picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
30 Mar 2020 at 01:40
HITS:
1935
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Human Microbiome

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 30 Mar 2020 at 01:40 Created: 

Human Microbiome

The human microbiome is the set of all microbes that live on or in humans. Together, a human body and its associated microbiomes constitute a human holobiont. Although a human holobiont is mostly mammal by weight, by cell count it is mostly microbial. The number of microbial genes in the associated microbiomes far outnumber the number of human genes in the human genome. Just as humans (and other multicellular eukaryotes) evolved in the constant presence of gravity, so they also evolved in the constant presence of microbes. Consequently, nearly every aspect of human biology has evolved to deal with, and to take advantage of, the existence of associated microbiota. In some cases, the absence of a "normal microbiome" can cause disease, which can be treated by the transplant of a correct microbiome from a healthy donor. For example, fecal transplants are an effective treatment for chronic diarrhea from over abundant Clostridium difficile bacteria in the gut.

Created with PubMed® Query: "human microbiome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2020-03-29

Gilijamse PW, Hartstra AV, Levin E, et al (2020)

Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose-response effects on glucose metabolism in human subjects with metabolic syndrome.

NPJ biofilms and microbiomes, 6(1):16 pii:10.1038/s41522-020-0127-0.

Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.

RevDate: 2020-03-28

Kyrgyzov O, Prost V, Gazut S, et al (2020)

Binning unassembled short reads based on k-mer abundance covariance using sparse coding.

GigaScience, 9(4):.

BACKGROUND: Sequence-binning techniques enable the recovery of an increasing number of genomes from complex microbial metagenomes and typically require prior metagenome assembly, incurring the computational cost and drawbacks of the latter, e.g., biases against low-abundance genomes and inability to conveniently assemble multi-terabyte datasets.

RESULTS: We present here a scalable pre-assembly binning scheme (i.e., operating on unassembled short reads) enabling latent genome recovery by leveraging sparse dictionary learning and elastic-net regularization, and its use to recover hundreds of metagenome-assembled genomes, including very low-abundance genomes, from a joint analysis of microbiomes from the LifeLines DEEP population cohort (n = 1,135, >1010 reads).

CONCLUSION: We showed that sparse coding techniques can be leveraged to carry out read-level binning at large scale and that, despite lower genome reconstruction yields compared to assembly-based approaches, bin-first strategies can complement the more widely used assembly-first protocols by targeting distinct genome segregation profiles. Read enrichment levels across 6 orders of magnitude in relative abundance were observed, indicating that the method has the power to recover genomes consistently segregating at low levels.

RevDate: 2020-03-27

Kummen M, Solberg OG, Storm-Larsen C, et al (2020)

Rosuvastatin alters the genetic composition of the human gut microbiome.

Scientific reports, 10(1):5397 pii:10.1038/s41598-020-62261-y.

The gut microbiome contributes to the variation of blood lipid levels, and secondary bile acids are associated with the effect of statins. Yet, our knowledge of how statins, one of our most common drug groups, affect the human microbiome is scarce. We aimed to characterize the effect of rosuvastatin on gut microbiome composition and inferred genetic content in stool samples from a randomized controlled trial (n = 66). No taxa were significantly altered by rosuvastatin during the study. However, rosuvastatin-treated participants showed a reduction in the collective genetic potential to transport and metabolize precursors of the pro-atherogenic metabolite trimethylamine-N-oxide (TMAO, p < 0.01), and an increase of related metabolites betaine and γ-butyrobetaine in plasma (p < 0.01). Exploratory analyses in the rosuvastatin group showed that participants with the least favorable treatment response (defined as < median change in high-density/low-density lipoprotein (HDL/LDL) ratio) showed a marked increase in TMAO-levels compared to those with a more favorable response (p < 0.05). Our data suggest that while rosuvastatin has a limited effect on gut microbiome composition, it could exert broader collective effects on the microbiome relevant to their function, providing a rationale for further studies of the influence of statins on the gut microbiome.

RevDate: 2020-03-22

Ben Y, Hu M, Zhang X, et al (2020)

Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water.

Water research, 175:115699 pii:S0043-1354(20)30235-9 [Epub ahead of print].

Human exposure to antibiotic residues in drinking water has not been well evaluated. This study is the first attempt to simultaneously and efficiently identify and quantify 92 antibiotic residues in filtered tap water (multistage filtration at the tap) (n = 36) collected from 10 areas of a large city in southern China, 10 Chinese brands of bottled/barreled water (n = 30) and six foreign brands of bottled water (n = 18) obtained from the Chinese market. The average and median concentrations of all the detected antibiotic compounds was 182 and 92 ng/L in filtered tap water, 180 and 105 ng/L in Chinese brands of bottled/barreled water, and 666 and 146 ng/L in foreign brands of bottled water, respectively. A total of 58 antibiotics were detected in the filtered tap water, and 45 and 36 antibiotics were detected in the Chinese and foreign brands of bottled water, respectively. More types of antibiotics were detected in Chinese brands of bottled water than in the other bottled waters. In addition, Chinese waters had high roxithromycin concentrations, while the foreign brands of bottled water had high concentrations of dicloxacillin. The average and median values of the estimated overall daily intake of all the detected antibiotics were 4.3 and 2.3 ng/kg/day when only filtered tap water was drunk, 4.0 and 2.5 ng/kg/day when Chinese brands of bottled water was drunk, and 16.0 and 4.9 ng/kg/day when foreign brands of bottled water was drunk. Further study is needed to develop a more comprehensive estimation of human exposure to antibiotic residues in the environment and a more in-depth understanding of the potential hazard of ingested antibiotic residues to the human microbiome.

RevDate: 2020-03-21

Puhlmann ML, WM de Vos (2020)

Back to the Roots: Revisiting the Use of the Fiber-Rich Cichorium intybusL. Taproots.

Advances in nutrition (Bethesda, Md.) pii:5810887 [Epub ahead of print].

Fibers are increasingly recognized as an indispensable part of our diet and vital for maintaining health. Notably, complex mixtures of fibers have been found to improve metabolic health. Following an analysis of the fiber content of plant-based products, we found the taproot of the chicory plant (Cichorium intybusL.) to be 1 of the vegetables with the highest fiber content, comprising nearly 90% of its dry weight. Chicory roots consist of a mixture of inulin, pectin, and (hemi-)cellulose and also contain complex phytochemicals, such as sesquiterpene lactones that have been characterized in detail. Nowaday, chicory roots are mainly applied as a source for the extraction of inulin, which is used as prebiotic fiber and food ingredient. Chicory roots, however, have long been consumed as a vegetable by humans. The whole root has been used for thousands of years for nutritional, medicinal, and other purposes, and it is still used in traditional dishes in various parts of the world. Here, we summarize the composition of chicory roots to explain their historic success in the human diet. We revisit the intake of chicory roots by humans and describe the different types of use along with their various methods of preparation. Hereby, we focus on the whole root in its complex, natural form, as well as in relation to its constituents, and discuss aspects regarding legal regulation and the safety of chicory root extracts for human consumption. Finally, we provide an overview of the current and future applications of chicory roots and their contribution to a fiber-rich diet.

RevDate: 2020-03-20

Jensen CS, Norsigian CJ, Fang X, et al (2020)

Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a Human Commensal and Opportunistic Pathogen.

Frontiers in genetics, 11:116.

The mitis group of streptococci (MGS) is a member of the healthy human microbiome in the oral cavity and upper respiratory tract. Troublingly, some MGS are able to escape this niche and cause infective endocarditis, a severe and devastating disease. Genome-scale models have been shown to be valuable in investigating metabolism of bacteria. Here we present the first genome-scale model, iCJ415, for Streptococcus oralis SK141. We validated the model using gene essentiality and amino acid auxotrophy data from closely related species. iCJ415 has 71-76% accuracy in predicting gene essentiality and 85% accuracy in predicting amino acid auxotrophy. Further, the phenotype of S. oralis was tested using the Biolog Phenotype microarrays, giving iCJ415 a 82% accuracy in predicting carbon sources. iCJ415 can be used to explore the metabolic differences within the MGS, and to explore the complicated metabolic interactions between different species in the human oral cavity.

RevDate: 2020-03-18

Fragiadakis GK, Wastyk HC, Robinson JL, et al (2020)

Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight.

The American journal of clinical nutrition pii:5809430 [Epub ahead of print].

BACKGROUND: With the rising rates of obesity and associated metabolic disorders, there is a growing need for effective long-term weight-loss strategies, coupled with an understanding of how they interface with human physiology. Interest is growing in the potential role of gut microbes as they pertain to responses to different weight-loss diets; however, the ways that diet, the gut microbiota, and long-term weight loss influence one another is not well understood.

OBJECTIVES: Our primary objective was to determine if baseline microbiota composition or diversity was associated with weight-loss success. A secondary objective was to track the longitudinal associations of changes to lower-carbohydrate or lower-fat diets and concomitant weight loss with the composition and diversity of the gut microbiota.

METHODS: We used 16S ribosomal RNA gene amplicon sequencing to profile microbiota composition over a 12-mo period in 49 participants as part of a larger randomized dietary intervention study of participants consuming either a healthy low-carbohydrate or a healthy low-fat diet.

RESULTS: While baseline microbiota composition was not predictive of weight loss, each diet resulted in substantial changes in the microbiota 3-mo after the start of the intervention; some of these changes were diet specific (14 taxonomic changes specific to the healthy low-carbohydrate diet, 12 taxonomic changes specific to the healthy low-fat diet) and others tracked with weight loss (7 taxonomic changes in both diets). After these initial shifts, the microbiota returned near its original baseline state for the remainder of the intervention, despite participants maintaining their diet and weight loss for the entire study.

CONCLUSIONS: These results suggest a resilience to perturbation of the microbiota's starting profile. When considering the established contribution of obesity-associated microbiotas to weight gain in animal models, microbiota resilience may need to be overcome for long-term alterations to human physiology. This trial was registered at clinicaltrials.gov as NCT01826591.

RevDate: 2020-03-17

Zou Y, Wu L, Xu W, et al (2020)

Correlation between antibiotic use in childhood and subsequent inflammatory bowel disease: a systematic review and meta-analysis.

Scandinavian journal of gastroenterology [Epub ahead of print].

Background: Antibiotic use leads to a cascade of inflammatory reaction in the gastrointestinal tract due to its association with a temporary disruption of human microbiome.Objectives: To explore the undetermined correlation between antibiotic use in childhood and subsequent inflammatory bowel disease (IBD).Methods: PUBMED, EMBASE and Cochrane Central Register of Controlled Trials were searched to identify related articles. We extracted and pooled the (adjusted) odds ratio (OR) and (adjusted) risk ratio (RR).Results: This systematic review and meta-analysis included 11 studies. The pooled OR of all 11 studies was 1.5 (95% confidence interval (CI): 1.22-1.85). The pooled ORs of the subsequent Crohn's disease and ulcerative colitis after antibiotic use in childhood were 1.59 (95% CI: 1.06-2.4) and 1.22 (95% CI: 0.82-1.8). The sensitivity analysis showed no change. The meta-regression showed there was not statistical significance for the publication year, research area and research methods. Egger's test showed publication bias in the IBD studies (p = .006 < .05) but no publication bias for the CD (p = .275>.05) and UC studies (p = .537>.05).Conclusions: There was a positive association between antibiotic use in childhood and the subsequently risk of Crohn's disease in non-European countries in the west during 2010-2013. Children in the United States taking antibiotics will have a higher risk of subsequently IBD than Europe, Asia and Australia. Registration number: CRD42019147648 (PROSPERO).

RevDate: 2020-03-17

El-Awady A, de Sousa Rabelo M, Meghil MM, et al (2019)

Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members.

NPJ biofilms and microbiomes, 5(1):11 pii:10.1038/s41522-019-0084-7.

Years of human microbiome research have confirmed that microbes rarely live or function alone, favoring diverse communities. Yet most experimental host-pathogen studies employ single species models of infection. Here, the influence of three-species oral microbial consortium on growth, virulence, invasion and persistence in dendritic cells (DCs) was examined experimentally in human monocyte-derived dendritic cells (DCs) and in patients with periodontitis (PD). Cooperative biofilm formation by Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis was documented in vitro using growth models and scanning electron microscopy. Analysis of growth rates by species-specific 16s rRNA probes revealed distinct, early advantages to consortium growth for S. gordonii and F. nucleatum with P. gingivalis, while P. gingivalis upregulated its short mfa1 fimbriae, leading to increased invasion of DCs. F. nucleatum was only taken up by DCs when in consortium with P. gingivalis. Mature consortium regressed DC maturation upon uptake, as determined by flow cytometry. Analysis of dental plaques of PD and healthy subjects by 16s rRNA confirmed oral colonization with consortium members, but DC hematogenous spread was limited to P. gingivalis and F. nucleatum. Expression of P. gingivalis mfa1 fimbriae was increased in dental plaques and hematogenous DCs of PD patients. P. gingivalis in the consortium correlated with an adverse clinical response in the gingiva of PD subjects. In conclusion, we have identified polymicrobial synergy in a three-species oral consortium that may have negative consequences for the host, including microbial dissemination and adverse peripheral inflammatory responses.

RevDate: 2020-03-17

Tuompo R, Lääveri T, Hannu T, et al (2020)

Reactive arthritis and other musculoskeletal symptoms associated with acquisition of diarrhoeagenic Escherichia coli (DEC).

Annals of the rheumatic diseases pii:annrheumdis-2019-216736 [Epub ahead of print].

OBJECTIVES: Using a prospective research design, we evaluated the association between acquisition of diarrhoeagenic Escherichia coli (DEC) and development of reactive arthritis (ReA) and other reactive musculoskeletal (MSK) symptoms among international travellers.

METHODS: A total of 526 study participants were asked to provide pretravel and post-travel stool samples and fill in questionnaires (pretravel, post-travel and 3-week follow-up). A multiplex quantitative PCR assay was deployed to detect five DEC comprising enteroaggregative E. coli, enteropathogenic E. coli, enterotoxigenic E. coli, enterohaemorrhagic E. coli and enteroinvasive E. coli and Salmonella, Shigella, Campylobacter, Yersinia, and Vibrio cholerae. Multivariate analysis was employed to identify factors predisposing to MSK symptoms. New post-travel MSK symptoms reported by participants with DEC were assessed by phone interviews and, if needed, clinically confirmed.

RESULTS: From among the total of 224 volunteers who returned all questionnaires and stool specimens, 38 (17.0%) reported MSK symptoms. Multivariate analysis revealed that acquisition of DEC was associated with MSK symptoms (OR 3.9; 95% CI 1.2 to 13.3). Of the 151 with only-DEC, four (2.6%) had ReA, two (1.3%) reactive tendinitis and three (2.0%) reactive arthralgia. ReA was mostly mild, and all patients with ReA were negative for human leucocyte antigen B27. Antibiotic treatment of travellers' diarrhoea did not prevent development of MSK symptoms.

CONCLUSION: A total of 17% of volunteers reported post-travel MSK symptoms. DEC acquisition was associated with an increased risk of developing them, yet the ReA incidence remained low and the clinical picture mild. Antibiotic treatment did not protect against development of MSK symptoms.

RevDate: 2020-03-16

Sarra A, Celluzzi A, Bruno SP, et al (2020)

Biophysical Characterization of Membrane Phase Transition Profiles for the Discrimination of Outer Membrane Vesicles (OMVs) From Escherichia coli Grown at Different Temperatures.

Frontiers in microbiology, 11:290.

Dynamic Light Scattering (DLS), Small Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM) are physical techniques widely employed to characterize the morphology and the structure of vesicles such as liposomes or human extracellular vesicles (exosomes). Bacterial extracellular vesicles are similar in size to human exosomes, although their function and membrane properties have not been elucidated in such detail as in the case of exosomes. Here, we applied the above cited techniques, in synergy with the thermotropic characterization of the vesicles lipid membrane using a turbidimetric technique to the study of vesicles produced by Gram-negative bacteria (Outer Membrane Vesicles, OMVs) grown at different temperatures. This study demonstrated that our combined approach is useful to discriminate vesicles of different origin or coming from bacteria cultured under different experimental conditions. We envisage that in a near future the techniques employed in our work will be further implemented to discriminate complex mixtures of bacterial vesicles, thus showing great promises for biomedical or diagnostic applications.

RevDate: 2020-03-14

Bhatt AP, Pellock SJ, Biernat KA, et al (2020)

Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy.

Proceedings of the National Academy of Sciences of the United States of America pii:1918095117 [Epub ahead of print].

Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.

RevDate: 2020-03-14

Murugesan S, Al Ahmad SF, Singh P, et al (2020)

Profiling the Salivary microbiome of the Qatari population.

Journal of translational medicine, 18(1):127 pii:10.1186/s12967-020-02291-2.

BACKGROUND: The role of the human microbiome in human health and disease has been studied in various body sites. However, compared to the gut microbiome, where most of the research focus is, the salivary microbiome still bears a vast amount of information that needs to be revealed. This study aims to characterize the salivary microbiome composition in the Qatari population, and to explore specific microbial signatures that can be associated with various lifestyles and different oral conditions.

MATERIALS AND METHODS: We characterized the salivary microbiome of 997 Qatari adults using high-throughput sequencing of the V1-V3 region of the 16S rRNA gene.

RESULTS: In this study, we have characterized the salivary microbiome of 997 Qatari participants. Our data show that Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria are the common phyla isolated from the saliva samples, with Bacteroidetes being the most predominant phylum. Bacteroidetes was also more predominant in males versus females in the study cohort, although differences in the microbial diversity were not statistically significant. We also show that, a lower diversity of the salivary microbiome is observed in the elderly participants, with Prevotella and Treponema being the most significant genera. In participants with oral conditions such as mouth ulcers, bleeding or painful gum, our data show that Prevotella and Capnocytophaga are the most dominant genera as compared to the controls. Similar patterns were observed in participants with various smoking habits as compared to the non-smoking participants. Our data show that Streptococcus and Neisseria are more dominant among denture users, as compared to the non-denture users. Our data also show that, abnormal oral conditions are associated with a reduced microbial diversity and microbial richness. Moreover, in this study we show that frequent coffee drinkers have higher microbial diversity compared to the non-drinkers, indicating that coffee may cause changes to the salivary microbiome. Furthermore, tea drinkers show higher microbial richness as compared to the non-tea drinkers.

CONCLUSION: This is the first study to assess the salivary microbiome in an Arab population, and one of the largest population-based studies aiming to the characterize the salivary microbiome composition and its association with age, oral health, denture use, smoking and coffee-tea consumption.

RevDate: 2020-03-13

Belmok A, de Cena JA, Kyaw CM, et al (2020)

The Oral Archaeome: A Scoping Review.

Journal of dental research [Epub ahead of print].

The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.

RevDate: 2020-03-13

Depommier C, Van Hul M, Everard A, et al (2020)

Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice.

Gut microbes [Epub ahead of print].

Accumulating evidence points to Akkermansia muciniphila as a novel candidate to prevent or treat obesity-related metabolic disorders. We recently observed, in mice and in humans, that pasteurization of A. muciniphila increases its beneficial effects on metabolism. However, it is currently unknown if the observed beneficial effects on body weight and fat mass gain are due to specific changes in energy expenditure. Therefore, we investigated the effects of pasteurized A. muciniphila on whole-body energy metabolism during high-fat diet feeding by using metabolic chambers. We confirmed that daily oral administration of pasteurized A. muciniphila alleviated diet-induced obesity and decreased food energy efficiency. We found that this effect was associated with an increase in energy expenditure and spontaneous physical activity. Strikingly, we discovered that energy expenditure was enhanced independently from changes in markers of thermogenesis or beiging of the white adipose tissue. However, we found in brown and white adipose tissues that perilipin2, a factor associated with lipid droplet and known to be altered in obesity, was decreased in expression by pasteurized A. muciniphila. Finally, we observed that treatment with pasteurized A. muciniphila increased energy excretion in the feces. Interestingly, we demonstrated that this effect was not due to the modulation of intestinal lipid absorption or chylomicron synthesis but likely involved a reduction of carbohydrates absorption and enhanced intestinal epithelial turnover.In conclusion, this study further dissects the mechanisms by which pasteurized A. muciniphila reduces body weight and fat mass gain. These data also further support the impact of targeting the gut microbiota by using specific bacteria to control whole-body energy metabolism.

RevDate: 2020-03-13

Antosca K, Hoen AG, Palys T, et al (2020)

Reliability of stool microbiome methods for DNA yields and sequencing among infants and young children.

MicrobiologyOpen [Epub ahead of print].

With the emergence of large-scale epidemiologic human microbiome studies, there is a need to understand the reproducibility of microbial DNA sequencing and the impact of specimen collection and processing methods on measures of microbial community composition and structure, with reproducibility studies in infants and young children particularly lacking. Here, we examined batch-to-batch variability and reliability of collection, handling, and processing protocols, testing replicate stool samples from infants and young children using Illumina MiSeq sequencing of the bacterial 16S rRNA gene V4-V5 hypervariable region, evaluating 33 conditions with different protocols and extraction methods. We detected no evidence of batch effects in replicate DNA samples or extractions from the same stool sample. Variability in DNA yield and alpha diversity was observed between the different collection, handling, and processing protocols. However, across all protocols, subject variability was the dominant contributor to microbiome structure, with comparatively little impact of the protocol used. While collection method and DNA extraction kit may affect DNA yield, and correspondingly alpha diversity, our findings suggest that characterization of the structure and composition of the fecal microbiome of infants and young children are reliably measurable by standardized collection, handling, and processing protocols and DNA extraction methods within an individual longitudinal study.

RevDate: 2020-03-11

Romani L, Del Chierico F, Chiriaco M, et al (2020)

Gut Mucosal and Fecal Microbiota Profiling Combined to Intestinal Immune System in Neonates Affected by Intestinal Ischemic Injuries.

Frontiers in cellular and infection microbiology, 10:59.

Background and Purpose: Early life microbiota plays a crucial role in human health by acting as a barrier from pathogens' invasion and maintaining the intestinal immune homoeostasis. Altered fecal microbiota (FM) ecology was reported in newborns affected by intestinal ischemia. Our purpose was to describe, in these patients, the FM, the mucosal microbiota (MM) and the mucosal immunity. Methods: Fourteen newborns underwent intestinal resection because of intestinal ischemia. FM and MM were determined through targeted-metagenomics, diversity assignment and Kruskal-Wallis analyses of Operational taxonomic units (OTUs). The mucosal immune cells were analyzed through cytofluorimetry. Results and Conclusion: Based on the severity intestinal injueris we identified two groups: extensive (EII) and focal intestinal ischemia (FII). FM and MM varied in EII and FII groups, showing in the EII group the predominance of Proteobacteria and Enterobacteriaceae and the reduction of Bacteroidetes and Verrucomicrobia for both microbiota. The MM was characterized by a statistically significant reduction of Bacteroides, Lachnospiraceae and Ruminococcaceae and by a higher diversity in the EII compared to FII group. FM showed a prevalence of Proteobacteria, while the Shannon index was lower in the EII compared to FII group. An overall increment in B- and T-lymphocytes and Natural killer (NK) T-like cells was found for EII mucosal samples associated to an increment of TNF-α and INF-γ expressing cells, compared to FII group. FM and MM carry specific signatures of intestinal ischemic lesions. Further research may be crucial to address the role of specific taxa in EII, expecially with reference to inflammation grade and ischemia extension.

RevDate: 2020-03-11

Pan S, Hullar MAJ, Lai LA, et al (2020)

Gut Microbial Protein Expression in Response to Dietary Patterns in a Controlled Feeding Study: A Metaproteomic Approach.

Microorganisms, 8(3): pii:microorganisms8030379.

Although the gut microbiome has been associated with dietary patterns linked to health, microbial metabolism is not well characterized. This ancillary study was a proof of principle analysis for a novel application of metaproteomics to study microbial protein expression in a controlled dietary intervention. We measured the response of the microbiome to diet in a randomized crossover dietary intervention of a whole-grain, low glycemic load diet (WG) and a refined-grain, high glycemic load diet (RG). Total proteins in stools from 9 participants at the end of each diet period (n = 18) were analyzed by LC MS/MS and proteins were identified using the Human Microbiome Project (HMP) human gut microbiome database and UniProt human protein databases. T-tests, controlling for false discovery rate (FDR) <10%, were used to compare the Gene Ontology (GO) biological processes and bacterial enzymes between the two interventions. Using shotgun proteomics, more than 53,000 unique peptides were identified including microbial (89%) and human peptides (11%). Forty-eight bacterial enzymes were statistically different between the diets, including those implicated in SCFA production and degradation of fatty acids. Enzymes associated with degradation of human mucin were significantly enriched in the RG diet. These results illustrate that the metaproteomic approach is a valuable tool to study the microbial metabolism of diets that may influence host health.

RevDate: 2020-03-10

Ma Y, Liu G, Ma Y, et al (2020)

Integrative Analysis for Identifying Co-Modules of Microbe-Disease Data by Matrix Tri-Factorization With Phylogenetic Information.

Frontiers in genetics, 11:83.

Microbe-disease association relationship mining is drawing more and more attention due to its potential in capturing disease-related microbes. Hence, it is essential to develop new tools or algorithms to study the complex pathogenic mechanism of microbe-related diseases. However, previous research studies mainly focused on the paradigm of "one disease, one microbe," rarely investigated the cooperation and associations between microbes, diseases or microbe-disease co-modules from system level. In this study, we propose a novel two-level module identifying algorithm (MDNMF) based on nonnegative matrix tri-factorization which integrates two similarity matrices (disease and microbe similarity matrices) and one microbe-disease association matrix into the objective of MDNMF. MDNMF can identify the modules from different levels and reveal the connections between these modules. In order to improve the efficiency and effectiveness of MDNMF, we also introduce human symptoms-disease network and microbial phylogenetic distance into this model. Furthermore, we applied it to HMDAD dataset and compared it with two NMF-based methods to demonstrate its effectiveness. The experimental results show that MDNMF can obtain better performance in terms of enrichment index (EI) and the number of significantly enriched taxon sets. This demonstrates the potential of MDNMF in capturing microbial modules that have significantly biological function implications.

RevDate: 2020-03-08

Cheng H, Wang Z, Cui L, et al (2020)

Opportunities and Challenges of the Human Microbiome in Ovarian Cancer.

Frontiers in oncology, 10:163.

Ovarian cancer is the most lethal malignancy among gynecological cancers worldwide. Most ovarian cancer patients are diagnosed at an advanced stage because of non-specific clinical symptoms. The human microbiome plays a crucial role in maintaining the normal physiological and pathological state of the body. With the development of technologies such as DNA and 16S rRNA sequencing, an increasing number of findings on the role of microbiome in cancers are being reported. Microbiome abnormalities are increasingly associated with diseases, including cancer development, and response to therapies. Some studies have shown the relationship between microbiome changes and ovarian cancer. However, the mechanisms underlying this relationship are not yet fully understood. Here, we summarize the key findings in this regard by focusing on estrogen metabolism and host recognition receptors in microorganisms and changes in the gut or pelvic microbiome in patients with ovarian cancer. We further discuss the potential of using the microbiome as a novel biomarker for cancers. We also highlight the possibility to use microorganisms as a treatment modality to enhance the immune system, activate anti-tumor response, mediate chemotherapy resistance, and ameliorate the adverse effects of the treatment.

RevDate: 2020-03-05

Bellone M, Brevi A, S Huber (2020)

Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer.

Microbiology and molecular biology reviews : MMBR, 84(2): pii:84/2/e00064-19.

SUMMARYTechnologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.

RevDate: 2020-03-04

Vairakkani R, Fernando ME, TY Raj (2020)

Metabolome and microbiome in kidney diseases.

Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia, 31(1):1-9.

Despite several decades of intensive research and hard work in nephrology, a void exists in the availability of markers for identifying at-risk individuals, diagnosing diseases at incipient stage, and predicting treatment response. Most of the current widely available diagnostic tools such as creatinine, urine analysis, and imaging studies are quite insensitive such that about half of the kidney function is lost before perceivable changes are observed with these tests. In addition, these parameters are affected by factors other than renal, questioning their specificity. Renal biopsy, though specific, is quite expensive, risky, and invasive. The recent surge in the knowledge of small molecules in the tissue and body fluids, "metabolomics," thanks to the Human Metabolome Database created by the Human Metabolome Project, has opened a new avenue for better understanding the disease pathogenesis and, in parallel, to identify novel biomarkers and druggable targets. Kidney, by virtue of its metabolic machinery and also being a major handler of metabolites generated by other tissues, is very much amenable to the metabolomic approach of studying its various perturbations. The gut microbiome, characterized by the Human Microbiome Project, is one of the principal players in metabolomics. Changes in metabolite profile due to alterations in gut microbiome can occur either as a cause or consequence of renal diseases. Unmasking the renal-metabolome-microbiome link has a great potential to script a new era in the diagnosis and management of renal diseases.

RevDate: 2020-03-03

Sare AR, Stouvenakers G, Eck M, et al (2020)

Standardization of Plant Microbiome Studies: Which Proportion of the Microbiota is Really Harvested?.

Microorganisms, 8(3): pii:microorganisms8030342.

Studies in plant-microbiome currently use diverse protocols, making their comparison difficult and biased. Research in human microbiome have faced similar challenges, but the scientific community proposed various recommendations which could also be applied to phytobiome studies. Here, we addressed the isolation of plant microbiota through apple carposphere and lettuce root microbiome. We demonstrated that the fraction of the culturable epiphytic microbiota harvested by a single wash might only represent one-third of the residing microbiota harvested after four successive washes. In addition, we observed important variability between the efficiency of washing protocols (up to 1.6-fold difference for apple and 1.9 for lettuce). QIIME2 analysis of 16S rRNA gene, showed a significant difference of the alpha and beta diversity between protocols in both cases. The abundance of 76 taxa was significantly different between protocols used for apple. In both cases, differences between protocols disappeared when sequences of the four washes were pooled. Hence, pooling the four successive washes increased the alpha diversity for apple in comparison to a single wash. These results underline the interest of repeated washing to leverage abundance of microbial cells harvested from plant epiphytic microbiota whatever the washing protocols, thus minimizing bias.

RevDate: 2020-03-05

Tsigalou C, Konstantinidis T, Stavropoulou E, et al (2020)

Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods.

Frontiers in microbiology, 11:50.

Recent advances in technology over the last decades have strived to elucidate the diverse and abundant ecosystem of the human microbiome. The intestinal microbiota represents a densely inhabited environment that offers a plethora of beneficial effects to the host's wellbeing. On the other hand, it can serve as a potential reservoir of Multi-Drug Resistant (MDR) bacteria and their antibiotic-resistant genes (ARgenes), which comprise the "gut resistome." ARgenes, like antibiotics, have been omnipresent in the environment for billions of years. In the context of the gut microbiome, these genes may conflate into exogenous MDR or emerge in commensals due to mutations or gene transfers. It is currently generally accepted that Antimicrobial Resistance (AMR) poses a serious threat to public health worldwide. It is of paramount importance that researchers focus on, amongst other parameters, elaborating strategies to manage the gut resistome, particularly focusing on the diminution of AMR. Potential interventions in the gut microbiome field by Fecal Microbiota Transplant (FMT) or functional foods are newly emerged candidates for the uprooting of MDR strains and restoring dysbiosis and resilience. Probiotic nutrition is thought to diminish gut colonization from pathobionts. Yet only a few studies have explored the effects of antibiotics use on the reservoir of AR genes and the demanding time for return to normal by gut microbiota-targeted strategies. Regular administration of probiotic bacteria has recently been linked to restoration of the gut ecosystem and decrease of the gut resistome and AR genes carriers. This review summarizes the latest information about the intestinal resistome and the intriguing methods of fighting against AMR through probiotic-based methods and gut microbial shifts that have been proposed. This study contains some key messages: (1) AMR currently poses a lethal threat to global health, and it is pivotal for the scientific community to do its utmost in fighting against it; (2) human gut microbiome research, within the last decade especially, seems to be preoccupied with the interface of numerous diseases and identifying a potential target for a variety of interventions; (3) the gut resistome, comprised of AR genesis, presents very early on in life and is prone to shifts due to the use of antibiotics or dietary supplements; and (4) future strategies involving functional foods seem promising for the battle against AMR through intestinal resistome diminution.

RevDate: 2020-02-29

Domingue JC, Drewes JL, Merlo CA, et al (2020)

Host responses to mucosal biofilms in the lung and gut.

Mucosal immunology pii:10.1038/s41385-020-0270-1 [Epub ahead of print].

The impact of the human microbiome on health and disease is of utmost importance and has been studied intensively in recent years. Microbes promote immune system development and are essential to the production and absorption of nutrients for the host but are also implicated in disease pathogenesis. Particularly, bacterial biofilms have long been recognized as contributors to chronic infections and diseases in humans. However, our understanding of how the host responds to the presence of biofilms, specifically the immune response to biofilms, and how this contributes to disease pathogenesis is limited. This review aims to highlight what is known about biofilm formation and in vivo models available for the biofilm study. We critique the contribution of biofilms to human diseases, focusing on the lung diseases, cystic fibrosis and chronic obstructive pulmonary disease, and the gut diseases, inflammatory bowel disease and colorectal cancer.

RevDate: 2020-03-08

Tarsillo B, R Priefer (2020)

Proteobiotics as a new antimicrobial therapy.

Microbial pathogenesis, 142:104093 pii:S0882-4010(19)32136-9 [Epub ahead of print].

Antibiotic resistance is a major concern for healthcare. The emergence of resistant bacteria has contributed to an increase in cost, morbidity, and mortality rates of patients. There is evidence to suggest that the inhibition of bacteria's virulence strategies would downregulate their pathogenesis and stop infections while also preventing more resistance. This concept became the backbone of many studies in the arena of human microbiome. Through probiotic studies, novel compounds were discovered that possessed antimicrobial activity. These have become labeled as proteobiotics, i.e. metabolites from probiotics. Proteobiotics have demonstrated the ability to interrupt bacteria cell-to-cell communication. Currently, there is one approved product containing proteobiotic technologies for swine showing positive outcomes.

RevDate: 2020-02-28

de Jesus VC, Shikder R, Oryniak D, et al (2020)

Sex-Based Diverse Plaque Microbiota in Children with Severe Caries.

Journal of dental research [Epub ahead of print].

Severe early childhood caries (S-ECC) is a multifactorial disease that can lead to suffering and reduced oral health-related quality of life in young children. The bacterial and fungal composition of dental plaque and how children's sex is associated with S-ECC are largely unknown. In this study, V4-16S rRNA and ITS1 rRNA gene amplicon sequencing was used to compare the plaque bacteriome and mycobiome of children <72 mo of age: 40 with S-ECC (15 males, 25 females) and 40 caries-free (19 males, 21 females). Health- and nutrition-related questionnaire data were also investigated. This study aimed to analyze potential sex-based differences in the supragingival plaque microbiota of young children with S-ECC and those caries-free. Behavioral and nutritional habit differences were observed between children with S-ECC and those caries-free and between male and female children. Overall, higher levels of Veillonella dispar, Streptococcus mutans, and other bacterial species were found in the S-ECC group as compared with caries-free controls (P < 0.05). A significant difference in the abundance of Neisseria was observed between males and females with S-ECC (P < .05). Fungal taxonomic analysis showed significantly higher levels of Candida dubliniensis in the plaque of children with S-ECC as compared with those caries-free (P < 0.05), but no differences were observed with Candida albicans (P > 0.05). Significant differences in the relative abundance of Mycosphaerella, Cyberlindnera, and Trichosporon fungal species were also observed between the caries-free and S-ECC groups (P < 0.05). Machine learning analysis revealed the most important bacterial and fungal species for classifying S-ECC versus caries-free. Different patterns of crosstalk between microbial species were observed between male and female children. Our work demonstrates that plaque microbiota and sex may be important determinants for S-ECC and could be factors to consider for inclusion in caries risk assessment tools.

RevDate: 2020-02-28

Ruokolainen L, Parkkola A, Karkman A, et al (2020)

Contrasting microbiotas between Finnish and Estonian infants: exposure to Acinetobacter may contribute to the allergy gap.

Allergy [Epub ahead of print].

BACKGROUND: Allergic diseases are more common in Finland than in Estonia, which-according to the biodiversity hypothesis-could relate to differences in early microbial exposures.

METHODS: We aimed at defining possible microbial perturbations preceding early atopic sensitisation. Stool, nasal, and skin samples of 6-month-old DIABIMMUNE study participants with HLA susceptibility to type 1 diabetes were collected. We compared microbiotas of sensitised (determined by specific IgE-results at 18 months of age) and unsensitised Estonian and Finnish children.

RESULTS: Sensitisation was differentially targeted between populations, as egg- and birch pollen-specific IgE was more common in Finland. Microbial diversity and community composition also differed; the genus Acinetobacter was more abundant in Estonian skin- and nasal samples. Particularly, the strain level profile of Acinetobacter lwoffii was more diverse in Estonian samples. Early microbiota was not generally associated with later sensitisation. Microbial composition tended to differ between children with or without IgE-related sensitisation, but only in Finland. While land-use pattern (i.e. green areas vs. urban landscapes around the children's homes) was not associated with microbiota as a whole, it associated with the composition of the genus Acinetobacter. Breastfeeding affected gut microbial composition and seemed to protect from sensitisation.

CONCLUSIONS: In accordance with the biodiversity hypothesis, our results support disparate early exposure to environmental microbes between Finnish and Estonian children and suggest a significant role of the genus Acinetobacter in the allergy gap between the two populations. The significance of the observed differences for later allergic sensitisation remains open.

RevDate: 2020-02-28

Merli P, Putignani L, Ruggeri A, et al (2020)

Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic hematopoietic stem cell transplantation: gut microbiota profiling, infectious and clinical outcomes.

Haematologica pii:haematol.2019.244210 [Epub ahead of print].

RevDate: 2020-03-04

Shen L (2020)

Gut, oral and nasal microbiota and Parkinson's disease.

Microbial cell factories, 19(1):50.

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and in an effort to identify novel therapeutic target for this disease in recent years, human microbiota has attracted much interest. This paper briefly summarizes the main findings concerning the differences of human microbiome across several important mucosal interfaces, including nose, mouth, and gut between PD patients and controls as obtained from a total of 13 studies published since 2015, which covered a total of 943 PD patients and 831 matched controls from 6 countries. Overall, these studies supported the differences of gut microbiota between PD patients and matched controls, while significantly altered bacterial taxa among studies were not identical. Due to relatively limited number of available studies and covered patients, the associations between oral and nasal microbiota and PD remain inconclusive. The therapeutic and diagnostic potentials of gut microbiota for PD are discussed. More well-designed clinical studies recruiting large-scale PD patients are encouraged in future.

RevDate: 2020-02-27

Ulaszewska MM, Koutsos A, Trošt K, et al (2020)

Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan.

European journal of nutrition pii:10.1007/s00394-020-02201-8 [Epub ahead of print].

PURPOSE: Validated biomarkers of food intake (BFIs) have recently been suggested as a useful tool to assess adherence to dietary guidelines or compliance in human dietary interventions. Although many new candidate biomarkers have emerged in the last decades for different foods from metabolic profiling studies, the number of comprehensively validated biomarkers of food intake is limited. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fibers, an important mediator for their health-protective properties.

METHODS: Using an untargeted metabolomics approach, we aimed to identify biomarkers of long-term apple intake and explore how apples impact on the human plasma and urine metabolite profiles. Forty mildly hypercholesterolemic volunteers consumed two whole apples or a sugar and energy-matched control beverage, daily for 8 weeks in a randomized, controlled, crossover intervention study. The metabolome in plasma and urine samples was analyzed via untargeted metabolomics.

RESULTS: We found 61 urine and 9 plasma metabolites being statistically significant after the whole apple intake compared to the control beverage, including several polyphenol metabolites that could be used as BFIs. Furthermore, we identified several endogenous indole and phenylacetyl-glutamine microbial metabolites significantly increasing in urine after apple consumption. The multiomic dataset allowed exploration of the correlations between metabolites modulated significantly by the dietary intervention and fecal microbiota species at genus level, showing interesting interactions between Granulicatella genus and phenyl-acetic acid metabolites. Phloretin glucuronide and phloretin glucuronide sulfate appeared promising biomarkers of apple intake; however, robustness, reliability and stability data are needed for full BFI validation.

CONCLUSION: The identified apple BFIs can be used in future studies to assess compliance and to explore their health effects after apple intake. Moreover, the identification of polyphenol microbial metabolites suggests that apple consumption mediates significant gut microbial metabolic activity which should be further explored.

RevDate: 2020-03-06

Quinn RA, Melnik AV, Vrbanac A, et al (2020)

Global chemical effects of the microbiome include new bile-acid conjugations.

Nature, 579(7797):123-129.

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.

RevDate: 2020-03-08

Wu L, Zeng T, Deligios M, et al (2020)

Age-Related Variation of Bacterial and Fungal Communities in Different Body Habitats across the Young, Elderly, and Centenarians in Sardinia.

mSphere, 5(1):.

Human body microbes interact with the host, forming microbial communities that are in continual flux during the aging process. Previous studies have mostly focused on surveying a single body habitat to determine the age-related variation in the bacterial and fungal communities. A more comprehensive understanding of the variation in the human microbiota and mycobiota across multiple body habitats related to aging is still unclear. To obtain an integrated view of the spatial distribution of microbes in a specific Mediterranean population across a wide age range, we surveyed the bacterial and fungal communities in the skin, oral cavity, and gut in the young, elderly, and centenarians in Sardinia using 16S rRNA gene and internal transcribed spacer 1 (ITS1) sequencing. We found that the distribution and correlation of bacterial and fungal communities in Sardinians were largely determined by body site. In each age group, the bacterial and fungal communities found in the skin were significantly different in structure. In the oral cavity, age had a marginal impact on the structures of the bacterial and fungal communities. Furthermore, the gut bacterial communities in centenarians clustered separately from those of the young and elderly, while the fungal communities in the gut habitat could not be separated by host age.IMPORTANCE Site-specific microbial communities are recognized as important factors in host health and disease. To better understand how the human microbiota potentially affects and is affected by its host during the aging process, the fundamental issue to address is the distribution of microbiota related to age. Here, we show an integrated view of the spatial distribution of microbes in a specific Mediterranean population (Sardinians) across a wide age range. Our study indicates that age plays a critical role in shaping the human microbiota in a habitat-dependent manner. The dynamic age-related microbiota changes we observed across multiple body sites may provide possibilities for modulating microbe communities to maintain or improve health during aging.

RevDate: 2020-02-27

Lopez-Santamarina A, Miranda JM, Mondragon ADC, et al (2020)

Potential Use of Marine Seaweeds as Prebiotics: A Review.

Molecules (Basel, Switzerland), 25(4): pii:molecules25041004.

Human gut microbiota plays an important role in several metabolic processes and human diseases. Various dietary factors, including complex carbohydrates, such as polysaccharides, provide abundant nutrients and substrates for microbial metabolism in the gut, affecting the members and their functionality. Nowadays, the main sources of complex carbohydrates destined for human consumption are terrestrial plants. However, fresh water is an increasingly scarce commodity and world agricultural productivity is in a persistent decline, thus demanding the exploration of other sources of complex carbohydrates. As an interesting option, marine seaweeds show rapid growth and do not require arable land, fresh water or fertilizers. The present review offers an objective perspective of the current knowledge surrounding the impacts of seaweeds and their derived polysaccharides on the human microbiome and the profound need for more in-depth investigations into this topic. Animal experiments and in vitro colonic-simulating trials investigating the effects of seaweed ingestion on human gut microbiota are discussed.

RevDate: 2020-02-27

Xavier JB, Young VB, Skufca J, et al (2020)

The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View.

Trends in cancer, 6(3):192-204.

The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.

RevDate: 2020-02-28

Michael H, Mpofana T, Ramlall S, et al (2020)

The Role of Brain Derived Neurotrophic Factor in HIV-Associated Neurocognitive Disorder: From the Bench-Top to the Bedside.

Neuropsychiatric disease and treatment, 16:355-367.

Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) remains prevalent in the anti-retroviral (ART) era. While there is a complex interplay of many factors in the neuropathogenesis of HAND, decreased neurotrophic synthesis has been shown to contribute to synaptic degeneration which is a hallmark of HAND neuropathology. Brain derived neurotrophic factor (BDNF) is the most abundant and synaptic-promoting neurotrophic factor in the brain and plays a critical role in both learning and memory. Reduced BDNF levels can worsen neurocognitive impairment in HIV-positive individuals across several domains. In this paper, we review the evidence from pre-clinical and clinical studies showing the neuroprotective roles of BDNF against viral proteins, effect on co-morbid mental health disorders, altered human microbiome and ART in HAND management. Potential applications of BDNF modulation in pharmacotherapeutic, cognitive and behavioral interventions in HAND are also discussed. Finally, research gaps and future research direction are identified with the aim of helping researchers to direct efforts to make these BDNF driven interventions improve the quality of life of patients living with HAND.

RevDate: 2020-03-08

Rosa BA, Mihindukulasuriya K, Hallsworth-Pepin K, et al (2020)

Improving Characterization of Understudied Human Microbiomes Using Targeted Phylogenetics.

mSystems, 5(1):.

Whole-genome bacterial sequences are required to better understand microbial functions, niche-specific bacterial metabolism, and disease states. Although genomic sequences are available for many of the human-associated bacteria from commonly tested body habitats (e.g., feces), as few as 13% of bacterium-derived reads from other sites such as the skin map to known bacterial genomes. To facilitate a better characterization of metagenomic shotgun reads from underrepresented body sites, we collected over 10,000 bacterial isolates originating from 14 human body habitats, identified novel taxonomic groups based on full-length 16S rRNA gene sequences, clustered the sequences to ensure that no individual taxonomic group was overselected for sequencing, prioritized bacteria from underrepresented body sites (such as skin and respiratory and urinary tracts), and sequenced and assembled genomes for 665 new bacterial strains. Here, we show that addition of these genomes improved read mapping rates of Human Microbiome Project (HMP) metagenomic samples by nearly 30% for the previously underrepresented phylum Fusobacteria, and 27.5% of the novel genomes generated here had high representation in at least one of the tested HMP samples, compared to 12.5% of the sequences in the public databases, indicating an enrichment of useful novel genomic sequences resulting from the prioritization procedure. As our understanding of the human microbiome continues to improve and to enter the realm of therapy developments, targeted approaches such as this to improve genomic databases will increase in importance from both an academic and a clinical perspective.IMPORTANCE The human microbiome plays a critically important role in health and disease, but current understanding of the mechanisms underlying the interactions between the varying microbiome and the different host environments is lacking. Having access to a database of fully sequenced bacterial genomes provides invaluable insights into microbial functions, but currently sequenced genomes for the human microbiome have largely come from a limited number of body sites (primarily feces), while other sites such as the skin, respiratory tract, and urinary tract are underrepresented, resulting in as little as 13% of bacterium-derived reads mapping to known bacterial genomes. Here, we sequenced and assembled 665 new bacterial genomes, prioritized from a larger database to select underrepresented body sites and bacterial taxa in the existing databases. As a result, we substantially improve mapping rates for samples from the Human Microbiome Project and provide an important contribution to human bacterial genomic databases for future studies.

RevDate: 2020-03-01

Marsland R, Cui W, P Mehta (2020)

A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns.

Scientific reports, 10(1):3308.

Surveys of microbial biodiversity such as the Earth Microbiome Project (EMP) and the Human Microbiome Project (HMP) have revealed robust ecological patterns across different environments. A major goal in ecology is to leverage these patterns to identify the ecological processes shaping microbial ecosystems. One promising approach is to use minimal models that can relate mechanistic assumptions at the microbe scale to community-level patterns. Here, we demonstrate the utility of this approach by showing that the Microbial Consumer Resource Model (MiCRM) - a minimal model for microbial communities with resource competition, metabolic crossfeeding and stochastic colonization - can qualitatively reproduce patterns found in survey data including compositional gradients, dissimilarity/overlap correlations, richness/harshness correlations, and nestedness of community composition. By using the MiCRM to generate synthetic data with different environmental and taxonomical structure, we show that large scale patterns in the EMP can be reproduced by considering the energetic cost of surviving in harsh environments and HMP patterns may reflect the importance of environmental filtering in shaping competition. We also show that recently discovered dissimilarity-overlap correlations in the HMP likely arise from communities that share similar environments rather than reflecting universal dynamics. We identify ecologically meaningful changes in parameters that alter or destroy each one of these patterns, suggesting new mechanistic hypotheses for further investigation. These findings highlight the promise of minimal models for microbial ecology.

RevDate: 2020-02-27

Gupta V, Kumar R, Sood U, et al (2020)

Reconciling Hygiene and Cleanliness: A New Perspective from Human Microbiome.

Indian journal of microbiology, 60(1):37-44.

The term hygiene is deeply rooted with the concept of maintaining sound health and alertness towards cleanliness, while "hygiene hypothesis" depicts the protective role of microbial community exposure in development of early immunity and initial allergic and aesthetic reactions. The tug-of-war has now been pushed toward the literal term "hygiene" over the "hygiene hypothesis" and has continued with disinfection of all microbial loads from the related environments to avoid infections in humans. With the advancement in the microbiome studies, it became clear that humans possess warm, and significant relationships with diverse microbial community. With this opinion article, we have emphasized on the importance of hygiene hypothesis in immunological responses. We also propose the individual/targeted hygiene instead of application of unanimous hygiene hypothesis. This review also elaborates the common practices that should be employed to maintain hygiene along with the balanced microbiome.

RevDate: 2020-02-27

Singhvi N, Gupta V, Gaur M, et al (2020)

Interplay of Human Gut Microbiome in Health and Wellness.

Indian journal of microbiology, 60(1):26-36.

The gut microbiome analysis, with specific interest on their direct impact towards the human health, is currently revolutionizing the unexplored frontiers of the pathogenesis and wellness. Although in-depth investigations of gut microbiome, 'the Black Boxes', complexities and functionalities are yet at its infancy, profound evidences are being reported for their concurrent involvement in disease etiology and its treatment. Interestingly, studies from the 'minimal murine' (Oligo-MM12), 'humanized' microbiota gnotobiotic mice models and patient samples, combined with multi-omics and cell biology approaches, have been revealing the implications of these findings in the treatment of gut dysbiosis associated diseases. Nonetheless, due to the inherent heterogeneity of the gut commensals and their unified co-existence with opportunistic pathobionts, it is utmost essential to highlight their functionalities in 'good or bad' gut in human wellness. We have specifically reviewed dietary lifestyle and infectious diseases linked with the gut bacterial consortia to delineate the ecobiotic approaches towards their treatment. This notably includes gut mucosal immunity mediated diseases such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc. Alongside of each dysbiosis, we have described the current therapeutic advancements of the pre- and probiotics derived from human microbiome studies to restore gut microbial homeostasis. With a continuous running debate on the role of microbiota in above mentioned diseases, we have collected numerous scientific evidences highlighting a previously unanticipated complex involvement of gut microbiome in the potential of human health.

RevDate: 2020-02-21

Piersigilli F, Syed M, Lam TT, et al (2020)

An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling.

Journal of perinatology : official journal of the California Perinatal Association pii:10.1038/s41372-020-0623-3 [Epub ahead of print].

INTRODUCTION: The omic approach can help identify a signature that can be potentially used as biomarkers in babies with congenital diaphragmatic hernia (CDH).

OBJECTIVES: To find a specific microRNA (miR) and metabolic fingerprint of the tracheal aspirates (TA) of CDH patients. We conducted a genetic analysis from blood samples.

METHODS: TA samples collected in the first 48 h of life in patients with CDH, compared with age-matched controls. Metabolomics done by a mass spectroscopy-based assay. Genomics done using chromosomal microarray analysis.

RESULTS: CDH (n = 17) and 16 control neonates enrolled. miR-16, miR-17, miR-18, miR-19b, and miR-20a had an increased expression, while miR-19a had a twofold decreased expression in CDH patients, compared with age-matched control patients. Specific metabolites separated neonates with CDH from controls. A genetic mutation found in a small subset of patients.

CONCLUSIONS: Specific patterns of metabolites and miR expression can be discerned in TA samples in infants with CDH.

RevDate: 2020-02-26

Grosse CSJ, Christophersen CT, Devine A, et al (2020)

The role of a plant-based diet in the pathogenesis, etiology and management of the inflammatory bowel diseases.

Expert review of gastroenterology & hepatology [Epub ahead of print].

Introduction: Inflammatory Bowel Disease (IBD) carries a significant burden on an individual's quality-of-life and on the healthcare system. The majority of patients use dietary modifications to manage their symptoms, despite limited research to support these changes. There is emerging data that a plant-based diet will be of benefit to IBD patients.Areas covered: A literature review on the pathogenesis and potential benefits of dietary management of IBD.Expert opinion: A Westernized diet has been associated with IBD risk and relapse; hence a plant-based diet may be of benefit to IBD patients through reducing inflammation and restoring symbiosis. Dietary therapy can be an important adjunct therapy, however, better quality studies are still required.

RevDate: 2020-02-26

Bresalier RS, RS Chapkin (2020)

Human Microbiome in Health and Disease: The Good, the Bad, and the Bugly.

Digestive diseases and sciences, 65(3):671-673.

RevDate: 2020-02-20

Darcy JL, Washburne AD, Robeson MS, et al (2020)

A phylogenetic model for the recruitment of species into microbial communities and application to studies of the human microbiome.

The ISME journal pii:10.1038/s41396-020-0613-7 [Epub ahead of print].

Understanding when and why new species are recruited into microbial communities is a formidable problem with implications for managing microbial systems, for instance by helping us better understand whether a probiotic or pathogen would be expected to colonize a human microbiome. Much theory in microbial temporal dynamics is focused on how phylogenetic relationships between microbes impact the order in which those microbes are recruited; for example, species that are closely related may competitively exclude each other. However, several recent human microbiome studies have observed closely related bacteria being recruited into microbial communities in short succession, suggesting that microbial community assembly is historically contingent, but competitive exclusion of close relatives may not be important. To address this, we developed a mathematical model that describes the order in which new species are detected in microbial communities over time within a phylogenetic framework. We use our model to test three hypothetical assembly modes: underdispersion (species recruitment is more likely if a close relative was previously detected), overdispersion (recruitment is more likely if a close relative has not been previously detected), and the neutral model (recruitment likelihood is not related to phylogenetic relationships among species). We applied our model to longitudinal human microbiome data, and found that for the individuals we analyzed, the human microbiome generally follows the underdispersion (i.e., nepotism) hypothesis. Exceptions were oral communities and the fecal communities of two infants that had undergone heavy antibiotic treatment. None of the datasets we analyzed showed statistically significant phylogenetic overdispersion.

RevDate: 2020-02-20

Benedetti F, Cocchi F, Latinovic OS, et al (2020)

Role of Mycoplasma Chaperone DnaK in Cellular Transformation.

International journal of molecular sciences, 21(4): pii:ijms21041311.

Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.

RevDate: 2020-02-19

Swanson KS, de Vos WM, Martens EC, et al (2020)

Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review.

Beneficial microbes [Epub ahead of print].

The inherent and diverse capacity of dietary fibres, nondigestible oligosaccharides (NDOs) and prebiotics to modify the gut microbiota and markedly influence health status of the host has attracted rising interest. Research and collective initiatives to determine the composition and diversity of the human gut microbiota have increased over the past decade due to great advances in high-throughput technologies, particularly the 16S ribosomal RNA (rRNA) sequencing. Here we reviewed the application of 16S rRNA-based molecular technologies, both community wide (sequencing and phylogenetic microarrays) and targeted methodologies (quantitative PCR, fluorescent in situ hybridisation) to study the effect of chicory inulin-type fructans, NDOs and specific added fibres, such as resistant starches, on the human intestinal microbiota. Overall, such technologies facilitated the monitoring of microbiota shifts due to prebiotic/fibre consumption, though there are limited community-wide sequencing studies so far. Molecular studies confirmed the selective bifidogenic effect of fructans and galactooligosaccharides (GOS) in human intervention studies. Fructans only occasionally decreased relative abundance of Bacteroidetes or stimulated other groups. The sequencing studies for various resistant starches, polydextrose and beta-glucan showed broader effects with more and different types of gut microbial species being enhanced, often including phylotypes of Ruminococcaceae. There was substantial variation in terms of magnitude of response and in individual responses to a specific fibre or NDO which may be due to numerous factors, such as initial presence and relative abundance of a microbial type, diet, genetics of the host, and intervention parameters, such as intervention duration and fibre dose. The field will clearly benefit from a more systematic approach that will support defining the impact of prebiotics and fibres on the gut microbiome, identify biomarkers that link gut microbes to health, and address the personalised response of an individual's microbiota to prebiotics and dietary fibres.

RevDate: 2020-02-18

Ghosh TS, Rampelli S, Jeffery IB, et al (2020)

Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries.

Gut pii:gutjnl-2019-319654 [Epub ahead of print].

OBJECTIVE: Ageing is accompanied by deterioration of multiple bodily functions and inflammation, which collectively contribute to frailty. We and others have shown that frailty co-varies with alterations in the gut microbiota in a manner accelerated by consumption of a restricted diversity diet. The Mediterranean diet (MedDiet) is associated with health. In the NU-AGE project, we investigated if a 1-year MedDiet intervention could alter the gut microbiota and reduce frailty.

DESIGN: We profiled the gut microbiota in 612 non-frail or pre-frail subjects across five European countries (UK, France, Netherlands, Italy and Poland) before and after the administration of a 12-month long MedDiet intervention tailored to elderly subjects (NU-AGE diet).

RESULTS: Adherence to the diet was associated with specific microbiome alterations. Taxa enriched by adherence to the diet were positively associated with several markers of lower frailty and improved cognitive function, and negatively associated with inflammatory markers including C-reactive protein and interleukin-17. Analysis of the inferred microbial metabolite profiles indicated that the diet-modulated microbiome change was associated with an increase in short/branch chained fatty acid production and lower production of secondary bile acids, p-cresols, ethanol and carbon dioxide. Microbiome ecosystem network analysis showed that the bacterial taxa that responded positively to the MedDiet intervention occupy keystone interaction positions, whereas frailty-associated taxa are peripheral in the networks.

CONCLUSION: Collectively, our findings support the feasibility of improving the habitual diet to modulate the gut microbiota which in turn has the potential to promote healthier ageing.

RevDate: 2020-02-17

Peñalver Bernabé B, Maki PM, Dowty SM, et al (2020)

Precision medicine in perinatal depression in light of the human microbiome.

Psychopharmacology pii:10.1007/s00213-019-05436-4 [Epub ahead of print].

Perinatal depression is the most common complication of pregnancy and affects the mother, fetus, and infant. Recent preclinical studies and a limited number of clinical studies have suggested an influence of the gut microbiome on the onset and course of mental health disorders. In this review, we examine the current state of knowledge regarding genetics, epigenetics, heritability, and neuro-immuno-endocrine systems biology in perinatal mood disorders, with a particular focus on the interaction between these factors and the gut microbiome, which is mediated via the gut-brain axis. We also provide an overview of experimental and analytical methods that are currently available to researchers interested in elucidating the influence of the gut microbiome on mental health disorders during pregnancy and postpartum.

RevDate: 2020-02-28

Wilson AS, Koller KR, Ramaboli MC, et al (2020)

Diet and the Human Gut Microbiome: An International Review.

Digestive diseases and sciences, 65(3):723-740.

This review summarizes the key results of recently published studies on the effects of dietary change and nutritional intervention on the human microbiome from around the world, focusing on the USA, Canada, Europe, Asia, and Africa. It first explores mechanisms that might explain the ability of fiber-rich foods to suppress the incidence and mortality from westernized diseases, notably cancers of the colon, breast, liver, cardiovascular, infectious, and respiratory diseases, diabetes, and obesity (O'Keefe in Lancet Gastroenterol Hepatol 4(12):984-996, 2019; Am J Clin Nutr 110:265-266, 2019). It summarizes studies from Africa which suggest that disturbance of the colonic microbiome may exacerbate chronic malnutrition and growth failure in impoverished communities and highlights the importance of breast feeding. The American section discusses the role of the microbiome in the swelling population of patients with obesity and type 2 diabetes and examines the effects of race, ethnicity, geography, and climate on microbial diversity and metabolism. The studies from Europe and Asia extoll the benefits of whole foods and plant-based diets. The Asian studies examine the worrying changes from low-fat, high-carbohydrate diets to high-fat, low-carbohydrate ones and the increasing appearance of westernized diseases as in Africa and documents the ability of high-fiber traditional Chinese diets to reverse type 2 diabetes and control weight loss. In conclusion, most of the studies reviewed demonstrate clear changes in microbe abundances and in the production of fermentation products, such as short-chain fatty acids and phytochemicals following dietary change, but the significance of the microbiota changes to human health, with the possible exception of the stimulation of butyrogenic taxa by fiber-rich foods, is generally implied and not measured. Further studies are needed to determine how these changes in microbiota composition and metabolism can improve our health and be used to prevent and treat disease.

RevDate: 2020-02-19

Garza DR, Taddese R, Wirbel J, et al (2020)

Metabolic models predict bacterial passengers in colorectal cancer.

Cancer & metabolism, 8:3.

Background: Colorectal cancer (CRC) is a complex multifactorial disease. Increasing evidence suggests that the microbiome is involved in different stages of CRC initiation and progression. Beyond specific pro-oncogenic mechanisms found in pathogens, metagenomic studies indicate the existence of a microbiome signature, where particular bacterial taxa are enriched in the metagenomes of CRC patients. Here, we investigate to what extent the abundance of bacterial taxa in CRC metagenomes can be explained by the growth advantage resulting from the presence of specific CRC metabolites in the tumor microenvironment.

Methods: We composed lists of metabolites and bacteria that are enriched on CRC samples by reviewing metabolomics experimental literature and integrating data from metagenomic case-control studies. We computationally evaluated the growth effect of CRC enriched metabolites on over 1500 genome-based metabolic models of human microbiome bacteria. We integrated the metabolomics data and the mechanistic models by using scores that quantify the response of bacterial biomass production to CRC-enriched metabolites and used these scores to rank bacteria as potential CRC passengers.

Results: We found that metabolic networks of bacteria that are significantly enriched in CRC metagenomic samples either depend on metabolites that are more abundant in CRC samples or specifically benefit from these metabolites for biomass production. This suggests that metabolic alterations in the cancer environment are a major component shaping the CRC microbiome.

Conclusion: Here, we show with in sillico models that supplementing the intestinal environment with CRC metabolites specifically predicts the outgrowth of CRC-associated bacteria. We thus mechanistically explain why a range of CRC passenger bacteria are associated with CRC, enhancing our understanding of this disease. Our methods are applicable to other microbial communities, since it allows the systematic investigation of how shifts in the microbiome can be explained from changes in the metabolome.

RevDate: 2020-02-21

Nazareth R, Chasqueira MJ, Rodrigues ML, et al (2020)

Respiratory viruses in mechanically ventilated patients: a pilot study.

BMC pulmonary medicine, 20(1):39.

BACKGROUND: Respiratory virome is an integral part of the human microbiome and its characterization may contribute to a better understanding of the changes that arise in the disease and, consequently, influence the approach and treatment of patients with acute lower respiratory infections. The aim of this study was to evaluate the presence of respiratory viruses in the lower airways of individuals undergoing invasive mechanical ventilation, with and without acute lower respiratory infection (respectively WRI and WORI groups).

METHODS: We studied 44 mini-bronchoalveolar lavage samples (collected with a double catheter, Combicath® kit) from patients with mean age in the seventh decade, 20 from WORI group and 24 from WRI group, who were hospitalized for acute respiratory failure in Intensive Care Units of two hospitals in the Lisbon area. Real-time PCR was applied to verify analyse the presence of 15 common respiratory viruses (adenovirus, human bocavirus, influenza virus A and B, repiratory syncytial virus, human parainfluenza virus types 1, 2, 3 and 4, human enterovirus, human rhinovirus, human metapneumovirus, human coronavirus group 1 (229E, NL63) and 2 (OC43, HKU1).

RESULTS: Respiratory viruses were detected in six of the 20 patients in the WORI group: influenza AH3 (n = 2), parainfluenza virus 1/3 (n = 2), human rhinovirus (n = 2), respiratory syncytial virus (n = 1) and human metapneumovirus (n = 1). In the WRI group, respiratory viruses were detected in 12 of the 24 patients: influenza AH3 (n = 3), human rhinovirus (n = 3), respiratory syncytial virus (n = 3), human metapneumovirus (n = 3), human bocavirus (n = 2) and human enterovirus (n = 1). Simultaneous detection of two viruses was recorded in two samples in both groups.

CONCLUSIONS: The results of this study suggest the presence of common respiratory viruses in the lower respiratory tract without causing symptomatic infection, even in carefully collected lower samples. This may have important implications on the interpretation of the results on the diagnostic setting.

RevDate: 2020-02-28

Engstrand L, DY Graham (2020)

Microbiome and Gastric Cancer.

Digestive diseases and sciences, 65(3):865-873.

The late 1800s Louis Pasteur and Robert Koch introduced and popularized the germ theory of disease. At that time, gastric cancer was the most common cause of cancer deaths in most countries making the stomach an early site of microbial research with a focus on gastric luminal and mucosal bacteria and the role of Boas-Oppler bacillus (Lactobacillus) in the diagnosis of gastric cancer. In the 1970s, the research focus evolved to studies of the gastric microbiome in the production of nitrosamines and included development of the Correa cascade. Interest in nitrosamine production peaked in the late 1980s and was replaced by studies of the newly described Helicobacter pylori and studies of its role in gastritis, gastric atrophy, and gastric cancer. The last decade has witnessed a rebirth in interest in the gastric microbiota as part of worldwide interest in the human microbiome. Although fungi were prominent in the studies of gastric microbiology in the nineteenth century, their potential role in disease pathogenesis has yet to be addressed using modern techniques. Overall, current studies of the gastric bacterial microbiome do not provide convincing evidence to expand the role of the gastric microbiome in cancer pathogenesis beyond what is directly attributable to the oncogenic potential of H. pylori and its role in persisting acute-on-chronic inflammation.

RevDate: 2020-02-10

Guo XY, Liu XJ, JY Hao (2020)

Gut Microbiota in Ulcerative Colitis: Insights on Pathogenesis and Treatment.

Journal of digestive diseases [Epub ahead of print].

Gut microbiota constitute the largest reservoir of the human microbiome, and is an abundant and stable ecosystem - based on its diversity, complexity, redundancy, and host interactions. This ecosystem is indispensable for human development and health. The integrity of the intestinal mucosal barrier depends on its interactions with gut microbiota. The commensal bacterial community is implicated in the pathogenesis of inflammatory bowel disease(IBD), including ulcerative colitis (UC). The dysbiosis of microbes is characterized by reduced biodiversity, abnormal composition, altered spatial distribution, as well as interactions among microbiota, between different strains of microbiota, and with the host. The defects in microecology, with the related metabolic pathways and molecular mechanisms, play a critical role in the innate immunity of the intestinal mucosa in UC. Fecal microbiota transplantation (FMT) has been used to treat many diseases related to gut microbiota, with the most promising outcome reported in antibiotic-associated diarrhea, followed by IBD. This review evaluated the results of various reports of FMT in UC. The efficacy of FMT remains highly controversial, and needs to be regularized by integrated management, standardization of procedures, and individualization of treatment.

RevDate: 2020-02-10

Rao BC, Lou JM, Wang WJ, et al (2020)

Human microbiome is a diagnostic biomarker in hepatocellular carcinoma.

Hepatobiliary & pancreatic diseases international : HBPD INT pii:S1499-3872(20)30009-6 [Epub ahead of print].

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Increasing evidence indicates a close relationship between HCC and the human microbiota. Herein, we reviewed the important potential of the human microbiota as a diagnostic biomarker of HCC.

DATA SOURCES: Several innovative studies have investigated the characteristics of the gut and oral microbiomes in patients with HCC and proposed that the human microbiome has the potential to be a diagnostic biomarker of HCC. Literature from February 1999 to February 2019 was searched in the PubMed database using the keywords "microbiota" or "microbiome" or "microbe" and "liver cancer" or "hepatocellular carcinoma", and the results of clinical and experimental studies were analyzed.

RESULTS: Specific changes occur in the human microbiome of patients with HCC. Moreover, the gut microbiome and oral microbiome can be used as non-invasive diagnostic biomarkers for HCC. Furthermore, they also have certain diagnostic potential for precancerous diseases of HCC. The diagnostic potential of the blood microbiota and ascites microbiota in HCC will be gradually discovered in the future.

CONCLUSIONS: The human microbiome is valuable to the diagnosis of HCC and provides a novel strategy for targeted therapy of HCC. The human microbiome may be widely used in the diagnosis, treatment and prognosis for multiple system diseases or cancers in the future.

RevDate: 2020-02-11

Chowdhury S, SS Fong (2020)

Computational Modeling of the Human Microbiome.

Microorganisms, 8(2): pii:microorganisms8020197.

The impact of microorganisms on human health has long been acknowledged and studied, but recent advances in research methodologies have enabled a new systems-level perspective on the collections of microorganisms associated with humans, the human microbiome. Large-scale collaborative efforts such as the NIH Human Microbiome Project have sought to kick-start research on the human microbiome by providing foundational information on microbial composition based upon specific sites across the human body. Here, we focus on the four main anatomical sites of the human microbiome: gut, oral, skin, and vaginal, and provide information on site-specific background, experimental data, and computational modeling. Each of the site-specific microbiomes has unique organisms and phenomena associated with them; there are also high-level commonalities. By providing an overview of different human microbiome sites, we hope to provide a perspective where detailed, site-specific research is needed to understand causal phenomena that impact human health, but there is equally a need for more generalized methodology improvements that would benefit all human microbiome research.

RevDate: 2020-02-06

Panyukov VV, Kiselev SS, ON Ozoline (2020)

Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.

International journal of molecular sciences, 21(3): pii:ijms21030944.

The need for a comparative analysis of natural metagenomes stimulated the development of new methods for their taxonomic profiling. Alignment-free approaches based on the search for marker k-mers turned out to be capable of identifying not only species, but also strains of microorganisms with known genomes. Here, we evaluated the ability of genus-specific k-mers to distinguish eight phylogroups of Escherichia coli (A, B1, C, E, D, F, G, B2) and assessed the presence of their unique 22-mers in clinical samples from microbiomes of four healthy people and four patients with Crohn's disease. We found that a phylogenetic tree inferred from the pairwise distance matrix for unique 18-mers and 22-mers of 124 genomes was fully consistent with the topology of the tree, obtained with concatenated aligned sequences of orthologous genes. Therefore, we propose strain-specific "barcodes" for rapid phylotyping. Using unique 22-mers for taxonomic analysis, we detected microbes of all groups in human microbiomes; however, their presence in the five samples was significantly different. Pointing to the intraspecies heterogeneity of E. coli in the natural microflora, this also indicates the feasibility of further studies of the role of this heterogeneity in maintaining population homeostasis.

RevDate: 2020-02-11

Botticelli A, Vernocchi P, Marini F, et al (2020)

Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment.

Journal of translational medicine, 18(1):49.

BACKGROUND: Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20-30% of treated patients present long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as a factor potentially influencing the response to immunotherapy.

METHODS: The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics analyses were performed by GC-MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. Metabolomic data were processed by statistical profiling and chemometric analyses.

RESULTS: Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic acid were significantly associated with long-term beneficial effects.

CONCLUSIONS: Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personalized management of cancer patients by the identification of microbiota-linked "indicators" of early progressor and long responder patients.

RevDate: 2020-03-02

Cepko LCS, Garling EE, Dinsdale MJ, et al (2020)

Myoviridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis.

Journal of medical microbiology, 69(2):309-323.

Introduction. Bacteriophage therapy can be developed to target emerging diarrhoeal pathogens, but doing so in the absence of microbiome disruption, which occurs with antibiotic treatment, has not been established.Aim. Identify a therapeutic bacteriophage that kills diarrhoeagenic enteroaggregative Escherichia coli (EAEC) while leaving the human microbiome intact.Methodology. Phages from wastewater in Portland, OR, USA were screened for bacteriolytic activity by overlay assay. One isolated phage, PDX, was classified by electron microscopy and genome sequencing. A mouse model of infection determined whether the phage was therapeutic against EAEC. 16S metagenomic analysis of anaerobic cultures determined whether a normal human microbiome was altered by treatment.Results.Escherichia virus PDX, a member of the strictly lytic family Myoviridae, killed a case-associated EAEC isolate from a child in rural Tennessee in a dose-dependent manner, and killed EAEC isolates from Columbian children. A single dose of PDX (multiplicity of infection: 100) 1 day post-infection reduced EAEC recovered from mouse faeces. PDX also killed EAEC when cultured anaerobically in the presence of human faecal bacteria. While the addition of EAEC reduced the β-diversity of the human microbiota, that of the cultures with either faeces alone, faeces with EAEC and PDX, or with just PDX phage was not different statistically.Conclusion.PDX killed EAEC isolate EN1E-0007 in vivo and in vitro, while not altering the diversity of normal human microbiota in anaerobic culture, and thus could be part of an effective therapy for children in developing countries and those suffering from EAEC-mediated traveller's diarrhoea without causing dysbiosis.

RevDate: 2020-02-11

Zhang L, Liu Y, Zheng HJ, et al (2019)

The Oral Microbiota May Have Influence on Oral Cancer.

Frontiers in cellular and infection microbiology, 9:476.

The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).

RevDate: 2020-02-05

Ghannam RB, Schaerer LG, Butler TM, et al (2020)

Biogeographic Patterns in Members of Globally Distributed and Dominant Taxa Found in Port Microbial Communities.

mSphere, 5(1):.

We conducted a global characterization of the microbial communities of shipping ports to serve as a novel system to investigate microbial biogeography. The community structures of port microbes from marine and freshwater habitats house relatively similar phyla, despite spanning large spatial scales. As part of this project, we collected 1,218 surface water samples from 604 locations across eight countries and three continents to catalogue a total of 20 shipping ports distributed across the East and West Coast of the United States, Europe, and Asia to represent the largest study of port-associated microbial communities to date. Here, we demonstrated the utility of machine learning to leverage this robust system to characterize microbial biogeography by identifying trends in biodiversity across broad spatial scales. We found that for geographic locations sharing similar environmental conditions, subpopulations from the dominant phyla of these habitats (Actinobacteria, Bacteroidetes, Cyanobacteria, and Proteobacteria) can be used to differentiate 20 geographic locations distributed globally. These results suggest that despite the overwhelming diversity within microbial communities, members of the most abundant and ubiquitous microbial groups in the system can be used to differentiate a geospatial location across global spatial scales. Our study provides insight into how microbes are dispersed spatially and robust methods whereby we can interrogate microbial biogeography.IMPORTANCE Microbes are ubiquitous throughout the world and are highly diverse. Characterizing the extent of variation in the microbial diversity across large geographic spatial scales is a challenge yet can reveal a lot about what biogeography can tell us about microbial populations and their behavior. Machine learning approaches have been used mostly to examine the human microbiome and, to some extent, microbial communities from the environment. Here, we display how supervised machine learning approaches can be useful to understand microbial biodiversity and biogeography using microbes from globally distributed shipping ports. Our findings indicate that the members of globally dominant phyla are important for differentiating locations, which reduces the reliance on rare taxa to probe geography. Further, this study displays how global biogeographic patterning of aquatic microbial communities (and other systems) can be assessed through populations of the highly abundant and ubiquitous taxa that dominant the system.

RevDate: 2020-01-31

Kang W, Sun T, Tang D, et al (2019)

Time-Course Transcriptome Analysis of Gingiva-Derived Mesenchymal Stem Cells Reveals That Fusobacterium nucleatum Triggers Oncogene Expression in the Process of Cell Differentiation.

Frontiers in cell and developmental biology, 7:359.

Fusobacterium nucleatum has pathogenic effects on oral squamous cell carcinoma and colon cancer, while the effects of continuously altered gene expression in normal human cells, as induced by persistent exposure to F. nucleatum, remain unclear. In this study, a microarray Significant Profiles (maSigPro) analysis was used to obtain the transcriptome profile of gingiva-derived mesenchymal stem cells (GMSCs) stimulated by F. nucleatum for 3, 7, 14, and 21 day, and the results revealed 790 (nine clusters) differentially expressed genes (DEGs), which were significantly enriched in cell adherens junctions and cancer-related pathways. On the basis of a short time-series expression miner (STEM) analysis, all the expressed genes in the GMSCs were grouped into 50 clusters according to dynamic gene expression patterns, and the expression levels of three gene clusters in the F. nucleatum-treated GMSCs were significantly different than the predicted values. Among the 790 DEGs, 50 tumor-associated genes (TAGs; such as L3MBTL4, CD163, CCCND2, CADM1, BCL7A, and IGF1) and five core dynamic DEGs (PLCG2, CHI3L2, L3MBTL4, SH2D2A, and NLRP3) were identified during F. nucleatum stimulation. Results from a GeneMANIA database analysis showed that PLCG2, CHI3L2, SH2D2A, and NLRP3 and 20 other proteins formed a complex network of which 12 genes were enriched in cancer-related pathways. Based on the five core dynamic DEGs, the related microRNAs (miRNAs) and transcription factors (TFs) were obtained from public resources, and an integrated network composed of the related TFs, miRNAs, and mRNAs was constructed. The results indicated that these genes were regulated by several miRNAs, such as miR-372-3p, miR-603, and miR-495-3p, and several TFs, including CREB3, GATA2, and SOX4. Our study suggests that long-term stimulation by F. nucleatum may trigger the expression of cancer-related genes in normal gingiva-derived stem cells.

RevDate: 2020-01-29

Simões-Silva L, Araujo R, Pestana M, et al (2020)

Peritoneal Microbiome in End-Stage Renal Disease Patients and the Impact of Peritoneal Dialysis Therapy.

Microorganisms, 8(2): pii:microorganisms8020173.

Factors influencing the occurrence of peritoneal dialysis (PD)-related infections are still far from fully understood. Recent studies described the existence of specific microbiomes in body sites previously considered microbiome-free, unravelling new microbial pathways in the human body. In the present study, we analyzed the peritoneum of end-stage kidney disease (ESKD) patients to determine if they harbored a specific microbiome and if it is altered in patients on PD therapy. We conducted a cross-sectional study where the peritoneal microbiomes from ESKD patients with intact peritoneal cavities (ESKD non-PD, n = 11) and ESKD patients undergoing PD therapy (ESKD PD, n = 9) were analyzed with a 16S rRNA approach. Peritoneal tissue of ESKD patients contained characteristically low-abundance microbiomes dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Patients undergoing PD therapy presented lower species richness, with dominance by the Pseudomonadaceae and Prevotelaceae families. This study provides the first characterization of the peritoneal microbiome in ESKD patients, bringing new insight to the human microbiome. Additionally, PD therapy may induce changes in this unique microbiome. The clinical relevance of these observations should be further explored to uncover the role of the peritoneal microbiome as a key element in the onset or aggravation of infection in ESKD patients, especially those undergoing PD.

RevDate: 2020-02-20

Zhang Y, Ying X, He Y, et al (2020)

Invasiveness of the Yersinia pestis ail protein contributes to host dissemination in pneumonic and oral plague.

Microbial pathogenesis, 141:103993 pii:S0882-4010(19)31577-3 [Epub ahead of print].

Yersinia pestis, a Gram-negative bacterium, is the etiologic agent of plague. A hallmark of Y. pestis infection is the organism's ability to rapidly disseminate through an animal host. Y. pestis expresses the outer membrane protein, Ail (Attachment invasion locus), which is associated with host invasion and serum resistance. However, whether Ail plays a role in host dissemination remains unclear. In this study, C57BL/6J mice were challenged with a defined Y. pestis strain, KimD27, or an isogenic ail-deleted mutant derived from KimD27 via metacarpal paw pad inoculation, nasal drops, orogastric infection, or tail vein injection to mimic bubonic, pneumonic, oral, or septicemic plague, respectively. Our results showed that ail-deleted Y. pestis KimD27 lost the ability to invade host cells, leading to failed host dissemination in the pneumonic and oral plague models but not in the bubonic or septicemic plague models, which do not require invasiveness. Therefore, this study demonstrated that whether Ail plays a role in Y. pestis pathogenesis depends on the infection route.

RevDate: 2020-01-25

Oduor JMO, Kadija E, Nyachieo A, et al (2020)

Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential.

Viruses, 12(2): pii:v12020133.

Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 µJ/cm2, to temperatures up to 45 °C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between 1.0 × 10-9 mL/min and 4.7 × 10-9 mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcusxylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60-70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.

RevDate: 2020-02-19

Chevrette MG, J Handelsman (2020)

From Metagenomes to Molecules: Innovations in Functional Metagenomics Unlock Hidden Chemistry in the Human Microbiome.

Biochemistry, 59(6):729-730.

RevDate: 2020-01-24

Megrian D, Taib N, Witwinowski J, et al (2020)

One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide.

Molecular microbiology [Epub ahead of print].

How, when, and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.

RevDate: 2020-03-09

Napoli E, Siracusa L, G Ruberto (2020)

New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family.

Chemistry & biodiversity [Epub ahead of print].

Lamiaceae is one of the largest families of flowering plants comprising about 250 genera and over 7,000 species. Most of the plants of this family are aromatic and therefore important source of essential oils. Lamiaceae are widely used as culinary herbs and reported as medicinal plants in several folk traditions. In the Mediterranean area oregano, sage, rosemary, thyme and lavender stand out for geographical diffusion and variety of uses. The aim of this review is to provide recent data dealing with the phytochemical and pharmacological studies, and the more recent applications of the essential oils and the non-volatile phytocomplexes. This literature survey suggests how the deeper understanding of biomolecular processes in the health and food sectors as per as pest control bioremediation of cultural heritage, or interaction with human microbiome, fields, leads to the rediscovery and new potential applications of well-known plants.

RevDate: 2020-02-04

Jia Z, Zhao X, Liu X, et al (2020)

Impacts of the Plateau Environment on the Gut Microbiota and Blood Clinical Indexes in Han and Tibetan Individuals.

mSystems, 5(1):.

The intestinal microbiota is significantly affected by the external environment, but our understanding of the effects of extreme environments such as plateaus is far from adequate. In this study, we systematically analyzed the variation in the intestinal microbiota and 76 blood clinical indexes among 393 healthy adults with different plateau living durations (Han individuals with no plateau living, with plateau living for 4 to 6 days, with plateau living for >3 months, and who returned to the plain for 3 months, as well as plateau-living Tibetans). The results showed that the high-altitude environment rapidly (4 days) and continually (more than 3 months) shaped both the intestinal microbiota and clinical indexes of the Han population. With prolongation of plateau living, the general characteristics of the intestinal microbiota and clinical indexes of the Han population were increasingly similar to those of the Tibetan population. The intestinal microbiota of the Han population that returned to the plain area for 3 months still resembled that of the plateau-living Han population rather than that of the Han population on the plain. Moreover, clinical indexes such as blood glucose were significantly lower in the plateau groups than in the nonplateau groups, while the opposite result was obtained for testosterone. Interestingly, there were Tibetan-specific correlations between glucose levels and Succinivibrio and Sarcina abundance in the intestine. The results of this study suggest that a hypoxic environment could rapidly and lastingly affect both the human intestinal microbiota and blood clinical indexes, providing new insights for the study of plateau adaptability.IMPORTANCE The data presented in the present study demonstrate that the hypoxic plateau environment has a profound impact on the gut microbiota and blood clinical indexes in Han and Tibetan individuals. The plateau-changed signatures of the gut microbiota and blood clinical indexes were not restored to the nonplateau status in the Han cohorts, even when the individuals returned to the plain from the plateau for several months. Our study will improve the understanding of the great impact of hypoxic environments on the gut microbiota and blood clinical indexes as well as the adaptation mechanism and intervention targets for plateau adaptation.

RevDate: 2020-01-21

Lawenius L, Scheffler JM, Gustafsson KL, et al (2020)

Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss.

American journal of physiology. Endocrinology and metabolism [Epub ahead of print].

Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 weeks, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.

RevDate: 2020-02-27

Chang PT, Rao K, Longo LO, et al (2020)

Thiopeptide Defense by an Ant's Bacterial Symbiont.

Journal of natural products [Epub ahead of print].

Fungus-growing ants and their microbial symbionts have emerged as a model system for understanding antibiotic deployment in an ecological context. Here we establish that bacterial symbionts of the ant Trachymyrmex septentrionalis antagonize their most likely competitors, other strains of ant-associated bacteria, using the thiopeptide antibiotic GE37468. Genomic analysis suggests that these symbionts acquired the GE37468 gene cluster from soil bacteria. This antibiotic, with known activity against human pathogens, was previously identified in a biochemical screen but had no known ecological role. GE37468's host-associated defense role in this insect niche intriguingly parallels the function of similar thiopeptides in the human microbiome.

RevDate: 2020-01-24

Korpela K, Salonen A, Saxen H, et al (2020)

Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort.

Pediatric research pii:10.1038/s41390-020-0761-5 [Epub ahead of print].

BACKGROUND: The effects of antibiotics on infant gut microbiota are unclear. We hypothesized that the use of common antibiotics results in long-term aberration in gut microbiota.

METHODS: Antibiotic-naive infants were prospectively recruited when hospitalized because of a respiratory syncytial virus infection. Composition of fecal microbiota was compared between those receiving antibiotics during follow-up (prescribed at clinicians' discretion because of complications such as otitis media) and those with no antibiotic exposure. Fecal sampling started on day 1, then continued at 2-day intervals during the hospital stay, and at 1, 3 and 6 months at home.

RESULTS: One hundred and sixty-three fecal samples from 40 patients (median age 2.3 months at baseline; 22 exposed to antibiotics) were available for microbiota analyses. A single course of amoxicillin or macrolide resulted in aberration of infant microbiota characterized by variation in the abundance of bifidobacteria, enterobacteria and clostridia, lasting for several months. Recovery from the antibiotics was associated with an increase in clostridia. Occasionally, antibiotic use resulted in microbiota profiles associated with inflammatory conditions.

CONCLUSIONS: Antibiotic use in infants modifies especially bifidobacterial levels. Further studies are warranted whether administration of bifidobacteria will provide health benefits by normalizing the microbiota in infants receiving antibiotics.

RevDate: 2020-03-06

Husso A, Jalanka J, Alipour MJ, et al (2020)

The composition of the perinatal intestinal microbiota in horse.

Scientific reports, 10(1):441.

The establishment of the intestinal microbiota is critical for the digestive and immune systems. We studied the early development of the rectal microbiota in horse, a hindgut fermenter, from birth until 7 days of age, by qPCR and 16S rRNA gene amplicon sequencing. To evaluate initial sources of the foal microbiota, we characterised dam fecal, vaginal and oral microbiotas. We utilised an amplicon sequence variant (ASV) pipeline to maximise resolution and reproducibility. Stringent ASV filtering based on prevalence and abundance in samples and controls purged contaminants while preserving intestinal taxa. Sampled within 20 minutes after birth, rectal meconium contained small amounts of diverse bacterial DNA, with a profile closer to mare feces than mouth. 24 hours after birth, rectum was colonised by Firmicutes and Proteobacteria, some foals dominated by single genera. At day 7, the rectal genera were still different from adult feces. The mare vaginal microbiota contributed to 24 h and 7 day microbiotas. It contained few lactobacilli, with Corynebacterium, Porphyromonas, Campylobacter and Helcococcus as the most abundant genera. In the oral mucosa, Gemella was extremely abundant. Our observations indicate that bacteria or bacterial components are present in the intestine immediately after birth, but the newborn microbiota changes rapidly.

RevDate: 2020-01-16

Selway CA, Eisenhofer R, LS Weyrich (2020)

Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing.

The journal of pathology. Clinical research [Epub ahead of print].

The human microbiome can play key roles in disease, and diagnostic testing will soon have the ability to examine these roles in the context of clinical applications. Currently, most diagnostic testing in pathology applications focuses on a small number of disease-causing microbes and dismisses the whole microbial community that causes or is modulated by disease. Microbiome modifications have already provided clinically relevant insights in gut and oral diseases, such as irritable bowel disease, but there are currently limitations when clinically examining microbiomes outside of these body sites. This is critical, as the majority of microbial samples used in pathology originate from body sites that contain low concentrations of microbial DNA, including skin, tissue, blood, and urine. These samples, also known as low microbial biomass samples, are difficult to examine without careful consideration and precautions to mitigate contamination and biases. Here, we present the limitations when analysing low microbial biomass samples using current protocols and techniques and highlight the advantages that microbiome testing can offer diagnostics in the future, if the proper precautions are implemented. Specifically, we discuss the sources of contamination and biases that may result in false assessments for these sample types. Finally, we provide recommendations to mitigate contamination and biases from low microbial biomass samples during diagnostic testing, which will be especially important to effectively diagnose and treat patients using microbiome analyses.

RevDate: 2020-01-27

Jian C, Luukkonen P, Yki-Järvinen H, et al (2020)

Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling.

PloS one, 15(1):e0227285.

The use of relative abundance data from next generation sequencing (NGS) can lead to misinterpretations of microbial community structures, as the increase of one taxon leads to the concurrent decrease of the other(s) in compositional data. Although different DNA- and cell-based methods as well as statistical approaches have been developed to overcome the compositionality problem, and the biological relevance of absolute bacterial abundances has been demonstrated, the human microbiome research has not yet adopted these methods, likely due to feasibility issues. Here, we describe how quantitative PCR (qPCR) done in parallel to NGS library preparation provides an accurate estimation of absolute taxon abundances from NGS data and hence provides an attainable solution to compositionality in high-throughput microbiome analyses. The advantages and potential challenges of the method are also discussed.

RevDate: 2020-01-13

Zangl I, Pap IJ, Aspöck C, et al (2019)

The role of Lactobacillus species in the control of Candida via biotrophic interactions.

Microbial cell (Graz, Austria), 7(1):1-14.

Microbial communities have an important role in health and disease. Candida spp. are ubiquitous commensals and sometimes opportunistic fungal pathogens of humans, colonizing mucosal surfaces of the genital, urinary, respiratory and gastrointestinal tracts and the oral cavity. They mainly cause local mucosal infections in immune competent individuals. However, in the case of an ineffective immune defense, Candida infections may become a serious threat. Lactobacillus spp. are part of the human microbiome and are natural competitors of Candida in the vaginal environment. Lactic acid, low pH and other secreted metabolites are environmental signals sensed by fungal species present in the microbiome. This review briefly discusses the ternary interaction between host, Lactobacillus species and Candida with regard to fungal infections and the potential antifungal and fungistatic effect of Lactobacillus species. Our understanding of these interactions is incomplete due to the variability of the involved species and isolates and the complexity of the human host.

RevDate: 2020-01-13

Kang W, Ji X, Zhang X, et al (2019)

Persistent Exposure to Fusobacterium nucleatum Triggers Chemokine/Cytokine Release and Inhibits the Proliferation and Osteogenic Differentiation Capabilities of Human Gingiva-Derived Mesenchymal Stem Cells.

Frontiers in cellular and infection microbiology, 9:429.

Fusobacterium nucleatum is one of the most frequent pathogenic bacteria causing periodontitis. The direct effect of Fusobacterium nucleatum (F. nucleatum) on oral stem cells has rarely been reported. In this study, we aimed to evaluate how gingiva-derived mesenchymal stem cells (GMSCs) respond to a direct challenge with F. nucleatum. GMSCs were isolated by the limiting dilution method and exposed to F. nucleatum at various multiplicities of infection (MOIs; F. nucleatum:cell ratios of 10:1, 50:1, and 100:1) for 24 h to 4 weeks. Our results indicated that F. nucleatum significantly inhibited cell proliferation in a dose-dependent manner and promoted cell migration and the release of chemokines/cytokines, such as CCL2, CXCL1, and IL-6. Additionally, F. nucleatum inhibited GMSC osteogenic differentiation partly by decreasing alkaline phosphatase (ALP) activity, mineralized nodule formation, and osteogenesis-related gene and protein expression. RNA-sequencing analyses indicated that F. nucleatum time-dependently activated cellular signaling pathways during the process of osteogenic differentiation. A total of 64 cell differentiation-related genes were found to be differentially expressed between non-infected and F. nucleatum-infected GMSCs at 3, 7, 14, and 21 d. Intriguingly, we discovered that the 64 cell differentiation-related differentially expressed genes (DEGs) were significantly enriched in cancer-related pathways, such as bone cancer, osteosarcoma and bone marrow cancer, which provides new insight into tumorigenesis during the process of GMSC osteogenic differentiation. In conclusion, this study demonstrates that persistent exposure to F. nucleatum promotes cell migration and chemokine/cytokine release and inhibits the proliferation and osteogenic differentiation of GMSCs. Our study provides a novel and long-time bacteria-cell co-culture in vitro model and makes a foundation for the future mechanistic studies of GMSCs under F. nucleatum infection.

RevDate: 2020-02-05
CmpDate: 2020-02-05

Nobile V, Palumbo F, Lanni S, et al (2020)

Altered mitochondrial function in cells carrying a premutation or unmethylated full mutation of the FMR1 gene.

Human genetics, 139(2):227-245.

Fragile X-related disorders are due to a dynamic mutation of the CGG repeat at the 5' UTR of the FMR1 gene, coding for the RNA-binding protein FMRP. As the CGG sequence expands from premutation (PM, 56-200 CGGs) to full mutation (> 200 CGGs), FMRP synthesis decreases until it is practically abolished in fragile X syndrome (FXS) patients, mainly due to FMR1 methylation. Cells from rare individuals with no intellectual disability and carriers of an unmethylated full mutation (UFM) produce slightly elevated levels of FMR1-mRNA and relatively low levels of FMRP, like in PM carriers. With the aim of clarifying how UFM cells differ from CTRL and FXS cells, a comparative proteomic approach was undertaken, from which emerged an overexpression of SOD2 in UFM cells, also confirmed in PM but not in FXS. The SOD2-mRNA bound to FMRP in UFM more than in the other cell types. The high SOD2 levels in UFM and PM cells correlated with lower levels of superoxide and reactive oxygen species (ROS), and with morphological anomalies and depolarization of the mitochondrial membrane detected through confocal microscopy. The same effect was observed in CTRL and FXS after treatment with MC2791, causing SOD2 overexpression. These mitochondrial phenotypes reverted after knock-down with siRNA against SOD2-mRNA and FMR1-mRNA in UFM and PM. Overall, these data suggest that in PM and UFM carriers, which have high levels of FMR1 transcription and may develop FXTAS, SOD2 overexpression helps to maintain low levels of both superoxide and ROS with signs of mitochondrial degradation.

RevDate: 2020-02-25

Marzano V, Tilocca B, Fiocchi AG, et al (2020)

Perusal of food allergens analysis by mass spectrometry-based proteomics.

Journal of proteomics, 215:103636.

Food allergy is the disease where the immune system is elicited by antigens in food. Although innocuous for immune-tolerant individuals, an ever-growing number of food allergenic people are being registered worldwide. To date, no treatment to cure food allergy is available and the disease management relies on the careful exclusion of the allergenic food from the diet of the allergic individuals. Great efforts are ongoing to clarify the allergenic mechanisms of the diverse allergenic proteins of food origin, aimed to both designing suitable therapies and for a timely and precise diagnosis of the allergic condition. Among the other omics sciences, mass spectrometry (MS)-based proteomics is gaining a steadily increasing interest by the whole scientific community acknowledged its high versatility. In the present work, the latest proteomics based-studies on allergenic proteins are reviewed to provide guidance on the different MS-based methodologies adopted in the research on food allergens. Our review points to highlight the strengths of the MS-based proteomics and how these have been exploited to address specific research questions. Also, the most common drawbacks encountered in a proteomic study are discussed, providing an overview that helps novel researchers in choosing the more suitable experimental workflow. SIGNIFICANCE: Wide wealth of knowledge arising from the various MS-based proteomic investigations is improving our understanding of food allergy through molecular characterization of food allergens. The present work reviews the key aspects to be evaluated while investigating food allergens by means of MS-based proteomics and provide guidance to the novel research groups approaching to the fascinating world of MS-based food allergens detection.

RevDate: 2020-03-01

Signore F, Gulìa C, Votino R, et al (2019)

The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility.

Genes, 11(1):.

The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30-40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.

RevDate: 2020-01-06

Zhang X, N Yi (2020)

Fast Zero-Inflated Negative Binomial Mixed Modeling Approach for Analyzing Longitudinal Metagenomics Data.

Bioinformatics (Oxford, England) pii:5697093 [Epub ahead of print].

MOTIVATION: Longitudinal metagenomics data, including both 16S rRNA and whole-metagenome shotgun sequencing data, enhanced our abilities to understand the dynamic associations between the human microbiome and various diseases. However, analytic tools have not been fully developed to simultaneously address the main challenges of longitudinal metagenomics data, i.e. high-dimensionality, dependence among samples and zero-inflation of observed counts.

RESULTS: We propose a fast zero-inflated negative binomial mixed modeling (FZINBMM) approach to analyze high-dimensional longitudinal metagenomic count data. The FZINBMM approach is based on zero-inflated negative binomial mixed models (ZINBMMs) for modeling longitudinal metagenomic count data and a fast EM-IWLS algorithm for fitting ZINBMMs. FZINBMM takes advantage of a commonly used procedure for fitting linear mixed models (LMMs), which allows us to include various types of fixed and random effects and within-subject correlation structures and quickly analyze many taxa. We found that FZINBMM remarkably outperformed in computational efficiency and was statistically comparable with two R packages, GLMMadaptive and glmmTMB, that use numerical integration to fit ZINBMMs. Extensive simulations and real data applications showed that FZINBMM outperformed other previous methods, including LMMs, negative binomial mixed models and zero-inflated Gaussian mixed models.

AVAILABILITY: FZINBMM has been implemented in the R package NBZIMM, available in the public GitHub repository http://github.com//nyiuab//NBZIMM.

RevDate: 2020-01-06

Cui JJ, Wang LY, Tan ZR, et al (2020)

MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY.

Mass spectrometry reviews [Epub ahead of print].

Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.

RevDate: 2020-02-23

Yang J, Zhang J, Zhao C, et al (2020)

Blood Loss Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Gut Microbiome of Rabbits.

Current microbiology, 77(3):415-424.

Massive blood loss, a common pathological complication in the clinic, is often accompanied by altered gut integrity and intestinal wall damage. Little is known to what extent the gut microbiome could be correlated with this process. The gut microbiome plays a crucial role in human health, especially in immune and inflammatory responses. This study aims to determine whether acute blood loss affects the gut microbiome and the dynamic variation of the gut microbiome following the loss of blood. We used New Zealand rabbits to mimic the blood loss complication and designed a five-time-point fecal sampling strategy including 24-h pre-blood loss procedure, 24 h, 36 h, 48 h, and 1-week post-blood loss procedure. Gut microbiome composition and diversity were analyzed using 16S rRNA gene sequencing and downstream α-diversity, β-diversity, and taxonomy analysis. The gut microbiome changed dramatically after blood loss procedure. There was a significant increase in diversity and richness of the gut microbiome at 24-h post-procedure (P = 0.038). Based on an analysis of similarities, the composition of gut microbiome in the samples collected at 24-h post-procedure was significantly different from that of pre-procedure samples (r = 0.79, P = 0.004 weighted unifrac distance; r = 0.99, P = 0.002, unweighted unifrac distance). The relative abundance of Lactobacillus was significantly decreased in the post-procedure samples (P = 0.0006), while the relative abundance of Clostridiales (P = 0.018) and Bacteroidales (P = 0.015) was significantly increased after procedure. We also found the relative abundance of Bacilli, Lactobacillus, Myroides, and Prevotella decreased gradually at different time points after blood loss. The relative abundance of the Clostridia, Alphaproteobacteria, and Sporosarcina increased at 24-h post-procedure and decreased thereafter. This preliminary study discovered potential connections between blood loss and dysbiosis of gut microbiome. The diversity and abundance of the gut microbiome was affected to various extents after acute blood loss and unable to be restored to the original microbiome profile even after one week. The increase in relative abundance of opportunistic pathogens after blood loss could be an important indication to reconsider immune and inflammatory responses after acute blood loss from the perspective of gut microbiome.

RevDate: 2020-01-08

Gavin DP, Reen FJ, Rocha-Martin J, et al (2019)

Genome mining and characterisation of a novel transaminase with remote stereoselectivity.

Scientific reports, 9(1):20285.

Microbial enzymes from pristine niches can potentially deliver disruptive opportunities in synthetic routes to Active Pharmaceutical Ingredients and intermediates in the Pharmaceutical Industry. Advances in green chemistry technologies and the importance of stereochemical control, further underscores the application of enzyme-based solutions in chemical synthesis. The rich tapestry of microbial diversity in the oceanic ecosystem encodes a capacity for novel biotransformations arising from the chemical complexity of this largely unexplored bioactive reservoir. Here we report a novel ω-transaminase discovered in a marine sponge Pseudovibrio sp. isolate. Remote stereoselection using a transaminase has been demonstrated for the first time using this novel protein. Application to the resolution of an intermediate in the synthesis of sertraline highlights the synthetic potential of this novel biocatalyst discovered through genomic mining. Integrated chemico-genomics revealed a unique substrate profile, while molecular modelling provided structural insights into this 'first in class' selectivity at a remote chiral centre.

RevDate: 2020-02-05

Picca A, Ponziani FR, Calvani R, et al (2019)

Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study.

Nutrients, 12(1): pii:nu12010065.

Physical frailty and sarcopenia (PF&S) share multisystem derangements, including variations in circulating amino acids and chronic low-grade inflammation. Gut microbiota balances inflammatory responses in several conditions and according to nutritional status. Therefore, an altered gut-muscle crosstalk has been hypothesized in PF&S. We analyzed the gut microbial taxa, systemic inflammation, and metabolic characteristics of older adults with and without PF&S. An innovative multi-marker analytical approach was applied to explore the classification performance of potential biomarkers for PF&S. Thirty-five community dwellers aged 70+, 18 with PF&S, and 17 nonPF&S controls were enrolled. Sequential and Orthogonalized Covariance Selection (SO-CovSel), a multi-platform regression method developed to handle highly correlated variables, was applied. The SO-CovSel model with the best prediction ability using the smallest number of variables was built using seven mediators. The model correctly classified 91.7% participants with PF&S and 87.5% nonPF&S controls. Compared with the latter group, PF&S participants showed higher serum concentrations of aspartic acid, lower circulating levels of concentrations of threonine and macrophage inflammatory protein 1α, increased abundance of Oscillospira and Ruminococcus microbial taxa, and decreased abundance of Barnesiellaceae and Christensenellaceae. Future investigations are warranted to determine whether these biomediators are involved in PF&S pathophysiology and may, therefore, provide new targets for interventions.

RevDate: 2019-12-30

Tomassi D, Forzani L, Duarte S, et al (2019)

Sufficient dimension reduction for compositional data.

Biostatistics (Oxford, England) pii:5689688 [Epub ahead of print].

Recent efforts to characterize the human microbiome and its relation to chronic diseases have led to a surge in statistical development for compositional data. We develop likelihood-based sufficient dimension reduction methods (SDR) to find linear combinations that contain all the information in the compositional data on an outcome variable, i.e., are sufficient for modeling and prediction of the outcome. We consider several models for the inverse regression of the compositional vector or transformations of it, as a function of outcome. They include normal, multinomial, and Poisson graphical models that allow for complex dependencies among observed counts. These methods yield efficient estimators of the reduction and can be applied to continuous or categorical outcomes. We incorporate variable selection into the estimation via penalties and address important invariance issues arising from the compositional nature of the data. We illustrate and compare our methods and some established methods for analyzing microbiome data in simulations and using data from the Human Microbiome Project. Displaying the data in the coordinate system of the SDR linear combinations allows visual inspection and facilitates comparisons across studies.

RevDate: 2020-02-05

Manara S, Asnicar F, Beghini F, et al (2019)

Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species.

Genome biology, 20(1):299.

BACKGROUND: Humans have coevolved with microbial communities to establish a mutually advantageous relationship that is still poorly characterized and can provide a better understanding of the human microbiome. Comparative metagenomic analysis of human and non-human primate (NHP) microbiomes offers a promising approach to study this symbiosis. Very few microbial species have been characterized in NHP microbiomes due to their poor representation in the available cataloged microbial diversity, thus limiting the potential of such comparative approaches.

RESULTS: We reconstruct over 1000 previously uncharacterized microbial species from 6 available NHP metagenomic cohorts, resulting in an increase of the mappable fraction of metagenomic reads by 600%. These novel species highlight that almost 90% of the microbial diversity associated with NHPs has been overlooked. Comparative analysis of this new catalog of taxa with the collection of over 150,000 genomes from human metagenomes points at a limited species-level overlap, with only 20% of microbial candidate species in NHPs also found in the human microbiome. This overlap occurs mainly between NHPs and non-Westernized human populations and NHPs living in captivity, suggesting that host lifestyle plays a role comparable to host speciation in shaping the primate intestinal microbiome. Several NHP-specific species are phylogenetically related to human-associated microbes, such as Elusimicrobia and Treponema, and could be the consequence of host-dependent evolutionary trajectories.

CONCLUSIONS: The newly reconstructed species greatly expand the microbial diversity associated with NHPs, thus enabling better interrogation of the primate microbiome and empowering in-depth human and non-human comparative and co-diversification studies.

RevDate: 2019-12-26

Harkins CP, Kong HH, JA Segre (2019)

Manipulating the Human Microbiome to Manage Disease.

JAMA pii:2758268 [Epub ahead of print].

RevDate: 2020-01-08
CmpDate: 2019-12-30

Zhou ZY, Xu X, Y Zhou (2019)

[Research progress on carbohydrate active enzymes of human microbiome].

Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 37(6):666-670.

A massive variety of microorganisms live in and on the human body, especially at oral, skin, vaginal, gastroin-testinal, and respiratory sites. The complicated metabolic activities of microorganisms assist human digestive function and participate in a series of physiological and pathogenetic processes. Carbohydrate-active enzymes (CAZymes) are a series of enzymes that function in degradation, modification, and formation of glycoside bonds. Microbes regulate the physiological and pathogenetic processes of human body by producing various CAZymes to degrade and modify complex carbohydrates and generate signal molecules for further utilization in human cells. Here, we reviewed the mechanisms of complex carbohy-drate metabolism and related microbial CAZymes, especially in digestive tract and oral cavity. We also summarized the rela-tionship between microbial CAZymes and human health, and proposed potential applications.

RevDate: 2020-01-08

Majid M, S Andleeb (2019)

Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach.

Scientific reports, 9(1):19780.

Enterotoxigenic Bacteroides fragilis is an enteric pathogen which is described as a causative agent of various intestinal infections and inflammatory diseases. Moreover, various research studies have reported it to be a leading factor in the development of colorectal cancer. As a part of the normal human microbiome, its treatment has become quite a challenge due to the alarming resistance against the available antibiotics. Although, this particular strain of B. fragilis shows susceptibility to few antibiotics, it is pertinent to devise an effective vaccine strategy for its elimination. There is no vaccine available against this pathogen up to date; therefore, we systematically ventured the outer membrane toxin producing proteins found exclusively in the toxigenic B. fragilis through the in-silico approaches to predict a multi-epitopic chimeric vaccine construct. The designed protein constitutes of epitopes which are predicted for linear B cells, Helper and T cells of outer membrane proteins expected to be putative vaccine candidates. The finalized proteins are only expressed in the enterotoxigenic B. fragilis, thus proving them to be exclusive. The 3D structure of the protein was first predicted followed by its refinement and validation via utilizing the bioinformatic approaches. Docking of the designed protein with the TLR2 receptor forecasted apt binding. Upon immune simulation, notable levels were observed in the expression of the immune cells.

RevDate: 2020-01-08

Grosicki GJ, Durk RP, JR Bagley (2019)

Rapid gut microbiome changes in a world-class ultramarathon runner.

Physiological reports, 7(24):e14313.

The human gut microbiome is a dynamic ecosystem with prolific health connotations. Physical activity is emerging as a potent regulator of human microbiome composition. This study examined changes in the gut microbiome of a world-class ultramarathon runner before and after competing in the Western States Endurance Run (WSER), a 163 km mountain footrace. Anthropometrics and body composition were assessed and the ultramarathoner's submaximal and maximal performance profiles were evaluated. Gut microbiome analyses were performed at four time-points: 21 weeks and 2 weeks before and 2 hours and 10 days after WSER. Aerobic power (VO2 max) was 4.24 L/min (66.7 ml kg-1 min-1), and running economy (51.1 ml kg-1 min-1 at 268 m/min) and lactate threshold (~83% VO2 max) values were comparable to that of highly trained distance runners. Two hours post-race, considerable changes in the ultrarunners' gut microbiome were observed. Alpha diversity (Shannon Diversity Index) increased from 2.73 to 2.80 and phylum-level bacterial composition (Firmicutes/Bacteroidetes ratio) rose from 4.4 to 14.2. Underlying these macro-level microbial alterations were demonstrable increases in select bacterial genera such as Veillonella (+14,229%) and Streptococcus (+438%) concomitant with reductions in Alloprevotella (-79%) and Subdolingranulum (-50%). To our knowledge, this case study shows the most rapid and pronounced shifts in human gut microbiome composition after acute exercise in the human literature. These findings provide yet another example of how exercise can be a powerful modulator of human health.

RevDate: 2020-03-09

Ly LK, Rowles JL, Paul HM, et al (2019)

Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells.

The Journal of steroid biochemistry and molecular biology, 199:105567 pii:S0960-0760(19)30617-X [Epub ahead of print].

The adrenal gland has traditionally been viewed as a source of "weak androgens"; however, emerging evidence indicates 11-oxy-androgens of adrenal origin are metabolized in peripheral tissues to potent androgens. Also emerging is the role of gut bacteria in the conversion of C21 glucocorticoids to 11-oxygenated C19 androgens. Clostridium scindens ATCC 35,704 is a gut microbe capable of converting cortisol into 11-oxy-androgens by cleaving the side-chain. The desA and desB genes encode steroid-17,20-desmolase. Our prior study indicated that the urinary tract bacterium, Propionimicrobium lymphophilum ACS-093-V-SCH5 encodes desAB and converts cortisol to 11β-hydroxyandrostenedione. We wanted to determine how widespread this function occurs in the human microbiome. Phylogenetic and sequence similarity network analyses indicated that the steroid-17,20-desmolase pathway is taxonomically rare and located in gut and urogenital microbiomes. Two microbes from each of these niches, C. scindens and Propionimicrobium lymphophilum, respectively, were screened for activity against endogenous (cortisol, cortisone, and allotetrahydrocortisol) and exogenous (prednisone, prednisolone, dexamethasone, and 9-fluorocortisol) glucocorticoids. LC/MS analysis showed that both microbes were able to side-chain cleave all glucocorticoids, forming 11-oxy-androgens. Pure recombinant DesAB from C. scindens showed the highest activity against prednisone, a commonly prescribed glucocorticoid. In addition, 0.1 nM 1,4-androstadiene-3,11,17-trione, bacterial side-chain cleavage product of prednisone, showed significant proliferation relative to vehicle in androgen-dependent growth LNCaP prostate cancer cells after 24 h (2.3 fold; P < 0.01) and 72 h (1.6 fold; P < 0.01). Taken together, DesAB-expressing microbes may be an overlooked source of androgens in the body, potentially contributing to various disease states, such as prostate cancer.

RevDate: 2020-02-26

Liu Q, Liu Q, Meng H, et al (2020)

Staphylococcus epidermidis Contributes to Healthy Maturation of the Nasal Microbiome by Stimulating Antimicrobial Peptide Production.

Cell host & microbe, 27(1):68-78.e5.

The composition of the human microbiome profoundly impacts human well-being. However, the mechanisms underlying microbiome maturation are poorly understood. The nasal microbiome is of particular importance as a source of many respiratory infections. Here, we performed a large sequencing and culture-based analysis of the human nasal microbiota from different age groups. We observed a significant decline of pathogenic bacteria before adulthood, with an increase of the commensal Staphylococcus epidermidis. In seniors, this effect was partially reversed. In vitro, many S. epidermidis isolates stimulated nasal epithelia to produce antimicrobial peptides, killing pathogenic competitors, while S. epidermidis itself proved highly resistant owing to its exceptional capacity to form biofilms. Furthermore, S. epidermidis isolates with high antimicrobial peptide-inducing and biofilm-forming capacities outcompeted pathogenic bacteria during nasal colonization in vivo. Our study identifies a pivotal role of S. epidermidis in healthy maturation of the nasal microbiome, which is achieved at least in part by symbiotic cooperation with innate host defense.

RevDate: 2020-02-05

Deering KE, Devine A, O'Sullivan TA, et al (2019)

Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review.

Nutrients, 12(1): pii:nu12010016.

The consortium of trillions of microorganisms that live inside the human gut are integral to health. Little has been done to collate and characterize the microbiome of children. A systematic review was undertaken to address this gap (PROSPERO ID: CRD42018109599). MEDLINE and EMBASE were searched using the keywords: "healthy preadolescent children" and "gut microbiome" to 31 August 2018. Of the 815 journal articles, 42 met the inclusion criteria. The primary outcome was the relative abundance of bacteria at the phylum, family, and genus taxonomic ranks. α-diversity, short chain fatty acid concentrations, diet, 16S rRNA sequencing region, and geographical location were documented. The preadolescent gut microbiome is dominated at the phylum level by Firmicutes (weighted overall average relative abundance = 51.1%) and Bacteroidetes (36.0%); genus level by Bacteroides (16.0%), Prevotella (8.69%), Faecalibacterium (7.51%), and Bifidobacterium (5.47%). Geographic location and 16S rRNA sequencing region were independently associated with microbial proportions. There was limited consensus between studies that reported α-diversity and short chain fatty acids. Broadly speaking, participants from non-Western locations, who were less likely to follow a Westernized dietary pattern, had higher α-diversity and SCFA concentrations. Confirmatory studies will increase the understanding of the composition and functional capacity of the preadolescent gut microbiome.

RevDate: 2020-01-13

Martiny JBH, Whiteson KL, Bohannan BJM, et al (2020)

The emergence of microbiome centres.

Nature microbiology, 5(1):2-3.

RevDate: 2020-02-05

Lo Presti A, Del Chierico F, Altomare A, et al (2019)

Exploring the genetic diversity of the 16S rRNA gene of Akkermansia muciniphila in IBD and IBS.

Future microbiology, 14:1497-1509.

Aim: The human gastrointestinal tract harbors diverse, abundant microbiota and Akkermansia muciniphila is involved in this community. The aim of this study is to characterize 16 new A. muciniphila 16S ribosomal RNA sequences selected from a metagenomic database from stools of patients with irritable bowel syndrome (IBS), inflammatory bowel diseases and control (CTRLs) subjects by a phylogenetic approach. Materials & methods: A phylogenetic approach was used to study the genetic diversity and SNPs in 16 A. muciniphila 16S ribosomal RNA sequences from stools of 107 individuals, 36 of which were patients affected by IBS, 30 by inflammatory bowel disease and 41 were CTRLs. Results: Phylogenetic analysis confirmed the subdivision into different supported clusters. An increase of variability in IBS has been identified. Conclusion: The genetic variation combined to the relative abundance, contribute to the protective role of A. muciniphila. Phylogenesis represent an additional approach to investigate genetic variability.

RevDate: 2019-12-20

Song N, Liu X, Feng Q, et al (2019)

Whole Body Vibration Triggers a Change in the Mutual Shaping State of Intestinal Microbiota and Body's Immunity.

Frontiers in bioengineering and biotechnology, 7:377.

Whole body vibration (WBV) is a non-invasive physical therapy that has recently been included in the hospital's patient rehabilitation training catalog, but its health effects have not been sufficiently studied. In the present study, to examine the possible effects of WBV on immune cell differentiation, the IFN, IL-4,-17, F4/80 and CD3,-4,-8,-11b,-11c,-19 markers were used to characterizing the cells in mouse spleen. The results showed that the CD4 and CD25 positive lymphocytes in the spleen were significantly increased in the WBV group, and the population of Treg cells was enhanced significantly in response to WBV. Since the differentiation in immune cells is usually associated with microbiota, therefore the intestinal flora was characterized in mice and human individuals. The results indicated that WBV significantly reduced the α-diversity of mouse intestinal microbiota. Moreover, the principal coordinate analysis (PCoA) results indicated that the β-diversities of both mice and human fecal microbiota increased after WBV. Analysis of the bacterial composition indicated that the contents of a variety of bacteria changed in mice upon the stimulation of vibration, such as Lactobacillus animalis in mice, and Lactobacillus paraplantarum and Lactobacillus sanfranciscensis in human. The succeeding correlation analysis revealed that some bacteria with significant content variations were correlated to the regulatory T cell differentiation in mice and physical characteristics in human. Our research will provide the basis for future non-invasive treatment of microbial and immune related diseases.

RevDate: 2019-12-20

Sutton TDS, C Hill (2019)

Gut Bacteriophage: Current Understanding and Challenges.

Frontiers in endocrinology, 10:784.

The gut microbiome is widely accepted to have a significant impact on human health yet, despite years of research on this complex ecosystem, the contributions of different forces driving microbial population structure remain to be fully elucidated. The viral component of the human gut microbiome is dominated by bacteriophage, which are known to play crucial roles in shaping microbial composition, driving bacterial diversity, and facilitating horizontal gene transfer. Bacteriophage are also one of the most poorly understood components of the human gut microbiome, with the vast majority of viral sequences sharing little to no homology to reference databases. If we are to understand the dynamics of bacteriophage populations, their interaction with the human microbiome and ultimately their influence on human health, we will depend heavily on sequence based approaches and in silico tools. This is complicated by the fact that, as with any research field in its infancy, methods of analyses vary and this can impede our ability to compare the outputs of different studies. Here, we discuss the major findings to date regarding the human virome and reflect on our current understanding of how gut bacteriophage shape the microbiome. We consider whether or not the virome field is built on unstable foundations and if so, how can we provide a solid basis for future experimentation. The virome is a challenging yet crucial piece of the human microbiome puzzle. In order to develop our understanding, we will discuss the need to underpin future studies with robust research methods and suggest some solutions to existing challenges.

RevDate: 2020-01-08

Wang C, Li P, Yan Q, et al (2019)

Characterization of the Pig Gut Microbiome and Antibiotic Resistome in Industrialized Feedlots in China.

mSystems, 4(6):.

To characterize the diversity and richness and explore the function and structure of swine gut microbiome and resistome in common pig-farming feedlots, we sampled and metagenomic sequenced the feces of pigs from four different industrialized feedlots located in four distant provinces across China. Surprisingly, more than half of the nonredundant genes (1,937,648, 54.3%) in the current catalogue were newly found compared with the previously published reference gene catalogue (RGC) of the pig gut microbiome. Additionally, 16 high-completeness draft genomes were obtained by analyzing the dominant species on each feedlot. Notably, seven of these species often appeared in the human body sites. Despite a smaller number of nonredundant genes, our study identified more antibiotic resistance genes than those available in the RGC. Tetracycline, aminoglycoside, and multidrug resistance genes accounted for nearly 70% of the relative abundance in the current catalogue. Slightly higher sharing ratios were shown between the industrialized feedlot pig gut microbiomes and human gut microbiomes than that between the RGC and human counterpart (14.7% versus 12.6% in genes and 94.1% versus 87.7% in functional groups, respectively). Furthermore, a remarkably high number of the antibiotic resistance proteins (n =141) were identified to be shared by the pig, human, and mouse resistome, indicating the potential for horizontal transfer of resistance genes. Of the antibiotic resistance proteins shared by pigs and humans, 50 proteins were related to tetracycline resistance, and 49 were related to aminoglycoside resistance.IMPORTANCE The gut microbiota is believed to be closely related to many important physical functions in the host. Comprehensive data on mammalian gut metagenomes has facilitated research on host-microbiome interaction mechanisms, but less is known about pig gut microbiome, especially the gut microbiome in industrialized feedlot pigs, compared with human microbiome. On the other hand, pig production, as an important source of food, is believed to exacerbate the antibiotic resistance in humans due to the abuse of antibiotics in pig production in various parts of the world. This study delineates an intricate picture of swine gut microbiome and antibiotic resistome in industrialized feedlots and may provide insight for the pig producing industry.

RevDate: 2020-02-27

Wang Y, Randolph TW, Shojaie A, et al (2019)

The Generalized Matrix Decomposition Biplot and Its Application to Microbiome Data.

mSystems, 4(6):.

Exploratory analysis of human microbiome data is often based on dimension-reduced graphical displays derived from similarities based on non-Euclidean distances, such as UniFrac or Bray-Curtis. However, a display of this type, often referred to as the principal-coordinate analysis (PCoA) plot, does not reveal which taxa are related to the observed clustering because the configuration of samples is not based on a coordinate system in which both the samples and variables can be represented. The reason is that the PCoA plot is based on the eigen-decomposition of a similarity matrix and not the singular value decomposition (SVD) of the sample-by-abundance matrix. We propose a novel biplot that is based on an extension of the SVD, called the generalized matrix decomposition biplot (GMD-biplot), which involves an arbitrary matrix of similarities and the original matrix of variable measures, such as taxon abundances. As in a traditional biplot, points represent the samples, and arrows represent the variables. The proposed GMD-biplot is illustrated by analyzing multiple real and simulated data sets which demonstrate that the GMD-biplot provides improved clustering capability and a more meaningful relationship between the arrows and points.IMPORTANCE Biplots that simultaneously display the sample clustering and the important taxa have gained popularity in the exploratory analysis of human microbiome data. Traditional biplots, assuming Euclidean distances between samples, are not appropriate for microbiome data, when non-Euclidean distances are used to characterize dissimilarities among microbial communities. Thus, incorporating information from non-Euclidean distances into a biplot becomes useful for graphical displays of microbiome data. The proposed GMD-biplot accounts for any arbitrary non-Euclidean distances and provides a robust and computationally efficient approach for graphical visualization of microbiome data. In addition, the proposed GMD-biplot displays both the samples and taxa with respect to the same coordinate system, which further allows the configuration of future samples.

RevDate: 2020-01-24

Parida S, D Sharma (2019)

The Microbiome-Estrogen Connection and Breast Cancer Risk.

Cells, 8(12):.

The microbiome is undoubtedly the second genome of the human body and has diverse roles in health and disease. However, translational progress is limited due to the vastness of the microbiome, which accounts for over 3.3 million genes, whose functions are still unclear. Numerous studies in the past decade have demonstrated how microbiome impacts various organ-specific cancers by altering the energy balance of the body, increasing adiposity, synthesizing genotoxins and small signaling molecules, and priming and regulating immune response and metabolism of indigestible dietary components, xenobiotics, and pharmaceuticals. In relation to breast cancer, one of the most prominent roles of the human microbiome is the regulation of steroid hormone metabolism since endogenous estrogens are the most important risk factor in breast cancer development especially in postmenopausal women. Intestinal microbes encode enzymes capable of deconjugating conjugated estrogen metabolites marked for excretion, pushing them back into the enterohepatic circulation in a biologically active form. In addition, the intestinal microbes also break down otherwise indigestible dietary polyphenols to synthesize estrogen-like compounds or estrogen mimics that exhibit varied estrogenic potency. The present account discusses the potential role of gastrointestinal microbiome in breast cancer development by mediating metabolism of steroid hormones and synthesis of biologically active estrogen mimics.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )