134},
issn = {2227-9059},
abstract = {Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.},
}
RevDate: 2023-02-25
Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast.
Biomolecules, 13(2): pii:biom13020370.
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Additional Links: PMID-36830739
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36830739,
year = {2023},
author = {Ueno, M},
title = {Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast.},
journal = {Biomolecules},
volume = {13},
number = {2},
pages = {},
doi = {10.3390/biom13020370},
pmid = {36830739},
issn = {2218-273X},
abstract = {The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.},
}
RevDate: 2023-02-25
Telomere Length and Telomerase Activity of Granulosa Cells and Follicular Fluid in Women Undergoing In Vitro Fertilization.
Antioxidants (Basel, Switzerland), 12(2): pii:antiox12020419.
This study aimed to evaluate the interrelationship between telomere length, telomerase activity and oxidative DNA damage in patients undergoing in vitro fertilization (IVF). This single-center, observational clinical study comprised 102 unselected, consecutive patients with various infertility diagnoses. Granulosa cells (GCs) and follicular fluid (FF) were analyzed simultaneously for telomere functions and for the marker of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine (8-OHdG). An Absolute Human Telomere Lengths Quantification qPCR Assay kit and Telomerase Activity Quantification qPCR Assay kit (Nucleotestbio, Budapest, Hungary), as well as an 8-OHdG ELISA kit (Abbexa Ltd., Cambridge, United Kingdom) were used for analyses. Similar telomere lengths were found in GCs and FF, however telomerase activity was markedly depressed, while 8-OHdG levels were markedly elevated in FF compared with those in GCs (p < 0.01). Telomere lengths were independent of telomerase activity both in GCs and FF. However, GC 8-OHdG was inversely related to telomerase activity in GCs and FF (p < 0.05). Importantly, 8-OHdG levels both in GCs and FF had significant negative impact on the number of the retrieved and MII oocytes (p < 0.01), whereas FF 8-OHdG was negatively related further to the number of fertilized oocytes and blastocysts (p < 0.01). In conclusion, we could not confirm the direct association of telomere function and reproductive potential. However, oxidative DNA damage, as mainly reflected by 8-OHdG, adversely affected early markers of IVF outcome and clinical pregnancies.
Additional Links: PMID-36829978
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36829978,
year = {2023},
author = {Péntek, S and Várnagy, Á and Farkas, B and Mauchart, P and Gödöny, K and Varjas, T and Kőszegi, T and Kaltenecker, P and Jakabfi-Csepregi, R and Kovács, K and Bódis, J and Sulyok, E},
title = {Telomere Length and Telomerase Activity of Granulosa Cells and Follicular Fluid in Women Undergoing In Vitro Fertilization.},
journal = {Antioxidants (Basel, Switzerland)},
volume = {12},
number = {2},
pages = {},
doi = {10.3390/antiox12020419},
pmid = {36829978},
issn = {2076-3921},
abstract = {This study aimed to evaluate the interrelationship between telomere length, telomerase activity and oxidative DNA damage in patients undergoing in vitro fertilization (IVF). This single-center, observational clinical study comprised 102 unselected, consecutive patients with various infertility diagnoses. Granulosa cells (GCs) and follicular fluid (FF) were analyzed simultaneously for telomere functions and for the marker of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine (8-OHdG). An Absolute Human Telomere Lengths Quantification qPCR Assay kit and Telomerase Activity Quantification qPCR Assay kit (Nucleotestbio, Budapest, Hungary), as well as an 8-OHdG ELISA kit (Abbexa Ltd., Cambridge, United Kingdom) were used for analyses. Similar telomere lengths were found in GCs and FF, however telomerase activity was markedly depressed, while 8-OHdG levels were markedly elevated in FF compared with those in GCs (p < 0.01). Telomere lengths were independent of telomerase activity both in GCs and FF. However, GC 8-OHdG was inversely related to telomerase activity in GCs and FF (p < 0.05). Importantly, 8-OHdG levels both in GCs and FF had significant negative impact on the number of the retrieved and MII oocytes (p < 0.01), whereas FF 8-OHdG was negatively related further to the number of fertilized oocytes and blastocysts (p < 0.01). In conclusion, we could not confirm the direct association of telomere function and reproductive potential. However, oxidative DNA damage, as mainly reflected by 8-OHdG, adversely affected early markers of IVF outcome and clinical pregnancies.},
}
RevDate: 2023-02-24
Boosting NAD ameliorates hematopoietic impairment linked to short telomeres in vivo.
GeroScience [Epub ahead of print].
Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert[-/-]) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert[-/-] mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert[-/-] hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert[-/-] transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.
Additional Links: PMID-36826621
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36826621,
year = {2023},
author = {Stock, AJ and Ayyar, S and Kashyap, A and Wang, Y and Yanai, H and Starost, MF and Tanaka-Yano, M and Bodogai, M and Sun, C and Wang, Y and Gong, Y and Puligilla, C and Fang, EF and Bohr, VA and Liu, Y and Beerman, I},
title = {Boosting NAD ameliorates hematopoietic impairment linked to short telomeres in vivo.},
journal = {GeroScience},
volume = {},
number = {},
pages = {},
pmid = {36826621},
issn = {2509-2723},
support = {Intramural Funding/AG/NIA NIH HHS/United States ; },
abstract = {Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert[-/-]) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert[-/-] mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert[-/-] hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert[-/-] transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.},
}
RevDate: 2023-02-22
When does early-life telomere length predict survival? A case study and meta-analysis.
Molecular ecology [Epub ahead of print].
Suboptimal conditions during development can shorten telomeres, the protective DNA caps on the end of chromosomes. Shorter early-life telomere length (TL) can indicate reduced somatic maintenance, leading to lower survival and shorter lifespan. However, despite some clear evidence, not all studies show a relationship between early-life TL and survival or lifespan, which may be due to differences in biology or study design (e.g., survival period measured). In superb fairy-wrens (Malurus cyaneus), we assessed whether early-life TL predicts mortality across different life-history stages (fledgling, juvenile, adult). However, in contrast to a similar study on a congener, early-life TL did not predict mortality across any life stage in this species. We then performed a meta-analysis including 32 effect sizes from 23 studies (15 birds and 3 mammals) to quantify the effect of early-life TL on mortality whilst taking into consideration potential sources of biological and methodological variation. Overall, the effect of early-life TL on mortality was significant, corresponding to a 15% reduction in mortality risk with each standard deviation increase in TL. However, the effect became weaker when correcting for publication bias. Contrary to our predictions, there was no evidence that effects of early-life TL on mortality varied with species lifespan or the period over which survival was measured. However, negative effects of early-life TL on mortality risk were pervasive throughout life. These results imply that effects of early-life TL on mortality are more likely context-dependent rather than age-dependent, although substantial power and publication bias issues highlight the need for more research.
Additional Links: PMID-36811398
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36811398,
year = {2023},
author = {Eastwood, JR and Dupoué, A and Delhey, K and Verhulst, S and Cockburn, A and Peters, A},
title = {When does early-life telomere length predict survival? A case study and meta-analysis.},
journal = {Molecular ecology},
volume = {},
number = {},
pages = {},
doi = {10.1111/mec.16894},
pmid = {36811398},
issn = {1365-294X},
abstract = {Suboptimal conditions during development can shorten telomeres, the protective DNA caps on the end of chromosomes. Shorter early-life telomere length (TL) can indicate reduced somatic maintenance, leading to lower survival and shorter lifespan. However, despite some clear evidence, not all studies show a relationship between early-life TL and survival or lifespan, which may be due to differences in biology or study design (e.g., survival period measured). In superb fairy-wrens (Malurus cyaneus), we assessed whether early-life TL predicts mortality across different life-history stages (fledgling, juvenile, adult). However, in contrast to a similar study on a congener, early-life TL did not predict mortality across any life stage in this species. We then performed a meta-analysis including 32 effect sizes from 23 studies (15 birds and 3 mammals) to quantify the effect of early-life TL on mortality whilst taking into consideration potential sources of biological and methodological variation. Overall, the effect of early-life TL on mortality was significant, corresponding to a 15% reduction in mortality risk with each standard deviation increase in TL. However, the effect became weaker when correcting for publication bias. Contrary to our predictions, there was no evidence that effects of early-life TL on mortality varied with species lifespan or the period over which survival was measured. However, negative effects of early-life TL on mortality risk were pervasive throughout life. These results imply that effects of early-life TL on mortality are more likely context-dependent rather than age-dependent, although substantial power and publication bias issues highlight the need for more research.},
}
RevDate: 2023-02-22
From shortening telomeres to replicative crisis.
Nature reviews. Molecular cell biology [Epub ahead of print].
Additional Links: PMID-36810772
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36810772,
year = {2023},
author = {Strzyz, P},
title = {From shortening telomeres to replicative crisis.},
journal = {Nature reviews. Molecular cell biology},
volume = {},
number = {},
pages = {},
pmid = {36810772},
issn = {1471-0080},
}
RevDate: 2023-02-22
Folic acid protects against age-associated apoptosis and telomere attrition of neural stem cells in senescence-accelerated mouse prone 8.
Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme [Epub ahead of print].
Folic acid (FA) could improve cognitive performances and attenuate brain cell injury in the aging brain, FA supplementation is also associated with inhibiting neural stem cells (NSCs) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups (n=15). Fifteen age-matched senescence-accelerated mouse resistant 1 (SAMR1) (Con-R) were used as the standard aging control group, feeding the FA-normal diet. After folic acid treatment 6-month, all mice were sacrificed. NSCs apoptosis, proliferation, oxidative damage and telomere length have been evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSCs apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be interpreted by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms that FA inhibiting age-associated NSCs apoptosis by alleviating telomere length shortening.
Additional Links: PMID-36809211
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36809211,
year = {2023},
author = {Li, Z and Cai, K and Sun, Y and Zhou, D and Yan, J and Luo, S and Huang, G and Gao, Y and Li, W},
title = {Folic acid protects against age-associated apoptosis and telomere attrition of neural stem cells in senescence-accelerated mouse prone 8.},
journal = {Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme},
volume = {},
number = {},
pages = {},
doi = {10.1139/apnm-2022-0111},
pmid = {36809211},
issn = {1715-5320},
abstract = {Folic acid (FA) could improve cognitive performances and attenuate brain cell injury in the aging brain, FA supplementation is also associated with inhibiting neural stem cells (NSCs) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups (n=15). Fifteen age-matched senescence-accelerated mouse resistant 1 (SAMR1) (Con-R) were used as the standard aging control group, feeding the FA-normal diet. After folic acid treatment 6-month, all mice were sacrificed. NSCs apoptosis, proliferation, oxidative damage and telomere length have been evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSCs apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be interpreted by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms that FA inhibiting age-associated NSCs apoptosis by alleviating telomere length shortening.},
}
RevDate: 2023-02-22
A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells.
Nature communications, 14(1):939.
Alternative Lengthening of Telomeres (ALT) is an aberrant DNA recombination pathway which grants replicative immortality to approximately 10% of all cancers. Despite this high prevalence of ALT in cancer, the mechanism and genetics by which cells activate this pathway remain incompletely understood. A major challenge in dissecting the events that initiate ALT is the extremely low frequency of ALT induction in human cell systems. Guided by the genetic lesions that have been associated with ALT from cancer sequencing studies, we genetically engineered primary human pluripotent stem cells to deterministically induce ALT upon differentiation. Using this genetically defined system, we demonstrate that disruption of the p53 and Rb pathways in combination with ATRX loss-of-function is sufficient to induce all hallmarks of ALT and results in functional immortalization in a cell type-specific manner. We further demonstrate that ALT can be induced in the presence of telomerase, is neither dependent on telomere shortening nor crisis, but is rather driven by continuous telomere instability triggered by the induction of differentiation in ATRX-deficient stem cells.
Additional Links: PMID-36805596
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36805596,
year = {2023},
author = {Turkalo, TK and Maffia, A and Schabort, JJ and Regalado, SG and Bhakta, M and Blanchette, M and Spierings, DCJ and Lansdorp, PM and Hockemeyer, D},
title = {A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells.},
journal = {Nature communications},
volume = {14},
number = {1},
pages = {939},
pmid = {36805596},
issn = {2041-1723},
abstract = {Alternative Lengthening of Telomeres (ALT) is an aberrant DNA recombination pathway which grants replicative immortality to approximately 10% of all cancers. Despite this high prevalence of ALT in cancer, the mechanism and genetics by which cells activate this pathway remain incompletely understood. A major challenge in dissecting the events that initiate ALT is the extremely low frequency of ALT induction in human cell systems. Guided by the genetic lesions that have been associated with ALT from cancer sequencing studies, we genetically engineered primary human pluripotent stem cells to deterministically induce ALT upon differentiation. Using this genetically defined system, we demonstrate that disruption of the p53 and Rb pathways in combination with ATRX loss-of-function is sufficient to induce all hallmarks of ALT and results in functional immortalization in a cell type-specific manner. We further demonstrate that ALT can be induced in the presence of telomerase, is neither dependent on telomere shortening nor crisis, but is rather driven by continuous telomere instability triggered by the induction of differentiation in ATRX-deficient stem cells.},
}
RevDate: 2023-02-22
Relationship between telomere shortening and early subjective depressive symptoms and cognitive complaints in older adults.
Aging, 15: pii:204533 [Epub ahead of print].
Telomere length (TL) has been reported to be associated with depression and cognitive impairment in elderly. Early detection of depression and cognitive impairment is important to delay disease progression. Therefore, we aimed to identify whether TL is associated with early subjective depressive symptoms and cognitive complaints among healthy elderly subjects. This study was a multicenter, outcome assessor-blinded, 24-week, randomized controlled trial (RCT). Measurement of questionnaire and physical activity scores and blood sample analyses were performed at baseline and after six months of follow-up in all study participants. Linear regression analyses were performed to identify whether early subjective depressive symptoms, cognitive complaints, and several blood biomarkers are associated with TL. Altogether, 137 relatively healthy elderly individuals (60-79 years old) were enrolled in this prospective RCT. We observed an approximate decrease of 0.06 and 0.11-0.14 kbps of TL per one point increase in the geriatric depression scale and cognitive complaint interview scores, respectively, at baseline and after six months of follow-up. We also found an approximate decrease of 0.08-0.09 kbps of TL per one point increase in interleukin (IL)-6 levels at baseline and after six months of follow-up. Our study showed that both early subjective depressive symptoms and cognitive complaints were associated with a relatively shorter TL in relatively healthy elderly individuals. In addition, based on our findings, we believe that IL-6 plays an important role in the relationship between shortening TL and early subjective depressive symptoms and cognitive complaints.
Additional Links: PMID-36805537
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36805537,
year = {2023},
author = {Han, MH and Lee, EH and Park, HH and Choi, SH and Koh, SH},
title = {Relationship between telomere shortening and early subjective depressive symptoms and cognitive complaints in older adults.},
journal = {Aging},
volume = {15},
number = {},
pages = {},
doi = {10.18632/aging.204533},
pmid = {36805537},
issn = {1945-4589},
abstract = {Telomere length (TL) has been reported to be associated with depression and cognitive impairment in elderly. Early detection of depression and cognitive impairment is important to delay disease progression. Therefore, we aimed to identify whether TL is associated with early subjective depressive symptoms and cognitive complaints among healthy elderly subjects. This study was a multicenter, outcome assessor-blinded, 24-week, randomized controlled trial (RCT). Measurement of questionnaire and physical activity scores and blood sample analyses were performed at baseline and after six months of follow-up in all study participants. Linear regression analyses were performed to identify whether early subjective depressive symptoms, cognitive complaints, and several blood biomarkers are associated with TL. Altogether, 137 relatively healthy elderly individuals (60-79 years old) were enrolled in this prospective RCT. We observed an approximate decrease of 0.06 and 0.11-0.14 kbps of TL per one point increase in the geriatric depression scale and cognitive complaint interview scores, respectively, at baseline and after six months of follow-up. We also found an approximate decrease of 0.08-0.09 kbps of TL per one point increase in interleukin (IL)-6 levels at baseline and after six months of follow-up. Our study showed that both early subjective depressive symptoms and cognitive complaints were associated with a relatively shorter TL in relatively healthy elderly individuals. In addition, based on our findings, we believe that IL-6 plays an important role in the relationship between shortening TL and early subjective depressive symptoms and cognitive complaints.},
}
RevDate: 2023-02-17
ZBP1 Mediates Replicative Crisis through Telomere-to-Mitochondria Signaling.
Cancer discovery pii:716620 [Epub ahead of print].
ZBP1 is a major regulator of replicative crisis, which activates an innate immune response.
Additional Links: PMID-36799570
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36799570,
year = {2023},
author = {},
title = {ZBP1 Mediates Replicative Crisis through Telomere-to-Mitochondria Signaling.},
journal = {Cancer discovery},
volume = {},
number = {},
pages = {OF1},
doi = {10.1158/2159-8290.CD-RW2023-026},
pmid = {36799570},
issn = {2159-8290},
abstract = {ZBP1 is a major regulator of replicative crisis, which activates an innate immune response.},
}
RevDate: 2023-02-17
Association between genetically predicted leukocyte telomere length and non-scarring alopecia: A two-sample Mendelian randomization study.
Frontiers in immunology, 13:1072573.
BACKGROUND: The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear.
METHODS: A two-sample Mendelian randomization (MR) analysis was performed to evaluate the causality between genetically predicted LTL and the risk of non-scarring alopecia. MR analyses were performed using the inverse variance-weighted (IVW) method and complemented with other MR methods.
RESULTS: The summary statistics of the genome-wide association studies (GWAS) for AGA and AA were obtained from the FinnGen biobank, which included 119,185 and 211,428 individuals, respectively. A total of 126 single nucleotide polymorphisms (SNPs) with genome-wide significance were selected as the instrumental variables for LTL. The MR analyses suggested a causal relationship between LTL and AGA, and the risk of AGA increased by 3.19 times as the genetically predicted LTL was shortened by one standard deviation in log transformed form under the IVW method (OR = 4.19, 95% CI = 1.20-14.61, p = 0.024). The other MR methods also demonstrated a similar trend of the effect of LTL on AGA. There was no causal relationship between LTL and AA (p > 0.05). Sensitivity analyses further demonstrated that the current results were less likely to be affected by confounders and bias.
CONCLUSION: Our results suggested a potential causal relationship between LTL and AGA, and shortened LTL was associated with an increased risk of AGA.
Additional Links: PMID-36798520
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36798520,
year = {2022},
author = {Li, Y and Yang, S and Liao, M and Zheng, Z and Li, M and Wei, X and Liu, M and Yang, L},
title = {Association between genetically predicted leukocyte telomere length and non-scarring alopecia: A two-sample Mendelian randomization study.},
journal = {Frontiers in immunology},
volume = {13},
number = {},
pages = {1072573},
pmid = {36798520},
issn = {1664-3224},
abstract = {BACKGROUND: The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear.
METHODS: A two-sample Mendelian randomization (MR) analysis was performed to evaluate the causality between genetically predicted LTL and the risk of non-scarring alopecia. MR analyses were performed using the inverse variance-weighted (IVW) method and complemented with other MR methods.
RESULTS: The summary statistics of the genome-wide association studies (GWAS) for AGA and AA were obtained from the FinnGen biobank, which included 119,185 and 211,428 individuals, respectively. A total of 126 single nucleotide polymorphisms (SNPs) with genome-wide significance were selected as the instrumental variables for LTL. The MR analyses suggested a causal relationship between LTL and AGA, and the risk of AGA increased by 3.19 times as the genetically predicted LTL was shortened by one standard deviation in log transformed form under the IVW method (OR = 4.19, 95% CI = 1.20-14.61, p = 0.024). The other MR methods also demonstrated a similar trend of the effect of LTL on AGA. There was no causal relationship between LTL and AA (p > 0.05). Sensitivity analyses further demonstrated that the current results were less likely to be affected by confounders and bias.
CONCLUSION: Our results suggested a potential causal relationship between LTL and AGA, and shortened LTL was associated with an increased risk of AGA.},
}
RevDate: 2023-02-17
Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance.
bioRxiv : the preprint server for biology pii:2023.02.10.528023.
Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following homology-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.
Additional Links: PMID-36798426
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36798426,
year = {2023},
author = {Li, F and Wang, Y and Hwang, I and Jang, JY and Xu, L and Deng, Z and Yu, EY and Cai, Y and Wu, C and Han, Z and Huang, YH and Huang, X and Zhang, L and Yao, J and Lue, NF and Lieberman, PM and Ying, H and Paik, J and Zheng, H},
title = {Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
doi = {10.1101/2023.02.10.528023},
pmid = {36798426},
abstract = {Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance. Mechanistically, we demonstrate that KDM2A is required for dissolution of the ALT-specific telomere clusters following homology-directed telomere DNA synthesis. We show that KDM2A promotes de-clustering of ALT multitelomeres through facilitating isopeptidase SENP6-mediated SUMO deconjugation at telomeres. Inactivation of KDM2A or SENP6 impairs post-recombination telomere de-SUMOylation and thus dissolution of ALT telomere clusters, leading to gross chromosome missegregation and mitotic cell death. These findings together establish KDM2A as a selective molecular vulnerability and a promising drug target for ALT-dependent cancers.},
}
RevDate: 2023-02-16
[Interaction of polycyclic aromatic hydrocarbon DNA adducts and telomere length on missed abortion].
Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 57(2):193-199.
Objective: To analyze the contribution and interaction of polycyclic aromatic hydrocarbons (PAH)-DNA adducts and changes of telomere length (TL) on missed abortion. Methods: From March to December 2019, patients with missed abortion in the First Hospital of Shanxi Medical University and pregnant women with normal pregnancy but voluntary abortion in the same department during the same period were selected and divided into a case group and a control group. Questionnaire was used to investigate the general situation and the pregnancy situation of the subjects. The abortion villi were collected and the content of PAH-DNA adducts and TL was detected. Logistic regression model was used to analyze the associated factors of missed abortion. R epiR package and Mediation package were used to analyze the effect and relationship between PAH-DNA adducts and TL on missed abortion. Results: The age of the subjects was(29.92±5.69)years old. The M(Q1,Q3)of PAH-DNA adducts was 453.75(404.61, 504.72) pg/ml. The M(Q1,Q3)of TL was 1.21(0.77, 1.72). The content of PAH-DNA adducts in the case group was higher than that in the control group (Z=-2.10, P=0.036), while the TL was lower than that in the control group (Z=-4.05, P<0.001). Multivariate logistic regression showed that low, medium and high levels of PAH-DNA adducts (OR=3.17,95%CI:1.41-7.14;OR=2.85,95%CI:1.25-6.52;OR=2.46,95%CI:1.07-5.64), and long, medium and short levels of TL (OR=2.50,95%CI:1.11-5.63;OR=3.32,95%CI:1.45-7.56;OR=3.22,95%CI:1.42-7.26) were all risk factors for missed abortion. The medium level of PAH-DNA adducts had a 2.76-fold higher risk of shortened TL than those with the lowest level, and no mediating role of TL was found. The stratified analysis showed that when the TL level was longer (>1.21), the low and high levels of PAH-DNA adducts were associated with missed abortion (all P<0.05); when the TL level was shorter (<1.21), the medium level of PAH-DNA adducts was associated with abortion (P=0.025). At lower levels of PAH-DNA adducts, no effect of TL on missed abortion was observed, while, at higher levels, TL was strongly associated with missed abortion (OR=7.50,95%CI:1.95-28.82;OR=6.04,95%CI:1.54-23.65;OR=9.05,95%CI:2.34-35.04). The interaction analysis found that the AP was 0.72 (95%CI: 0.46-0.99), and the SI was 5.21 (95%CI: 2.30-11.77). Conclusion: The high level of PAH-DNA adducts and shortened TL may increase the risk of missed abortion, and there may be a positive additive interaction between the two factors on missed abortion.
Additional Links: PMID-36797576
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36797576,
year = {2023},
author = {Han, M and Liu, S and Ji, JR and Wu, YF and Chang, KW and Zhang, JY and Wei, JN},
title = {[Interaction of polycyclic aromatic hydrocarbon DNA adducts and telomere length on missed abortion].},
journal = {Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]},
volume = {57},
number = {2},
pages = {193-199},
doi = {10.3760/cma.j.cn112150-20220322-00274},
pmid = {36797576},
issn = {0253-9624},
abstract = {Objective: To analyze the contribution and interaction of polycyclic aromatic hydrocarbons (PAH)-DNA adducts and changes of telomere length (TL) on missed abortion. Methods: From March to December 2019, patients with missed abortion in the First Hospital of Shanxi Medical University and pregnant women with normal pregnancy but voluntary abortion in the same department during the same period were selected and divided into a case group and a control group. Questionnaire was used to investigate the general situation and the pregnancy situation of the subjects. The abortion villi were collected and the content of PAH-DNA adducts and TL was detected. Logistic regression model was used to analyze the associated factors of missed abortion. R epiR package and Mediation package were used to analyze the effect and relationship between PAH-DNA adducts and TL on missed abortion. Results: The age of the subjects was(29.92±5.69)years old. The M(Q1,Q3)of PAH-DNA adducts was 453.75(404.61, 504.72) pg/ml. The M(Q1,Q3)of TL was 1.21(0.77, 1.72). The content of PAH-DNA adducts in the case group was higher than that in the control group (Z=-2.10, P=0.036), while the TL was lower than that in the control group (Z=-4.05, P<0.001). Multivariate logistic regression showed that low, medium and high levels of PAH-DNA adducts (OR=3.17,95%CI:1.41-7.14;OR=2.85,95%CI:1.25-6.52;OR=2.46,95%CI:1.07-5.64), and long, medium and short levels of TL (OR=2.50,95%CI:1.11-5.63;OR=3.32,95%CI:1.45-7.56;OR=3.22,95%CI:1.42-7.26) were all risk factors for missed abortion. The medium level of PAH-DNA adducts had a 2.76-fold higher risk of shortened TL than those with the lowest level, and no mediating role of TL was found. The stratified analysis showed that when the TL level was longer (>1.21), the low and high levels of PAH-DNA adducts were associated with missed abortion (all P<0.05); when the TL level was shorter (<1.21), the medium level of PAH-DNA adducts was associated with abortion (P=0.025). At lower levels of PAH-DNA adducts, no effect of TL on missed abortion was observed, while, at higher levels, TL was strongly associated with missed abortion (OR=7.50,95%CI:1.95-28.82;OR=6.04,95%CI:1.54-23.65;OR=9.05,95%CI:2.34-35.04). The interaction analysis found that the AP was 0.72 (95%CI: 0.46-0.99), and the SI was 5.21 (95%CI: 2.30-11.77). Conclusion: The high level of PAH-DNA adducts and shortened TL may increase the risk of missed abortion, and there may be a positive additive interaction between the two factors on missed abortion.},
}
RevDate: 2023-02-16
Telomere-to-telomere assembly of diploid chromosomes with Verkko.
Nature biotechnology [Epub ahead of print].
The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.
Additional Links: PMID-36797493
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36797493,
year = {2023},
author = {Rautiainen, M and Nurk, S and Walenz, BP and Logsdon, GA and Porubsky, D and Rhie, A and Eichler, EE and Phillippy, AM and Koren, S},
title = {Telomere-to-telomere assembly of diploid chromosomes with Verkko.},
journal = {Nature biotechnology},
volume = {},
number = {},
pages = {},
pmid = {36797493},
issn = {1546-1696},
abstract = {The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph by integrating ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.},
}
RevDate: 2023-02-15
CmpDate: 2023-02-15
Large-Scale Analysis of the Association between Air Pollutants and Leucocyte Telomere Length in the UK Biobank.
Environmental health perspectives, 131(2):27701.
Additional Links: PMID-36779965
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36779965,
year = {2023},
author = {Bountziouka, V and Hansell, AL and Nelson, CP and Codd, V and Samani, NJ},
title = {Large-Scale Analysis of the Association between Air Pollutants and Leucocyte Telomere Length in the UK Biobank.},
journal = {Environmental health perspectives},
volume = {131},
number = {2},
pages = {27701},
pmid = {36779965},
issn = {1552-9924},
mesh = {*Air Pollutants ; Biological Specimen Banks ; Telomere ; United Kingdom ; Leukocytes ; },
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Air Pollutants
Biological Specimen Banks
Telomere
United Kingdom
Leukocytes
RevDate: 2023-02-14
Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis.
Horticulture research, 10(2):uhac264.
Kiwifruit is an economically and nutritionally important fruit crop with extremely high contents of vitamin C. However, the previously released versions of kiwifruit genomes all have a mass of unanchored or missing regions. Here, we report a highly continuous and completely gap-free reference genome of Actinidia chinensis cv. 'Hongyang', named Hongyang v4.0, which is the first to achieve two de novo haploid-resolved haplotypes, HY4P and HY4A. HY4P and HY4A have a total length of 606.1 and 599.6 Mb, respectively, with almost the entire telomeres and centromeres assembled in each haplotype. In comparison with Hongyang v3.0, the integrity and contiguity of Hongyang v4.0 is markedly improved by filling all unclosed gaps and correcting some misoriented regions, resulting in ~38.6-39.5 Mb extra sequences, which might affect 4263 and 4244 protein-coding genes in HY4P and HY4A, respectively. Furthermore, our gap-free genome assembly provides the first clue for inspecting the structure and function of centromeres. Globally, centromeric regions are characterized by higher-order repeats that mainly consist of a 153-bp conserved centromere-specific monomer (Ach-CEN153) with different copy numbers among chromosomes. Functional enrichment analysis of the genes located within centromeric regions demonstrates that chromosome centromeres may not only play physical roles for linking a pair of sister chromatids, but also have genetic features for participation in the regulation of cell division. The availability of the telomere-to-telomere and gap-free Hongyang v4.0 reference genome lays a solid foundation not only for illustrating genome structure and functional genomics studies but also for facilitating kiwifruit breeding and improvement.
Additional Links: PMID-36778189
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36778189,
year = {2023},
author = {Yue, J and Chen, Q and Wang, Y and Zhang, L and Ye, C and Wang, X and Cao, S and Lin, Y and Huang, W and Xian, H and Qin, H and Wang, Y and Zhang, S and Wu, Y and Wang, S and Yue, Y and Liu, Y},
title = {Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis.},
journal = {Horticulture research},
volume = {10},
number = {2},
pages = {uhac264},
pmid = {36778189},
issn = {2662-6810},
abstract = {Kiwifruit is an economically and nutritionally important fruit crop with extremely high contents of vitamin C. However, the previously released versions of kiwifruit genomes all have a mass of unanchored or missing regions. Here, we report a highly continuous and completely gap-free reference genome of Actinidia chinensis cv. 'Hongyang', named Hongyang v4.0, which is the first to achieve two de novo haploid-resolved haplotypes, HY4P and HY4A. HY4P and HY4A have a total length of 606.1 and 599.6 Mb, respectively, with almost the entire telomeres and centromeres assembled in each haplotype. In comparison with Hongyang v3.0, the integrity and contiguity of Hongyang v4.0 is markedly improved by filling all unclosed gaps and correcting some misoriented regions, resulting in ~38.6-39.5 Mb extra sequences, which might affect 4263 and 4244 protein-coding genes in HY4P and HY4A, respectively. Furthermore, our gap-free genome assembly provides the first clue for inspecting the structure and function of centromeres. Globally, centromeric regions are characterized by higher-order repeats that mainly consist of a 153-bp conserved centromere-specific monomer (Ach-CEN153) with different copy numbers among chromosomes. Functional enrichment analysis of the genes located within centromeric regions demonstrates that chromosome centromeres may not only play physical roles for linking a pair of sister chromatids, but also have genetic features for participation in the regulation of cell division. The availability of the telomere-to-telomere and gap-free Hongyang v4.0 reference genome lays a solid foundation not only for illustrating genome structure and functional genomics studies but also for facilitating kiwifruit breeding and improvement.},
}
RevDate: 2023-02-14
Association between dietary vitamin C and telomere length: A cross-sectional study.
Frontiers in nutrition, 10:1025936.
BACKGROUND: Currently, telomere length is known to reflect the replication potential and longevity of cells, and many studies have reported that telomere length is associated with age-related diseases and biological aging. Studies have also shown that vitamin C acts as an oxidant and free radical scavenger to protect cells from oxidative stress and telomere wear, thus achieving anti-aging effects. At present, there are few and incomplete studies on the relationship between vitamin C and telomere length, so this study aims to explore the relationship between vitamin C and telomere length.
METHODS: This study used cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) database from 1999 to 2002, a total of 7,094 participants were selected from all races in the United States. Male participants accounted for 48.2% and female participants accounted for 51.8%. The correlation between vitamin C and telomere length was assessed using a multiple linear regression model, and the effect of dietary vitamin C on telomere length was obtained after adjusting for confounding factors such as age, gender, race, body mass index (BMI), and poverty income ratio (PIR).
RESULTS: This cross-sectional study showed that vitamin C was positively correlated with telomere length, with greater dietary vitamin C intake associated with longer telomeres (β = 0.03, 95% CI: 0.01-0.05, P = 0.003).
CONCLUSION: This study shows that vitamin C intake is positively correlated with human telomere length, which is of guiding significance for our clinical guidance on people's health care, but our study need to be confirmed by more in-depth and comprehensive other research results.
Additional Links: PMID-36776610
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36776610,
year = {2023},
author = {Cai, Y and Zhong, YD and Zhang, H and Lu, PL and Liang, YY and Hu, B and Wu, H},
title = {Association between dietary vitamin C and telomere length: A cross-sectional study.},
journal = {Frontiers in nutrition},
volume = {10},
number = {},
pages = {1025936},
pmid = {36776610},
issn = {2296-861X},
abstract = {BACKGROUND: Currently, telomere length is known to reflect the replication potential and longevity of cells, and many studies have reported that telomere length is associated with age-related diseases and biological aging. Studies have also shown that vitamin C acts as an oxidant and free radical scavenger to protect cells from oxidative stress and telomere wear, thus achieving anti-aging effects. At present, there are few and incomplete studies on the relationship between vitamin C and telomere length, so this study aims to explore the relationship between vitamin C and telomere length.
METHODS: This study used cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) database from 1999 to 2002, a total of 7,094 participants were selected from all races in the United States. Male participants accounted for 48.2% and female participants accounted for 51.8%. The correlation between vitamin C and telomere length was assessed using a multiple linear regression model, and the effect of dietary vitamin C on telomere length was obtained after adjusting for confounding factors such as age, gender, race, body mass index (BMI), and poverty income ratio (PIR).
RESULTS: This cross-sectional study showed that vitamin C was positively correlated with telomere length, with greater dietary vitamin C intake associated with longer telomeres (β = 0.03, 95% CI: 0.01-0.05, P = 0.003).
CONCLUSION: This study shows that vitamin C intake is positively correlated with human telomere length, which is of guiding significance for our clinical guidance on people's health care, but our study need to be confirmed by more in-depth and comprehensive other research results.},
}
RevDate: 2023-02-14
CmpDate: 2023-02-14
The Telomere-Telomerase System Is Detrimental to Health at High-Altitude.
International journal of environmental research and public health, 20(3):.
The hypobaric-hypoxia environment at high-altitude (HA, >2500 m) may influence DNA damage due to the production of reactive molecular species and high UV radiation. The telomere system, vital to chromosomal integrity and cellular viability, is prone to oxidative damages contributing to the severity of high-altitude disorders such as high-altitude pulmonary edema (HAPE). However, at the same time, it is suggested to sustain physical performance. This case-control study, comprising 210 HAPE-free (HAPE-f) sojourners, 183 HAPE-patients (HAPE-p) and 200 healthy highland natives (HLs) residing at ~3500 m, investigated telomere length, telomerase activity, and oxidative stress biomarkers. Fluidigm SNP genotyping screened 65 single nucleotide polymorphisms (SNPs) in 11 telomere-maintaining genes. Significance was attained at p ≤ 0.05 after adjusting for confounders and correction for multiple comparisons. Shorter telomere length, decreased telomerase activity and increased oxidative stress were observed in HAPE patients; contrarily, longer telomere length and elevated telomerase activity were observed in healthy HA natives compared to HAPE-f. Four SNPs and three haplotypes are associated with HAPE, whereas eight SNPs and nine haplotypes are associated with HA adaptation. Various gene-gene interactions and correlations between/among clinical parameters and biomarkers suggested the presence of a complex interplay underlining HAPE and HA adaptation physiology. A distinctive contribution of the telomere-telomerase system contributing to HA physiology is evident in this study. A normal telomere system may be advantageous in endurance training.
Additional Links: PMID-36767300
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36767300,
year = {2023},
author = {Pasha, Q and Rain, M and Tasnim, S and Kanipakam, H and Thinlas, T and Mohammad, G},
title = {The Telomere-Telomerase System Is Detrimental to Health at High-Altitude.},
journal = {International journal of environmental research and public health},
volume = {20},
number = {3},
pages = {},
pmid = {36767300},
issn = {1660-4601},
mesh = {Humans ; Altitude ; *Telomerase/genetics ; Case-Control Studies ; *Altitude Sickness/genetics ; Biomarkers ; Telomere/genetics ; },
abstract = {The hypobaric-hypoxia environment at high-altitude (HA, >2500 m) may influence DNA damage due to the production of reactive molecular species and high UV radiation. The telomere system, vital to chromosomal integrity and cellular viability, is prone to oxidative damages contributing to the severity of high-altitude disorders such as high-altitude pulmonary edema (HAPE). However, at the same time, it is suggested to sustain physical performance. This case-control study, comprising 210 HAPE-free (HAPE-f) sojourners, 183 HAPE-patients (HAPE-p) and 200 healthy highland natives (HLs) residing at ~3500 m, investigated telomere length, telomerase activity, and oxidative stress biomarkers. Fluidigm SNP genotyping screened 65 single nucleotide polymorphisms (SNPs) in 11 telomere-maintaining genes. Significance was attained at p ≤ 0.05 after adjusting for confounders and correction for multiple comparisons. Shorter telomere length, decreased telomerase activity and increased oxidative stress were observed in HAPE patients; contrarily, longer telomere length and elevated telomerase activity were observed in healthy HA natives compared to HAPE-f. Four SNPs and three haplotypes are associated with HAPE, whereas eight SNPs and nine haplotypes are associated with HA adaptation. Various gene-gene interactions and correlations between/among clinical parameters and biomarkers suggested the presence of a complex interplay underlining HAPE and HA adaptation physiology. A distinctive contribution of the telomere-telomerase system contributing to HA physiology is evident in this study. A normal telomere system may be advantageous in endurance training.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Altitude
*Telomerase/genetics
Case-Control Studies
*Altitude Sickness/genetics
Biomarkers
Telomere/genetics
RevDate: 2023-02-13
CmpDate: 2023-02-13
Colorectal cancer patient-derived organoids and cell lines harboring ATRX and/or DAXX mutations lack Alternative Lengthening of Telomeres (ALT).
Cell death & disease, 14(2):96.
Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT). ALT is genetically associated with somatic alterations in alpha-thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes. Cells displaying ALT present distinctive features including C-circles made of telomeric DNA, long and heterogenous telomeric tracts, and telomeric DNA co-localized with promyelocytic leukemia (PML) bodies forming so-called ALT-associated PML bodies (APBs). Here, we identified mutations in ATRX and/or DAXX genes in an extensive collection of CRC samples including 119 patient-derived organoids (PDOs) and 232 established CRC cell lines. C-circles measured in CRC PDOs and cell lines showed low levels overall. We also observed that CRC PDOs and cell lines did not display a significant accumulation of APBs or long telomeres with no appreciable differences between wild-type and mutated ATRX/DAXX samples. Overall, our extensive analyses indicate that CRC is not prone to engage ALT, even when carrying genetic lesions in ATRX and/or DAXX, and support the notion that ATRX/DAXX genomic footprints are not reliable predictors of ALT.
Additional Links: PMID-36759506
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36759506,
year = {2023},
author = {Falcinelli, M and Dell'Omo, G and Grassi, E and Mariella, E and Leto, SM and Scardellato, S and Lorenzato, A and Arena, S and Bertotti, A and Trusolino, L and Bardelli, A and d'Adda di Fagagna, F},
title = {Colorectal cancer patient-derived organoids and cell lines harboring ATRX and/or DAXX mutations lack Alternative Lengthening of Telomeres (ALT).},
journal = {Cell death & disease},
volume = {14},
number = {2},
pages = {96},
pmid = {36759506},
issn = {2041-4889},
mesh = {Humans ; X-linked Nuclear Protein/genetics/metabolism ; *Intellectual Disability ; Telomere Homeostasis/genetics ; *alpha-Thalassemia ; Co-Repressor Proteins/genetics/metabolism ; *Telomerase/genetics/metabolism ; Mutation/genetics ; Cell Line ; Telomere/genetics/metabolism ; Organoids/metabolism ; *Colorectal Neoplasms/genetics ; Molecular Chaperones/genetics/metabolism ; },
abstract = {Telomere maintenance is necessary to maintain cancer cell unlimited viability. However, the mechanisms maintaining telomere length in colorectal cancer (CRC) have not been extensively investigated. Telomere maintenance mechanisms (TMM) include the re-expression of telomerase or alternative lengthening of telomeres (ALT). ALT is genetically associated with somatic alterations in alpha-thalassemia/mental retardation X-linked (ATRX) and death domain-associated protein (DAXX) genes. Cells displaying ALT present distinctive features including C-circles made of telomeric DNA, long and heterogenous telomeric tracts, and telomeric DNA co-localized with promyelocytic leukemia (PML) bodies forming so-called ALT-associated PML bodies (APBs). Here, we identified mutations in ATRX and/or DAXX genes in an extensive collection of CRC samples including 119 patient-derived organoids (PDOs) and 232 established CRC cell lines. C-circles measured in CRC PDOs and cell lines showed low levels overall. We also observed that CRC PDOs and cell lines did not display a significant accumulation of APBs or long telomeres with no appreciable differences between wild-type and mutated ATRX/DAXX samples. Overall, our extensive analyses indicate that CRC is not prone to engage ALT, even when carrying genetic lesions in ATRX and/or DAXX, and support the notion that ATRX/DAXX genomic footprints are not reliable predictors of ALT.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
X-linked Nuclear Protein/genetics/metabolism
*Intellectual Disability
Telomere Homeostasis/genetics
*alpha-Thalassemia
Co-Repressor Proteins/genetics/metabolism
*Telomerase/genetics/metabolism
Mutation/genetics
Cell Line
Telomere/genetics/metabolism
Organoids/metabolism
*Colorectal Neoplasms/genetics
Molecular Chaperones/genetics/metabolism
RevDate: 2023-02-09
Association of telomere length and mitochondrial DNA copy number, two biomarkers of biological aging, with the risk of venous thromboembolism.
Thrombosis research, 223:168-173 pii:S0049-3848(23)00038-5 [Epub ahead of print].
BACKGROUND: Venous thromboembolism (VTE) is the third most common cardiovascular disease and occurs in all age groups, albeit the risk increases considerably with age. Previous research indicates mitochondrial dysfunction and telomere shortening in cardiovascular aging. However, in the context of VTE this has not been investigated in detail.
AIM: We aimed to explore biomarkers reflecting biological aging (i.e. human mitochondrial DNA copy number (mtDNA) and telomere length) and their association with VTE.
METHODS: mtDNA and telomere length were measured in a case-control study of 116 patients with a history of VTE and 128 age- and sex-matched healthy individuals from isolated blood using a qPCR-based assay kit. Cases had at least one unprovoked VTE event and were enrolled no earlier than 3 months after the last VTE event.
RESULTS: The mtDNA copy number was significantly lower in VTE cases compared to controls (median [IQR]: 663 per diploid cells [78.75-2204.5] vs. 2832 per diploid cells [724-4350]; p < 0.001). After adjustment for age, sex, BMI, and smoking, mtDNA copy number was independently associated with VTE risk (odds ratio per increase in 400 mtDNA per diploid cell: 0.889, 95%CI 0.834-0.947). mtDNA copy numbers were significantly different between women and men (2375 [455-3737] women vs. 893 [152-3154] men; p < 0.001). The analysis of telomere length showed no significant difference between patients and healthy controls.
CONCLUSION: Lower mtDNA levels were found in patients with VTE compared to controls, indicating an association of biological aging with risk of VTE.
Additional Links: PMID-36758285
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36758285,
year = {2023},
author = {Vostatek, R and Hohensinner, P and Nopp, S and Haider, P and Englisch, C and Pointner, J and Pabinger, I and Ay, C},
title = {Association of telomere length and mitochondrial DNA copy number, two biomarkers of biological aging, with the risk of venous thromboembolism.},
journal = {Thrombosis research},
volume = {223},
number = {},
pages = {168-173},
doi = {10.1016/j.thromres.2023.01.031},
pmid = {36758285},
issn = {1879-2472},
abstract = {BACKGROUND: Venous thromboembolism (VTE) is the third most common cardiovascular disease and occurs in all age groups, albeit the risk increases considerably with age. Previous research indicates mitochondrial dysfunction and telomere shortening in cardiovascular aging. However, in the context of VTE this has not been investigated in detail.
AIM: We aimed to explore biomarkers reflecting biological aging (i.e. human mitochondrial DNA copy number (mtDNA) and telomere length) and their association with VTE.
METHODS: mtDNA and telomere length were measured in a case-control study of 116 patients with a history of VTE and 128 age- and sex-matched healthy individuals from isolated blood using a qPCR-based assay kit. Cases had at least one unprovoked VTE event and were enrolled no earlier than 3 months after the last VTE event.
RESULTS: The mtDNA copy number was significantly lower in VTE cases compared to controls (median [IQR]: 663 per diploid cells [78.75-2204.5] vs. 2832 per diploid cells [724-4350]; p < 0.001). After adjustment for age, sex, BMI, and smoking, mtDNA copy number was independently associated with VTE risk (odds ratio per increase in 400 mtDNA per diploid cell: 0.889, 95%CI 0.834-0.947). mtDNA copy numbers were significantly different between women and men (2375 [455-3737] women vs. 893 [152-3154] men; p < 0.001). The analysis of telomere length showed no significant difference between patients and healthy controls.
CONCLUSION: Lower mtDNA levels were found in patients with VTE compared to controls, indicating an association of biological aging with risk of VTE.},
}
RevDate: 2023-02-10
Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis.
Nature [Epub ahead of print].
Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations[1,2]. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.
Additional Links: PMID-36755096
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36755096,
year = {2023},
author = {Nassour, J and Aguiar, LG and Correia, A and Schmidt, TT and Mainz, L and Przetocka, S and Haggblom, C and Tadepalle, N and Williams, A and Shokhirev, MN and Akincilar, SC and Tergaonkar, V and Shadel, GS and Karlseder, J},
title = {Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis.},
journal = {Nature},
volume = {},
number = {},
pages = {},
pmid = {36755096},
issn = {1476-4687},
abstract = {Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations[1,2]. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.},
}
RevDate: 2023-02-08
Serum testosterone and sex hormone-binding globulin are inversely associated with leucocyte telomere length in men: a cross-sectional analysis of the UK Biobank Study.
European journal of endocrinology pii:7031076 [Epub ahead of print].
OBJECTIVE: Older men on average have lower testosterone concentrations compared with younger men, and more age-related comorbidities. Whether lower testosterone concentrations contribute to biological ageing remains unclear. Shorter telomeres are a marker for biological age. We tested the hypothesis that testosterone concentrations are associated with leucocyte telomere length (LTL), in middle to older aged men.
DESIGN: Cross-sectional analysis of the UK Biobank study, involving community-dwelling men aged 40-69 years.
METHODS: Serum testosterone and sex hormone-binding globulin (SHBG) were assayed. Free testosterone was calculated (cFT). LTL was measured using Polymerase Chain Reaction. Multivariable models were used to assess associations of hormones with standardised LTL.
RESULTS: In 167,706 men, median age 58 years, adjusting for sociodemographic, lifestyle and medical factors total testosterone was inversely associated with standardised LTL, which was 0.09 longer (95% confidence interval [CI], 0.08-0.10, P < 0.001) in men with total testosterone at median of lowest quintile [Q1] vs highest [Q5]. This relationship was attenuated after additional adjustment for SHBG (0.03 longer, CI = 0.02-0.05, P = 0.003). The association between cFT and LTL was similar in direction but lower in magnitude. In multivariable analysis, SHBG was inversely associated with standardised LTL, which was 0.12 longer (CI = 0.10-0.13, P < 0.001) for SHBG at median Q1 vs Q5. Results were similar with testosterone included in the model (0.10 longer, CI = 0.08-0.12, P < 0.001).
CONCLUSIONS: Total testosterone and SHBG were independently and inversely associated with LTL. Men with higher testosterone or SHBG had shorter telomeres, arguing against a role for testosterone to slow biological ageing in men.
Additional Links: PMID-36751991
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36751991,
year = {2023},
author = {Marriott, RJ and Murray, K and Budgeon, CA and Codd, V and Hui, J and Arscott, GM and Beilby, JP and Hankey, GJ and Wittert, GA and Wu, FCW and Yeap, BB},
title = {Serum testosterone and sex hormone-binding globulin are inversely associated with leucocyte telomere length in men: a cross-sectional analysis of the UK Biobank Study.},
journal = {European journal of endocrinology},
volume = {},
number = {},
pages = {},
doi = {10.1093/ejendo/lvad015},
pmid = {36751991},
issn = {1479-683X},
abstract = {OBJECTIVE: Older men on average have lower testosterone concentrations compared with younger men, and more age-related comorbidities. Whether lower testosterone concentrations contribute to biological ageing remains unclear. Shorter telomeres are a marker for biological age. We tested the hypothesis that testosterone concentrations are associated with leucocyte telomere length (LTL), in middle to older aged men.
DESIGN: Cross-sectional analysis of the UK Biobank study, involving community-dwelling men aged 40-69 years.
METHODS: Serum testosterone and sex hormone-binding globulin (SHBG) were assayed. Free testosterone was calculated (cFT). LTL was measured using Polymerase Chain Reaction. Multivariable models were used to assess associations of hormones with standardised LTL.
RESULTS: In 167,706 men, median age 58 years, adjusting for sociodemographic, lifestyle and medical factors total testosterone was inversely associated with standardised LTL, which was 0.09 longer (95% confidence interval [CI], 0.08-0.10, P < 0.001) in men with total testosterone at median of lowest quintile [Q1] vs highest [Q5]. This relationship was attenuated after additional adjustment for SHBG (0.03 longer, CI = 0.02-0.05, P = 0.003). The association between cFT and LTL was similar in direction but lower in magnitude. In multivariable analysis, SHBG was inversely associated with standardised LTL, which was 0.12 longer (CI = 0.10-0.13, P < 0.001) for SHBG at median Q1 vs Q5. Results were similar with testosterone included in the model (0.10 longer, CI = 0.08-0.12, P < 0.001).
CONCLUSIONS: Total testosterone and SHBG were independently and inversely associated with LTL. Men with higher testosterone or SHBG had shorter telomeres, arguing against a role for testosterone to slow biological ageing in men.},
}
RevDate: 2023-02-10
CmpDate: 2023-02-09
Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition.
Proceedings. Biological sciences, 290(1992):20222448.
Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.
Additional Links: PMID-36750187
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36750187,
year = {2023},
author = {Burraco, P and Hernandez-Gonzalez, M and Metcalfe, NB and Monaghan, P},
title = {Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition.},
journal = {Proceedings. Biological sciences},
volume = {290},
number = {1992},
pages = {20222448},
pmid = {36750187},
issn = {1471-2954},
mesh = {Animals ; Temperature ; *Aging ; *Metamorphosis, Biological ; Larva ; Telomere ; },
abstract = {Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Temperature
*Aging
*Metamorphosis, Biological
Larva
Telomere
RevDate: 2023-02-15
Hyperextended telomeres promote C-circle formation in telomerase positive human cells.
bioRxiv : the preprint server for biology.
Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). The primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs). How C-circles form is not well characterized. To investigate C-circle formation in telomerase+ cells, we studied the human cen3tel cell line, in which telomeres progressively hyper-elongated post TERT -immortalization. cECTR signal was observed in 2D gels and C-circle assays but not t-circle assays, which also detect cECTRs. Telomerase activity and C-circle signal were not separable in the analysis of clonal populations, consistent with C-circle production occurring within telomerase+ cells. Two other long telomere, telomerase+ (LTT+) cell lines, HeLa1.3 (~23 kb telomeres) and HeLaE1 (~50 kb telomeres), had similar cECTR properties. Telomerase activity did not directly impact C-circle signal in LTT+ cells; instead, C-circle signal correlated with telomere length. LTT+ lines were less sensitive to hydroxyurea than an ALT+ cell line, suggesting that ALT status is a stronger contributor to replication stress levels than telomere length. Additionally, FANCM did not suppress C-circles in LTT+ cells as it does in ALT+ cells. Thus, C-circle formation may be driven by telomere length, independently of telomerase and replication stress, highlighting limitations of C-circles as a stand-alone ALT biomarker.
Additional Links: PMID-36747763
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36747763,
year = {2023},
author = {Jones, CY and Williams, CL and Moreno, SP and Morris, DK and Mondello, C and Karlseder, J and Bertuch, AA},
title = {Hyperextended telomeres promote C-circle formation in telomerase positive human cells.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
pmid = {36747763},
abstract = {Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). The primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs). How C-circles form is not well characterized. To investigate C-circle formation in telomerase+ cells, we studied the human cen3tel cell line, in which telomeres progressively hyper-elongated post TERT -immortalization. cECTR signal was observed in 2D gels and C-circle assays but not t-circle assays, which also detect cECTRs. Telomerase activity and C-circle signal were not separable in the analysis of clonal populations, consistent with C-circle production occurring within telomerase+ cells. Two other long telomere, telomerase+ (LTT+) cell lines, HeLa1.3 (~23 kb telomeres) and HeLaE1 (~50 kb telomeres), had similar cECTR properties. Telomerase activity did not directly impact C-circle signal in LTT+ cells; instead, C-circle signal correlated with telomere length. LTT+ lines were less sensitive to hydroxyurea than an ALT+ cell line, suggesting that ALT status is a stronger contributor to replication stress levels than telomere length. Additionally, FANCM did not suppress C-circles in LTT+ cells as it does in ALT+ cells. Thus, C-circle formation may be driven by telomere length, independently of telomerase and replication stress, highlighting limitations of C-circles as a stand-alone ALT biomarker.},
}
RevDate: 2023-02-07
Telomerase reactivation induces progression of mouse Braf [V600E] -driven thyroid cancers without telomere lengthening.
bioRxiv : the preprint server for biology pii:2023.01.24.525280.
Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert [-123C>T]) and crossed it with thyroid-specific Braf [V600E] -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf [V600E] animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf [V600E] +Tert [-123C>T] and Braf [V600E] +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
Additional Links: PMID-36747657
Full Text:
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36747657,
year = {2023},
author = {Landa, I and Thornton, CE and Xu, B and Haase, J and Krishnamoorthy, GP and Hao, J and Knauf, JA and Herbert, ZT and Blasco, MA and Ghossein, R and Fagin, JA},
title = {Telomerase reactivation induces progression of mouse Braf [V600E] -driven thyroid cancers without telomere lengthening.},
journal = {bioRxiv : the preprint server for biology},
volume = {},
number = {},
pages = {},
doi = {10.1101/2023.01.24.525280},
pmid = {36747657},
abstract = {Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert [-123C>T]) and crossed it with thyroid-specific Braf [V600E] -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf [V600E] animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf [V600E] +Tert [-123C>T] and Braf [V600E] +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.},
}
RevDate: 2023-02-02
RNA-DNA hybrids prevent resection at dysfunctional telomeres.
Cell reports, 42(2):112077 pii:S2211-1247(23)00088-8 [Epub ahead of print].
At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.
Additional Links: PMID-36729832
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36729832,
year = {2023},
author = {Pires, VB and Lohner, N and Wagner, T and Wagner, CB and Wilkens, M and Hajikazemi, M and Paeschke, K and Butter, F and Luke, B},
title = {RNA-DNA hybrids prevent resection at dysfunctional telomeres.},
journal = {Cell reports},
volume = {42},
number = {2},
pages = {112077},
doi = {10.1016/j.celrep.2023.112077},
pmid = {36729832},
issn = {2211-1247},
abstract = {At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.},
}
RevDate: 2023-02-02
Lower anti-mullerian hormone levels are associated with HIV in reproductive age women and shorter leukocyte telomere length among late reproductive age women.
AIDS (London, England) pii:00002030-990000000-00186 [Epub ahead of print].
OBJECTIVES: We sought to better understand factors associated with ovarian aging in women living with HIV (WLWH).
DESIGN: HIV has been associated with diminished fertility, younger age at menopause, and shorter leukocyte telomere length (LTL), a marker of cellular aging. We herein examine cross-sectional and longitudinal associations between LTL, Anti-Mullerian hormone (AMH), and HIV.
METHODS: We included WLWH and HIV-negative women 12-50 years of age in the CARMA cohort with ≥ 1 study visit(s). LTL and AMH were measured by qPCR and ELISA, respectively. Women were analysed in peak reproductive (<35 years) vs. late reproductive (≥35 years) life phases. Using multivariable mixed-effect linear or logistic regressions, we assessed factors associated with AMH and ΔAMH/year while adjusting for relevant confounders.
RESULTS: WLWH had shorter LTL and lower AMH levels compared to HIV-negative controls despite being of similar age. After adjusting for relevant factors, HIV was associated with 20% lower AMH levels in women <35 years and shorter LTL was associated with AMH levels below 2 ng/ml among women ≥35 years. Longitudinally, ΔAMH/year was largely related to initial AMH level among older women, and to age in younger women.
CONCLUSIONS: Factors associated with AMH change across women's reproductive lifespan. Lower AMH among peak reproductive aged WLWH suggests that HIV may have an initial detrimental effect on ovarian reserve, an observation that may warrant counselling around pregnancy planning. In women ≥35, the association between shorter LTL and lower AMH suggests that the immune and reproductive aging connections are more important in this age group.
Additional Links: PMID-36726239
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36726239,
year = {2023},
author = {Van Ommen, CE and Hsieh, AYY and Albert, AY and Kimmel, ER and Côté, HCF and Maan, EJ and Prior, JC and Pick, N and Murray, MCM and , },
title = {Lower anti-mullerian hormone levels are associated with HIV in reproductive age women and shorter leukocyte telomere length among late reproductive age women.},
journal = {AIDS (London, England)},
volume = {},
number = {},
pages = {},
doi = {10.1097/QAD.0000000000003481},
pmid = {36726239},
issn = {1473-5571},
abstract = {OBJECTIVES: We sought to better understand factors associated with ovarian aging in women living with HIV (WLWH).
DESIGN: HIV has been associated with diminished fertility, younger age at menopause, and shorter leukocyte telomere length (LTL), a marker of cellular aging. We herein examine cross-sectional and longitudinal associations between LTL, Anti-Mullerian hormone (AMH), and HIV.
METHODS: We included WLWH and HIV-negative women 12-50 years of age in the CARMA cohort with ≥ 1 study visit(s). LTL and AMH were measured by qPCR and ELISA, respectively. Women were analysed in peak reproductive (<35 years) vs. late reproductive (≥35 years) life phases. Using multivariable mixed-effect linear or logistic regressions, we assessed factors associated with AMH and ΔAMH/year while adjusting for relevant confounders.
RESULTS: WLWH had shorter LTL and lower AMH levels compared to HIV-negative controls despite being of similar age. After adjusting for relevant factors, HIV was associated with 20% lower AMH levels in women <35 years and shorter LTL was associated with AMH levels below 2 ng/ml among women ≥35 years. Longitudinally, ΔAMH/year was largely related to initial AMH level among older women, and to age in younger women.
CONCLUSIONS: Factors associated with AMH change across women's reproductive lifespan. Lower AMH among peak reproductive aged WLWH suggests that HIV may have an initial detrimental effect on ovarian reserve, an observation that may warrant counselling around pregnancy planning. In women ≥35, the association between shorter LTL and lower AMH suggests that the immune and reproductive aging connections are more important in this age group.},
}
RevDate: 2023-02-07
CmpDate: 2023-02-07
TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs.
Proceedings of the National Academy of Sciences of the United States of America, 120(6):e2209967120.
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.
Additional Links: PMID-36719921
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36719921,
year = {2023},
author = {Eguchi, A and Gonzalez, AFGS and Torres-Bigio, SI and Koleckar, K and Birnbaum, F and Zhang, JZ and Wang, VY and Wu, JC and Artandi, SE and Blau, HM},
title = {TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs.},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {120},
number = {6},
pages = {e2209967120},
doi = {10.1073/pnas.2209967120},
pmid = {36719921},
issn = {1091-6490},
support = {R01 HL126527/HL/NHLBI NIH HHS/United States ; R01 HL130020/HL/NHLBI NIH HHS/United States ; R01 HL123968/HL/NHLBI NIH HHS/United States ; R01 HL146690/HL/NHLBI NIH HHS/United States ; R01 HL159340/HL/NHLBI NIH HHS/United States ; },
mesh = {Humans ; *Cardiomyopathy, Dilated/genetics ; Cell Survival ; Dystrophin/genetics ; *Heart Failure/metabolism ; *Induced Pluripotent Stem Cells/metabolism ; *Muscular Dystrophy, Duchenne/metabolism ; Myocytes, Cardiac/metabolism ; Telomere/genetics/metabolism ; },
abstract = {Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Cardiomyopathy, Dilated/genetics
Cell Survival
Dystrophin/genetics
*Heart Failure/metabolism
*Induced Pluripotent Stem Cells/metabolism
*Muscular Dystrophy, Duchenne/metabolism
Myocytes, Cardiac/metabolism
Telomere/genetics/metabolism
RevDate: 2023-02-02
CmpDate: 2023-02-01
Dysfunction of Lamin B and Physiological Aging Cause Telomere Instability in Drosophila Germline.
Biochemistry. Biokhimiia, 87(12):1600-1610.
Chromatin spatial organization in the nucleus is essential for the genome functioning and regulation of gene activity. The nuclear lamina and lamina-associated proteins, lamins, play a key role in this process. Lamin dysfunction leads to the decompaction and transcriptional activation of heterochromatin, which is associated with the premature aging syndrome. In many cell types, telomeres are located at the nuclear periphery, where their replication and stability are ensured by the nuclear lamina. Moreover, diseases associated with defects in lamins and telomeres have similar manifestations and resemble physiological aging. Understanding molecular changes associated with aging at the organismal level is especially important. In this study, we compared the effects caused by the mutation in lamin B and physiological aging in the germline of the model organism Drosophila melanogaster. We have shown that the impaired localization of lamin B leads to the heterochromatin decompaction and transcriptional activation of some transposable elements and telomeric repeats. Both DNA damage and activation of homologous recombination in the telomeres were observed in the germ cells of lamin B mutants. The instability of repeat-enriched heterochromatin can be directly related to the genome destabilization, germ cell death, and sterility observed in lamin B mutants. Similar processes were observed in Drosophila germline in the course of physiological aging, which indicates a close link between the maintenance of the heterochromatin stability at the nuclear periphery and mechanisms of aging.
Additional Links: PMID-36717449
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36717449,
year = {2022},
author = {Morgunova, VV and Sokolova, OA and Sizova, TV and Malaev, LG and Babaev, DS and Kwon, DA and Kalmykova, AI},
title = {Dysfunction of Lamin B and Physiological Aging Cause Telomere Instability in Drosophila Germline.},
journal = {Biochemistry. Biokhimiia},
volume = {87},
number = {12},
pages = {1600-1610},
doi = {10.1134/S000629792212015X},
pmid = {36717449},
issn = {1608-3040},
mesh = {Animals ; *Lamin Type B/genetics/metabolism ; *Drosophila/genetics ; Heterochromatin ; Drosophila melanogaster/genetics ; Aging/genetics ; Telomere/genetics/metabolism ; Germ Cells ; },
abstract = {Chromatin spatial organization in the nucleus is essential for the genome functioning and regulation of gene activity. The nuclear lamina and lamina-associated proteins, lamins, play a key role in this process. Lamin dysfunction leads to the decompaction and transcriptional activation of heterochromatin, which is associated with the premature aging syndrome. In many cell types, telomeres are located at the nuclear periphery, where their replication and stability are ensured by the nuclear lamina. Moreover, diseases associated with defects in lamins and telomeres have similar manifestations and resemble physiological aging. Understanding molecular changes associated with aging at the organismal level is especially important. In this study, we compared the effects caused by the mutation in lamin B and physiological aging in the germline of the model organism Drosophila melanogaster. We have shown that the impaired localization of lamin B leads to the heterochromatin decompaction and transcriptional activation of some transposable elements and telomeric repeats. Both DNA damage and activation of homologous recombination in the telomeres were observed in the germ cells of lamin B mutants. The instability of repeat-enriched heterochromatin can be directly related to the genome destabilization, germ cell death, and sterility observed in lamin B mutants. Similar processes were observed in Drosophila germline in the course of physiological aging, which indicates a close link between the maintenance of the heterochromatin stability at the nuclear periphery and mechanisms of aging.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Lamin Type B/genetics/metabolism
*Drosophila/genetics
Heterochromatin
Drosophila melanogaster/genetics
Aging/genetics
Telomere/genetics/metabolism
Germ Cells
RevDate: 2023-01-30
Prenatal thyroid hormones accelerate postnatal growth and telomere shortening in wild great tits.
The Journal of experimental biology pii:286797 [Epub ahead of print].
Early-life environment is known to affect later-life health and disease, which could be mediated by the early-life programming of telomere length, a key hallmark of ageing. According to the fetal programming of telomere biology hypothesis, variation in prenatal exposure to hormones is likely to influence telomere length. Yet the contribution of key metabolic hormones, i.e. thyroid hormones (THs), has been largely ignored. We recently showed that in contrast to predictions, exposure to elevated prenatal THs increased postnatal telomere length in wild collared flycatchers, but the generality of such effect, its underlying proximate mechanisms and consequences on survival have not been investigated. We therefore conducted a comprehensive study evaluating the impact of THs on potential drivers of telomere dynamics (growth, post-natal THs, mitochondria and oxidative stress), telomere length and medium-term survival using wild great tits as a model system. While prenatal THs did not significantly affect telomere length a week after hatching (i.e. day 7), they influenced postnatal telomere shortening (i.e. shorter telomeres at day 14 and the following winter) but not apparent survival. Circulating THs, mitochondrial density or oxidative stress biomarkers were not significantly influenced, whereas TH-supplemented group showed accelerated growth, which may explain the observed delayed effect on telomeres. We discuss several alternative hypotheses that may explain the contrast with our previous findings in flycatchers. Given that shorter telomeres in early life tend to be carried until adulthood and are often associated with decreased survival prospects, the effects of prenatal THs on telomeres may have long-lasting effects on senescence.
Additional Links: PMID-36714994
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36714994,
year = {2023},
author = {Hsu, BY and Cossin-Sevrin, N and Stier, A and Ruuskanen, S},
title = {Prenatal thyroid hormones accelerate postnatal growth and telomere shortening in wild great tits.},
journal = {The Journal of experimental biology},
volume = {},
number = {},
pages = {},
doi = {10.1242/jeb.243875},
pmid = {36714994},
issn = {1477-9145},
abstract = {Early-life environment is known to affect later-life health and disease, which could be mediated by the early-life programming of telomere length, a key hallmark of ageing. According to the fetal programming of telomere biology hypothesis, variation in prenatal exposure to hormones is likely to influence telomere length. Yet the contribution of key metabolic hormones, i.e. thyroid hormones (THs), has been largely ignored. We recently showed that in contrast to predictions, exposure to elevated prenatal THs increased postnatal telomere length in wild collared flycatchers, but the generality of such effect, its underlying proximate mechanisms and consequences on survival have not been investigated. We therefore conducted a comprehensive study evaluating the impact of THs on potential drivers of telomere dynamics (growth, post-natal THs, mitochondria and oxidative stress), telomere length and medium-term survival using wild great tits as a model system. While prenatal THs did not significantly affect telomere length a week after hatching (i.e. day 7), they influenced postnatal telomere shortening (i.e. shorter telomeres at day 14 and the following winter) but not apparent survival. Circulating THs, mitochondrial density or oxidative stress biomarkers were not significantly influenced, whereas TH-supplemented group showed accelerated growth, which may explain the observed delayed effect on telomeres. We discuss several alternative hypotheses that may explain the contrast with our previous findings in flycatchers. Given that shorter telomeres in early life tend to be carried until adulthood and are often associated with decreased survival prospects, the effects of prenatal THs on telomeres may have long-lasting effects on senescence.},
}
RevDate: 2023-02-08
CmpDate: 2023-01-31
Sperm telomere length as a novel biomarker of male infertility and embryonic development: A systematic review and meta-analysis.
Frontiers in endocrinology, 13:1079966.
BACKGROUND: Telomeres have an essential role in maintaining the integrity and stability of the human chromosomal genome and preserving essential DNA biological functions. Several articles have been published on the association of STL with male semen parameters and clinical pregnancy. The results, however, are either inconclusive or inconsistent. Therefore, this meta-analysis aimed to systematically assess the accuracy and clinical value of sperm telomere length (STL) as a new marker for diagnosing male infertility and predicting the quality of embryonic development.
METHODS: We performed a comprehensive systematic search for relevant publications in PubMed, the Cochrane Library, Web of Science, Embase, Scopus, and Ovid, from database build to August 2022. All experimental studies exploring the association of STL with male semen quality, male infertility, or embryonic development were included.
RESULTS: Overall, Twelve prospective observational cohort studies (1700 patients) were eligible for inclusion in the meta-analysis. The meta-analysis showed a positive linear correlation between STL and semen parameters. The optimal cut-off value for STL diagnosing male infertility was 1.0, with a sensitivity and specificity of 80%. Regarding STL and embryonic development, the clinical pregnancy rate was associated with longer STL, and there was no significant difference between the two groups regarding fertilization rate.
CONCLUSION: Our study showed that STL has good diagnostic and predictive value for male fertility and clinical pregnancy and could be used as a new biomarker for diagnosing male infertility and predicting embryonic development.
https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022303333.
Additional Links: PMID-36714598
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36714598,
year = {2022},
author = {Yuan, Y and Tan, Y and Qiu, X and Luo, H and Li, Y and Li, R and Yang, X},
title = {Sperm telomere length as a novel biomarker of male infertility and embryonic development: A systematic review and meta-analysis.},
journal = {Frontiers in endocrinology},
volume = {13},
number = {},
pages = {1079966},
pmid = {36714598},
issn = {1664-2392},
mesh = {Pregnancy ; Female ; Humans ; Male ; *Semen Analysis ; Semen ; *Infertility, Male/diagnosis/genetics ; Spermatozoa ; Telomere ; Biomarkers ; Observational Studies as Topic ; },
abstract = {BACKGROUND: Telomeres have an essential role in maintaining the integrity and stability of the human chromosomal genome and preserving essential DNA biological functions. Several articles have been published on the association of STL with male semen parameters and clinical pregnancy. The results, however, are either inconclusive or inconsistent. Therefore, this meta-analysis aimed to systematically assess the accuracy and clinical value of sperm telomere length (STL) as a new marker for diagnosing male infertility and predicting the quality of embryonic development.
METHODS: We performed a comprehensive systematic search for relevant publications in PubMed, the Cochrane Library, Web of Science, Embase, Scopus, and Ovid, from database build to August 2022. All experimental studies exploring the association of STL with male semen quality, male infertility, or embryonic development were included.
RESULTS: Overall, Twelve prospective observational cohort studies (1700 patients) were eligible for inclusion in the meta-analysis. The meta-analysis showed a positive linear correlation between STL and semen parameters. The optimal cut-off value for STL diagnosing male infertility was 1.0, with a sensitivity and specificity of 80%. Regarding STL and embryonic development, the clinical pregnancy rate was associated with longer STL, and there was no significant difference between the two groups regarding fertilization rate.
CONCLUSION: Our study showed that STL has good diagnostic and predictive value for male fertility and clinical pregnancy and could be used as a new biomarker for diagnosing male infertility and predicting embryonic development.
https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022303333.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Pregnancy
Female
Humans
Male
*Semen Analysis
Semen
*Infertility, Male/diagnosis/genetics
Spermatozoa
Telomere
Biomarkers
Observational Studies as Topic
RevDate: 2023-01-31
Enzymatic approaches against SARS-CoV-2 infection with an emphasis on the telomere-associated enzymes.
Biotechnology letters [Epub ahead of print].
The pandemic phase of coronavirus disease 2019 (COVID-19) appears to be over in most countries. However, the unexpected behaviour and unstable nature of coronaviruses, including temporary hiatuses, re-emergence, emergence of new variants, and changing outbreak epicentres during the COVID-19 pandemic, have been frequently reported. The mentioned trend shows the fact that in addition to vaccine development, different strategies should be considered to deal effectively with this disease, in long term. In this regard, the role of enzymes in regulating immune responses to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently attracted much attention. Moreover, several reports confirm the association of short telomeres with sever COVID-19 symptoms. This review highlights the role of several enzymes involved in telomere length (TL) regulation and explains their relevance to SARS-CoV-2 infection. Apparently, inhibition of telomere shortening (TS) through inhibition and/or activation of these enzymes could be a potential target in the treatment of COVID-19, which may also lead to a reduction in disease severity.
Additional Links: PMID-36707451
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36707451,
year = {2023},
author = {Valdiani, A and Ofoghi, H},
title = {Enzymatic approaches against SARS-CoV-2 infection with an emphasis on the telomere-associated enzymes.},
journal = {Biotechnology letters},
volume = {},
number = {},
pages = {1-13},
pmid = {36707451},
issn = {1573-6776},
abstract = {The pandemic phase of coronavirus disease 2019 (COVID-19) appears to be over in most countries. However, the unexpected behaviour and unstable nature of coronaviruses, including temporary hiatuses, re-emergence, emergence of new variants, and changing outbreak epicentres during the COVID-19 pandemic, have been frequently reported. The mentioned trend shows the fact that in addition to vaccine development, different strategies should be considered to deal effectively with this disease, in long term. In this regard, the role of enzymes in regulating immune responses to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently attracted much attention. Moreover, several reports confirm the association of short telomeres with sever COVID-19 symptoms. This review highlights the role of several enzymes involved in telomere length (TL) regulation and explains their relevance to SARS-CoV-2 infection. Apparently, inhibition of telomere shortening (TS) through inhibition and/or activation of these enzymes could be a potential target in the treatment of COVID-19, which may also lead to a reduction in disease severity.},
}
RevDate: 2023-01-27
Probing telomereric-like G4 structures with full or partial 2'-deoxy-5-hydroxyuridine substitutions.
Biochimie pii:S0300-9084(23)00009-3 [Epub ahead of print].
Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads. We characterised these modified structures using CD, UV absorbance spectroscopy, native gel studies, and a capture oligo-based G4 disruption kinetic assay. The strand separation activity of BLM helicase on these substituted structures was also investigated. Two of the partially H-substituted constructs adopted G4-like structures, but displayed lower thermal stabilities compared to unsubstituted G4. The construct modified in its central tetrad remained mostly denatured, but the possibility of a special structure for the fully replaced variant remained open. H substitutions did not interfere with the G4-resolving activity of BLM helicase, but its efficiency was highly influenced by construct topology and even more by the G4 ligand PhenDC3. Our results suggest that the H modification can be incorporated into G quadruplexes, but only at certain positions to maintain G4 stability. The destabilizing effect observed for 2'-deoxy-5-hydroxyuridine indicates that the cytosine deamination product 5-hydroxyuracil and its nucleoside counterpart in RNA (5-hydroxyuridine), might also be destabilizing in cellular DNA and RNA quadruplexes. The kinetic assay employed in this study can be generally employed for a fast comparison of the stabilities of various G4s either in their free or ligand-bound states.
Additional Links: PMID-36707016
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36707016,
year = {2023},
author = {Szeltner, Z and Ferenc, G and Juhász, T and Kupihár, Z and Váradi, Z and Szüts, D and Kovács, L},
title = {Probing telomereric-like G4 structures with full or partial 2'-deoxy-5-hydroxyuridine substitutions.},
journal = {Biochimie},
volume = {},
number = {},
pages = {},
doi = {10.1016/j.biochi.2023.01.009},
pmid = {36707016},
issn = {1638-6183},
abstract = {Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads. We characterised these modified structures using CD, UV absorbance spectroscopy, native gel studies, and a capture oligo-based G4 disruption kinetic assay. The strand separation activity of BLM helicase on these substituted structures was also investigated. Two of the partially H-substituted constructs adopted G4-like structures, but displayed lower thermal stabilities compared to unsubstituted G4. The construct modified in its central tetrad remained mostly denatured, but the possibility of a special structure for the fully replaced variant remained open. H substitutions did not interfere with the G4-resolving activity of BLM helicase, but its efficiency was highly influenced by construct topology and even more by the G4 ligand PhenDC3. Our results suggest that the H modification can be incorporated into G quadruplexes, but only at certain positions to maintain G4 stability. The destabilizing effect observed for 2'-deoxy-5-hydroxyuridine indicates that the cytosine deamination product 5-hydroxyuracil and its nucleoside counterpart in RNA (5-hydroxyuridine), might also be destabilizing in cellular DNA and RNA quadruplexes. The kinetic assay employed in this study can be generally employed for a fast comparison of the stabilities of various G4s either in their free or ligand-bound states.},
}
RevDate: 2023-01-27
Heritable Defects in Mitotic and Telomere Function Confer Sarcoma Risk.
Cancer discovery pii:716234 [Epub ahead of print].
Mitotic and telomere function pathways were identified to play a role in sarcoma susceptibility.
Additional Links: PMID-36705478
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36705478,
year = {2023},
author = {},
title = {Heritable Defects in Mitotic and Telomere Function Confer Sarcoma Risk.},
journal = {Cancer discovery},
volume = {},
number = {},
pages = {OF1},
doi = {10.1158/2159-8290.CD-RW2023-016},
pmid = {36705478},
issn = {2159-8290},
abstract = {Mitotic and telomere function pathways were identified to play a role in sarcoma susceptibility.},
}
RevDate: 2023-02-02
CmpDate: 2023-01-30
Telomeres susceptibility to environmental arsenic exposure: Shortening or lengthening?.
Frontiers in public health, 10:1059248.
Maintaining telomere length plays a crucial role in regulating cellular life span. Telomere lengthening or shortening is one of the important biomarkers which could predict the preceding or present diseases. Meanwhile, the impact of environmental arsenic exposure on telomere length has increasingly concerned. Although previous studies demonstrated the effects of arsenic on telomere length, the findings were unclear on whether telomere shortens or lengthens by arsenic exposure. Thus, this manuscript summarized and discussed the telomere length alteration following arsenic exposure and the possible does-response effect of arsenic on telomere length. The present review suggested that different age groups may respond differently to arsenic exposure, and the dose-response effect of arsenic could be a critical factor in its effect on telomere length. Moreover, speciation analysis of arsenic could be more informative in identifying the effect of arsenic on telomere length.
Additional Links: PMID-36703827
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36703827,
year = {2022},
author = {Wai, KM and Swe, T and Myar, MT and Aisyah, CR and Hninn, TSS},
title = {Telomeres susceptibility to environmental arsenic exposure: Shortening or lengthening?.},
journal = {Frontiers in public health},
volume = {10},
number = {},
pages = {1059248},
pmid = {36703827},
issn = {2296-2565},
mesh = {*Arsenic/metabolism ; *Telomerase/genetics/metabolism ; Telomere/metabolism ; },
abstract = {Maintaining telomere length plays a crucial role in regulating cellular life span. Telomere lengthening or shortening is one of the important biomarkers which could predict the preceding or present diseases. Meanwhile, the impact of environmental arsenic exposure on telomere length has increasingly concerned. Although previous studies demonstrated the effects of arsenic on telomere length, the findings were unclear on whether telomere shortens or lengthens by arsenic exposure. Thus, this manuscript summarized and discussed the telomere length alteration following arsenic exposure and the possible does-response effect of arsenic on telomere length. The present review suggested that different age groups may respond differently to arsenic exposure, and the dose-response effect of arsenic could be a critical factor in its effect on telomere length. Moreover, speciation analysis of arsenic could be more informative in identifying the effect of arsenic on telomere length.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Arsenic/metabolism
*Telomerase/genetics/metabolism
Telomere/metabolism
RevDate: 2023-01-26
Hotspot of de novo telomere addition stabilizes linear amplicons in yeast grown in sulfate-limiting conditions.
Genetics pii:7005643 [Epub ahead of print].
Evolution is driven by the accumulation of competing mutations that influence survival. A broad form of genetic variation is the amplification or deletion of DNA (≥50 bp) referred to as copy number variation. In humans, copy number variation may be inconsequential, contribute to minor phenotypic differences, or cause conditions such as birth defects, neurodevelopmental disorders, and cancers. To identify mechanisms that drive copy number variation, we monitored the experimental evolution of Saccharomyces cerevisiae populations grown under sulfate-limiting conditions. Cells with increased copy number of the gene SUL1, which encodes a primary sulfate transporter, exhibit a fitness advantage. Previously, we reported interstitial inverted triplications of SUL1 as the dominant rearrangement in a haploid population. Here, in a diploid population, we find instead that small linear fragments containing SUL1 form and are sustained over several generations. Many of the linear fragments are stabilized by de novo telomere addition within a telomere-like sequence near SUL1 (within the SNF5 gene). Using an assay that monitors telomerase action following an induced chromosome break, we show that this region acts as a hotspot of de novo telomere addition and that required sequences map to a region of <250 base pairs. Consistent with previous work showing that association of the telomere-binding protein Cdc13 with internal sequences stimulates telomerase recruitment, mutation of a four-nucleotide motif predicted to associate with Cdc13 abolishes de novo telomere addition. Our study suggests that internal telomere-like sequences that stimulate de novo telomere addition can contribute to adaptation by promoting genomic plasticity.
Additional Links: PMID-36702776
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36702776,
year = {2023},
author = {Hoerr, RE and Eng, A and Payen, C and Di Rienzi, SC and Raghuraman, MK and Dunham, MJ and Brewer, BJ and Friedman, KL},
title = {Hotspot of de novo telomere addition stabilizes linear amplicons in yeast grown in sulfate-limiting conditions.},
journal = {Genetics},
volume = {},
number = {},
pages = {},
doi = {10.1093/genetics/iyad010},
pmid = {36702776},
issn = {1943-2631},
abstract = {Evolution is driven by the accumulation of competing mutations that influence survival. A broad form of genetic variation is the amplification or deletion of DNA (≥50 bp) referred to as copy number variation. In humans, copy number variation may be inconsequential, contribute to minor phenotypic differences, or cause conditions such as birth defects, neurodevelopmental disorders, and cancers. To identify mechanisms that drive copy number variation, we monitored the experimental evolution of Saccharomyces cerevisiae populations grown under sulfate-limiting conditions. Cells with increased copy number of the gene SUL1, which encodes a primary sulfate transporter, exhibit a fitness advantage. Previously, we reported interstitial inverted triplications of SUL1 as the dominant rearrangement in a haploid population. Here, in a diploid population, we find instead that small linear fragments containing SUL1 form and are sustained over several generations. Many of the linear fragments are stabilized by de novo telomere addition within a telomere-like sequence near SUL1 (within the SNF5 gene). Using an assay that monitors telomerase action following an induced chromosome break, we show that this region acts as a hotspot of de novo telomere addition and that required sequences map to a region of <250 base pairs. Consistent with previous work showing that association of the telomere-binding protein Cdc13 with internal sequences stimulates telomerase recruitment, mutation of a four-nucleotide motif predicted to associate with Cdc13 abolishes de novo telomere addition. Our study suggests that internal telomere-like sequences that stimulate de novo telomere addition can contribute to adaptation by promoting genomic plasticity.},
}
▼ ▼ LOAD NEXT 100 CITATIONS
RJR Experience and Expertise
Researcher
Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.
Educator
Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.
Administrator
Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.
Technologist
Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.
Publisher
While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.
Speaker
Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.
Facilitator
Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.
Designer
Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.
RJR Picks from Around the Web (updated 11 MAY 2018 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Paleontology
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.
Big Data & Informatics
Big Data: Buzzword or Big Deal?
Hacking the genome: Identifying anonymized human subjects using publicly available data.