About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

14 Oct 2019 at 01:34
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Sociobiology


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 14 Oct 2019 at 01:34 Created: 


Sociobiology is a field of scientific study that is based on the hypothesis that social behavior has resulted from evolution and attempts to examine and explain social behavior within that context. Sociobiology investigates social behaviors, such as mating patterns, territorial fights, pack hunting, and the hive society of social insects. It argues that just as selection pressure led to animals evolving useful ways of interacting with the natural environment, it led to the genetic evolution of advantageous social behavior. While the term "sociobiology" can be traced to the 1940s, the concept did not gain major recognition until the publication of Edward O. Wilson's book Sociobiology: The New Synthesis in 1975.

Created with PubMed® Query: sociobiology NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-10-10

Gogarten JF, Calvignac-Spencer S, Nunn CL, et al (2019)

Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny.

Molecular ecology resources [Epub ahead of print].

Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analyzing fecal samples from 11 non-human primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e., from no parasites reported in the literature to the best studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten fecal samples identified parasite families previously undescribed in each host (x̅=8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort - measured as the number of publications - had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.

RevDate: 2019-10-08
CmpDate: 2019-10-08

Bentz C, Dediu D, Verkerk A, et al (2018)

The evolution of language families is shaped by the environment beyond neutral drift.

Nature human behaviour, 2(11):816-821.

There are more than 7,000 languages spoken in the world today1. It has been argued that the natural and social environment of languages drives this diversity2-13. However, a fundamental question is how strong are environmental pressures, and does neutral drift suffice as a mechanism to explain diversification? We estimate the phylogenetic signals of geographic dimensions, distance to water, climate and population size on more than 6,000 phylogenetic trees of 46 language families. Phylogenetic signals of environmental factors are generally stronger than expected under the null hypothesis of no relationship with the shape of family trees. Importantly, they are also-in most cases-not compatible with neutral drift models of constant-rate change across the family tree branches. Our results suggest that language diversification is driven by further adaptive and non-adaptive pressures. Language diversity cannot be understood without modelling the pressures that physical, ecological and social factors exert on language users in different environments across the globe.

RevDate: 2019-10-08
CmpDate: 2019-10-08

San Martin A, Sinaceur M, Madi A, et al (2018)

Self-assertive interdependence in Arab culture.

Nature human behaviour, 2(11):830-837.

Arabs represent a major cultural group, yet one that is relatively neglected in cultural psychology. We hypothesized that Arab culture is characterized by a unique form of interdependence that is self-assertive. Arab cultural identity emerged historically in regions with harsh ecological and climatic environments, in which it was necessary to protect the survival of tribal groups. Individuals in Arabian cultures were honour-bound to be respectable and trustworthy group members. Supporting this hypothesis, study 1 found that Arabs were interdependent and holistic (like East Asians), but also self-assertive (like Westerners). This psychological profile was observed equally for both Muslim and Christian Arabs, thus ruling out Islamic religion as an alternative explanation for our findings. Studies 2 and 3 showed that the self-assertive tendency of Arabs is in service of interdependence, whereas that of Westerners is in service of independence. Our work contributes to the current effort by cultural psychologists to go beyond the prevailing East versus West, interdependence versus independence paradigm. It also speaks to the emerging socioecological perspective in cultural research.

RevDate: 2019-09-30

Gadenne C, Groh C, Grübel K, et al (2019)

Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females.

Arthropod structure & development, 52:100883 pii:S1467-8039(19)30064-7 [Epub ahead of print].

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.

RevDate: 2019-09-27

Peckre LR, Lowie A, Brewer D, et al (2019)

Food mobility and the evolution of grasping behaviour: a case study in strepsirrhine primates.

The Journal of experimental biology pii:jeb.207688 [Epub ahead of print].

Manual grasping is widespread among tetrapods but is more prominent and dexterous in primates. Whether the selective pressures that drove the evolution of dexterous hand grasping involved the collection of fruit or predation on mobile insects remains an area of debate. One way to explore this question is to examine preferences for manual versus oral grasping of a moving object. Previous studies on strepsirrhines have shown a preference for oral-grasping when grasping static food items and a preference for manual-grasping when grasping mobile prey such as insects, but little is known about the factors at play. Using a controlled experiment with a simple and predictable motion of a food item we tested and compared the grasping behaviours of 53 captive individuals belonging to 17 species of strepsirrhines while grasping swinging food items and static food items. The swinging motion increased the frequency of hand-use for all individuals. Our results provide evidence that the swinging motion of the food is a sufficient parameter to increase hand-grasping in a wide variety of strepsirrhine primates. From an evolutionary perspective, this result gives some support to the idea that hand-grasping abilities evolved under selective pressures associated with the predation of food items in motion. Looking at common grasping pattern across a large set of species, this study provides important insight into comparative approaches to understanding the evolution of food hand-grasping in primates and potentially other tetrapod taxa.

RevDate: 2019-09-26

Hunnicutt KE, Tiley GP, Williams RC, et al (2019)

Comparative genomic analysis of the pheromone receptor Class 1 family (V1R) reveals extreme complexity in mouse lemurs (genus, Microcebus) and a chromosomal hotspot across mammals.

Genome biology and evolution pii:5573987 [Epub ahead of print].

Sensory gene families are of special interest, both for what they can tell us about molecular evolution, and for what they imply as mediators of social communication. The vomeronasal type-1 receptors (V1Rs) have often been hypothesized as playing a fundamental role in driving or maintaining species boundaries given their likely function as mediators of intraspecific mate choice, particularly in nocturnal mammals. Here, we employ a comparative genomic approach for revealing patterns of V1R evolution within primates, with a special focus on the small-bodied nocturnal mouse and dwarf lemurs of Madagascar (genera Microcebus and Cheirogaleus, respectively). By doubling the existing genomic resources for strepsirrhine primates (i.e., the lemurs and lorises), we find that the highly speciose and morphologically cryptic mouse lemurs have experienced an elaborate proliferation of V1Rs that we argue is functionally related to their capacity for rapid lineage diversification. Contrary to a previous study that found equivalent degrees of V1R diversity in diurnal and nocturnal lemurs, our study finds a strong correlation between nocturnality and V1R elaboration, with nocturnal lemurs showing elaborate V1R repertoires and diurnal lemurs showing less diverse repertoires. Recognized subfamilies among V1Rs show unique signatures of diversifying positive selection, as might be expected if they have each evolved to respond to specific stimuli. Further, a detailed syntenic comparison of mouse lemurs with mouse (genus Mus) and other mammalian outgroups shows that orthologous mammalian subfamilies, predicted to be of ancient origin, tend to cluster in a densely populated region across syntenic chromosomes that we refer to as a V1R "hotspot."

RevDate: 2019-09-06
CmpDate: 2019-09-05

Contreras-Pulache H, Espinoza-Lecca E, J Sevillano-Jimenez (2018)

[Notes on the historical evolution of the work of Pedro Ortiz Cabanillas and his sociobiological informational theory].

Revista peruana de medicina experimental y salud publica, 35(4):699-706.

The Informational Sociobiological Theory proposes a radically-different definition of living systems and, therefore, is the only existing neurological theory that evades the mind-brain problem and explains the nature of human consciousness. It was developed by Pedro Ortiz Cabanillas between 1984 and 2011. In this document we are presenting a listing of his main works. We include, additionally, unpublished material of the years 1998, 1999, 2006, and 2009.

RevDate: 2019-09-02

Savage DA (2019)

Towards a complex model of disaster behaviour.

Disasters [Epub ahead of print].

This paper outlines why a move towards a complex adaptive systems model of behaviour is required if the goal is to generate better understanding of how individuals and groups interact with their environment in a disaster setting. To accomplish this objective, a bridge must be built between the broader social sciences and behavioural economics to incorporate discipline-specific insights that are needed to move towards complexity. This is only possible through a deeper understanding of behaviour and how the environment in which they occur can influence actions. It is then that one can counteract the poor behavioural predictions, flawed policies based on myth, inefficient design, and suboptimal outcomes that have flourished in the absence of a complex adaptive systems model. This paper provides a conceptual framework that draws on concepts from across the natural and social sciences, such as behavioural economics, endocrinology, psychology, sociobiology, and sociology in order to build an interactive theory of disaster behaviour.

RevDate: 2019-08-29

Ruedenauer FA, Spaethe J, van der Kooi CJ, et al (2019)

Pollinator or pedigree: which factors determine the evolution of pollen nutrients?.

Oecologia pii:10.1007/s00442-019-04494-x [Epub ahead of print].

A prime example of plant-animal interactions is the interaction between plants and pollinators, which typically receive nectar and/or pollen as reward for their pollination service. While nectar provides mostly carbohydrates, pollen represents the main source of protein and lipids for many pollinators. However, the main function of pollen is to carry nutrients for pollen tube growth and thus fertilization. It is unclear whether pollinator attraction exerts a sufficiently strong selective pressure to alter the nutritional profile of pollen, e.g., through increasing its crude protein content or protein-to-lipid ratio, which both strongly affect bee foraging. Pollen nutritional quality may also be merely determined by phylogenetic relatedness, with pollen of closely related plants showing similar nutritional profiles due to shared biosynthetic pathways or floral morphologies. Here, we present a meta-analysis of studies on pollen nutrients to test whether differences in pollen nutrient contents and ratios correlated with plant insect pollinator dependence and/or phylogenetic relatedness. We hypothesized that if pollen nutritional content was affected by pollinator attraction, it should be different (e.g., higher) in highly pollinator-dependent plants, independent of phylogenetic relatedness. We found that crude protein and the protein-to-lipid ratio in pollen strongly correlated with phylogeny. Moreover, pollen protein content was higher in plants depending mostly or exclusively on insect pollination. Pollen nutritional quality thus correlated with both phylogenetic relatedness and pollinator dependency, indicating that, besides producing pollen with sufficient nutrients for reproduction, the nutrient profile of zoophilous plants may have been shaped by their pollinators' nutritional needs.

RevDate: 2019-08-30

Poirotte C, PM Kappeler (2019)

Hygienic personalities in wild grey mouse lemurs vary adaptively with sex.

Proceedings. Biological sciences, 286(1908):20190863.

Detecting the risk of infection and minimizing parasite exposure represent the first lines of host defence against parasites. Individuals differ in the expression of these behavioural defences, but causes of such variation have received little empirical attention. We therefore experimentally investigated the effects of several individual and environmental factors on the expression level of faecal avoidance in the context of feeding, drinking, sleeping and defecating in a wild primate population. We found a strong sex bias in the expression level of anti-parasite behaviours of grey mouse lemurs (Microcebus murinus), with only females strongly avoiding contaminated food, water and nests, and exhibiting selective defecation. Our results further suggest that individuals adapted their protective behaviours according to variation in intrinsic and ecological factors that may influence the cost-benefit balance of behavioural defences. Overall, individuals exhibited high consistency of investment in protective behaviours across behavioural contexts and time, suggesting that grey mouse lemurs exhibit different hygienic personalities. Finally, the global hygienic score was negatively correlated with faecal-orally transmitted parasite richness, suggesting that variation in behavioural defence has fitness consequences. We suggest that integrating inter-individual variation in behavioural defences in epidemiological studies should improve our ability to model disease spread within populations.

RevDate: 2019-08-16

Groothuis J, Pfeiffer K, El Jundi B, et al (2019)

The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain.

Arthropod structure & development, 51:41-51 pii:S1467-8039(19)30037-4 [Epub ahead of print].

Nasonia, a genus of parasitoid wasps, is a promising model system in the study of developmental and evolutionary genetics, as well as complex traits such as learning. Of these "jewel wasps", the species Nasonia vitripennis is widely spread and widely studied. To accelerate neuroscientific research in this model species, fundamental knowledge of its nervous system is needed. To this end, we present an average standard brain of recently eclosed naïve female N. vitripennis wasps obtained by the iterative shape averaging method. This "Jewel Wasp Standard Brain" includes the optic lobe (excluding the lamina), the anterior optic tubercle, the antennal lobe, the lateral horn, the mushroom body, the central complex, and the remaining unclassified neuropils in the central brain. Furthermore, we briefly describe these well-defined neuropils and their subregions in the N. vitripennis brain. A volumetric analysis of these neuropils is discussed in the context of brains of other insect species. The Jewel Wasp Standard Brain will provide a framework to integrate and consolidate the results of future neurobiological studies in N. vitripennis. In addition, the volumetric analysis provides a baseline for future work on age- and experience-dependent brain plasticity.

RevDate: 2019-09-05

Streinzer M, Roth N, Paulus HF, et al (2019)

Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone (Anemone pavonina, Ranunculaceae) in Northern Greece.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 205(5):735-743.

In the Mediterranean region, a group of unrelated plant species share an unusual deep-red flower color and are pollinated by glaphyrid beetles. Some of these species possess different color morphs, but the mechanisms maintaining this color polymorphism are unknown. The peacock anemone, Anemone pavonina, is a color polymorphic species with red or purple flowers. We investigated the spatial distribution of its color morphs and its potential glaphyrid pollinators, Pygopleurus spp., along an elevational gradient on the southern slopes of Mount Olympus, Greece. We found a correlation between relative proportions of the two color morphs with both elevation and beetle abundance. At low elevations (< 1000 m a.s.l.), beetles were abundant and anemone populations comprised only red flowers. Above a steep transition zone with mixed-colored populations (c. 1000-1300 m) most flowers were purple and beetles were rare. Color-trapping experiments revealed a strong preference for red over other colors in beetles and colorimetric modeling suggests that a simple chromatic mechanism is sufficient to explain their color choices. We thus hypothesize that beetles select for red flowers and that with increasing elevation and decreasing beetle density, other flower visitors (e.g., bees) gain importance as pollinators and select for a different color.

RevDate: 2019-07-19

Lyutova R, Selcho M, Pfeuffer M, et al (2019)

Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells.

Nature communications, 10(1):3097 pii:10.1038/s41467-019-11092-1.

Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.

RevDate: 2019-07-02

Princen SA, Oliveira RC, Ernst UR, et al (2019)

Honeybees possess a structurally diverse and functionally redundant set of queen pheromones.

Proceedings. Biological sciences, 286(1905):20190517.

Queen pheromones, which signal the presence of a fertile queen and induce workers to remain sterile, play a key role in regulating reproductive division of labour in insect societies. In the honeybee, volatiles produced by the queen's mandibular glands have been argued to act as the primary sterility-inducing pheromones. This contrasts with evidence from other groups of social insects, where specific queen-characteristic hydrocarbons present on the cuticle act as conserved queen signals. This led us to hypothesize that honeybee queens might also employ cuticular pheromones to stop workers from reproducing. Here, we support this hypothesis with the results of bioassays with synthetic blends of queen-characteristic alkenes, esters and carboxylic acids. We show that all these compound classes suppress worker ovary development, and that one of the blends of esters that we used was as effective as the queen mandibular pheromone (QMP) mix. Furthermore, we demonstrate that the two main QMP compounds 9-ODA and 9-HDA tested individually were as effective as the blend of all four major QMP compounds, suggesting considerable signal redundancy. Possible adaptive reasons for the observed complexity of the honeybee queen signal mix are discussed.

RevDate: 2019-06-19

Streinzer M, Chakravorty J, Neumayer J, et al (2019)

Species composition and elevational distribution of bumble bees (Hymenoptera, Apidae, Bombus Latreille) in the East Himalaya, Arunachal Pradesh, India.

ZooKeys, 851:71-89 pii:32956.

The East Himalaya is one of the world's most biodiverse ecosystems. However, very little is known about the abundance and distribution of many plant and animal taxa in this region. Bumble bees are a group of cold-adapted and high elevation insects that fulfil an important ecological and economical function as pollinators of wild and agricultural flowering plants and crops. The Himalayan mountain range provides ample suitable habitats for bumble bees. Systematic study of Himalayan bumble bees began a few decades ago and the main focus has centred on the western region, while the eastern part of the mountain range has received little attention and only a few species have been verified. During a three-year survey, more than 700 bumble bee specimens of 21 species were collected in Arunachal Pradesh, the largest of the north-eastern states of India. The material included a range of species that were previously known from a limited number of collected specimens, which highlights the unique character of the East Himalayan ecosystem. Our results are an important first step towards a future assessment of species distribution, threat, and conservation. Clear elevation patterns of species diversity were observed, which raise important questions about the functional adaptations that allow bumble bees to thrive in this particularly moist region in the East Himalaya.

RevDate: 2019-07-06

Stöckl A, Grittner R, K Pfeiffer (2019)

The role of lateral optic flow cues in hawkmoth flight control.

The Journal of experimental biology, 222(Pt 13): pii:jeb.199406.

Flying animals require sensory feedback on changes of their body position, as well as on their distance from nearby objects. The apparent image motion, or optic flow, which is generated as animals move through the air, can provide this information. Flight tunnel experiments have been crucial for our understanding of how insects use optic flow for flight control in confined spaces. However, previous work mainly focused on species from two insect orders: Hymenoptera and Diptera. We therefore set out to investigate whether the previously described control strategies to navigate enclosed environments are also used by insects with a different optical system, flight kinematics and phylogenetic background. We tested the role of lateral visual cues for forward flight control in the hummingbird hawkmoth Macroglossum stellatarum (Sphingidae, Lepidoptera), which possesses superposition compound eyes, and has the ability to hover in addition to its capacity for fast forward flight. Our results show that hawkmoths use a similar strategy for lateral position control to bees and flies in balancing the magnitude of translational optic flow perceived in both eyes. However, the influence of lateral optic flow on flight speed in hawkmoths differed from that in bees and flies. Moreover, hawkmoths showed individually attributable differences in position and speed control when the presented optic flow was unbalanced.

RevDate: 2019-07-09

George EA, Bröger AK, Thamm M, et al (2019)

Inter-individual variation in honey bee dance intensity correlates with expression of the foraging gene.

Genes, brain, and behavior [Epub ahead of print].

Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter-individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR-2. As expected, foragers showed large inter-individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co-opting behavioural modules involved in food search and foraging in solitary insects.

RevDate: 2019-06-28

Smith CC, Weber JN, Mikheyev AS, et al (2019)

Landscape genomics of an obligate mutualism: Concordant and discordant population structures between the leafcutter ant Atta texana and its two main fungal symbiont types.

Molecular ecology, 28(11):2831-2845.

To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping-by-sequencing (ddRADseq) to quantify population structure and the effect of host-symbiont interactions between the northernmost fungus-farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome-wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant-fungus genome-genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population-genetic structure was concordant between the ants and one cultivar type (M-fungi, concordant clines) but discordant for the other cultivar type (T-fungi). Discordance in population-genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between-nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant-fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome-genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.

RevDate: 2019-08-21

Kappeler PM, Fichtel C, van Vugt M, et al (2019)

Female leadership: A transdisciplinary perspective.

Evolutionary anthropology, 28(4):160-163.

RevDate: 2019-08-20

Sanchez LM (2019)

Darwin's politics of selection.

Politics and the life sciences : the journal of the Association for Politics and the Life Sciences, 38(1):72-102.

The uses of natural selection argument in politics have been constant since Charles Darwin's times. They have also been varied. The readings of Darwin's theory range from the most radically individualist views, as in orthodox socio-Darwinism, to the most communitarian, as in Peter Kropotkin's and other socialist perspectives. This essay argues that such diverse, contradictory, and sometimes even outrageous political derivations from Darwin's theory may be partially explained by some incompleteness and ambivalences underlying Darwin's concepts. "Natural selection," "struggle for existence," and "survival of the fittest" are open concepts and may suggest some hierarchical and segregationist interpretations. Circumstantially, Darwin accepted social "checks," such as discouraging marriage of "lower" individuals to prevent them from reproducing, in a vein of Malthusian politics. This makes Darwin's theory of selection by struggle collide with his theory of social instincts, by which he explains the origins of morality. It also favors reading Darwin's On the Origin of Species or The Descent of Man from opposite, mostly ideological perspectives. Darwin's position is ambivalent, although hardly unreasonable. The recognition he makes of social instincts, as well as the use of the concept of artificial selection, entails accepting the role of human consciousness, by which social evolution cannot be reduced to natural evolution, as socio-Darwinians did next and as some neo-Darwinists seem to repeat. On these grounds, this essay argues the inadequacy of the conventional model of natural selection for understanding politics. If we want to describe politics in Darwin's language, artificial rather than natural selection would be the concept that performs better for explaining the courses of politics in real society.

RevDate: 2019-07-13

Hofman MPG, Hayward MW, Heim M, et al (2019)

Right on track? Performance of satellite telemetry in terrestrial wildlife research.

PloS one, 14(5):e0216223 pii:PONE-D-18-33139.

Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.

RevDate: 2019-05-29

Becker MC, Rössler W, MF Strube-Bloss (2019)

UV light perception is modulated by the odour element of an olfactory-visual compound in restrained honeybees.

The Journal of experimental biology, 222(Pt 10): pii:jeb.201483.

Honeybees use visual and olfactory cues to detect flowers during foraging trips. Hence, the reward association of a nectar source is a multimodal construct which has at least two major components - olfactory and visual cues. How both sensory modalities are integrated to form a common reward association and whether and how they may interfere, is an open question. The present study used stimulation with UV, blue and green light to evoke distinct photoreceptor activities in the compound eye and two odour components (geraniol, citronellol). To test if a compound of both modalities is perceived as the sum of its elements (elemental processing) or as a unique cue (configural processing), we combined monochromatic light with single odour components in positive (PP) and negative patterning (NP) experiments. During PP, the compound of two modalities was rewarded, whereas the single elements were not. For NP, stimuli comprising a single modality were rewarded, whereas the olfactory-visual compound was not. Furthermore, we compared the differentiation abilities between two light stimuli that were or were not part of an olfactory-visual compound. Interestingly, the behavioural performances revealed a prominent case of configural processing, but only in those cases when UV light was an element of an olfactory-visual compound. Instead, learning with green- and blue-containing compounds rather supports elemental processing theory.

RevDate: 2019-05-07

Modlmeier AP, Colman E, Hanks EM, et al (2019)

Ant colonies maintain social homeostasis in the face of decreased density.

eLife, 8: pii:38473.

Interactions lie at the heart of social organization, particularly in ant societies. Interaction rates are presumed to increase with density, but there is little empirical evidence for this. We manipulated density within carpenter ant colonies of the species Camponotus pennsylvanicus by quadrupling nest space and by manually tracking 6.9 million ant locations and over 3200 interactions to study the relationship between density, spatial organization and interaction rates. Colonies divided into distinct spatial regions on the basis of their underlying spatial organization and changed their movement patterns accordingly. Despite a reduction in both overall and local density, we did not find the expected concomitant reduction in interaction rates across all colonies. Instead, we found divergent effects across colonies. Our results highlight the remarkable organizational resilience of ant colonies to changes in density, which allows them to sustain two key basic colony life functions, that is food and information exchange, during environmental change.

RevDate: 2019-05-01

Sperber AL, Kappeler PM, C Fichtel (2019)

Should I stay or should I go? Individual movement decisions during group departures in red-fronted lemurs.

Royal Society open science, 6(3):180991 pii:rsos180991.

Collective movements are essential for maintaining group cohesion. However, group members can have different optimal departure times, depending on individual, social and contextual factors whose relative importance remains poorly known. We, therefore, studied collective departures in four groups of red-fronted lemurs (Eulemur rufifrons) in Kirindy Forest, Madagascar, to investigate the influence of an individual's age, sex, their affiliative relationships and their proximity to other group members at the time of departure on their individual departure decision. We recorded behavioural and spatial data on individual departures during 167 group movements and conducted group scans (181-279 per group) to assess affiliative relationships. All factors influenced individual departures. Both affiliation and proximity determined a mimetic joining process in which dyads with stronger affiliative bonds departed in closer succession, and individuals followed the initiator and predecessors more quickly when they were in closer proximity at departure. While the influence of affiliation is common, the effect of inter-individual distance has rarely been considered in groups with heterogeneous social relationships. Although local rules influenced joining, the overall movement pattern was mainly determined by individual traits: juveniles took protected central positions, while females made up the van and males brought up the rear. Individual needs, expressed in the departure order, to an extent overruled the effect of affiliation. These results highlight the importance of considering individual, social and contextual factors collectively in the study of collective movements.

RevDate: 2019-04-17

McEniery DF (2019)

The 'Scientific' phrenologist - Bernard Hollander (1864-1934).

Journal of medical biography [Epub ahead of print].

Bernard Hollander (1864-1934), a Viennese-born British physician, scientist, and author, was best known for his late 19th century and early 20th century revival of a 'Scientific Phrenology'. Hollander, motivated by the advances in cerebral localisation and neuroscience that appeared to justify Franz Joseph Gall's (1758-1828) initial interests in craniology, hoped to use this new framework to substantively improve the lot of his patients and his community. Ridiculed and derided by his colleagues while maintaining a measure of public prominence, Hollander discussed contemporary issues including notions of human nature, mental illness, education, development, women's rights, and sociobiology. The current work focuses on Hollander, his writings, and his reception by the contemporary medical and lay community.

RevDate: 2019-04-14

Cox AR, R Montgomerie (2019)

The cases for and against double-blind reviews.

PeerJ, 7:e6702 pii:6702.

To date, the majority of authors on scientific publications have been men. While much of this gender bias can be explained by historic sexism and discrimination, there is concern that women may still be disadvantaged by the peer review process if reviewers' biases lead them to reject publications with female authors more often. One potential solution to this perceived gender bias in the reviewing process is for journals to adopt double-blind reviews whereby neither the authors nor the reviewers are aware of each other's identity and gender. To test the efficacy of double-blind reviews in one behavioral ecology journal (Behavioral Ecology, BE), we assigned gender to every authorship of every paper published for 2010-2018 in that journal compared to four other journals with single-blind reviews but similar subject matter and impact factors. While female authorships comprised only 35% of the total in all journals, the double-blind journal (BE) did not have more female authorships than its single-blind counterparts. Interestingly, the incidence of female authorship is higher at behavioral ecology journals (BE and Behavioral Ecology and Sociobiology) than in the ornithology journals (Auk, Condor, Ibis) for papers on all topics as well as those on birds. These analyses suggest that double-blind review does not currently increase the incidence of female authorship in the journals studied here. We conclude, at least for these journals, that double-blind review no longer benefits female authors and we discuss the pros and cons of the double-blind reviewing process based on our findings.

RevDate: 2019-04-11

Yilmaz A, Grübel K, Spaethe J, et al (2019)

Distributed plasticity in ant visual pathways following colour learning.

Proceedings. Biological sciences, 286(1896):20182813.

Colour processing at early stages of visual pathways is a topic of intensive study both in vertebrate and invertebrate species. However, it is still unclear how colour learning and memory formation affects an insect brain in the peripheral processing stages and high-order integration centres, and whether associative colour experiences are reflected in plasticity of underlying neuronal circuits. To address this issue, we used Camponotus blandus ants as their proven colour learning and memory capabilities, precisely controllable age and experience, and already known central visual pathways offer unique access to analyse plasticity in neuronal circuits for colour vision in a miniature brain. The potential involvement of distinct neuropils-optic lobes (OLs), mushroom body (MB) input (collar) and output (vertical lobe), anterior optic tubercle (AOTU) and central complex (CX)-in associative colour experiences was assessed by quantification of volumetric and synaptic changes (MB collar) directly after colour conditioning and, 3 days later, after the establishment of long-term memory (LTM). To account for potential effects of non-associative light exposure, we compared neuronal changes in the brain of colour-naive foragers with those of foragers that had been exposed to light in a non-associative way. The results clearly show that the OLs, AOTU, and CX respond with plastic changes after colour learning and LTM formation. This suggests a complex neuronal network for colour learning and memory formation involving multiple brain levels. Such a colour-processing network probably represents an efficient design promoting fast and accurate behavioural decisions during orientation and navigation.

RevDate: 2019-08-08

Kraft N, Spaethe J, Rössler W, et al (2019)

Neuronal Plasticity in the Mushroom-Body Calyx of Bumble Bee Workers During Early Adult Development.

Developmental neurobiology, 79(4):287-302.

Division of labor among workers is a key feature of social insects and frequently characterized by an age-related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size-related rather than an age-related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole-mount brains of age-marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three-dimensional image analyses. Dark-reared bumble bee workers showed an early age-related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN-bouton density during the first three days of adult life. A 12:12 h light-dark cycle did not affect structural organization of the MB calyces compared to dark-reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.

RevDate: 2019-06-24

Ruedenauer FA, Leonhardt SD, Lunau K, et al (2019)

Bumblebees are able to perceive amino acids via chemotactile antennal stimulation.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 205(3):321-331.

Like all animals, bees need to consume essential amino acids to maintain their body's protein synthesis. Perception and discrimination of amino acids are, however, still poorly understood in bees (and insects in general). We used chemotactile conditioning of the proboscis extension response (PER) to examine (1) whether Bombus terrestris workers are able to perceive amino acids by means of their antennae and (if so) which ones, (2) whether they are able to differentiate between different amino acids, and (3) whether they are able to differentiate between different concentrations of the same amino acid. We found that workers perceived asparagine, cysteine, hydroxyproline, glutamic acid, lysine, phenylalanine, and serine, but not alanine, leucine, proline, or valine by means of their antennae. Surprisingly, they were unable to differentiate between different (perceivable) amino acids, but they distinguished between different concentrations of lysine. Consequently, bumblebees seem to possess amino acid receptors at the tip of their antennae, which enable a general perception of those solute amino acids that have an additional functional group (besides the common amino and carboxylic groups). They may thus have the ability to assess the overall amino acid content of pollen and nectar prior to ingestion.

RevDate: 2019-07-01
CmpDate: 2019-07-01

Hesselbach H, R Scheiner (2019)

The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities.

Ecotoxicology (London, England), 28(3):354-366.

Honeybees and other pollinators are threatened by changing landscapes and pesticides resulting from intensified agriculture. In 2018 the European Union prohibited the outdoor use of three neonicotinoid insecticides due to concerns about pollinators. A new pesticide by the name of "Sivanto" was recently released by Bayer AG. Its active ingredient flupyradifurone binds to the nicotinic acetylcholine receptor (AchR) in the honeybee brain, similar to neonicotinoids. Nevertheless, flupyradifurone is assumed to be harmless for honeybees and can even be applied on flowering crops. So far, only little has been known about sublethal effects of flupyradifurone on honeybees. Intact motor functions are decisive for numerous behaviors including foraging and dancing. We therefore selected a motor assay to investigate in how far sublethal doses of this pesticide affect behavior in young summer and long-lived winter honeybees. Our results demonstrate that flupyradifurone (830 µmol/l) can evoke motor disabilities and disturb normal motor behavior after a single oral administration (1.2 µg/bee). These effects are stronger in long-lived winter bees than in young summer bees. After offering an equal amount of pesticide (1.0-1.75 µg) continuously over 24 h with food the observed effects are slighter. For comparisons we repeated our experiments with the neonicotinoid imidacloprid. Intriguingly, the alterations in behavior induced by this pesticide (4 ng/bee) were different and longer-lasting compared to flupyradifurone, even though both substances bind to nicotinic acetylcholine receptors.

RevDate: 2019-04-13

Lichtenstein L, Brockmann A, J Spaethe (2019)

Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning.

Journal of insect physiology, 114:30-34.

Honey bees are globally distributed and have received increased attention due to their high economic and ecological value for pollination, their exceptional eusocial lifestyle and complex behavioral repertoire. Interestingly, most research on learning and memory in honey bees has been performed in the Western honey bee, Apis mellifera L., and other honey bee species were largely neglected. In the current study, we thus compared visual learning performance of A. mellifera and the Eastern honey bee, A. cerana Fabr., using the proboscis extension response (PER) paradigm. Workers of A. mellifera and A. cerana were differentially conditioned to two monochromatic light stimuli, with peak maxima at 435 and 528 nm. Both honey bee species were able to form an association between the color stimulus and a sugar reward and significantly distinguished between the two color stimuli in a differential discrimination test. However, besides similar performance levels during visual learning, A. cerana showed a reduced mid-term memory (tested after 2 h) compared to A. mellifera. Finally, performance of the visual PER conditioning in our study reached similar levels as found in olfactory PER conditioning, and we thus recommend the visual PER conditioning approach in addition to olfactory conditioning as a useful tool for studying species-specific learning and memory capabilities in honey bees under controlled laboratory conditions.

RevDate: 2019-04-18

Pegel U, Pfeiffer K, Zittrell F, et al (2019)

Two Compasses in the Central Complex of the Locust Brain.

The Journal of neuroscience : the official journal of the Society for Neuroscience, 39(16):3070-3080.

Many migratory insects rely on a celestial compass for spatial orientation. Several features of the daytime sky, all generated by the sun, can be exploited for navigation. Two of these are the position of the sun and the pattern of polarized skylight. Neurons of the central complex (CX), a group of neuropils in the central brain of insects, have been shown to encode sky compass cues. In desert locusts, the CX holds a topographic, compass-like representation of the plane of polarized light (E-vector) presented from dorsal direction. In addition, these neurons also encode the azimuth of an unpolarized light spot, likely representing the sun. Here, we investigate whether, in addition to E-vector orientation, the solar azimuth is represented topographically in the CX. We recorded intracellularly from eight types of CX neuron while stimulating animals of either sex with polarized blue light from zenithal direction and an unpolarized green light spot rotating around the animal's head at different elevations. CX neurons did not code for elevation of the unpolarized light spot. However, two types of columnar neuron showed a linear correlation between innervated slice in the CX and azimuth tuning to the unpolarized green light spot, consistent with an internal compass representation of solar azimuth. Columnar outputs of the CX also showed a topographic representation of zenithal E-vector orientation, but the two compasses were not linked to each other. Combined stimulation with unpolarized green and polarized blue light suggested that the two compasses interact in a nonlinear way.SIGNIFICANCE STATEMENT In the brain of the desert locust, neurons sensitive to the plane of celestial polarization are arranged like a compass in the slices of the central complex (CX). These neurons, in addition, code for the horizontal direction of an unpolarized light cue possibly representing the sun. We show here that horizontal directions are, in addition to E-vector orientations from the dorsal direction, represented in a compass-like manner across the slices of the CX. However, the two compasses are not linked to each other, but rather seem to interact in a cell-specific, nonlinear way. Our study confirms the role of the CX in signaling heading directions and shows that different cues are used for this task.

RevDate: 2019-02-08

Kappeler PM, Nunn CL, Vining AQ, et al (2019)

Evolutionary dynamics of sexual size dimorphism in non-volant mammals following their independent colonization of Madagascar.

Scientific reports, 9(1):1454 pii:10.1038/s41598-018-36246-x.

As predicted by sexual selection theory, males are larger than females in most polygynous mammals, but recent studies found that ecology and life history traits also affect sexual size dimorphism (SSD) through evolutionary changes in either male size, female size, or both. The primates of Madagascar (Lemuriformes) represent the largest group of mammals without male-biased SSD. The eco-evo-devo hypothesis posited that adaptations to unusual climatic unpredictability on Madagascar have ultimately reduced SSD in lemurs after dispersing to Madagascar, but data have not been available for comparative tests of the corresponding predictions that SSD is also absent in other terrestrial Malagasy mammals and that patterns of SSD changed following the colonization of Madagascar. We used phylogenetic methods and new body mass data to test these predictions among the four endemic radiations of Malagasy primates, carnivorans, tenrecs, and rodents. In support of our prediction, we found that male-biased SSD is generally absent among all Malagasy mammals. Phylogenetic comparative analyses further indicated that after their independent colonization of Madagascar, SSD decreased in primates and tenrecs, but not in the other lineages or when analyzed across all species. We discuss several mechanisms that may have generated these patterns and conclude that neither the eco-evo-devo hypothesis, founder effects, the island rule nor sexual selection theory alone can provide a compelling explanation for the observed patterns of SSD in Malagasy mammals.

RevDate: 2019-01-28

Grodwohl JB (2019)

Animal Behavior, Population Biology and the Modern Synthesis (1955-1985).

Journal of the history of biology pii:10.1007/s10739-018-9553-8 [Epub ahead of print].

This paper examines the history of animal behavior studies after the synthesis period. Three episodes are considered: the adoption of the theory of natural selection, the mathematization of ideas, and the spread of molecular methods in behavior studies. In these three episodes, students of behavior adopted practices and standards developed in population ecology and population genetics. While they borrowed tools and methods from these fields, they made distinct uses (inclusive fitness method, evolutionary theory of games, emphasis on individual selection) that set them relatively apart and led them to contribute, in their own way, to evolutionary theory. These episodes also highlight some limitations of "conjunction narratives" centered on the relation between a discipline and the modern synthesis. A trend in conjunction narratives is to interpret any development related to evolution in a discipline as an "extension," an "integration," or as a "delayed" synthesis. I here suggest that this can lead to underestimate discontinuities in the history of evolutionary biology.

RevDate: 2019-01-30
CmpDate: 2019-01-30

Römer D, F Roces (2019)

Waste deposition in leaf-cutting ants is guided by olfactory cues from waste.

Die Naturwissenschaften, 106(1-2):3 pii:10.1007/s00114-018-1599-0.

Social insects often use olfactory cues from their environment to coordinate colony tasks. We investigated whether leaf-cutting ants use volatiles as cues to guide the deposition of their copious amounts of colony refuse. In the laboratory, we quantified the relocation of a small pile of colony waste by workers of Atta laevigata towards volatiles offered at each side of the pile as a binary choice, consisting of either waste volatiles, fungus volatiles, or no volatiles. Fungus volatiles alone did not evoke relocation of waste. Waste volatiles alone, by contrast, led to a strong relocation of waste particles towards them. When fungus and waste volatiles were tested against each other, waste particles were also relocated towards waste volatiles, and in a high percentage of assays completely moved away from the source of fungus volatiles as compared to the previous series. We suggest that deposition and accumulation of large amounts of refuse in single external heaps or a few huge underground waste chambers of Atta nests is due to both olfactory preferences and stigmergic responses towards waste volatiles by waste-carrying workers.

RevDate: 2019-04-03
CmpDate: 2019-04-03

Keller A, Brandel A, Becker MC, et al (2018)

Wild bees and their nests host Paenibacillus bacteria with functional potential of avail.

Microbiome, 6(1):229 pii:10.1186/s40168-018-0614-1.

BACKGROUND: In previous studies, the gram-positive firmicute genus Paenibacillus was found with significant abundances in nests of wild solitary bees. Paenibacillus larvae is well-known for beekeepers as a severe pathogen causing the fatal honey bee disease American foulbrood, and other members of the genus are either secondary invaders of European foulbrood or considered a threat to honey bees. We thus investigated whether Paenibacillus is a common bacterium associated with various wild bees and hence poses a latent threat to honey bees visiting the same flowers.

RESULTS: We collected 202 samples from 82 individuals or nests of 13 bee species at the same location and screened each for Paenibacillus using high-throughput sequencing-based 16S metabarcoding. We then isolated the identified strain Paenibacillus MBD-MB06 from a solitary bee nest and sequenced its genome. We did find conserved toxin genes and such encoding for chitin-binding proteins, yet none specifically related to foulbrood virulence or chitinases. Phylogenomic analysis revealed a closer relationship to strains of root-associated Paenibacillus rather than strains causing foulbrood or other accompanying diseases. We found anti-microbial evidence within the genome, confirmed by experimental bioassays with strong growth inhibition of selected fungi as well as gram-positive and gram-negative bacteria.

CONCLUSIONS: The isolated wild bee associate Paenibacillus MBD-MB06 is a common, but irregularly occurring part of wild bee microbiomes, present on adult body surfaces and guts and within nests especially in megachilids. It was phylogenetically and functionally distinct from harmful members causing honey bee colony diseases, although it shared few conserved proteins putatively toxic to insects that might indicate ancestral predisposition for the evolution of insect pathogens within the group. By contrast, our strain showed anti-microbial capabilities and the genome further indicates abilities for chitin-binding and biofilm-forming, suggesting it is likely a useful associate to avoid fungal penetration of the bee cuticula and a beneficial inhabitant of nests to repress fungal threats in humid and nutrient-rich environments of wild bee nests.

RevDate: 2019-03-21
CmpDate: 2019-03-21

Ferretti V, F Papaleo (2019)

Understanding others: Emotion recognition in humans and other animals.

Genes, brain, and behavior, 18(1):e12544.

Emotion recognition represents the ability to encode an ensemble of sensory stimuli providing information about the emotional state of another individual. This ability is not unique to humans. An increasing number of studies suggest that many aspects of higher order social functions, including emotion recognition, might be present in species ranging from primates to rodents, indicating a conserved role in social animals. The aim of this review is to examine and compare how emotions are communicated and perceived in humans and other animals, with the intent to highlight possible new behavioral approaches and research perspectives. We summarize the evidence from human emotion recognition, and latest advances in the development of nonhuman animal behavioral tests, using or implying the use of this cognitive function. The differential implication of sensory modalities used by animals to communicate and decipher emotional states is also discussed. The opportunity to measure emotion recognition abilities in rodents may allow us to better identify the neural mechanisms mediating this complex function, thus promoting the development of new intervention strategies for several neuropsychiatric disorders characterized by social cognitive dysfunctions.

RevDate: 2019-02-21
CmpDate: 2019-02-21

Freas CA, Fleischmann PN, K Cheng (2019)

Experimental ethology of learning in desert ants: Becoming expert navigators.

Behavioural processes, 158:181-191.

Foraging desert ants are repeatedly presented with the challenge of leaving the nest, searching the scorching desert landscape to find food, and then transporting it back home. To accomplish this task, foragers have a navigational toolbox, which relies on olfactory, idiothetic, visual and magnetic cues. Desert ants have been widely studied with regards to these abilities, including a heavy focus on learned visual cues, the most prominent being the terrestrial panorama. Nest cues are first acquired during pre-foraging learning walks. Once foragers leave the nest area, they also learn a number of cues to aid them when returning both back to the nest and to known food sites, using experience of previous trips to navigate on future trips. In this review, we describe the learning processes involved in accurate navigation in desert ants. We first focus on recent research on nest-site panorama learning during pre-foraging learning walks as well as panorama learning away from the nest during foraging. We also review learning cues beyond the terrestrial panorama, including tactile, magnetic, olfactory and vibrational cues. These studies provide a basis for future work to further explore how these navigators, despite their small brains, acquire, retain and use many cue sets present in their environments. We call for more experimental ethology focussed on learning processes, both by exploring run-by-run and step-by-step acquisition of information for navigation, as well as for other natural tasks in an animal's life.

RevDate: 2019-08-01

Bastin F, Couto A, Larcher V, et al (2018)

Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis).

The Journal of comparative neurology, 526(18):3020-3034.

All honey bee species (genus Apis) display a striking mating behavior with the formation of male (drone) congregations, in which virgin queens mate with many drones. Bees' mating behavior relies on olfactory communication involving queen-but also drone pheromones. To explore the evolution of olfactory communication in Apis, we analyzed the neuroanatomical organization of the antennal lobe (primary olfactory center) in the drones of five species from the three main lineages (open-air nesting species: dwarf honey bees Apis florea and giant honey bees Apis dorsata; cavity-nesting species: Apis mellifera, Apis kochevnikovi, and Apis cerana) and from three populations of A. cerana (Borneo, Thailand, and Japan). In addition to differences in the overall number of morphological units, the glomeruli, our data reveal marked differences in the number and position of macroglomeruli, enlarged units putatively dedicated to sex pheromone processing. Dwarf and giant honey bee species possess two macroglomeruli while cavity-nesting bees present three or four macroglomeruli, suggesting an increase in the complexity of sex communication during evolution in the genus Apis. The three A. cerana populations showed differing absolute numbers of glomeruli but the same three macroglomeruli. Overall, we identified six different macroglomeruli in the genus Apis. One of these (called MGb), which is dedicated to the detection of the major queen compound 9-ODA in A. mellifera, was conserved in all species. We discuss the implications of these results for our understanding of sex communication in honey bees and propose a putative scenario of antennal lobe evolution in the Apis genus.

RevDate: 2019-04-10
CmpDate: 2019-04-10

Ruedenauer FA, Wöhrle C, Spaethe J, et al (2018)

Do honeybees (Apis mellifera) differentiate between different pollen types?.

PloS one, 13(11):e0205821.

Bees receive nectar and pollen as reward for pollinating plants. Pollen of different plant species varies widely in nutritional composition. In order to select pollen of appropriate nutritional quality, bees would benefit if they could distinguish different pollen types. Whether they rely on visual, olfactory and/or chemotactile cues to distinguish between different pollen types, has however been little studied. In this study, we examined whether and how Apis mellifera workers differentiate between almond and apple pollen. We used differential proboscis extension response conditioning with olfactory and chemotactile stimulation, in light and darkness, and in summer and winter bees. We found that honeybees were only able to differentiate between different pollen types, when they could use both chemotactile and olfactory cues. Visual cues further improved learning performance. Summer bees learned faster than winter bees. Our results thus highlight the importance of multisensory information for pollen discrimination.

RevDate: 2018-11-20

Egert-Berg K, Hurme ER, Greif S, et al (2018)

Resource Ephemerality Drives Social Foraging in Bats.

Current biology : CB, 28(22):3667-3673.e5.

Observations of animals feeding in aggregations are often interpreted as events of social foraging, but it can be difficult to determine whether the animals arrived at the foraging sites after collective search [1-4] or whether they found the sites by following a leader [5, 6] or even independently, aggregating as an artifact of food availability [7, 8]. Distinguishing between these explanations is important, because functionally, they might have very different consequences. In the first case, the animals could benefit from the presence of conspecifics, whereas in the second and third, they often suffer from increased competition [3, 9-13]. Using novel miniature sensors, we recorded GPS tracks and audio of five species of bats, monitoring their movement and interactions with conspecifics, which could be inferred from the audio recordings. We examined the hypothesis that food distribution plays a key role in determining social foraging patterns [14-16]. Specifically, this hypothesis predicts that searching for an ephemeral resource (whose distribution in time or space is hard to predict) is more likely to favor social foraging [10, 13-15] than searching for a predictable resource. The movement and social interactions differed between bats foraging on ephemeral versus predictable resources. Ephemeral species changed foraging sites and showed large temporal variation nightly. They aggregated with conspecifics as was supported by playback experiments and computer simulations. In contrast, predictable species were never observed near conspecifics and showed high spatial fidelity to the same foraging sites over multiple nights. Our results suggest that resource (un)predictability influences the costs and benefits of social foraging.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Bang A (2019)

Antecedents of behavioural and reproductive dominance in pairs of the primitively eusocial wasp Ropalidia marginata.

Behavioural processes, 158:1-3.

What factors predispose some individuals to become reproductively dominant in a group where every member can reproduce? Antecedents of reproductive dominance have often been investigated in primitively eusocial species where reproductive skew exists despite adult reproductive potential displayed by every group-member, but such studies have rarely focused on small, incipient colonies. Here, I investigated antecedents of behavioural and reproductive dominance in pairs of the Indian paper wasp Ropalidia marginata. Common antecedents of behavioural dominance such as body size and age were inoperative in pairs of R. marginata. Moreover, age and behavioural dominance, but not body size, influenced reproductive dominance in pairs. These findings are not only different from other primitively eusocial insects, but also different from the colonies of R. marginata. It is likely that antecedents of reproductive dominance are different not only in different species, but also change with group size within a species, such that the role of behavioural dominance to achieve reproductive monopoly remains more effective in small groups such as pairs, and becomes less effective as the group size increases. These results require further investigations into the effect of group size on individual behaviour in group-living animals.

RevDate: 2019-04-04
CmpDate: 2019-04-04

Faragalla KM, Chernyshova AM, Gallo AJ, et al (2018)

From gene list to gene network: Recognizing functional connections that regulate behavioral traits.

Journal of experimental zoology. Part B, Molecular and developmental evolution, 330(6-7):317-329.

The study of social breeding systems is often gene focused, and the field of insect sociobiology has been successful at assimilating tools and techniques from molecular biology. One common output from sociogenomic studies is a gene list. Gene lists are readily generated from microarray, RNA sequencing, or other molecular screens that typically aim to prioritize genes based on the differences in their expression. Gene lists, however, are often unsatisfying because the information they provide is simply tabular and does not explain how genes interact with each other, or how genetic interactions change in real time under social or environmental circumstances. Here, we promote a view that is relatively common to molecular systems biology, where gene lists are converted into gene networks that better describe the functional connections that regulate behavioral traits. We present a narrative related to honeybee worker sterility to show how network analysis can be used to reprioritize candidate genes based on connectivity rather than their freestanding expression values. Networks can also reveal multigene modules, motifs, clusters or other system-wide properties that might not be apparent from an ab initio list. We argue that because network analyses are not restricted to "genes" as nodes, their implementation can potentially connect multiple levels of biological organization into a single, progressively complex study system.

RevDate: 2019-06-10
CmpDate: 2019-02-25

Sommerlandt FMJ, Brockmann A, Rössler W, et al (2019)

Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity.

Cellular and molecular life sciences : CMLS, 76(4):637-651.

Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.

RevDate: 2019-08-05

Sehner S, Fichtel C, PM Kappeler (2018)

Primate tails: Ancestral state reconstruction and determinants of interspecific variation in primate tail length.

American journal of physical anthropology, 167(4):750-759.

OBJECTIVE: Living primates vary considerably in tail length-body size relation, ranging from tailless species to those where the tail is more than twice as long as the body. Because the general pattern and determinants of tail evolution remain incompletely known, we reconstructed evolutionary changes in relative tail length across all primates and sought to explain interspecific variation in this trait.

METHODS: We combined data on tail length, head-body length, intermembral index (IMI), habitat use, locomotion type, and range latitude for 340 species from published sources. We reconstructed the evolution of relative tail length to identify all independent cases of regime shifts on a primate phylogeny, using several methods based on Ornstein-Uhlenbeck (OU) models. Accounting for phylogeny, we also examined the effects of habitat, locomotion type, distance from the equator and IMI on interspecific variation in tail length-body size relation.

RESULTS: Primate tail length is not sexually dimorphic. A phylogenetic reconstruction allowing multiple optima explains the observed regime shifts best. During the evolutionary history of primates, relative tail length changed 50 times under an OU model. Specifically, relative tail length increased 26 and decreased 24 times. Most of these changes occurred among Old World primates. Among the variables tested here, interspecific variation in IMI and the difference between leaping and non-leaping locomotion explained interspecific variation in relative tail length: Evolutionary decreases in relative tail length are generally associated with an increase in IMI and an absence of leaping behavior.

CONCLUSIONS: Regime shifts for relative tail length in living primates occurred in concert with fundamental changes in IMI and a change from leaping to non-leaping locomotion, or vice versa. Exceptions from this general pattern are linked to the presence of a prehensile tail or specialized foraging strategies. Thus, the primate tail appears to have evolved in functional coordination with limb proportions, presumably to assist body balance.

RevDate: 2019-06-27

Bernaldo de Quirós E, Wheeler BC, Hammerschmidt K, et al (2018)

Do sexual calls in female black capuchin monkeys (Sapajus nigritus) vary with fertility? An acoustic analysis.

American journal of primatology, 80(9):e22920.

Females across a range of animal taxa produce vocalizations and signals uniquely associated with periods of mating. While such signals may ultimately function to increase female attractivity to males, conflicting findings challenge the extent to which these signals co-vary in accordance with the probability of conception. Female black capuchin monkeys (Sapajus nigritus) display an elaborate repertoire of both vocal and visual components as part of their socio-sexual behavior, and previous analyses have shown that the rates of production of visual, but not vocal, components provide graded information on female ovulation. It remains possible, however, that the acoustic parameters of these sexual calls, rather than their rate of productions, co-vary with female fertility. To test this, we analyzed structural and temporal call parameters from estrous calls and post-copulatory calls recorded over five consecutive mating seasons in 12 sexually mature females at Iguazú National Park, Argentina. Calls given during the fertile phase of the female ovarian cycle were compared with those given during the non-fertile phase, as determined by profiles of female reproductive hormones. Similarly, within the fertile phase, we tested whether temporal or spectral acoustic parameters of calls gradually change with the approach of ovulation. We did not find any significant relationship between call parameters and the two measures of female fertility in either female estrous calls or post-copulatory calls. However, some differences between pre- and post-copulatory calls were apparent. Overall, our results indicate that sexual calls in black capuchin females do not provide precise information about the timing of ovulation, but may allow listeners to make probabilistic inferences about whether copulations have taken place. This, combined with previous findings, suggests that females in our study may use signals in different modalities to convey information about their fertility and sexual behavior with varying degrees of precision.

RevDate: 2018-11-14

Henke-von der Malsburg J, C Fichtel (2018)

Are generalists more innovative than specialists? A comparison of innovative abilities in two wild sympatric mouse lemur species.

Royal Society open science, 5(8):180480.

The propensity to flexibly innovate behavioural variants might advantage animals when dealing with novel or modified ecological or social challenges. Interspecific innovative abilities can be predicted by the degree of ecological generalism and intraspecific variation is predicted by personality traits. To examine the effects of these factors on innovation, we compared problem-solving abilities in the generalist grey mouse lemurs (Microcebus murinus) and the more specialized Madame Berthe's mouse lemurs (Microcebus berthae) in western Madagascar. We examined personality traits by testing 54 individuals in open field and novel object tests, and we assessed problem-solving abilities by presenting an artificial feeding-box that could be opened by three different techniques. The first two techniques presented novel problems and the third technique a modified problem to the more complex second novel problem. In both species, motivation, early success and better inhibitory control characterized innovators and predicted superior problem-solving performance. Although both species performed equally well in finding a solution to the novel problems, the specialist species was more efficient in finding a novel solution to a familiar problem. Since the ecological specialist also exhibited more inhibitory control in this task than the generalist, we propose that specialists may dispose of more efficient problem-solving behaviour.

RevDate: 2019-08-29
CmpDate: 2019-07-08

Bernadou A, Schrader L, Pable J, et al (2018)

Stress and early experience underlie dominance status and division of labour in a clonal insect.

Proceedings. Biological sciences, 285(1885):.

Cooperation and division of labour are fundamental in the 'major transitions' in evolution. While the factors regulating cell differentiation in multi-cellular organisms are quite well understood, we are just beginning to unveil the mechanisms underlying individual specialization in cooperative groups of animals. Clonal ants allow the study of which factors influence task allocation without confounding variation in genotype and morphology. Here, we subjected larvae and freshly hatched workers of the clonal ant Platythyrea punctata to different rearing conditions and investigated how these manipulations affected division of labour among pairs of oppositely treated, same-aged clonemates. High rearing temperature, physical stress, injury and malnutrition increased the propensity of individuals to become subordinate foragers rather than dominant reproductives. This is reflected in changed gene regulation: early stages of division of labour were associated with different expression of genes involved in nutrient signalling pathways, metabolism and the phenotypic response to environmental stimuli. Many of these genes appear to be capable of responding to a broad range of stressors. They might link environmental stimuli to behavioural and phenotypic changes and could therefore be more broadly involved in caste differentiation in social insects. Our experiments also shed light on the causes of behavioural variation among genetically identical individuals.

RevDate: 2018-11-14

Heinze S, K Pfeiffer (2018)

Editorial: The Insect Central Complex-From Sensory Coding to Directing Movement.

Frontiers in behavioral neuroscience, 12:156.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Huebner F, Fichtel C, PM Kappeler (2018)

Linking cognition with fitness in a wild primate: fitness correlates of problem-solving performance and spatial learning ability.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1756):.

Linking the cognitive performance of wild animals with fitness consequences is crucial for understanding evolutionary processes that shape individual variation in cognition. However, the few studies that have examined these links revealed differing relationships between various cognitive performance measures and fitness proxies. To contribute additional comparative data to this body of research, we linked individual performance during repeated problem-solving and spatial learning ability in a maze with body condition and survival in wild grey mouse lemurs (Microcebus murinus). All four variables exhibited substantial inter-individual variation. Solving efficiency in the problem-solving task, but not spatial learning performance, predicted the magnitude of change in body condition after the harsh dry season, indicating that the ability to quickly apply a newly discovered motor technique might also facilitate exploitation of new, natural food resources. Survival was not linked with performance in both tasks, however, suggesting that mouse lemurs' survival might not depend on the cognitive performances addressed here. Our study is the first linking cognition with fitness proxies in a wild primate species, and our discussion highlights the importance and challenges of accounting for a species' life history and ecology in choosing meaningful cognitive and fitness variables for a study in the wild.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Cauchoix M, Chow PKY, van Horik JO, et al (2018)

The repeatability of cognitive performance: a meta-analysis.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1756):.

Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Kittler K, Kappeler PM, C Fichtel (2018)

Instrumental problem-solving abilities in three lemur species (Microcebus murinus, Varecia variegata, and Lemur catta).

Journal of comparative psychology (Washington, D.C. : 1983), 132(3):306-314.

Apes and some New and Old World monkeys (i.e., haplorhine primates) are known to routinely use tools. In strepsirrhine primates (i.e., lemurs and lorises), no tool use has been reported, even though they appear to have some basic understanding of the spatial relations required for using a pulling tool. To facilitate direct comparisons of the underlying abilities between haplorhine and strepsirrhine primate species, we experimentally examined instrumental problem-solving abilities in three captive lemur species (Microcebus murinus, Varecia variegata, and Lemur catta), using methods from previous experiments with haplorhine primates. First, lemurs were supposed to use a stick to gain access to an inaccessible food reward. Only one ring-tailed lemur solved this task spontaneously on the first attempt. After offering the stick repeatedly, 13 individuals of all three species solved it successfully. Second, lemurs had to choose between pairs of reachable objects with a food reward on or near them, where one object did not afford pulling in the food. Ring-tailed and gray mouse lemurs generally selected the correct (connected) object, thus performing comparably with haplorhine primates, and ruffed lemurs even matched chimpanzees in their performance. Thus, although strepsirrhine primates may lack the fine motor skills to use a stick as a reaching tool, they performed comparable with naturally tool-using haplorhine primates on means-end problems. Our findings suggest a dissociation in primates between the judgment of spatial relations between two objects, which appears to be roughly equivalent across species, and facility at handling sticks for instrumental purposes, which favors species with enhanced manual dexterity. (PsycINFO Database Record

RevDate: 2018-11-14
CmpDate: 2018-11-08

Peckre LR, Defolie C, Kappeler PM, et al (2018)

Potential self-medication using millipede secretions in red-fronted lemurs: combining anointment and ingestion for a joint action against gastrointestinal parasites?.

Primates; journal of primatology, 59(5):483-494.

Self-anointing, referring to the behaviour of rubbing a material object or foreign substance over different parts of the body, has been observed in several vertebrate species, including primates. Several functions, such as detoxifying a rich food source, social communication and protection against ectoparasites, have been proposed to explain this behaviour. Here, we report observations of six wild red-fronted lemurs (Eulemur rufifrons) of both sexes and different age classes anointing their perianal-genital areas and tails with chewed millipedes. Several individuals also ingested millipedes after prolonged chewing. In light of the features of the observed interactions with millipedes, and the nature and potential metabolic pathways of the released chemicals, we suggest a potential self-medicative function. Specifically, we propose that anointing combined with the ingestion of millipedes' benzoquinone secretions by red-fronted lemurs may act in a complementary fashion against gastrointestinal parasite infections, and more specifically Oxyuridae nematodes, providing both prophylactic and therapeutic effects.

RevDate: 2019-03-20
CmpDate: 2019-02-19

Thamm M, Sturm K, Schlossmann J, et al (2018)

Levels and activity of cyclic guanosine monophosphate-dependent protein kinase in nurse and forager honeybees.

Insect molecular biology, 27(6):815-823.

Age-dependent division of labour in honeybees was shown to be connected to sensory response thresholds. Foragers show a higher gustatory responsiveness than nurse bees. It is generally assumed that nutrition-related signalling pathways underlie this behavioural plasticity. Here, one important candidate gene is the foraging gene, which encodes a cyclic guanosine monophosphate-dependent protein kinase (PKG). Several roles of members of this enzyme family were analysed in vertebrates. They own functions in important processes such as growth, secretion and neuronal adaptation. Honeybee foraging messenger RNA expression is upregulated in the brain of foragers. In vivo activation of PKG can modulate gustatory responsiveness. We present for the first time PKG protein level and activity data in the context of social behaviour and feeding. Protein level was significantly higher in brains of foragers than in those of nurse bees, substantiating the role of PKG in behavioural plasticity. However, enzyme activity did not differ between behavioural roles. The mediation of feeding status appears independent of PKG signalling. Neither PKG content nor enzyme activity differed between starved and satiated individuals. We suggest that even though nutrition-related pathways are surely involved in controlling behavioural plasticity, which involves changes in PKG signalling, mediation of satiety itself is independent of PKG.

RevDate: 2018-07-18

Lichtenstein L, Lichtenstein M, J Spaethe (2018)

Length of stimulus presentation and visual angle are critical for efficient visual PER conditioning in the restrained honey bee, Apis mellifera.

The Journal of experimental biology, 221(Pt 14): pii:221/14/jeb179622.

Learning visual cues is an essential capability of bees for vital behaviors such as orientation in space and recognition of nest sites, food sources and mating partners. To study learning and memory in bees under controlled conditions, the proboscis extension response (PER) provides a well-established behavioral paradigm. While many studies have used the PER paradigm to test olfactory learning in bees because of its robustness and reproducibility, studies on PER conditioning of visual stimuli are rare. In this study, we designed a new setup to test the learning performance of restrained honey bees and the impact of several parameters: stimulus presentation length, stimulus size (i.e. visual angle) and ambient illumination. Intact honey bee workers could successfully discriminate between two monochromatic lights when the color stimulus was presented for 4, 7 and 10 s before a sugar reward was offered, reaching similar performance levels to those for olfactory conditioning. However, bees did not learn at shorter presentation durations. Similar to free-flying honey bees, harnessed bees were able to associate a visual stimulus with a reward at small visual angles (5 deg) but failed to utilize the chromatic information to discriminate the learned stimulus from a novel color. Finally, ambient light had no effect on acquisition performance. We discuss possible reasons for the distinct differences between olfactory and visual PER conditioning.

RevDate: 2018-11-14
CmpDate: 2018-08-20

Steitz I, Kingwell C, Paxton RJ, et al (2018)

Evolution of Caste-Specific Chemical Profiles in Halictid Bees.

Journal of chemical ecology, 44(9):827-837.

Chemical communication is crucial for the maintenance of colony organization in eusocial insects and chemical signals are known to mediate important aspects of their social life, including the regulation of reproduction. Sociality is therefore hypothesized to be accompanied by an increase in the complexity of chemical communication. However, little is known about the evolution of odor signals at the transition from solitary living to eusociality. Halictid bees are especially suitable models to study this question as they exhibit considerable variability in social behavior. Here we investigated whether the dissimilarities in cuticle chemical signals in females of different castes and life stages reflect the level of social complexity across halictid bee species. Our hypothesis was that species with a higher social behavior ergo obligate eusocial species possess a more distinct chemical profile between castes or female life stages. We analyzed cuticular chemical profiles of foundresses, breeding females and workers of ancestrally solitary species, facultative and obligate eusocial halictid species. We also tested whether social complexity was associated with a higher investment in chemical signals. Our results revealed higher chemical dissimilarity between castes in obligate than in facultative eusocial species, especially regarding macrocyclic lactones, which were the single common compound class overproduced in queens compared with workers. Chemical dissimilarities were independent of differences in ovarian status in obligate eusocial species but were dependent on ovarian status in facultative eusocial species, which we discuss in an evolutionary framework.

RevDate: 2018-08-13

Arenas A, F Roces (2018)

Appetitive and aversive learning of plants odors inside different nest compartments by foraging leaf-cutting ants.

Journal of insect physiology, 109:85-92.

Cues inside the nest provide social insect foragers with information about resources currently exploited that may influence their decisions outside. Leaf-cutting ants harvest leaf fragments that are either further processed as substrate for their symbiotic fungus, or disposed of if unsuitable. We investigated whether Acromyrmex ambiguus foragers develop learned preferences for olfactory cues they experienced either in the fungus or in the waste chamber of the nest. Foragers' olfactory preferences were quantified as a choice between sugared papers disks scented with a novel odor and with the odor experienced in one of the nest compartments, before and after odor addition. Odors incorporated in the fungus chamber led to preferences towards paper disks smelling of them. Conversely, odors experienced in the waste chambers led to avoidance of similarly-scented disks. To investigate context-specificity of responses, we quantified learned preferences towards an odor that occurred first in the fungus chamber, and 14 h later in the waste chamber. Foragers initially developed a preference for the odor added in the fungus chamber that turned into avoidance when the same odor solely occurred later in the waste chamber. Avoidance of plants could also be induced in a more natural context, when fresh leaf disks of novel plants, privet or firethorn, were presented in the waste chamber. We conclude that learned acceptance or rejection of suitable plants by foragers depend on the learning context: smells can lead to appetitive learning when present in the fungus garden, or to avoidance learning when they occur at the dump.

RevDate: 2018-08-13

Zanni V, Değirmenci L, Annoscia D, et al (2018)

The reduced brood nursing by mite-infested honey bees depends on their accelerated behavioral maturation.

Journal of insect physiology, 109:47-54.

The parasitic mite Varroa destructor is regarded as the most important parasite of honey bees and plays a fundamental role in the decline of bee colonies observed in the last decade in the Northern hemisphere. Parasitization has a number of detrimental effects on bees, including reduced nursing, which can have important impacts on colony balance. In this work we investigated at the individual level the causes of this abnormal behavior and found that the reduced nursing activity in mite-infested workers is associated with impaired learning performance and a series of physiological traits that are typical of foragers, including reduced response to brood pheromone, limited development of hypopharyngeal glands and higher juvenile hormone titre in the haemolymph. Altogether our data confirm the premature transition to foraging already postulated based on previous genomics studies, from a physiological point of view.

RevDate: 2019-06-27
CmpDate: 2019-04-25

Shibasaki S, M Shimada (2018)

Cyclic dominance emerges from the evolution of two inter-linked cooperative behaviours in the social amoeba.

Proceedings. Biological sciences, 285(1881):.

Evolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoeba Dictyostelium discoideum performs two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained because of the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic adenosine 3',5'-monophosphate (cAMP) is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained because of the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.

RevDate: 2019-08-16
CmpDate: 2019-08-16

French AS, K Pfeiffer (2018)

Nonlinearization: naturalistic stimulation and nonlinear dynamic behavior in a spider mechanoreceptor.

Biological cybernetics, 112(5):403-413.

In a previous study, we used linear frequency response analysis to show that naturalistic stimulation of spider primary mechanosensory neurons produced different response dynamics than the commonly used Gaussian random noise. We isolated this difference to the production of action potentials from receptor potential and suggested that the different distribution of frequency components in the naturalistic signal increased the nonlinearity of action potential encoding. Here, we tested the relative contributions of first- and second-order processes to the action potential signal by measuring linear and quadratic coherence functions. Naturalistic stimulation shifted the linear coherence toward lower frequencies, while quadratic coherence was always higher than linear coherence and increased with naturalistic stimulation. In an initial attempt to separate the order of time-dependent and nonlinear processes, we fitted quadratic frequency response functions by two block-structured models consisting of a power-law filter and a static second-order nonlinearity in alternate cascade orders. The same cascade models were then fitted to the original time domain data by conventional numerical analysis algorithms, using a polynomial function as the static nonlinearity. Quadratic models with a linear filter followed by a static nonlinearity were favored over the reverse order, but with weak significance. Polynomial nonlinear functions indicated that rectification is a major nonlinearity. A complete quantitative description of sensory encoding in these primary mechanoreceptors remains elusive but clearly requires quadratic and higher nonlinear operations on the input signal to explain the sensitivity of dynamic behavior to different input signal patterns.

RevDate: 2019-03-13
CmpDate: 2019-03-13

Martin SJ, Correia-Oliveira ME, Shemilt S, et al (2018)

Is the Salivary Gland Associated with Honey Bee Recognition Compounds in Worker Honey Bees (Apis mellifera)?.

Journal of chemical ecology, 44(7-8):650-657.

Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes. However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to the five other glands with many of the hydrocarbons also found in the Dufour's gland, but at much lower levels. We discovered a series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee's activities changed, as it ages, the types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C19-C23n-alkanes, alkenes and methyl-branched compounds, whereas the nurses' CSG had predominately C31:1 and C33:1 alkene isomers, which are replaced by a series of oleic acid wax esters in foragers. These changes in the CSG were mirrored by corresponding changes in the adults' CHCs profile. This indicates that the CSG may have a parallel function to the PPG found in ants acting as a major storage gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help explain the role of comb wax in nestmate recognition experiments.

RevDate: 2018-11-14
CmpDate: 2018-08-20

Villalta I, Abril S, Cerdá X, et al (2018)

Queen Control or Queen Signal in Ants: What Remains of the Controversy 25 Years After Keller and Nonacs' Seminal Paper?.

Journal of chemical ecology, 44(9):805-817.

Ant queen pheromones (QPs) have long been known to affect colony functioning. In many species, QPs affect important reproductive functions such as diploid larvae sexualization and egg-laying by workers, unmated queens (gynes), or other queens. Until the 1990s, these effects were generally viewed to be the result of queen manipulation through the use of coercive or dishonest signals. However, in their seminal 1993 paper, Keller and Nonacs challenged this idea, suggesting that QPs had evolved as honest signals that informed workers and other colony members of the queen's presence and reproductive state. This paper has greatly influenced the study of ant QPs and inspired numerous attempts to identify fertility-related compounds and test their physiological and behavioral effects. In the present article, we review the literature on ant QPs in various contexts and pay special attention to the role of cuticular hydrocarbons (CHCs). Although the controversy generated by Keller and Nonacs' (Anim Behav 45:787-794, 1993) paper is currently less intensively debated, there is still no clear evidence which allows the rejection of the queen control hypothesis in favor of the queen signal hypothesis. We argue that important questions remain regarding the mode of action of QPs, and their targets which may help understanding their evolution.

RevDate: 2019-08-02
CmpDate: 2019-04-22

Parijs I, HP Steenackers (2018)

Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms.

The ISME journal, 12(8):2061-2075.

Genetic diversity often enhances the tolerance of microbial communities against antimicrobial treatment. However the sociobiology underlying this antimicrobial tolerance remains largely unexplored. Here we analyze how inter-species interactions can increase antimicrobial tolerance. We apply our approach to 17 industrially relevant multispecies biofilm models, based on species isolated from 58 contaminating biofilms in three breweries. Sulfathiazole was used as antimicrobial agent because it showed the highest activity out of 22 biofilm inhibitors tested. Our analysis reveals that competitive interactions dominate among species within brewery biofilms. We show that antimicrobial treatment can reduce the level of competition and therefore cause a subset of species to bloom. The result is a 1.2-42.7-fold lower percentage inhibition of these species and increased overall tolerance. In addition, we show that the presence of Raoultella can also directly enhance the inherent tolerance of Pseudomonas to antimicrobial treatment, either because the species protect each other or because they induce specific tolerance phenotypes as a response to competitors. Overall, our study emphasizes that the dominance of competitive interactions is central to the enhanced antimicrobial tolerance of the multispecies biofilms, and that the activity of antimicrobials against multispecies biofilms cannot be predicted based on their effect against monocultures.

RevDate: 2018-06-05

Römer D, Bollazzi M, F Roces (2018)

Carbon dioxide sensing in the social context: Leaf-cutting ants prefer elevated CO2 levels to tend their brood.

Journal of insect physiology, 108:40-47.

Social insects show temperature and humidity preferences inside their nests to successfully rear brood. In underground nests, ants also encounter rising CO2 concentrations with increasing depth. It is an open question whether they use CO2 as a cue to decide where to place and tend the brood. Leaf-cutting ants do show CO2 preferences for the culturing of their symbiotic fungus. We evaluated their CO2 choices for brood placement in laboratory experiments. Workers of Acromyrmex lundii in the process of relocating brood were offered a binary choice consisting of two interconnected chambers with different CO2 concentrations. Values ranged from atmospheric to high concentrations of 4% CO2. The CO2 preferences shown by workers for themselves and for brood placement were assessed by quantifying the number of workers and relocated brood in each chamber. Ants showed clear CO2 preferences for brood placement. They avoided atmospheric levels, 1% and 4% CO2, and showed a preference for levels of 3%. This is the first report of CO2 preferences for the maintenance of brood in social insects. The observed preferences for brood location were independent of the workers' own CO2 preferences, since they showed no clear-cut pattern. Workers' CO2 preferences for brood maintenance were slightly higher than those reported for fungus culturing, although brood is reared in the same chambers as the fungus in leaf-cutting ant nests. Workers' choices for brood placement in natural nests are likely the result of competing preferences for other environmental factors more crucial for brood survival, aside from those for CO2.

RevDate: 2018-11-14

Beetz MJ, García-Rosales F, Kössl M, et al (2018)

Robustness of cortical and subcortical processing in the presence of natural masking sounds.

Scientific reports, 8(1):6863.

Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.

RevDate: 2018-05-08

Fleischmann PN, Grob R, Müller VL, et al (2018)

The Geomagnetic Field Is a Compass Cue in Cataglyphis Ant Navigation.

Current biology : CB, 28(9):1440-1444.e2.

Desert ants (Cataglyphis) are famous insect navigators. During their foraging lives, the ants leave their underground colonies for long distances and return to their starting point with fair accuracy [1, 2]. Their incessantly running path integrator provides them with a continually updated home vector [3-5]. Directional input to their path integrator is provided by a visual compass based on celestial cues [6, 7]. However, as path integration is prone to cumulative errors, the ants additionally employ landmark guidance routines [8-11]. At the start of their foraging lives, they acquire the necessary landmark information by performing well-structured learning walks [12, 13], including turns about their vertical body axes [14]. When Cataglyphis noda performs these pirouettes, it always gazes at the nest entrance during the longest of several short stopping phases [14]. As the small nest entrance is not visible, the ants can adjust their gaze direction only by reading out their path integrator. However, recent experiments have shown that, for adjusting the goal-centered gaze directions during learning walks, skylight cues are not required [15]. A most promising remaining compass cue is the geomagnetic field, which is used for orientation in one way or the other by a variety of animal species [16-25]. Here, we show that the gaze directions during the look-back-to-the-nest behavior change in a predictable way to alterations of the horizontal component of the magnetic field. This is the first demonstration that, in insects, a geomagnetic compass cue is both necessary and sufficient for accomplishing a well-defined navigational task.

RevDate: 2019-07-11

Fleischmann PN, Rössler W, R Wehner (2018)

Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphis noda.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 204(6):579-592.

Within the powerful navigational toolkit implemented in desert ants, path integration and landmark guidance are the key routines. Here, we use cue-conflict experiments to investigate the interplay between these two routines in ants, Cataglyphis noda, which start their foraging careers (novices) with learning walks and are then tested at different stages of experience. During their learning walks, the novices take nest-centered views from various directions around the nest. In the present experiments, these learning walks are spatially restricted by arranging differently sized water moats around the nest entrance and thus, limiting the space available around the nest and the nest-feeder route. First, we show that the ants are able to return to the nest by landmark guidance only when the novices have had enough space around the nest entrance for properly performing their learning walks. Second, in 180° cue-conflict situations between path integration and landmark guidance, path integration dominates in the beginning of foraging life (after completion of the learning walks), but with increasing numbers of visits to a familiar feeder landmark guidance comes increasingly into play.

RevDate: 2019-04-08
CmpDate: 2019-04-08

Kay J, Menegazzi P, Mildner S, et al (2018)

The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain.

Journal of biological rhythms, 33(3):255-271.

The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.

RevDate: 2019-09-05

Hesselbach H, R Scheiner (2018)

Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition.

Scientific reports, 8(1):4954.

Due to intensive agriculture honeybees are threatened by various pesticides. The use of one group of them, the neonicotinoids, was recently restricted by the European Union. These chemicals bind to the nicotinic acetylcholine receptor (nAchR) in the honeybee brain. Recently, Bayer AG released a new pesticide by the name of "Sivanto" against sucking insects. It is assumed to be harmless for honeybees, although its active ingredient, flupyradifurone, binds nAchR similar to the neonicotinoids. We investigated if this pesticide affects the taste for sugar and cognitive performance in honeybee foragers. These bees are directly exposed to the pesticide while foraging for pollen or nectar. Our results demonstrate that flupyradifurone can reduce taste and appetitive learning performance in honeybees foraging for pollen and nectar, although only the highest concentration had significant effects. Most likely, honeybee foragers will not be exposed to these high concentrations. Therefore, the appropriate use of this pesticide is considered safe for honeybees, at least with respect to the behaviors studied here.

RevDate: 2018-11-14

Strube-Bloss MF, W Rössler (2018)

Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee.

Royal Society open science, 5(2):171785.

Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory-visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory-visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory-visual information across MB input layers. In these neurons, representation of the olfactory-visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory-visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory-visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Qu C, JC Dreher (2018)

Sociobiology: Changing the Dominance Hierarchy.

Current biology : CB, 28(4):R167-R169.

One fundamental question is to understand what neural circuits are involved when social hierarchies are established, maintained and modified. Now, a new study shows that a previously subordinate animal can become dominant after optogenetic stimulation of the dorsomedial prefrontal cortex, demonstrating that this brain region is necessary and sufficient to quickly induce winning during social competitions.

RevDate: 2018-11-13

Luro AB, Igic B, Croston R, et al (2018)

Which egg features predict egg rejection responses in American robins? Replicating Rothstein's (1982) study.

Ecology and evolution, 8(3):1673-1679.

Rothstein (Behavioral Ecology and Sociobiology, 11, 1982, 229) was one of the first comprehensive studies to examine how different egg features influence egg rejection behaviors of avian brood parasite-hosts. The methods and conclusions of Rothstein (1982) laid the foundation for subsequent experimental brood parasitism studies over the past thirty years, but its results have never been evaluated with replication. Here, we partially replicated Rothstein's (1982) experiments using parallel artificial model egg treatments to simulate cowbird (Molothrus ater) parasitism in American robin (Turdus migratorius) nests. We compared our data with those of Rothstein (1982) and confirmed most of its original findings: (1) robins reject model eggs that differ from the appearance of a natural robin egg toward that of a natural cowbird egg in background color, size, and maculation; (2) rejection responses were best predicted by model egg background color; and (3) model eggs differing by two or more features from natural robin eggs were more likely to be rejected than model eggs differing by one feature alone. In contrast with Rothstein's (1982) conclusion that American robin egg recognition is not specifically tuned toward rejection of brown-headed cowbird eggs, we argue that our results and those of other recent studies of robin egg rejection suggest a discrimination bias toward rejection of cowbird eggs. Future work on egg recognition will benefit from utilizing a range of model eggs varying continuously in background color, maculation patterning, and size in combination with avian visual modeling, rather than using model eggs which vary only discretely.

RevDate: 2018-12-02
CmpDate: 2018-04-30

Rakotonirina H, Kappeler PM, C Fichtel (2018)

The role of facial pattern variation for species recognition in red-fronted lemurs (Eulemur rufifrons).

BMC evolutionary biology, 18(1):19.

BACKGROUND: Species recognition, i.e., the ability to distinguish conspecifics from heterospecifics, plays an essential role in reproduction. The role of facial cues for species recognition has been investigated in several non-human primate species except for lemurs. We therefore investigated the role of facial cues for species recognition in wild red-fronted lemurs (Eulemur rufifrons) at Kirindy Forest. We presented adult red-fronted lemurs pictures of male faces from five species including red-fronted lemurs, three closely related species, white-fronted lemurs (E. albifrons), brown lemurs (E. fulvus), rufous brown lemurs (E. rufus), and genetically more distant red-bellied lemurs (E. rubriventer), occurring in allopatry with the study population. We predicted that red-fronted lemurs respond stronger to conspecific than to heterospecific pictures and that females show stronger responses than males. In addition, if genetic drift has played a role in the evolution of facial color patterns in the members of this genus, we predicted that responses of red-fronted lemurs correlate negatively with the genetic distance to the different species stimuli.

RESULTS: Red-fronted lemurs looked significantly longer at pictures of their own species than at those of heterospecifics. Females spent less time looking at pictures of white-fronted, brown and red-bellied lemurs than males did, but not to pictures of red-bellied lemurs and a control stimulus. Individuals also exhibited sniffing behavior while looking at visual stimuli, and the time spent sniffing was significantly longer for pictures of conspecifics compared to those of heterospecifics. Moreover, the time spent looking and sniffing towards the pictures correlated negatively with the genetic distance between their own species and the species presented as stimulus.

CONCLUSIONS: We conclude that red-fronted lemurs have the ability for species recognition using visual facial cues, which may allow them to avoid costly interbreeding. If so, sexual selection might have influenced the evolution of facial patterns in eulemurs. Since responses also correlated with genetic distance, our findings suggest a potential role of genetic drift as well as sexual selection in influencing the evolution of facial variation in eulemurs. Because study subjects looked and sniffed towards the presented pictures, red-fronted lemurs might have the ability for multi-modal species recognition.

RevDate: 2019-02-15
CmpDate: 2019-02-12

Lichtenstein L, Grübel K, J Spaethe (2018)

Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera.

BMC developmental biology, 18(1):1.

BACKGROUND: The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees.

RESULTS: qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock.

CONCLUSIONS: Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.

RevDate: 2018-08-08
CmpDate: 2018-04-23

Tucker MA, Böhning-Gaese K, Fagan WF, et al (2018)

Moving in the Anthropocene: Global reductions in terrestrial mammalian movements.

Science (New York, N.Y.), 359(6374):466-469.

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.

RevDate: 2018-11-13
CmpDate: 2018-03-05

Kropf J, W Rössler (2018)

In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

PloS one, 13(1):e0191425.

The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

RevDate: 2019-03-29
CmpDate: 2018-07-20

Domingue BW, Belsky DW, Fletcher JM, et al (2018)

The social genome of friends and schoolmates in the National Longitudinal Study of Adolescent to Adult Health.

Proceedings of the National Academy of Sciences of the United States of America, 115(4):702-707.

Humans tend to form social relationships with others who resemble them. Whether this sorting of like with like arises from historical patterns of migration, meso-level social structures in modern society, or individual-level selection of similar peers remains unsettled. Recent research has evaluated the possibility that unobserved genotypes may play an important role in the creation of homophilous relationships. We extend this work by using data from 5,500 adolescents from the National Longitudinal Study of Adolescent to Adult Health (Add Health) to examine genetic similarities among pairs of friends. Although there is some evidence that friends have correlated genotypes, both at the whole-genome level as well as at trait-associated loci (via polygenic scores), further analysis suggests that meso-level forces, such as school assignment, are a principal source of genetic similarity between friends. We also observe apparent social-genetic effects in which polygenic scores of an individual's friends and schoolmates predict the individual's own educational attainment. In contrast, an individual's height is unassociated with the height genetics of peers.

RevDate: 2018-11-13
CmpDate: 2018-08-07

Beetz MJ, Kordes S, García-Rosales F, et al (2017)

Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata.

eNeuro, 4(6):.

For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.

RevDate: 2018-11-13

Grob R, Fleischmann PN, Grübel K, et al (2017)

The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies.

Frontiers in behavioral neuroscience, 11:226.

Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance-presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.

RevDate: 2019-01-30
CmpDate: 2019-01-30

Pegel U, Pfeiffer K, U Homberg (2018)

Integration of celestial compass cues in the central complex of the locust brain.

The Journal of experimental biology, 221(Pt 2): pii:jeb.171207.

Many insects rely on celestial compass cues such as the polarization pattern of the sky for spatial orientation. In the desert locust, the central complex (CX) houses multiple sets of neurons, sensitive to the oscillation plane of polarized light and thus probably acts as an internal polarization compass. We investigated whether other sky compass cues like direct sunlight or the chromatic gradient of the sky might contribute to this compass. We recorded from polarization-sensitive CX neurons while an unpolarized green or ultraviolet light spot was moved around the head of the animal. All types of neuron that were sensitive to the plane of polarization (E-vector) above the animal also responded to the unpolarized light spots in an azimuth-dependent way. The tuning to the unpolarized light spots was independent of wavelength, suggesting that the neurons encode solar azimuth based on direct sunlight and not on the sky chromatic gradient. Two cell types represented the natural 90 deg relationship between solar azimuth and zenithal E-vector orientation, providing evidence to suggest that solar azimuth information supports the internal polarization compass. Most neurons showed advances in their tuning to the E-vector and the unpolarized light spots dependent on rotation direction, consistent with anticipatory signaling. The amplitude of responses and its variability were dependent on the level of background firing, possibly indicating different internal states. The integration of polarization and solar azimuth information strongly suggests that besides the polarization pattern of the sky, direct sunlight might be an important cue for sky compass navigation in the locust.

RevDate: 2019-06-13
CmpDate: 2019-06-10

De Tiège A, Van de Peer Y, Braeckman J, et al (2017)

The sociobiology of genes: the gene's eye view as a unifying behavioural-ecological framework for biological evolution.

History and philosophy of the life sciences, 40(1):6 pii:10.1007/s40656-017-0174-x.

Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly 'gene-centred', the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene's eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of 'intra-organismic' and 'intra-genomic' gene-selectionism, i.e., of a behavioural-ecological 'gene's eye view' on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the-to some extent-still 'organism-centred' approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin's 'common descent with modification' or, more specifically, for 'historical continuity or homology with modular evolutionary change' as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on 'within-organism' developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene's eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene's eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

RevDate: 2018-11-13
CmpDate: 2017-12-26

Halboth F, F Roces (2017)

The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure.

PloS one, 12(11):e0188162.

Nest ventilation in the leaf-cutting ant Atta vollenweideri is driven via a wind-induced mechanism. On their nests, workers construct small turrets that are expected to facilitate nest ventilation. We hypothesized that the construction and structural features of the turrets would depend on the colony's current demands for ventilation and thus might be influenced by the prevailing environmental conditions inside the nest. Therefore, we tested whether climate-related parameters, namely airflow, air humidity and CO2 levels in the outflowing nest air influenced turret construction in Atta vollenweideri. In the laboratory, we simulated a semi-natural nest arrangement with fungus chambers, a central ventilation tunnel providing outflow of air and an aboveground building arena for turret construction. In independent series, different climatic conditions inside the ventilation tunnel were experimentally generated, and after 24 hours, several features of the built turret were quantified, i.e., mass, height, number and surface area (aperture) of turret openings. Turret mass and height were similar in all experiments even when no airflow was provided in the ventilation tunnel. However, elevated CO2 levels led to the construction of a turret with several minor openings and a larger total aperture. This effect was statistically significant at higher CO2 levels of 5% and 10% but not at 1% CO2. The construction of a turret with several minor openings did not depend on the strong differences in CO2 levels between the outflowing and the outside air, since workers also built permeated turrets even when the CO2 levels inside and outside were both similarly high. We propose that the construction of turrets with several openings and larger opening surface area might facilitate the removal of CO2 from the underground nest structure and could therefore be involved in the control of nest climate in leaf-cutting ants.

RevDate: 2019-01-28
CmpDate: 2019-01-28

Mueller UG, Ishak HD, Bruschi SM, et al (2017)

Biogeography of mutualistic fungi cultivated by leafcutter ants.

Molecular ecology, 26(24):6921-6937.

Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Rakotonirina H, Kappeler PM, C Fichtel (2017)

Evolution of facial color pattern complexity in lemurs.

Scientific reports, 7(1):15181.

Interspecific variation in facial color patterns across New and Old World primates has been linked to species recognition and group size. Because group size has opposite effects on interspecific variation in facial color patterns in these two radiations, a study of the third large primate radiation may shed light on convergences and divergences in this context. We therefore compiled published social and ecological data and analyzed facial photographs of 65 lemur species to categorize variation in hair length, hair and skin coloration as well as color brightness. Phylogenetically controlled analyses revealed that group size and the number of sympatric species did not influence the evolution of facial color complexity in lemurs. Climatic factors, however, influenced facial color complexity, pigmentation and hair length in a few facial regions. Hair length in two facial regions was also correlated with group size and may facilitate individual recognition. Since phylogenetic signals were moderate to high for most models, genetic drift may have also played a role in the evolution of facial color patterns of lemurs. In conclusion, social factors seem to have played only a subordinate role in the evolution of facial color complexity in lemurs, and, more generally, group size appears to have no systematic functional effect on facial color complexity across all primates.

RevDate: 2018-11-13

Steijven K, Spaethe J, Steffan-Dewenter I, et al (2017)

Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food.

PeerJ, 5:e3858.

BACKGROUND: Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts.

METHODS: Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees.

RESULTS: Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control.

DISCUSSION: We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.

RevDate: 2018-02-14
CmpDate: 2018-01-02

Charpentier MJE, Givalois L, Faurie C, et al (2018)

Seasonal glucocorticoid production correlates with a suite of small-magnitude environmental, demographic, and physiological effects in mandrills.

American journal of physical anthropology, 165(1):20-33.

OBJECTIVES: The activation of the hypothalamic-pituitary-adrenal axis is a neuroendocrine response to external and internal changes that animals face on a predictable or unpredictable basis. Across species, variation in glucocorticoid production has been related to such changes. In this study, we investigated the predictable, seasonal sources of variation in the levels of fecal glucocorticoid metabolites (fGCM) in a large natural population of mandrills (Mandrillus sphinx) in Southern Gabon.

MATERIALS AND METHODS: Using five years of regular behavioral monitoring and hormone analyses performed on 1,233 fecal samples collected on 99 individuals of both sexes and all ages and General Linear Mixed Models, we studied the three main seasonal predictors of fGCM concentrations: (i) weather conditions, (ii) number of adult males, and (iii) female reproductive status. These three predictors all vary seasonally in mandrills.

RESULTS: We first showed an increase in fGCM concentrations during the short dry season while controlling for other factors. Pregnant females, which include the large majority of adult females at this time of the year, mainly drove this increase, although a combination of other small-magnitude, season-related effects linked to climatic events and demographic changes also partly explained this seasonal trend. Indeed, fGCM concentrations increased with both low temperatures (and low rainfall) and high numbers of adult males present in the group. These seasonal changes, while correlated, held true throughout the studied years and when restricting our analyses to a given season. Finally, we found that older mandrills showed on average higher fGCM concentrations than younger ones and that medium-ranked females exhibited the highest levels of fGCMs.

DISCUSSION: The observed patterns suggest that plasticity in mandrills' metabolism in the form of glucocorticoid production allows them to adjust to predictable changes in climatic, demographic and physiological conditions by mobilizing and redirecting energetic resources toward appropriate, calibrated seasonal responses.

RevDate: 2019-06-13
CmpDate: 2019-06-11

Levallois C (2018)

The Development of Sociobiology in Relation to Animal Behavior Studies, 1946-1975.

Journal of the history of biology, 51(3):419-444.

This paper aims at bridging a gap between the history of American animal behavior studies and the history of sociobiology. In the post-war period, ecology, comparative psychology and ethology were all investigating animal societies, using different approaches ranging from fieldwork to laboratory studies. We argue that this disunity in "practices of place" (Kohler, Robert E. Landscapes & Labscapes: Exploring the Lab-Field Border in Biology. Chicago: University of Chicago Press, 2002) explains the attempts of dialogue between those three fields and early calls for unity through "sociobiology" by J. Paul Scott. In turn, tensions between the naturalist tradition and the rising reductionist approach in biology provide an original background for a history of Edward Wilson's own version of sociobiology, much beyond the William Hamilton's papers (Journal of Theoretical Biology 7: 1-16, 17-52, 1964) usually considered as its key antecedent. Naturalists were in a defensive position in the geography of the fields studying animal behavior, and in reaction were a driving force behind the various projects of synthesis called "sociobiology".

RevDate: 2019-08-14

Değirmenci L, Thamm M, R Scheiner (2018)

Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera).

Journal of insect physiology, 106(Pt 1):65-70.

Honeybees (Apis mellifera) are well-known for their sophisticated division of labor with each bee performing sequentially a series of social tasks. Colony organization is largely based on age-dependent division of labor. While bees perform several tasks inside the hive such as caring for brood ("nursing"), cleaning or sealing brood cells or producing honey, older bees leave to colony to collect pollen (proteins) and nectar (carbohydrates) as foragers. The most pronounced behavioral transition occurs when nurse bees become foragers. For both social roles, the detection and evaluation of sugars is decisive for optimal task performance. Nurse bees rely on their gustatory senses to prepare brood food, while foragers evaluate a nectar source before starting to collect food from it. To test whether social organization is related to differential sensing of sugars we compared the taste of nurse bees and foragers for different sugars. Searching for molecular correlates for differences in sugar perception, we further quantified expression of gustatory receptor genes in both behavioral groups. Our results demonstrate that nurse bees and foragers perceive and evaluate different sugars differently. Both groups, however, prefer sucrose over fructose. At least part of the taste differences between social roles could be related to a differential expression of taste receptors in the antennae and brain. Our results suggest that differential expression of sugar receptor genes might be involved in regulating division of labor through nutrition-related signaling pathways.

RevDate: 2018-06-27
CmpDate: 2018-05-14

Yilmaz A, Dyer AG, Rössler W, et al (2017)

Innate colour preference, individual learning and memory retention in the ant Camponotus blandus.

The Journal of experimental biology, 220(Pt 18):3315-3326.

Ants are a well-characterized insect model for the study of visual learning and orientation, but the extent to which colour vision is involved in these tasks remains unknown. We investigated the colour preference, learning and memory retention of Camponotus blandus foragers under controlled laboratory conditions. Our results show that C. blandus foragers exhibit a strong innate preference for ultraviolet (UV, 365 nm) over blue (450 nm) and green (528 nm) wavelengths. The ants can learn to discriminate 365 nm from either 528 nm or 450 nm, independent of intensity changes. However, they fail to discriminate between 450 nm and 528 nm. Modelling of putative colour spaces involving different numbers of photoreceptor types revealed that colour discrimination performance of individual ants is best explained by dichromacy, comprising a short-wavelength (UV) receptor with peak sensitivity at about 360 nm, and a long-wavelength receptor with peak sensitivity between 470 nm and 560 nm. Foragers trained to discriminate blue or green from UV light are able to retain the learned colour information in an early mid-term (e-MTM), late mid-term (l-MTM), early long-term (e-LTM) and late long-term (l-LTM) memory from where it can be retrieved after 1 h, 12 h, 24 h, 3 days and 7 days after training, indicating that colour learning may induce different memory phases in ants. Overall, our results show that ants can use chromatic information in a way that should promote efficient foraging in complex natural environments.

RevDate: 2018-12-02
CmpDate: 2017-10-16

Halboth F, F Roces (2017)

Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging.

Die Naturwissenschaften, 104(9-10):82 pii:10.1007/s00114-017-1504-2.

Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

RevDate: 2018-11-13
CmpDate: 2018-05-14

Cabirol A, Brooks R, Groh C, et al (2017)

Experience during early adulthood shapes the learning capacities and the number of synaptic boutons in the mushroom bodies of honey bees (Apis mellifera).

Learning & memory (Cold Spring Harbor, N.Y.), 24(10):557-562.

The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an impoverished environment lacking some of the sensory and social interactions present in the hive. In parallel, the overall number of synaptic boutons increased within the MB olfactory neuropil, whose volume remained unaffected. This suggests that experience of the rich in-hive environment promotes MB maturation and the development of MB-dependent learning capacities.

RevDate: 2019-01-16

Gokhale CS, Traulsen A, G Joop (2017)

Social dilemma in the external immune system of the red flour beetle? It is a matter of time.

Ecology and evolution, 7(17):6758-6765.

Sociobiology has revolutionized our understanding of interactions between organisms. Interactions may present a social dilemma where the interests of individual actors do not align with those of the group as a whole. Viewed through a sociobiological lens, nearly all interactions can be described regarding their costs and benefits, and a number of them then resemble a social dilemma. Numerous experimental systems, from bacteria to mammals, have been proposed as models for studying such dilemmas. Here, we make use of the external immune system of the red flour beetle, Tribolium castaneum, to investigate how the experimental duration can affect whether the external secretion comprises a social dilemma or not. Some beetles (secretors) produce a costly quinone-rich external secretion that inhibits microbial growth in the surrounding environment, providing the secretors with direct personal benefits. However, as the antimicrobial secretion acts in the environment of the beetle, it is potentially also advantageous to other beetles (nonsecretors), who avoid the cost of producing the secretion. We test experimentally if the secretion qualifies as a public good. We find that in the short term, costly quinone secretion can be interpreted as a public good presenting a social dilemma where the presence of secretors increases the fitness of the group. In the long run, the benefit to the group of having more secretors vanishes and becomes detrimental to the group. Therefore, in such seminatural environmental conditions, it turns out that qualifying a trait as social can be a matter of timing.

RevDate: 2019-06-21
CmpDate: 2019-06-21

Eckhardt F, Kappeler PM, C Kraus (2017)

Highly variable lifespan in an annual reptile, Labord's chameleon (Furcifer labordi).

Scientific reports, 7(1):11397.

Among tetrapods, the current record holder for shortest lifespan is Labord's chameleon, Furcifer labordi. These reptiles from the arid southwest of Madagascar have a reported lifespan of 4-5 months during the annual rainy season and spend the majority of their life (8-9 months) as a developing embryo. This semelparous, annual life history is unique among tetrapods, but only one population (Ranobe) in the southernmost distribution range has been studied. We therefore investigated the potential for environmentally-dependent variability in lifespan in a population in Kirindy Forest, which has a much longer warm rainy season. While no adults were found after March in Ranobe, the disappearance of adults was delayed by several months in Kirindy. Our data also revealed sex-biased mortality, suggesting that females have a longevity advantage. Furthermore, we found that, after an unusually long previous rainy season, one female was capable of surviving until a second breeding season. Keeping F. labordi in cages under ambient conditions demonstrated that also males can also survive until the next season of activity under these conditions. Our study therefore revealed considerable variability in the extreme life history of this tetrapod that is linked to variation in ecological factors.

RevDate: 2018-11-13
CmpDate: 2018-06-29

Garcia JE, Spaethe J, AG Dyer (2017)

The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models.

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 203(12):983-997.

Most of our current understanding on colour discrimination by animal observers is built on models. These typically set strict limits on the capacity of an animal to discriminate between colour stimuli imposed by physiological characteristics of the visual system and different assumptions about the underlying mechanisms of colour processing by the brain. Such physiologically driven models were not designed to accommodate sigmoidal-type discrimination functions as those observed in recent behavioural experiments. Unfortunately, many of the fundamental assumptions on which commonly used colour models are based have been tested against empirical data for very few species and many colour vision studies solely rely on physiological measurements of these species for predicting colour discrimination processes. Here, we test the assumption of a universal principle of colour discrimination only mediated by physiological parameters using behavioural data from four closely related hymenopteran species, considering two frequently used models. Results indicate that there is not a unique function describing colour discrimination by closely related bee species, and that this process is independent of specific model assumptions; in fact, different models produce comparable results for specific test species if calibrated against behavioural data.

RevDate: 2018-11-13
CmpDate: 2017-11-06

Rakotoniaina JH, Kappeler PM, Kaesler E, et al (2017)

Hair cortisol concentrations correlate negatively with survival in a wild primate population.

BMC ecology, 17(1):30.

BACKGROUND: Glucocorticoid hormones are known to play a key role in mediating a cascade of physiological responses to social and ecological stressors and can therefore influence animals' behaviour and ultimately fitness. Yet, how glucocorticoid levels are associated with reproductive success or survival in a natural setting has received little empirical attention so far. Here, we examined links between survival and levels of glucocorticoid in a small, short-lived primate, the grey mouse lemur (Microcebus murinus), using for the first time an indicator of long-term stress load (hair cortisol concentration). Using a capture-mark-recapture modelling approach, we assessed the effect of stress on survival in a broad context (semi-annual rates), but also under a specific period of high energetic demands during the reproductive season. We further assessed the power of other commonly used health indicators (body condition and parasitism) in predicting survival outcomes relative to the effect of long-term stress.

RESULTS: We found that high levels of hair cortisol were associated with reduced survival probabilities both at the semi-annual scale and over the reproductive season. Additionally, very good body condition (measured as scaled mass index) was related to increased survival at the semi-annual scale, but not during the breeding season. In contrast, variation in parasitism failed to predict survival.

CONCLUSION: Altogether, our results indicate that long-term increased glucocorticoid levels can be related to survival and hence population dynamics, and suggest differential strength of selection acting on glucocorticoids, body condition, and parasite infection.

RevDate: 2019-04-15
CmpDate: 2019-04-15

Rössler W, Spaethe J, C Groh (2017)

Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016).

Scientific reports, 7(1):9786.

A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22-180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains.

RevDate: 2018-11-13

Scheiner R, Entler BV, Barron AB, et al (2017)

The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees (Apis mellifera) Differ between Behavioral Castes.

Frontiers in systems neuroscience, 11:55.

Division of labor is a hallmark of social insects. In the honeybee (Apis mellifera) each sterile female worker performs a series of social tasks. The most drastic changes in behavior occur when a nurse bee, who takes care of the brood and the queen in the hive, transitions to foraging behavior. Foragers provision the colony with pollen, nectar or water. Nurse bees and foragers differ in numerous behaviors, including responsiveness to gustatory stimuli. Differences in gustatory responsiveness, in turn, might be involved in regulating division of labor through differential sensory response thresholds. Biogenic amines are important modulators of behavior. Tyramine and octopamine have been shown to increase gustatory responsiveness in honeybees when injected into the thorax, thereby possibly triggering social organization. So far, most of the experiments investigating the role of amines on gustatory responsiveness have focused on the brain. The potential role of the fat body in regulating sensory responsiveness and division of labor has large been neglected. We here investigated the role of the fat body in modulating gustatory responsiveness through tyramine signaling in different social roles of honeybees. We quantified levels of tyramine, tyramine receptor gene expression and the effect of elevating fat body tyramine titers on gustatory responsiveness in both nurse bees and foragers. Our data suggest that elevating the tyramine titer in the fat body pharmacologically increases gustatory responsiveness in foragers, but not in nurse bees. This differential effect of tyramine on gustatory responsiveness correlates with a higher natural gustatory responsiveness of foragers, with a higher tyramine receptor (Amtar1) mRNA expression in fat bodies of foragers and with lower baseline tyramine titers in fat bodies of foragers compared to those of nurse bees. We suggest that differential tyramine signaling in the fat body has an important role in the plasticity of division of labor through changing gustatory responsiveness.

RevDate: 2018-11-13
CmpDate: 2017-12-26

Beros S, Foitzik S, F Menzel (2017)

What are the Mechanisms Behind a Parasite-Induced Decline in Nestmate Recognition in Ants?.

Journal of chemical ecology, 43(9):869-880.

Social insects have developed sophisticated recognition skills to defend their nests against intruders. They do this by aggressively discriminating against non-nestmates with deviant cuticular hydrocarbon (CHC) signatures. Studying nestmate recognition can be challenging as individual insects do not only vary in their discriminatory abilities, but also in their motivation to behave aggressively. To disentangle the influence of signaling and behavioral motivation on nestmate recognition, we investigated the ant Temnothorax nylanderi, where the presence of tapeworm-infected nestmates leads to reduced nestmate recognition among uninfected workers. The parasite-induced decline in nestmate recognition could be caused by higher intra-colonial cue diversity as tapeworm-infected workers are known to exhibit a modified hydrocarbon signature. This in turn may broaden the neuronal template of their nestmates, leading to a higher tolerance towards alien conspecifics. To test this hypothesis, we exchanged infected ants between colonies and analyzed their impact on CHC profiles of uninfected workers. We demonstrate that despite frequent grooming, which should promote the transfer of recognition cues, CHC profiles of uninfected workers neither changed in the presence of tapeworm-infected ants, nor did it increase cue diversity among uninfected nestmates within or between colonies. However, CHC profiles were systematically affected by the removal of nestmates and addition of non-nestmates, independently from the ants' infection status. For example, when non-nestmates were present workers expressed more dimethyl alkanes and higher overall CHC quantities, possibly to achieve a better distinction from non-nestmates. Workers showed clear task-specific profiles with tapeworm-infected workers resembling more closely young nurses than older foragers. Our results show that the parasite-induced decline in nestmate recognition is not due to increased recognition cue diversity or altered CHC profiles of uninfected workers, but behavioral changes might explain tolerance towards intruders.

RevDate: 2018-07-20
CmpDate: 2018-07-20

Jennions M, Székely T, Beissinger SR, et al (2017)

Sex ratios.

Current biology : CB, 27(16):R790-R792.

Jennions et al. introduce the different kinds of sex ratio and their biology.

RevDate: 2018-07-16
CmpDate: 2018-07-16

Bearne LM, Manning VL, Choy E, et al (2017)

Participants' experiences of an Education, self-management and upper extremity eXercise Training for people with Rheumatoid Arthritis programme (EXTRA).

Physiotherapy, 103(4):430-438.

BACKGROUND: The Education, self-management and upper extremity eXercise Training for people with Rheumatoid Arthritis programme (EXTRA) is an individualized, upper limb, home exercise regimen supplemented by four supervised, group sessions, a handbook and exercise dairy which improves upper extremity disability and self-efficacy.

OBJECTIVE AND STUDY DESIGN: This qualitative interview study explored participants' experience of EXTRA to inform development and implementation of EXTRA into practice.

PARTICIPANTS: Adults with Rheumatoid Arthritis who completed EXTRA were purposively sampled to include a range of ages, upper extremity disabilities, self-efficacy for arthritis self-management and attendance at EXTRA sessions.

METHODS: Individual, semi-structured interviews were conducted with a single researcher until data saturation of themes was reached. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis.

RESULTS: Twelve participants (10 females; 32 to 87 years) were interviewed. Four overarching themes were identified: (i) empowering self-management; (ii) influence of others and (iii) the challenge of sustaining exercise, which resonate with the Social Cognition Theory, and (iv) refining EXTRA: consistent and personalised.

CONCLUSIONS: EXTRA enhanced participants' confidence to manage their arthritis independently and was adaptable so it could be integrated with other life commitments. Whilst healthcare professionals, peers and family and friends influenced exercise uptake, sustaining exercise was challenging. Participants desired consistent and continuing contact with a familiar physiotherapist (e.g. via follow-up appointments, digital health technologies) which accommodated individual needs (e.g. different venues, session frequency). Implementation of EXTRA needs to appreciate and address these considerations to facilitate success.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Order from Amazon

This is the book that really started the notion of sociobiology. It came out just as I was starting graduate school and the animal-behavior group organized a discussion group around the book. I was very lucky to have my introduction to in-depth academic discourse be centered around such an interesting book. R. Robbins

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )