About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

26 Jan 2022 at 01:35
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Human Microbiome


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jan 2022 at 01:35 Created: 

Human Microbiome

The human microbiome is the set of all microbes that live on or in humans. Together, a human body and its associated microbiomes constitute a human holobiont. Although a human holobiont is mostly mammal by weight, by cell count it is mostly microbial. The number of microbial genes in the associated microbiomes far outnumber the number of human genes in the human genome. Just as humans (and other multicellular eukaryotes) evolved in the constant presence of gravity, so they also evolved in the constant presence of microbes. Consequently, nearly every aspect of human biology has evolved to deal with, and to take advantage of, the existence of associated microbiota. In some cases, the absence of a "normal microbiome" can cause disease, which can be treated by the transplant of a correct microbiome from a healthy donor. For example, fecal transplants are an effective treatment for chronic diarrhea from over abundant Clostridium difficile bacteria in the gut.

Created with PubMed® Query: "human microbiome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-01-20

Banerjee K, Chen J, X Zhan (2022)

Adaptive and powerful microbiome multivariate association analysis via feature selection.

NAR genomics and bioinformatics, 4(1):lqab120 pii:lqab120.

The important role of human microbiome is being increasingly recognized in health and disease conditions. Since microbiome data is typically high dimensional, one popular mode of statistical association analysis for microbiome data is to pool individual microbial features into a group, and then conduct group-based multivariate association analysis. A corresponding challenge within this approach is to achieve adequate power to detect an association signal between a group of microbial features and the outcome of interest across a wide range of scenarios. Recognizing some existing methods' susceptibility to the adverse effects of noise accumulation, we introduce the Adaptive Microbiome Association Test (AMAT), a novel and powerful tool for multivariate microbiome association analysis, which unifies both blessings of feature selection in high-dimensional inference and robustness of adaptive statistical association testing. AMAT first alleviates the burden of noise accumulation via distance correlation learning, and then conducts a data-adaptive association test under the flexible generalized linear model framework. Extensive simulation studies and real data applications demonstrate that AMAT is highly robust and often more powerful than several existing methods, while preserving the correct type I error rate. A free implementation of AMAT in R computing environment is available at https://github.com/kzb193/AMAT.

RevDate: 2022-01-20

Hammerl JA, Barac A, Bienert A, et al (2021)

Birds Kept in the German Zoo "Tierpark Berlin" Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages.

Frontiers in microbiology, 12:634289.

Yersinia pseudotuberculosis is an important animal pathogen, particularly for birds, rodents, and monkeys, which is also able to infect humans. Indeed, an increasing number of reports have been published on zoo animals that were killed by this species. One option to treat diseased animals is the application of strictly lytic (virulent) phages. However, thus far relatively few phages infecting Y. pseudotuberculosis have been isolated and characterized. To determine the prevalence of Y. pseudotuberculosis phages in zoo animals, fecal samples of birds and some primates, maras, and peccaries kept in the Tierpark Berlin were analyzed. Seventeen out of 74 samples taken in 2013 and 2017 contained virulent phages. The isolated phages were analyzed in detail and could be allocated to three groups. The first group is composed of 10 T4-like phages (PYps2T taxon group: Myoviridae; Tevenvirinae; Tequatrovirus), the second group (PYps23T taxon group: Chaseviridae; Carltongylesvirus; Escherichia virus ST32) consists of five phages encoding a podovirus-like RNA polymerase that is related to an uncommon genus of myoviruses (e.g., Escherichia coli phage phiEcoM-GJ1), while the third group is comprised of two podoviruses (PYps50T taxon group: Autographiviridae; Studiervirinae; Berlinvirus) which are closely related to T7. The host range of the isolated phages differed significantly. Between 5.5 and 86.7% of 128 Y. pseudotuberculosis strains belonging to 20 serotypes were lysed by each phage. All phages were additionally able to lyse Y. enterocolitica B4/O:3 strains, when incubated at 37°C. Some phages also infected Y. pestis strains and even strains belonging to other genera of Enterobacteriaceae. A cocktail containing two of these phages would be able to lyse almost 93% of the tested Y. pseudotuberculosis strains. The study indicates that Y. pseudotuberculosis phages exhibiting a broad-host range can be isolated quite easily from zoo animals, particularly birds.

RevDate: 2022-01-19

Latino C, Gianatti EJ, Mehta S, et al (2022)

Does a high dietary intake of resistant starch affect glycaemic control and alter the gut microbiome in women with gestational diabetes? A randomised control trial protocol.

BMC pregnancy and childbirth, 22(1):46.

BACKGROUND: Gestational Diabetes Mellitus (GDM) is prevalent with lasting health implications for the mother and offspring. Medical nutrition therapy is the foundation of GDM management yet achieving optimal glycaemic control often requires treatment with medications, like insulin. New dietary strategies to improve GDM management and outcomes are required. Gut dysbiosis is a feature of GDM pregnancies, therefore, dietary manipulation of the gut microbiota may offer a new avenue for management. Resistant starch is a fermentable dietary fibre known to alter the gut microbiota and enhance production of short-chain fatty acids. Evidence suggests that short-chain fatty acids improve glycaemia via multiple mechanisms, however, this has not been evaluated in GDM.

METHODS: An open-label, parallel-group design study will investigate whether a high dietary resistant starch intake or resistant starch supplement improves glycaemic control and changes the gut microbiome compared with standard dietary advice in women with newly diagnosed GDM. Ninety women will be randomised to one of three groups - standard dietary treatment for GDM (Control), a high resistant starch diet or a high resistant starch diet plus a 16 g resistant starch supplement. Measurements taken at Baseline (24 to 30-weeks' gestation), Day 10 and Day 56 (approximately 36 weeks' gestation) will include fasting plasma glucose levels, microbial composition and short-chain fatty acid concentrations in stool, 3-day dietary intake records and bowel symptoms questionnaires. One-week post-natal data collection will include microbial composition and short-chain fatty acid concentrations of maternal and neonatal stools, microbial composition of breastmilk, birthweight, maternal and neonatal outcomes. Mixed model analysis of variance will assess change in glycaemia and permutation-based multivariate analysis of variance will assess changes in microbial composition within and between intervention groups. Distance-based linear modelling will identify correlation between change in stool microbiota, short-chain fatty acids and measures of glycaemia.

DISCUSSION: To improve outcomes for GDM dyads, evaluation of a high dietary intake of resistant starch to improve glycaemia through the gut microbiome needs to be established. This will expand the dietary interventions available to manage GDM without medication.

TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry, ACTRN12620000968976p . Registered 28 September 2020.

RevDate: 2022-01-18

Ruiz-Rico M, Renwick S, Allen-Vercoe E, et al (2022)

In vitro susceptibility of human gut microbes to potential food preservatives based on immobilized phenolic compounds.

Food chemistry, 378:132136 pii:S0308-8146(22)00097-8 [Epub ahead of print].

The development of novel food preservatives based on natural antimicrobials such as phenolic compounds is increasing, but their safety should be established before use, including evaluating their impact on the gut microbiota. This work explored the influence of antimicrobial phenolics presented in different forms on selected human gut microbiota members through in vitro susceptibility tests. The bacteria tested exhibited a wide range of susceptibilities to phenolics depending on the molecule structure and mode of administration. Agathobacter rectalis and Clostridium spiroforme, members of the phylum Firmicutes, were the most sensitive strains. Susceptibility was strain- and species-specific, suggesting that it may not be possible to easily extrapolate results across the human microbiome in general. Species of other phyla including Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia were more resistant than Firmicutes, with growth of some strains even enhanced. Our results provide insights into the biocompatibility of free and immobilized phenolics as potential food additives.

RevDate: 2022-01-18

Mulpuru V, N Mishra (2022)

Antimicrobial Peptides from Human Microbiome Against Multidrug Efflux Pump of Pseudomonas aeruginosa: a Computational Study.

Probiotics and antimicrobial proteins [Epub ahead of print].

The excess use of antibiotics has led to the evolution of multidrug-resistant pathogenic strains causing worldwide havoc. These multidrug-resistant strains require potent inhibitors. Pseudomonas aeruginosa is a lead cause of nosocomial infections and also feature in the critical priority list of the world health organization (WHO) for the development of new antibiotics against their antimicrobial resistance. Antimicrobial peptides (AMPs) found in almost every life form from microorganisms to humans are known to defend their hosts against various pathogens. Owing to the diversity of the human microbiome, in this study, we have identified the cell-penetrating AMPs from the human microbiome and studied their inhibitory activity against the outer membrane protein OprM of the MexAB-OprM, a constitutively expressed multidrug efflux pump of the Ps. aeruginosa. Screening of the AMPs from the human microbiome resulted in the identification of 147 cell-penetrating AMPs (CPAMPs). The virtual screening of these CPAMPs against the OprM protein showed significant inhibitory results with the top docked AMP showing binding affinity exceeding -30 kcal/mol. The molecular dynamic simulation determined the interaction stabilities between the AMPs and the OprM at the binding site. Further, the residue interaction networks (RINs) are analyses to identify the inhibitory patterns. Later, these patterns were confirmed by MM-PBSA analysis suggesting that the AMPs are majorly stabilized by electrostatic interactions at the binding site. Thus, the high binding affinity and insights from the molecular interaction signify that the identified CPAMPs from the human microbiome can be further explored as inhibitory agents against multidrug-resistant Ps. aeruginosa.

RevDate: 2022-01-18

Lee SJ, M Rho (2022)

Multimodal deep learning applied to classify healthy and disease states of human microbiome.

Scientific reports, 12(1):824.

Metagenomic sequencing methods provide considerable genomic information regarding human microbiomes, enabling us to discover and understand microbial diseases. Compositional differences have been reported between patients and healthy people, which could be used in the diagnosis of patients. Despite significant progress in this regard, the accuracy of these tools needs to be improved for applications in diagnostics and therapeutics. MDL4Microbiome, the method developed herein, demonstrated high accuracy in predicting disease status by using various features from metagenome sequences and a multimodal deep learning model. We propose combining three different features, i.e., conventional taxonomic profiles, genome-level relative abundance, and metabolic functional characteristics, to enhance classification accuracy. This deep learning model enabled the construction of a classifier that combines these various modalities encoded in the human microbiome. We achieved accuracies of 0.98, 0.76, 0.84, and 0.97 for predicting patients with inflammatory bowel disease, type 2 diabetes, liver cirrhosis, and colorectal cancer, respectively; these are comparable or higher than classical machine learning methods. A deeper analysis was also performed on the resulting sets of selected features to understand the contribution of their different characteristics. MDL4Microbiome is a classifier with higher or comparable accuracy compared with other machine learning methods, which offers perspectives on feature generation with metagenome sequences in deep learning models and their advantages in the classification of host disease status.

RevDate: 2022-01-17

Maslennikov R, Ivashkin V, Ufimtseva A, et al (2022)

[Two consecutive attacks of diarrhea in 15 COVID-19 patients: An antibiotic-associated one following the viral one].

Revista de gastroenterologia de Mexico, 87(1):59-62.

Of the 971 patients admitted to our Clinic with suspected COVID-19, 15 (1.5%) presented with two consecutive attacks of diarrhea. One of those patients (a 47-year-old woman) required admission to the intensive care unit and mechanical ventilation. She died on the 11th day of hospitalization (18th day of illness). The first attack of diarrhea in those patients occurred on the 6 th (4th-7th) day of disease and lasted 3 (3-5) days. The second attack of diarrhea developed 11 (8-12) days after the initial onset of diarrhea. Despite the existing trend, the difference in the duration of the diarrhea and the maximum number of bowel movements per day between the first and second attacks was not statistically significant (p = 0.130; p = 0.328). There was no significant difference between the patients with a double attack of diarrhea and those with no diarrhea, regarding the results of the complete blood count, biochemical blood tests, and inflammation biomarkers.

RevDate: 2022-01-13

Pettersen VK, Antunes LCM, Dufour A, et al (2022)

Inferring early-life host and microbiome functions by mass spectrometry-based metaproteomics and metabolomics.

Computational and structural biotechnology journal, 20:274-286 pii:S2001-0370(21)00520-1.

Humans have a long-standing coexistence with microorganisms. In particular, the microbial community that populates the human gastrointestinal tract has emerged as a critical player in governing human health and disease. DNA and RNA sequencing techniques that map taxonomical composition and genomic potential of the gut community have become invaluable for microbiome research. However, deriving a biochemical understanding of how activities of the gut microbiome shape host development and physiology requires an expanded experimental design that goes beyond these approaches. In this review, we explore advances in high-throughput techniques based on liquid chromatography-mass spectrometry. These omics methods for the identification of proteins and metabolites have enabled direct characterisation of gut microbiome functions and the crosstalk with the host. We discuss current metaproteomics and metabolomics workflows for producing functional profiles, the existing methodological challenges and limitations, and recent studies utilising these techniques with a special focus on early life gut microbiome.

RevDate: 2022-01-12

Klopp J, Ferretti P, Meyer CU, et al (2022)

Meconium Microbiome of Very Preterm Infants across Germany.

mSphere [Epub ahead of print].

Meconium constitutes infants' first bowel movements postnatally. The consistency and microbial load of meconium are different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with negative health outcomes, but its composition is not well described, especially in preterm infants. Here, we characterized the meconium microbiomes from 330 very preterm infants (gestational ages 28 to 32 weeks) from 15 hospitals in Germany and in fecal samples from a subset of their mothers (N = 217). Microbiome profiles were compiled using 16S rRNA gene sequencing with negative and positive controls. The meconium microbiome was dominated by Bifidobacterium, Staphylococcus, and Enterococcus spp. and was associated with gestational age at birth and age at sample collection. Bifidobacterial abundance was negatively correlated with potentially pathogenic genera. The amount of bacterial DNA in meconium samples varied greatly across samples and was associated with the time since birth but not with gestational age or hospital site. In samples with low bacterial load, human mitochondrial sequences were highly amplified using commonly used, bacterial-targeted 16S rRNA primers. Only half of the meconium samples contained sufficient bacterial material to study the microbiome using a standard approach. To facilitate future meconium studies, we present a five-level scoring system ("MecBac") that predicts the success of 16S rRNA bacterial sequencing for meconium samples. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies. IMPORTANCE Meconium is present in the intestines of infants before and after birth and constitutes their first bowel movements postnatally. The consistency, composition and microbial load of meconium is largely different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with short-term and long-term negative health outcomes, but its composition is not yet well described, especially in preterm infants. We provide a characterization of the microbiome structure and composition of infant meconium and maternal feces from a large study cohort and propose a method to evaluate meconium samples for bacterial sequencing suitability. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies.

RevDate: 2022-01-12

Chen C, Liao J, Xia Y, et al (2022)

Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation.

Gut pii:gutjnl-2021-326269 [Epub ahead of print].

OBJECTIVE: This study is to investigate the role of gut dysbiosis in triggering inflammation in the brain and its contribution to Alzheimer's disease (AD) pathogenesis.

DESIGN: We analysed the gut microbiota composition of 3×Tg mice in an age-dependent manner. We generated germ-free 3×Tg mice and recolonisation of germ-free 3×Tg mice with fecal samples from both patients with AD and age-matched healthy donors.

RESULTS: Microbial 16S rRNA sequencing revealed Bacteroides enrichment. We found a prominent reduction of cerebral amyloid-β plaques and neurofibrillary tangles pathology in germ-free 3×Tg mice as compared with specific-pathogen-free mice. And hippocampal RNAseq showed that inflammatory pathway and insulin/IGF-1 signalling in 3×Tg mice brain are aberrantly altered in the absence of gut microbiota. Poly-unsaturated fatty acid metabolites identified by metabolomic analysis, and their oxidative enzymes were selectively elevated, corresponding with microglia activation and inflammation. AD patients' gut microbiome exacerbated AD pathologies in 3×Tg mice, associated with C/EBPβ/asparagine endopeptidase pathway activation and cognitive dysfunctions compared with healthy donors' microbiota transplants.

CONCLUSIONS: These findings support that a complex gut microbiome is required for behavioural defects, microglia activation and AD pathologies, the gut microbiome contributes to pathologies in an AD mouse model and that dysbiosis of the human microbiome might be a risk factor for AD.

RevDate: 2022-01-11

Amar Y, Schneider E, Köberle M, et al (2022)

11Microbial dysbiosis in a mouse model of atopic dermatitis mimics shifts in human microbiome and correlates with the key pro-inflammatory cytokines IL-4, IL-33 and TSLP.

Journal of the European Academy of Dermatology and Venereology : JEADV [Epub ahead of print].

BACKGROUND: Cutaneous bacterial dysbiosis is a characteristic hallmark of atopic dermatitis (AD) and it decisively influences the severity of the disease. Despite this, frequently used murine models of AD have not been characterized regarding the changes in skin microbiome communities.

OBJECTIVE: To analyze the skin microbiome of two frequently used murine models for AD for assessing their applicability in translational research.

METHODS: AD was induced in mice by topical application of calcipotriol, or oxazolone. Following comparable elicitation of AD-like dermatitis, including IgE induction, the skin microbial communities were analyzed and compared with human AD.

RESULTS: We detected critical differences in the microbiota composition of diseased skin. In contrast to calcipotriol treatment, application of oxazolone induced significant changes of the cutaneous microbiota and a drastic drop of bacterial richness. Furthermore, an expansion of Staphylococci, particularly S. xylosus was observed in the oxazolone group, also displaying positive correlations with AD key markers including pH, TEWL, IL-4, TSLP and IL-33.

CONCLUSIONS: In this article we show that i) the model of choice to investigate AD needs to be characterized for the cutaneous microbiota if applicable and ii) the oxazolone-mediated mixed Th1-Th2 immune response triggers microbiota-induced alterations which share similarities to dysbiosis in human AD and represents therefore a suitable model for translational research on AD if alterations of the microbiome are in the focus of the investigation.

RevDate: 2022-01-11

Popkov VA, Zharikova AA, Demchenko EA, et al (2022)

Gut Microbiota as a Source of Uremic Toxins.

International journal of molecular sciences, 23(1): pii:ijms23010483.

Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as "uremic toxins". The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.

RevDate: 2022-01-11

Wellington VNA, Sundaram VL, Singh S, et al (2021)

Dietary Supplementation with Vitamin D, Fish Oil or Resveratrol Modulates the Gut Microbiome in Inflammatory Bowel Disease.

International journal of molecular sciences, 23(1): pii:ijms23010206.

Gastrointestinal health is influenced by the functional genes and metabolites generated by the human microbiome. As the volume of current biomedical and translational research indicates, the importance and impact of this ecosystem of microorganisms, especially those comprising the gut microbiome on human health, has become increasingly apparent. Changes to the gut microbiome are associated with inflammatory bowel disease (IBD), which is characterized by persistent intestinal inflammation. Furthermore, the lifetime dietary choices of their host may positively or negatively affect both the gut microbiome and its impact on IBD. As such, "anti-inflammatory" dietary supplements, their impact, and mechanisms in restoring gut microbiota homeostasis during IBD is an area of intensive research. Dietary supplementation may represent an important adjuvant treatment avenue for limiting intestinal inflammation in IBD. Overall, this review addresses the development of the gut microbiome, the significance of the gut microbiome in IBD, and the use of dietary supplements such as vitamin D, fish oil, and resveratrol in the mitigation of IBD-associated gut dysbiosis and intestinal inflammation.

RevDate: 2022-01-11

Vitale SG, Ferrari F, Ciebiera M, et al (2021)

The Role of Genital Tract Microbiome in Fertility: A Systematic Review.

International journal of molecular sciences, 23(1): pii:ijms23010180.

The human microbiome plays a crucial role in determining the health status of every human being, and the microbiome of the genital tract can affect the fertility potential before and during assisted reproductive treatments (ARTs). This review aims to identify and appraise studies investigating the correlation of genital microbiome to infertility. Publications up to February 2021 were identified by searching the electronic databases PubMed/MEDLINE, Scopus and Embase and bibliographies. Only full-text original research articles written in English were considered eligible for analysis, whereas reviews, editorials, opinions or letters, case studies, conference papers, and abstracts were excluded. Twenty-six articles were identified. The oldest studies adopted the exclusive culture-based technique, while in recent years PCR and RNA sequencing based on 16S rRNA were the most used technique. Regardless of the anatomical site under investigation, the Lactobacillus-dominated flora seems to play a pivotal role in determining fertility, and in particular Lactobacillus crispatus showed a central role. Nonetheless, the presence of pathogens in the genital tract, such as Chlamydia trachomatis, Gardnerella vaginalis, Ureaplasma species, and Gram-negative stains microorganism, affected fertility also in case of asymptomatic bacterial vaginosis (BV). We failed to identify descriptive or comparative studies regarding tubal microbiome. The microbiome of the genital tract plays a pivotal role in fertility, also in case of ARTs. The standardization of the sampling methods and investigations approaches is warranted to stratify the fertility potential and its subsequent treatment. Prospective tubal microbiome studies are warranted.

RevDate: 2022-01-10

McGee JS, C Huttenhower (2021)

Of mice and men and women: Sexual dimorphism of the gut microbiome.

International journal of women's dermatology, 7(5Part A):533-538 pii:S2352-6475(21)00129-5.

The gut microbiome plays a critical role in developing and educating our immune system. Therefore, its now well-established role in autoimmunity and immune disorders is in some ways not surprising. However, it is well-documented in the literature that there is a female predisposition to autoimmune disorders, while sexual dimorphisms in the human microbiome have been confined largely to areas outside of the gut. Herein, we will review the evidence of sexual dimorphism in the gut microbiome in both mice and humans, how this differs in animal models versus humans, and how such dimorphisms may be established and influenced by both host and environmental factors. We will conclude with a discussion on how these aspects of the gut microbiome may contribute to both the study and pathogenesis of gender-specific autoimmunity and immune disorders.

RevDate: 2022-01-07

Barlaam A, Putignani L, Pane S, et al (2022)

What's in a child's ear? A case of otomyiasis by Sarcophaga argyrostoma (Diptera, Sarcophagidae).

A clinical report of otomyiasis in a 1-year-old girl is reported. A III instar larva of Sarcophaga sp. was microscopically identified and Sarcophaga (Liopygia) argyrostoma (Diptera, Sarcophagidae) was suspected. A molecular method targeting a fragment of the cox1 gene was used to confirm the identity of the specimen. Although myiases are not frequent manifestations in otolaryngology, they should arouse the attention of doctors, social workers and parents dealing with disabled people, the elderly and children. This contribution also highlights the need of combining microscopy and molecular tools to achieve a correct and reliable identification of the specimen/s.

RevDate: 2022-01-07

Conwill A, Kuan AC, Damerla R, et al (2022)

Anatomy promotes neutral coexistence of strains in the human skin microbiome.

Cell host & microbe pii:S1931-3128(21)00578-3 [Epub ahead of print].

What enables strains of the same species to coexist in a microbiome? Here, we investigate whether host anatomy can explain strain co-residence of Cutibacterium acnes, the most abundant species on human skin. We reconstruct on-person evolution and migration using whole-genome sequencing of C. acnes colonies acquired from healthy subjects, including from individual skin pores, and find considerable spatial structure at the level of pores. Although lineages (sets of colonies separated by <100 mutations) with in vitro fitness differences coexist within centimeter-scale regions, each pore is dominated by a single lineage. Moreover, colonies from a pore typically have identical genomes. An absence of adaptive signatures suggests a genotype-independent source of low within-pore diversity. We therefore propose that pore anatomy imposes random single-cell bottlenecks; the resulting population fragmentation reduces competition and promotes coexistence. Our findings suggest that therapeutic interventions involving pore-dwelling species might focus on removing resident populations over optimizing probiotic fitness.

RevDate: 2022-01-07

Basu A, Singh R, S Gupta (2022)

Bacterial infections in cancer: A bilateral relationship.

Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology [Epub ahead of print].

Bacteria share a long commensal relationship with the human body. New findings, however, continue to unravel many complexities associated with this old alliance. In the past decades, the dysbiosis of human microbiome has been linked to tumorigenesis, and more recently to spontaneous colonization of existing tumors. The topic, however, remains open for debate as the claims for causative-prevailing dual characteristics of bacteria are mostly based on epidemiological evidence rather than robust mechanistic models. There are also no reviews linking the collective impact of bacteria in tumor microenvironments to the efficacy of cancer drugs, mechanisms of pathogen-initiated cancer and bacterial colonization, personalized nanomedicine, nanotechnology, and antimicrobial resistance. In this review, we provide a holistic overview of the bilateral relationship between cancer and bacteria covering all these aspects. Our collated evidence from the literature does not merely categorize bacteria as cancer causative or prevailing agents, but also critically highlights the gaps in the literature where more detailed studies may be required to reach such a conclusion. Arguments are made in favor of dual drug therapies that can simultaneously co-target bacteria and cancer cells to overcome drug resistance. Also discussed are the opportunities for leveraging the natural colonization and remission power of bacteria for cancer treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.

RevDate: 2022-01-07

Pruss KM, Enam F, Battaglioli E, et al (2022)

Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization.

Nature metabolism [Epub ahead of print].

The enteric pathogen Clostridioides difficile (Cd) is responsible for a toxin-mediated infection that causes more than 200,000 recorded hospitalizations and 13,000 deaths in the United States every year1. However, Cd can colonize the gut in the absence of disease symptoms. Prevalence of asymptomatic colonization by toxigenic Cd in healthy populations is high; asymptomatic carriers are at increased risk of infection compared to noncolonized individuals and may be a reservoir for transmission of Cd infection2,3. Elucidating the molecular mechanisms by which Cd persists in the absence of disease is necessary for understanding pathogenesis and developing refined therapeutic strategies. Here, we show with gut microbiome metatranscriptomic analysis that mice recalcitrant to Cd infection and inflammation exhibit increased community-wide expression of arginine and ornithine metabolic pathways. To query Cd metabolism specifically, we leverage RNA sequencing in gnotobiotic mice infected with two wild-type strains (630 and R20291) and isogenic toxin-deficient mutants of these strains to differentiate inflammation-dependent versus -independent transcriptional states. A single operon encoding oxidative ornithine degradation is consistently upregulated across non-toxigenic Cd strains. Combining untargeted and targeted metabolomics with bacterial and host genetics, we demonstrate that both diet- and host-derived sources of ornithine provide a competitive advantage to Cd, suggesting a mechanism for Cd persistence within a non-inflammatory, healthy gut.

RevDate: 2022-01-06

Uzoukwu EU, Phandanouvong-Lozano V, Usman H, et al (2022)

Droplet-based microsystems as novel assessment tools for oral microbial dynamics.

Biotechnology advances pii:S0734-9750(21)00209-3 [Epub ahead of print].

The human microbiome comprises thousands of microbial species that live in and on the body and play critical roles in human health and disease. Recent findings on the interplay among members of the oral microbiome, defined by a personalized set of microorganisms, have elucidated the role of bacteria and yeasts in oral health and diseases including dental caries, halitosis, and periodontal infections. However, the majority of these studies rely on traditional culturing methods which are limited in their ability of replicating the oral microenvironment, and therefore fail to evaluate key microbial interactions in microbiome dynamics. Novel culturing methods have emerged to address this shortcoming. Here, we reviewed the potential of droplet-based microfluidics as an alternative approach for culturing microorganisms and assessing the oral microbiome dynamics. We discussed the state of the art and recent progress in the field of oral microbiology. Although at its infancy, droplet-based microtechnology presents an interesting potential for elucidating oral microbial dynamics and pathophysiology. We highlight how new findings provided by current microfluidic-based methodologies could advance the investigation of the oral microbiome. We anticipate that our work involving the droplet-based microfluidic technique with a semipermeable membrane will lay the foundations for future microbial dynamics studies and further expand the knowledge of the oral microbiome and its implication in oral health.

RevDate: 2022-01-06

Filik K, Szermer-Olearnik B, Niedziółka-Jönson J, et al (2022)

φYeO3-12 phage tail fiber Gp17 as a promising high specific tool for recognition of Yersinia enterocolitica pathogenic serotype O:3.

AMB Express, 12(1):1.

Yersiniosis is an infectious zoonotic disease caused by two enteropathogenic species of Gram-negative genus Yersinia: Yersinia enterocolitica and Yersinia pseudotuberculosis. Pigs and other wild and domestic animals are reservoirs for these bacteria. Infection is usually spread to humans by ingestion of contaminated food. Yersiniosis is considered a rare disease, but recent studies indicate that it is overlooked in the diagnostic process therefore the infections with this bacterium are not often identified. Reliable diagnosis of Yersiniosis by culturing is difficult due to the slow growth of the bacteria easily overgrown by other more rapidly growing microbes unless selec-tive growth media is used. Phage adhesins recognizing bacteria in a specific manner can be an excellent diagnostic tool, es-pecially in the diagnosis of pathogens difficult for culturing. In this study, it was shown that Gp17, the tail fiber protein (TFP) of phage φYeO3-12, specifically recognizes only the pathogenic Yersinia enterocolitica serotype O:3 (YeO:3) bacteria. The ELISA test used in this work confirmed the specific interaction of this protein with YeO:3 and demonstrated a promising tool for developing the pathogen recognition method based on phage adhesins.

RevDate: 2022-01-05

Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, et al (2022)

A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders.

Clinical microbiology reviews [Epub ahead of print].

The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.

RevDate: 2022-01-04

Pavletić B, Runzheimer K, Siems K, et al (2022)

Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment?.

Astrobiology [Epub ahead of print].

Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.

RevDate: 2022-01-03

Michels N, Zouiouich S, Vanderbauwhede B, et al (2022)

Human microbiome and metabolic health: An overview of systematic reviews.

Obesity reviews : an official journal of the International Association for the Study of Obesity [Epub ahead of print].

To summarize the microbiome's role in metabolic disorders (insulin resistance, hyperglycemia, type 2 diabetes, obesity, hyperlipidemia, hypertension, nonalcoholic fatty liver disease [NAFLD], and metabolic syndrome), systematic reviews on observational or interventional studies (prebiotics/probiotics/synbiotics/transplant) were searched in MEDLINE and Embase until September 2020. The 87 selected systematic reviews included 57 meta-analyses. Methodological quality (AMSTAR2) was moderate in 62%, 12% low, and 26% critically low. Observational studies on obesity (10 reviews) reported less gut bacterial diversity with higher Fusobacterium, Lactobacillus reuteri, Bacteroides fragilis, and Staphylococcus aureus, whereas lower Methanobrevibacter, Lactobacillus plantarum, Akkermansia muciniphila, and Bifidobacterium animalis compared with nonobese. For diabetes (n = 1), the same was found for Fusobacterium and A. muciniphila, whereas higher Ruminococcus and lower Faecalibacterium, Roseburia, Bacteroides vulgatus, and several Bifidobacterium spp. For NAFLD (n = 2), lower Firmicutes, Rikenellaceae, Ruminococcaceae, whereas higher Escherichia and Lactobacillus were detected. Discriminating bacteria overlapped between metabolic disorders, those with high abundance being often involved in inflammation, whereas those with low abundance being used as probiotics. Meta-analyses (n = 54) on interventional studies reported 522 associations: 54% was statistically significant with intermediate effect size and moderate between-study heterogeneity. Meta-evidence was highest for probiotics and lowest for fecal transplant. Future avenues include better methodological quality/comparability, testing functional differences, new intervention strategies, and considerating other body habitats and kingdoms.

RevDate: 2022-01-03

Feng Y, Bui TPN, Stams AJM, et al (2022)

Comparative genomics and proteomics of Eubacterium maltosivorans: functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle.

Environmental microbiology [Epub ahead of print].

Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood-Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.

RevDate: 2022-01-04

Karisola P, Palosuo K, Hinkkanen V, et al (2021)

Integrative Transcriptomics Reveals Activation of Innate Immune Responses and Inhibition of Inflammation During Oral Immunotherapy for Egg Allergy in Children.

Frontiers in immunology, 12:704633.

We previously reported the results of a randomized, open-label trial of egg oral immunotherapy (OIT) in 50 children where 44% were desensitized and 46% were partially desensitized after 8 months of treatment. Here we focus on cell-mediated molecular mechanisms driving desensitization during egg OIT. We sought to determine whether changes in genome-wide gene expression in blood cells during egg OIT correlate with humoral responses and the clinical outcome. The blood cell transcriptome of 50 children receiving egg OIT was profiled using peripheral blood mononuclear cell (PBMC) samples obtained at baseline and after 3 and 8 months of OIT. We identified 467 differentially expressed genes (DEGs) after 3 or 8 months of egg OIT. At 8 months, 86% of the DEGs were downregulated and played a role in the signaling of TREM1, IL-6, and IL-17. In correlation analyses, Gal d 1-4-specific IgG4 antibodies associated positively with DEGs playing a role in pathogen recognition and antigen presentation and negatively with DEGs playing a role in the signaling of IL-10, IL-6, and IL-17. Desensitized and partially desensitized patients had differences in their antibody responses, and although most of the transcriptomic changes were shared, both groups had also specific patterns, which suggest slower changes in partially desensitized and activation of NK cells in the desensitized group. OIT for egg allergy in children inhibits inflammation and activates innate immune responses regardless of the clinical outcome at 8 months. Changes in gene expression patterns first appear as posttranslational protein modifications, followed by more sustained epigenetic gene regulatory functions related to successful desensitization.

RevDate: 2022-01-01

Ryu TY, Kim K, Han TS, et al (2022)

Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer.

The ISME journal [Epub ahead of print].

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.

RevDate: 2022-01-01

Cardile S, Del Chierico F, Candusso M, et al (2021)

Impact of Two Antibiotic Therapies on Clinical Outcome and Gut Microbiota Profile in Liver Transplant Paediatric Candidates Colonized by Carbapenem-Resistant Klebsiella pneumoniae CR-KP.

Frontiers in cellular and infection microbiology, 11:730904.

Colonization by multidrug-resistant (MDR) organisms in liver transplant (LT) candidates significantly affects the LT outcome. To date, consensus about patient management is lacking, including microbiological screening indications. This pilot study aimed to evaluate the impact of carbapenem-resistant Klebsiella pneumoniae (CR-KP) colonization in LT paediatric candidates to enable optimal prevention and therapeutic strategies that exploit both clinical and microbiological approaches. Seven paediatric patients colonized by CR-KP were evaluated before and until one-year post LT. At the time of the transplant, patients were stratified based on antibiotic (ATB) prophylaxis into two groups: 'standard ATB' (standard ATB prophylaxis), and 'targeted ATB' (MDR antibiogram-based ATB prophylaxis). Twenty-eight faecal samples were collected during follow-up and used for MDR screening and gut microbiota 16S rRNA-based profiling. Post-transplant hospitalization duration was comparable for both groups. With the exception of one patient, no serious infections and/or complications, nor deaths were recorded. A progressive MDR decontamination was registered. In the 'standard ATB' group, overall bacterial richness increased. Moreover, 6 months after LT, Lactobacillus and Bulleidia were increased and Enterobacteriaceae and Klebsiella spp. were reduced. In the 'targeted ATB' group Klebsiella spp., Ruminococcus gnavus, Erysipelotrichaceae, and Bifidobacterium spp. were increased 12 months after LT. In conclusion, both antibiotics prophylaxis do not affect nor LT outcomes or the risk of intestinal bacterial translocation. However, in the 'standard ATB' group, gut microbiota richness after LT was increased, with an increase of beneficial lactic acid- and short-chain fatty acids (SCFA)-producing bacteria and the reduction of harmful Enterobacteriaceae and Klebsiella spp. It could therefore be appropriate to administer standard prophylaxis, reserving the use of ATB-based molecules only in case of complications.

RevDate: 2021-12-31

Stankeviciute G, Tang P, Ashley B, et al (2021)

Convergent evolution of bacterial ceramide synthesis.

Nature chemical biology [Epub ahead of print].

The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.

RevDate: 2021-12-30

Clausen DS, AD Willis (2021)

Evaluating replicability in microbiome data.

Biostatistics (Oxford, England) pii:6490209 [Epub ahead of print].

High-throughput sequencing is widely used to study microbial communities. However, choice of laboratory protocol is known to affect the resulting microbiome data, which has an unquantified impact on many comparisons between communities of scientific interest. We propose a novel approach to evaluating replicability in high-dimensional data and apply it to assess the cross-laboratory replicability of signals in microbiome data using the Microbiome Quality Control Project data set. We learn distinctions between samples as measured by a single laboratory and evaluate whether the same distinctions hold in data produced by other laboratories. While most sequencing laboratories can consistently distinguish between samples (median correct classification 87% on genus-level proportion data), these distinctions frequently fail to hold in data from other laboratories (median correct classification 55% across laboratory on genus-level proportion data). As identical samples processed by different laboratories generate substantively different quantitative results, we conclude that 16S sequencing does not reliably resolve differences in human microbiome samples. However, because we observe greater replicability under certain data transformations, our results inform the analysis of microbiome data.

RevDate: 2021-12-29

Hiippala K, Khan I, Ronkainen A, et al (2022)

Novel strain of Pseudoruminococcus massiliensis possesses traits important in gut adaptation and host-microbe interactions.

Gut microbes, 14(1):2013761.

Fecal microbiota transplantation (FMT) is an efficient treatment for recurrent Clostridioides difficile infection and currently investigated as a treatment for other intestinal and systemic diseases. Better understanding of the species potentially transferred in FMT is needed. We isolated from a healthy fecal donor a novel strain E10-96H of Pseudoruminococcus massiliensis, a recently described strictly anaerobic species currently represented only by the type strain. The whole genome sequence of E10-96H had over 98% similarity with the type strain. E10-96H carries 20 glycoside hydrolase encoding genes, degrades starch in vitro and thus may contribute to fiber degradation, cross-feeding of other species and butyrate production in the intestinal ecosystem. The strain carries pilus-like structures, harbors pilin genes in its genome and adheres to enterocytes in vitro but does not provoke a proinflammatory response. P. massiliensis seems to have commensal behavior with the host epithelium, and its role in intestinal ecology should be studied further.

RevDate: 2021-12-29

Wise NM, Wagner SJ, Worst TJ, et al (2021)

Comparison of swab types for collection and analysis of microorganisms.

MicrobiologyOpen, 10(6):e1244.

The human microbiome has begun to emerge as a potential forensic tool, with varied applications ranging from unique identification to investigative leads that link individuals and/or locations. The relative abundance of the combined DNA of the microbiome, compared to human nuclear DNA, may expand potential sources of biological evidence, especially in cases with transfer or low-copy number DNA samples. This work sought to determine the optimal swab type for the collection and analysis of microorganisms. A bacterium (Proteus mirabilis) was deposited by pipette onto four swab types (cotton, flocked, dental applicators, and dissolvable), and extraction and real-time PCR quantitation of the bacterial DNA were performed, which allowed for absolute microbial DNA recovery and comparison of yields across the four sampling substrates. Flocked swabs had the highest yield (~1240 ng) compared to the cotton swabs (~184 ng), dental applicators (~533 ng), and dissolvable swabs (~430 ng). The collection efficiency was further evaluated for cotton and flocked swabs using dried microbial samples spotted onto non-porous surfaces (treated wood, glass, plastic, and tile). Flocked swabs performed consistently better across wood, glass, and tile, but showed decreased recovery from plastic. The cotton swabs failed in the recovery of P. mirabilis DNA across all surfaces. Knowing the appropriate sampling substrate will be useful as others continue to investigate the use of the microbiome as a forensics tool.

RevDate: 2021-12-29

Jang HJ, Choi JY, Kim K, et al (2021)

Relationship of the lung microbiome with PD-L1 expression and immunotherapy response in lung cancer.

Respiratory research, 22(1):322.

BACKGROUND: Lung cancer is the primary cause of cancer-related deaths worldwide. The human lung serves as a niche to a unique and dynamic bacterial community that is related to the development of multiple diseases. Here, we investigated the differences in the lung microbiomes of patients with lung cancer.

METHODS: 16S rRNA sequencing was performed to evaluate the respiratory tract microbiome present in the bronchoalveolar lavage fluid. Patients were stratified based on programmed death-ligand 1 (PD-L1) expression levels and immunotherapy responses.

RESULTS: In total, 84 patients were prospectively analyzed, of which 59 showed low (< 10%), and 25 showed high (≥ 10%) PD-L1 expression levels. The alpha and beta diversities did not significantly differ between the two groups. Veillonella dispar was dominant in the high-PD-L1 group; the population of Neisseria was significantly higher in the low-PD-L1 group than in the high-PD-L1 group. In the immunotherapy responder group, V. dispar was dominant, while Haemophilus influenzae and Neisseria perflava were dominant in the non-responder group.

CONCLUSION: The abundances of Neisseria and V. dispar differed significantly in relation to PD-L1 expression levels and immunotherapy responses.

RevDate: 2021-12-29

Fromentin M, Bridier-Nahmias A, Legoff J, et al (2021)

The 16S rRNA lung microbiome in mechanically ventilated patients: a methodological study.

Experimental lung research [Epub ahead of print].

PURPOSE: Characterization of the respiratory tract bacterial microbiome is in its infancy when compared to the gut microbiota. To limit bias mandates a robust methodology. Specific amplification of the hypervariable (V) region of the 16SrRNA gene is a crucial step. Differences in accuracy exist for one V region to another depending on the sampled environment. We aimed to assess the impact of the primer sequences targeting the V4 region currently used for gut microbiota studies in respiratory samples. Materials and methods: The original 515 F-806R primer pair targets the V4 region of the 16SrRNA gene. We compared two different 515 F-806R primer pairs before Illumina 250 paired-end sequencing for bacterial microbiome analyses of respiratory samples from critically-ill ventilated patients. "S-V4" for "Stringent V4" primer pair is used in two ongoing international projects "the Integrative Human microbiome project (iHMP)" and "the Earth microbiome project (EMP)." "R-V4" for "Relaxed V4" primer pair has been modified to reduce biases against specific environmental taxa. The optimal method was determined by concordance with conventional microbiology. Results: Twenty samples from three patients who developed a ventilator-associated pneumonia (VAP) and four who did not (control ventilated patients) were sequenced. Highly different results were obtained. "S-V4" provided the best agreement with the conventional microbiology for endotracheal aspirate: 89% as compared to 56% for "R-V4." The main difference related to poor Enterobacteriaceae detection with "R-V4" primers. Conclusions: Accuracy of the bacterial lung microbiome composition was highly dependent on the primers used for amplification of the 16 s rRNA hypervariable sequence. This work validates for future lung microbiome studies the use of the 515 F-806R "S-V4" primer pair associated to Illumina® MiSeq paired-end sequencing.

RevDate: 2021-12-28

Fierro V, Marzano V, Monaci L, et al (2021)

Threshold of Reactivity and Tolerance to Precautionary Allergen-Labelled Biscuits of Baked Milk- and Egg-Allergic Children.

Nutrients, 13(12): pii:nu13124540.

Extremely sensitive food-allergic patients may react to very small amounts of allergenic foods. Precautionary allergen labelling (PAL) warns from possible allergenic contaminations. We evaluated by oral food challenge the reactivity to a brand of PAL-labelled milk- and egg-free biscuits of children with severe milk and egg allergy. We explored the ability of proteomic methods to identify minute amounts of milk/egg allergens in such biscuits. Traces of milk and/or egg allergens in biscuits were measured by two different liquid-chromatography-mass spectrometry methods. The binding of patient's serum with egg/milk proteins was assessed using immunoblotting. None of the patients reacted to biscuits. Egg and milk proteins were undetectable with a limit of detection of 0.6 µg/g for milk and egg (method A), and of 0.1 and 0.3 µg /g for milk and egg, respectively (method B). The immunoblots did not show milk/egg proteins in the studied biscuits. Milk/egg content of the biscuits is far lower than 4 µg of milk or egg protein per gram of product, the minimal doses considered theoretically capable of causing reactions. With high sensitivity, proteomic assessments predict the harmlessness of very small amount of allergens in foods, and can be used to help avoiding unnecessary PAL.

RevDate: 2021-12-28

Del Chierico F, Trapani V, Petito V, et al (2021)

Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota.

Nutrients, 13(12): pii:nu13124188.

Nutritional deficiencies are common in inflammatory bowel diseases (IBD). In patients, magnesium (Mg) deficiency is associated with disease severity, while in murine models, dietary Mg supplementation contributes to restoring mucosal function. Since Mg availability modulates key bacterial functions, including growth and virulence, we investigated whether the beneficial effects of Mg supplementation during colitis might be mediated by gut microbiota. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, and fecal consistency. Gut microbiota were analyzed by 16S-rRNA based profiling on fecal samples. Mg supplementation improved microbiota richness in colitic mice, increased abundance of Bifidobacterium and reduced Enterobacteriaceae. KEEG pathway analysis predicted an increase in biosynthetic metabolism, DNA repair and translation pathways during Mg supplementation and in the presence of colitis, while low Mg conditions favored catabolic processes. Thus, dietary Mg supplementation increases bacteria involved in intestinal health and metabolic homeostasis, and reduces bacteria involved in inflammation and associated with human diseases, such as IBD. These findings suggest that Mg supplementation may be a safe and cost-effective strategy to ameliorate disease symptoms and restore a beneficial intestinal flora in IBD patients.

RevDate: 2021-12-28

Pane S, Ristori MV, Gardini S, et al (2021)

Clinical Parasitology and Parasitome Maps as Old and New Tools to Improve Clinical Microbiomics.

Pathogens (Basel, Switzerland), 10(12): pii:pathogens10121550.

A growing body of evidence shows that dysbiotic gut microbiota may correlate with a wide range of disorders; hence, the clinical use of microbiota maps and fecal microbiota transplantation (FMT) can be exploited in the clinic of some infectious diseases. Through direct or indirect ecological and functional competition, FMT may stimulate decolonization of pathogens or opportunistic pathogens, modulating immune response and colonic inflammation, and restoring intestinal homeostasis, which reduces host damage. Herein, we discuss how diagnostic parasitology may contribute to designing clinical metagenomic pipelines and FMT programs, especially in pediatric subjects. The consequences of more specialized diagnostics in the context of gut microbiota communities may improve the clinical parasitology and extend its applications to the prevention and treatment of several communicable and even noncommunicable disorders.

RevDate: 2021-12-24

Kurki SN, Kantonen J, Kaivola K, et al (2021)

APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study.

Acta neuropathologica communications, 9(1):199.

Apolipoprotein E ε4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.

RevDate: 2021-12-27
CmpDate: 2021-12-27

Arbune M, Iancu AV, Lupasteanu G, et al (2021)

A Challenge of COVID-19: Associated Infective Endocarditis with Streptococcus gordonii in a Young Immunocompetent Patient.

Medicina (Kaunas, Lithuania), 57(12): pii:medicina57121298.

The COVID-19 pandemic is a new challenge for the diagnosis and treatment of infective endocarditis (IE). Fever and other unspecific symptoms of coronaviral infection could be misleading or masking its manifestations. We present the case of a young patient admitted for persistent fever, profuse sweating, headache, articular pain, myalgias, and weight loss. She reported regression taste and smell disorders compared to a month earlier when diagnosed with moderate COVID-19 pneumonia. While the RT-PCR SARS-COV-2 test was positive, she was admitted to a COVID-19 ward. Investigations of febrile syndrome revealed two positive blood cultures with Streptococcus gordonii and the presence of vegetations on the aortic valve, supporting a certain diagnosis of IE. After six weeks of antibiotic treatment, the patient had clinical and biologic favorable outcomes. Streptococcus gordonii is a common commensal related to the dental biofilm, although there were no caries in our patient. The influence of COVID-19 infection on the human microbiome by modifying the virulence of some commensal germs may be a risk factor for IE pathogenesis on native valves and requires the vigilance of clinicians for suspicion of this disease.

RevDate: 2021-12-24

Sainz T, Pignataro V, Bonifazi D, et al (2021)

Human Microbiome in Children, at the Crossroad of Social Determinants of Health and Personalized Medicine.

Children (Basel, Switzerland), 8(12): pii:children8121191.

The evolving field of microbiome research offers an excellent opportunity for biomarker identification, understanding drug metabolization disparities, and improving personalized medicine. However, the complexities of host-microbe ecological interactions hinder clinical transferability. Among other factors, the microbiome is deeply influenced by age and social determinants of health, including environmental factors such as diet and lifestyle conditions. In this article, the bidirectionality of social and host-microorganism interactions in health will be discussed. While the field of microbiome-related personalized medicine evolves, it is clear that social determinants of health should be mitigated. Furthermore, microbiome research exemplifies the need for specific pediatric investigation plans to improve children's health.

RevDate: 2021-12-23

Ghannoum MA, McCormick TS, Retuerto M, et al (2021)

Evaluation of Microbiome Alterations Following Consumption of BIOHM, a Novel Probiotic.

Current issues in molecular biology, 43(3):2135-2146 pii:cimb43030148.

Gastrointestinal microbiome dysbiosis may result in harmful effects on the host, including those caused by inflammatory bowel diseases (IBD). The novel probiotic BIOHM, consisting of Bifidobacterium breve, Saccharomyces boulardii, Lactobacillus acidophilus, L. rhamnosus, and amylase, was developed to rebalance the bacterial-fungal gut microbiome, with the goal of reducing inflammation and maintaining a healthy gut population. To test the effect of BIOHM on human subjects, we enrolled a cohort of 49 volunteers in collaboration with the Fermentation Festival group (Santa Barbara, CA, USA). The profiles of gut bacterial and fungal communities were assessed via stool samples collected at baseline and following 4 weeks of once-a-day BIOHM consumption. Mycobiome analysis following probiotic consumption revealed an increase in Ascomycota levels in enrolled individuals and a reduction in Zygomycota levels (p value < 0.01). No statistically significant difference in Basidiomycota was detected between pre- and post-BIOHM samples and control abundance profiles (p > 0.05). BIOHM consumption led to a significant reduction in the abundance of Candida genus in tested subjects (p value < 0.013), while the abundance of C. albicans also trended lower than before BIOHM use, albeit not reaching statistical significance. A reduction in the abundance of Firmicutes at the phylum level was observed following BIOHM use, which approached levels reported for control individuals reported in the Human Microbiome Project data. The preliminary results from this clinical study suggest that BIOHM is capable of significantly rebalancing the bacteriome and mycobiome in the gut of healthy individuals, suggesting that further trials examining the utility of the BIOHM probiotic in individuals with gastrointestinal symptoms, where dysbiosis is considered a source driving pathogenesis, are warranted.

RevDate: 2021-12-22

Zhang RM, Sun J, Sun RY, et al (2021)

Source Tracking and Global Distribution of the Tigecycline Non-Susceptible tet(X).

Microbiology spectrum [Epub ahead of print].

The emergence of tet(X) genes has compromised the clinical use of the last-line antibiotic tigecycline. We identified 322 (1.21%) tet(X) positive samples from 12,829 human microbiome samples distributed in four continents (Asia, Europe, North America, and South America) using retrospective data from worldwide. These tet(X) genes were dominated by tet(X2)-like orthologs but we also identified 12 samples carrying novel tet(X) genes, designed tet(X45), tet(X46), and tet(X47), were resistant to tigecycline. The metagenomic analysis indicated these tet(X) genes distributed in anaerobes dominated by Bacteroidaceae (78.89%) of human-gut origin. Two mobile elements ISBf11 and IS4351 were most likely to promote the transmission of these tet(X2)-like orthologs between Bacteroidaceae and Riemerella anatipestifer. tet(X2)-like orthologs was also developed during transmission by mutation to high-level tigecycline resistant genes tet(X45), tet(X46), and tet(X47). Further tracing these tet(X) in single bacterial isolate from public repository indicated tet(X) genes were present as early as 1960s in R. anatipestifer that was the primary tet(X) carrier at early stage (before 2000). The tet(X2) and non-tet(X2) orthologs were primarily distributed in humans and food animals respectively, and non-tet(X2) were dominated by tet(X3) and tet(X4). Genomic comparison indicated these tet(X) genes were likely to be generated during tet(X) transmission between Flavobacteriaceae and E. coli/Acinetobacter spp., and ISCR2 played a key role in the transmission. These results suggest R. anatipestifer was the potential ancestral source of tet(X). In addition, Bacteroidaceae of human-gut origin was an important hidden reservoir and mutational incubator for the mobile tet(X) genes that enabled spread to facultative anaerobes and aerobes. IMPORTANCE The emergence of the tigecycline resistance gene tet(X) has posed a severe threat to public health. However, reports of its origin and distribution in human remain rare. Here, we explore the origin and distribution of tet(X) from large-scale metagenomic data of human-gut origin and public repository. This study revealed the emergency of tet(X) gene in 1960s, which has refreshed a previous standpoint that the earliest presence of tet(X) was in 1980s. The metagenomic analysis from data mining covered the unculturable bacteria, which has overcome the traditional bacteria isolating and purificating technologies, and the analysis indicated that the Bacteroidaceae of human-gut origin was an important hidden reservoir for tet(X) that enabled spread to facultative anaerobes and aerobes. The continuous monitoring of mobile tigecycline resistance determinants from both culturable and unculturable microorganisms is imperative for understanding and tackling the dissemination of tet(X) genes in both the health care and agricultural sectors.

RevDate: 2021-12-20

Van Zyl KN, Matukane SR, Hamman BL, et al (2021)

The effect of antibiotics on the human microbiome: a systematic review.

International journal of antimicrobial agents pii:S0924-8579(21)01343-1 [Epub ahead of print].

BACKGROUND: Global antibiotic use has been increasing for decades. The gut microbiome, a key contributor to health, can be altered by antibiotics, which have been repeatedly associated with both short-term and long-standing effects on the intestinal microbiome. The aim of the study was to summarise the effects of antibiotics on the diversity and composition of the human microbiota at different anatomical sites.

METHODS: A systematic review was conducted according to PRISMA guidelines. The PubMed, Scopus, and Web of Science online databases were searched for studies that describe the microbiome of any human bodily site pre- and post- antibiotic treatment, using 16S rRNA gene sequencing. Increases or decreases in diversity, dissimilarity of microbial communities and changes in taxonomic composition post-antibiotic treatment were recorded as outcome measures.

RESULTS: The review identified consistent changes in the microbiota following quinolone and metronidazole treatment and showed that combination treatment may result in longer term dysbiosis. The importance of longitudinal analysis, and a lack of studies in paediatric populations was highlighted. The heterogeneity in the methodology of included studies could have contributed to the inconsistent findings regarding the effect of most antibiotic classes on the microbiome.

CONCLUSIONS: It is recommended that studies investigating the effect of antibiotics on the microbiome need to exclude participants exposed to antibiotics within 4 months prior to collection and analysis of baseline samples, and to include longitudinal analysis, particularly in the longer term. Further explorations need to be made into the functional implications of antibiotic-induced dysbiosis in the microbiome.

PROSPERO (https://www.crd.york.ac.uk/prospero; Registration:CRD42020168991).

RevDate: 2021-12-20

Verstraelen H, Vieira-Baptista P, De Seta F, et al (2022)

The Vaginal Microbiome: I. Research Development, Lexicon, Defining "Normal" and the Dynamics Throughout Women's Lives.

Journal of lower genital tract disease, 26(1):73-78.

OBJECTIVE: This series of articles, titled The Vaginal Microbiome, written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the current findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders.

MATERIALS AND METHODS: A database search of PubMed was performed, using the search terms "vaginal microbiome" (VMB) with "research," "normal," "neonate," "puberty," "adolescent," "menopause," and "ethnicities," as well as "human microbiome project." Full article texts were reviewed. Reference lists were screened for additional articles.

RESULTS: In the last 2 decades, many studies applying molecular techniques were performed, intending to characterize the vaginal microbiota. These studies advanced our understanding of how vaginal health is defined. The first article in this series focuses on the advancement of VMB research, technical definitions, the definition of "normal" VMB, and the dynamics of VMB throughout women's lives.

CONCLUSIONS: Understanding how microorganisms inhabiting the vagina interact with each other and with the host is important for a more complete understanding of vaginal health. The clinical application of microbial community sequencing is in its beginning, and its interpretation regarding practical clinical aspects is yet to be determined.

RevDate: 2021-12-18

Grenga L, Pible O, J Armengaud (2019)

Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns.

Clinical mass spectrometry (Del Mar, Calif.), 14 Pt A:9-17.

For the rapid and reliable differentiation of clinically-relevant bacterial species, mass spectrometry-based methods have emerged in recent years as valid alternatives to existing techniques. Mass profiles generated by whole-cell Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry have revolutionized microorganism identification and proven their potential for proteotyping at the species level. Indeed, the methodology has been widely deployed in clinical settings. However, the low resolution and dynamic range of the methodology has limited its capacity to distinguish between subspecies. This discrimination capacity is pivotal in cases where certain strains display virulence or antibiotic resistance, and for epidemiologic analyses. Moreover, sensitivity and specificity are both key parameters when attempting to discriminate between microorganisms present in complex multi-pathogenic samples. These two parameters are also essential to meet the growing interest in the characterization of microorganisms contained within even more complex samples, such as the human microbiome. Tandem mass spectrometry, with its high resolution, holds great potential for use in the real-time direct analysis of pathogens at the most relevant taxonomic rank in routine clinical practice. This review explores the numerous benefits and challenges of implementing advanced proteotyping methods, based on tandem mass spectrometry, in clinical laboratories. We provide an overview of the current applications and methodologies, while also discussing recent improvements and potential new approaches for typing, as well as their future applications.

RevDate: 2021-12-18

Parolin C, Zhu W, J Zhu (2021)

Editorial: Metabolomics of Human Microbiome Studies: Recent Advances in Methods and Applications.

Frontiers in molecular biosciences, 8:800337.

RevDate: 2021-12-18

Lin S, Zhang H, Wang X, et al (2021)

Abundance of Lipopolysaccharide Heptosyltransferase I in Human Gut Microbiome and Its Association With Cardiovascular Disease and Liver Cirrhosis.

Frontiers in microbiology, 12:756976.

Lipopolysaccharide (LPS) is a potent endotoxin on the outer membrane of gram-negative bacteria. Heptosyltransferase I (HpeI) takes part in the synthesis of LPS. In this study, we first collected the protein sequences of HpeI homologs from the human microbiome. The collected HpeI sequences was classified based on sequence similarity, and seven clusters of HpeI were obtained. Among these clusters, proteins from Cluster 3 were abundant in the human mouth, while Clusters 1, 6, and 7 were abundant in the human gut. In addition, proteins from Cluster 1 were mainly from the order of Enterobacterales, while Cluster 6 and 7 were from Burkholderiales. The correlation analysis indicated that the total abundance of HpeIs was increased in patients with cardiovascular disease and liver cirrhosis, and HpeI in Cluster 1 contributed to this increase. These data suggest that HpeI homologs in Cluster 1 can be recognized as biomarkers for cardiovascular disease and liver cirrhosis, and that reducing the bacterial load in Cluster 1 may contribute to disease therapy.

RevDate: 2021-12-16

Allali I, Abotsi RE, Tow LA, et al (2021)

Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research.

Microbiome, 9(1):241.

BACKGROUND: The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies.

METHODOLOGY: We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction.

RESULTS: We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168).

CONCLUSIONS: There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.

RevDate: 2021-12-14

Bernard R, Fazili I, Rajagopala SV, et al (2021)

Association between Oral Microbiome and Esophageal Diseases: A State-of-the-Art Review.

Digestive diseases (Basel, Switzerland) pii:000517736 [Epub ahead of print].

BACKGROUND: Esophageal conditions result in significant morbidity and mortality worldwide. There is growing enthusiasm for discerning the role of microbiome in esophageal diseases. Conceivably, the focus has been on examining the role of local microbiome in esophageal diseases although this is somewhat limited by the invasive approach required to sample the esophageal tissue. Given the ease of sampling the oral cavity combined with the advances in genomic techniques, there is immense interest in discovering the role of the oral microbiome in esophageal conditions.

SUMMARY: In this review, we aim to discuss the current evidence highlighting the association between the oral microbiome and esophageal diseases. In particular, we have focused on summarizing the alterations in oral microbiome associated with malignant, premalignant, and benign esophageal cancers, inflammatory and infectious conditions, and esophageal dysmotility diseases. Identifying alterations in the oral microbiome is a key to advancing our understanding of the etiopathogenesis and progression of esophageal diseases, promoting novel diagnostics, and laying the foundation for personalized treatment approaches. Key Messages: Further studies are needed to unravel the mechanisms by which the oral microbiome influences the development and progression of esophageal diseases, as well as to investigate whether alterations in the oral microbiome can impact the natural history of various esophageal diseases.

RevDate: 2021-12-13

Mane S, Dixit KK, Lathwal N, et al (2021)

Rectal administration of buttermilk processed with medicinal plants alters gut microbiome in obese individuals.

Journal of diabetes and metabolic disorders, 20(2):1415-1427 pii:879.

Objective: To evaluate the effect of rectal administration of buttermilk processed with medicinal plants on gut microbial composition and thereby on weight in obese individuals.

Methods: With ethics committee approval, 16 obese individuals in the age group 20-50 years (BMI ≥30 kg/m2) were recruited who received a course of 15-enemas over 15-days. Of these, 1st, 8th and 15th enemas were of sesame-oil administered after food, while other enemas were of buttermilk processed with medicinal plants administered before food. Outcome variables viz. anthropometry, body composition, blood glucose, insulin and lipid profile were evaluated on day 0, 16 and 45. Also, microbial composition of buttermilk preparation and faecal samples of patients collected on day 0, 16 and 45 were studied with the help of 16S rRNA gene sequencing.

Results: The circumferential measures and skinfold-thickness showed a decrease on day 16, which remained lower as compared to baseline till day 45. A gradual decrease in blood-glucose was seen, which was statistically significant on day 45, while insulin levels increased on day 16 and fell to baseline on day 45. There was an overall increase in bacterial diversity on day 16 that settled back to its original composition by day 45.

Conclusion: Our findings suggest that buttermilk administration per rectum is effective for a specific period and may have to be repeated for sustained benefits.

Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-021-00879-z.

RevDate: 2021-12-13

Narayana JK, Mac Aogáin M, Goh WWB, et al (2021)

Mathematical-based microbiome analytics for clinical translation.

Computational and structural biotechnology journal, 19:6272-6281 pii:S2001-0370(21)00494-3.

Traditionally, human microbiology has been strongly built on the laboratory focused culture of microbes isolated from human specimens in patients with acute or chronic infection. These approaches primarily view human disease through the lens of a single species and its relevant clinical setting however such approaches fail to account for the surrounding environment and wide microbial diversity that exists in vivo. Given the emergence of next generation sequencing technologies and advancing bioinformatic pipelines, researchers now have unprecedented capabilities to characterise the human microbiome in terms of its taxonomy, function, antibiotic resistance and even bacteriophages. Despite this, an analysis of microbial communities has largely been restricted to ordination, ecological measures, and discriminant taxa analysis. This is predominantly due to a lack of suitable computational tools to facilitate microbiome analytics. In this review, we first evaluate the key concerns related to the inherent structure of microbiome datasets which include its compositionality and batch effects. We describe the available and emerging analytical techniques including integrative analysis, machine learning, microbial association networks, topological data analysis (TDA) and mathematical modelling. We also present how these methods may translate to clinical settings including tools for implementation. Mathematical based analytics for microbiome analysis represents a promising avenue for clinical translation across a range of acute and chronic disease states.

RevDate: 2021-12-13

Naspolini NF, Meyer A, Moreira JC, et al (2021)

Environmental pollutant exposure associated with altered early-life gut microbiome: Results from a birth cohort study.

Environmental research pii:S0013-9351(21)01846-6 [Epub ahead of print].

Emerging evidence shows that the gut microbiota interacts with environmental pollutants, but the effect of early exposure on the neonatal microbiome remains unknown. We investigated the association between maternal exposure to environmental pollutants and changes in early-life gut microbiome development. We surveyed 16S rRNA gene on meconium and fecal samples (at 1, 3, and 6 months) from the Brazilian birth cohort, and associated with levels of metals, perfluoroalkyl chemicals (PFAS), and pesticides in maternal and umbilical cord blood. The results indicate that the magnitude of the microbiome changes associated with increasing pollutant exposure was bigger in cesarean-section (CS) born and CS-born-preterm babies, in relation to vaginally (VG) delivered infants. Breastfeeding was associated with a stronger pollutant-associated effect on the infant feces, suggesting that the exposure source could be maternal milk. Differences in microbiome effects associated with maternal or cord blood pollutant concentrations suggest that fetal exposure time - intrauterine or perinatal - may matter. Finally, despite the high developmental microbiota variability, specific microbionts were consistently affected across all pollutants, with taxa clusters found in samples from infants exposed to the highest toxicant exposure. The results evidence that perinatal exposure to environmental pollutants is associated with alterations in gut microbiome development which may have health significance.

RevDate: 2021-12-13

Maslennikov R, Ivashkin V, Ufimtseva A, et al (2021)

Two consecutive attacks of diarrhea in 15 COVID-19 patients: An antibiotic-associated one following the viral one.

Of the 971 patients admitted to our Clinic with suspected COVID-19, 15 (1.5%) presented with two consecutive attacks of diarrhea. One of those patients (a 47-year-old woman) required admission to the intensive care unit and mechanical ventilation. She died on the 11th day of hospitalization (18th day of illness). The first attack of diarrhea in those patients occurred on the 6th (4th-7th) day of disease and lasted 3 (3-5) days. The second attack of diarrhea developed 11 (8-12) days after the initial onset of diarrhea. Despite the existing trend, the difference in the duration of the diarrhea and the maximum number of bowel movements per day between the first and second attacks was not statistically significant (p = 0.130; p = 0.328). There was no significant difference between the patients with a double attack of diarrhea and those with no diarrhea, regarding the results of the complete blood count, biochemical blood tests, and inflammation biomarkers.

RevDate: 2021-12-11

Presti RM, Yeh E, Williams B, et al (2021)

A Randomized, Placebo-Controlled Trial Assessing the Effect of VISBIOME ES Probiotic in People With HIV on Antiretroviral Therapy.

Open forum infectious diseases, 8(12):ofab550.

Background: A5350, a phase II, randomized, double-blind study, evaluated the safety and tolerability of the probiotic Visbiome Extra Strength (ES) over 24 weeks and measured effects on inflammation and intestinal barrier function.

Methods: The primary outcome was change in soluble CD14 (sCD14) levels; secondary outcomes included safety and tolerability, markers of inflammation and cellular activation, and microbiome. In a substudy, gut permeability was assessed by paired colonic biopsies measuring the area of lamina propria occupied by CD4+ cells, interleukin (IL)-17+ cells, and myeloperoxidase (MPO). Changes between arms were compared with the 2-sample t test with equal variance or the Wilcoxon rank-sum test. For safety, the highest graded adverse events (AEs) were compared between arms using the Fisher exact test.

Results: Overall, 93 participants enrolled: 86% male, median age 51 years, median CD4 count 712 cells/mm3. Visbiome ES was safe and well tolerated. There was no difference in mean change in sCD14 from baseline to week 25/26 between placebo (mean change, 92.3 µg/L; 95% CI, -48.5 to 233 µg/L) and Visbiome ES (mean change, 41.0 µg/L; 95% CI, -94.1 to 176.2 µg/L; P=.60). Similarly, no statistically significant differences between arms in inflammatory marker changes were identified. In substudy participants, no statistical differences between arms for change in cellular marker expression or gut permeability were observed (P>.05 for all). The microbiome demonstrated increased probiotic species and a significant decrease in Gammaproteobacteria (P=.044) in the Visbiome ES arm.

Conclusions: Visbiome ES was safe and altered the microbiome but demonstrated no effect on systemic inflammatory markers, pathology, or gut permeability in antiretroviral therapy-treated people with HIV.

RevDate: 2021-12-10

Fischer JAJ, CD Karakochuk (2021)

Feasibility of an At-Home Adult Stool Specimen Collection Method in Rural Cambodia.

International journal of environmental research and public health, 18(23): pii:ijerph182312430.

The human microbiome has received significant attention over the past decade regarding its potential impact on health. Epidemiological and intervention studies often rely on at-home stool collection methods designed for high-resource settings, such as access to an improved toilet with a modern toilet seat. However, this is not always appropriate or applicable to low-resource settings. Therefore, the design of a user-friendly stool collection kit for low-resource rural settings is needed. We describe the development, assembly, and user experience of a simple and low-cost at-home stool collection kit for women living in rural Cambodia as part of a randomized controlled trial in 2020. Participants were provided with the stool collection kit and detailed verbal instruction. Enrolled women (n = 480) provided two stool specimens (at the start of the trial and after 12 weeks) at their home and brought them to the health centre that morning in a sterile collection container. User specimen collection compliance was high, with 90% (n = 434) of women providing a stool specimen at the end of the trial (after 12 weeks). This feasible and straightforward method has strong potential for similar or adapted use among adults residing in other rural or low-resource contexts.

RevDate: 2021-12-10

Gugnacki P, E Sierko (2021)

Is There an Interplay between Oral Microbiome, Head and Neck Carcinoma and Radiation-Induced Oral Mucositis?.

Cancers, 13(23): pii:cancers13235902.

Head and neck carcinoma is one of the most common human malignancy types and it ranks as the sixth most common cancer worldwide. Nowadays, a great potential of microbiome research is observed in oncology-investigating the effect of oral microbiome in oncogenesis, occurrence of treatment side effects and response to anticancer therapies. The microbiome is a unique collection of microorganisms and their genetic material, interactions and products residing within the mucous membranes. The aim of this paper is to summarize current research on the oral microbiome and its impact on the development of head and neck cancer and radiation-induced oral mucositis. Human microbiome might determine an oncogenic effect by, among other things, inducing chronic inflammatory response, instigating cellular antiapoptotic signals, modulation of anticancer immunity or influencing xenobiotic metabolism. Influence of oral microbiome on radiation-induced oral mucositis is expressed by the production of additional inflammatory cytokines and facilitates progression and aggravation of mucositis. Exacerbated acute radiation reaction and bacterial superinfections lead to the deterioration of the patient's condition and worsening of the quality of life. Simultaneously, positive effects of probiotics on the course of radiation-induced oral mucositis have been observed. Understanding the impact on the emerging acute radiation reaction on the composition of the microflora can be helpful in developing a multifactorial model to forecast the course of radiation-induced oral mucositis. Investigating these processes will allow us to create optimized and personalized preventive measures and treatment aimed at their formation mechanism. Further studies are needed to better establish the structure of the oral microbiome as well as the dynamics of its changes before and after therapy. It will help to expand the understanding of the biological function of commensal and pathogenic oral microbiota in HNC carcinogenesis and the development of radiation-induced oral mucositis.

RevDate: 2021-12-10

Sammallahti H, Kokkola A, Rezasoltani S, et al (2021)

Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients.

International journal of molecular sciences, 22(23): pii:ijms222312978.

Pancreatic cancer (PC) is an aggressive disease with a high mortality and poor prognosis. The human microbiome is a key factor in many malignancies, having the ability to alter host metabolism and immune responses and participate in tumorigenesis. Gut microbes have an influence on physiological functions of the healthy pancreas and are themselves controlled by pancreatic secretions. An altered oral microbiota may colonize the pancreas and cause local inflammation by the action of its metabolites, which may lead to carcinogenesis. The mechanisms behind dysbiosis and PC development are not completely clear. Herein, we review the complex interactions between PC tumorigenesis and the microbiota, and especially the question, whether and how an altered microbiota induces oncogenomic changes, or vice versa, whether cancer mutations have an impact on microbiota composition. In addition, the role of the microbiota in drug efficacy in PC chemo- and immunotherapies is discussed. Possible future scenarios are the intentional manipulation of the gut microbiota in combination with therapy or the utilization of microbial profiles for the noninvasive screening and monitoring of PC.

RevDate: 2021-12-10

Yu D, Meng X, de Vos WM, et al (2021)

Implications of Gut Microbiota in Complex Human Diseases.

International journal of molecular sciences, 22(23): pii:ijms222312661.

Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.

RevDate: 2021-12-10

Daniluk J, Daniluk U, Rogalski P, et al (2021)

Microbiome-Friend or Foe of Pancreatic Cancer?.

Journal of clinical medicine, 10(23): pii:jcm10235624.

Pancreatic ductal adenocarcinoma is one of the deadliest human neoplasms. Despite the development of new surgical and adjuvant therapies, the prognosis remains very poor, with the overall survival rate not exceeding 9%. There is now increasing evidence that the human microbiome, which is involved in many physiological functions, including the regulation of metabolic processes and the modulation of the immune system, is possibly linked to pancreatic oncogenesis. However, the exact mechanisms of action are poorly understood. Our review summarizes the current understanding of how the microbiome affects pancreatic cancer development and progression. We discuss potential pathways of microbe translocation to the pancreas, as well as the mechanism of their action. We describe the role of the microbiome as a potential marker of pancreatic cancer diagnosis, progression, and survival. Finally, we discuss the possibilities of modifying the microbiome to improve treatment effectiveness for this deadly disease.

RevDate: 2021-12-11

Barb JJ, Maki KA, Kazmi N, et al (2022)

The oral microbiome in alcohol use disorder: a longitudinal analysis during inpatient treatment.

Journal of oral microbiology, 14(1):2004790.

Background: Alcohol use disorder (AUD)-induced disruption of oral microbiota can lead to poor oral health; there have been no studies published examining the longitudinal effects of alcohol use cessation on the oral microbiome.

Aim: To investigate the oral microbiome during alcohol cessation during inpatient treatment for AUD.

Methods: Up to 10 oral tongue brushings were collected from 22 AUD patients during inpatient treatment at the National Institutes of Health. Alcohol use history, smoking, and periodontal disease status were measured. Oral microbiome samples were sequenced using 16S rRNA gene sequencing.

Results: Alpha diversity decreased linearly during treatment across the entire cohort (P = 0.002). Alcohol preference was associated with changes in both alpha and beta diversity measures. Characteristic tongue dorsum genera from the Human Microbiome Project such as Streptococcus, Prevotella, Veillonella and Haemophilus were highly correlated in AUD. Oral health-associated genera that changed longitudinally during abstinence included Actinomyces, Capnocytophaga, Fusobacterium, Neisseria and Prevotella.

Conclusion: The oral microbiome in AUD is affected by alcohol preference. Patients with AUD often have poor oral health but abstinence and attention to oral care improve dysbiosis, decreasing microbiome diversity and periodontal disease-associated genera while improving acute oral health.

RevDate: 2021-12-08

Daisley BA, Koenig D, Engelbrecht K, et al (2021)

Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases.

Cell reports, 37(10):110087.

The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.

RevDate: 2021-12-07

Rao B, Ren T, Wang X, et al (2021)

Dysbiosis in the Human Microbiome of Cholangiocarcinoma.

Frontiers in physiology, 12:715536.

Cholangiocarcinoma (CCA) is the most common malignant tumor of the biliary system with a very poor prognosis. The human microbiome, which is the sum of the genetic information of human microorganisms, plays an important role in regulating the digestion, absorption, immune response, and metabolism of the host. Increasing evidence indicates a close relationship between CCA and the human microbiome. Specific alterations occur in the human microbiome of patients with CCA. Therefore, in this review, we aimed to summarize the recent evidence on dysbiosis in the human microbiome of CCA. Then, we generalized the effect of Helicobacter pylori on CCA. Additionally, the potential mechanism of human microbial dysbiosis promoted the progress of CCA, and its precancerous disease was also explored. Furthermore, the possibility of the human microbiome as a diagnostic and therapeutic target of CCA was discussed.

RevDate: 2021-12-06

Chen B, W Xu (2021)

Functional response regression model on correlated longitudinal microbiome sequencing data.

Statistical methods in medical research [Epub ahead of print].

Functional regression has been widely used on longitudinal data, but it is not clear how to apply functional regression to microbiome sequencing data. We propose a novel functional response regression model analyzing correlated longitudinal microbiome sequencing data, which extends the classic functional response regression model only working for independent functional responses. We derive the theory of generalized least squares estimators for predictors' effects when functional responses are correlated, and develop a data transformation technique to solve the computational challenge for analyzing correlated functional response data using existing functional regression method. We show by extensive simulations that our proposed method provides unbiased estimations for predictors' effect, and our model has accurate type I error and power performance for correlated functional response data, compared with classic functional response regression model. Finally we implement our method to a real infant gut microbiome study to evaluate the relationship of clinical factors to predominant taxa along time.

RevDate: 2021-12-07

Korpela K, Kallio S, Salonen A, et al (2021)

Gut microbiota develop towards an adult profile in a sex-specific manner during puberty.

Scientific reports, 11(1):23297.

Accumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006-Retrospectively registered, https://clinicaltrials.gov/show/NCT00298337 . The adult-comparison cohort (HELMi) is NCT03996304.

RevDate: 2021-12-11

Morikawa A, Kawabata A, Shirahige K, et al (2021)

Altered cervicovaginal microbiota in premenopausal ovarian cancer patients.

Gene, 811:146083 pii:S0378-1119(21)00678-8 [Epub ahead of print].

Nearly three hundred thousand female patients are diagnosed with ovarian cancer in the world annually, and this number shows an increasing trend. However, characteristic symptoms caused by ovarian cancer are so few that early diagnosis remains challenging, and an effective screening method has not yet been established. Here, we conducted a case-control study in Japan to analyze the association between cervicovaginal microbiome and ovarian cancer, using 16S rRNA amplicon sequencing. Analysis of DNA extracted from cervical smear samples revealed Lactobacillus-dominant and Lactobacillus-deficient, highly-diversified bacterial communities in premenopausal and postmenopausal healthy controls, respectively, as reported for vaginal microbiota previously. We found that cervicovaginal microbiota in ovarian cancer patients, regardless of their menopausal status, were frequently a diversified community and similar to those in healthy subjects at postmenopausal ages. The diverse microbiota was associated with the major histotypes of epithelial ovarian cancer, including serous ovarian cancer and ovarian clear cell cancer. The present study implies the potential of a cervicovaginal microbiome biomarker in screening ovarian cancer in premenopausal women.

RevDate: 2021-12-03

Mamgain G, Patra P, Naithani M, et al (2021)

The Role of Microbiota in the Development of Cancer Tumour Cells and Lymphoma of B and T Cells.

Cureus, 13(10):e19047.

Human body harbours enormous numbers of microbial organisms, including bacteria, viruses, and fungi which have a momentous role in well-being and illness in humans. Immune system shelters us from pathogenic bacteria, microorganisms found in human tissues have many benefits related to the functional movement of the host by regulating important procedures such as immunity, signalling, and breakdown. Lymphocytes assume a significant part in the reaction to bacterial colonization, primarily by prompting a safe reaction to obstruction or initiation. Most immunologically occupant cells have a place with the mucosal invulnerable framework and are continually motioned by dendritic cells or other Antigen introducing cells that gather intestinal samples. Thus, Microbiome is a key contributor to developing lymphoma and specific alterations to microbiome composition could attenuate the risk. There is an indication that microbial morphology can affect and control humanoids. The difference in the composition of these microorganisms is associated with tumour development. With the increased knowledge of the connection among the human microbiome and carcinogenesis, the use of these findings to prevent, predict or diagnose of lymphomas has attracted a great attention. In this article, we explored current knowledge of various microbial ecosystems, their connection with carcinogens and the potential for useful microorganisms to control and prevent B and T cell lymphoma.

RevDate: 2021-12-01

Piscotta FJ, Hoffmann HH, Choi YJ, et al (2021)

Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals.

mSphere [Epub ahead of print].

The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.

RevDate: 2021-12-01

DiMaio D, Emu B, Goodman AL, et al (2021)

Cancer Microbiology.

Journal of the National Cancer Institute pii:6438007 [Epub ahead of print].

Microbes play important roles in cancer from direct carcinogenic effects to their use in treatment. Cancers caused by microorganisms account for approximately 15% of cancers, mostly in low- and middle-income countries. Unique features of infectious carcinogens include their transmissibility, mutability, and specific immune interactions, which provide challenges and opportunities for cancer prevention and treatment. For these agents, infection control through exposure reduction, antivirals, antibiotics, and vaccines is cancer control. In addition, developing evidence suggests that microorganisms including the human microbiome can indirectly modulate cancer formation and influence the effectiveness and toxicity of cancer treatments. Finally, microorganisms themselves can be used to prevent or treat cancer. The convergence of these factors signals the emergence of a new field, Cancer Microbiology. Recognition of Cancer Microbiology will spur research, stimulate cross-disciplinary training, inform drug development, and improve public health.

RevDate: 2021-11-30
CmpDate: 2021-11-30

Liu H, Xu X, Ling K, et al (2021)

[Vaginal microbiome: community characteristics and disease intervention].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 37(11):3801-3811.

The application of high-throughput sequencing technologies has greatly enhanced our understanding to the human microbiome. The causal relations between human microbiome and diseases have become a critical issue to elucidate disease development and develop precision medicine. Recently, the study about vaginal microbiome (the microbial flora that inhabits the female vagina) has received wide interests. It has been shown that dysbiosis of vaginal microbiome was closely related to the development of genital tract diseases. This article summarizes the interaction between vaginal microbiome and disease and the treatment for the dysbiosis of vaginal microbiome. The culturomics of virginal microbiome, engineered probiotics and synthetic microbiome were also proposed.

RevDate: 2021-11-30
CmpDate: 2021-11-30

Yin Y, Yu R, H Chen (2021)

[Shotgun metagenome sequencing of Chinese gut microbiota: a review].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 37(11):3717-3733.

The research on the relationship between gut microbiota and human health continues to be a hot topic in the field of life science. Culture independent 16S rRNA gene high-throughput sequencing is the current main research method. However, with the reduction of sequencing cost and the maturity of data analysis methods, shotgun metagenome sequencing is gradually becoming an important method for the study of gut microbiome due to its advantages of obtaining more information. With the support from the human microbiome project, 30 805 metagenome samples were sequenced in the United States. By searching NCBI PubMed and SRA databases, it was found that 72 studies collecting about 10 000 Chinese intestinal samples were used for metagenome sequencing. To date, only 56 studies were published, including 16 related to metabolic diseases, 16 related to infectious and immune diseases, and 12 related to cardiovascular and cerebrovascular diseases. The samples were mainly collected in Beijing, Guangzhou, Shanghai and other cosmopolitan cities, where great differences exist in sequencing platforms and methods. The outcome of most studies are based on correlation analysis, which has little practical value in guiding the diagnosis and treatment of clinical diseases. Standardizing sampling methods, sequencing platform and data analysis process, and carrying out multi center parallel research will contribute to data integration and comparative analysis. Moreover, insights into the functional verification and molecular mechanism by using the combination of transcriptomics, proteomics and culturomics will enable the gut microbiota research to better serve the clinical diagnosis and treatment.

RevDate: 2021-11-30
CmpDate: 2021-11-30

Wang J, Wang J, Z Deng (2021)

[Preface for special issue on microbiome and human health].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 37(11):3711-3716.

Human microbiome is comprised of symbiotic microorganisms in the human body, whose dynamic balance is closely related to human health, and is recognized as important "organs" that can regulate immunity, metabolism and other aspects in human body, and is associated with functions of many organs including lung, intestine, vagina and brain, becoming a potential target for the treatment of cancer, coronary heart disease, neurological diseases and other difficult diseases. In recent years, with the rapid development of microbiome sequencing and analysis technology, it has become an international focus and forefront to discover the relationship between human microorganisms and many diseases, as well as target for new treatment methods. Thus, we organized this special issue and publish reviews on study methodology, human disease and microbiome as well as therapeutic strategies, and provide important information to advance microbiome research in China.

RevDate: 2021-12-07

Sahni V (2021)

The oral microbiome and vaccine efficacy.

The immune response elicited by vaccines is crucial in determining their eventual efficacy. The human microbiome, in particular, that of the gut has been demonstrated to influence the immunogenicity of vaccines delivered by both the oral and non-oral routes. There is a significant overlap between the microflora of the mouth and that recovered from the gut, with certain periodontopathogens playing key roles in influencing the gut microflora. The present paper hypothesized that the oral microflora may play a role in the eventual immunogenicity and efficacy of vaccines.

RevDate: 2021-11-30

Happonen LJ, Pajunen MI, Jun JW, et al (2021)

BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01.

Viruses, 13(11):.

Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.

RevDate: 2021-11-30

Guan ZW, Yu EZ, Q Feng (2021)

Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota.

Molecules (Basel, Switzerland), 26(22):.

Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.

RevDate: 2021-11-30

Salabura A, Łuniewski A, Kucharska M, et al (2021)

Urinary Tract Virome as an Urgent Target for Metagenomics.

Life (Basel, Switzerland), 11(11):.

Virome-a part of a microbiome-is a term used to describe all viruses found in the specific organism or system. Recently, as new technologies emerged, it has been confirmed that kidneys and the lower urinary tract are colonized not only by the previously described viruses, but also completely novel species. Viruses can be both pathogenic and protective, as they often carry important virulence factors, while at the same time represent anti-inflammatory functions. This paper aims to show and compare the viral species detected in various, specific clinical conditions. Because of the unique characteristics of viruses, new sequencing techniques and databases had to be developed to conduct research on the urinary virome. The dynamic development of research on the human microbiome suggests that the detailed studies on the urinary system virome will provide answers to many questions about the risk factors for civilization, cancer, and autoimmune diseases.

RevDate: 2021-11-29

Puebla-Barragan S, Akouris PP, Al KF, et al (2021)

The Two-Way Interaction between the Molecules That Cause Vaginal Malodour and Lactobacilli: An Opportunity for Probiotics.

International journal of molecular sciences, 22(22):.

Vaginal malodour is a sign of dysbiosis. The biogenic amines (BAs) cadaverine, putrescine and tyramine are known to be causative compounds. Recent reports suggest these compounds produced by pathogens might have a role beyond causing malodour; namely inhibiting the growth of lactobacilli bacteria that are crucial in the maintenance of vaginal homeostasis. The aim of this study was to identify whether certain lactobacilli strains could reduce BAs and to evaluate how Lactobacillus species were affected by these compounds. Using LC-MS and HPLC-UV, five Lactobacillus crispatus strains were identified as being capable of significantly reducing BAs from the media under in vitro conditions. Through 16S rRNA gene sequencing of vaginal swabs exposed to Bas, cadaverine was found to reduce the relative abundance of lactobacilli. When L. crispatus was exposed to media supplemented with BAs with an HCl adjusted lower pH, its growth was enhanced, demonstrating the relevance of the maintenance of an acidic vaginal environment. If strains are to be developed for probiotic application to alleviate bacterial vaginosis and other conditions affecting large numbers of women worldwide, their ability to adapt to Bas and regulate pH should be part of the experimentation.

RevDate: 2021-11-29

D'Angeli F, Guadagni F, Genovese C, et al (2021)

Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk.

Antibiotics (Basel, Switzerland), 10(11):.

Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.

RevDate: 2021-11-25

Diotallevi C, Fontana M, Latimer C, et al (2021)

Ex Vivo Faecal Fermentation of human Ileal Fluid Collected After Wild Strawberry Consumption Modulates Human Microbiome Community Structure and Metabolic Output and Protects Against DNA Damage in Colonic Epithelial Cells.

Molecular nutrition & food research [Epub ahead of print].

SCOPE: Wild strawberries (Fragaria vesca) are richer in (poly)phenols than common commercial strawberry varieties, e.g., Fragaria × ananassa. (Poly)phenols and their microbiota-derived metabolites are hypothesised to exert bioactivity within the human gut mucosa. To address this, the effects of wild strawberries were investigated with respect to their bioactivity and microbiota-modulating capacity using both in vitro and ex vivo approaches.

METHODS AND RESULTS: Ileal fluids collected pre- (0h) and post-consumption (8h) of 225 g wild strawberries by ileostomates (n = 5) and also in vitro digested strawberry varieties (Fragaria vesca and Fragaria × ananassa Duchesne) supernatants were collected. Subsequent fermentation of these supernatants using an in vitro batch culture proximal colon model revealed significant treatment-specific changes in microbiome community structure in terms of alpha but not beta diversity at 24 h. Nutri-kinetic analysis revealed a significant increase in the concentration of gut microbiota catabolites, including 3-(4hydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propanoic acid and benzoic acid. Furthermore, post-berry ileal fermentates (24 h) significantly (p<0.01) decreased DNA damage (% Tail DNA, COMET assay) in both HT29 cells (∼45%) and CCD 841 CoN cells (∼25%) compared to untreated controls.

CONCLUSIONS: Post berry consumption fermentates exhibited increased overall levels of (poly)phenolic metabolites which retained their bioactivity, reducing DNA damage in colonocytes. This article is protected by copyright. All rights reserved.

RevDate: 2021-11-26

Liang G (2021)

Altered gut bacterial and metabolic signatures and their interaction in inflammatory bowel disease.

Synthetic and systems biotechnology, 6(4):377-383.

Dysregulation of the gut microbiome has been implicated in the progression of many diseases. This study explored the role of microbial and metabolic signatures, and their interaction between the Human inflammatory bowel disease (IBD) and healthy controls (HCs) based on the combination of machine learning and traditional statistical analysis, using data collected from the Human Microbiome Project (HMP) and the Integrative Human Microbiome Project (iHMP). It was showed that the microbial and metabolic signatures of IBD patients were significantly different from those of HCs. Compared to HCs, IBD subjects were characterized by 25 enriched species and 6 depleted species. Furthermore, a total of 17 discriminative pathways were identified between the IBD and HC groups. Those differential pathways were mainly involved in amino acid, nucleotide biosynthesis, and carbohydrate degradation. Notably, co-occurrence network analysis revealed that non-predominant bacteria Ruminococcus_obeum and predominant bacteria Faecalibacterium_prausnitzii formed the same broad and strong co-occurring relationships with pathways. Moreover, the essay identified a combinatorial marker panel that could distinguish IBD from HCs. Receiver Operating Characteristic (ROC) and Decision Curve Analysis (DCA) confirmed the high accuracy (AUC = 0.966) and effectiveness of the model. Meanwhile, an independent cohort used for external validation also showed the identical high efficacy (AUC = 0.835). These findings showed that the gut microbes may be relevant to the pathogenesis and pathophysiology, and offer universal utility as a non-invasive diagnostic test in IBD.

RevDate: 2021-12-09

Balaich J, Estrella M, Wu G, et al (2021)

The human microbiome encodes resistance to the antidiabetic drug acarbose.

Nature, 600(7887):110-115.

The human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose1,2, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases3, limiting the ability of the target organism to metabolize complex carbohydrates. Using biochemical assays, X-ray crystallography and metagenomic analyses, we show that microbiome-derived acarbose kinases are specific for acarbose, provide their harbouring organism with a protective advantage against the activity of acarbose, and are widespread in the microbiomes of western and non-western human populations. These results provide an example of widespread microbiome resistance to a non-antibiotic drug, and suggest that acarbose resistance has disseminated in the human microbiome as a defensive strategy against a potential endogenous producer of a closely related molecule.

RevDate: 2021-11-28

Tozzi AE, Del Chierico F, Pandolfi E, et al (2021)

Nasopharyngeal microbiota in hospitalized children with Bordetella pertussis and Rhinovirus infection.

Scientific reports, 11(1):22858.

Despite great advances in describing Bordetella pertussis infection, the role of the host microbiota in pertussis pathogenesis remains unexplored. Indeed, the microbiota plays important role in defending against bacterial and viral respiratory infections. We investigated the nasopharyngeal microbiota in infants infected by B. pertussis (Bp), Rhinovirus (Rv) and simultaneously by both infectious agents (Bp + Rv). We demonstrated a specific nasopharyngeal microbiome profiles for Bp group, compared to Rv and Bp + Rv groups, and a reduction of microbial richness during coinfection compared to the single infections. The comparison amongst the three groups showed the increase of Alcaligenaceae and Achromobacter in Bp and Moraxellaceae and Moraxella in Rv group. Furthermore, correlation analysis between patients' features and nasopharyngeal microbiota profile highlighted a link between delivery and feeding modality, antibiotic administration and B. pertussis infection. A model classification demonstrated a microbiota fingerprinting specific of Bp and Rv infections. In conclusion, external factors since the first moments of life contribute to the alteration of nasopharyngeal microbiota, indeed increasing the susceptibility of the host to the pathogens' infections. When the infection is triggered, the presence of infectious agents modifies the microbiota favoring the overgrowth of commensal bacteria that turn in pathobionts, hence contributing to the disease severity.

RevDate: 2021-11-24

Wang Y, Sun M, Y Duan (2021)

Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data.

Computational and mathematical methods in medicine, 2021:8008731.

The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic methods in recent years. In this paper, machine learning methods are used to analyze metagenomic sequencing data of acne, i.e., all kinds of lipids in the face skin. Firstly, lipids data of the diseased skin (DS) samples and the healthy skin (HS) samples of acne patients and the normal control (NC) samples of healthy person are, respectively, analyzed by using principal component analysis (PCA) and kernel principal component analysis (KPCA). Then, the lipids which have main influence on each kind of sample are obtained. In addition, a multiset canonical correlation analysis (MCCA) is utilized to get lipids which can differentiate the face skins of the above three samples. The experimental results show the machine learning methods can effectively analyze metagenomic sequencing data of acne. According to the results, lipids which only influence one of the three samples or the lipids which simultaneously have different degree of influence on these three samples can be used as indicators to judge skin statuses.

RevDate: 2021-12-03

Depommier C, Everard A, Druart C, et al (2021)

Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome.

Gut microbes, 13(1):1994270.

Reduction of A. muciniphila relative abundance in the gut microbiota is a widely accepted signature associated with obesity-related metabolic disorders. Using untargeted metabolomics profiling of fasting plasma, our study aimed at identifying metabolic signatures associated with beneficial properties of alive and pasteurized A. muciniphila when administrated to a cohort of insulin-resistant individuals with metabolic syndrome. Our data highlighted either shared or specific alterations in the metabolome according to the form of A. muciniphila administered with respect to a control group. Common responses encompassed modulation of amino acid metabolism, characterized by reduced levels of arginine and alanine, alongside several intermediates of tyrosine, phenylalanine, tryptophan, and glutathione metabolism. The global increase in levels of acylcarnitines together with specific modulation of acetoacetate also suggested induction of ketogenesis through enhanced β-oxidation. Moreover, our data pinpointed some metabolites of interest considering their emergence as substantial compounds pertaining to health and diseases in the more recent literature.

RevDate: 2021-11-22

Allen NG, Edupuganti L, Edwards DJ, et al (2021)

The vaginal microbiome in women of reproductive age with healthy weight versus overweight/obesity.

Obesity (Silver Spring, Md.) [Epub ahead of print].

OBJECTIVE: The aim of this study was to evaluate the differences between the vaginal microbiome of reproductive-aged women with overweight and obesity (Ow/Ob) compared with healthy weight (HW).

METHODS: In this case-control study, a cohort of 367 nonpregnant women (18 to 40 years) with Ow/Ob (BMI ≥25 kg/m2) was case-matched with 367 women with HW (BMI 18.0 to 24.9 kg/m2). The study was a secondary analysis of 16S rRNA vaginal microbiome surveys through the Vaginal Human Microbiome Study (VaHMP). Groups were matched on age, race/ethnicity, income, and nulliparity status.

RESULTS: Mean age and BMI of Ow/Ob and HW groups were 26.8 versus 26.7 years and 37.0 versus 22.1 kg/m2 , respectively. The overall vaginal microbiome composition differed between groups (PERMANOVA, p = 0.035). Women with Ow/Ob had higher alpha diversity compared with women with HW (Wilcoxon test, Shannon index p = 0.025; inverse Simpson index p = 0.026). Lactobacillus dominance (≥30% proportional abundance) was observed in a greater proportion of women with HW (48.7%) compared with Ow/Ob (40.1%; p = 0.026).

CONCLUSIONS: The vaginal microbiome differs in reproductive-aged women with Ow/Ob compared with women with HW, with increased alpha diversity and decreased predominance of Lactobacillus. Observed differences in the vaginal microbiome may partially explain differences in preterm birth and bacterial vaginosis risk between these populations.

RevDate: 2021-11-23

Amedei A, Capasso C, Nannini G, et al (2021)

Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases?.

Mediators of inflammation, 2021:6926082.

The involvement of the human microbiome is crucial for different host functions such as protection, metabolism, reproduction, and especially immunity. However, both endogenous and exogenous factors can affect the balance of the microbiota, creating a state of dysbiosis, which can start various gastrointestinal or systemic diseases. The challenge of future medicine is to remodel the intestinal microbiota to bring it back to healthy equilibrium (eubiosis) and, thus, counteract its negative role in the diseases' onset. The shaping of the microbiota is currently practiced in different ways ranging from diet (or use of prebiotics, probiotics, and synbiotics) to phage therapy and antibiotics, including microbiota fecal transplantation. Furthermore, because microbiota modulation is a capillary process, and because many microbiota bacteria (both beneficial and pathogenic) have carbonic anhydrases (specifically the four classes α, β, γ, and ι), we believe that the use of CA inhibitors and activators can open up new therapeutic strategies for many diseases associated with microbial dysbiosis, such as the various gastrointestinal disorders and the same colorectal cancer.

RevDate: 2021-11-20

Belova IV, Khrulev AE, Tochilina AG, et al (2021)

Colon Microbiocenosis and Its Correction in Patients Receiving Programmed Hemodialysis.

Sovremennye tekhnologii v meditsine, 12(5):62-68.

The aim of the investigation was to study the species composition of colon microbiocenosis in patients with chronic kidney disease receiving programmed hemodialysis treatment and to evaluate the efficacy of its correction using a new immobilized synbiotic.

Materials and Methods: Samples of colon microbiota from 62 patients undergoing programmed hemodialysis were studied before and after a course of diet therapy that included probiotic components, in particular, the immobilized synbiotic LB-complex L. Isolation of microorganisms was carried out according to our original method; for bacteria identification, a MALDI-TOF Autoflex speed mass spectrometer (Bruker Daltonik, Germany) was used in the Biotyper program mode. The results were assessed using the criteria proposed by the authors and based on the OST 91500.11.0004-2003. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests.

Results: In patients receiving programmed hemodialysis (before the start of the diet therapy), chronic moderate inflammation and azotemia were found. Dysbiotic changes in microbiocenosis were revealed in all the examined patients; in the absence or suppression of lacto- and bifidoflora, the number and diversity of Bacteroides spp., Clostridium spp., Collinsella spp., Eggerthella spp. and other bacteria increased, which was consistent with the theory of functional redundancy of gut microbiota. From the answers to the questionnaires, a decrease in the quality of life was found (up to 70 points out of 100) according to six of the eight scales used. After the combined therapy using the synbiotic LB-complex L in the study group, 56% of the examined patients showed their microbiocenosis restored to normal; no grade III dysbiosis was detected in any patient. There was a significant decrease in CRP and ESR in these patients and an improvement in the quality of life by criteria reflecting physical health.

Conclusion: In patients receiving programmed hemodialysis, the addition of a probiotic component in the diet therapy restores the evolutionarily determined structure of the microbiocenosis, normalizes its functions, and leads to an overall improvement in health and quality of life.

RevDate: 2021-12-11

Mirzayi C, Renson A, Genomic Standards Consortium, et al (2021)

Reporting guidelines for human microbiome research: the STORMS checklist.

Nature medicine, 27(11):1885-1892.

The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.

RevDate: 2021-11-28

Mousavi SE, Delgado-Saborit JM, Adivi A, et al (2021)

Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms.

The Science of the total environment pii:S0048-9697(21)06730-9 [Epub ahead of print].

A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.

RevDate: 2021-11-20

Romito I, Porru M, Braghini MR, et al (2021)

Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects.

Journal of experimental & clinical cancer research : CR, 40(1):364.

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC.

METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods.

RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation.

CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.

RevDate: 2021-11-16

Mallick H, Rahnavard A, McIver LJ, et al (2021)

Multivariable association discovery in population-scale meta-omics studies.

PLoS computational biology, 17(11):e1009442 pii:PCOMPBIOL-D-21-01441 [Epub ahead of print].

It is challenging to associate features such as human health outcomes, diet, environmental conditions, or other metadata to microbial community measurements, due in part to their quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements. Here we introduce an optimized combination of novel and established methodology to assess multivariable association of microbial community features with complex metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses generalized linear and mixed models to accommodate a wide variety of modern epidemiological studies, including cross-sectional and longitudinal designs, as well as a variety of data types (e.g., counts and relative abundances) with or without covariates and repeated measurements. To construct this method, we conducted a large-scale evaluation of a broad range of scenarios under which straightforward identification of meta-omics associations can be challenging. These simulation studies reveal that MaAsLin 2's linear model preserves statistical power in the presence of repeated measures and multiple covariates, while accounting for the nuances of meta-omics features and controlling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome (HMP2) project which, in addition to reproducing established results, revealed a unique, integrated landscape of inflammatory bowel diseases (IBD) across multiple time points and omics profiles.

RevDate: 2021-11-17

Wang Y, Guo H, Gao X, et al (2021)

The Intratumor Microbiota Signatures Associate With Subtype, Tumor Stage, and Survival Status of Esophageal Carcinoma.

Frontiers in oncology, 11:754788.

Altered human microbiome characteristic has been linked with esophageal carcinoma (ESCA), analysis of microbial profiling directly derived from ESCA tumor tissue is beneficial for studying the microbial functions in tumorigenesis and development of ESCA. In this study, we identified the intratumor microbiome signature and investigated the correlation between microbes and clinical characteristics of patients with ESCA, on the basis of data and information obtained from The Cancer Microbiome Atlas (TCMA) and The Cancer Genome Atlas (TCGA) databases. A total of 82 samples were analyzed for microbial composition at various taxonomic levels, including 40 tumor samples of esophageal squamous cell carcinoma (ESCC), 20 tumor samples of esophageal adenocarcinoma (EAD), and 22 adjacent normal samples. The results showed that the relative abundance of several microbes changed in tumors compared to their paired normal tissues, such as Firmicutes increased significantly while Proteobacteria decreased in tumor samples. We also identified a microbial signature composed of ten microbes that may help in the classification of ESCC and EAD, the two subtypes of ESCA. Correlation analysis demonstrated that compositions of microbes Fusobacteria/Fusobacteriia/Fusobacteriales, Lactobacillales/Lactobacillaceae/Lactobacillus, Clostridia/Clostridiales, Proteobacteria, and Negativicutes were correlated with the clinical characteristics of ESCA patients. In summary, this study supports the feasibility of detecting intratumor microbial composition derived from tumor sequencing data, and it provides novel insights into the roles of microbiota in tumors. Ultimately, as the second genome of human body, microbiome signature analysis may help to add more information to the blueprint of human biology.

RevDate: 2021-11-18

Amatya SB, Salmi S, Kainulainen V, et al (2021)

Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory.

Cancers, 13(21):.

Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.

RevDate: 2021-11-18

Tourelle KM, Boutin S, Weigand MA, et al (2021)

Sepsis and the Human Microbiome. Just Another Kind of Organ Failure? A Review.

Journal of clinical medicine, 10(21):.

Next-generation sequencing (NGS) has been further optimised during the last years and has given us new insights into the human microbiome. The 16S rDNA sequencing, especially, is a cheap, fast, and reliable method that can reveal significantly more microorganisms compared to culture-based diagnostics. It might be a useful method for patients suffering from severe sepsis and at risk of organ failure because early detection and differentiation between healthy and harmful microorganisms are essential for effective therapy. In particular, the gut and lung microbiome in critically ill patients have been probed by NGS. For this review, an iterative approach was used. Current data suggest that an altered microbiome with a decreased alpha-diversity compared to healthy individuals could negatively influence the individual patient's outcome. In the future, NGS may not only contribute to the diagnosis of complications. Patients at risk could also be identified before surgery or even during their stay in an intensive care unit. Unfortunately, there is still a lack of knowledge to make precise statements about what constitutes a healthy microbiome, which patients exactly have an increased perioperative risk, and what could be a possible therapy to strengthen the microbiome. This work is an iterative review that presents the current state of knowledge in this field.

RevDate: 2021-11-29

Levi Mortera S, Vernocchi P, Basadonne I, et al (2022)

A metaproteomic-based gut microbiota profiling in children affected by autism spectrum disorders.

Journal of proteomics, 251:104407.

During the last decade, the evidences on the relationship between neurodevelopmental disorders and the microbial communities of the intestinal tract have considerably grown. Particularly, the role of gut microbiota (GM) ecology and predicted functions in Autism Spectrum Disorders (ASD) has been especially investigated by 16S rRNA targeted and shotgun metagenomics, trying to assess disease signature and their correlation with cognitive impairment or gastrointestinal (GI) manifestations of the disease. Herein we present a metaproteomic approach to point out the microbial gene expression profiles, their functional annotations, and the taxonomic distribution of gut microbial communities in ASD children. We pursued a LC-MS/MS based investigation, to compare the GM profiles of patients with those of their respective relatives and aged-matched controls, providing a quantitative evaluation of bacterial metaproteins by SWATH analysis. All data were managed by a multiple step bioinformatic pipeline, including network analysis. In particular, comparing ASD subjects with CTRLs, up-regulation was found for some metaproteins associated with Clostridia and with carbohydrate metabolism (glyceraldehyde-3-phosphate and glutamate dehydrogenases), while down-regulation was observed for others associated with Bacteroidia (SusC and SusD family together with the TonB dependent receptor). Moreover, network analysis highlighted specific microbial correlations among ASD subgroups characterized by different functioning levels and GI symptoms. SIGNIFICANCE: To the best of our knowledge, this study represents the first metaproteomic investigation on the gut microbiota of ASD children compared with relatives and age-matched CTRLs. Remarkably, the applied SWATH methodology allowed the attribution of differentially regulated functions to specific microbial taxa, offering a novel and complementary point of view with respect to previous studies.

RevDate: 2021-12-10

Devlin SM, Martin A, I Ostrovnaya (2021)

Identifying prognostic pairwise relationships among bacterial species in microbiome studies.

PLoS computational biology, 17(11):e1009501.

In recent literature, the human microbiome has been shown to have a major influence on human health. To investigate this impact, scientists study the composition and abundance of bacterial species, commonly using 16S rRNA gene sequencing, among patients with and without a disease or condition. Methods for such investigations to date have focused on the association between individual bacterium and an outcome, and higher-order pairwise relationships or interactions among bacteria are often avoided due to the substantial increase in dimension and the potential for spurious correlations. However, overlooking such relationships ignores the environment of the microbiome, where there is dynamic cooperation and competition among bacteria. We present a method for identifying and ranking pairs of bacteria that have a differential dichotomized relationship across outcomes. Our approach, implemented in an R package PairSeek, uses the stability selection framework with data-driven dichotomized forms of the pairwise relationships. We illustrate the properties of the proposed method using a published oral cancer data set and a simulation study.

RevDate: 2021-11-18

van der Vossen EWJ, Bastos D, Stols-Gonçalves D, et al (2021)

Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome.

Gut microbes, 13(1):1993513.

Accumulating evidence shows that microbes with their theater of activity residing within the human intestinal tract (i.e., the gut microbiome) influence host metabolism. Some of the strongest results come from recent fecal microbial transplant (FMT) studies that relate changes in intestinal microbiota to various markers of metabolism as well as the pathophysiology of insulin resistance. Despite these developments, there is still a limited understanding of the multitude of effects associated with FMT on the general physiology of the host, beyond changes in gut microbiome composition. We examined the effect of either allogenic (lean donor) or autologous FMTs on the gut microbiome, plasma metabolome, and epigenomic (DNA methylation) reprogramming in peripheral blood mononuclear cells in individuals with metabolic syndrome measured at baseline (pre-FMT) and after 6 weeks (post-FMT). Insulin sensitivity was determined with a stable isotope-based 2 step hyperinsulinemic clamp and multivariate machine learning methodology was used to uncover discriminative microbes, metabolites, and DNA methylation loci. A larger gut microbiota shift was associated with an allogenic than with autologous FMT. Furthemore, the data results of the the allogenic FMT group data indicates that the introduction of new species can potentially modulate the plasma metabolome and (as a result) the epigenome. Most notably, the introduction of Prevotella ASVs directly correlated with methylation of AFAP1, a gene involved in mitochondrial function, insulin sensitivity, and peripheral insulin resistance (Rd, rate of glucose disappearance). FMT was found to have notable effects on the gut microbiome but also on the host plasma metabolome and the epigenome of immune cells providing new avenues of inquiry in the context of metabolic syndrome treatment for the manipulation of host physiology to achieve improved insulin sensitivity.

RevDate: 2021-11-30

Yan Y, Li H, Fayyaz A, et al (2022)

Metagenomic and network analysis revealed wide distribution of antibiotic resistance genes in monkey gut microbiota.

Microbiological research, 254:126895.

The emergence and spread of drug-resistant microorganisms that have acquired new resistance mechanisms, leading to antibiotic resistance, continue to threaten the health of humans and animals worldwide. Non-human primates (NHPs), as close living relatives of human beings in the world, have a high degree of genetic and physiological similarity to humans. However, despite its importance, we lack a comprehensive characterization or understanding of the similarities and differences of the antibiotic resistance genes of the gut microbiome carried by non-human primates and humans. In the present study, the diversity and abundance of antibiotic resistance genes carried by the gut microbiota of cynomolgus monkeys (Macaca fascicularis) were investigated by metagenomic analysis. In total, 60 resistance types conferring resistance to 11 categories of antibiotics were identified in the gut microbiome of cynomolgus monkeys. Interestingly, the composition and abundance of ARGs carried by the gut microbiota of cynomolgus monkeys can be significantly affected by dietary changes. Moreover, we found that all ARG types carried by humans are also present in cynomolgus monkeys. The tetracycline resistance gene tet(37) is evolutionarily conserved and highly homologous. Taken together, our study provides a comprehensive overview of the diversity and richness of ARGs in the gut microbiota of cynomolgus monkeys and underlines the potentially crucial role of diet in the gut health of monkeys and humans.

RevDate: 2021-12-07

Díez López C, Vidaki A, M Kayser (2022)

Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions.

Forensic science international. Genetics, 56:102627.

Over the last few years, advances in massively parallel sequencing technologies (also referred to next generation sequencing) and bioinformatics analysis tools have boosted our knowledge on the human microbiome. Such insights have brought new perspectives and possibilities to apply human microbiome analysis in many areas, particularly in medicine. In the forensic field, the use of microbial DNA obtained from human materials is still in its infancy but has been suggested as a potential alternative in situations when other human (non-microbial) approaches present limitations. More specifically, DNA analysis of a wide variety of microorganisms that live in and on the human body offers promises to answer various forensically relevant questions, such as post-mortem interval estimation, individual identification, and tissue/body fluid identification, among others. However, human microbiome analysis currently faces significant challenges that need to be considered and overcome via future forensically oriented human microbiome research to provide the necessary solutions. In this perspective article, we discuss the most relevant biological, technical and data-related issues and propose future solutions that will pave the way towards the integration of human microbiome analysis in the forensic toolkit.

RevDate: 2021-12-10

Stockdale SR, C Hill (2021)

Progress and prospects of the healthy human gut virome.

Current opinion in virology, 51:164-171.

Not all viruses associated with humans cause disease. Non-pathogenic human-infecting viruses are predicted as important for immune system induction and preparation. Phages that infect bacteria are the most abundant predators of the human microbial ecosystem, promoting and maintaining bacterial diversity. Metagenomic analyses of the human gut virome and microbiome are unravelling the intricate predator-prey dynamics of phage-bacteria co-existence, co-evolution, and their interplay with the human host. While most adults harbour a distinctly individualistic and persistent community of virulent phages, new-borns are dominated by temperate phages heavily influenced by environmental exposures. The future development of microbiome-based interventions, therapeutics, and manipulation, will require a greater understanding of the human microbiome and the virome.

RevDate: 2021-12-04

Regel A, Föll D, MA Kriegel (2021)

[Still's syndrome-similarities and differences between the juvenile and adult forms].

Zeitschrift fur Rheumatologie [Epub ahead of print].

Still's syndrome includes systemic juvenile idiopathic arthritis (sJIA) and the adult form of Still's disease (adult-onset Still's disease, AOSD). Except for age, there are many similarities between sJIA and AOSD. A biphasic disease model is currently put forth. At disease onset, autoinflammation predominates, which is caused by dysregulation of the innate immune system. Later on, the disease can progress to a chronic-articular form, which is predominantly mediated by the adaptive immune system and is consequently due to autoimmunity. The "window-of-opportunity" hypothesis is based on this biphasic model and supports the assumption that an early, targeted therapy with cytokine blockade can prevent disease progression to chronic destructive arthritis. Macrophage activation syndrome (MAS) is a serious complication of the so-called cytokine storm during the systemic phase of the disease. Clinically, there are many similarities between sJIA and AOSD. Recurrent fever, a fleeting, salmon-colored rash, and arthralgia/arthritis are common signs and symptoms of both sJIA and AOSD. The few differences are mainly related to the therapies and their side effects in children versus adults. In addition, the contribution of genetics to pathogenesis is more pronounced in sJIA compared to AOSD, but there are also smooth transitions in this respect and both diseases are heavily influenced by exogenous factors such as microbial triggers. Future research aspects could include additional investigation of these triggers such as viruses, bacteria, or dysbiosis of the human microbiome.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

“In I Contain Multitudes, Yong synthesizes literally hundreds and hundreds of papers, but he never overwhelms you with the science. He just keeps imparting one surprising, fascinating insight after the next. I Contain Multitudes is science journalism at its best.” Bill Gates

“[An] excellent and vivid introduction to our microbiota. . . . infectiously enthusiastic.” New York Times Book Review

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )