About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

14 Oct 2019 at 01:35
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Telomeres


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 14 Oct 2019 at 01:35 Created: 


Wikipedia: A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Its name is derived from the Greek nouns telos (τέλος) "end" and merοs (μέρος, root: μερ-) "part". For vertebrates, the sequence of nucleotides in telomeres is TTAGGG, with the complementary DNA strand being AATCCC, with a single-stranded TTAGGG overhang. This sequence of TTAGGG is repeated approximately 2,500 times in humans. In humans, average telomere length declines from about 11 kilobases at birth to less than 4 kilobases in old age,[3] with average rate of decline being greater in men than in women. During chromosome replication, the enzymes that duplicate DNA cannot continue their duplication all the way to the end of a chromosome, so in each duplication the end of the chromosome is shortened (this is because the synthesis of Okazaki fragments requires RNA primers attaching ahead on the lagging strand). The telomeres are disposable buffers at the ends of chromosomes which are truncated during cell division; their presence protects the genes before them on the chromosome from being truncated instead. The telomeres themselves are protected by a complex of shelterin proteins, as well as by the RNA that telomeric DNA encodes.

Created with PubMed® Query: telomere[title] OR telomeres[title] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-10-12

Cao X, Huang M, Zhu M, et al (2019)

Mendelian randomization study of telomere length and lung cancer risk in East Asian population.

Cancer medicine [Epub ahead of print].

Associations between telomere length and cancer risk have been investigated in many epidemiological studies, but the results are controversial. These associations may be biased by reverse causation or confounded by environmental exposures. To avoid potential biases, we used Mendelian randomization method to evaluate whether TL is the causal risk factor for lung cancer. We conducted Mendelian randomization analysis in two published East Asian GWAS studies (7127 cases and 6818 controls). We used both weighted genetic risk score and inverse-variance weighting method to estimate the relationship between TL and lung cancer risk. Nonlinear test also used to detect potential association trends. We observed that increased weight GRS was associated with increased risk of lung cancer (OR = 2.25, 95%CI: 1.81-2.78, P = 1.18 × 10-13). In different subtypes, weight GRS was significantly associated with lung adenocarcinoma risk (OR = 2.69, 95% CI: 2.11-3.42, P = 7.20 × 10-16); while lung squamous cell carcinoma showed a marginal association (OR = 1.45, 95% CI = 1.01-2.10, P = .047). Nonlinear analysis suggested a log-linear dose-response relationship between increased weight GRS and lung cancer risk. Our results indicated that longer TL increases lung cancer risk. Those biological mechanisms changes caused by long TL may play an important role in lung carcinogenesis.

RevDate: 2019-10-11

Demanelis K, Tong L, BL Pierce (2019)

Genetically Increased Telomere Length and Aging-related Traits in the UK Biobank.

The journals of gerontology. Series A, Biological sciences and medical sciences pii:5585929 [Epub ahead of print].

Telomere length (TL) shortens over time in most human cell types and is a potential biomarker of aging. However, the causal association of TL on physical and cognitive traits that decline with age has not been extensively examined in middle-aged adults. Using a Mendelian randomization (MR) approach, we utilized genetically increased TL (GI-TL) to estimate the causal association of TL on aging-related traits among UK Biobank (UKB) participants (age 40-69 years). We manually curated 53 aging-related traits from the UKB and restricted to unrelated participants of British ancestry (n=337,522). We estimated GI-TL as a linear combination of nine TL-associated SNPs, each weighted by its previously-reported association with leukocyte TL. Regression models were used to assess the associations between GI-TL and each trait. We obtained MR estimates using the two-sample inverse variance weighted (IVW) approach. We identified 6 age-related traits associated with GI-TL (Bonferroni-corrected threshold p < 0.001): pulse pressure (PP) (p=5.2x10-14), systolic blood pressure (SBP) (p=2.9x10-15), diastolic blood pressure (DBP) (p=5.5x10-6), hypertension (p=5.5x10-11), forced expiratory volume (FEV1) (p=0.0001), and forced vital capacity (FVC) (p=3.8x10-6). Under MR assumptions, one standard deviation increase in TL (~1200 base pairs) increased PP, SBP, and DBP by 1.5, 2.3, and 0.8 mmHg, respectively, while FEV1 and FVC increased by 34.7 and 52.2 mL, respectively. The observed associations appear unlikely to be due to selection bias based on analyses including inverse probability weights and analyses of simulated data. These findings suggest that longer TL increases pulmonary function and blood pressure traits among middle-aged UKB participants.

RevDate: 2019-10-11

Rosero-Bixby L, Rehkopf DH, Dow WH, et al (2019)

Correlates of longitudinal leukocyte telomere length in the Costa Rican Longevity Study of Healthy Aging (CRELES): On the importance of DNA collection and storage procedures.

PloS one, 14(10):e0223766 pii:PONE-D-19-15530.

The objective is to identify cofactors of leukocyte telomere length (LTL) in a Latin American population, specifically the association of LTL with 36 socio-demographic, early childhood, and health characteristics, as well as with DNA sample collection and storage procedures. The analysis is based on longitudinal information from a subsample of 1,261 individuals aged 60+ years at baseline from the Costa Rican Study of Longevity and Healthy Aging (CRELES): a nationally representative sample of elderly population. Random effects regression models for panel data were used to estimate the associations with LTL and its longitudinal changes. Sample collection procedures and DNA refrigerator storage time were strongly associated with LTL: telomeres are longer in blood collected in October-December, in DNA extracted from <1-year-old blood cells, and in DNA stored at 4°C for longer periods of time up to five years. The data confirmed that telomeres are shorter at older ages, as well as among males, and diabetic individuals, whereas telomeres are longer in the high-longevity Nicoya region. Most health, biomarkers, and early childhood indicators did not show significant associations with LTL. Longitudinal LTL variation over approximately two years was mainly associated with baseline LTL levels, as found in other studies. Our findings suggest that if there is unavoidable variability in season of sample collection and DNA storage time, these factors should be controlled for in all demographic and epidemiologic studies of LTL. However, due to unobserved components of measurement variation, statistical control may be inadequate as compared to standardization of data collection procedures.

RevDate: 2019-10-11

Walker AE, Fenstermacher E, DA Ross (2019)

Telomeres, Trauma, and Training.

Biological psychiatry, 86(9):e29-e30.

RevDate: 2019-10-09

Li P, Meng Y, Wang Y, et al (2019)

Nuclear localization of Desmoplakin and its involvement in telomere maintenance.

International journal of biological sciences, 15(11):2350-2362 pii:ijbsv15p2350.

The interaction between genomic DNA and protein fundamentally determines the activity and the function of DNA elements. Capturing the protein complex and identifying the proteins associated with a specific DNA locus is difficult. Herein, we employed CRISPR, the well-known gene-targeting tool in combination with the proximity-dependent labeling tool BioID to capture a specific genome locus associated proteins and to uncover the novel functions of these proteins. By applying this research tool on telomeres, we identified DSP, out of many others, as a convincing telomere binding protein validated by both biochemical and cell-biological approaches. We also provide evidence to demonstrate that the C-terminal domain of DSP is required for its binding to telomere after translocating to the nucleus mediated by NLS sequence of DSP. In addition, we found that the telomere binding of DSP is telomere length dependent as hTERT inhibition or knockdown caused a decrease of telomere length and diminished DSP binding to the telomere. Knockdown of TRF2 also negatively influenced DSP binding to the telomere. Functionally, loss of DSP resulted in the shortened telomere DNA and induced the DNA damage response and cell apoptosis. In conclusion, our studies identified DSP as a novel potential telomere binding protein and highlighted its role in protecting against telomere DNA damage and resultant cell apoptosis.

RevDate: 2019-10-09

Lara-Molina EE, Franasiak JM, Marin D, et al (2019)

Cumulus cells have longer telomeres than leukocytes in reproductive-age women.

Fertility and sterility pii:S0015-0282(19)32299-X [Epub ahead of print].

OBJECTIVE: To investigate whether telomere length (TL) in granulosa cells (GC) or cumulus cells (CC) correlates with TL in leukocytes (L).

DESIGN: Prospective noninterventional study.

SETTING: Private assisted reproductive technology center.

PATIENT(S): Thirty-five egg donors were included in the study.


MAIN OUTCOME MEASURE(S): Average relative leukocyte telomere length (LTL), cumulus cell telomere length (CCTL), and granulosa cell telomere length (GCTL) measurements from each study subject.

RESULT(S): Participants had a mean age of 25.43 ± 4.57 years, antimüllerian hormone level of 1.90 ± 0.92 ng/mL, antral follicle count of 23.29 ± 5.11, and the mean number of mature oocytes retrieved was 23.29 ± 9.13. No significant association between these variables and GCTL, CCTL, or LTL was found. In addition, no correlation was observed between TL measurements of L vs. CC, L vs. GC, or CC vs. GC. Interestingly, CCTL was significantly higher than LTL (1.54-fold), although no significant differences were found between GCTL vs. CCTL or GCTL vs. LTL.

CONCLUSION(S): CC from mature follicles have significantly longer telomeres than L, suggesting that the follicular environment could possess different mechanisms to cope against telomere shortening compared with other somatic tissues. Furthermore, these data do not support the utility of telomere DNA measurement in L as an estimate of TL in follicular cells.

RevDate: 2019-10-04

Barroso-González J, García-Expósito L, Hoang SM, et al (2019)

RAD51AP1 Is an Essential Mediator of Alternative Lengthening of Telomeres.

Molecular cell, 76(1):217.

RevDate: 2019-10-03

Grozeva S, Anokhin BA, Simov N, et al (2019)

New evidence for the presence of the telomere motif (TTAGG) n in the family Reduviidae and its absence in the families Nabidae and Miridae (Hemiptera, Cimicomorpha).

Comparative cytogenetics, 13(3):283-295 pii:36676.

Male karyotype and meiosis in four true bug species belonging to the families Reduviidae, Nabidae, and Miridae (Cimicomorpha) were studied for the first time using Giemsa staining and FISH with 18S ribosomal DNA and telomeric (TTAGG)n probes. We found that Rhynocoris punctiventris (Herrich-Schäffer, 1846) and R. iracundus (Poda, 1761) (Reduviidae: Harpactorinae) had 2n = 28 (24 + X1X2X3Y), whereas Nabis sareptanus Dohrn, 1862 (Nabidae) and Horistus orientalis (Gmelin, 1790) (Miridae) had 2n = 34 (32 + XY) and 2n = 32 (30 + XY), respectively. FISH for 18S rDNA revealed hybridization signals on a sex chromosome, the X or the Y, in H. orientalis, on both X and Y chromosomes in N. sareptanus, and on two of the four sex chromosomes, Y and one of the Xs, in both species of Rhynocoris Hahn, 1834. The results of FISH with telomeric probes support with confidence the absence of the "insect" telomere motif (TTAGG)n in the families Nabidae and Miridae and its presence in both species of genus Rhynocoris of the Reduviidae, considered as a basal family of Cimicomorpha. Increasing evidence reinforces the hypothesis of the loss of the canonical "insect" telomere motif (TTAGG)n by at least four cimicomorphan families, Nabidae, Miridae, Tingidae, and Cimicidae, for which data are currently available.

RevDate: 2019-10-02

Liu B, Song L, Zhang L, et al (2019)

Prenatal second-hand smoke exposure and newborn telomere length.

Pediatric research pii:10.1038/s41390-019-0594-2 [Epub ahead of print].

BACKGROUND: Cigarette smoking is associated with shorter telomere lengths in adults, but evidence on the effect of prenatal tobacco exposure is limited. We aimed to investigate the association between prenatal second-hand smoke exposure and newborn telomere length.

METHODS: We recruited 762 mother-newborn pairs from Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) between November 2013 and March 2015. Information on second-hand smoke exposure was obtained via questionnaires. Relative telomere length was measured in DNA extracted from umbilical cord blood. We used linear regression to assess the associations between prenatal second-hand smoke exposure and newborn telomere length.

RESULTS: In the fully adjusted model, prenatal second-hand smoke exposure was associated with 9.7% shorter newborn telomere length (percent difference: -9.7%; 95% confidence interval (CI): -15.0, -4.0). The estimate for boys was lower (percent difference: -10.9%; 95% CI: -18.6, -2.5) than that for girls (percent difference: -8.5%; 95% CI: -15.8, -0.5), but the interaction term between newborn sex and prenatal second-hand smoke was not significant (P = 0.751).

CONCLUSIONS: This study demonstrated that prenatal second-hand smoke exposure may be a preventable risk factor for accelerated biological aging in the intrauterine stage, and further suggested possible sex differences in the susceptibility to prenatal second-hand smoke.

RevDate: 2019-10-02

Sudyka J (2019)

Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life-History Strategies in Telomere Biology.

BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].

Reproduction, a basic property of biological life, entails costs for an organism, ultimately detectable as reduction in survival prospects. Telomeres are an excellent candidate biomarker for explaining these reproductive costs, because their shortening correlates with increased mortality risk. For similar reasons, telomeres are perceived as biomarkers of individual "quality." The relationship between reproduction and telomere dynamics is reviewed, emphasizing that cost and quality perspectives, commonly presented in isolation, should be integrated. While a majority of correlative studies have confirmed the relationship between telomere dynamics and various reproductive outputs, only limited experimental support exists showing that reproduction causes telomeres to shorten. A shift of focus to experimental manipulations of reproductive effort/telomere dynamics is crucial. However, the observation of survival reduction in response to these manipulations is essential for establishing telomeres as genuine biomarkers, allowing to unravel trade-offs related to reproduction.

RevDate: 2019-10-02

Mukherjee AK, Sharma S, Bagri S, et al (2019)

Telomere repeat-binding factor 2 binds extensively to extra-telomeric G-quadruplexes and regulates the epigenetic status of several gene promoters.

The Journal of biological chemistry pii:RA119.008687 [Epub ahead of print].

The role of the telomere repeat-binding factor 2 (TRF2) in telomere maintenance is well established. However, recent findings suggest that TRF2 also functions outside telomeres, but relatively little is known about this function. Herein, using genome-wide ChIP-Seq assays of TRF2-bound chromatin from HT1080 fibrosarcoma cells, we identified thousands of TRF2-binding sites within the extra-telomeric genome. In light of this observation, we asked how TRF2 occupancy is organized within the genome. Interestingly, we found that extra-telomeric TRF2 sites throughout the genome are enriched in potential G-quadruplex-forming DNA sequences. Furthermore, we validated TRF2 occupancy at several promoter G-quadruplex motifs, which did adopt quadruplex forms in solution. TRF2 binding altered expression from and the epigenetic state of several target promoters, indicated by histone modifications resulting in transcriptional repression of eight of nine genes investigated here. Furthermore, TRF2 occupancy and target gene expression were also sensitive to the well-known intracellular G-quadruplex-binding ligand 360A. Together, these results reveal an extensive genome-wide association of TRF2 outside telomeres and that it regulates gene expression in a G-quadruplex-dependent fashion.

RevDate: 2019-10-02

Marasco V, Boner W, Griffiths K, et al (2019)

Intergenerational effects on offspring telomere length: interactions among maternal age, stress exposure and offspring sex.

Proceedings. Biological sciences, 286(1912):20191845.

Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.

RevDate: 2019-10-01

Chen L, Zhu H, Gutin B, et al (2019)

Higher chocolate intake is associated with longer telomere length among adolescents.

Pediatric research pii:10.1038/s41390-019-0590-6 [Epub ahead of print].

BACKGROUND: Chocolate intake has shown cardiometabolic health benefits. Whether chocolate has any effect on cellular aging remains unknown. We aimed to test the hypothesis that higher chocolate intake is associated with longer leukocyte telomere length (LTL) in adolescents.

METHODS: A total of 660 adolescents (aged 14-18 years) were included in the analysis. The chocolate intake was assessed by 7-day, 24-h dietary recalls and split into three groups, which were none, <2 servings/week, and 2 servings/week or more. LTL (T/S ratio) was determined by a modified quantitative polymerase chain reaction-based assay.

RESULTS: Among the 660 adolescents, 58% did not take any chocolate, 25% consumed <2 servings/week, and 17% consumed ≥2 servings/week. Compared to non-consumers, adolescents who consumed chocolate of ≥2 servings/week had 0.27 standard deviation (SD) longer LTL (p = 0.014). Higher chocolate consumption was associated with increased apolipoprotein A1 (ApoA1) (p = 0.038) and ApoA1/high-density lipoprotein (HDL) (p = 0.046). Moreover, higher ApoA1/HDL levels were correlated with longer LTL (p = 0.026).

CONCLUSION: Adolescents who consume 2 servings/week or more of chocolate candy have longer LTL compared with non-consumers, and ApoA1/HDL pathway may be involved in this relationship.

RevDate: 2019-10-01

Nowack J, Tarmann I, Hoelzl F, et al (2019)

Always a price to pay: hibernation at low temperatures comes with a trade-off between energy savings and telomere damage.

Biology letters, 15(10):20190466.

We experimentally tested the costs of deep torpor at low temperatures by comparing telomere dynamics in two species of rodents hibernating at either 3 or 14°C. Our data show that hibernators kept at the warmer temperature had higher arousal frequencies, but maintained longer telomeres than individuals hibernating at the colder temperature. We suggest that the high-energy demand of frequent arousals is counteracted by a lower temperature differential between torpid and euthermic body temperature and that telomere length is restored during arousals when the body temperature is returned to normothermic values. Taken together, our study shows that hibernation at low body temperatures comes with costs on a cellular level and that hibernators need to actively counterbalance the shortening of telomeres.

RevDate: 2019-10-01

Chan KL, Lo CKM, Ho FK, et al (2019)

The association between intimate partner violence against women and newborn telomere length.

Translational psychiatry, 9(1):239 pii:10.1038/s41398-019-0575-6.

Intimate partner violence (IPV) against women negatively impacts infant health. However, its impact on infant's biology, in particular on telomere length (TL) is unknown. The aim of this study was to examine the association between IPV against women before childbirth and cord blood TL in their newborn. A total of 774 pregnant women in the 20th-24th week of gestation were recruited at a public hospital in Hong Kong. The mothers' exposure to IPV before childbirth, demographic characteristics, obstetric outcomes, health and mental health were measured at the time of recruitment and 4 weeks after childbirth. Umbilical cord blood was collected by midwives at the time of delivery. The newborn TL was quantified using quantitative PCR method and expressed in T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). After adjusting for a number of confounding variables, the mothers' exposure to any IPV before childbirth (β = -0.08, 95% CI = -0.14, -0.01) was associated with shorter TL. Specifically, psychological abuse against women before childbirth (β = -0.08, 95% CI = -0.15, -0.02) and sexual abuse against women before childbirth (β = -0.22, 95% CI = -0.43 to -0.01) were significantly associated with reduced newborn TL. This study is the first to provide evidence of an association between IPV against women before childbirth and TL shortening in their newborns. Through TL- dependent transcription and epigenetic mechanisms, our finding suggests maternal exposure to IPV may exert a life-long impact on the offspring's health.

RevDate: 2019-10-01

Zribi B, Uziel O, Lahav M, et al (2019)

Telomere Length Changes during Critical Illness: A Prospective, Observational Study.

Genes, 10(10): pii:genes10100761.

OBJECTIVE: evaluation of telomere length change in acutely ill adult patients.

DESIGN: Blood samples were drawn on the first and seventh day of intensive care unit (ICU) stay to assess telomere length using a polymerase chain reaction (PCR)-based technique. Demographic data collected included age, weight, admission diagnosis, baseline laboratory values (pH, C- reactive protein (CRP), serum albumin level, white blood cell count (WBC) count, platelet count), and baseline SOFA and APACHE II scores. Additional data collected during the ICU stay included a repeated WBC count, the presence of positive blood cultures and outcome data, including death in the ICU or following discharge, whether ventilated or not at ICU discharge, and destination following discharge, i.e., medical ward or rehabilitation.

SETTING: General ICU in tertiary hospital.

PATIENTS: Forty patients admitted to the ICU within 72 h of hospital admission suffering from an acute illness were included in this prospective, observational study.

MAIN RESULTS: Of the 40 patients studied, telomere shortening was noted in 21, telomere lengthening in 11, and no significant change in the other eight. The age of patients demonstrating telomere shortening was statistically significantly younger (45.4 vs. 61.5 years, p < 0.023) compared to those showing increased telomere length. In addition, a significant correlation was observed between the difference in telomere length and the corresponding difference in WBC count (telomere shortening was associated with a decreased WBC count and vice versa). A trend toward shortening was seen in patients with sepsis (p = 0.07). No significant correlations were found for any other demographic or outcome parameter and changes in telomere length.

CONCLUSION: Changes in telomere length, both shortening and lengthening, were evident in the acute setting, but no associations between such changes with outcome were noted. Further studies in more homogeneous groups of patients appear to be warranted.

RevDate: 2019-09-30

Lin Y, Zhu Y, Wu J, et al (2019)

A Prospective Study of Leukocyte Telomere Length and Risk of Gestational Diabetes in a Multiracial Cohort.

Epidemiology (Cambridge, Mass.), 30 Suppl 2:S10-S16.

BACKGROUND: Short telomere length (TL), an indicator of cellular aging and oxidative stress, has been implicated in glucose homeostasis. Additionally, studies have illustrated that the association of TL with health outcomes may vary by age. Yet, data on the association between TL and gestational diabetes mellitus (GDM) are sparse and the potential effect modification by age remains unknown.

METHODS: We prospectively investigated TL in early pregnancy in relation to the subsequent GDM risk in a case-control study of 93 women with GDM and 186 randomly selected controls matched on age, race/ethnicity, and gestational weeks at blood collection. TL was measured using blood samples collected at 10-14 gestational weeks and reported as the T/S ratio, a ratio of telomere repeat length T to copy number of a single copy gene S. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression adjusted for major risk factors.

RESULTS: Overall, TL was not significantly associated with GDM risk. The TL-GDM association was significantly modified by age (Pinteraction = 0.02). Shorter TL in early pregnancy was associated with an increased GDM risk among women <30 years old (adjusted OR comparing the shortest vs. longest tertile: 3.1, 95% CI = 1.2, 8.1), but not associated with GDM risk among women ≥30 years.

CONCLUSION: Our findings suggest that TL in early pregnancy may be implicated in GDM development, particularly among younger women.

RevDate: 2019-09-29

Scheller Madrid A, Rasmussen KL, Rode L, et al (2019)

Observational and genetic studies of short telomeres and Alzheimer's disease in 67,000 and 152,000 individuals: a Mendelian randomization study.

European journal of epidemiology pii:10.1007/s10654-019-00563-w [Epub ahead of print].

Short telomeres might lead to increased risk of Alzheimer's disease, but observational analyses have been inconclusive and potentially confounded by the strong association of both telomere length and risk of Alzheimer's disease with age and adverse lifestyle. To circumvent this, analyses including single nucleotide polymorphisms associated with telomere length used in an instrumental variable analysis produces risk estimates likely free of distortions from reverse causation and of most confounding. We tested the hypothesis that short telomeres are associated with increased risk of Alzheimer's disease, observationally and causal, genetically. Telomere length was measured in 66,567 individuals, and genotyped for rs2487999 in OBFC1, rs7726159 in TERT, and rs1317082 in TERC causing lifelong telomere shortening in 98,146 individuals from two Copenhagen studies. Genetic data on 54,162 individuals from the International Genomics of Alzheimer's Project were also included. Observationally, multifactorially adjusted hazard ratio for Alzheimer's disease was 1.02 (95% CI 1.00-1.03) per 200 base pair shorter telomeres. Telomere length was 335 base pairs shorter in individuals with 6 versus 0-1 alleles (p = 5 × 10-105). Genetically, odds ratio for Alzheimer's disease was 1.08 (1.01-1.16) per 200 base pairs shorter telomeres. Similar results were found in strata of age and comorbidities. In comparative analyses, genetically predicted shorter telomeres were associated with increased risk of myocardial infarction, and with decreased risks of lung cancer and melanoma as previously reported. Short telomeres were associated observationally and causal, genetically with increased risk of Alzheimer's disease. Telomere biology is therefore a potential pathway involved in the development of Alzheimer's disease.

RevDate: 2019-09-25

Puhlmann LMC, Valk SL, Engert V, et al (2019)

Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults: A Randomized Clinical Trial.

JAMA network open, 2(9):e199687 pii:2751893.

Importance: Telomere length is associated with the development of age-related diseases and structural differences in multiple brain regions. It remains unclear, however, whether change in telomere length is linked to brain structure change, and to what extent telomere length can be influenced through mental training.

Objectives: To assess the dynamic associations between leukocyte telomere length (LTL) and cortical thickness (CT), and to determine whether LTL is affected by a longitudinal contemplative mental training intervention.

An open-label efficacy trial of three 3-month mental training modules with healthy, meditation-naive adults was conducted. Data on LTL and CT were collected 4 times over 9 months between April 22, 2013, and March 31, 2015, as part of the ReSource Project. Data analysis was performed between September 23, 2016, and June 21, 2019. Of 1582 eligible individuals, 943 declined to participate; 362 were randomly selected for participation and assigned to training or retest control cohorts, with demographic characteristics matched. The retest control cohorts underwent all testing but no training. Intention-to-treat analysis was performed.

Interventions: Training cohort participants completed 3 modules cultivating interoception and attention (Presence), compassion (Affect), or perspective taking (Perspective).

Main Outcomes and Measures: Change in LTL and CT.

Results: Of the 362 individuals randomized, 30 participants dropped out before study initiation (initial sample, 332). Data were available for analysis of the training intervention in 298 participants (n = 222 training; n = 76 retest control) (175 women [58.7%]; mean [SD] age, 40.5 [9.3] years). The training modules had no effect on LTL. In 699 observations from all 298 participants, mean estimated changes in the relative ratios of telomere repeat copy number to single-copy gene (T/S) were for no training, 0.004 (95% CI, -0.010 to 0.018); Presence, -0.007 (95% CI, -0.025 to 0.011); Affect, -0.005 (95% CI, -0.019 to 0.010); and Perspective, -0.001 (95% CI, -0.017 to 0.016). Cortical thickness change data were analyzed in 167 observations from 67 retest control participants (37 women [55.2%], mean [SD] age, 39.6 [9.0] years). In this retest control cohort subsample, naturally occurring LTL change was related to CT change in the left precuneus extending to the posterior cingulate cortex (mean t161 = 3.22; P < .001; r = 0.246). At the individual participant level, leukocyte telomere shortening as well as lengthening were observed. Leukocyte telomere shortening was related to cortical thinning (t77 = 2.38; P = .01; r = 0.262), and leukocyte telomere lengthening was related to cortical thickening (t77 = 2.42; P = .009; r = 0.266). All analyses controlled for age, sex, and body mass index.

Conclusions and Relevance: The findings of this trial indicate an association between short-term change in LTL and concomitant change in plasticity of the left precuneus extending to the posterior cingulate cortex. This result contributes to the evidence that LTL changes more dynamically on the individual level than previously thought. Further studies are needed to determine potential long-term implications of such change in relation to cellular aging and the development of neurodegenerative disorders. No effect of contemplative mental training was noted in what may be, to date, the longest intervention with healthy adults.

Trial Registration: ClinicalTrials.gov identifier: NCT01833104.

RevDate: 2019-09-27

Domingues-Silva B, Silva B, CM Azzalin (2019)

ALTernative Functions for Human FANCM at Telomeres.

Frontiers in molecular biosciences, 6:84.

The human FANCM ATPase/translocase is involved in various cellular pathways including DNA damage repair, replication fork remodeling and R-loop resolution. Recently, reports from three independent laboratories have disclosed a previously unappreciated role for FANCM in telomerase-negative human cancer cells that maintain their telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. In ALT cells, FANCM limits telomeric replication stress and damage, and, in turn, ALT activity by suppressing accumulation of telomeric R-loops and by regulating the action of the BLM helicase. As a consequence, FANCM inactivation leads to exaggerated ALT activity and ultimately cell death. The studies reviewed here not only unveil a novel function for human FANCM, but also point to this enzyme as a promising target for anti-ALT cancer therapy.

RevDate: 2019-09-27

Yang Y, Tan J, Duan X, et al (2019)

The association between polymorphisms in tankyrase gene and telomere length in omethoate-exposed workers.

Chemosphere, 238:124863 pii:S0045-6535(19)32102-2 [Epub ahead of print].

Peripheral blood leukocyte telomere length in omethoate-exposed workers is related to environmental exposure and single nucleotide polymorphisms (SNPs) in genes including p21, GSTM1, miR-145, etc. However, the roles of SNPs in tankyrase (TNKS) gene in telomere length are still unknown. The aim of this study was to explore the association between SNPs in TNKS gene and telomere length in omethoate-exposed workers. Telomere length in peripheral blood leukocyte DNA from 180 omethoate-exposed workers and 115 healthy controls was measured using Real-time quantitative polymerase chain reaction (PCR). Genotyping of the selected functional and susceptible SNPs was performed by the flight mass spectrometry based on PCR and single-base extension. The analysis of covariance was performed to find effects of SNPs on telomere length. Generalized linear models were used to analyze the environment, gene, and interaction on telomere length. The results showed that telomere length in the CG + CC genotypes in rs1055328 in TNKS gene was significantly longer than that in the wild homozygous GG genotype both in exposure group (P = 0.017) and in control group (P = 0.038) after adjusting the covariates. The variables kept in the generalized linear models included omethoate-exposure (β = 0.580, P = 0.001) and rs1055328 (CG + CC) in TNKS gene (β = 0.339, P = 0.002). The study suggests that the prolongation of telomere length is associated with omethoate-exposure and the CG + CC genotypes in rs1055328 in TNKS gene.

RevDate: 2019-09-24

Rodriguez-Centeno J, Manguán-García C, Perona R, et al (2019)

Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms.

PloS one, 14(9):e0222909 pii:PONE-D-18-34812.

Telomeres are nucleo-protein structures that protect the ends of eukaryotic chromosomes. They are not completely synthesized during DNA replication and are elongated by specific mechanisms. The structure of the telomeres and the elongation mechanism have not been determined in Dictyostelium discoideum. This organism presents extrachromosomal palindromic elements containing two copies of the rDNA, also present at the end of the chromosomes. In this article the structure of the terminal region of the rDNA is shown to consist of repetitions of the A(G)n sequence where the number of Gs is variable. These repeats extend as a 3' single stranded region. The G-rich region is preceded by four tandem repetitions of two different DNA motifs. D. discoideum telomere reverse transcriptase homologous protein (TERTHP) presented RNase-sensitive enzymatic activity and was required to maintain telomere structure since terthp-mutant strains presented reorganizations of the DNA terminal regions. These modifications were different in several terthp-mutants and changed with their prolonged culture and subcloning. However, the terthp gene is not essential for D. discoideum proliferation. Telomeres could be maintained in terthp-mutant strains by homologous recombination mechanisms such as ALT (Alternative Lengthening of Telomeres) or HAATI (heterochromatin amplification-mediated and telomerase-independent). In agreement with this hypothesis, the expression of mRNAs coding for several proteins involved in homologous recombination was induced in terthp-mutant strains. Extrachromosomal rDNA could serve as substrate in these DNA homologous recombination reactions.

RevDate: 2019-09-24

Criscuolo F, Cornell A, Zahn S, et al (2019)

Oxidative status and telomere length are related to somatic and physiological maturation in chicks of European starlings (Sturnus vulgaris).

The Journal of experimental biology pii:jeb.204719 [Epub ahead of print].

Telomere length can be considered as an indicator of an organism's somatic state, long telomeres reflecting higher energy investment in self-maintenance. Early-life is a period of intense investment in somatic growth and in physiological maturation but how this is reflected in telomere length remains unclear. Using European starling chicks we tested: (i) how telomere length measured at asymptotic mass is related to proxies of somatic growth and physiological maturity in 17 days-old nestlings; (ii) how telomere length measured at 17 days then predicts the changes in somatic and physiological maturity occurring in fledglings (between 17-21 days); (iii) how growth and telomere length co-vary when chicks are under experimentally good (fed) growth conditions. Depending on environmental conditions, our data suggest links between somatic growth, physiological maturation, and body maintenance parameters (positive with oxidative stress and negative with telomere length) in nestlings. Telomere length measured at day 17 predicted subsequent change in physiological maturation variables observed in fledglings, but only in second-brood chicks: chicks with shorter telomeres had a higher pre-fledging rate of increase in hematocrit, haemoglobin content and a greater decrease in reticulocytes count. Finally, food-supplementation of chicks did not change telomere length compared to control siblings. Our results suggest that physiological maturation prior to fledging may occur at the expense of telomere length but only when environmental conditions are sub-optimal.

RevDate: 2019-10-04

Wang L, Koenig HG, Al Shohaib S, et al (2019)

Religiosity, depression and telomere length in Chinese older adults.

Journal of affective disorders, 260:624-628 pii:S0165-0327(19)32101-9 [Epub ahead of print].

BACKGROUND: The mechanism explaining how religiosity is linked to telomere length (TL) is unclear. The current study examines depression as a possible mediator.

METHODS: In this cross-sectional study of 1,742 community-dwelling residents aged 55 or over, the Duke University Religion Index (DUREL) and Geriatric Depression Scale (GDS) were administrated during a routine health check. Peripheral blood leukocyte TL was determined using a q-PCR procedure. The Bootstrap methods PROCESS program was used to detect mediation.

RESULTS: After controlling for sociodemographic variables, the religiosity was positively correlated with TL (p<0.05) and negatively correlated with depressive symptom (p<0.001). Depressive symptoms, in turn, was negatively correlated with TL (p<0.05) in the overall sample. Depressive symptoms significantly mediated the relationship between religiosity and TL (explaining 31.8% of the total variance) in the 65 years and older subgroup (p = 0.015). No significant mediation was found in the 55-64 age subgroup.

LIMITATIONS: The cross-sectional design prevents making causal inferences. The non-random sampling method used in selecting participants may affect the external validity of the findings in terms of generalizing to Muslims throughout China or other religious groups. Potential mediators of the relationship between religiosity and TL and confounders such as physical health status, were not assessed.

CONCLUSION: Religiosity was positively associated with TL in older mainland Chinese adults, and this association was partially mediated by depressive symptom in the 65 or older age group. This finding helps to explain why religiosity is related to cellular aging in older adults.

RevDate: 2019-09-21

Dhillon VS, Deo P, Chua A, et al (2019)

Shorter telomere length in carriers of APOE-ε4 and high plasma concentration of glucose, glyoxal and other advanced glycation end products (AGEs).

The journals of gerontology. Series A, Biological sciences and medical sciences pii:5572352 [Epub ahead of print].

Apolipoprotein-ε4 (APOE-ε4) - common variant is a major genetic risk factor for cognitive decline and Alzheimer's disease (AD). An accelerated rate of biological aging could contribute to this increased risk. Glycation of serum proteins due to excessive glucose and reactive oxygen species leads to the formation of advanced glycation end products (AGEs) - a risk factor for diabetes and AD, and decline in motor functioning in elderly. Aim of present study was to investigate impact of APOE-ε4 allele containing genotype and accumulation of AGEs in plasma on telomere length (TL). Results showed that TL is significantly shorter in APOE-ε4 carriers compared to non-APOE-ε4 carriers (p = 0.0003). Higher plasma glucose level was associated with shorter TL irrespective of APOE-ε4 allele containing genotype (r = - 0.26; p = 0.0004). With regard to AGEs, higher plasma glyoxal and fluorescent AGEs concentrations were inversely related to TL (r = - 0.16; p = 0.03; r = - 0.28; p = 0001), however, plasma Nε-(carboxymethyl)lysine levels didn't correlate with TL (r = - 0.04; p = 0.57). Results support the hypotheses that APOE-ε4 carriers have shorter telomeres than non-carriers and telomere erosion is increased with higher concentration of glucose, fluorescent AGEs and glyoxal.

RevDate: 2019-09-18

Alejos B, Stella-Ascariz N, Montejano R, et al (2019)

Determinants of blood telomere length in antiretroviral treatment-naïve HIV-positive participants enrolled in the NEAT 001/ANRS 143 clinical trial.

HIV medicine [Epub ahead of print].

OBJECTIVES: Our aim was to investigate factors associated with baseline blood telomere length in participants enrolled in NEAT 001/ANRS 143, a randomized, open-label trial comparing ritonavir-boosted darunavir (DRV/r) plus raltegravir (RAL) with DRV/r plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) in antiretroviral therapy (ART)-naïve HIV-positive adults.

METHODS: A cross-sectional study of 201 randomly selected participants who had stored samples available was carried out. We measured telomere length (i.e. the relative telomere length, calculated as the telomere to single copy gene ratio) at baseline with monochrome quantitative multiplex polymerase chain reaction (PCR). We used multivariable predictive linear regression to calculate mean differences and 95% confidence intervals (CIs) for the association between baseline telomere length and baseline characteristics.

RESULTS: The baseline characteristics of the 201 participants did not differ from those of the 805 participants in the parent trial population: 89% were male, the mean age was 39 years, 83.6% were Caucasian, 93% acquired HIV infection via sexual transmission, the mean estimated time since HIV diagnosis was 2.1 years, the mean HIV-1 RNA load was 4.7 log10 HIV-1 RNA copies/mL, the mean nadir and baseline CD4 counts were 301 and 324 cells/μL, respectively, and the mean CD4:CD8 ratio was 0.4. In the univariate analysis, shorter telomere length was associated with older age (per 10 years) (P < 0.001), HIV-1 RNA ≥ 100 000 copies/mL (P = 0.001), CD4 count < 200 cells/μL (P = 0.037), lower CD4:CD8 ratio (P = 0.018), statin treatment (P = 0.004), and current alcohol consumption (P = 0.035). In the multivariable analysis, older age (P < 0.001) and HIV RNA ≥ 100 000 copies/mL (P = 0.054) were independently associated with shorter telomere length.

CONCLUSIONS: Both age and HIV RNA viral load correlated with shorter blood telomere length in untreated persons living with HIV. These results suggest that HIV infection and age have synergistic and independent impacts upon immunosenescence.

RevDate: 2019-09-21

Masamsetti VP, Low RRJ, Mak KS, et al (2019)

Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection.

Nature communications, 10(1):4224 pii:10.1038/s41467-019-12255-w.

Mitotic catastrophe is a broad descriptor encompassing unclear mechanisms of cell death. Here we investigate replication stress-driven mitotic catastrophe in human cells and identify that replication stress principally induces mitotic death signalled through two independent pathways. In p53-compromised cells we find that lethal replication stress confers WAPL-dependent centromere cohesion defects that maintain spindle assembly checkpoint-dependent mitotic arrest in the same cell cycle. Mitotic arrest then drives cohesion fatigue and triggers mitotic death through a primary pathway of BAX/BAK-dependent apoptosis. Simultaneously, a secondary mitotic death pathway is engaged through non-canonical telomere deprotection, regulated by TRF2, Aurora B and ATM. Additionally, we find that suppressing mitotic death in replication stressed cells results in distinct cellular outcomes depending upon how cell death is averted. These data demonstrate how replication stress-induced mitotic catastrophe signals cell death with implications for cancer treatment and cancer genome evolution.

RevDate: 2019-09-30

Noll B, Bahrani Mougeot F, Brennan MT, et al (2019)

Telomere erosion in Sjögren's syndrome: A multi-tissue comparative analysis.

Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology [Epub ahead of print].

BACKGROUND: Acinar progenitor cells within salivary glands have decreased regenerative capacity and exhibit shorter telomeres in primary Sjögren's syndrome (pSS) patients. We investigated whether DNA of saliva, PBMCs, and labial salivary gland (LSG) biopsy tissue have shorter telomeres in pSS compared to controls. mRNA expression of genes associated with pSS pathogenesis (ETS1, LEF1, and MMP9), telomere DNA damage response (ATM), senescence (CDKN2A), telomerase inhibition (IFN-y, TGFβ1), and the shelterin complex (TPP1, POT1) were assessed in LSG tissue by qRT-PCR to examine potential defects in telomere maintenance.

METHODS: Relative telomere length in DNA of saliva, PBMCs, and LSGs from non-pSS sicca and pSS patients was measured using qPCR. Saliva DNA telomere length was further compared to healthy controls. Expression of genes affecting telomere maintenance was analyzed in LSGs using qRT-PCR.

RESULTS: Primary Sjögren's syndrome patients have shorter telomeres in saliva DNA (n = 21) than healthy controls (n = 27) (P = .0035). ATM mRNA expression was higher in pSS LSG tissue (n = 16) vs non-pSS sicca patients (n = 13) (P = .0283) and strongly correlated with LEF1, TPP1, and POT1 (P < .01, r > 0.6).

CONCLUSIONS: Patients with pSS exhibited significant telomere erosion in saliva DNA. Overexpression of ATM in LSGs could represent a compensatory response to telomere shortening. The role of LEF1 in telomere erosion remains to be elucidated.

RevDate: 2019-09-20

Amano H, E Sahin (2019)

Telomeres and sirtuins: at the end we meet again.

Molecular & cellular oncology, 6(5):e1632613 pii:1632613.

Telomeres and sirtuins are independently implicated in causing disease and aging, but how they cooperate is not well understood. A recent study demonstrates that telomere shortening represses sirtuins and increasing sirtuin activity stabilizes telomeres and improves telomere-dependent disease, suggesting that these two pathways are tightly intertwined.

RevDate: 2019-09-29

Červenák F, Juríková K, Devillers H, et al (2019)

Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins.

Scientific reports, 9(1):13365 pii:10.1038/s41598-019-49628-6.

Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5'-TTNNNNAGGG-3', with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5'-TTAGGG-3'. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.

RevDate: 2019-09-18

Flynn RL, CM Heaphy (2019)

Surviving Telomere Attrition with the MiDAS Touch.

Trends in genetics : TIG pii:S0168-9525(19)30181-7 [Epub ahead of print].

Cancer cells maintain telomere lengths through telomerase activity or by alternative lengthening of telomeres (ALT). Using an engineered model system, a recent study by Min et al. reveals that the combination of BLM-mediated DNA resection and telomere clustering, a characteristic of ALT telomeres, catalyzes RAD52-dependent mitotic DNA synthesis (MiDAS) specifically at telomeres to drive ALT activity.

RevDate: 2019-09-25

Liu N, Yin Y, Wang H, et al (2019)

Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling.

PLoS genetics, 15(9):e1008368 pii:PGENETICS-D-19-00369.

Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies.

RevDate: 2019-09-13

Hoffman TW, van der Vis JJ, van der Smagt JJ, et al (2019)

Pulmonary fibrosis linked to variants in the ACD gene, encoding the telomere protein TPP1.

RevDate: 2019-09-24

Wilbur SM, Barnes BM, Kitaysky AS, et al (2019)

Tissue-specific telomere dynamics in hibernating arctic ground squirrels (Urocitellus parryii).

The Journal of experimental biology, 222(Pt 18): pii:jeb.204925.

Hibernation is used by a variety of mammals to survive seasonal periods of resource scarcity. Reactive oxygen species (ROS) released during periodic rewarming throughout hibernation, however, may induce oxidative damage in some tissues. Telomeres, which are the terminal sequences of linear chromosomes, may shorten in the presence of ROS, and thus the telomere length of an individual reflects the degree of accrued oxidative damage. This study quantified telomere length dynamics throughout hibernation in arctic ground squirrels (Urocitellus parryii). We hypothesized that telomere dynamics are tissue specific and predicted that telomere shortening would be most pronounced in brown adipose tissue (BAT), the organ that directly supports non-shivering thermogenesis during arousals. We used qPCR to determine relative telomere length (RTL) in DNA extracted from liver, heart, skeletal muscle (SM) and BAT of 45 juvenile and adult animals sampled either at mid- or late hibernation. Age did not have a significant effect on RTL in any tissue. At mid-hibernation, RTL of juvenile females was longer in BAT and SM than in liver and heart. In juvenile females, RTL in BAT and SM, but not in liver and heart, was shorter at late hibernation than at mid-hibernation. At late hibernation, juvenile males had longer RTL in BAT than did juvenile females, perhaps due to the naturally shorter hibernation duration of male arctic ground squirrels. Finally, BAT RTL at late hibernation negatively correlated with arousal frequency. Overall, our results suggest that, in a hibernating mammal, telomere shortening is tissue specific and that metabolically active tissues might incur higher levels of molecular damage.

RevDate: 2019-09-13

Bhattacharya M, Bhaumik P, Ghosh P, et al (2019)

Telomere Length Inheritance and Shortening in Trisomy 21.

Fetal and pediatric pathology [Epub ahead of print].

Objective: Trisomy 21 is a genetic disorder that shows premature aging symptoms. As an aging marker, telomere length is therefore of importance in trisomy families. Methods: We included 63 maternally originated trisomy 21 and 77 control families with infants in the first data set; 48 trisomy 21 and 60 control children in the second set; and 14 paternally originated trisomy 21 families in the third data set. We used Southern blot to measure the telomere length. Results: (1) Offsprings' telomere length increased with parents' age (p < .0001). (2) Trisomy 21 infants had longer telomere than the controls (p < .0001). (3) Post-birth, the telomere attrition rate was higher in cases than in controls (58 bps/year vs. 38 bps/year). Conclusion: (1) Our data supports the older parents-longer gamete telomere hypothesis. (2) Trisomy 21 patients are born with longer telomeres, (3) with advancing trisomy 21 age, the telomere shortens more quickly than euploids.

RevDate: 2019-09-13

Luca P, Carmen M, Angela DS, et al (2019)

BRCA2 Deletion Induces Alternative Lengthening of Telomeres in Telomerase Positive Colon Cancer Cells.

Genes, 10(9): pii:genes10090697.

BRCA1/2 are tumor suppressor genes controlling genomic stability also at telomeric and subtelomeric loci. Their mutation confers a predisposition to different human cancers but also sensitivity to antitumor drugs including poly(ADP-ribose) polymerase (PARP) inhibitors and G-quadruplex stabilizers. Here we demonstrate that BRCA2 deletion triggers TERRA hyperexpression and alternative lengthening mechanisms (ALT) in colon cancer cells in presence of telomerase activity. This finding opens the question if cancer patients bearing BRCA2 germline or sporadic mutation are suitable for anti-telomerase therapies, or how ALT activation could influence the short or long-term response to anti-PARP inhibitors or anti-G-quadruplex therapies.

RevDate: 2019-09-11

Cokan Vujkovac A, Novaković S, Vujkovac B, et al (2019)

Aging in Fabry Disease: Role of Telomere Length, Telomerase Activity, and Kidney Disease.

Nephron pii:000502909 [Epub ahead of print].

INTRODUCTION: The lifespan of patients with Fabry disease (FD) is shorter than that seen in the general population. Leukocyte telomere length (LTL) and telomerase activity (TA) are potential markers of biologic aging. The aim of the current study was to determine the LTL and TA in FD patients and to assess the correlation between LTL and TA and renal involvement.

METHODS: We included 33 FD patients and 66 healthy matched controls. LTL and TA were measured using a quantitative PCR assay and gene expression assay. FD patients were stratified by renal function (estimated glomerular filtration rate [eGFR] higher or lower than 60 mL/min/1.73 m2) and proteinuria (urine protein creatinine ratio higher or lower than 0.5 g/g).

RESULTS: LTL was significantly shorter (0.69 vs. 0.73, p = 0.015) and TA significantly higher (1.55 vs. 1.19, p = 0.047) in FD patients compared to controls. Males with FD had significantly shorter LTL (p = 0.020) and lower, but non-significant, TA compared to male controls (p = 0.333). Female FD patients had similar LTL (p = 0.285) but significantly higher TA compared to female controls (p = 0.005). LTL was not influenced by eGFR, but TA was significantly lower in the low eGFR group (p = 0.003).

CONCLUSIONS: FD patients have significantly shorter LTL, but significantly higher TA compared to healthy controls. Increased TA activity in FD patients could be the compensation mechanism to prevent LTL decrease (and accelerated ageing), which seems to be exhausted at the advanced stage of renal disease.

RevDate: 2019-09-11

Esteves KC, Jones CW, Wade M, et al (2019)

Adverse Childhood Experiences: Implications for Offspring Telomere Length and Psychopathology.

The American journal of psychiatry [Epub ahead of print].

OBJECTIVE: Adverse childhood experiences (ACEs) are associated with mental and physical health risks that, through biological and psychosocial pathways, likely span generations. Within an individual, telomere length (TL), an established marker of cellular stress and aging, is associated with both ACE exposure and psychopathology, providing the basis for an emerging literature suggesting that TL is a biomarker of the health risks linked to early-life adversity both within and across generations. The authors tested the effect of maternal ACEs on both the trajectory of infant TL and infant social-emotional problems at 18 months of age.

METHODS: Pregnant women were recruited, and maternal scores on the Adverse Childhood Experience questionnaire were obtained, along with demographic and prenatal stress measures. Postnatal visits with 155 mother-infant dyads occurred when infants were 4, 12, and 18 months of age. At each visit, infant buccal swabs were collected for TL measurement, and mothers completed measures of maternal depression. Mothers also completed the Child Behavior Checklist at the 18-month visit. Mixed-effects modeling was used to test how maternal ACEs influenced infant TL trajectory. Linear regression was used to test the association between maternal ACEs and infant internalizing and externalizing behaviors. Finally, the interaction between telomere attrition from 4 to 18 months and maternal ACEs was examined as a predictor of infant scores on the Child Behavior Checklist.

RESULTS: Higher maternal ACEs were associated with shorter infant TL across infancy and higher infant externalizing behavioral problems at 18 months. No associations were found with internalizing behavioral problems. Telomere attrition from 4 to 18 months interacted with maternal ACEs to predict externalizing behaviors. In infants whose mothers reported higher scores on the Adverse Childhood Experience questionnaire, greater telomere attrition predicted higher externalizing problems, even when accounting for maternal postnatal depression and prenatal stress.

CONCLUSIONS: These data demonstrate an interactive pathway between maternal early-life adversity and infant TL that predicts emerging behavioral problems in the next generations.

RevDate: 2019-09-10

Vaquero-Sedas MI, MA Vega-Palas (2019)

Assessing the Epigenetic Status of Human Telomeres.

Cells, 8(9): pii:cells8091050.

The epigenetic modifications of human telomeres play a relevant role in telomere functions and cell proliferation. Therefore, their study is becoming an issue of major interest. These epigenetic modifications are usually analyzed by microscopy or by chromatin immunoprecipitation (ChIP). However, these analyses could be challenged by subtelomeres and/or interstitial telomeric sequences (ITSs). Whereas telomeres and subtelomeres cannot be differentiated by microscopy techniques, telomeres and ITSs might not be differentiated in ChIP analyses. In addition, ChIP analyses of telomeres should be properly controlled. Hence, studies focusing on the epigenetic features of human telomeres have to be carefully designed and interpreted. Here, we present a comprehensive discussion on how subtelomeres and ITSs might influence studies of human telomere epigenetics. We specially focus on the influence of ITSs and some experimental aspects of the ChIP technique on ChIP analyses. In addition, we propose a specific pipeline to accurately perform these studies. This pipeline is very simple and can be applied to a wide variety of cells, including cancer cells. Since the epigenetic status of telomeres could influence cancer cells proliferation, this pipeline might help design precise epigenetic treatments for specific cancer types.

RevDate: 2019-09-30

Yang L, Kost SEF, Beiggi S, et al (2019)

Buccal cell telomere length is not a useful marker for comorbidities in chronic lymphocytic leukemia.

RevDate: 2019-09-11

Zhao B, Lin J, Rong L, et al (2019)

ARID1A promotes genomic stability through protecting telomere cohesion.

Nature communications, 10(1):4067 pii:10.1038/s41467-019-12037-4.

ARID1A inactivation causes mitotic defects. Paradoxically, cancers with high ARID1A mutation rates typically lack copy number alterations (CNAs). Here, we show that ARID1A inactivation causes defects in telomere cohesion, which selectively eliminates gross chromosome aberrations during mitosis. ARID1A promotes the expression of cohesin subunit STAG1 that is specifically required for telomere cohesion. ARID1A inactivation causes telomere damage that can be rescued by STAG1 expression. Colony formation capability of single cells in G2/M, but not G1 phase, is significantly reduced by ARID1A inactivation. This correlates with an increase in apoptosis and a reduction in tumor growth. Compared with ARID1A wild-type tumors, ARID1A-mutated tumors display significantly less CNAs across multiple cancer types. Together, these results show that ARID1A inactivation is selective against gross chromosome aberrations through causing defects in telomere cohesion, which reconciles the long-standing paradox between the role of ARID1A in maintaining mitotic integrity and the lack of genomic instability in ARID1A-mutated cancers.

RevDate: 2019-09-29

Pusceddu I, Herrmann W, Kleber ME, et al (2019)

Telomere length, vitamin B12 and mortality in persons undergoing coronary angiography: the Ludwigshafen risk and cardiovascular health study.

Aging, 11(17):7083-7097.

BACKGROUND: Vitamin B12 (B12) deficiency and excess are associated with increased risk of age-related-diseases and mortality. It has been suggested that high- and low-B12 concentrations link to increased mortality through accelerated genomic aging and inflammation. Evidence to support this is limited.

RESULTS: B12 was associated with all-cause-mortality, RTL and hsCRP in a non-linear fashion. The association between B12 and mortality was not independent, as it lost significance after adjustment for potential confounders. In the lowest-(LB12) and highest-(HB12) quartiles of B12 mortality was higher than in the mid-range (HR:LB12:1.23;CI95%:1.06-1.43; HR:HB12:1.24;CI95%:1.06-1.44). We divided subjects with LB12 in quartiles of their RTL. Those with the longest-telomeres had a lower mortality-rate (HR:0.57;95%CI:0.39-0.83) and lower homocysteine than those with the shortest-telomeres. Amongst subjects with HB12, those with long-telomeres also had a lower mortality than those with short-telomeres (HR:0.40;95%CI:0.27-0.59). IL-6 and hsCRP concentrations were low in HB12LT but were high in HB12ST.

METHODS: B12, homocysteine, telomere length (RTL), interleukin-6 (IL-6) and high-sensitive-C-reactive-protein (hsCRP) were measured in 2970 participants of the LURIC study.

CONCLUSIONS: Mortality, stratified according to B12 and RTL, seems to be driven by different mechanisms. In LB12 and HB12 subjects, mortality and accelerated telomere shortening might be driven by homocysteine and inflammation, respectively.

RevDate: 2019-09-29

Åström MJ, von Bonsdorff MB, Perälä MM, et al (2019)

Telomere length and physical performance among older people-The Helsinki Birth Cohort Study.

Mechanisms of ageing and development, 183:111145 pii:S0047-6374(19)30150-2 [Epub ahead of print].

Telomere length has been suggested a biomarker of aging and is associated with several chronic diseases. However, the association between telomere length and physical performance is not well known. Using both cross-sectional and longitudinal data, we studied 582 women and 453 men from the Helsinki Birth Cohort Study at two time-points; a baseline examination in 2001-2004 at a mean age of 61 years and a follow-up examination approximately 10 years later in 2011-2013. Telomere length was measured both at baseline and at follow-up using real-time quantitative polymerase chain reaction. Physical performance was evaluated only at follow-up using the Senior Fitness Test (SFT), which assesses strength, flexibility and endurance. In women, shorter telomere length at follow-up (p = 0.044) and greater telomere attrition during follow-up time (p = 0.022) were associated with poorer physical performance after adjusting for covariates (age at baseline, smoking status, body mass index at baseline, follow-up time and educational attainment). No similar associations were found for men. This indicates that, at least in women, telomere length could potentially be used as a biomarker for physical performance, however, more longitudinal studies are needed to confirm this association.

RevDate: 2019-10-03

Krysko KM, Henry RG, Cree BAC, et al (2019)

Telomere Length Is Associated with Disability Progression in Multiple Sclerosis.

Annals of neurology [Epub ahead of print].

OBJECTIVE: To assess whether biological aging as measured by leukocyte telomere length (LTL) is associated with clinical disability and brain volume loss in multiple sclerosis (MS).

METHODS: Adults with MS/clinically isolated syndrome in the University of California, San Francisco EPIC cohort study were included. LTL was measured on DNA samples by quantitative polymerase chain reaction and expressed as telomere to somatic DNA (T/S) ratio. Expanded Disability Status Scale (EDSS) and 3-dimensional T1-weighted brain magnetic resonance imaging were performed at baseline and follow-up. Associations of baseline LTL with cross-sectional and longitudinal outcomes were assessed using simple and mixed effects linear regression models. A subset (n = 46) had LTL measured over time, and we assessed the association of LTL change with EDSS change with mixed effects models.

RESULTS: Included were 356 women and 160 men (mean age = 43 years, median disease duration = 6 years, median EDSS = 1.5 [range = 0-7], mean T/S ratio = 0.97 [standard deviation = 0.18]). In baseline analyses adjusted for age, disease duration, and sex, for every 0.2 lower LTL, EDSS was 0.27 higher (95% confidence interval [CI] = 0.13-0.42, p < 0.001) and brain volume was 7.4mm3 lower (95% CI = 0.10-14.7, p = 0.047). In longitudinal adjusted analyses, those with lower baseline LTL had higher EDSS and lower brain volumes over time. In adjusted analysis of the subset, LTL change was associated with EDSS change over 10 years; for every 0.2 LTL decrease, EDSS was 0.34 higher (95% CI = 0.08-0.61, p = 0.012).

INTERPRETATION: Shorter telomere length was associated with disability independent of chronological age, suggesting that biological aging may contribute to neurological injury in MS. Targeting aging-related mechanisms is a potential therapeutic strategy against MS progression. ANN NEUROL 2019.

RevDate: 2019-09-24

Donaires FS, Alves-Paiva RM, Gutierrez-Rodrigues F, et al (2019)

Telomere dynamics and hematopoietic differentiation of human DKC1-mutant induced pluripotent stem cells.

Stem cell research, 40:101540 pii:S1873-5061(19)30170-9 [Epub ahead of print].

Telomeropathies are a group of phenotypically heterogeneous diseases molecularly unified by pathogenic mutations in telomere-maintenance genes causing critically short telomeres. X-linked dyskeratosis congenita (DC), the prototypical telomere disease, manifested with ectodermal dysplasia, cancer predisposition, and severe bone marrow failure, is caused by mutations in DKC1, encoding a protein responsible for telomerase holoenzyme complex stability. To investigate the effects of pathogenic DKC1 mutations on telomere repair and hematopoietic development, we derived induced pluripotent stem cells (iPSCs) from fibroblasts of a DC patient carrying the most frequent mutation: DKC1 p.A353V. Telomeres eroded immediately after reprogramming in DKC1-mutant iPSCs but stabilized in later passages. The telomerase activity of mutant iPSCs was comparable to that observed in human embryonic stem cells, and no evidence of alternative lengthening of telomere pathways was detected. Hematopoietic differentiation was carried out in DKC1-mutant iPSC clones that resulted in increased capacity to generate hematopoietic colony-forming units compared to controls. Our study indicates that telomerase-dependent telomere maintenance is defective in pluripotent stem cells harboring DKC1 mutation and unable to elongate telomeres, but sufficient to maintain cell proliferation and self-renewal, as well as to support the primitive hematopoiesis, the program that is recapitulated with our differentiation protocol.

RevDate: 2019-09-18

Denham J, Stevenson K, MM Denham (2019)

Age-associated telomere shortening in Thoroughbred horses.

Experimental gerontology, 127:110718 pii:S0531-5565(19)30249-9 [Epub ahead of print].

Telomeres are genetically conserved repetitive terminal DNA that protect against genomic instability and shorten with ageing. Here, we reveal the leukocyte telomere length of Equus caballus by measuring terminal restriction fragments (TRFs) using Southern Blot analysis in a cohort of 43 Thoroughbred horses (age: 24 h-25 years). Heterogeneous TRFs were observed in each animal and large inter-animal variation in mean TRF was observed (range: 10.5-18.7 kbp). Mean TRFs were inversely correlated with age (r = -0.47). The estimated yearly rate of telomere attrition was 134 bp. Horses should be considered as an alternative animal model to investigate environmental and lifestyle factors that regulate telomeres and promote healthy ageing.

RevDate: 2019-09-10

Niewisch MR, SA Savage (2019)

An update on the biology and management of dyskeratosis congenita and related telomere biology disorders.

Expert review of hematology [Epub ahead of print].

Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features. Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options. Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.

RevDate: 2019-09-03

Ryan KM, DM McLoughlin (2019)

Telomere length in depression and association with therapeutic response to electroconvulsive therapy and cognitive side-effects.

Psychological medicine pii:S0033291719002228 [Epub ahead of print].

BACKGROUND: Electroconvulsive therapy (ECT) is the most acutely effective treatment for severe treatment-resistant depression. However, there are concerns about its cognitive side-effects and we cannot yet confidently predict who will experience these. Telomeres are DNA-protein complexes that maintain genomic integrity. In somatic cells, telomeres shorten with each cell division. Telomere length (TL) can thus provide a measure of 'biological' aging. TL appears to be reduced in depression, though results are mixed. We sought to test the following hypotheses: (1) that TL would be shorter in patients with depression compared to controls; (2) that TL would be a predictor of response to ECT; and (3) that shorter TL would predict cognitive side-effects following ECT.

METHOD: We assessed TL in whole blood DNA collected from severely depressed patients (n = 100) recruited as part of the EFFECT-Dep Trial and healthy controls (n = 80) using quantitative real-time polymerase chain reaction. Mood and selected cognitive measures, including global cognition, re-orientation time, and autobiographical memory, were obtained pre-/post-ECT and from controls.

RESULTS: Our results indicate that TL does not differ between patients with depression compared to controls. TL itself was not associated with mood ratings and did not predict the therapeutic response to ECT. Furthermore, shorter baseline TL is not a predictor of cognitive side-effects post-ECT.

CONCLUSIONS: Overall, TL assessed by PCR does not represent a useful biomarker for predicting the therapeutic outcomes or risk for selected cognitive deficits following ECT.

RevDate: 2019-09-05

Tomaska L, Nosek J, Kar A, et al (2019)

A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution.

Frontiers in genetics, 10:792.

Telomere loops (t-loops) are formed at the ends of chromosomes in species ranging from humans to worms, plants, and with genetic manipulation, some yeast. Recent in vitro studies demonstrated that transcription of telomeric DNA leads to highly efficient t-loop formation. It was also shown that both DNA termini are inserted into the preceding DNA to generate a highly stable t-loop junction. Furthermore, some telomeric RNA remains present at the junction, potentially acting as a plug to further protect and stabilize the t-loop. Modeling the loop junction reveals two mechanisms by which the canonical chromosomal replication factors could extend the telomere in the absence of telomerase. One mechanism would utilize the annealed 3' terminus as a de novo replication origin. In vitro evidence for the ability of the t-loop to prime telomere extension using the T7 replication factors is presented. A second mechanism would involve resolution of the Holliday junction present in the t-loop bubble by factors such as GEN1 to generate a rolling circle template at the extreme terminus of the telomere. This could lead to large expansions of the telomeric tract. Here, we propose that telomeres evolved as terminal elements containing long arrays of short nucleotide repeats due to the ability of such arrays to fold back into loops and self-prime their replicative extension. In this view, telomerase may have evolved later to provide a more precise mechanism of telomere maintenance. Both pathways have direct relevance to the alternative lengthening of telomeres (ALT) pathway. This view also provides a possible mechanism for the very large repeat expansions observed in nucleotide repeat diseases such as Fragile X syndrome, myotonic dystrophy, familial amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). The evolution of telomeres is discussed in the framework of these models.

RevDate: 2019-09-18

Somkuti J, Adányi M, L Smeller (2019)

Self-crowding influences the temperature - pressure stability of the human telomere G-quadruplex.

Biophysical chemistry, 254:106248 pii:S0301-4622(19)30285-6 [Epub ahead of print].

We measured the effect of crowded environment on G-quadruplex structures, formed by guanine rich DNA sequences. Fluorescence and infrared spectroscopy were used to determine the temperature stability of G-quadruplex structure formed by the human telomere sequence. We determined the T-p phase diagram of Htel aptamer up to 1 GPa at different self-crowding conditions. The unfolding volume change was determined from the pressure induced shift of the unfolding temperature of the quadruplex form. The unfolding volume change decreased in magnitude, and even its sign changed from negative (-19 ml/mol) to positive (7 ml/mol) under self-crowded conditions. The possible explanations are the appearance of the parallel GQ structure at high concentration or the fact that the volume decrease caused by the released central K+ ion during the unfolding is less significant in crowded environment.

RevDate: 2019-09-18

Ghimire S, Hill CV, Sy FS, et al (2019)

Decline in telomere length by age and effect modification by gender, allostatic load and comorbidities in National Health and Nutrition Examination Survey (1999-2002).

PloS one, 14(8):e0221690 pii:PONE-D-18-25710.

BACKGROUND: This study aims to assess the decline in telomere length (TL) with age and evaluate effect modification by gender, chronic stress, and comorbidity in a representative sample of the US population.

METHODS: Cross-sectional data on 7826 adults with a TL measurement, were included from the National Health and Nutrition Examination Survey, years 1999-2002. The population rate of decline in TL across 10-year age categories was estimated using crude and adjusted regression.

RESULTS: In an adjusted model, the population rate of decline in TL with age was consistent and linear for only three age categories: 20-29 (β = -0.0172, 95% CI: -0.0342, -0.0002), 50-59 (β = -0.0182, 95% CI: -0.0311, -0.0054) and 70-79 (β = -0.0170, 95% CI: -0.0329, -0.0011) years. The population rate of decline in TL with age was significantly greater for males and those with high allostatic load and a history of comorbidities. When the population rate of decline in TL was analyzed by gender in 10-year age bins, a fairly consistent yet statistically non-significant decline for males was observed; however, a trough in the rate was observed for females in the age categories 20-29 years (β = -0.0284, 95% CI: -0.0464, -0.0103) and 50-59 years (β = -0.0211, 95% CI: -0.0391, -0.0032). To further elucidate the gender difference observed in the primary analyses, secondary analyses were conducted with reproductive and hormonal status; a significant inverse association was found between TL and parity, menopause, and age at menopause.

CONCLUSIONS: TL was shorter with increasing age and this decline was modified by gender, chronic stress and comorbidities; individuals with chronic morbidity and/or chronic stress and females in their twenties and fifties experienced greater decline. Female reproductive factors, i.e., parity and menopause, were associated with TL.

RevDate: 2019-09-05

Bottoni G, Katarkar A, Tassone B, et al (2019)

CSL controls telomere maintenance and genome stability in human dermal fibroblasts.

Nature communications, 10(1):3884 pii:10.1038/s41467-019-11785-7.

Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond.

RevDate: 2019-09-11

Luu HN, Huang JY, Wang R, et al (2019)

Association between leukocyte telomere length and the risk of pancreatic cancer: Findings from a prospective study.

PloS one, 14(8):e0221697 pii:PONE-D-19-02946.

INTRODUCTION: Telomeres and telomerase play important role in maintaining chromosome integrity and genomic stability. Recent epidemiologic data showed inconsistent findings which suggested that both short and long leukocyte telomeres could be associated with increased risk of pancreatic cancer. We prospectively examined the association between telomere length and pancreatic cancer risk in a population-based cohort study.

METHODS: The Singapore Chinese Health Study recruited 63,257 Chinese aged 45 to 74 years from 1993 to 1998 in Singapore. Relative telomere length in peripheral blood leukocytes was quantified using a validated monochrome multiplex quantitative polymerase chain reaction method in 26,540 participants, including 116 participants who later developed pancreatic cancer after an average of 13 years of follow-up. Cox proportional hazard regression method was used to calculate hazard ratio (HR) and its 95% confidence interval (CI) of pancreatic cancer risk associated with telomere length, with adjustment for confounding factors.

RESULTS: Longer telomeres were significantly associated with higher risk of pancreatic cancer (Ptrend = 0.02). Compared with lowest quartile, subjects with highest quartile of telomere length had an HR of 2.18 (95% CI: 1.25-3.80) for developing pancreatic cancer. In stratified analysis, this association remained among pancreatic adenocarcinoma patients but not among pancreatic non-adenocarcinoma patients. In continuous scale, the HRs and 95% CIs were 3.08 (1.17-8.11) for adenocarcinoma patients and 1.47 (0.43-5.06) for non-adenocarcinoma patients. The HRs and 95% CIs of the highest quartile of telomere length, compared with the lowest quartile, for adenocarcinoma and non-adenocarcinoma were 2.50 (1.22-5.13) and 1.63 (0.66-4.03), respectively. The length of follow-up from the collection of blood for the measurement of telomere length to the diagnosis of cancer (median = 8.0, range: from 5.0 months to 16.2 years) had no significant impact on the association between telomere length and pancreatic cancer risk.

CONCLUSIONS: The present study demonstrates that longer telomeres are associated with increased risk of overall pancreatic cancer.

RevDate: 2019-08-29

Gorenjak V, Petrelis AM, Stathopoulou MG, et al (2019)

Telomere length determinants in childhood.

Clinical chemistry and laboratory medicine pii:/j/cclm.ahead-of-print/cclm-2019-0235/cclm-2019-0235.xml [Epub ahead of print].

Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.

RevDate: 2019-09-01

Stindl R (2019)

Transgenerational telomere erosion in the monogametic sex: human telomeres progressively erode in the female germline and do not lengthen in aged testes.

Molecular cytogenetics, 12:37 pii:450.

Long telomeres, the protective caps of eukaryotic chromosomes, which erode during aging, have been the symbol of youth and regenerative potential. It therefore came as a surprise, when several cross-sectional studies reported that telomeres in sperm cells of old men are longer than in young men and that paternal age is positively linked to telomere length of children. To explain the puzzling data, several theories have been put forward, from Darwinian selection to high telomerase activity or alternative telomere lengthening in sperms of geriatrics. Unfortunately, the idea of a birth-cohort effect has been ignored, despite existing theoretical models and despite findings of progressive telomere erosion between human generations. The old theoretical model of progressive telomere erosion in the female germline is discussed here and updated with the hypothesis that progressive telomere erosion is tied to the monogametic sex in all higher animals. Longitudinal studies of germline telomere length in humans are much needed, since a limited regenerative capacity of somatic tissues will most likely result in an increase in and earlier onset of the so-called age-associated diseases.

RevDate: 2019-09-01

Rodriguez FJ, Graham MK, Brosnan-Cashman JA, et al (2019)

Telomere alterations in neurofibromatosis type 1-associated solid tumors.

Acta neuropathologica communications, 7(1):139 pii:10.1186/s40478-019-0792-5.

The presence of Alternative lengthening of telomeres (ALT) and/or ATRX loss, as well as the role of other telomere abnormalities, have not been formally studied across the spectrum of NF1-associated solid tumors. Utilizing a telomere-specific FISH assay, we classified tumors as either ALT-positive or having long (without ALT), short, or normal telomere lengths. A total of 426 tumors from 256 NF1 patients were evaluated, as well as 99 MPNST tumor samples that were sporadic or of unknown NF1 status. In the NF1-glioma dataset, ALT was present in the majority of high-grade gliomas: 14 (of 23; 60%) in contrast to only 9 (of 47; 19%) low-grade gliomas (p = 0.0009). In the subset of ALT-negative glioma cases, telomere lengths were estimated and we observed 17 (57%) cases with normal, 12 (40%) cases with abnormally long, and only 1 (3%) case with short telomeres. In the NF1-associated malignant nerve sheath tumor (NF1-MPNST) set (n = 75), ALT was present in 9 (12%). In the subset of ALT-negative NF1-MPNST cases, telomeres were short in 9 (38%), normal in 14 (58%) and long in 1 (3%). In the glioma set, overall survival was significantly decreased for patients with ALT-positive tumors (p < 0.0001). In the NF1-MPNST group, overall survival was superior for patients with tumors with short telomeres (p = 0.003). ALT occurs in a subset of NF1-associated solid tumors and is usually restricted to malignant subsets. In contrast, alterations in telomere lengths are more prevalent than ALT.

RevDate: 2019-09-06

A Gibson E, Nunez Y, Abuawad A, et al (2019)

An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length.

Environmental health : a global access science source, 18(1):76 pii:10.1186/s12940-019-0515-1.

BACKGROUND: Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome.

METHODS: With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001-2002), we used unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also employed supervised learning techniques, including penalized, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions, and the overall mixture effect.

RESULTS: Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was found among those with high exposure. The first PCA component represented overall POP exposure and was positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners.

CONCLUSIONS: Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for mixture method selection based on specific research questions.

RevDate: 2019-10-02

Lee Y, Sun D, Ori APS, et al (2019)

Epigenome-wide association study of leukocyte telomere length.

Aging, 11(16):5876-5894.

Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) - the Framingham Heart Study, the Jackson Heart Study, the Women's Health Initiative, the Bogalusa Heart Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts. Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly significant relationships between two hallmarks of aging: telomere biology and epigenetic changes.

RevDate: 2019-08-30

Villani G (2018)

Quantum Mechanical Investigation of the G-Quadruplex Systems of Human Telomere.

ACS omega, 3(8):9934-9944.

The three G-quadruplexes involved in the human telomere have been studied with an accurate quantum mechanical approach, and the possibility of reducing them to a simpler model has been tested. The similarities and the differences of these three systems are shown and discussed. Each system has been analyzed through different properties and compared to the others. In particular, we have considered: (1) the shape of the cavity and the atomic charges around it; (2) the electric field in and out of the cavity; (3) the stabilization energy due to the stacking of G-tetrads, to the H-bonds and to the ion interactions; and, finally, (4) to study the mechanism of the process of the ion inclusion in the cavity, the curves of potential energy due to the movement of the Na+ and K+ ions toward the cavity. The results suggest that a detailed study is essential in order to obtain the quantitative properties of these complex systems, but also that some qualitative behaviors can be schematized. Our study makes it clear that the entry of an ion in the cavity of these systems is a complex process, where it is possible to find stable structures with the ion out and in the cavity. Moreover, it is possible that more than one diabatic state is involved in this process.

RevDate: 2019-08-28

Nguyen MT, Saffery R, Burgner D, et al (2019)

Telomere length and lung function in a population-based cohort of children and mid-life adults.

Pediatric pulmonology [Epub ahead of print].

OBJECTIVE: Telomere length is associated with poorer lung health in older adults, possibly from cumulative risk factor exposure, but data are lacking in pediatric and population-based cohorts. We examined associations of telomere length with lung function in children and mid-life adults.

METHODS: Data were drawn from a population-based cross-sectional study of 11 to 12 year-olds and mid-life adults. Lung function was assessed by spirometric FEV1 , FVC, FEV 1 /FVC ratio, and MMEF 25-75 . Telomere length was measured by quantitative polymerase chain reaction from blood and expressed as the amount of telomeric genomic DNA to the beta-globin gene (T/S ratio). Associations of telomere length with spirometric parameters were tested by linear and logistic regression models, adjusting for potential confounders of sex, age, body mass index, socioeconomic position, physical activity, inflammation, asthma, pubertal status, and smoking.

RESULTS: Mean T/S ratio was 1.09 (n = 1206; SD 0.55) in children and 0.81 (n = 1343; SD 0.38) in adults. In adults, for every additional unit in T/S ratio, FEV 1 /FVC and MMEF 25-75 z-scores were higher (β 0.21 [95% confidence interval, CI; 0.06-0.36] and 0.23 [95% CI; 0.08-0.38], respectively), and the likelihood of being in the lowest quartile for FEV 1 /FVC and MMEF 25-75 z-scores was lower (odds ratios 0.59 [95% CI, 0.39-0.89] and 0.64 [95% CI, 0.41-0.99], respectively). No evidence of association was seen for adult FEV 1 or FVC, or any childhood spirometric index after adjustments.

CONCLUSION: Shorter telomere length showed moderate associations with poorer airflow parameters, but not vital capacity (lung volume) in mid-life adults. However, there was no convincing evidence of associations in children.

RevDate: 2019-09-01

Cabeza de Baca T, Prather AA, Lin J, et al (2019)

Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

Molecular psychiatry pii:10.1038/s41380-019-0482-5 [Epub ahead of print].

Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals.

RevDate: 2019-09-22

Irie H, Yamamoto I, Tarumoto Y, et al (2019)

Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast.

PLoS genetics, 15(8):e1008335 pii:PGENETICS-D-19-00173.

Genomic rearrangements (gross chromosomal rearrangements, GCRs) threatens genome integrity and cause cell death or tumor formation. At the terminus of linear chromosomes, a telomere-binding protein complex, called shelterin, ensures chromosome stability by preventing chromosome end-to-end fusions and regulating telomere length homeostasis. As such, shelterin-mediated telomere functions play a pivotal role in suppressing GCR formation. However, it remains unclear whether the shelterin proteins play any direct role in inhibiting GCR at non-telomeric regions. Here, we have established a GCR assay for the first time in fission yeast and measured GCR rates in various mutants. We found that fission yeast cells lacking shelterin components Taz1 or Rap1 (mammalian TRF1/2 or RAP1 homologues, respectively) showed higher GCR rates compared to wild-type, accumulating large chromosome deletions. Genetic dissection of Rap1 revealed that Rap1 contributes to inhibiting GCRs via two independent pathways. The N-terminal BRCT-domain promotes faithful DSB repair, as determined by I-SceI-mediated DSB-induction experiments; moreover, association with Poz1 mediated by the central Poz1-binding domain regulates telomerase accessibility to DSBs, leading to suppression of de novo telomere additions. Our data highlight unappreciated functions of the shelterin components Taz1 and Rap1 in maintaining genome stability, specifically by preventing non-telomeric GCRs.

RevDate: 2019-10-01

Li F, Deng Z, Zhang L, et al (2019)

ATRX loss induces telomere dysfunction and necessitates induction of alternative lengthening of telomeres during human cell immortalization.

The EMBO journal, 38(19):e96659.

Loss of the histone H3.3-specific chaperone component ATRX or its partner DAXX frequently occurs in human cancers that employ alternative lengthening of telomeres (ALT) for chromosomal end protection, yet the underlying mechanism remains unclear. Here, we report that ATRX/DAXX does not serve as an immediate repressive switch for ALT. Instead, ATRX or DAXX depletion gradually induces telomere DNA replication dysfunction that activates not only homology-directed DNA repair responses but also cell cycle checkpoint control. Mechanistically, we demonstrate that this process is contingent on ATRX/DAXX histone chaperone function, independently of telomere length. Combined ATAC-seq and telomere chromatin immunoprecipitation studies reveal that ATRX loss provokes progressive telomere decondensation that culminates in the inception of persistent telomere replication dysfunction. We further show that endogenous telomerase activity cannot overcome telomere dysfunction induced by ATRX loss, leaving telomere repair-based ALT as the only viable mechanism for telomere maintenance during immortalization. Together, these findings implicate ALT activation as an adaptive response to ATRX/DAXX loss-induced telomere replication dysfunction.

RevDate: 2019-09-29

Qian W, Kumar N, Roginskaya V, et al (2019)

Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction.

Proceedings of the National Academy of Sciences of the United States of America, 116(37):18435-18444.

Reactive oxygen species (ROS) play important roles in aging, inflammation, and cancer. Mitochondria are an important source of ROS; however, the spatiotemporal ROS events underlying oxidative cellular damage from dysfunctional mitochondria remain unresolved. To this end, we have developed and validated a chemoptogenetic approach that uses a mitochondrially targeted fluorogen-activating peptide (Mito-FAP) to deliver a photosensitizer MG-2I dye exclusively to this organelle. Light-mediated activation (660 nm) of the Mito-FAP-MG-2I complex led to a rapid loss of mitochondrial respiration, decreased electron transport chain complex activity, and mitochondrial fragmentation. Importantly, one round of singlet oxygen produced a persistent secondary wave of mitochondrial superoxide and hydrogen peroxide lasting for over 48 h after the initial insult. By following ROS intermediates, we were able to detect hydrogen peroxide in the nucleus through ratiometric analysis of the oxidation of nuclear cysteine residues. Despite mitochondrial DNA (mtDNA) damage and nuclear oxidative stress induced by dysfunctional mitochondria, there was a lack of gross nuclear DNA strand breaks and apoptosis. Targeted telomere analysis revealed fragile telomeres and telomere loss as well as 53BP1-positive telomere dysfunction-induced foci (TIFs), indicating that DNA double-strand breaks occurred exclusively in telomeres as a direct consequence of mitochondrial dysfunction. These telomere defects activated ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair signaling. Furthermore, ATM inhibition exacerbated the Mito-FAP-induced mitochondrial dysfunction and sensitized cells to apoptotic cell death. This profound sensitivity of telomeres through hydrogen peroxide induced by dysregulated mitochondria reveals a crucial mechanism of telomere-mitochondria communication underlying the pathophysiological role of mitochondrial ROS in human diseases.

RevDate: 2019-08-27

Calastri MCJ, Hattori G, Rodrigues NLTO, et al (2019)

Genetic Variants Related to Cell Cycle and Stability of Telomere in Patients with Glioma.

Asian Pacific journal of cancer prevention : APJCP, 20(8):2345-2351.

RevDate: 2019-09-12

Song L, Liu B, Wu M, et al (2019)

Prenatal Exposure to Phthalates and Newborn Telomere Length: A Birth Cohort Study in Wuhan, China.

Environmental health perspectives, 127(8):87007.

BACKGROUND: Telomere length (TL) is a marker of biological aging and is inversely related to aging-related diseases. The setting of TL at birth may have important implications for lifelong telomere dynamics; however, its determinants remain poorly understood.

OBJECTIVES: The purpose of our study was to explore the relationships between prenatal exposure to phthalates and umbilical cord blood TL.

METHODS: A total of 762 mother–newborn pairs were recruited from a birth cohort study performed between November 2013 and March 2015 in Wuhan, China. Relative cord blood TL was measured using quantitative real-time polymerase chain reaction. Six phthalate metabolites were measured in urine samples acquired from pregnant women during the three trimesters. Multiple informant models were applied to estimate the associations between prenatal exposure to phthalates and cord blood TL and to evaluate potential windows of vulnerability.

RESULTS: Exposure to mono-ethyl phthalate (MEP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-butyl phthalate (MBP), and di(2-ethylhexyl) phthalate ([Formula: see text]) during the first trimester were inversely related to cord blood TL. In addition, we observed a female-specific association between maternal exposure to MEP during the first trimester and cord blood TL ([Formula: see text]). The associations between maternal exposure to MECPP, MEHHP, MEOHP, and [Formula: see text] during the first trimester and cord blood TL were consistent between males and females (all [Formula: see text]).

CONCLUSION: This prospective study demonstrated that prenatal exposure to some phthalate metabolites were associated with shorter cord blood TL. Our results, if confirmed in other populations, may provide more evidence of adverse health outcomes of phthalate exposure and support the hypothesis that the intrauterine environment may be one of the major determinants for newborn TL. https://doi.org/10.1289/EHP4492.

RevDate: 2019-09-15

Dodson LM, Baldan A, Nissbeck M, et al (2019)

From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants.

Human mutation [Epub ahead of print].

PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.

RevDate: 2019-09-27

van Lieshout SHJ, Bretman A, Newman C, et al (2019)

Individual variation in early-life telomere length and survival in a wild mammal.

Molecular ecology [Epub ahead of print].

Individual variation in survival probability due to differential responses to early-life environmental conditions is important in the evolution of life histories and senescence. A biomarker allowing quantification of such individual variation, and which links early-life environmental conditions with survival by providing a measure of conditions experienced, is telomere length. Here, we examined telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross-sectional relationship between telomere length and age, with no apparent loss over the first 29 months, but with both decreases and increases in telomere length at older ages. Overall, we found low within-individual consistency in telomere length across individual lifetimes. Importantly, we also observed increases in telomere length within individuals, which could not be explained by measurement error alone. We found no significant sex differences in telomere length, and provide evidence that early-life telomere length predicts lifespan. However, while early-life telomere length predicted survival to adulthood (≥1 year old), early-life telomere length did not predict adult survival probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These results show that the relationship between early-life telomere length and lifespan was driven by conditions in early-life, where early-life telomere length varied strongly among cohorts. Our data provide evidence for associations between early-life telomere length and individual life history, and highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing different early-life environments.

RevDate: 2019-09-24

Yuan P, Huang S, Bao FC, et al (2019)

Discriminating association of a common telomerase reverse transcriptase promoter polymorphism with telomere parameters in non-small cell lung cancer with or without epidermal growth factor receptor mutation.

European journal of cancer (Oxford, England : 1990), 120:10-19.

BACKGROUND: The role of epidermal growth factor receptor (EGFR) pathways in regulating telomerase is increasingly being recognised. We analysed the impact of rs2853669 single nucleotide polymorphism (SNP) on telomere parameters and its prognostic value for non-small cell lung cancer (NSCLC) with or without EGFR mutation.

METHODS: The association of rs2853669 with telomerase reverse transcriptase (TERT) mRNA level and relative telomere length (RTL) was analysed using resected tumour samples from 250 NSCLC patients. We also investigated the patients' clinical outcomes with a median follow-up of 57 months (2-99 months).

RESULTS: The rs2853669 T/C allele was significantly associated with lower TERT mRNA expression (versus C/C and versus T/T; p < 0.001 for both) and shorter RTL (versus C/C and versus T/T; p = 0.039 and 0.023) in patients without EGFR mutation. Such difference was not observed in their counterparts harbouring EGFR mutation. When considering the cohort as a whole, T/C allele was significantly associated with shortest overall survival compared with T/T or C/C allele (mean: 61.8, 80.9 and 88.7 months, plog-rank < 0.001) and disease-free survival (mean: 78.3, 87.9 and 91.5 months, plog-rank = 0.019). Stratification analyses showed that the negative prognostic effect of T/C on OS was constrained in patients without EGFR mutation.

CONCLUSION: Our study revealed significant associations of a common SNP within TERT promoter region on telomere parameters and survival in NSCLC patients without EGFR mutation. The result may help providing instruction for therapeutic interventions targeting telomerase and evidence for investigation of TERT-EGFR interacting mechanism in telomere biology.

RevDate: 2019-08-24

Kuo CL, Pilling LC, Kuchel GA, et al (2019)

Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants.

Aging cell [Epub ahead of print].

Inherited genetic variation influencing leukocyte telomere length provides a natural experiment for testing associations with health outcomes, more robust to confounding and reverse causation than observational studies. We tested associations between genetically determined telomere length and aging-related health outcomes in a large European ancestry older cohort. Data were from n = 379,758 UK Biobank participants aged 40-70, followed up for mean of 7.5 years (n = 261,837 participants aged 60 and older by end of follow-up). Thirteen variants strongly associated with longer telomere length in peripheral white blood cells were analyzed using Mendelian randomization methods with Egger plots to assess pleiotropy. Variants in TERC, TERT, NAF1, OBFC1, and RTEL1 were included, and estimates were per 250 base pairs increase in telomere length, approximately equivalent to the average change over a decade in the general white population. We highlighted associations with false discovery rate-adjusted p-values smaller than .05. Genetically determined longer telomere length was associated with lowered risk of coronary heart disease (CHD; OR = 0.95, 95% CI: 0.92-0.98) but raised risk of cancer (OR = 1.11, 95% CI: 1.06-1.16). Little evidence for associations were found with parental lifespan, centenarian status of parents, cognitive function, grip strength, sarcopenia, or falls. The results for those aged 60 and older were similar in younger or all participants. Genetically determined telomere length was associated with increased risk of cancer and reduced risk of CHD but little change in other age-related health outcomes. Telomere lengthening may offer little gain in later-life health status and face increasing cancer risks.

RevDate: 2019-08-24

Hognon C, Gebus A, Barone G, et al (2019)

Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes.

Antioxidants (Basel, Switzerland), 8(9): pii:antiox8090337.

By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channel and that (ii) the electrostatic interactions of the DNA sequence with the aforementioned cations are fundamental to the maintenance of the global quadruplex structure.

RevDate: 2019-09-20

Robinson NJ, Taylor DJ, WP Schiemann (2019)

Stem cells, immortality, and the evolution of metastatic properties in breast cancer: telomere maintenance mechanisms and metastatic evolution.

Journal of cancer metastasis and treatment, 5:.

Breast cancer is the most significant cause of cancer-related death in women around the world. The vast majority of breast cancer-associated mortality stems from metastasis, which remains an incurable disease state. Metastasis results from evolution of clones that possess the insidious properties required for dissemination and colonization of distant organs. These clonal populations are descended from breast cancer stem cells (CSCs), which are also responsible for their prolonged maintenance and continued evolution. Telomeres impose a lifespan on cells that can be extended when they are actively elongated, as occurs in CSCs. Thus, changes in telomere structure serve to promote the survival of CSCs and subsequent metastatic evolution. The selection of telomere maintenance mechanism (TMM) has important consequences not only for CSC survival and evolution, but also for their coordination of various signaling pathways that choreograph the metastatic cascade. Targeting the telomere maintenance machinery may therefore provide a boon to the treatment of metastatic breast cancer. Here we review the two major TMMs and the roles they play in the development of stem and metastatic breast cancer cells. We also highlight current and future approaches to targeting these mechanisms in clinical settings to alleviate metastatic breast cancers.

RevDate: 2019-08-22

Ma F, Lv X, Du Y, et al (2019)

Association of Leukocyte Telomere Length with Mild Cognitive Impairment and Alzheimer's Disease: Role of Folate and Homocysteine.

Dementia and geriatric cognitive disorders pii:000501958 [Epub ahead of print].

BACKGROUND: Leukocyte telomere length (LTL) is associated with the aging process and age-related degenerative diseases. The relation of peripheral blood LTL to mild cognitive impairment (MCI) and Alzheimer's disease (AD) and the role of folate and homocysteine (Hcy) in this relation remain unclear.

OBJECTIVES: We aimed to investigate the association between LTL and the risks of MCI/AD, and to explore whether folate and Hcy may play a role in this association.

METHODS: This case-control study included 129 MCI subjects, 131 AD patients and 134 healthy controls. LTL was assessed using real-time polymerase chain reaction assay. Serum folate levels were tested by chemiluminescence enzyme immunoassay, and serum Hcy levels were measured using the enzymatic cycling method. Data were analyzed using multivariate logistic regression and multivariable linear regression with adjustment for potential confounders.

RESULTS: The mean LTL was 1.56 ± 0.25 in controls, 1.44 ± 0.23 in MCI, and 1.28 ± 0.28 in AD patients (p< 0.01). In multivariate logistic regression, subjects in the longest LTL tertile had lower OR for MCI (OR 0.246; 95% CI 0.101-0.597) and AD (OR 0.123; 95% CI 0.044-0.345) in comparison to subjects in the shortest tertile. Shorter LTL was dose-dependently related to the ORs of MCI and AD. Further, serum folate concentration was positively associated with LTL (p < 0.01), while serum Hcy level was negatively associated with LTL (p < 0.05). In stratified analyses, LTL-MCI/AD association varied by serum folate and Hcy level.

CONCLUSIONS: Shorter LTL is associated with the risks of MCI/AD. Folate and Hcy might play an important role in this association.

RevDate: 2019-08-25

Yuseran H, Hartoyo E, Nurseta T, et al (2019)

Molecular docking of genistein on estrogen receptors, promoter region of BCLX, caspase-3, Ki-67, cyclin D1, and telomere activity.

Journal of Taibah University Medical Sciences, 14(1):79-87 pii:S1658-3612(18)30110-0.

Objectives: This study aims to investigate the modulation of estrogen receptors by estrogen and the role of genistein in the transcriptional process that regulates genes involved in the proliferation, apoptosis, and telomere activity.

Methods: The research was conducted in silico, wherein docking, the most important method, was carried out using Hex 8.0 software and HADDOCK web server. Interaction analysis was subsequently done to observe the interactions between genistein and several related proteins and BCLX, Casp3, Ki-67, CyclinD1, hTERT, and POT1 genes using Discovery Studio, LigPlus, and NUCPLOT.

Results: The interaction between ERα with genistein was not found to form a single bond. Thus, the interaction that may occur will not be effective because it is not stable. Conversely, when interacting with ERβ, two hydrogen bonds and four hydrophobic bonds, MPP dihydrochloride interacted with ERα via two hydrogen bonds and three hydrophobic bonds. The ERβ/eNOS complex will be comparatively easier to induced by the transcriptional activation of BCLX, Casp3, Ki-67, CyclinD1, hTERT and POT1 genes.

Conclusions: Administration of genistein can increase the genomic activities of the estrogen-eNOS receptor complexes related to apoptosis, proliferation, and telomere activity.

RevDate: 2019-10-05

Barbero Barcenilla B, DE Shippen (2019)

Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress.

The Journal of biological chemistry, 294(40):14803-14813.

The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.

RevDate: 2019-08-20

Cohn M, Karademir Andersson A, Quintilla Mateo R, et al (2019)

Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii.

G3 (Bethesda, Md.) pii:g3.119.400428 [Epub ahead of print].

The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ~275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.

RevDate: 2019-10-02

Hamada T, Yuan C, Bao Y, et al (2019)

Prediagnostic Leukocyte Telomere Length and Pancreatic Cancer Survival.

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology pii:1055-9965.EPI-19-0577 [Epub ahead of print].

BACKGROUND: Leukocyte telomere length has been associated with risk of subsequent pancreatic cancer. Few prospective studies have evaluated the association of prediagnostic leukocyte telomere length with pancreatic cancer survival.

METHODS: We prospectively examined the association of prediagnostic leukocyte telomere length with overall survival (OS) time among 423 participants diagnosed with pancreatic adenocarcinoma between 1984 and 2008 within the Health Professionals Follow-up Study, Nurses' Health Study, Physicians' Health Study, and Women's Health Initiative. We measured prediagnostic leukocyte telomere length in banked blood samples using quantitative PCR. Cox proportional hazards models were used to estimate HRs for OS with adjustment for potential confounders. We also evaluated 10 SNPs at the telomerase reverse transcriptase locus.

RESULTS: Shorter prediagnostic leukocyte telomere length was associated with reduced OS among patients with pancreatic cancer (Ptrend = 0.04). The multivariable-adjusted HR for OS comparing the lowest with highest quintiles of leukocyte telomere length was 1.39 (95% confidence interval, 1.01-1.93), corresponding to a 3-month difference in median OS time. In an analysis excluding cases with blood collected within 2 years of cancer diagnosis, the association was moderately stronger (HR, 1.55; 95% confidence interval, 1.09-2.21; comparing the lowest with highest quintiles; Ptrend = 0.01). No prognostic association or effect modification for the prognostic association of prediagnostic leukocyte telomere length was noted in relation to the studied SNPs.

CONCLUSIONS: Prediagnostic leukocyte telomere length was associated with pancreatic cancer survival.

IMPACT: Prediagnostic leukocyte telomere length can be a prognostic biomarker in pancreatic cancer.

RevDate: 2019-09-11

Bilgili H, Białas AJ, Górski P, et al (2019)

Telomere Abnormalities in the Pathobiology of Idiopathic Pulmonary Fibrosis.

Journal of clinical medicine, 8(8): pii:jcm8081232.

Idiopathic pulmonary fibrosis (IPF) occurs primarily in older adults and the incidence is clearly associated with aging. This disease seems to be associated with several hallmarks of aging, including telomere attrition and cellular senescence. Increasing evidence suggests that abnormalities involving telomeres and their proteome play a significant role in the pathobiology of IPF. The aim of this study is to summarize present knowledge in the field, as well as to discuss its possible clinical implications. Numerous mutations in genes associated with telomere functioning were studied in the context of IPF, mainly for Telomerase Reverse Transcriptase (TERT) and Telomerase RNA Component (TERC). Such mutations may lead to telomere shortening, which seems to increase the risk of IPF, negatively influence disease progression, and contribute to worse prognosis after lung transplantation. Some evidence indicates the possibility for the use of telomerase activators as potential therapeutic agents in pulmonary fibrosis. To sum up, increasing evidence suggests the role of telomere abnormalities in the pathobiology of IPF, natural history and prognosis of the disease. There are also possibilities for telomerase targeting in the potential development of new treatment agents. However, all these aspects require further research.

RevDate: 2019-08-19

Wang Y, McReynolds LJ, Dagnall C, et al (2019)

Pre-transplant short telomeres are associated with high mortality risk after unrelated donor haematopoietic cell transplant for severe aplastic anaemia.

British journal of haematology [Epub ahead of print].

Telomeres are essential for chromosomal stability and markers of biological age. We evaluated the effect of pre-transplant short (<10th percentile-for-age) or very short (<5th or <1st percentile-for-age) leucocyte telomere length on survival after unrelated donor haematopoietic cell transplantation (HCT) for acquired severe aplastic anaemia (SAA). Patient pre-transplant blood samples and clinical data were available at the Center for International Blood and Marrow Transplant Research. We used quantitative real time polymerase chain reaction to measure relative telomere length (RTL) in 490 SAA patients who received HCT between 1990 and 2013 (median age = 20 years). One hundred and twelve patients (22·86%) had pre-HCT RTL <10th percentile-for-age, with the majority below the 5th percentile (N = 80, 71·43%). RTL <10th percentile-for-age was associated with a higher risk of post-HCT mortality (hazard ratio [HR] = 1·78, 95% confidence interval [CI]=1·18-2·69, P = 0·006) compared with RTL ≥50th percentile; no survival differences were noted in longer RTL categories (P > 0·10). Time-dependent effects for post-HCT mortality were only observed in relation to very short RTL; HR comparing RTL <5th versus ≥5th percentile = 1·38, P = 0·15 for the first 12 months after HCT, and HR = 3·91, P < 0·0001, thereafter, P-heterogeneity = 0·008; the corresponding HRs for RTL <1st versus ≥1st percentile = 1·29, P = 0·41, and HR = 5·18, P < 0·0001, P-heterogeneity = 0·005. The study suggests a potential role for telomere length in risk stratification of SAA patients in regard to their HCT survival.

RevDate: 2019-09-30

Mehrez F, Bougatef K, Monache ED, et al (2019)

Telomere length measurement in tumor and non-tumor cells as a valuable prognostic for tumor progression.

Cancer genetics, 238:50-61.

Telomere shortening has been supposed to be implicated in both aging and various human diseases especially carcinogenesis process. This phenomenon can lead to a chromosomal instability, contributing to a cell immortalization and tumor induction. In our study, we analyzed the role of telomere shortening in cancer progression, in Tunisian patients with digestive cancer. We measured the absolute telomere length in tumoral vs healthy adjacent tissues of each patient by using a q-RT PCR method and we investigated the relationship between telomere length and various sociodemographic and clinical parameters such as age, sex, tumor stage. In this pathological situation, we observed that, starting from 60 years of age, the telomere length increases in healthy mucosa and that in both healthy and cancer tissues, patients under 60 years have shorter telomeres, suggesting the telomere lengthening becomes more active with age. Finally, a positive correlation between normal and cancer tissues in both non-metastatic and metastatic stages, indicates telomere length in cancer tissue depends essentially on tumor stages. Our data allow us to suggest that telomere length depends on sex and age in healthy tissue while shortening and lengthening fluctuates considerably according to the tumor stage.

RevDate: 2019-08-19

Zalzman M, Meltzer WA, Portney BA, et al (2019)

The Role of Ubiquitination and SUMOylation in Telomere Biology.

Current issues in molecular biology, 35:85-98 pii:v35/85 [Epub ahead of print].

Telomeres are a unique structure of DNA repeats covered by proteins at the ends of the chromosomes that protect the coding regions of the genome and function as a biological clock. They require a tight regulation of the factors covering and protecting their structure, as they are shortened with each cell division to limit the ability of cells to replicate uncontrollably. Additionally, they protect the chromosome ends from DNA damage responses and thereby, prevent genomic instability. Telomere dysfunction can lead to chromosomal abnormalities and cancer. Therefore, dysregulation of any of the factors that regulate the integrity of the telomeres will have implications to chromosomal stability, replicative lifespan and may lead to cell transformation. This review will cover the main factors participating in the normal function of the telomeres and how these are regulated by the ubiquitin and SUMO systems. Accumulating evidence indicate that the ubiquitin and SUMO pathways are significant regulators of the shelterin complex and other chromatin modifiers, which are important for telomere structure integrity. Furthermore, the crosstalk between these two pathways has been reported in telomeric DNA repair. A better understanding of the factors contributing to telomere biology, and how they are regulated, is important for the design of new strategies for cancer therapies and regenerative medicine.

RevDate: 2019-10-02

Lu AT, Seeboth A, Tsai PC, et al (2019)

DNA methylation-based estimator of telomere length.

Aging, 11(16):5895-5923.

Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation estimator of TL (DNAmTL) based on 140 CpGs. Leukocyte DNAmTL is applicable across the entire age spectrum and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmTL versus r ~ -0.35 for LTL). Leukocyte DNAmTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAmTL is also associated with measures of physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells show that DNAmTL dynamics reflect in part cell replication rather than TL per se. DNAmTL is not only an epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are associated with it.

RevDate: 2019-10-02

Anonymous (2019)

RAD51AP1 Promotes Maintenance of Telomere Length in ALT+ Cancer Cells.

Cancer discovery, 9(10):1339.

Cancer cells using alternative lengthening of telomeres (ALT) require RAD51AP for telomere maintenance.

RevDate: 2019-09-24

Ding X, Cheng J, Pang Q, et al (2019)

BIBR1532, a Selective Telomerase Inhibitor, Enhances Radiosensitivity of Non-Small Cell Lung Cancer Through Increasing Telomere Dysfunction and ATM/CHK1 Inhibition.

International journal of radiation oncology, biology, physics pii:S0360-3016(19)33642-9 [Epub ahead of print].

PURPOSE: Telomerase is reactivated in non-small cell lung cancer (NSCLC), and it increases cell resistance to irradiation through protecting damaged telomeres and enhancing DNA damage repair. We investigated the radiosensitizing effect of BIBR1532, a highly selective telomerase inhibitor, and its corresponding mechanism in NSCLC.

METHODS AND MATERIALS: Cell proliferation, telomerase activity, and telomere dysfunction-induced foci were measured with CCK-8 assay, real-time fluorescent quantitative polymerase chain reaction, and immunofluorescence. The effect of BIBR1532 on the response of NSCLC cells to radiation was analyzed using clonogenic survival and xenograft tumor assays. Cell death and cell senescence induced by BIBR1532 or ionizing radiation (IR), or both, were detected with western blotting, flow cytometry, and senescence-association β-galactosidase staining assay.

RESULTS: We observed dose-dependent direct cytotoxicity of BIBR1532 at relatively high concentrations in NSCLC cells. Low concentrations of BIBR1532 did not appear toxic to NSCLC cells; however, they substantially increased the therapeutic efficacy of IR in vitro by enhancing IR-induced apoptosis, senescence, and mitotic catastrophe. Moreover, in a mouse xenograft model, BIBR1532 treatment synergized with IR at nontoxic dose levels promoted the antitumor efficacy of IR without toxicity to hematologic and internal organs. Mechanistically, lower concentrations of BIBR1532 effectively inhibited telomerase activity and increased IR-induced telomere dysfunction, resulting in disruption of chromosomal stability and inhibition of the ATM/CHK1 (ataxia-telangiectasia-mutated/Checkpoint kinase 1) pathway, which impaired DNA damage repair.

CONCLUSIONS: Our findings demonstrate that disturbances in telomerase function by nontoxic dose levels of BIBR1532 effectively enhance the radiosensitivity of NSCLC cells. This finding provides a rationale for the clinical assessment of BIBR1532 as a radiosensitizer.

RevDate: 2019-08-16

Nemtsova V, Bilovol O, Vysotska O, et al (2019)


Georgian medical news.

Aim - to determine the influence of different levels of lipid metabolism on the relative blood leukocytes telomeres length (RLTL), relative buccal epithelium cells telomeres length (RBTL) in hypertensive (H) individuals with type 2 diabetes mellitus (DM2T) and without DM2T. In 60 patients with H stage II (group 1), and 96 patients with H and DM2T (group 2) lipid metabolism indexes (total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C)), anthropometric parameters were measured. Relative telomeres length (RTL) was determined by a real time quantitative PCR. The most significant shortening of RLTL and RBTL were found in group 2. In both groups, the achievement of target blood lipid levels was accompanied by multidirectional changes in RTL. Analysis of variance revealed a significant effect of TC (p=0.036) on the RBTL, LDL -C (p=0.036) on the RBTL in group 1, and significant influence of TG (p = 0.049) on RBTL, TC (p=0.019) and HDL-C (p=0.032) on RLTL in group 2. Achieving target levels of lipid metabolism did not demonstrate the expected significant effect on the elongation of the relative length of telomeres, both with isolated hypertension and with a combined course of hypertension and DM2T.

RevDate: 2019-09-11

Wark L, Quon H, Ong A, et al (2019)

Long-Term Dynamics of Three Dimensional Telomere Profiles in Circulating Tumor Cells in High-Risk Prostate Cancer Patients Undergoing Androgen-Deprivation and Radiation Therapy.

Cancers, 11(8): pii:cancers11081165.

Patient-specific assessment, disease monitoring, and the development of an accurate early surrogate of the therapeutic efficacy of locally advanced prostate cancer still remain a clinical challenge. Contrary to prostate biopsies, circulating tumor cell (CTC) collection from blood is a less-invasive method and has potential as a real-time liquid biopsy and as a surrogate marker for treatment efficacy. In this study, we used size-based filtration to isolate CTCs from the blood of 100 prostate cancer patients with high-risk localized disease. CTCs from five time points: +0, +2, +6, +12 and +24 months were analyzed. Consenting treatment-naïve patients with cT3, Gleason 8-10, or prostate-specific antigen > 20 ng/mL and non-metastatic prostate cancer were included. For all time points, we performed 3D telomere-specific quantitative fluorescence in situ hybridization on a minimum of thirty isolated CTCs. The patients were divided into five groups based on the changes of number of telomeres vs telomere lengths over time and into three clusters based on all telomere parameters found on diagnosis. Group 2 was classified as non-respondent to treatment and the Cluster 3 presented more aggressive phenotype. Additionally, we compared our telomere results with the PSA levels for each patient at 6 months of ADT, at 6 months of completed RT, and at 36 months post-initial therapy. CTCs of patients with PSA levels above or equal to 0.1 ng/mL presented significant increases of nuclear volume, number of telomeres, and telomere aggregates. The 3D telomere analysis of CTCs identified disease heterogeneity among a clinically homogeneous group of patients, which suggests differences in therapeutic responses. Our finding suggests a new opportunity for better treatment monitoring of patients with localized high-risk prostate cancer.

RevDate: 2019-08-14

Kroustallaki P, Lirussi L, Carracedo S, et al (2019)

SMUG1 Promotes Telomere Maintenance through Telomerase RNA Processing.

Cell reports, 28(7):1690-1702.e10.

Telomerase biogenesis is a complex process where several steps remain poorly understood. Single-strand-selective uracil-DNA glycosylase (SMUG1) associates with the DKC1-containing H/ACA ribonucleoprotein complex, which is essential for telomerase biogenesis. Herein, we show that SMUG1 interacts with the telomeric RNA component (hTERC) and is required for co-transcriptional processing of the nascent transcript into mature hTERC. We demonstrate that SMUG1 regulates the presence of base modifications in hTERC, in a region between the CR4/CR5 domain and the H box. Increased levels of hTERC base modifications are accompanied by reduced DKC1 binding. Loss of SMUG1 leads to an imbalance between mature hTERC and its processing intermediates, leading to the accumulation of 3'-polyadenylated and 3'-extended intermediates that are degraded in an EXOSC10-independent RNA degradation pathway. Consequently, SMUG1-deprived cells exhibit telomerase deficiency, leading to impaired bone marrow proliferation in Smug1-knockout mice.

RevDate: 2019-08-17

van der Spek A, Broer L, Draisma HHM, et al (2019)

Metabolomics reveals a link between homocysteine and lipid metabolism and leukocyte telomere length: the ENGAGE consortium.

Scientific reports, 9(1):11623 pii:10.1038/s41598-019-47282-6.

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.

RevDate: 2019-08-13

Hu Y, Bennett HW, Liu N, et al (2019)

RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast.

Genetics pii:genetics.119.302606 [Epub ahead of print].

A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 orthologue, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that up-regulation of telomere-engaged TERRA or altered recruitment of shelterin components can support telomerase-independent telomere maintenance.

RevDate: 2019-08-13

Wang W, Liu B, Duan X, et al (2019)

Telomere length in workers was effected by omethoate exposure and interaction between smoking and p21 polymorphisms.

Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes [Epub ahead of print].

Omethoate is an organophosphorus pesticide that poses a major health hazard, especially DNA damage. The purpose of this study was to investigate the factors affecting telomere length in workers exposed to omethoate by analyzing the interaction between cell cycle gene polymorphism and environmental factors. The exposure group consisted of 118 workers exposed to omethoate for 8-10 years, the control group comprised 115 healthy people without occupational toxicant exposure history. The telomere length of genomic DNA from peripheral blood leucocyte was determined with real-time PCR. Polymerase chain reaction and restriction fragment length polymorphism was used to detect the polymorphisms in p53, p21 and MDM2 gene. The telomere length in the (CA + AA) genotypes for p21 rs1801270 polymorphism was longer than that in the CC genotype in control group (P = 0.015). The generalized linear model analysis indicated the interaction of the p21 rs1801270 polymorphic (CA + AA) genotypes and smoking has a significant effect on telomere length (β = -0.258, P = 0.085). The prolongation of telomere length in omethoate-exposed workers was associated with genotypes (CA + AA) of p21 rs1801270, and interactions of (CA + AA) genotypes and smoking factor.

RevDate: 2019-09-10

Gatinois V, Desprat R, Becker F, et al (2019)

Reprogramming of Human Peripheral Blood Mononuclear Cell (PBMC) from a patient suffering of a Werner syndrome resulting in iPSC line (REGUi003-A) maintaining a short telomere length.

Stem cell research, 39:101515.

Werner syndrome (WS) is a rare human autosomal recessive disorder characterized by early onset of aging-associated diseases, chromosomal instability, and cancer predisposition, without therapeutic treatment solution. Major clinical symptoms of WS include common age-associated diseases, such as insulin-resistant diabetes mellitus, and atherosclerosis. WRN, the gene responsible for the disease, encodes a RECQL-type DNA helicase with a role in telomere metabolism. We derived a stable iPSC line from 53 years old patient's PBMC, with a normal karyotype, but exhibiting a short telomere length, as a major aspect of the cellular phenotype involved in the pathology.

RevDate: 2019-08-15

Zhdanova NS, Vaskova EA, Karamysheva TV, et al (2019)

Dysfunction telomeres in embryonic fibroblasts and cultured in vitro pluripotent stem cells of Rattus norvegicus (Rodentia, Muridae).

Comparative cytogenetics, 13(3):1-14 pii:34732.

We studied the level of spontaneous telomere dysfunction in Rattus norvegicus (Berkenhout, 1769) (Rodentia, Muridae) embryonic fibroblasts (rEFs) and in cultured in vitro rat pluripotent stem cells (rPSCs), embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs), on early passages and after prolonged cultivation. Among studied cell lines, rESCs showed the lowest level of telomere dysfunction, while the riPSCs demonstrated an elevated level on early passages of cultivation. In cultivation, the frequency of dysfunctional telomeres has increased in all studied cell lines; this is particularly true for dysfunctional telomeres occurring in G1 stage in riPSCs. The obtained data are mainly discussed in the connection with the specific structure of the telomere regions and their influence on the differential DNA damage response in them.

RevDate: 2019-08-12

Aida J, Yokoyama A, Hara S, et al (2019)

Telomere Shortening in the Oral Epithelium in Relation to Alcohol Intake, Alcohol Dehydrogenase (ADH-1B) and Acetaldehyde Dehydrogenase (ALDH-2) Genotypes and Clinicopathologic Features.

Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology [Epub ahead of print].

BACKGROUND: Progressive telomere shortening with age or chronic inflammation may lead to genomic instability that characterizes the early stage of carcinogenesis. Certain risk factors, such as drinking alcoholic beverages, or smoking, predispose the oral mucosa to squamous cell carcinoma. The ADH1B and ALDH2 genotypes can influence the risk of cancer due to alcohol drinking. In the present study, we analyzed chromosomal instability due to telomere shortening in the oral mucosa in relation to cancer risk factors.

DESIGN: Using our quantitative fluorescence in situ hybridization (Q-FISH) technique, we estimated telomere lengths (TL) in the background mucosa from 23 cases of mucosal carcinoma, 12 cases of oral epithelial dysplasia, and 21 non-neoplasia cases. ALDH2 and ADH1B genotypes were determined using DNA extracted from paraffin sections. We analyzed TL in relation to alcohol drinking, smoking, and cancer multiplicity.

RESULTS: Telomeres in the backgrounds of dysplasia and mucosal carcinoma were significantly shorter than in controls. In comparison with adult controls, telomeres were significantly (p = 0.038) shorter in the ADH1B less-active type (ADH1B*1/*1), but not (p = 0.841) in the ALDH2 inactive type (ALDH2 *1/*2 or *2/*2). Cancer multiplicity and smoking had no significant relationship with TL.

CONCLUSION: Telomeres in the oral epithelium are shorter in cases of oral dysplasia or mucosal carcinoma than in non-neoplasia. Unlike the esophageal epithelium of alcoholics, they are also shorter in individuals with the less-active rather than the active ADH1B gene. Telomeres in the oral epithelium may be directly affected by alcohol drinking. This article is protected by copyright. All rights reserved.

RevDate: 2019-09-10

Bilsland AE, Liu Y, Turnbull A, et al (2019)

A Novel Pyrazolopyrimidine Ligand of Human PGK1 and Stress Sensor DJ1 Modulates the Shelterin Complex and Telomere Length Regulation.

Neoplasia (New York, N.Y.), 21(9):893-907.

Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure-activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series.

RevDate: 2019-10-04

Barroso-González J, García-Expósito L, Hoang SM, et al (2019)

RAD51AP1 Is an Essential Mediator of Alternative Lengthening of Telomeres.

Molecular cell, 76(1):11-26.e7.

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.

RevDate: 2019-08-09

Fali T, K'Ros C, Appay V, et al (2019)

Assessing T Lymphocyte Aging Using Telomere Length and Telomerase Activity Measurements in Low Cell Numbers.

Methods in molecular biology (Clifton, N.J.), 2048:231-243.

As T lymphocytes proliferate and differentiate in vivo or in vitro, their functional capacity can change dramatically. In particular, extensive cell division is often associated with telomere shortening and the onset of cellular senescence, thus impacting the proliferative potential of the cells. Telomere length and integrity represent therefore key molecular markers of the status and aging of the cells. To assess these markers, we established qPCR-based methods to measure telomere length as well as telomerase activity, applied to low cell numbers, which is necessary when working with rare or small subsets of T lymphocytes.

RevDate: 2019-08-14

Mennie AK, Moser BA, Hoyle A, et al (2019)

Tpz1TPP1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast.

Communications biology, 2:297 pii:546.

In both mammalian and fission yeast cells, conserved shelterin and CST (CTC1-STN1-TEN1) complexes play critical roles in protection of telomeres and regulation of telomerase, an enzyme required to overcome the end replication problem. However, molecular details that govern proper coordination among shelterin, CST, and telomerase have not yet been fully understood. Here, we establish a conserved SWSSS motif, located adjacent to the Lys242 SUMOylation site in the fission yeast shelterin subunit Tpz1, as a new functional regulatory element for telomere protection and telomere length homeostasis. The SWSSS motif works redundantly with Lys242 SUMOylation to promote binding of Stn1-Ten1 at telomere and sub-telomere regions to protect against single-strand annealing (SSA)-dependent telomere fusions, and to prevent telomerase accumulation at telomeres. In addition, we provide evidence that the SWSSS motif defines an unanticipated role of Tpz1 in limiting telomerase activation at telomeres to prevent uncontrolled telomere elongation.

RevDate: 2019-08-08

Clemente DBP, Vrijheid M, Martens DS, et al (2019)

Prenatal and Childhood Traffic-Related Air Pollution Exposure and Telomere Length in European Children: The HELIX Project.

Environmental health perspectives, 127(8):87001.

BACKGROUND: Telomere length is a molecular marker of biological aging.

OBJECTIVE: Here we investigated whether early-life exposure to residential air pollution was associated with leukocyte telomere length (LTL) at 8 y of age.

METHODS: In a multicenter European birth cohort study, HELIX (Human Early Life Exposome) ([Formula: see text]), we estimated prenatal and 1-y childhood exposure to nitrogen dioxide ([Formula: see text]), particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]), and proximity to major roads. Average relative LTL was measured using quantitative real-time polymerase chain reaction (qPCR). Effect estimates of the association between LTL and prenatal, 1-y childhood air pollution, and proximity to major roads were calculated using multiple linear mixed models with a random cohort effect and adjusted for relevant covariates.

RESULTS: LTL was inversely associated with prenatal and 1-y childhood [Formula: see text] and [Formula: see text] exposures levels. Each standard deviation (SD) increase in prenatal [Formula: see text] was associated with a [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) change in LTL. Prenatal [Formula: see text] was nonsignificantly associated with LTL ([Formula: see text] per SD increase; 95% CI: [Formula: see text], 0.6). For each SD increment in 1-y childhood [Formula: see text] and [Formula: see text] exposure, LTL shortened by [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) and [Formula: see text] (95% CI: [Formula: see text], 0.1), respectively. Each doubling in residential distance to nearest major road during childhood was associated with a 1.6% (95% CI: 0.02, 3.1) lengthening in LTL.

CONCLUSION: Lower exposures to air pollution during pregnancy and childhood were associated with longer telomeres in European children at 8 y of age. These results suggest that reductions in traffic-related air pollution may promote molecular longevity, as exemplified by telomere length, from early life onward. https://doi.org/10.1289/EHP4148.

RevDate: 2019-09-12

Li S, Yang M, Carter E, et al (2019)

Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves.

Environmental health perspectives, 127(8):87004.

BACKGROUND: Telomere shortening is associated with early mortality and chronic disease. Recent studies indicate that environmental exposures, including urban and traffic-related air pollution, may shorten telomeres. Associations between exposure to household air pollution from solid fuel stoves and telomere length have not been evaluated.

METHODS: Among 137 rural Chinese women using biomass stoves ([Formula: see text] of age), we measured 48-h personal exposures to fine particulate matter [PM [Formula: see text] in aerodynamic diameter ([Formula: see text])] and black carbon and collected oral DNA on up to three occasions over a period of 2.5 y. Relative telomere length (RTL) was quantified using a modified real-time polymerase chain reaction protocol. Mixed effects regression models were used to investigate the exposure–response associations between household air pollution and RTL, adjusting for key sociodemographic, behavioral, and environmental covariates.

RESULTS: Women's daily exposures to air pollution ranged from [Formula: see text] for [Formula: see text] ([Formula: see text]) and [Formula: see text] for black carbon ([Formula: see text]). Natural cubic spline models indicated a mostly linear association between increased exposure to air pollution and shorter RTL, except at very high concentrations where there were few observations. We thus modeled the linear associations with all observations, excluding the highest 3% and 5% of exposures. In covariate-adjusted models, an interquartile range (IQR) increase in exposure to black carbon ([Formula: see text]) was associated with shorter RTL [all observations: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Further adjustment for outdoor temperature brought the estimates closer to zero [all observations: [Formula: see text] (95% CI: [Formula: see text], 0.06); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Models with [Formula: see text] as the exposure metric followed a similar pattern.

CONCLUSION: Telomere shortening, which is a biomarker of biological aging and chronic disease, may be associated with exposure to air pollution in settings where household biomass stoves are commonly used. https://doi.org/10.1289/EHP4041.

RevDate: 2019-08-29

Wang S, Chang E, Byanyima P, et al (2019)

Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB.

Journal of human genetics, 64(10):1033-1040.

Prior studies in predominantly European (Caucasian) populations have discovered common genetic variants (single nucleotide polymorphisms, SNPs) associated with leukocyte telomere length (LTL), but whether these same variants affect LTL in non-Caucasian populations are largely unknown. We investigated whether six genetic variants previously associated with LTL (TERC (rs10936599), TERT (rs2736100), NAF1 (7675998), OBFC1 (rs9420907), ZNF208 (rs8105767), and RTEL1 (rs755017)) are correlated with telomere length (TL) in peripheral blood mononuclear cells (PBMCs) in a cohort of Africans living with and without HIV and undergoing evaluation for tuberculosis (TB). We found OBFC1 and the genetic sum score of the effect alleles across all six loci to be associated with shorter TL (adjusted for age, gender, HIV status, and smoking pack-years (p < 0.02 for both OBFC1 and the genetic sum score). In an analysis stratified by HIV status, the genetic sum score is associated with LTL in both groups with and without HIV. On the contrary, a stratified analysis according to TB status revealed that in the TB-positive subgroup, the genetic sum score is not associated with LTL, whereas the relationship remains in the TB-negative subgroup. The different impacts of HIV and TB on the association between the genetic sum score and LTL indicate different modes of modification and suggest that the results found in this cohort with HIV and TB participants may not be applied to the African general population. Future studies need to carefully consider these confounding factors.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Click to Order from Amazon

Good Beginner's Books

Although multicellular eukaryotes (MCEs) are the most visible component of the biosphere, they represent a highly derived and constrained evolutionary subset of the biosphere, unrepresentative of the vast, mostly unseen, microbial world of prokaryotic life that comprises at least half of the planet's biomass and most of its genetic diversity. The existence of telomeres is one component of the specialized biology of eukaryotes. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )