picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
31 Jul 2021 at 01:50
HITS:
599
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Species Concept

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 31 Jul 2021 at 01:50 Created: 

Species Concept

Wikipedia: The species problem is the set of questions that arises when biologists attempt to define what a species is. Such a definition is called a species concept; there are at least 26 recognized species concepts. A species concept that works well for sexually reproducing organisms such as birds is useless for species that reproduce asexually, such as bacteria. The scientific study of the species problem has been called microtaxonomy. One common, but sometimes difficult, question is how best to decide which species an organism belongs to, because reproductively isolated groups may not be readily recognizable, and cryptic species may be present. There is a continuum from reproductive isolation with no interbreeding, to panmixis, unlimited interbreeding. Populations can move forward or backwards along this continuum, at any point meeting the criteria for one or another species concept, and failing others. Many of the debates on species touch on philosophical issues, such as nominalism and realism, and on issues of language and cognition. The current meaning of the phrase "species problem" is quite different from what Charles Darwin and others meant by it during the 19th and early 20th centuries. For Darwin, the species problem was the question of how new species arose. Darwin was however one of the first people to question how well-defined species are, given that they constantly change.

Created with PubMed® Query: "species concept" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2021-07-02

Wolf M (2021)

How to Teach about What Is a Species.

Biology, 10(6): pii:biology10060523.

To ask students what a species is always has something rhetorical about it. Too quickly comes the rote answer, often learned by heart without ever thinking about it: "A species is a reproductive community of populations (reproductively isolated from others), which occupies a specific niche in nature" (Mayr 1982). However, do two people look alike because they are twins or are they twins because they look alike? "Two organisms do not belong to the same species because they mate and reproduce, but they only are able to do so because they belong to the same species" (Mahner and Bunge 1997). Unfortunately, most biology (pre-university) teachers have no opinion on whether species are real or conceptual, simply because they have never been taught the question themselves, but rather one answer they still pass on to their students today, learned by heart without ever thinking about it. Species are either real or conceptual and, in my opinion, it is this "or" that we should teach about. Only then can we discuss those fundamental questions such as who or what is selected, who or what evolves and, finally, what is biodiversity and phylogenetics all about? Individuals related to each other by the tree of life.

RevDate: 2021-07-01

Pfingstl T, Lienhard A, Baumann J, et al (2021)

A taxonomist's nightmare - cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida).

Molecular phylogenetics and evolution pii:S1055-7903(21)00173-1 [Epub ahead of print].

There has been a long controversy about what defines a species and how to delimitate them which resulted in the existence of more than two dozen different species concepts. Recent research on so-called "cryptic species" heated up this debate as some scientists argue that these cryptic species are only a result of incompatible species concepts. While this may be true, we should keep in mind that all concepts are nothing more than human constructs and that the phenomenon of high phenotypic similarity despite reproductive isolation is real. To investigate and understand this phenomenon it is important to classify and name cryptic species as it allows to communicate them with other fields of science that use Linnaean binomials. To provide a common framework for the description of cryptic species, we propose a possible protocol of how to formally name and describe these taxa in practice. The most important point of this protocol is to explain which species concept was used to delimitate the cryptic taxon. As a model, we present the case of the allegedly widespread Caribbean intertidal mite Thalassozetes barbara, which in fact consists of seven phenotypically very similar but genetically distinct species. All species are island or short-range endemics with poor dispersal abilities that have evolved in geographic isolation. Stabilizing selection caused by the extreme conditions of the intertidal environment is suggested to be responsible for the morphological stasis of this cryptic species complex.

RevDate: 2021-06-23

Ng CK, J Tan (2021)

Cryptic species and grey zone speciation of the Barbodes binotatus complex (Teleostei, Cyprinidae) in Sundaland.

Journal of fish biology [Epub ahead of print].

Morphology-based taxonomy of freshwater fish is effective when there are representative specimens covering large regions. However, in Sundaland where the presence of cryptic species is high, the technique has its limitations. This is compounded by uncritical description of holotypes in olden literature. We demonstrate the problem using Barbodes binotatus first described from an ink drawing. Several species in the Barbodes genus of Sundaland exhibit morphological similarity to B. binotatus. We applied new DNA sequences of 16S, COI, Cytb and RAG1 and pigmentation markers to clarify species complex boundaries in the Malay Peninsula, namely B. aff. binotatus "Malay Peninsula", B. cf. banksi and B. rhombeus. Results suggest B. binotatus-like specimens in the Malay Peninsula are B. rhombeus based on a threshold of 3% COI genetic divergence. B. aff. binotatus recorded in Sumatra, Borneo and Philippines are likely valid but undescribed species. However, if the 2% COI threshold is applied, some populations in the northern Malay Peninsula would qualify as new and undescribed species. The implications of the 2% threshold and the likelihood of "grey zone" incipient populations are discussed. We further found a rapid visual method, not reported previously, to delineate B. aff. binotatus and B. cf. banksi, but it requires further validation. Additionally, we offer fresh perspectives by discussing the roles of Biological Species Concept, Morphological Species Concept, Genetic Species Concept and Mate Recognition Concept in the B. binotatus complex. Our findings reinforce the standpoint that species delineation is not entirely a binary process, but there is spectrum to consider-especially in biogeography intersection regions. This article is protected by copyright. All rights reserved.

RevDate: 2021-06-12

Athreya S, A Hopkins (2021)

Conceptual issues in hominin taxonomy: Homo heidelbergensis and an ethnobiological reframing of species.

American journal of physical anthropology [Epub ahead of print].

Efforts to name and classify Middle Pleistocene Homo, often referred to as "Homo heidelbergensis" are hampered by confusing patterns of morphology but also by conflicting paleoanthropological ideologies that are embedded in approaches to hominin taxonomy, nomenclature, and the species concept. We deconstruct these issues to show how the field's search for a "real" species relies on strict adherence to pre-Darwinian essentialist naming rules in a post-typological world. We then examine Middle Pleistocene Homo through the framework of ethnobiology, which examines on how Indigenous societies perceive, classify, and name biological organisms. This research reminds us that across human societies, taxonomies function to (1) identify and classify organisms based on consensus pattern recognition and (2) construct a stable nomenclature for effective storage, retrieval and communication of information. Naming Middle Pleistocene Homo as a "real" species cannot be verified with the current data; and separating regional groups into distinct evolutionary lineages creates taxa that are not defined by readily perceptible or universally salient differences. Based on ethnobiological studies of this kind of patterning, referring to these hominins above the level of the species according to their generic category with modifiers (e.g., "European Middle Pleistocene Homo") is consistent with observed human capabilities for cognitive differentiation, is both necessary and sufficient given the current data, and will allow for the most clear communication across ideologies going forward.

RevDate: 2021-06-15

Novick A, WF Doolittle (2021)

'Species' without species.

Studies in history and philosophy of science, 87:72-80.

Biological science uses multiple species concepts. Order can be brought to this diversity if we recognize two key features. First, any given species concept is likely to have a patchwork structure, generated by repeated application of the concept to new domains. We illustrate this by showing how two species concepts (biological and ecological) have been modified from their initial eukaryotic applications to apply to prokaryotes. Second, both within and between patches, distinct species concepts may interact and hybridize. We thus defend a semantic picture of the species concept as a collection of interacting patchwork structures. Thus, although not all uses of the term pick out the same kind of unit in nature, the diversity of uses reflects something more than mere polysemy. We suggest that the emphasis on the use of species to pick out natural units is itself problematic, because that is not the term's sole function. In particular, species concepts are used to manage inquiry into processes of speciation, even when these processes do not produce clearly delimited species.

RevDate: 2021-06-15

Kartavtsev YP (2021)

Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society.

Animals : an open access journal from MDPI, 11(5):.

Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. One of the basic current challenges in modern biology in the face of new demands in the 21st century is the validation of its paradigms such as the synthetic theory of evolution (STE) and biological species concept (BSC). Another of most valuable goals is the biodiversity assessment for a variety of social needs including free web-based information resources about any living being, renovation of museum collections, nature conservation that recognized as a global project, iBOL, as well as resolving global trading problems such as false labeling of species specimens used as food, drug components, entertainment, etc. The main issues of the review are focused on animals and combine four items. (1) A combination of nDNA and mtDNA markers best suits the identification of hybrids and estimation of genetic introgression. (2) The available facts on nDNA and mtDNA diversity seemingly make introgression among many taxa obvious, although it is evident, that introgression may be quite restricted or asymmetric, thus, leaving at least the "source" taxon (taxa) intact. (3) If we consider sexually reproducing species in marine and terrestrial realms introgressed, as it is still evident in many cases, then we should recognize that the BSC, in view of the complete lack of gene flow among species, is inadequate because many zoological species are not biological ones yet. However, vast modern molecular data have proven that sooner or later they definitely become biological species. (4) An investigation into the fish taxa divergence using the BOLD database shows that most gene trees are basically monophyletic and interspecies reticulations are quite rare.

RevDate: 2021-04-22

Wang H, Jiang B, Gu J, et al (2021)

Molecular phylogeny and species delimitation of the genus Tonkinacris (Orthoptera, Acrididae, Melanoplinae) from China.

PloS one, 16(4):e0249431.

Tonkinacris is a small group in Acrididae. While a few species were occasionally sampled in some previous molecular studies, there is no revisionary research devoted to the genus. In this study, we explored the phylogeny of and the relationships among Chinese species of the genus Tonkinacris using the mitochondrial COI barcode and the complete sequences of ITS1 and ITS2 of the nuclear ribosomal DNA. The phylogeny was reconstructed in maximum likelihood and Bayesian inference frameworks, respectively. The overlap range between intraspecific variation and interspecific divergence was assessed via K2P distances. Species boundaries were delimitated using phylogenetic species concept, NJ tree, K2P distance, the statistical parsimony network as well as the GMYC model. The results demonstrate that the Chinese Tonkinacris species is a monophyletic group and the phylogenetic relationship among them is (T. sinensis, (T. meridionalis, (T. decoratus, T. damingshanus))). While T. sinensis, T. meridionalis and T. decoratus were confirmed being good independent species strongly supported by both morphological and molecular evidences, the validity of T. damingshanus was not perfectly supported by molecular evidence in this study.

RevDate: 2021-04-08

Li Y, O'Donnell AC, H Ochman (2021)

Discriminating arboviral species.

The Journal of general virology, 102(4):.

Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.

RevDate: 2021-06-21

Stankowski S, M Ravinet (2021)

Defining the speciation continuum.

Evolution; international journal of organic evolution, 75(6):1256-1273.

A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present-day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.

RevDate: 2021-04-29

Pröschold T, Rieser D, Darienko T, et al (2021)

An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea).

Scientific reports, 11(1):5916.

Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.

RevDate: 2021-05-20
CmpDate: 2021-05-20

Curveira-Santos G, Sutherland C, Tenan S, et al (2021)

Mesocarnivore community structuring in the presence of Africa's apex predator.

Proceedings. Biological sciences, 288(1946):20202379.

Apex predator reintroductions have proliferated across southern Africa, yet their ecological effects and proposed umbrella benefits of associated management lack empirical evaluations. Despite a rich theory on top-down ecosystem regulation via mesopredator suppression, a knowledge gap exists relating to the influence of lions (Panthera leo) over Africa's diverse mesocarnivore (less than 20 kg) communities. We investigate how geographical variation in mesocarnivore community richness and occupancy across South African reserves is associated with the presence of lions. An interesting duality emerged: lion reserves held more mesocarnivore-rich communities, yet mesocarnivore occupancy rates and evenness-weighted diversity were lower in the presence of lions. Human population density in the reserve surroundings had a similarly ubiquitous negative effect on mesocarnivore occupancy. The positive association between species richness and lion presence corroborated the umbrella species concept but translated into small differences in community size. Distributional contractions of mesocarnivore species within lion reserves, and potentially corresponding numerical reductions, suggest within-community mesopredator suppression by lions, probably as a result of lethal encounters and responses to a landscape of fear. Our findings offer empirical support for the theoretical understanding of processes underpinning carnivore community assembly and are of conservation relevance under current large-predator orientated management and conservation paradigms.

RevDate: 2021-03-16

Jia TZ, Caudan M, I Mamajanov (2021)

Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution.

Life (Basel, Switzerland), 11(2):.

Speciation, an evolutionary process by which new species form, is ultimately responsible for the incredible biodiversity that we observe on Earth every day. Such biodiversity is one of the critical features which contributes to the survivability of biospheres and modern life. While speciation and biodiversity have been amply studied in organismic evolution and modern life, it has not yet been applied to a great extent to understanding the evolutionary dynamics of primitive life. In particular, one unanswered question is at what point in the history of life did speciation as a phenomenon emerge in the first place. Here, we discuss the mechanisms by which speciation could have occurred before the origins of life in the context of chemical evolution. Specifically, we discuss that primitive compartments formed before the emergence of the last universal common ancestor (LUCA) could have provided a mechanism by which primitive chemical systems underwent speciation. In particular, we introduce a variety of primitive compartment structures, and associated functions, that may have plausibly been present on early Earth, followed by examples of both discriminate and indiscriminate speciation affected by primitive modes of compartmentalization. Finally, we discuss modern technologies, in particular, droplet microfluidics, that can be applied to studying speciation phenomena in the laboratory over short timescales. We hope that this discussion highlights the current areas of need in further studies on primitive speciation phenomena while simultaneously proposing directions as important areas of study to the origins of life.

RevDate: 2021-03-06

Martin BT, Chafin TK, Douglas MR, et al (2021)

The choices we make and the impacts they have: Machine learning and species delimitation in North American box turtles (Terrapene spp.).

Molecular ecology resources [Epub ahead of print].

Model-based approaches that attempt to delimit species are hampered by computational limitations as well as the unfortunate tendency by users to disregard algorithmic assumptions. Alternatives are clearly needed, and machine-learning (M-L) is attractive in this regard as it functions without the need to explicitly define a species concept. Unfortunately, its performance will vary according to which (of several) bioinformatic parameters are invoked. Herein, we gauge the effectiveness of M-L-based species-delimitation algorithms by parsing 64 variably-filtered versions of a ddRAD-derived SNP data set collected from North American box turtles (Terrapene spp.). Our filtering strategies included: (i) minor allele frequencies (MAF) of 5%, 3%, 1%, and 0% (= none), and (ii) maximum missing data per-individual/per-population at 25%, 50%, 75%, and 100% (= no filtering). We found that species-delimitation via unsupervised M-L impacted the signal-to-noise ratio in our data, as well as the discordance among resolved clades. The latter may also reflect biogeographic history, gene flow, incomplete lineage sorting, or combinations thereof (as corroborated from previously observed patterns of differential introgression). Our results substantiate M-L as a viable species-delimitation method, but also demonstrate how commonly observed patterns of phylogenetic discordance can seriously impact M-L-classification.

RevDate: 2021-03-02

Zhao L, Sakornwimon W, Lin W, et al (2021)

Early divergence and differential population histories of the Indo-Pacific humpback dolphin in the Pacific and Indian Oceans.

Integrative zoology [Epub ahead of print].

The currently recognized Indo-Pacific humpback dolphin occurs in estuaries and surrounding shallow waters from the South China Sea to the Asian coast of the Indian Ocean. However, a recent study suggested that the humpback dolphin from the Bay of Bengal may represent a distinct phylogenetic species. In this study, we sequenced 915-bp mtDNA segments from five geographic populations in both Chinese and Thai waters; together with previously published sequences, these data revealed that the ancestral Indo-Pacific humpback dolphin might have split during the transition from the Oligocene to Miocene (23.45 Mya, 95% HPD: 16.65-26.55 Mya), and then dispersed along the Pacific and Indian Ocean coasts of Asia. Genetic differentiation was detected between most of the examined populations, except for only a few pairwise populations in the northern South China Sea. Genetic differentiation/distance between the humpback dolphins from the northern and southern South China Sea met the sub-species threshold value proposed for marine mammals, whereas that between the humpback dolphins in the Pacific and the Indian Ocean was above the species threshold. Bayesian inference of historic gene flow indicated low but constant northward gene flow along the Indian Ocean coast; however, there was a recent abrupt increase in gene flow in the Pacific region, likely due to the shortening coastline at the low stand of sea level. Our results revealed that the current taxonomic classification of Indo-Pacific humpback dolphins may not reflect their phylogeography.

RevDate: 2021-03-03

Tibayrenc M, FJ Ayala (2021)

Models in parasite and pathogen evolution: Genomic analysis reveals predominant clonality and progressive evolution at all evolutionary scales in parasitic protozoa, yeasts and bacteria.

Advances in parasitology, 111:75-117.

The predominant clonal evolution (PCE) model of pathogenic microorganisms postulates that the impact of genetic recombination in those pathogens' natural populations is not enough to erase a persistent phylogenetic signal at all evolutionary scales from microevolution till geological times in the whole ecogeographical range of the species considered. We have tested this model with a set of representative parasitic protozoa, yeasts and bacteria in the light of the most recent genomic data. All surveyed species, including those that were considered as highly recombining, exhibit similar PCE patterns above and under the species level, from macro- to micro-evolutionary scales (Russian doll pattern), suggesting gradual evolution. To our knowledge, it is the first time that such a strong common evolutionary feature among very diverse pathogens has been evidenced. The implications of this model for basic biology and applied research are exposed. These implications include our knowledge on the pathogens' reproductive mode, their population structure, the possibility to type strain and to follow up epidemics (molecular epidemiology) and to revisit pathogens' taxonomy through a flexible use of the phylogenetic species concept (Cracraft, 1983).

RevDate: 2021-03-05

Padial JM, I De la Riva (2021)

A paradigm shift in our view of species drives current trends in biological classification.

Biological reviews of the Cambridge Philosophical Society, 96(2):731-751.

Discontent about changes in species classifications has grown in recent years. Many of these changes are seen as arbitrary, stemming from unjustified conceptual and methodological grounds, or leading to species that are less distinct than those recognised in the past. We argue that current trends in species classification are the result of a paradigm shift toward which systematics and population genetics have converged and that regards species as the phylogenetic lineages that form the branches of the Tree of Life. Species delimitation now consists of determining which populations belong to which individual phylogenetic lineage. This requires inferences on the process of lineage splitting and divergence, a process to which we have only partial access through incidental evidence and assumptions that are themselves subject to refutation. This approach is not free of problems, as horizontal gene transfer, introgression, hybridisation, incorrect assumptions, sampling and methodological biases can mislead inferences of phylogenetic lineages. Increasing precision is demanded through the identification of both sister relationships and processes blurring or mimicking phylogeny, which has triggered, on the one hand, the development of methods that explicitly address such processes and, on the other hand, an increase in geographical and character data sampling necessary to infer/test such processes. Although our resolving power has increased, our knowledge of sister relationships - what we designate as species resolution - remains poor for many taxa and areas, which biases species limits and perceptions about how divergent species are or ought to be. We attribute to this conceptual shift the demise of trinominal nomenclature we are witnessing with the rise of subspecies to species or their rejection altogether; subspecies are raised to species if they are found to correspond to phylogenetic lineages, while they are rejected as fabricated taxa if they reflect arbitrary partitions of continuous or non-hereditary variation. Conservation strategies, if based on taxa, should emphasise species and reduce the use of subspecies to avoid preserving arbitrary partitions of continuous variation; local variation is best preserved by focusing on biological processes generating ecosystem resilience and diversity rather than by formally naming diagnosable units of any kind. Since many binomials still designate complexes of species rather than individual species, many species have been discovered but not named, geographical sampling is sparse, gene lineages have been mistaken for species, plenty of species limits remain untested, and many groups and areas lack adequate species resolution, we cannot avoid frequent changes to classifications as we address these problems. Changes will not only affect neglected taxa or areas, but also popular ones and regions where taxonomic research remained dormant for decades and old classifications were taken for granted.

RevDate: 2021-02-01
CmpDate: 2021-02-01

Friedman WE, PK Endress (2020)

Alexander Moritzi, a Swiss Pre-Darwinian Evolutionist: Insights into the Creationist-Transmutationist Debates of the 1830s and 1840s.

Journal of the history of biology, 53(4):549-585.

Alexander Moritzi (1806-1850) is one of the most obscure figures in the early history of evolutionary thought. Best known for authoring a flora of Switzerland, Moritzi also published Réflexions sur l'espèce en histoire naturelle (1842), a remarkable book about evolution with an overtly materialist viewpoint. In this work, Moritzi argues that the (then) generally accepted line between species and varieties is artificial, that varieties can over time give rise to new species, and that deep time and turnover of species in the fossil record clearly support an evolutionary interpretation of biological diversity. Moritzi was also a gradualist and viewed relationships between taxa as best represented by a ramifying tree. Although Réflexions was the first full book to be written on the topic of evolution following Lamarck's Philosophie zoologique (1809), Moritzi's evolutionist contribution was stillborn, read by almost no one in his lifetime and ultimately absent from the many historiographies of evolutionary thought. This is unfortunate since many of the arguments Moritzi marshaled on behalf of an evolutionary explanation of life can be found in subsequent transmutationist writings by Frédéric Gérard, Robert Chambers, Henri Lecoq, Baden Powell, Charles Naudin, Herbert Spencer, Alfred Russel Wallace, and Charles Darwin-none of whom is likely to have ever known of the existence of Réflexions. Finally, Moritzi's arguments, along with those found in Darwin's private essay on evolution of the same year, provide an excellent window into the state of evolutionary thought and debate over the nature of species at the beginning of the 1840s.

RevDate: 2021-02-22
CmpDate: 2021-02-22

Roos C, Helgen KM, Miguez RP, et al (2020)

Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species.

Zoological research, 41(6):656-669.

Trachypithecus, which currently contains 20 species divided into four groups, is the most speciose and geographically dispersed genus among Asian colobines. Despite several morphological and molecular studies, however, its evolutionary history and phylogeography remain poorly understood. Phayre's langur (Trachypithecus phayrei) is one of the most widespread members of the genus, but details on its actual distribution and intraspecific taxonomy are limited and controversial. Thus, to elucidate the evolutionary history of Trachypithecus and to clarify the intraspecific taxonomy and distribution of T. phayrei, we sequenced 41 mitochondrial genomes from georeferenced fecal samples and museum specimens, including two holotypes. Phylogenetic analyses revealed a robustly supported phylogeny of Trachypithecus, suggesting that the T. pileatus group branched first, followed by the T. francoisi group, and the T. cristatus and T. obscurus groups most recently. The four species groups diverged from each other 4.5-3.1 million years ago (Ma), while speciation events within these groups occurred much more recently (1.6-0.3 Ma). Within T. phayrei, we found three clades that diverged 1.0-0.9 Ma, indicating the existence of three rather than two taxa. Following the phylogenetic species concept and based on genetic, morphological, and ecological differences, we elevate the T. phayrei subspecies to species level, describe a new species from central Myanmar, and refine the distribution of the three taxa. Overall, our study highlights the importance of museum specimens and provides new insights not only into the evolutionary history of T. phayrei but the entire Trachypithecus genus as well.

RevDate: 2021-06-24
CmpDate: 2021-06-24

Ionescu D, Zoccarato L, Zaduryan A, et al (2021)

Heterozygous, Polyploid, Giant Bacterium, Achromatium, Possesses an Identical Functional Inventory Worldwide across Drastically Different Ecosystems.

Molecular biology and evolution, 38(3):1040-1059.

Achromatium is large, hyperpolyploid and the only known heterozygous bacterium. Single cells contain approximately 300 different chromosomes with allelic diversity far exceeding that typically harbored by single bacteria genera. Surveying all publicly available sediment sequence archives, we show that Achromatium is common worldwide, spanning temperature, salinity, pH, and depth ranges normally resulting in bacterial speciation. Although saline and freshwater Achromatium spp. appear phylogenetically separated, the genus Achromatium contains a globally identical, complete functional inventory regardless of habitat. Achromatium spp. cells from differing ecosystems (e.g., from freshwater to saline) are, unexpectedly, equally functionally equipped but differ in gene expression patterns by transcribing only relevant genes. We suggest that environmental adaptation occurs by increasing the copy number of relevant genes across the cell's hundreds of chromosomes, without losing irrelevant ones, thus maintaining the ability to survive in any ecosystem type. The functional versatility of Achromatium and its genomic features reveal alternative genetic and evolutionary mechanisms, expanding our understanding of the role and evolution of polyploidy in bacteria while challenging the bacterial species concept and drivers of bacterial speciation.

RevDate: 2020-11-28

Gonzalez JM, Puerta-Fernández E, Santana MM, et al (2020)

On a Non-Discrete Concept of Prokaryotic Species.

Microorganisms, 8(11):.

The taxonomic concept of species has received continuous attention. A microbial species as a discrete box contains a limited number of highly similar microorganisms assigned to that taxon, following a polyphasic approach. In the 21st Century, with the advancements of sequencing technologies and genomics, the existence of a huge prokaryotic diversity has become well known. At present, the prokaryotic species might no longer have to be understood as discrete values (such as 1 or 2, by homology to Natural numbers); rather, it is expected that some microorganisms could be potentially distributed (according to their genome features and phenotypes) in between others (such as decimal numbers between 1 and 2; real numbers). We propose a continuous species concept for microorganisms, which adapts to the current knowledge on the huge diversity, variability and heterogeneity existing among bacteria and archaea. Likely, this concept could be extended to eukaryotic microorganisms. The continuous species concept considers a species to be delimited by the distance between a range of variable features following a Gaussian-type distribution around a reference organism (i.e., its type strain). Some potential pros and cons of a continuous concept are commented on, offering novel perspectives on our understanding of the highly diversified prokaryotic world, thus promoting discussion and further investigation in the field.

RevDate: 2020-11-26

Wagner L, Stielow JB, de Hoog GS, et al (2020)

A new species concept for the clinically relevant Mucor circinelloides complex.

Persoonia, 44:67-97.

Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex - MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus.

RevDate: 2020-12-26

Gostinčar C (2020)

Towards Genomic Criteria for Delineating Fungal Species.

Journal of fungi (Basel, Switzerland), 6(4):.

The discussion of fungal species delineation has yet to reach a consensus, despite the advancements in technology, which helped modernise traditional approaches. In particular, the phylogenetic species concept was one of the tools that has been used with considerable success across the fungal kingdom. The fast rise of fungal genomics provides an unprecedented opportunity to expand measuring the relatedness of fungal strains to the level of whole genomes. However, the use of genomic information in taxonomy has only just begun, and few methodological guidelines have been suggested so far. Here, a simple approach of computationally measuring genomic distances and their use as a standard for species delineation is investigated. A fixed threshold genomic distance calculated by the quick and easy-to-use tools Mash and Dashing proved to be an unexpectedly widely applicable and robust criterion for determining whether two genomes belong to the same or to different species. The accuracy of species delineation in an uncurated dataset of GenBank fungal genomes was close to 90%-and exceeded 90% with minimal curation. As expected, the discriminative power of this approach was lower at higher taxonomic ranks, but still significantly larger than zero. Simple instructions for calculation of a genomic distance between two genomes and species similarity thresholds at different k-mer sizes are suggested. The calculation of genomic distance is identified as a powerful approach for delineating fungal species and is proposed-not as the only criterion-but as an additional tool in the versatile toolbox of fungal taxonomy.

RevDate: 2020-10-19
CmpDate: 2020-10-19

Jaschhof M, C Jaschhof (2020)

Reevaluation of species richness in Winnertzia (Diptera, Cecidomyiidae, Winnertziinae), with descriptions of 37 new species from Sweden, Peru and Australia.

Zootaxa, 4829(1):zootaxa.4829.1.1 pii:zootaxa.4829.1.1.

Tentative studies of Malaise trap samples from different geographic regions and habitats indicate unanimously that Winnertzia, a genus of mycophagous gall midges (Cecidomyiidae), is exceptionally speciose, but hard data in proof of that were previously unavailable. A taxonomic inventory of mycophagous cecidomyiids in Sweden has now revealed that, of 751 species found in total, 93 are Winnertzia. A preliminary census in 2013 had identified only 26 different Winnertzia in Sweden. Two factors are responsible for this increment: the inclusion of large amounts of fresh material to study and the application of a narrower species concept. The latter results from the reevaluation of male morphological characters in the light of COI sequence (DNA barcoding) data. With the inclusion of 37 new Winnertzia described here, the genus now contains 136 extant species. New Winnertzia discovered in Sweden are described here under the following names: W. acutistylus sp. nov., W. angustistylus sp. nov., W. arctostylus sp. nov., W. bicolor sp. nov., W. brachytarsus sp. nov., W. dentata sp. nov., W. egregia sp. nov., W. ekdalensis sp. nov., W. fraxinophila sp. nov., W. grytsjoenensis sp. nov., W. hamatula sp. nov., W. hemisphaerica sp. nov., W. imbecilla sp. nov., W. incisa sp. nov., W. inornata sp. nov., W. lapponica sp. nov., W. lobata sp. nov., W. longicoxa sp. nov., W. normalis sp. nov., W. oelandica sp. nov., W. ombergensis sp. nov., W. parvidens sp. nov., W. pilosistylus sp. nov., W. pratensis sp. nov., W. pustulatula sp. nov., W. quercinophila sp. nov., W. rickebasta sp. nov., W. ruliki sp. nov., W. serri sp. nov., W. setosa sp. nov., W. silvestris sp. nov., W. smalandensis sp. nov., W. sundini sp. nov., W. tumidoides sp. nov., and W. upplandensis sp. nov. Additionally, W. panguana sp. nov. is the first Winnertzia described from the Neotropical region (Peru), and W. warraensis sp. nov. is the first member of the genus described from the Australasian region (Tasmania). Parwinnertzia Felt, 1920 syn. nov. is revealed to be a junior synonym of Winnertzia Rondani, 1860, implying the recombinations of Winnertzia notmani (Felt) comb. nov. and Winnertzia italiana (Mamaev Zaitzev) comb. nov. The intrageneric classification of Winnertzia is reviewed and developed further, with the W. setosa group introduced for species whose gonostylar claw is conspicuously long and exposed, and whose gonocoxal emargination is bordered by dense, large setae. Winnertzia feralis Mamaev, revived here from synonymy with W. tridens Panelius, and W. fusca Kieffer are new faunistic records in Sweden. Swedish records published in the past of W. brachypalpa Mamaev and W. pravdini Mamaeva Mamaev rest on misidentifications, and both species are deleted from the Swedish checklist.

RevDate: 2020-10-22
CmpDate: 2020-10-22

Polhemus DA (2020)

Nine new species of Enithares (Heteroptera: Notonectidae) from New Guinea, with distributional notes on other species and an updated world checklist.

Zootaxa, 4772(1):zootaxa.4772.1.5 pii:zootaxa.4772.1.5.

Nine new species of Enithares are described from New Guinea and immediately adjacent islands: E. peninsularis from the Owen Stanley Mountains of the Papuan Peninsula, E. bosavi and E. papua from southern Papua New Guinea, E. orsaki from northern Papua New Guinea, E. insularis from the D'Entrecasteaux Islands, E. tagula from the Louisiade Archipelago, E. ziwa from the central mountains of western New Guinea, E. arfak from the Arfak Mountains of the eastern Vogelkop Peninsula, and E. kasim from the western Vogelkop Peninsula. Enithares bakeri is newly recorded from New Guinea, and in combination with the new species described above brings the total number of species of Enithares in New Guinea to 16, and the regional total to 19 when including nearby islands of Waigeo, Biak, the D'Entrecasteaux group, and the Louisiade Archipelago. The species concept of E. atra is clarified and geographically restricted to southeastern New Guinea; specimens previously recorded under this name from northern New Guinea are shown to represent the new species E. orsaki. Additional distribution records for 15 previously described Enithares species are provided for many localities in the Malay Archipelago and mainland Southeast Asia, including the first records of E. bakeri from Lombok, Flores, Timor, Halmahera, and Obi; the first record of E. paramegalops from Ambon; the first records of E. gibbera from Kolombangara and Malaita in the Solomon Islands; the first record of E. intricata from Bali; the first records of E. lombokensis from Flores and Sumba; the first records of E. ripleyana from Halmahera, Ternate and Tidore; and the first record of E. ciliata from Borneo. Photomicrographs of key characters and distribution maps are provided for all new species described, accompanied by an updated world checklist for the genus with distributional notes and associated references.

RevDate: 2021-03-11

Dos Reis YV, KCC Alevi (2020)

Hybridization in Phlebotominae (Diptera: Psychodidae): A mini-review.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 86:104593.

Taxonomy based only on morphology, although extremely important for the classification of sandflies, has been shown to be insufficient for the delimitation of some taxa. Thus, integrative taxonomy could play a fundamental role in clarifying these and other taxonomic issues, since data from different areas are used to aggregate greater reliability in species classification. Experimental crosses are important taxonomic tools, since the presence of reproductive barriers when associated with divergence between two evolutionary lineages, confirms the specific status of taxa based on the biological species concept. In the subfamily Phlebotominae, experimental crosses were mostly focused on the study of the Lutzomyia longipalpis complex, which helped to identify different evolutionary lineages for that group of vectors. Considering the difficulty of classifying some Phlebotominae species and the importance of hybridization studies for taxonomy, we grouped all the information associated with experimental crosses in sandflies in a mini-review. In view of the results grouped in this review, it is evident that i) experimental crossings are important tools to aggregate studies of integrative taxonomy in the Phlebotominae subfamily; ii) these analyses should be applied in the taxonomic studies of cryptic species; iii) Lu longipalpis populations have pre and/or post-zygotic reproductive barriers; iv) Lu. longipalpis represents more than one species and efforts must be applied to differentiate the taxa of the Lu. longipalpis complex; v) Phlebotomus populations do not present intraspecific reproductive barriers; vi) the absence of reproductive barriers between Ph. sergenti from Israel and Turkey (representing populations of the same evolutionary lineage) does not rule out the possible existence of cryptic species, it being necessary to perform experimental crosses between the different strains indicated by the molecular markers; and finally, vii) different species of Phlebotomus have post-zygotic barriers, confirming the specific status of Ph. duboscqi, Ph. papatasi, and Ph. bergeroti.

RevDate: 2021-03-25

Sandstedt GD, Wu CA, AL Sweigart (2021)

Evolution of multiple postzygotic barriers between species of the Mimulus tilingii complex.

Evolution; international journal of organic evolution, 75(3):600-613.

Species are often defined by their ability to interbreed (i.e., Biological Species Concept), but determining how and why reproductive isolation arises between new species can be challenging. In the Mimulus tilingii species complex, three species (M. caespitosa, M. minor, and M. tilingii) are largely allopatric and grow exclusively at high elevations (>2000 m). The extent to which geographic separation has shaped patterns of divergence among the species is not well understood. In this study, we determined that the three species are morphologically and genetically distinct, yet recently diverged. Additionally, we performed reciprocal crosses within and between the species and identified several strong postzygotic reproductive barriers, including hybrid seed inviability, F1 hybrid necrosis, and F1 hybrid male and female sterility. In this study, such postzygotic barriers are so strong that a cross between any species pair in the M. tilingii complex would cause nearly complete reproductive isolation. We consider how geographical and topographical patterns may have facilitated the evolution of several postzygotic barriers and contributed to speciation of closely related members within the M. tilingii species complex.

RevDate: 2020-11-05
CmpDate: 2020-11-05

Van Regenmortel MHV (2020)

A brief history of the species concept in virology and an opinion on the proposal to introduce Linnaean binomial virus species names.

Archives of virology, 165(12):3073-3077.

The species concept used in virology is based on the logic of the Linnaean hierarchy, which views a species class as the lowest abstract category that is included in all the higher categories in the classification, such as genera and families. As a result of this class inclusion, the members of a species class are always less numerous than the members of higher classes, which become more numerous as one moves up in the hierarchy. Because species classes always have fewer members than any of the higher classes, logic requires that they need more qualifications for establishing membership than any of the higher classes. This invalidates the claim that a species could be defined by a single property present in all its members. Species were only accepted in virus classification in 1991, because virologists assumed that it would lead to the use of Latin species names, which they rejected. Anglicized binomial species names have been used by virologists for more the 40 years and are popular because they consist of a virus name followed by a genus name that most virologists are familiar with. The ICTV has proposed to introduce a new Latinized virus species binomial nomenclature using the genus name followed by a hard-to-remember Latinized species epithet that bears little resemblance to the name of the virus itself. However, the proposal did not clarify what the advantage is of having to learn hundreds of new unfamiliar virus species names. In 2013, the ICTV changed the definition of a virus species as an abstract class and defined it as a group of physical objects, which induced virologists to believe that a virus species could be defined by a few characteristics of the viral genome. In recent years, thousands of viral sequences have been discovered in metagenomic databases, and the ICTV has suggested that it should be possible to incorporate these sequences in the current ICTV virus classification. Unfortunately, the relational properties of these hypothetical viruses that result from their biological interactions with hosts and vectors remain in the vast majority of cases totally unknown. The absence of this information makes it in fact impossible to incorporate these metagenomic sequences in the current classification of virus species.

RevDate: 2021-04-05
CmpDate: 2021-04-05

Malabarba LR, Chuctaya J, Hirschmann A, et al (2021)

Hidden or unnoticed? Multiple lines of evidence support the recognition of a new species of Pseudocorynopoma (Characidae: Corynopomini).

Journal of fish biology, 98(1):219-236.

Species delimitation is a permanent issue in systematics. The increasing recognition of geographically isolated populations as independent lineages allowed by new methods of analysis has inflated the species-populations dilemma, which involves deciding whether to consider separate lineages as different species or structured genetic populations. This is commonly observed between fishes of adjacent river basins, with some lineages being considered allopatric sister species and others considered isolated populations or variants of the same species. Pseudocorynopoma doriae is a characid diagnosed from its single congener by the number of anal-fin rays and sexually dimorphic characters of males, including distinct fin colouration. The authors found variation in the colour pattern between isolated populations previously identified as P. doriae but no variation in scale or fin-ray counts. They analysed molecular evidence at the population level and morphological differences related to life history (e.g., colour dimorphism related to inseminating behaviour). The results provide compelling evidence for the recognition of a new species of Pseudocorynopoma despite the lack of discrete differences in meristic data. The recognition of the new species is consistent with biogeographical evidence for the long-term isolation of the respective river drainages and with differences between the ichthyofaunal communities of these rivers.

RevDate: 2020-09-28

Sterling KA, ML Warren (Jr) (2020)

Description of a new species of cryptic snubnose darter (Percidae: Etheostomatinae) endemic to north-central Mississippi.

PeerJ, 8:e9807.

Many subclades within the large North American freshwater fish genus Etheostoma (Percidae) show brilliant male nuptial coloration during the spring spawning season. Traditionally, perceived differences in color were often used to diagnose closely related species. More recently, perceived differences in male nuptial color have prompted further investigation of potential biodiversity using genetic tools. However, cryptic diversity among Etheostoma darters renders male nuptial color as unreliable for detecting and describing diversity, which is foundational for research and conservation efforts of this group of stream fishes. Etheostoma raneyi (Yazoo Darter) is an imperiled, range-limited fish endemic to north-central Mississippi. Existing genetic evidence indicates cryptic diversity between disjunctly distributed E. raneyi from the Little Tallahatchie and Yocona river watersheds despite no obvious differences in male color between the two drainages. Analysis of morphological truss and geometric measurements and meristic and male color characters yielded quantitative differences in E. raneyi from the two drainages consistent with genetic evidence. Morphological divergence is best explained by differences in stream gradients between the two drainages. Etheostoma faulkneri, the Yoknapatawpha Darter, is described as a species under the unified species concept. The discovery of cryptic diversity within E. raneyi would likely not have occurred without genetic tools. Cryptic diversity among Etheostoma darters and other stream fishes is common, but an overreliance on traditional methods of species delimitation (e.g., identification of a readily observable physical character to diagnose a species) impedes a full accounting of the diversity in freshwater fishes in the southeastern United States.

RevDate: 2020-10-14
CmpDate: 2020-10-14

Gu J, Jiang B, Wang H, et al (2020)

Phylogeny and species delimitation of the genus Longgenacris and Fruhstorferiola viridifemorata species group (Orthoptera: Acrididae: Melanoplinae) based on molecular evidence.

PloS one, 15(8):e0237882.

Phylogenetic positions of the genus Longgenacris and one of its members, i.e. L. rufiantennus are controversial. The species boundaries within both of L. rufiantennus+Fruhstorferiola tonkinensis and F. viridifemorata species groups are unclear. In this study, we explored the phylogenetic positions of the genus Longgenacris and the species L. rufiantennus and the relationships among F. viridifemorata group based on the 658-base fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI) barcode and the complete sequences of the internal transcribed spacer regions (ITS1 and ITS2) of the nuclear ribosomal DNA. The phylogenies were reconstructed in maximum likelihood framework using IQ-TREE. K2P distances were used to assess the overlap range between intraspecific variation and interspecific divergence. Phylogenetic species concept and NJ tree, K2P distance, the statistical parsimony network as well as the generalized mixed Yule coalescent model (GMYC) were employed to delimitate the species boundaries in L. rufiantennus+F. tonkinensis and F. viridifemorata species groups. The results demonstrated that the genus Longgenacris should be placed in the subfamily Melanoplinae but not Catantopinae, and L. rufiantennus should be a member of the genus Fruhstorferiola but not Longgenacris. Species boundary delimitation confirmed the presence of oversplitting in L. rufiantennus+F. tonkinensis and F. viridifemorata species groups and suggested that each group should be treated as a single species.

RevDate: 2020-09-28

Campbell DL, Thessen AE, L Ries (2020)

A novel curation system to facilitate data integration across regional citizen science survey programs.

PeerJ, 8:e9219.

Integrative modeling methods can now enable macrosystem-level understandings of biodiversity patterns, such as range changes resulting from shifts in climate or land use, by aggregating species-level data across multiple monitoring sources. This requires ensuring that taxon interpretations match up across different sources. While encouraging checklist standardization is certainly an option, coercing programs to change species lists they have used consistently for decades is rarely successful. Here we demonstrate a novel approach for tracking equivalent names and concepts, applied to a network of 10 regional programs that use the same protocols (so-called "Pollard walks") to monitor butterflies across America north of Mexico. Our system involves, for each monitoring program, associating the taxonomic authority (in this case one of three North American butterfly fauna treatments: Pelham, 2014; North American Butterfly Association, Inc., 2016; Opler & Warren, 2003) that shares the most similar overall taxonomic interpretation to the program's working species list. This allows us to define each term on each program's list in the context of the appropriate authority's species concept and curate the term alongside its authoritative concept. We then aligned the names representing equivalent taxonomic concepts among the three authorities. These stepping stones allow us to bridge a species concept from one program's species list to the name of the equivalent in any other program, through the intermediary scaffolding of aligned authoritative taxon concepts. Using a software tool we developed to access our curation system, a user can link equivalent species concepts between data collecting agencies with no specialized knowledge of taxonomic complexities.

RevDate: 2021-03-01
CmpDate: 2021-03-01

McCoy SJ, Krueger-Hadfield SA, N Mieszkowska (2020)

Evolutionary Phycology: Toward a Macroalgal Species Conceptual Framework.

Journal of phycology, 56(6):1404-1413.

Species concepts formalize evolutionary and ecological processes, but often conflict with one another when considering the mechanisms that ultimately lead to species delimitation. Evolutionary biologists are, however, recognizing that the conceptualization of a species is separate and distinct from the delimitation of species. Indeed, if species are generally defined as separately evolving metapopulation lineages, then characteristics, such as reproductive isolation or monophyly, can be used as evidence of lineage separation and no longer conflict with the conceptualization of a species. However, little of this discussion has addressed the formalization of this evolutionary conceptual framework for macroalgal species. This may be due to the complexity and variation found in macroalgal life cycles. While macroalgal mating system variation and patterns of hybridization and introgression have been identified, complex algal life cycles generate unique eco-evolutionary consequences. Moreover, the discovery of frequent macroalgal cryptic speciation has not been accompanied by the study of the evolutionary ecology of those lineages, and, thus, an understanding of the mechanisms underlying such rampant speciation remain elusive. In this perspective, we aim to further the discussion and interest in species concepts and speciation processes in macroalgae. We propose a conceptual framework to enable phycological researchers and students alike to portray these processes in a manner consistent with dialogue at the forefront of evolutionary biology. We define a macroalgal species as an independently evolving metapopulation lineage, whereby we can test for reproductive isolation or the occupation of distinct adaptive zones, among other mechanisms, as secondary lines of supporting evidence.

RevDate: 2020-09-28

Bangs MR, Douglas MR, Chafin TK, et al (2020)

Gene flow and species delimitation in fishes of Western North America: Flannelmouth (Catostomus latipinnis) and Bluehead sucker (C. Pantosteus discobolus).

Ecology and evolution, 10(13):6477-6493.

The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double-digest restriction site-associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.

RevDate: 2021-06-15
CmpDate: 2021-06-15

Quilodrán CS, Montoya-Burgos JI, M Currat (2020)

Harmonizing hybridization dissonance in conservation.

Communications biology, 3(1):391.

A dramatic increase in the hybridization between historically allopatric species has been induced by human activities. However, the notion of hybridization seems to lack consistency in two respects. On the one hand, it is inconsistent with the biological species concept, which does not allow for interbreeding between species, and on the other hand, it is considered either as an evolutionary process leading to the emergence of new biodiversity or as a cause of biodiversity loss, with conservation implications. In the first case, we argue that conservation biology should avoid the discussion around the species concept and delimit priorities of conservation units based on the impact on biodiversity if taxa are lost. In the second case, we show that this is not a paradox but an intrinsic property of hybridization, which should be considered in conservation programmes. We propose a novel view of conservation guidelines, in which human-induced hybridization may also be a tool to enhance the likelihood of adaptation to changing environmental conditions or to increase the genetic diversity of taxa affected by inbreeding depression. The conservation guidelines presented here represent a guide for the development of programmes aimed at protecting biodiversity as a dynamic evolutionary system.

RevDate: 2020-12-17

Jiao X, Z Yang (2021)

Defining Species When There is Gene Flow.

Systematic biology, 70(1):108-119.

Whatever one's definition of species, it is generally expected that individuals of the same species should be genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration rates cause a genetic sequence to be on average more closely related to a sequence from another species than to a sequence from the same species. Our results highlight the extraordinary impact that even a small amount of gene flow may have on the genetic history of the species. We suggest that contrasting long-term migration rate and short-term hybridization rate, both of which can be estimated using genetic data, may be a powerful approach to detecting the presence of reproductive barriers and to define species boundaries.[Gene flow; introgression; migration; multispecies coalescent; species concept; species delimitation.].

RevDate: 2021-06-14
CmpDate: 2021-06-14

Xu J (2020)

Fungal species concepts in the genomics era.

Genome, 63(9):459-468.

The 140 000 or so fungal species reported so far are heterogeneously defined based on varying criteria such as morphological, physiological, mating, and (or) molecular features. Incongruences are common among traits used to separating closely related species and it is often difficult to compare fungal taxonomic groups defined based on different species recognition criteria. Though DNA sequence-based classification and identification have been made, a consensus has not been reached, primarily due to intrinsic limitations in the proposed one or a few genes. Here, I argue that the fundamental reason for the observed inconsistencies is that speciation is a stochastic process with the emergence and fixation of different traits influenced differently by many non-deterministic factors such as population size, random mutation, mode(s) of reproduction, selection imposed by interacting biotic and abiotic factors, and chance events. Each species concept attempts to capture one or a few traits emerged in the continuous process of speciation. I propose that a genome sequence-based classification and identification system could unify and stabilize fungal taxonomy and help integrate taxonomy with other fields of fungal biology. The genomic species concept could be similarly argued for other groups of eukaryotic microbes as well as for plants and animals.

RevDate: 2021-06-04
CmpDate: 2021-06-04

Newton LG, Starrett J, Hendrixson BE, et al (2020)

Integrative species delimitation reveals cryptic diversity in the southern Appalachian Antrodiaetus unicolor (Araneae: Antrodiaetidae) species complex.

Molecular ecology, 29(12):2269-2287.

Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure, principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large-scale ecological data for niche-based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic-scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.

RevDate: 2020-09-23
CmpDate: 2020-09-23

Mosier SL (2019)

Policies as species Viewing and classifying policy from an evolutionary biology perspective.

Politics and the life sciences : the journal of the Association for Politics and the Life Sciences, 38(2):117-131.

This article proposes equating policies as species to develop a better understanding of how policies emerge, change, and diffuse across policymaking environments. Scholars have long shown an interest in understanding policy change and reinvention, whether incremental or nonincremental. The two subfields of public policy that can answer how and why policies change are not unified, leading to difficulty in comprehensively assessing policy emergence and change. The policy species concept bridges knowledge of the policy process and knowledge in the policy process by creating an operationalized definition of public policy and suggesting a process for classifying policies to observe subsequent behavior. Drawing from the field of biology, the policy species framework outlines how policies possess genotypes and phenotypes, which dictate what a policy is and how it can change. In tracing genotypic and phenetic change over time, policy evolution and change is more easily discernible. In turn, a more precise picture of how policies function is painted.

RevDate: 2020-09-28

Sterling KA, Nielsen SV, Brown AJ, et al (2020)

Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi.

PeerJ, 8:e9014.

The Yazoo Darter, Etheostoma raneyi (Percidae), is an imperiled freshwater fish species endemic to tributaries of the Yocona and Little Tallahatchie rivers of the upper Yazoo River basin, in northern Mississippi, USA. The two populations are allopatric, isolated by unsuitable lowland habitat between the two river drainages. Relevant literature suggests that populations in the Yocona River represent an undescribed species, but a lack of data prevents a thorough evaluation of possible diversity throughout the range of the species. Our goals were to estimate phylogenetic relationships of the Yazoo Darter across its distribution and identify cryptic diversity for conservation management purposes. Maximum likelihood (ML) phylogenetic analyses of the mitochondrial cytochrome b (cytb) gene returned two reciprocally monophyletic clades representing the two river drainages with high support. Bayesian analysis of cytb was consistent with the ML analysis but with low support for the Yocona River clade. Analyses of the nuclear S7 gene yielded unresolved relationships among individuals in the Little Tallahatchie River drainage with mostly low support, but returned a monophyletic clade for individuals from the Yocona River drainage with high support. No haplotypes were shared between the drainages for either gene. Additional cryptic diversity within the two drainages was not indicated. Estimated divergence between Yazoo Darters in the two drainages occurred during the Pleistocene (<1 million years ago) and was likely linked to repeated spatial shifts in suitable habitat and changes in watershed configurations during glacial cycles. Individuals from the Yocona River drainage had lower genetic diversity consistent with the literature. Our results indicate that Yazoo Darters in the Yocona River drainage are genetically distinct and that there is support for recognizing Yazoo Darter populations in the Yocona River drainage as a new species under the unified species concept.

RevDate: 2020-10-29
CmpDate: 2020-10-29

Karasiewicz S, Chapelle A, Bacher C, et al (2020)

Harmful algae niche responses to environmental and community variation along the French coast.

Harmful algae, 93:101785.

Distribution, frequency and intensity of harmful phytoplanktonic species are impacted by changes in environmental conditions. In the Bay of Brest, Alexandrium minutum has been responsible for several harmful algal blooms (HABs) associated with toxin production causing paralytic shellfish poisoning (PSP). Additionally, Lepidodinium chlorophorum causes green water and hypoxia locally in the Bay of Biscay. Previous studies revealed that L. chlorophorum's success was related to possible competitive exclusion. Therefore, the phytoplankton composition and the environmental conditions should be taken into account. This study aims to assess the combined effect of changes in habitat conditions and community structure with the occurrence of HAB species, on a spatial-temporal scale. For the investigation we first used the Hutchinson's niche concept by means of the Outlying Mean Index (OMI) analysis. The OMI analysis enable us to observe the environmental variables defining the ecological niche of the harmful species among the community. Secondly, we used the subniche theory to highlight the environmental variables defining the subniches in cases of high and low abundance of HABs with an estimation of the biological constraint restricting the species' subniche. This was undertaken using the Within Outlying Mean indexes (WitOMI) calculated under environmental conditions promoting high (H) and low (L) abundance bloom. Thirdly, we used the Indicator Species Concept from the Indicator Species Analysis (ISA) to link the biological restriction with potential competing or indicator species. We combined a data set from the French National Phytoplankton and Phycotoxin Monitoring Network (REPHY), the Velyger network (oyster monitoring program) and satellite imagery. A total of 44 stations, over the period of 1998-2017 using 50 taxonomic units. 36 taxa had significant niche and were mostly distributed along nutrient and salinity gradients. The two species of interest L. chlorophorum and A. minutum seemed to have similar affinity for summer-like environmental conditions and both used a marginal habitat compared to the rest of the community. A. minutum had a larger niche due to a greater affinity to the estuarine-like conditions. The subniche of the two species had a similar response to the environmental variation; their respective abundance was partly caused by greater environmental restrains. Their success in abundance appeared to be linked to local hydrodynamics which increases or reduces resources. On the other hand, the biotic pressure exerted upon A. minutum and L. chlorophorum were antagonistic. A possible competitor assemblage was exposed but the analysis was inconclusive. The methodological limitations were discussed as well as a perspective for future similar studies.

RevDate: 2021-01-05
CmpDate: 2021-01-05

Seifert B (2020)

The Gene and Gene Expression (GAGE) Species Concept: An Universal Approach for All Eukaryotic Organisms.

Systematic biology, 69(5):1033-1038.

The Gene and Gene Expression (GAGE) species concept, a new version of the Pragmatic Species Concept of Seifert (2014), is proposed as a concept applicable to any described recent or fossil eukaryotic organism independent from its mode of reproduction or evolutionary history. In addition to presenting the concept as such, the article also provides practical recommendations for taxonomists when delimiting species and describing taxa. The wording of the new concept contains a heading core sentence plus five attached sentences addressing essential conditions for its translation into a sound taxonomic practice: "Species are separable clusters that have passed a threshold of evolutionary divergence and are exclusively defined by nuclear DNA sequences and/or their expression products. Nuclear DNA sequences and their expression products are different character systems but have a highly correlated indicative function. Character systems with the least risk of epigenetic or ontogenetic modification have superior indicative value when conflicts between character systems of integrative studies arise. All character systems have to be described by an adequate numerics allowing cluster formation and determination of thresholds. Thresholds for each character system should be fixed by consensus among the experts under the principle of avoiding oversplitting or lumping. Clusters must not be the expression of intraspecific polymorphism." Recognizing the distortions and conflicts caused to taxonomy through barcoding or through assessment on the basis of association with other organisms, the GAGE species concept strongly downgrades the use of cytoplasmic DNA of endosymbiotic origin (mtDNA, cpDNA) or DNA of closely associated microbes (e.g., Wolbachia bacteria) for final taxonomic decision-making. Recognizing the distortion of phylogenies by the high frequency of reticulate evolution, it is argued that delimiting and naming species has to be separated from constructing bifurcating phylogenetic trees. [Cytoplasmic DNA; lumping; nuclear DNA; numeric taxonomy; oversplitting; reticulate evolution.].

RevDate: 2020-11-16
CmpDate: 2020-11-16

Corduneanu A, Ursache TD, Taulescu M, et al (2020)

Detection of DNA of Babesia canis in tissues of laboratory rodents following oral inoculation with infected ticks.

Parasites & vectors, 13(1):166.

BACKGROUND: Babesia spp. are apicomplexan parasites which infect a wide range of mammalian hosts. Historically, most Babesia species were described based on the assumed host specificity and morphological features of the intraerythrocytic stages. New DNA-based approaches challenge the traditional species concept and host specificity in Babesia. Using such tools, the presence of Babesia DNA was reported in non-specific mammalian hosts, including B. canis in feces and tissues of insectivorous bats, opening questions on alternative transmission routes. The aim of the present study was to evaluate if B. canis DNA can be detected in tissues of laboratory rodents following oral inoculation with infected ticks.

METHODS: Seventy-five questing adult Dermacentor reticulatus ticks were longitudinally cut in two halves and pooled. Each pool consisted of halves of 5 ticks, resulting in two analogous sets. One pool set (n = 15) served for DNA extraction, while the other set (n = 15) was used for oral inoculation of experimental animals (Mus musculus, line CD-1 and Meriones unguiculatus). Blood was collected three times during the experiment (before the inoculation, at 14 days post-inoculation and at 30 days post-inoculation). All animals were euthanized 30 days post-inoculation. At necropsy, half of the heart, lung, liver, spleen and kidneys were collected from each animal. The presence of Babesia DNA targeting the 18S rRNA gene was evaluated from blood and tissues samples. For histopathology, the other halves of the tissues were used. Stained blood smears were used for the light microscopy detection of Babesia.

RESULTS: From the 15 pools of D. reticulatus used for the oral inoculation, six were PCR-positive for B. canis. DNA of B. canis was detected in blood and tissues of 33.3% of the animals (4 out of 12) inoculated with a B. canis-positive pool. No Babesia DNA was detected in the other 18 animals which received B. canis-negative tick pools. No Babesia was detected during the histological examination and all blood smears were microscopically negative.

CONCLUSIONS: Our findings demonstrate that B. canis DNA can be detected in tissues of mammalian hosts following ingestion of infected ticks and opens the question of alternative transmission routes for piroplasms.

RevDate: 2021-06-09

Tatarenkov A, Earley RL, Taylor DS, et al (2021)

Extensive hybridization and past introgression between divergent lineages in a quasi-clonal hermaphroditic fish: Ramifications for species concepts and taxonomy.

Journal of evolutionary biology, 34(1):49-59.

Extreme inbreeding is expected to reduce the incidence of hybridization, serving as a prezygotic barrier. Mangrove rivulus is a small killifish that reproduces predominantly by self-fertilization, producing highly homozygous lines throughout its geographic range. The Bahamas and Caribbean are inhabited by two highly diverged phylogeographic lineages of mangrove rivulus, Kryptolebias marmoratus and a 'Central clade' closely related to K. hermaphroditus from Brazil. The two lineages are largely allopatric, but recently were found in syntopy on San Salvador, Bahamas, where a single hybrid was reported. To better characterize the degree of hybridization and the possibility of secondary introgression, here we conducted a detailed genetic analysis of the contact zone on San Salvador. Two mixed populations were identified, one of which contained sexually mature hybrids. The distribution of heterozygosity at diagnostic microsatellite loci in hybrids showed that one of these hybrids was an immediate offspring from the K. marmoratus x Central clade cross, whereas the remaining five hybrids were products of reproduction by self-fertilization for 1-3 generations following the initial cross. Two hybrids had mitochondrial haplotypes of K. marmoratus and the remaining four hybrids had a haplotype of the Central clade, indicating that crosses go in both directions. In hybrids, alleles of parental lineages were represented in equal proportions suggesting lack of recent backcrossing to either of the parental lineages. However, sympatric populations of two lineages were less diverged than allopatric populations, consistent with introgression. Results are discussed in terms of applicability of the biological species concept for isogenic, effectively clonal, organisms.

RevDate: 2020-08-14
CmpDate: 2020-08-14

Li ZZ, Ngarega BK, Lehtonen S, et al (2020)

Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses.

Journal of plant research, 133(3):373-381.

Revealing cryptic diversity is of great importance for effective conservation and understanding macroevolution and ecology of plants. Ottelia, a typical example of aquatic plants, possesses extremely variable morphology and the presence of cryptic diversity makes its classification problematic. Previous studies have revealed cryptic Ottelia species in Asia, but very little is known about the molecular systematics of this genus in Africa, a center of species diversity of Ottelia. In this study, we sampled Ottelia ulvifolia, an endemic species of tropical Africa, from Zambia and Cameroon. We used six chloroplast DNA regions, nrITS and six polymorphic microsatellite markers to estimate the molecular diversity and population genetic structure in O. ulvifolia. The phylogenetic inference, STACEY and STRUCTURE analyses supported at least three clusters within O. ulvifolia, each representing unique flower types (i.e., bisexual yellow flower, unisexual yellow flower and bisexual white flower types). Although abundant genetic variation (> 50%) was observed within the populations, excessive anthropogenic activities may result in genetic drift and bottlenecks. Here, three cryptic species of O. ulvifolia complex are defined, and insights are provided into the taxonomy of Ottelia using the phylogenetic species concept.

RevDate: 2020-09-28

Wang P, Chen B, Zheng J, et al (2020)

Fine-Scale Population Genetic Structure and Parapatric Cryptic Species of Kuruma Shrimp (Marsupenaeus japonicus), Along the Northwestern Pacific Coast of China.

Frontiers in genetics, 11:118.

The kuruma shrimp (Marsupenaeus japonicus) includes two cryptic species, which are distributed mostly allopatrically but co-occur in the northern South China Sea (from Huilai to Beihai). To obtain a better understanding of the fine-scale genetic structure and parapatric diversification of these two varieties in the northwestern Pacific region, we used a genotyping-by-sequencing (GBS) and comparative transcriptomics approach to establish their phylogenetic relationships. Using the GBS technique, we genotyped 28891 SNPs in 160 individuals in the Northwest Pacific. The results supported two highly diverged evolutionary lineages of kuruma shrimp (var. I and II). The ND and XM populations showed complex genetic patterns, which might be affected by the complex environment of the Taiwan Strait. In addition, the migration rates and inbreeding coefficients of XM and BH were much lower than those of the other populations, which might be related to the land-sea changes and complex ocean currents in the Taiwan Strait and Qiongzhou Strait. Based on the synonymous substitution rates (ds) of 2,491 candidate orthologs, we estimated that the divergence time between the two varieties was 0.26~0.69 Mya. Choice and no-choice interbreeding experiments provided support for the biological species concept, by showing the existence of reproductive isolation or incompatibility. In view of these differences between the two Marsupenaeus species, we believe that it is essential and urgent to establish a genetic database for each and reevaluate their ecological suitable conditions in order to improve species-specific culturing techniques. Moreover, this research can serve as a case study for future research on speciation and hybridization.

RevDate: 2020-06-02
CmpDate: 2020-06-02

Malavin S, L Shmakova (2020)

Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea).

European journal of protistology, 73:125671.

Acanthamoeba castellanii species complex (genotype T4) comprises of more than ten species with unclear synonymy. Its molecular phylogeny has several conflicts with published morphological data. In this paper, we analyze morphometric traits and temperature preferences in six new strains belonging to A. castellanii complex isolated from Arctic permafrost in the framework of molecular phylogeny. This integrative approach allows us to cross-link genotypic and phenotypic variability and identify species-level boundaries inside the complex. We also analyze previously known and newly found discrepancies between the nuclear and mitochondrial gene-based phylogenies. We hypothesize that one reason for these discrepancies may be the intragenomic polymorphism of ribosomal RNA genes.

RevDate: 2021-02-26
CmpDate: 2021-01-18

Cheng JY, T Mailund (2020)

Ancestral Population Genomics with Jocx, a Coalescent Hidden Markov Model.

Methods in molecular biology (Clifton, N.J.), 2090:167-189.

Coalescence theory lets us probe the past demographics of present-day genetic samples and much information about the past can be gleaned from variation in rates of coalescence event as we trace genetic lineages back in time. Fewer and fewer lineages will remain, however, so there is a limit to how far back we can explore. Without recombination, we would not be able to explore ancient speciation events because of this-any meaningful species concept would require that individuals of one species are closer related than they are to individuals of another species, once speciation is complete. Recombination, however, opens a window to the deeper past. By scanning along a genomic alignment, we get a sequential variant of the coalescence process as it looked at the time of the speciation. This pattern of coalescence times is fixed at speciation time and does not erode with time; although accumulated mutations and genomic rearrangements will eventually hide the signal, it enables us to glance at events in the past that would not be observable without recombination. So-called coalescence hidden Markov models allow us to exploit this, and in this chapter, we present the tool Jocx that uses a framework of these models to infer demographic parameters in ancient speciation events.

RevDate: 2020-04-08
CmpDate: 2020-04-07

Martin D, Gil J, Zanol J, et al (2020)

Digging the diversity of Iberian bait worms Marphysa (Annelida, Eunicidae).

PloS one, 15(1):e0226749.

During a visit to polychaete-rearing facilities in the vicinity of Bay of Cádiz (SW Iberian Peninsula, Atlantic Ocean), we sampled two populations of Marphysa (Annelida, Eunicidae) originally occurring at nearby intertidal soft bottoms, one being more than twice as long as the other at the same age. We analysed them using partial sequences of two mitochondrial genes, 16S rDNA and Cytochrome Oxidase I, and classical morphological observations. Our molecular results confirmed that the two populations corresponded to two different species, with PTP species delimitation values ranging from 0.973 (long-bodied species) to 0.999 (short-bodied species). Morphologically, the short-bodied species resembles the recently redescribed M. sanguinea (Montagu, 1813), but differs mainly in having some parapodia with two subacicular hooks (one bidentate and one unidentate) and three types of pectinate chaetae, Two isodont present all along the body, and one particularly large anodont asymmetric appearing only from mid-posterior parapodia. The long-bodied species resembles Marphysa aegypti Elgetany, El-Ghobashy, Ghoneim and Struck, 2018 both in size and in having very robust, unidentate subacicular hooks (single in most parapodia, two-both similar in size and form-in some posterior parapodia), but differs, among other features, in the maxillary formula, the number of acicula per parapodia and the number and shape of pectinate chaetae. Accordingly, we are here fully illustrating and formally describing the two Iberian populations as Marphysa gaditana sp. nov. (short-bodied) and Marphysa chirigota sp. nov. (long-bodied) and we are emending the description of M. aegypti based on our revision of the type material. Also, we discuss on the distribution of the species of the sanguinea-group and on the relevancy of taxonomically robust studies when dealing with species of commercial interest having the potential of being globally spread through human activities, as well as on the misunderstandings caused by the incorrect use of the "cosmopolitan species" concept.

RevDate: 2020-09-28

Walther G, Wagner L, O Kurzai (2019)

Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa.

Journal of fungi (Basel, Switzerland), 5(4):.

Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.

RevDate: 2020-09-29

Cabarroi-Hernández M, Villalobos-Arámbula AR, Mabel Gisela Torres-Torres , et al (2019)

The Ganoderma weberianum-resinaceum lineage: multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics.

MycoKeys, 59:95-131.

Many species of Ganoderma exhibit a high phenotypic plasticity. Hence, particularly among them, the morphological species concept remains difficult to apply, resulting in a currently confused taxonomy; as a consequence, the geographical distribution range of many species also remains very uncertain. One of the areas with a strong uncertainty, as far as morphological species concept is concerned, is the Neotropics. It is common that names of species described from other regions, mainly from northern temperate areas, have been applied to Neotropical species. The aim of the present study was to determine which species might lay behind the G. weberianum complex in the Neotropics, using morphological studies and phylogenetic inferences based on both single (ITS) and multilocus (ITS, rpb2, and tef1-α) sequences. The results indicated that G. weberianum sensu Steyaert, which is the usually accepted concept for this taxon, was absent from the Neotropics. In this area, G. weberianum sensu Steyaert encompassed at least two phylogenetic species, which are tentatively, for the time being, identified as belonging to G. mexicanum and G. parvulum. These two species could be distinguished morphologically, notably by the ornamentation or its absence on their chlamydospores. The results also showed that additional species from the Neotropics might still exist, including, e.g., G. perzonatum, but their circumscription remains uncertain until now because of the paucity of material available. Furthermore, it was found that the current concept of G. resinaceum embraced a complex of species.

RevDate: 2020-01-08
CmpDate: 2019-11-18

Smith BP, Cairns KM, Adams JW, et al (2019)

Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793.

Zootaxa, 4564(1):zootaxa.4564.1.6 pii:zootaxa.4564.1.6.

The taxonomic status and systematic nomenclature of the Australian dingo remain contentious, resulting in decades of inconsistent applications in the scientific literature and in policy. Prompted by a recent publication calling for dingoes to be considered taxonomically as domestic dogs (Jackson et al. 2017, Zootaxa 4317, 201-224), we review the issues of the taxonomy applied to canids, and summarise the main differences between dingoes and other canids. We conclude that (1) the Australian dingo is a geographically isolated (allopatric) species from all other Canis, and is genetically, phenotypically, ecologically, and behaviourally distinct; and (2) the dingo appears largely devoid of many of the signs of domestication, including surviving largely as a wild animal in Australia for millennia. The case of defining dingo taxonomy provides a quintessential example of the disagreements between species concepts (e.g., biological, phylogenetic, ecological, morphological). Applying the biological species concept sensu stricto to the dingo as suggested by Jackson et al. (2017) and consistently across the Canidae would lead to an aggregation of all Canis populations, implying for example that dogs and wolves are the same species. Such an aggregation would have substantial implications for taxonomic clarity, biological research, and wildlife conservation. Any changes to the current nomen of the dingo (currently Canis dingo Meyer, 1793), must therefore offer a strong, evidence-based argument in favour of it being recognised as a subspecies of Canis lupus Linnaeus, 1758, or as Canis familiaris Linnaeus, 1758, and a successful application to the International Commission for Zoological Nomenclature - neither of which can be adequately supported. Although there are many species concepts, the sum of the evidence presented in this paper affirms the classification of the dingo as a distinct taxon, namely Canis dingo.

RevDate: 2020-04-30
CmpDate: 2020-04-30

Chase AB, Arevalo P, Brodie EL, et al (2019)

Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria.

mBio, 10(5):.

For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance).IMPORTANCE Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms.

RevDate: 2020-10-01

König K, Zundel P, Krimmer E, et al (2019)

Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps.

Ecology and evolution, 9(18):10694-10706.

The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species-rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum ("DB-lineage"), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host ("GW-lineage"). Between two populations of the DB-lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.

RevDate: 2020-05-21
CmpDate: 2020-05-21

Zhao L, de Hoog S, Hagen F, et al (2019)

Species borderlines in Fusarium exemplified by F. circinatum/F. subglutinans.

Fungal genetics and biology : FG & B, 132:103262.

Fusarium species are known as cross-kingdom pathogens, causing infections in both plants and animals. This ecological variation challenges the species concept of closely similar lineages in the genus. The present paper describes various types of genetic interaction between strains of two neighboring model species with different predilection, F. circinatum and F. subglutinans. Parameters include sequencing of the translation elongation factor 1α (TEF1) and the second largest subunit of RNA polymerase (RPB2), sexual crossing, and vegetative compatibility groups (VCGs). Successful interspecific crosses resulted in either recombination or in homothallic fruiting, the latter being limited to F. subglutinans MAT1 parents. Crossings were skewed, as Fusarium circinatum recombined more often than F. subglutinans. We hypothesize that genetic exchange in Fusarium species is finely regulated with an arsenal of options, which are applied when partners are phylogenetically closely related, leading to fluent species borderlines.

RevDate: 2020-05-08
CmpDate: 2020-05-08

Arevalo P, VanInsberghe D, Elsherbini J, et al (2019)

A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations.

Cell, 178(4):820-834.e14.

Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.

RevDate: 2020-09-30
CmpDate: 2020-02-10

McKenzie JL, Chung DJ, Healy TM, et al (2019)

Mitochondrial Ecophysiology: Assessing the Evolutionary Forces That Shape Mitochondrial Variation.

Integrative and comparative biology, 59(4):925-937.

The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study. There is strong evidence for a role of secondary contact following the last glaciation in shaping a steep mitochondrial cline across a contact zone between northern and southern subspecies of killifish, but there is also evidence for a role of adaptive evolution in driving differentiation between the subspecies in a variety of traits from the level of the whole organism to the level of mitochondrial function. In addition, studies are beginning to address the potential for mitonuclear incompatibilities in admixed populations. However, population genomic studies have failed to detect evidence for a strong and pervasive influence of mitonuclear incompatibilities, and we suggest that polygenic selection may be responsible for the complex patterns observed. This case study demonstrates that multiple forces can act together in shaping mitochondrial clines, and illustrates the challenge of disentangling their relative roles.

RevDate: 2020-10-01

Guzmán-Verri C, Suárez-Esquivel M, Ruíz-Villalobos N, et al (2019)

Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3.

Frontiers in veterinary science, 6:175.

Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as "Brucella melitensis biovar 2." Further molecular typing, identified the strain as an atypical "Brucella suis." Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.

RevDate: 2020-02-25
CmpDate: 2020-01-08

Darienko T, Kang W, Orzechowski AK, et al (2019)

Pleurastrosarcina terriformae, a new species of a rare desert trebouxiophycean alga discovered by an integrative approach.

Extremophiles : life under extreme conditions, 23(5):573-586.

Biological soil crusts of extreme habitats (semi-deserts and deserts) are dominated by cyanobacteria and microalgae. The most abundant taxa are green algae belonging to the classes Chlorophyceae and Trebouxiophyceae. Specimens with sarcinoid-like morphology (cells arranged in packages) represent one group of these microalgae. The genus Pleurastrosarcina consists of two species, which were originally described as Chlorosarcina (P. brevispinosa and P. longispinosa). Both species are exclusively found from arid soils. However, these species were only reported few times and probably overlooked especially if no akinetes were present. During studying soil samples collected from different regions of the Atacama desert (Chile), we isolated two strains, which were morphologically similar to both Pleurastrosarcina species. The phylogenetic analyses confirmed that they belong to this genus. The ITS-2/CBC approach revealed that both new isolates represent a new species, P. terriformae. The comparison with other available strains demonstrated that this new species is not restricted to South America and was also found in coastal area in Europe. The six investigated strains showed a high phenotypic plasticity, which is reflected in the descriptions of several varieties.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Su H, Packeu A, Ahmed SA, et al (2019)

Species Distinction in the Trichophyton rubrum Complex.

Journal of clinical microbiology, 57(9):.

The Trichophyton rubrum species complex comprises commonly encountered dermatophytic fungi with a worldwide distribution. The members of the complex usually have distinct phenotypes in culture and cause different clinical symptoms, despite high genome similarity. In order to better delimit the species within the complex, molecular, phenotypic, and physiological characteristics were combined to reestablish a natural species concept. Three groups, T. rubrum, T. soudanense, and T. violaceum, could be distinguished based on the sequence of the internal transcribed spacer (ITS) ribosomal DNA barcode gene. On average, strains within each group were similar by colony appearance, microscopy, and physiology, but strains between groups showed significant differences. Trichophyton rubrum strains had higher keratinase activity, whereas T. violaceum strains tended to be more lipophilic; however, none of the phenotypic features were diagnostic. The results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and amplified fragment length polymorphism (AFLP) were partially consistent with the ITS data but failed to distinguish the species unambiguously. Despite their close similarity, T. violaceum, T. soudanense, and T. rubrum can be regarded as independent species with distinct geographical distributions and clinical predilections. Trichophyton soudanense is pheno- and genotypically intermediate between T. rubrum and T. violaceum For routine diagnostics, ITS sequencing is recommended.

RevDate: 2020-05-20
CmpDate: 2020-05-20

Wagner L, de Hoog S, Alastruey-Izquierdo A, et al (2019)

A Revised Species Concept for Opportunistic Mucor Species Reveals Species-Specific Antifungal Susceptibility Profiles.

Antimicrobial agents and chemotherapy, 63(8):.

Recently, the species concept of opportunistic Mucor circinelloides and its relatives has been revised, resulting in the recognition of its classical formae as independent species and the description of new species. In this study, we used isolates of all clinically relevant Mucor species and performed susceptibility testing using the EUCAST reference method to identify potential species-specific susceptibility patterns. In vitro susceptibility profiles of 101 mucoralean strains belonging to the genus Mucor (72), the closely related species Cokeromyces recurvatus (3), Rhizopus (12), Lichtheimia (10), and Rhizomucor (4) to six antifungals (amphotericin B, natamycin, terbinafine, isavuconazole, itraconazole, and posaconazole) were determined. The most active drug for all Mucorales was amphotericin B. Antifungal susceptibility profiles of pathogenic Mucor species were specific for isavuconazole, itraconazole, and posaconazole. The species formerly united in M. circinelloides showed clear differences in their antifungal susceptibilities. Cokeromyces recurvatus, Mucor ardhlaengiktus, Mucor lusitanicus (M. circinelloides f. lusitanicus), and Mucor ramosissimus exhibited high MICs to all azoles tested. Mucor indicus presented high MICs for isavuconazole and posaconazole, and Mucor amphibiorum and Mucor irregularis showed high MICs for isavuconazole. MIC values of Mucor spp. for posaconazole, isavuconazole, and itraconazole were high compared to those for Rhizopus and the Lichtheimiaceae (Lichtheimia and Rhizomucor). Molecular identification combined with in vitro susceptibility testing is recommended for Mucor species, especially if azoles are applied in treatment.

RevDate: 2020-09-24
CmpDate: 2020-03-12

Li M, Zhao H, Zhao F, et al (2019)

Alternative analyses of compensatory base changes in an ITS2 phylogeny of Corydalis (Papaveraceae).

Annals of botany, 124(2):233-243.

BACKGROUND AND AIMS: Compensatory base changes (CBCs) that occur in stems of ribosomal internal transcribed spacer 2 (ITS2) can have important phylogenetic implications because they are not expected to occur within a single species and also affect selection of appropriate DNA substitution models. These effects have been demonstrated when studying ancient lineages. Here we examine these effects to quantify their importance within a more recent lineage by using both DNA- and RNA-specific models.

METHODS: We examined the phylogenetic implications of the CBC process by using a comprehensive sampling of ITS2 from ten closely related species of Corydalis. We predicted ITS2 secondary structures by using homology modelling, which was then used for a structure-based alignment. Paired and unpaired regions were analysed separately and in combination by using both RNA-specific substitution models and conventional DNA models. We mapped all base-pair states of CBCs on the phylogenetic tree to infer their evolution and relative timing.

KEY RESULTS: Our results indicate that selection acted to increase the thermodynamic stability of the secondary structure. Thus, the unpaired and paired regions did not evolve under a common substitution model. Only two CBCs occurred within the lineage sampled and no striking differences in topology or support for the shared clades were found between trees constructed using DNA- or RNA-specific substitution models.

CONCLUSIONS: Although application of RNA-specific substitution models remains preferred over more conventional DNA models, we infer that application of conventional DNA models is unlikely to be problematic when conducting phylogenetic analyses of ITS2 within closely related lineages wherein few CBCs are observed. Each of the two CBCs was found within the same lineages but was not observed within a given species, which supports application of the CBC species concept.

RevDate: 2020-03-09
CmpDate: 2020-03-02

Hundsdoerfer AK, Lee KM, Kitching IJ, et al (2019)

Genome-wide SNP Data Reveal an Overestimation of Species Diversity in a Group of Hawkmoths.

Genome biology and evolution, 11(8):2136-2150.

The interface between populations and evolving young species continues to generate much contemporary debate in systematics depending on the species concept(s) applied but which ultimately reduces to the fundamental question of "when do nondiscrete entities become distinct, mutually exclusive evolutionary units"? Species are perceived as critical biological entities, and the discovery and naming of new species is perceived by many authors as a major research aim for assessing current biodiversity before much of it becomes extinct. However, less attention is given to determining whether these names represent valid biological entities because this is perceived as both a laborious chore and an undesirable research outcome. The charismatic spurge hawkmoths (Hyles euphorbiae complex, HEC) offer an opportunity to study this less fashionable aspect of systematics. To elucidate this intriguing systematic challenge, we analyzed over 10,000 ddRAD single nucleotide polymorphisms from 62 individuals using coalescent-based and population genomic methodology. These genome-wide data reveal a clear overestimation of (sub)species-level diversity and demonstrate that the HEC taxonomy has been seriously oversplit. We conclude that only one valid species name should be retained for the entire HEC, namely Hyles euphorbiae, and we do not recognize any formal subspecies or other taxonomic subdivisions within it. Although the adoption of genetic tools has frequently revealed morphologically cryptic diversity, the converse, taxonomic oversplitting of species, is generally (and wrongly in our opinion) accepted as rare. Furthermore, taxonomic oversplitting is most likely to have taken place in intensively studied popular and charismatic organisms such as the HEC.

RevDate: 2020-10-01

Petrželová I, M Sochor (2019)

How useful is the current species recognition concept for the determination of true morels? Insights from the Czech Republic.

MycoKeys, 52:17-43.

The phylogentic diversity of the genus Morchella has only been sporadically studied in Central Europe. In this study, a molecular taxonomic revision of the Morchella species of the Czech Republic was performed using available fungarium specimens, fresh collections, and axenic cultures. Molecular phylogenetic analyses based on either ITS or five-locus (ITS, LSU, RPB1, RPB2, and EF-1α) sequencing and the application of principles of the genealogical concordance phylogenetic species recognition (GCPSR) have revealed the occurrence of 11 phylogenetic species in the region, but only six of them could be assigned unequivocally to the previously published phylospecies: Mel-3 (M.semilibera), Mel-10 (M.importuna), Mel-19 (M.eohespera), Mes-4 (M.americana), Mes-5 and Mes-8 (M.esculenta). One lineage was identified as a new phylospecies and is designated as Mel-39. Four lineages grouped together with two or more previously published phylospecies: Mel-13/26 (M.deliciosa), Mel-15/16 (M.angusticeps / M.eximioides), Mel-20/34 (M.purpurascens), and Mel-23/24/31/32 (M.pulchella). Our phylogenetic analyses and literature review shed light on the pitfalls of current molecular taxonomy of morels and highlight the ambiguities of present species recognition concepts. The main source of the problems seems to be rooted in the application of different methods (multigene vs single-gene sequencing, phenotypic determination) and approaches (monophyly vs paraphyly, the application or not of GCPSR, degree of differentiation between accepted species, etc.) by various authors for the delimitation of new phylospecies. Therefore, we propose five criteria for distinguishing new phylospecies in the genus Morchella based on molecular data, and recommend a more conservative approach in species delimitation.

RevDate: 2020-02-25
CmpDate: 2019-08-08

Haelewaters D, Boer P, Báthori F, et al (2019)

Studies of Laboulbeniales on Myrmica ants (IV): host-related diversity and thallus distribution patterns of Rickia wasmannii.

Parasite (Paris, France), 26:29.

Fungal species identities are often based on morphological features, but current molecular phylogenetic and other approaches almost always lead to the discovery of multiple species in single morpho-species. According to the morphological species concept, the ant-parasitic fungus Rickia wasmannii (Ascomycota, Laboulbeniales) is a single species with pan-European distribution and a wide host range. Since its description, it has been reported from ten species of Myrmica (Hymenoptera, Formicidae), of which two belong to the rubra-group and the other eight to the phylogenetically distinct scabrinodis-group. We found evidence for R. wasmannii being a single phylogenetic species using sequence data from two loci. Apparently, the original morphological description (dating back to 1899) represents a single phylogenetic species. Furthermore, the biology and host-parasite interactions of R. wasmannii are not likely to be affected by genetic divergence among different populations of the fungus, implying comparability among studies conducted on members of different ant populations. We found no differences in total thallus number on workers between Myrmica species, but we did observe differences in the pattern of thallus distribution over the body. The locus of infection is the frontal side of the head in Myrmica rubra and M. sabuleti whereas in M. scabrinodis the locus of infection differs between worker ants from Hungary (gaster tergites) and the Netherlands (frontal head). Possible explanations for these observations are differences among host species and among populations of the same species in (i) how ant workers come into contact with the fungus, (ii) grooming efficacy, and (iii) cuticle surface characteristics.

RevDate: 2020-02-25
CmpDate: 2019-09-24

Brasch J, R Gläser (2019)

[Dynamic diversity of dermatophytes].

Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete, 70(8):575-580.

BACKGROUND: Many dermatologists do not understand the perpetual adjustments in the dermatophyte nomenclature.

OBJECTIVES: The aim is to explain the background and the development of methods that have led to previous and current changes of dermatophyte taxonomy and to the detection of new dermatophytes.

METHODS: In this article we evaluate the recent literature on this topic and our own results in the fields of dermatophyte identification, their detection, and of the associated taxonomic developments.

RESULTS: Today, the phylogenetic species concept is the basis of taxonomic classification, including that of dermatophytes. Genetic techniques have decisively advanced this and are state of the art nowadays. The detection of new dermatophyte species was often triggered by clinical observations and by morphologically conspicuous cultures that prompted their subsequent exact mycological characterization. Even today not all species of dermatophytes are unequivocally defined.

CONCLUSIONS: By exclusively using selected genetic characteristics for the construction of phylogenetic trees additional taxonomically relevant features are neglected. Therefore it is necessary to better integrate data derived from morphologic, physiologic, ecologic and pathophysiologic observations into phylogenetic analyses. Dermatologists are still asked to contribute such information.

RevDate: 2021-01-09
CmpDate: 2020-10-15

Korshunova T, Picton B, Furfaro G, et al (2019)

Multilevel fine-scale diversity challenges the 'cryptic species' concept.

Scientific reports, 9(1):6732.

'Cryptic' species are an emerging biological problem that is broadly discussed in the present study. Recently, a cryptic species definition was suggested for those species which manifest low morphological, but considerable genetic, disparity. As a case study we present unique material from a charismatic group of nudibranch molluscs of the genus Trinchesia from European waters to reveal three new species and demonstrate that they show a dual nature: on one hand, they can be considered a 'cryptic' species complex due to their overall similarity, but on the other hand, stable morphological differences as well as molecular differences are demonstrated for every species in that complex. Thus, this species complex can equally be named 'cryptic', 'pseudocryptic' or 'non-cryptic'. We also present evidence for an extremely rapid speciation rate in this species complex and link the species problem with epigenetics. Available metazoan-wide data, which are broadly discussed in the present study, show the unsuitability of a 'cryptic' species concept because the degree of crypticity represents a continuum when a finer multilevel morphological and molecular scale is applied to uncover more narrowly defined species making the 'cryptic' addition to 'species' redundant. Morphological and molecular methods should be applied in concordance to form a fine-scale multilevel taxonomic framework, and not necessarily implying only an a posteriori transformation of exclusively molecular-based 'cryptic' species into morphologically-defined 'pseudocryptic' ones. Implications of the present study have importance for many fields, including conservation biology and fine-scale biodiversity assessments.

RevDate: 2020-05-07
CmpDate: 2020-05-07

González-Resendiz L, Johansen JR, León-Tejera H, et al (2019)

A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria).

Journal of phycology, 55(4):898-911.

A population of Desertifilum (Cyanobacteria, Oscillatoriales) from an oligotrophic desertic biotope was isolated and characterized using a polyphasic approach including molecular, morphological, and ecological information. The population was initially assumed to be a new species based on ecological and biogeographic separation from other existing species, however, phylogenetic analyses based on sequences of the 16S rRNA gene and 16S-23S ITS region, placed this strain clearly within the type species, Desertifilum tharense. Comparative analysis of morphology, 16S rRNA gene similarity, 16S-23S ITS secondary structure, and percent dissimilarity of the ITS regions for all characterized strains supports placing the six Desertifilum strains (designated as PD2001/TDC17, UAM-C/S02, CHAB7200, NapGTcm17, IPPAS B-1220, and PMC 872.14) into D. tharense. The recognition of Desertifilum salkalinema and Desertifilum dzianense is not supported, although our analysis does support continued recognition of Desertifilum fontinale. Pragmatic criteria for recognition of closely related species are proposed based on this study and others, and more rigorous review of future taxonomic papers is recommended.

RevDate: 2020-09-30

Galtier N (2019)

Delineating species in the speciation continuum: A proposal.

Evolutionary applications, 12(4):657-663.

Delineating species is a difficult and seemingly uninteresting issue that is still essential to address. Taxonomic methodology is heterogeneous according to the taxa and scientists involved due to the disparate data quality and quantity and disagreements over the species concept. This has negative impacts on basic and applied research. Genomic data substantially enhance our understanding of the speciation process but do not provide a ubiquitous solution to the species problem. The relevance of comparative approaches in speciation research has nevertheless recently been demonstrated. I suggest moving towards a more unified taxonomic classification through a reference-based decision procedure.

RevDate: 2020-03-09
CmpDate: 2019-12-19

Aguado MT, Capa M, Lago-Barcia D, et al (2019)

Species delimitation in Amblyosyllis (Annelida, Syllidae).

PloS one, 14(4):e0214211.

Amblyosyllis is a worldwide distributed group of annelids mainly found in coastal environments. It is well known among the polychaete specialists mostly because of its notable beauty, showing bright colourful patterns and outstanding long and coiled appendices. Amblyosyllis is a monophyletic genus easy to identify due to its distinct diagnostic features; however, the species and their boundaries are, in most cases, not well defined. Herein, we provide an extensive sample of Amblyosyllis material (115 specimens) from several world geographic areas. We have studied the morphological features of each specimen and photographed them alive. Two mitochondrial DNA markers (COI and 16S) and one nuclear gene fragment (28S, D1 region) were sequenced. We performed phylogenetic analyses based on each DNA partition, as well as the combined data sets, obtaining congruent results. Species delimitation methods such as distance analyses, statistical parsimony networks and multi-rate Poisson tree processes were also applied. The combined results obtained from different methodologies and data sets are used to differentiate between, at least, 19 lineages compatible with the separately evolving meta-populations species concept. Four of these lineages are identified as nominal species, including the type species of Amblyosyllis, A. rhombeata. For three other lineages previously synonymized names are recovered, and seven lineages are described as new species. All of these species are described and supported by appropriate iconography. We recognize several morphological characters useful to identify species of Amblyosyllis, which in some cases should also be combined with molecular methods for species delineation. The genetic divergence in the genus is high, contrary to the morphological homogeneity observed. Two species show a wide geographical distribution, while the rest have a more restricted distribution. There are several examples of species with overlapping distribution patterns.

RevDate: 2020-07-07
CmpDate: 2020-07-07

Velamala GR, Naranji MK, Kondamudi RB, et al (2019)

DNA barcoding of commercially important snapper species (Lutjaniformes; Lutjanidae; Lutjanus) from Visakhapatnam, Central Eastern coast of India.

Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis, 30(4):585-591.

Snappers are commercially important fishes in Indian waters, currently belonging to the order Lutjaniformes, family Lutjanidae. Generally, recognizing species of Lutjanus is a challenging task not only because of overlapping morphological characters, such as shapes, size groups, or colour patterns, but also based on the definition of the species concept or the definition of the threshold for speciation. In India there has not been any updated and accurate study of the genus so far. Besides, identification of the group based on ecological aspects and DNA barcoding tools were confined to limited laboratories. In the present study, ten species of snappers were identified from samples obtained from the major fish landing centres in the Visakhapatnam, Central Eastern coast of India. Snapper species were identified using COI (Cytochrome oxidase I) sequences for DNA barcoding. The validity of the conjecture species-level taxonomy based on COI is assisted with high equivalence search (98-100%) both in BOLD and BLAST, well-distributed genetic distance values.

RevDate: 2020-09-30
CmpDate: 2020-02-10

Hill GE (2019)

Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression.

Integrative and comparative biology, 59(4):912-924.

The mitonuclear compatibility species concept defines a species as a population that is genetically isolated from other populations by uniquely coadapted mitochondrial (mt) and nuclear genes. A key prediction of this hypothesis is that the mt genotype of each species will be functionally distinct and that introgression of mt genomes will be prevented by mitonuclear incompatibilities that arise when heterospecific mt and nuclear genes attempt to cofunction to enable aerobic respiration. It has been proposed, therefore, that the observation of rampant introgression of mt genotypes from one species to another constitutes a strong refutation of the mitonuclear speciation. The displacement of a mt genotype from a nuclear background with which it co-evolved to a foreign nuclear background will necessarily lead to fitness loss due to mitonuclear incompatibilities. Here I consider two potential benefits of mt introgression between species that may, in some cases, overcome fitness losses arising from mitonuclear incompatibilities. First, the introgressed mt genotype may be better adapted to the local environment than the native mt genotype such that higher fitness is achieved through improved adaptation via introgression. Second, if the mitochondria of the recipient taxa carry a high mutational load, then introgression of a foreign, less corrupt mt genome may enable the recipient taxa to escape its mutational load and gain a fitness advantage. Under both scenarios, fitness gains from novel mt genotypes could theoretically compensate for the fitness that is lost via mitonuclear incompatibility. I also consider the role of endosymbionts in non-adaptive rampant introgression of mt genomes. I conclude that rampant introgression is not necessarily evidence against the idea of tight mitonuclear coadaptation or the mitonuclear compatibility species concept. Rampant mt introgression will typically lead to erasure of species but in some cases could lead to hybrid speciation.

RevDate: 2020-10-01

Gao YD, Gao XF, A Harris (2019)

Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances.

Frontiers in plant science, 10:321.

Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.

RevDate: 2020-10-01

Telschow A, Gadau J, Werren JH, et al (2019)

Genetic Incompatibilities Between Mitochondria and Nuclear Genes: Effect on Gene Flow and Speciation.

Frontiers in genetics, 10:62.

The process of speciation is, according to the biological species concept, the reduction in gene flow between genetically diverging populations. Most of the previous theoretical studies analyzed the effect of nuclear genetic incompatibilities on gene flow. There is, however, an increasing number of empirical examples suggesting that cytoplasmically inherited genetic elements play an important role in speciation. Here, we present a theoretical analysis of mitochondrial driven speciation, in which genetic incompatibilities occur between mitochondrial haplotypes and nuclear alleles. Four population genetic models with mainland-island structure were analyzed that differ with respect to the type of incompatibility and the underlying genetics. Gene flow reduction was measured on selectively neutral alleles of an unlinked locus and quantified by the effective migration rate. Analytical formulae for the different scenarios were derived using the fitness graph method. For the models with haploid genetics, we found that mito-nuclear incompatibilities (MtNI) are as strong as nuclear-nuclear incompatibilities (NNI) in reducing gene flow at the unlinked locus, but only if males and females migrate in equal number. For models with diploid genetics, we found that MtNI reduce gene flow stronger than NNI when incompatibilities are recessive, but weaker when they are dominant. For both haploid and diploid MtNI, we found that gene flow reduction is stronger if females are the migrating sex, but weaker than NNI when males are the migrating sex. These results encourage further examination on the role of mitochondria on genetic divergence and speciation and point toward specific factors (e.g., migrating sex) that could be the focus of an empirical test.

RevDate: 2020-03-09
CmpDate: 2019-07-08

Aghová T, Palupčíková K, Šumbera R, et al (2019)

Multiple radiations of spiny mice (Rodentia: Acomys) in dry open habitats of Afro-Arabia: evidence from a multi-locus phylogeny.

BMC evolutionary biology, 19(1):69.

BACKGROUND: Spiny mice of the genus Acomys are distributed mainly in dry open habitats in Africa and the Middle East, and they are widely used as model taxa for various biological disciplines (e.g. ecology, physiology and evolutionary biology). Despite their importance, large distribution and abundance in local communities, the phylogeny and the species limits in the genus are poorly resolved, and this is especially true for sub-Saharan taxa. The main aims of this study are (1) to reconstruct phylogenetic relationships of Acomys based on the largest available multilocus dataset (700 genotyped individuals from 282 localities), (2) to identify the main biogeographical divides in the distribution of Acomys diversity in dry open habitats in Afro-Arabia, (3) to reconstruct the historical biogeography of the genus, and finally (4) to estimate the species richness of the genus by application of the phylogenetic species concept.

RESULTS: The multilocus phylogeny based on four genetic markers shows presence of five major groups of Acomys called here subspinosus, spinosissimus, russatus, wilsoni and cahirinus groups. Three of these major groups (spinosissimus, wilsoni and cahirinus) are further sub-structured to phylogenetic lineages with predominantly parapatric distributions. Combination of alternative species delimitation methods suggests the existence of 26 molecular operational taxonomic units (MOTUs), potentially corresponding to separate species. The highest genetic diversity was found in Eastern Africa. The origin of the genus Acomys is dated to late Miocene (ca. 8.7 Ma), when the first split occurred between spiny mice of eastern (Somali-Masai) and south-eastern (Zambezian) savannas. Further diversification, mostly in Plio-Pleistocene, and the current distribution of Acomys were influenced by the interplay of global climatic factors (e.g., Messinian salinity crisis, intensification of Northern Hemisphere glaciation) with local geomorphology (mountain chains, aridity belts, water bodies). Combination of divergence dating, species distribution modelling and historical biogeography analysis suggests repeated "out-of-East-Africa" dispersal events into western Africa, the Mediterranean region and Arabia.

CONCLUSIONS: The genus Acomys is very suitable model for historical phylogeographic and biogeographic reconstructions of dry non-forested environments in Afro-Arabia. We provide the most thorough phylogenetic reconstruction of the genus and identify major factors that influenced its evolutionary history since the late Miocene. We also highlight the urgent need of integrative taxonomic revision of east African taxa.

RevDate: 2020-09-30

Murphy JC, Braswell AL, Charles SP, et al (2019)

A new species of Erythrolamprus from the oceanic island of Tobago (Squamata, Dipsadidae).

ZooKeys.

Tobago is a small island on the southeast edge of the Caribbean Plate with a continental flora and fauna. Using DNA sequences from Genbank, new sequences, and morphological data from the snakes Erythrolamprusepinephalus, E.melanotus, E.reginae, and E.zweifeli, the species status of specimens of a Tobago snake previously considered to be Erythrolamprusreginae was assessed. Erythrolampruszweifeli, long considered a subspecies of E.reginae, was found to be a northern Venezuela-Trinidad endemic and the sister to E.reginae. The trans-Andean species E.epinephalus is shown to be non-monophyletic while the Costa Rican lineage of E.epinephalus is weakly supported as the sister to the Tobago population. The Tobago Erythrolamprus is described as a distinct taxon based upon five specimens from four localities in lower montane rainforest. Much of the new species range includes the Main Ridge Forest Reserve of Tobago, the oldest protected forest in the Western Hemisphere. All known locations fall within a 400-ha area, and its total geographic distribution is likely to be less than 4,566 ha. The restricted distribution of this new snake makes it a likely candidate for threatened status. The new species also becomes another biogeographic link between northern Venezuela and Tobago.

RevDate: 2019-02-15
CmpDate: 2019-02-04

Freyhof J, BayÇelebİ E, M Geiger (2018)

Review of the genus Cobitis in the Middle East, with the description of eight new species (Teleostei: Cobitidae).

Zootaxa, 4535(1):1-75 pii:zootaxa.4535.1.1.

The diversity of Cobitis in the Middle East is reviewed, resulting in the recognition of 30 species, of which eight are described herein as new. Two species, C. amphilekta and C. kellei, seem to be extinct. Hypotheses on species-level diversity derived from distance and Poisson tree process analyses of DNA barcode data are tested against morphometric and morphological characters including colour patterns. For species pairs separated by small K2P distances in COI sequence data we follow a practitioner-oriented diagnostic species concept, in which we recognise species only if differentiated morphologically (including by colour pattern). For all 30 species we provide diagnoses and identification keys. Cobitis afifeae, new species, from the Büyük Menderes River drainage in the Aegean Sea basin, is distinguished by having two laminae circularis in the male, a row of blotches below Z4, a small, roundish or comma-shaped black spot at the upper caudal-fin base, and elevated mental lobes. Cobitis aliyeae, new species, from the lower Seyhan and Ceyhan River drainages, is distinguished by having two laminae circularis in the male, the blotches in Z2 and Z4 anterior to the dorsal-fin origin usually well separated from each other, and the pigmentation in Z1 well distinguished from the pigmentation in Z2. Cobitis anabelae, new species, from the lower Orontes River drainage, is distinguished by having two laminae circularis in the male, the pigmentation in Z2 formed by small, brown spots, always much smaller than blotches in Z3, much smaller than the pupil diameter, Z2 and Z3 well separated, and no pigmentation below Z4. Cobitis erkakanae, new species, from the Gölbasi Lakes, adjacent to the Ceyhan River drainage, is distinguished by having two laminae circularis in the male, no blotches below Z4, the blotches in Z2 and Z4 being horizontally elongated and often fused with adjacent ones, and the caudal fin with 4-6 wide, regularly-shaped, brown bands. Cobitis emrei, new species, from the Lake Sapanca basin is distinguished by having one lamina circularis in the male, a large black spot at the upper caudal-fin base, and Z3 fully covered by very small spots forming a sand-like pattern. Cobitis joergbohleni, new species, from the Sultan marshes in Central Anatolia is distinguished by having two laminae circularis in the male, and the flank colour pattern being completely disorganised, not following the Gambetta zones. Cobitis pirii, new species, from the endorheic Lake Eğirdir basin and the Mediterranean Aksu and Köprü Rivers, is distinguished by having two laminae circularis in the male, a simple external part of the suborbital spine and two distinct rows of small blotches in Z4, one along the lateral midline and one distinctly below. Cobitis troasensis, new species, from the Tuzla River drainage, is distinguished by having one lamina circularis in the male and 25-36 small, comma-shaped brown blotches in Z4. A lectotype is designated for Cobitis battalgilae. As First Revisers, priority is given to Cobitis fahireae over C. kurui. Cobitis damlae and C. kurui are treated as synonyms of C. fahireae. Cobitis strumicae and C. taenia are recorded for the first time from Anatolia and C. saniae is newly documented from the Black Sea basin in Georgia. The Poisson tree process analysis of COI data proposed 31 groups, most of which could be distinguished by morphological characters. Cobitis troasensis is described based on morphological data alone.

RevDate: 2020-09-28

Lawrence DP, Holland LA, Nouri MT, et al (2018)

Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination.

IMA fungus, 9:333-370.

Cytospora species are destructive canker and dieback pathogens of woody hosts in natural and agroecosystems around the world. In this genus, molecular identification has been limited due to the paucity of multi-locus sequence typing studies and the lack of sequence data from type specimens in public repositories, stalling robust phylogenetic reconstructions. In most cases a morphological species concept could not be applied due to the plasticity of characters and significant overlap of morphological features such as spore dimensions and fruiting body characters. In this study, we employed a molecular phylogenetic framework with the inclusion of four nuclear loci (ITS, translation elongation factor 1-alpha, actin, and beta-tubulin) to unveil the biodiversity and taxonomy of this understudied important genus of plant pathogens. Phylogenetic inferences based on 150 Californian isolates revealed 15 Cytospora species associated with branch and twig cankers and dieback of almond, apricot, cherry, cottonwood, olive, peach, pistachio, plum, pomegranate, and walnut trees in California. Of the 15 species recovered in this study, 10 are newly described and typified, in addition to one new combination. The pathogenic status of the newly described Cytospora species requires further investigation as most species were associated with severe dieback and decline of diverse and economically important fruit and nut crops in California.

RevDate: 2021-01-09
CmpDate: 2019-04-30

El-Sherry S, Ogedengbe ME, Hafeez MA, et al (2019)

Cecal coccidiosis in turkeys: Comparative biology of Eimeria species in the lower intestinal tract of turkeys using genetically typed, single oocyst-derived lines.

Parasitology research, 118(2):583-598.

Differentiating the Eimeria species causing cecal coccidiosis in turkeys is challenging. To obtain benchmark biological data for Eimeria gallopavonis Hawkins 1952 and Eimeria meleagridis Tyzzer 1929 and to support the stability of the species concept for each, genetically typed, single oocyst-derived lines of E. gallopavonis Weybridge strain and E. meleagridis USAR97-01 were used to redescribe the biological, pathological, and morphological features of these parasites. Oocysts of E. meleagridis and E. gallopavonis overlap in dimensions, but oocysts of the former have a single polar granule compared with multiple in the latter. Mature first-generation meronts of E. gallopavonis were observed histologically as early as 48 h post-inoculation alongside the villi in jejunum (before and after Meckel's diverticulum), ileum, cecal neck and rectum, but not cecal pouches. Three asexual cycles were observed suggesting that early workers apparently overlooked one asexual cycle. Examination of endogenous development of a culture labeled "Eimeria adenoeides Weybridge strain" suggested that this strain (found in a number of publications as a large oocyst strain of "Eimeria adenoeides") matched the species description of E. gallopavonis and so has been renamed herein. Macroscopic lesions induced by E. gallopavonis consisted of caseous material distally from posterior of the yolk stalk through the remaining intestinal tract, excluding the cecal pouches. For E. meleagridis, only the first asexual generation was observed outside of the cecal pouches within the jejunum around the yolk stalk. Second- and 3rd-generation asexual stages developed almost exclusively in the cecal pouches (but not cecal necks). Macroscopic lesions described for E. meleagridis were similar to those of E. adenoeides. Marked corrugation of the cecal serosal surface was observed. Cecal pouches contained creamy colored, caseous material varying from loose material to granular. Distinguishing features of the Eimeria species infecting the lower part of the small intestine are summarized in the present study, and new type specimens were designated for E. gallopavonis and E. meleagridis to provide a stable reference for future work with these parasites.

RevDate: 2020-02-04
CmpDate: 2020-02-04

Manceau M, A Lambert (2019)

The Species Problem from the Modeler's Point of View.

Bulletin of mathematical biology, 81(3):878-898.

How to define a partition of individuals into species is a long-standing question called the species problem in systematics. Here, we focus on this problem in the thought experiment where individuals reproduce clonally and both the differentiation process and the population genealogies are explicitly known. We specify three desirable properties of species partitions: (A) Heterotypy between species, (B) Homotypy within species and (M) Genealogical monophyly of each species. We then ask: How and when is it possible to delineate species in a way satisfying these properties? We point out that the three desirable properties cannot in general be satisfied simultaneously, but that any two of them can. We mathematically prove the existence of the finest partition satisfying (A) and (M) and the coarsest partition satisfying (B) and (M). For each of them, we propose a simple algorithm to build the associated phylogeny out of the genealogy. The ways we propose to phrase the species problem shed new light on the interaction between the genealogical and phylogenetic scales in modeling work. The two definitions centered on the monophyly property can readily be used at a higher taxonomic level as well, e.g., to cluster species into monophyletic genera.

RevDate: 2020-09-30

Chung M, Munro JB, Tettelin H, et al (2018)

Using Core Genome Alignments To Assign Bacterial Species.

mSystems, 3(6):.

With the exponential increase in the number of bacterial taxa with genome sequence data, a new standardized method to assign species designations is needed that is consistent with classically obtained taxonomic analyses. This is particularly acute for unculturable, obligate intracellular bacteria with which classically defined methods, like DNA-DNA hybridization, cannot be used, such as those in the Rickettsiales. In this study, we generated nucleotide-based core genome alignments for a wide range of genera with classically defined species, as well as those within the Rickettsiales. We created a workflow that uses the length, sequence identity, and phylogenetic relationships inferred from core genome alignments to assign genus and species designations that recapitulate classically obtained results. Using this method, most classically defined bacterial genera have a core genome alignment that is ≥10% of the average input genome length. Both Anaplasma and Neorickettsia fail to meet this criterion, indicating that the taxonomy of these genera should be reexamined. Consistently, genomes from organisms with the same species epithet have ≥96.8% identity of their core genome alignments. Additionally, these core genome alignments can be used to generate phylogenomic trees to identify monophyletic clades that define species and neighbor-network trees to assess recombination across different taxa. By these criteria, Wolbachia organisms are delineated into species different from the currently used supergroup designations, while Rickettsia organisms are delineated into 9 distinct species, compared to the current 27 species. By using core genome alignments to assign taxonomic designations, we aim to provide a high-resolution, robust method to guide bacterial nomenclature that is aligned with classically obtained results. IMPORTANCE With the increasing availability of genome sequences, we sought to develop and apply a robust, portable, and high-resolution method for the assignment of genera and species designations that can recapitulate classically defined taxonomic designations. Using cutoffs derived from the lengths and sequence identities of core genome alignments along with phylogenetic analyses, we sought to evaluate or reevaluate genus- and species-level designations for diverse taxa, with an emphasis on the order Rickettsiales, where species designations have been applied inconsistently. Our results indicate that the Rickettsia genus has an overabundance of species designations, that the current Anaplasma and Neorickettsia genus designations are both too broad and need to be divided, and that there are clear demarcations of Wolbachia species that do not align precisely with the existing supergroup designations.

RevDate: 2020-09-30

Doungsa-Ard C, McTaggart AR, Geering ADW, et al (2018)

Diversity of gall-forming rusts (Uromycladium, Pucciniales) on Acacia in Australia.

Persoonia, 40:221-238.

Uromycladium tepperianum has been reported on over 100 species of Acacia, as well as on the closely related plant genera, Falcataria, Racosperma and Paraserianthes. Previous studies have indicated that U. tepperianum may represent a complex of host-specific, cryptic species. The phylogenetic relationships between 79 specimens of Uromycladium were determined based on a concatenated dataset of the Small Subunit, the Internal Transcribed Spacer and the Large Subunit regions of nuclear ribosomal DNA, and the mitochondrial cytochrome c oxidase subunit 3. This study showed that the host range of U. tepperianum s.str. was restricted to species of Acacia in the 'A. bivenosa group' sensu Chapman & Maslin (1992). An epitype of U. tepperianum on A. ligulata is designated to create a stable taxonomy for the application of this name. Sixteen novel species of Uromycladium are described, based on host preference, morphology and a phylogenetic species concept.

RevDate: 2020-09-28

Heuchert B, Braun U, Diederich P, et al (2018)

Taxonomic monograph of the genus Taeniolella s. lat. (Ascomycota).

Fungal systematics and evolution, 2:69-261.

A taxonomic monograph of the ascomycete genus Taeniolella (asexual dematiaceous hyphomycetes, sexual morphs unknown) is provided. Recent phylogenetic analyses demonstrated the polyphyly of this genus. The type species of Taeniolella pertains to the Kirschsteiniotheliaceae within Dothideomycetes, while other saprobic species clustered far away within Sordariomycetes, Savoryellaceae s. lat., and Lindgomycetaceae, whereas lichenicolous species belong to a monophyletic clade that represents the order Asterotexiales, but for most species assigned to Taeniolella sequence data and phylogenetic analyses are not yet available. The main focus of the present taxonomic study was on a revision of the lichenicolous Taeniolella species. Since the currently available phylogenetic analyses do not allow final taxonomic conclusions at generic rank, the exclusion of lichenicolous species from Taeniolella s. lat. has been postponed pending a broader sampling and more phylogenetic data of allied ascomycete genera within the order Asterotexiales. For the interim, Taeniolella s. lat., including lichenicolous and saprobic species, is maintained. The taxonomic background, history, generic description and discrimination from morphologically confusable genera, phylogeny, biology, host range and distribution, and species concept of Taeniolella species are briefly outlined and discussed. Keys to the species of Taeniolella divided by ecological groups (lichenicolous taxa, saprobic taxa) are provided, supplemented by a tabular key to lichenicolous species based on host (lichen) families and genera. Twenty-nine lichenicolous species and a Taeniolella sp. (putative asexual morph of Sphaerellothecium thamnoliae) as well as 16 saprobic species are described in detail and illustrated by drawings, macroscopic photographs, light microscopic and SEM micrographs, including six new lichenicolous species (T. arctoparmeliae on Arctoparmelia separata, T. lecanoricola on Lecanora rupicola, T. thelotrematis on Thelotrema, T. umbilicariae and T. umbilicariicola on Umbilicaria, T. weberi on Thelotrema weberi), three new saprobic species (T. filamentosa on Salix, T. ravenelii on Quercus, T. stilbosporoides on Salix caprea), and one new combination, T. arthoniae. Most saprobic Taeniolella species are wood-inhabiting (on bark, decorticated trunks and twigs, rotten wood), whereas lichenicolous species grow on thalli and fruiting bodies (mostly apothecia) of lichens, mostly without causing any evident damage, but they are nevertheless confined to their host lichens, or they are obviously pathogenic and cause either disease of the thalli (e.g., Taeniolella chrysothricis and T. delicata) or at least thallus discolorations or necroses (e.g., T. christiansenii, T. chrysothricis, T. cladinicola, T. pseudocyphellariae, and T. strictae). Taeniolella atricerebrina and T. rolfii induce the formation of distinct galls. The range of micro-morphological traits for taxonomic purposes is limited in Taeniolella species, but size, shape and septation of conidiophores and conidia, including surface ornamentation, provided basic characters. Mycelium, stromata and arrangement of conidiophores are less important for the differentiation of species. Lichenicolous species are widespread on a wide range of lichens, with a focus in the northern hemisphere, mainly in northern temperate regions, including arctic-subartic habitats (18 species, i.e., 62 % of the lichenicolous species). Eleven lichenicolous species, e.g., T. pseudocyphellariae, T. santessonii, T. thelotrematis, T. umbilicariae, are also known from collections in non-temperate Asia, Australia and South America (38 % of the species). Most collections deposited in herbaria are from northern temperate to arctic-subarctic regions, which may reflect activities of lichenologists and mycologist dealing with lichenicolous fungi in general and Taeniolella in particular. Most lichenicolous Taeniolella species are confined to hosts of a single lichen genus or few closely allied genera (26 species, i.e., 97 % of the lichenicolous species), but only three species, T. delicata, T. punctata, and T. verrucosa, have wider hosts ranges. Excluded, doubtful and insufficiently known species assigned to Taeniolella are listed at the end, discussed, described and in some cases illustrated, including Talpapellis beschiana comb. nov. (≡ Taeniolella beschiana), Corynespora laevistipitata (≡ Taeniolella laevistipitata), Stanjehughesia lignicola comb. nov. (≡ Taeniolella lignicola), Sterigmatobotrys rudis (≡ Taeniolella rudis), and Taeniolina scripta (≡ Taeniolella scripta).

RevDate: 2019-01-15
CmpDate: 2018-12-19

Beaulieu F, JJ Beard (2018)

Acarine biocontrol agents Neoseiulus californicus sensu Athias-Henriot (1977) and N. barkeri Hughes (Mesostigmata: Phytoseiidae) redescribed, their synonymies assessed, and the identity of N. californicus (McGregor) clarified based on examination of types.

Zootaxa, 4500(4):451-507 pii:zootaxa.4500.4.1.

In 1954, McGregor described two species of phytoseiids from lemon, in California, USA: Typhlodromus californicus McGregor and T. mungeri McGregor, the former represented by one male, and the latter by two females. Since its description, T. mungeri was synonymised under T. californicus, and the name T. (now Neoseiulus) californicus has been used extensively to represent a species that is now commonly used as a biocontrol agent of crop pests worldwide. However, the true identity of the biocontrol agent is uncertain because the original descriptions of T. californicus and T. mungeri were not adequate enough to allow an irrefutable identification, with each description being based on specimens of a single sex. An examination of the types of N. californicus and N. mungeri revealed that they are morphologically identical to the male and female of N. barkeri Hughes, 1948, respectively, and that they are in fact junior synonyms of N. barkeri-and are therefore distinct from the biocontrol agent globally called N. californicus (sensu Athias-Henriot, 1977; see Griffiths, 2015). This is further supported by a comparison with male and female syntypes of N. barkeri, as well as other specimens of N. barkeri including some collected from the type host in the vicinity of the type location (i.e. lemon in southern California, 1952-1958). We redescribe the male and female of both N. barkeri and N. californicus sensu Athias-Henriot (1977), based on representative specimens from at least 14 and 19 populations, respectively. Based on examination of types, we confirm the synonymy of N. mckenziei (Schuster Pritchard, 1963), N. picketti (Specht, 1968), and N. oahuensis (Prasad, 1968) with N. barkeri, and that the names N. chilenensis (Dosse, 1958b) and N. wearnei (Schicha, 1987) represent the same species as N. californicus sensu Athias-Henriot (1977). We also provide a hypothesis as to why Chant (1959) had erroneously synonymised T. californicus and T. mungeri under T. marinus (Willmann). Finally, we suggest maintaining the prevailing usage of the name N. californicus (McGregor) for the species concept of Athias-Henriot (1977) as followed by subsequent authors, through submission of a separate application to the International Commission of Zoological Nomenclature (ICZN). In the meantime, the current meaning of N. californicus should be maintained until a ruling by the ICZN is made on the application.

RevDate: 2019-01-10
CmpDate: 2019-01-10

Jacobs RL, BW Baker (2018)

The species dilemma and its potential impact on enforcing wildlife trade laws.

Evolutionary anthropology, 27(6):261-266.

The varied answers to the question "What is a species?" provoke more than lively debates in academic circles. They pose practical problems for law enforcement. Commercial wildlife trade threatens many primate species and is regulated through such laws and international agreements as the U.S. Endangered Species Act and the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Enforcing legislation relies on the ability to identify when violations occur. Species-defining characters may not be preserved in wildlife trade items. For example, pelage patterns and behavioral characters (e.g., vocalizations) are absent from skulls. Accordingly, identifying victims of illegal trade can be difficult, which hinders enforcement. Moreover, identifying new species and "splitting" of currently recognized species can result in enforcement lags and regulatory loopholes. Although such negative consequences should not hinder scientific advancement, we suggest that they be considered by primate taxonomists and provide recommendations to prevent unintended conservation consequences.

RevDate: 2019-04-18
CmpDate: 2019-04-18

Koch JB, Rodriguez J, Pitts JP, et al (2018)

Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae).

PloS one, 13(11):e0207080.

Bumble bees (Bombus Latrielle) are significant pollinators of flowering plants due to their large body size, abundant setae, and generalist foraging strategies. However, shared setal coloration patterns among closely and distantly related bumble bee species makes identification notoriously difficult. The advent of molecular genetic techniques has increased our understanding of bumble bee evolution and taxonomy, and enables effective conservation policy and management. Individuals belonging to the North American Bombus fervidus species-complex (SC) are homogenous in body structure but exhibit significant body color phenotype variation across their geographic distribution. Given the uncertainty of the genealogical boundaries within the SC, some authors have synonymized all members of the B. fervidus SC within a single taxon, while others propose an alternative two taxa hypothesis. Operating under the phylogenetic species concept, our analysis supports the hypothesis that there are two independent lineages of bumble bees within the B. fervidus SC. With the current evidence, however, it is not possible to assign valid names to either of them, because both lineages include the color phenotypes found in the original species descriptions of B. fervidus and B. californicus. Cryptic speciation does not seem to be the product of Müllerian mimicry between the clades, because diverging coloration patterns are observed when the distribution of the clades overlaps. Furthermore, within each lineage there is evidence for strong population differentiation that is correlated with geographic distribution rather than color phenotype. In our study, we demonstrate the importance of obtaining a broad sample of multiple populations when conducting lower-level phylogenetic analyses. In addition to improving our knowledge of bumble bee diversification patterns, characterizing the evolutionary history of these pollinators provides the foundation needed to guide contemporary conservation assessments and management strategies.

RevDate: 2019-04-01
CmpDate: 2019-04-01

Schuler GA, Tice AK, Pearce RA, et al (2018)

Phylogeny and Classification of Novel Diversity in Sainouroidea (Cercozoa, Rhizaria) Sheds Light on a Highly Diverse and Divergent Clade.

Protist, 169(6):853-874.

Sainouroidea is a molecularly diverse clade of cercozoan flagellates and amoebae in the eukaryotic supergroup Rhizaria. Previous 18S rDNA environmental sequencing of globally collected fecal and soil samples revealed great diversity and high sequence divergence in the Sainouroidea. However, a very limited amount of this diversity has been observed or described. The two described genera of amoebae in this clade are Guttulinopsis, which displays aggregative multicellularity, and Rosculus, which does not. Although the identity of Guttulinopsis is straightforward due to the multicellular fruiting bodies they form, the same is not true for Rosculus, and the actual identity of the original isolate is unclear. Here we isolated amoebae with morphologies like that of Guttulinopsis and Rosculus from many environments and analyzed them using 18S rDNA sequencing, light microscopy, and transmission electron microscopy. We define a molecular species concept for Sainouroidea that resulted in the description of 4 novel genera and 12 novel species of naked amoebae. Aggregative fruiting is restricted to the genus Guttulinopsis, but other than this there is little morphological variation amongst these taxa. Taken together, simple identification of these amoebae is problematic and potentially unresolvable without the 18S rDNA sequence.

RevDate: 2021-02-25
CmpDate: 2019-08-06

Meziti A, Tsementzi D, Rodriguez-R LM, et al (2019)

Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient.

The ISME journal, 13(3):767-779.

Recent diversity studies have revealed that microbial communities of natural environments are dominated by species-like, sequence-discrete populations. However, how stable the sequence and gene-content diversity are within these populations and especially in highly dynamic lotic habitats remain unclear. Here we quantified the dynamics of intra-population diversity in samples spanning two years and five sites in the Kalamas River (Northwest Greece). A significant positive correlation was observed between higher intra-population sequence diversity and longer persistence over time, revealing that more diverse populations tended to represent more autochthonous (vs. allochthonous) community members. Assessment of intra-population gene-content changes caused by strain replacement or gene loss over time revealed different profiles with the majority of populations exhibiting gene-content changes close to 10% of the total genes, while one population exhibited ~21% change. The variable genes were enriched in hypothetical proteins and mobile elements, and thus, were probably functionally neutral or attributable to phage predation. A few notable exceptions to this pattern were also noted such as phototrophy-related proteins in summer vs. winter populations. Taken together, these results revealed that some freshwater genomes are remarkably dynamic, even across short time and spatial scales, and have implications for the bacterial species concept and microbial source tracking.

RevDate: 2019-09-02
CmpDate: 2019-09-02

Castorani MCN, Reed DC, RJ Miller (2018)

Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities.

Ecology, 99(11):2442-2454.

Disturbances often cause the disproportionate loss of foundation species but understanding how the frequency and severity of disturbance to such organisms influence biological communities remains unresolved. This gap in knowledge exists in part because of the rarity of ecologically meaningful studies capable of disentangling different elements of disturbance. Hence, we carried out a long-term (9 yr), large-scale (2,000 m2 plots), spatially replicated (4 sites) field experiment in which we manipulated disturbance to a globally distributed marine foundation species, the giant kelp Macrocystis pyrifera, and tracked community responses over time. To distinguish the effects of disturbance frequency and severity on the biodiversity and composition of temperate rocky reef communities, we simulated the repeated loss of giant kelp from destructive winter waves across a background of natural variation in disturbance. By following the response of over 200 taxa from the surrounding community, we discovered that the frequency of disturbance to giant kelp changed the biomass, diversity, and composition of community guilds in a manner commensurate with their dependence on the physical (i.e., benthic light and space), trophic (i.e., living and detrital biomass), and habitat (i.e., biogenic structure) resources mediated by this foundation species. Annual winter disturbance to giant kelp reduced living and detrital giant kelp biomass by 57% and 40%, respectively, enhanced bottom light by 22%, and halved the seafloor area covered by giant kelp holdfasts. Concomitantly, the biomass of understory algae and epilithic sessile invertebrates more than doubled, while the biomass of rock-boring clams, mobile invertebrates, and fishes decreased 30-61%. Frequent loss of giant kelp boosted understory algal richness by 82% and lowered sessile invertebrate richness by 13% but did not affect the biodiversity of mobile fauna. In contrast to changes driven by disturbance frequency, interannual variation in the severity of disturbance to giant kelp had weaker, less consistent effects, causing only modest changes in assemblages of sessile invertebrates, mobile invertebrate herbivores, and fishes. Our results broaden the foundation species concept by demonstrating that repeated disturbance to a dominant habitat-forming species can outweigh the influence of less frequent but severe disturbances for the surrounding community.

RevDate: 2019-10-29
CmpDate: 2019-10-29

Haelewaters D, De Kesel A, DH Pfister (2018)

Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds.

Scientific reports, 8(1):15966.

Our understanding of fungal diversity is far from complete. Species descriptions generally focus on morphological features, but this approach may underestimate true diversity. Using the morphological species concept, Hesperomyces virescens (Ascomycota, Laboulbeniales) is a single species with global distribution and wide host range. Since its description 120 years ago, this fungal parasite has been reported from 30 species of ladybird hosts on all continents except Antarctica. These host usage patterns suggest that H. virescens could be made up of many different species, each adapted to individual host species. Using sequence data from three gene regions, we found evidence for distinct clades within Hesperomyces virescens, each clade corresponding to isolates from a single host species. We propose that these lineages represent separate species, driven by adaptation to different ladybird hosts. Our combined morphometric, molecular phylogenetic and ecological data provide support for a unified species concept and an integrative taxonomy approach.

RevDate: 2019-04-08
CmpDate: 2019-04-08

Zink RM, H Vázquez-Miranda (2019)

Species Limits and Phylogenomic Relationships of Darwin's Finches Remain Unresolved: Potential Consequences of a Volatile Ecological Setting.

Systematic biology, 68(2):347-357.

Island biotas have become paradigms for illustrating many evolutionary processes. The fauna of the Galapagos Islands includes several taxa that have been focal points for evolutionary studies. Perhaps their most famous inhabitants, Darwin's finches, represent a go-to icon when thinking about how species originate and adapt to the environment. However, unlike other adaptive radiations, past morphological and molecular studies of Darwin's finches have yielded inconsistent hypotheses of species limits and phylogenetic relationships. Expecting that idiosyncrasies of prior data and analytic methods explained different proposed classifications, we were surprised to observe that three new phylogenetic hypotheses derived mostly from the same genomics data were topologically inconsistent. We found that the differences between some of these genomics trees were as great as one would expect between two random trees with the same number of taxa. Thus, the phylogeny of Darwin's finches remains unresolved, as it has for more than a century. A component of phylogenetic uncertainty comes from unclear species limits, under any species concept, in the ground finches (Geospiza) and tree finches (Camarhynchus). We suggest that past authors should have tested the species limits of Lack, rather than uncritically accepting them. In fact, the impressive amount of genomics data do not provide unambiguous hypotheses of the number of species of Geospiza or Camarhynchus, although they imply greater species diversity than Lack's taxonomy. We suggest that insufficient sampling of species populations across islands (35.6% for morphometrics and 20.4% for genomics) prevents accurate diagnoses of species limits. However, it is unknown whether samples from a greater number of islands might result in bridging differences between species, or reveal many new ones. We conclude that attempts to interpret patterns of variation among the finches under standard evolutionary paradigms have obscured some major messages, most specifically the ongoing reciprocal interactions between geographic isolation and lineage divergence, and dispersal and gene flow caused by the volatile ecological conditions in the islands. Although the finches provide textbook examples of natural selection, better understanding of species limits and a robust phylogenetic hypothesis are required to corroborate past hypotheses of speciation and adaptive radiation in the finches of the Galapagos.

RevDate: 2019-02-15
CmpDate: 2019-02-11

Vernygora OV, Davis CS, Murray AM, et al (2018)

Delimitation of Alosa species (Teleostei: Clupeiformes) from the Sea of Azov: integrating morphological and molecular approaches.

Journal of fish biology, 93(6):1216-1228.

Shads of the genus Alosa are essential to commercial fisheries across North America and Europe, but in some areas their species boundaries remain controversial. Traditional morphology-based taxonomy of Alosa spp. has relied heavily on the number of gill rakers and body proportions, but these can be highly variable. We use mitochondrial (mt)DNA (coI and cytb) and genome-wide single nucleotide polymorphisms (SNP) along with morphological characters to assess differentiation among endemic Ponto-Caspian shads in the Sea of Azov. Morphological species assignments based on gill-raker number were not congruent with genetic lineages shown by mtDNA and SNPs. Iterative analysis revealed that genetic lineages were associated with sampling location and several other morphometric traits (caudal peduncle depth, pre-anal length and head length). Phylogenetic analysis of the genus placed Ponto-Caspian Alosa spp. in the same evolutionary lineage as endangered Alosa spp. endemic to Greece, highlighting the importance of these findings to conservation management. We conclude that gill-raker number is not reliable for delimiting species of Alosa. This taxonomic uncertainty should be addressed by examining type material to provide a robust integrative classification for these commercially important fishes.

RevDate: 2019-03-20
CmpDate: 2019-02-20

Dantas-Torres F (2018)

Species Concepts: What about Ticks?.

Trends in parasitology, 34(12):1017-1026.

Since ancient times, philosophers and taxonomists have tried to classify forms of life. This is what taxonomy is about: the science of identifying, naming, classifying, and describing organisms. In this article I address the issue of the species concept in tick taxonomy. While the typological species concept is still the most widely used, the biological and phylogenetic species concepts are growing in popularity among tick taxonomists. The integrative approach is increasingly being used, but the question is how to define a tick species when using this approach, particularly if data are incongruent. The adoption of an integrative species concept is discussed, in light of recent advances in our understanding of the genetics, morphology, and biology of ticks.

RevDate: 2020-03-09
CmpDate: 2019-11-15

Suga H, Arai M, Fukasawa E, et al (2019)

Genetic Differentiation Associated with Fumonisin and Gibberellin Production in Japanese Fusarium fujikuroi.

Applied and environmental microbiology, 85(1):.

Fusarium fujikuroi is a pathogenic fungus that infects rice. It produces several important mycotoxins, such as fumonisins. Fumonisin production has been detected in strains of maize, strawberry, and wheat, whereas it has not been detected in strains from rice seedlings infested with bakanae disease in Japan. We investigated the genetic relationships, pathogenicity, and resistance to a fungicide, thiophanate-methyl (TM), in 51 fumonisin-producing strains and 44 nonproducing strains. Phylogenetic analyses based on amplified fragment length polymorphism (AFLP) markers and two specific genes (a combined sequence of translation elongation factor 1α [TEF1α] and RNA polymerase II second-largest subunit [RPB2]) indicated differential clustering between the fumonisin-producing and -nonproducing strains. One of the AFLP markers, EATMCAY107, was specifically present in the fumonisin-producing strains. A specific single nucleotide polymorphism (SNP) between the fumonisin-producing and nonproducing strains was also detected in RPB2, in addition to an SNP previously found in TEF1α. Gibberellin production was higher in the nonproducing than in the producing strains according to an in vitro assay, and the nonproducing strains had the strongest pathogenicity with regard to rice seedlings. TM resistance was closely correlated with the cluster of fumonisin-nonproducing strains. The results indicate that intraspecific evolution in Japanese F. fujikuroi is associated with fumonisin production and pathogenicity. Two subgroups of Japanese F. fujikuroi, designated G group and F group, were distinguished based on phylogenetic differences and the high production of gibberellin and fumonisin, respectively.IMPORTANCE Fusarium fujikuroi is a pathogenic fungus that causes rice bakanae disease. Historically, this pathogen has been known as Fusarium moniliforme, along with many other species based on a broad species concept. Gibberellin, which is currently known as a plant hormone, is a virulence factor of F. fujikuroi Fumonisin is a carcinogenic mycotoxin posing a serious threat to food and feed safety. Although it has been confirmed that F. fujikuroi produces gibberellin and fumonisin, production varies among strains, and individual production has been obscured by the traditional appellation of F. moniliforme, difficulties in species identification, and variation in the assays used to determine the production of these secondary metabolites. In this study, we discovered two phylogenetic subgroups associated with fumonisin and gibberellin production in Japanese F. fujikuroi.

RevDate: 2018-12-12
CmpDate: 2018-12-12

Zachos FE (2018)

(New) Species concepts, species delimitation and the inherent limitations of taxonomy.

Journal of genetics, 97(4):811-815.

The species problem, despite decades of heated debates, has not been resolved yet. Recently, two new species concepts have been published, the mitonuclear compatibility species concept and the inclusive species concept. I briefly discuss them, together with a recent attempt at standardizing taxonomic decisions, in the broader framework of what I believe is an inherent limitation of taxonomy-imposing a discrete system on a continuous process (evolution) that leads to fuzzy boundaries in nature. In the light of this, taxonomists, biologists in general and conservationists alike will have to accept the fact that completely nonarbitrary species delimitation is impossible. This has serious ramifications in all disciplines that rely on species, and particularly species counts, as a basic currency for quantitative analyses (ecology, evolutionary biology) and practical decision-making (conservation and environmental policy).

RevDate: 2019-10-25
CmpDate: 2019-10-25

Waters AJ, Capriotti P, Gaboriau DCA, et al (2018)

Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster.

Scientific reports, 8(1):13125.

The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance.

RevDate: 2019-06-21
CmpDate: 2019-06-21

Lay CY, Hamel C, M St-Arnaud (2018)

Taxonomy and pathogenicity of Olpidium brassicae and its allied species.

Fungal biology, 122(9):837-846.

The classification and physiology of the zoosporic plant-pathogen Olpidium brassicae and its relationships with the closely-related species are often confusing. This review focuses on these species and intends to differentiate them based on the literatures published since the discovery and establishment of the species by Woronin in 1878 under the name of Chytridium brassicae to current molecular era. The goal of this review is to help researchers better understand the taxonomy, the host range, and the potential role in plant health of O. brassicae-related species. To reach the goal, we reviewed the rationales behind the creation or reduction in synonymy of the different names for O. brassicae and its allied species in order to elucidate the evolution of the species concept on them based on the traditional morphological studies. Furthermore, the studies by molecular biology methods improve our knowledge and perspectives on O. brassicae and its host specificity. In particular, we clarify the differences between O. brassicae and Olpidium virulentus, and propose potential new research avenues. We therefore hope that this review will give a better perspective on Olpidium spp. and their potential role in the root microbiome of plants in natural environments and in agricultural settings.

RevDate: 2019-02-15
CmpDate: 2019-02-07

Skovmand LH, Xu CCY, Servedio MR, et al (2018)

Keystone Genes.

Trends in ecology & evolution, 33(9):689-700.

The keystone species concept is used in ecology to describe individual species with disproportionately large effects on their communities. We extend this idea to the level of genes with disproportionately large effects on ecological processes. Such 'keystone genes' (KGs) would underlie traits involved in species interactions or causing critical biotic and/or abiotic changes that influence emergent community and ecosystem properties. We propose a general framework for how KGs could be identified, while keeping KGs under the umbrella of 'ecologically important genes' (EIGs) that also include categories such as 'foundation genes', 'ecosystem engineering genes', and more. Although likely rare, KGs and other EIGs could dominate certain ecological processes; thus, their discovery and study are relevant for understanding eco-evolutionary dynamics.

RevDate: 2019-06-13
CmpDate: 2019-06-11

Grodwohl JB, Porto F, CN El-Hani (2018)

The instability of field experiments: building an experimental research tradition on the rocky seashores (1950-1985).

History and philosophy of the life sciences, 40(3):45 pii:10.1007/s40656-018-0209-y.

In many experimental sciences, like particle physics or molecular biology, the proper place for establishing facts is the laboratory. In the sciences of population biology, however, the laboratory is often seen as a poor approximation of what occurs in nature. Results obtained in the field are usually more convincing. This raises special problems: it is much more difficult to obtain stable, repeatable results in the field, where environmental conditions vary out of the experimenter's control, than in the laboratory. We examine here how this problem affected an influential experimental research tradition in community ecology, the study of the ecology of the rocky seashores. In the 1960s, a handful of North-American ecologists, most notably Joseph Connell, Robert Paine and Paul Dayton, made the rocky seashores a model study system for experimenting in the field. Their experiments were deceptively simple: they removed species living on the seashore and described the resulting effects on the local ecology. These experiments exerted a deep influence on community ecology. They provided evidence for speculative developments concerning the theory of interspecific competition, the factors responsible for species richness and the ecology of food webs. They also stimulated novel conceptual developments. In particular, Paine developed the predation hypothesis, which states that the presence of predators can favour species richness, before introducing the keystone species concept, according to which some species exert disproportionate effects on ecological systems. More broadly, these experiments gave support to a methodological trend in favour of field experimentation. Only controlled perturbations in the field, it seemed, provided a reliable method to get insights into the structure of ecological communities. However, as experiments were continued in time and repeated in different sites, divergent results appeared. We analyse here how intertidal researchers coped with the variability of environmental conditions and tried to stabilize their results. In the process, they reconsidered not only their early conclusions, but also the exclusive status given to field experiments. Expanding on this case study, we discuss some significant differences between laboratory and field experiments.

RevDate: 2020-10-01

Korhonen A, Seelan JSS, O Miettinen (2018)

Cryptic species diversity in polypores: the Skeletocutis nivea species complex.

MycoKeys.

We propose a taxonomic revision of the two closely related white-rot polypore species, Skeletocutis nivea (Jungh.) Jean Keller and S. ochroalba Niemelä (Incrustoporiaceae, Basidiomycota), based on phylogenetic analyses of nuclear ribosomal internal transcribed spacer (ITS) and translation elongation factor EF-1α sequences. We show that prevailing morphological species concepts of S. nivea and S. ochroalba are non-monophyletic and we delineate new species boundaries based on phylogenetic inference. We recognise eleven species within the prevailing species concept of S. nivea (S. calidasp. nov., S. coprosmae comb. nov., S. futilissp. nov., S. imperviasp. nov., S. ipuletiisp. nov., S. lepidasp. nov., S. nemoralissp. nov., S. nivea sensu typi, S. semipileata comb. nov., S. unguinasp. nov. and S. yuchengiisp. nov.) and assign new sequenced epitypes for S. nivea and S. semipileata. The traditional concept of S. ochroalba comprises two independent lineages embedded within the S. nivea species complex. The Eurasian conifer-dwelling species S. cummatasp. nov. is recognised as separate from the North American S. ochroalba sensu stricto. Despite comprehensive microscopic examination, the majority of the recognised species are left without stable diagnostic character combinations that would enable species identification based solely on morphology and ecology.

RevDate: 2019-03-08
CmpDate: 2019-03-08

Niu YT, Jabbour F, Barrett RL, et al (2018)

Combining complete chloroplast genome sequences with target loci data and morphology to resolve species limits in Triplostegia (Caprifoliaceae).

Molecular phylogenetics and evolution, 129:15-26.

Species represent the most basic unit of taxonomy. As such, species delimitation represents a crucial issue for biodiversity conservation. Taxonomic practices were revolutionized in the last three decades due to the increasing availability of molecular phylogenetic data. The genus Triplostegia (Caprifoliaceae) traditionally consists of two species, T. glandulifera and T. grandiflora, distinguishable mainly based on quantitative morphological features. In this study, we sequenced nine chloroplast loci (i.e., accD, psbK-psbI, rbcL-accD, rpoB-trnC, rps16-trnQ, trnE-trnT, trnF-ndhJ, trnH-psbA, trnS-trnG) and one nuclear locus (ITS) of 16 individuals of Triplostegia representing the entire distribution range of both species recognized. Furthermore, we also obtained whole chloroplast sequences for 11 of the 16 individuals for which silica gel-dried leaves were available. Our phylogenetic analyses integrating chloroplast genome sequences and multiple loci data revealed that Triplostegia includes four main clades that largely match geography. Neither T. grandiflora nor T. glandulifera was recovered as monophyletic and no diagnosable differences in leaf, flower, and pollen traits were detected between the two species, indicating the need for a revised species circumscription within Triplostegia. Our study highlights the importance of combining data from different sources while defining species limits.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )