About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

04 Aug 2020 at 01:47
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Human Microbiome


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 04 Aug 2020 at 01:47 Created: 

Human Microbiome

The human microbiome is the set of all microbes that live on or in humans. Together, a human body and its associated microbiomes constitute a human holobiont. Although a human holobiont is mostly mammal by weight, by cell count it is mostly microbial. The number of microbial genes in the associated microbiomes far outnumber the number of human genes in the human genome. Just as humans (and other multicellular eukaryotes) evolved in the constant presence of gravity, so they also evolved in the constant presence of microbes. Consequently, nearly every aspect of human biology has evolved to deal with, and to take advantage of, the existence of associated microbiota. In some cases, the absence of a "normal microbiome" can cause disease, which can be treated by the transplant of a correct microbiome from a healthy donor. For example, fecal transplants are an effective treatment for chronic diarrhea from over abundant Clostridium difficile bacteria in the gut.

Created with PubMed® Query: "human microbiome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2020-08-03

Wagner J, Kancherla J, Braccia D, et al (2020)

Interactive exploratory data analysis of Integrative Human Microbiome Project data using Metaviz.

F1000Research, 9:601.

The rich data produced by the second phase of the Human Microbiome Project (iHMP) offers a unique opportunity to test hypotheses that interactions between microbial communities and a human host might impact an individual's health or disease status. In this work we describe infrastructure that integrates Metaviz, an interactive microbiome data analysis and visualization tool, with the iHMP Data Coordination Center web portal and the HMP2Data R/Bioconductor package. We describe integrative statistical and visual analyses of two datasets from iHMP using Metaviz along with the metagenomeSeq R/Bioconductor package for statistical analysis of differential abundance analysis. These use cases demonstrate the utility of a combined approach to access and analyze data from this resource.

RevDate: 2020-07-31

Guan X, Ma F, Sun X, et al (2020)

Gut Microbiota Profiling in Patients With HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those Under Conventional Dosage.

Frontiers in oncology, 10:902.

Purpose: Low-dose metronomic chemotherapy can achieve disease control with reduced toxicity compared to conventional chemotherapy in maximum tolerated dose. Characterizing the gut microbiota of cancer patients under different dosage regimens may describe a new role of gut microbiota associated with drug efficacy. Therefore, we evaluated the composition and the function of gut microbiome associated with metronomic capecitabine compared to conventional dosage. Methods: The fecal samples of HER2-negative metastatic breast cancer patients treated with capecitabine as maintenance chemotherapy were collected and analyzed by 16S ribosome RNA gene sequencing. Results: A total of 15 patients treated with metronomic capecitabine were compared to 16 patients under a conventional dose. The unweighted-unifrac index of the metronomic group was statistically significantly lower than that of the routine group (P = 0.025). Besides that, the Bray-Curtis distance-based redundancy analysis illustrated that the microbial genera between the two groups can be separated partly. Nine Kyoto Encyclopedia of Genes and Genomes (KEGG) modules were enriched in the metronomic group, while no KEGG modules were significantly enriched in the routine group. Moreover, univariate and multivariate analyses suggested that the median progression-free survival (PFS) was significantly shorter in patients with the gut microbial composition of Slackia (9.2 vs. 32.7 months, P = 0.004), while the patients with Blautia obeum had a significantly prolonged PFS than those without (32.7 vs. 12.9 months, P = 0.013). Conclusions: The proof-of-principle study suggested that the gut microbiota of patients receiving metronomic chemotherapy was different in terms of diversity, composition, and function from those under conventional chemotherapy, and the presence of specific bacterial species may act as microbial markers associated with drug resistance monitoring and prognostic evaluation.

RevDate: 2020-07-30

Fontana F, Lindstedt H, Correia A, et al (2020)

Influence of Cell Membrane Wrapping on the Cell-Porous Silicon Nanoparticle Interactions.

Advanced healthcare materials [Epub ahead of print].

Biohybrid nanosystems represent the cutting-edge research in biofunctionalization of micro- and nano-systems. Their physicochemical properties bring along advantages in the circulation time, camouflaging from the phagocytes, and novel antigens. This is partially a result of the qualitative differences in the protein corona, and the preferential targeting and uptake in homologous cells. However, the effect of the cell membrane on the cellular endocytosis mechanisms and time has not been fully evaluated yet. Here, the effect is assessed by quantitative flow cytometry analysis on the endocytosis of hydrophilic, negatively charged porous silicon nanoparticles and on their membrane-coated counterparts, in the presence of chemical inhibitors of different uptake pathways. Principal component analysis is used to analyze all the data and extrapolate patterns to highlight the cell-specific differences in the endocytosis mechanisms. Furthermore, the differences in the composition of static protein corona between naked and coated particles are investigated together with how these differences affect the interaction with human macrophages. Overall, the presence of the cell membrane only influences the speed and the entity of nanoparticles association with the cells, while there is no direct effect on the endocytosis pathways, composition of protein corona, or any reduction in macrophage-mediated uptake.

RevDate: 2020-07-30

Huybrechts I, Zouiouich S, Loobuyck A, et al (2020)

The human microbiome in relation to cancer risk: a systematic review of epidemiological studies.

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology pii:1055-9965.EPI-20-0288 [Epub ahead of print].

The microbiome has been hypothesized to play a role in cancer development. Due to the diversity of published data, an overview of available epidemiological evidence linking the microbiome with cancer is now needed. We conducted a systematic review using a tailored search strategy in Medline and EMBASE databases to identify and summarize the current epidemiologic literature on the relationship between the microbiome and different cancer outcomes published until December 2019. One hundred and twenty-four eligible articles were identified. The large diversity of parameters used to describe microbial composition made it impossible to harmonize the different studies in a way that would allow meta-analysis, therefore only a qualitative description of results could be performed. Fifty studies reported differences in the gut microbiome between colorectal cancer patients and various control groups. The most consistent findings were for Fusobacterium, Porphyromonas and Peptostreptococcus being significantly enriched in fecal and mucosal samples from colorectal cancer patients. For the oral microbiome, significantly increased and decreased abundance was reported for Fusobacterium and Streptococcus, respectively, in oral cancer patients compared to controls. Overall, although there was a large amount of evidence for some of these alterations, most require validation in high quality, preferably prospective, epidemiological studies.

RevDate: 2020-07-29

Druart C, Plovier H, Van Hul M, et al (2020)

Toxicological safety evaluation of pasteurized Akkermansia muciniphila.

Journal of applied toxicology : JAT [Epub ahead of print].

Gut microorganisms are vital for many aspects of human health, and the commensal bacterium Akkermansia muciniphila has repeatedly been identified as a key component of intestinal microbiota. Reductions in A. muciniphila abundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration of A. muciniphila has beneficial effects and that these are not diminished, but rather enhanced after pasteurization. Pasteurized A. muciniphila is proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 × 109 , 2.4 × 1010 , or 9.6 × 1010 A. muciniphila cells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 × 1010 A. muciniphila cells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurized A. muciniphila is safe for use as a food ingredient.

RevDate: 2020-07-29

Rojas MI, Cavalcanti GS, McNair K, et al (2020)

A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes.

mSystems, 5(4): pii:5/4/e00648-20.

Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.

RevDate: 2020-07-29

Nazik H, Sass G, Déziel E, et al (2020)

Aspergillus Is Inhibited by Pseudomonas aeruginosa Volatiles.

Journal of fungi (Basel, Switzerland), 6(3): pii:jof6030118.

BACKGROUND: Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) compete with each other for nutrients and survival in natural environments, and have been extensively studied because of their intermicrobial interactions in the human microbiome. These are the principal microbes infecting immunocompromised patients and persons with cystic fibrosis, particularly the airways. These intermicrobial studies have largely been conducted in liquid medium or on agar, and thus focus on soluble or diffusible microbial products. Several key inhibitory molecules were defined in such studies.

METHODS: in the present report, we examine several methodologies which can be conveniently used to study the interaction of microbial volatiles, including capture methods and kinetics.

RESULTS: Pa volatiles inhibit Af, and the inhibitory mechanism appears to be the incorporation of the inhibitory molecules into the substrate nourishing the Af, rather than directly onto Af structures. We define by mass spectroscopy some specific volatile Pa products that can inhibit Af. Some of these molecules are selected for interest by the study of gene deletion mutants, producing a few Pa strains that were impaired in inhibition. We presumed the volatiles of these latter strains could be excluded from the search for inhibitors.

CONCLUSION: the Pa inhibition of Af via a gaseous phase could be critical components in their competition, particularly in airways, where more direct contact may not be extensive.

RevDate: 2020-07-29

Pearson AL, Pechal J, Lin Z, et al (2020)

Associations detected between measures of neighborhood environmental conditions and human microbiome diversity.

The Science of the total environment, 745:141029 pii:S0048-9697(20)34558-7 [Epub ahead of print].

While emerging research suggests urban green space revegetation increases soil microbiota diversity and native plant species affect skin microbiome diversity, there is still a paucity of knowledge on relationships between neighborhood environmental conditions and the human microbiome. This study leveraged data on human microbiome samples (nose, mouth, rectum) taken at autopsy at the Wayne County Medical Examiner's Office (2014-2015). We evaluated relationships between the microbiome and five measures of environmental conditions (NDVI standard deviation, NDVI mean, percent trees, percent grassland and soil type) near the home of 126 decedents. For the rectum microbiome, NDVI sd had negative, significant associations with diversity (ASVs β = -0.20, p = 0.045; Faith PD β = -0.22, p = 0.026). In contrast, while insignificant, there were consistent, positive associations between diversity and NDVI sd for the mouth microbiome (ASVs β = 0.09, p = 0.337, Faith PD β = 0.14, p = 0.149, Shannon diversity β = 0.14, p = 0.159, Heip's evenness β = 0.11, p = 0.259) and a significant association for the nose microbiome (eigenvalues 3 β = 0.18, p = 0.057). We found consistent, significant, negative associations between percent grassland and diversity of the nose microbiome (ASVs β = -0.25, p = 0.008, Faith PD β = -0.25, p = 0.009, Shannon diversity β = -0.17, p = 0.062). For the mouth microbiome, we found a small effect of percent trees on diversity (eigenvalues 1 β = -0.08, p = 0.053). Clay loam soil was negatively (eigenvalues 2 β = -0.47, p = 0.053) and positively associated (eigenvalues 3 β = 0.65, p = 0.008) with rectum microbiome diversity, compared to loam soil. There was no potential indicator taxon among NDVI quartiles. These findings may be relevant for urban planning and management of urban outdoor spaces in ways that may support healthy human microbiomes. Still, future research is needed to link variation in NDVI, vegetation, plant and/or soil microbe diversity and to confirm or negate our findings that environmental conditions may have contrasting influence on the microbiome of the rectum versus the nose and mouth and that grasslands affect the nose microbiome.

RevDate: 2020-07-27

Chadha J, Nandi D, Atri Y, et al (2020)

Significance of Human Microbiome in Breast Cancer: Tale of an invisible and an invincible.

Seminars in cancer biology pii:S1044-579X(20)30167-X [Epub ahead of print].

The human microbiome is a mysterious treasure of the body playing endless important roles in the well-being of the host metabolism, digestion, and immunity. On the other hand, it actively participates in the development of a variety of pathological conditions including cancer. With the Human Microbiome Project initiative, metagenomics, and next-generation sequencing technologies in place, the last decade has witnessed immense explorations and investigations on the enigmatic association of breast cancer with the human microbiome. However, the connection between the human microbiome and breast cancer remains to be explored in greater detail. In fact, there are several emerging questions such as whether the host microbiota contributes to disease initiation, or is it a consequence of the disease is an irrevocably important question that demands a valid answer. Since the microbiome is an extremely complex community, gaps still remain on how this vital microbial organ plays a role in orchestrating breast cancer development. Nevertheless, undeniable evidence from studies has pinpointed the presence of specific microbial elements of the breast and gut to play a role in governing breast cancer. It is still unclear if an alteration in microbiome/dysbiosis leads to breast cancer or is it vice versa. Though specific microbial signatures have been detected to be associated with various breast cancer subtypes, the structure and composition of a core "healthy" microbiome is yet to be established. Probiotics seem to be a promising antidote for targeted prevention and treatment of breast cancer. Interestingly, these microbial communities can serve as potential biomarkers for prognosis, diagnosis, and treatment of breast cancer, thereby leading to the rise of a completely new era of personalized medicine. This review is a humble attempt to summarize the research findings on the human microbiome and its relation to breast cancer.

RevDate: 2020-07-27

Spacova I, Dodiya HB, Happel AU, et al (2020)

Future of Probiotics and Prebiotics and the Implications for Early Career Researchers.

Frontiers in microbiology, 11:1400.

The opportunities in the fields of probiotics and prebiotics to a great degree stem from what we can learn about how they influence the microbiota and interact with the host. We discuss recent insights, cutting-edge technologies and controversial results from the perspective of early career researchers innovating in these areas. This perspective emerged from the 2019 meeting of the International Scientific Association for Probiotics and Prebiotics - Student and Fellows Association (ISAPP-SFA). Probiotic and prebiotic research is being driven by genetic characterization and modification of strains, state-of-the-art in vitro, in vivo, and in silico techniques designed to uncover the effects of probiotics and prebiotics on their targets, and metabolomic tools to identify key molecules that mediate benefits on the host. These research tools offer unprecedented insights into the functionality of probiotics and prebiotics in the host ecosystem. Young scientists need to acquire these diverse toolsets, or form inter-connected teams to perform comprehensive experiments and systematic analysis of data. This will be critical to identify microbial structure and co-dependencies at body sites and determine how administered probiotic strains and prebiotic substances influence the host. This and other strategies proposed in this review will pave the way for translating the health benefits observed during research into real-life outcomes. Probiotic strains and prebiotic products can contribute greatly to the amelioration of global issues threatening society. The intent of this article is to provide an early career researcher's perspective on where the biggest opportunities lie to advance science and impact human health.

RevDate: 2020-07-27

Garvey M (2020)

Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way?.

Antibiotics (Basel, Switzerland), 9(7): pii:antibiotics9070414.

Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the "One Health" approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.

RevDate: 2020-07-21

Buongermino Pereira M, Österlund T, Eriksson KM, et al (2020)

A comprehensive survey of integron-associated genes present in metagenomes.

BMC genomics, 21(1):495 pii:10.1186/s12864-020-06830-5.

BACKGROUND: Integrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging.

RESULTS: Here, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants.

CONCLUSIONS: Our results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.

RevDate: 2020-07-20

Descheemaeker L, S de Buyl (2020)

Stochastic logistic models reproduce experimental time series of microbial communities.

eLife, 9: pii:55650 [Epub ahead of print].

We analyze properties of experimental microbial time series, from plankton and the human microbiome, and investigate whether stochastic generalized Lotka-Volterra models could reproduce those properties. We show that this is the case when the noise term is large and a linear function of the species abundance, while the strength of the self-interactions varies over multiple orders of magnitude. We stress the fact that all the observed stochastic properties can be obtained from a logistic model, i.e. without interactions, even the niche character of the experimental time series. Linear noise is associated with growth rate stochasticity, which is related to changes in the environment. This suggests that fluctuations in the sparsely sampled experimental time series may be caused by extrinsic sources.

RevDate: 2020-07-20

Joseph TA, Pasarkar AP, I Pe'er (2020)

Efficient and Accurate Inference of Mixed Microbial Population Trajectories from Longitudinal Count Data.

Cell systems, 10(6):463-469.e6.

The recently completed second phase of the Human Microbiome Project has highlighted the relationship between dynamic changes in the microbiome and disease, motivating new microbiome study designs based on longitudinal sampling. Yet, analysis of such data is hindered by presence of technical noise, high dimensionality, and data sparsity. Here, we introduce LUMINATE (longitudinal microbiome inference and zero detection), a fast and accurate method for inferring relative abundances from noisy read count data. We demonstrate that LUMINATE is orders of magnitude faster than current approaches, with better or similar accuracy. We further show that LUMINATE can accurately distinguish biological zeros, when a taxon is absent from the community, from technical zeros, when a taxon is below the detection threshold. We conclude by demonstrating the utility of LUMINATE on a real dataset, showing that LUMINATE smooths trajectories observed from noisy data. LUMINATE is freely available from https://github.com/tyjo/luminate.

RevDate: 2020-07-18

Daisley BA, Chmiel JA, Pitek AP, et al (2020)

Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity.

Trends in microbiology pii:S0966-842X(20)30185-2 [Epub ahead of print].

Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.

RevDate: 2020-07-17

Le S, Toussi A, Maverakis N, et al (2020)

The cutaneous and intestinal microbiome in psoriatic disease.

Clinical immunology (Orlando, Fla.) pii:S1521-6616(20)30433-2 [Epub ahead of print].

Psoriasis (PsO) and psoriatic arthritis (PsA) are chronic immune-mediated inflammatory diseases of multifactorial etiology. In addition to genetic and environmental factors, evidence supports involvement of a dysregulated human microbiome in the pathogenesis of psoriatic disease. In particular, alterations in the composition of the microbiome, termed dysbiosis, can result in downstream proinflammatory effects in the gut, skin, and joints. Both the cutaneous and intestinal microbial populations are implicated in the pathogenesis of psoriatic disease, although exact mechanisms are unclear. Herein, we review the relationship between the human microbiome and psoriatic disease. Further insight into the functions of the microbiome may allow for greater understanding of inflammatory disease processes and identification of additional therapeutic targets.

RevDate: 2020-07-17

Gao W, Baumgartel KL, SA Alexander (2020)

The Gut Microbiome as a Component of the Gut-Brain Axis in Cognitive Health.

Biological research for nursing [Epub ahead of print].

INTRODUCTION: The human microbiome, the microorganisms living in and on the body, plays a vital role in brain physiology and pathophysiology. The gut microbiome (GMB) has been identified as a link in the gut-brain axis moderating cognitive development and health.

OBJECTIVES: The objectives of this scoping review are to discuss mechanisms of the microbiome-gut-brain axis in cognition, review the existing literature on the GMB and cognition, and discuss implications for nursing research.

METHODS: We searched Pubmed using the terms "gut microbiome," "brain," and "cognition" and the terms "gut brain axis," "microbiome," and "cognition"; removed duplicates, studies not published in English, and unrelated publications; and added additional articles identified through references. We retained the 85 most relevant publications for this review.

RESULTS: Common themes in the current literature include GMB components; interactions on cognitive development; effects of GMB-gut-brain interactions on cognition, mild cognitive impairment and Alzheimer's disease; effects of GMB interactions with physiologic stress on cognition in critical care; and GMB modification for improved cognition. Review of the literature on each of these topics reveals multiple theoretical mechanisms of action for GMB-gut-brain interaction that modify cognitive development and function across the lifespan.

DISCUSSION: GMB components and dysbiosis have been implicated in many cognitive states, and specific microbiota constituents contribute to cognitive development, stability, and impairment. The study of these interactions is relevant to nursing research as it addresses the holistic human experience and microbiome constituents are modifiable, facilitating translation into the clinical setting.

RevDate: 2020-07-17

Dupont HL, Jiang ZD, Dupont AW, et al (2020)


Transactions of the American Clinical and Climatological Association, 131:178-197.

The Human Microbiome Initiative of NIH, begun in 2007, has opened the door to the power of the intestinal microbiome in health and disease. The 100 trillion gut microbes influence body function through three pathways: (1) via the neural route where 500 million neurons of the enteric nervous system (the body's second brain) connect to the brain and spinal cord, (2) via the immune route where the gut-immune capacity prevents infection and elicits immune response to vaccines, and (3) by the hormonal route wherein biologically active chemicals are released from enteroendocrine cells to control mood and body functions. Through research, the identification of diseases and disorders associated with abnormal microbiome ("dysbiosis") has increased in number with potential for reversibility. Our team has developed an orally administered fecal microbiota transplantation product that is effective in reversing dysbiosis in recurrent Clostridioides difficile (C. difficile) and is being used to reverse abnormal microbiomes in chronic dysbiotic disorders.

RevDate: 2020-07-16

Giannoni E, Baud D, Agri VD, et al (2020)

Probiotics and COVID-19.

The lancet. Gastroenterology & hepatology, 5(8):720-721.

RevDate: 2020-07-17

Hadrich D (2020)

New EU projects delivering human microbiome applications.

Future science OA, 6(6):FSO474.

Over recent years, the number of studies and projects showing correlations between the human microbiome and diseases has increased enormously. The potential of the human microbiome for healthcare is big. However, many confounders have been discovered and the relevant disease mechanisms and the causalities of these diseases still require more efforts and better understanding. The EU called for project proposals exploiting the application potential of human microbiome research and finally decided to fund the three top excellent new H2020 projects ONCOBIOME, MICROB-PREDICT and GEMMA. They get a total EU funding of €44 M and started in January 2019 with the aim to deliver high impact through validated clinical tools that are helpful for end-users.

RevDate: 2020-07-15

Matenchuk BA, Mandhane PJ, AL Kozyrskyj (2020)

Sleep, circadian rhythm, and gut microbiota.

Sleep medicine reviews, 53:101340 pii:S1087-0792(20)30083-6 [Epub ahead of print].

From asthma and heart disease to diabetes and obesity, the human microbiome plays a role in the pathogenesis of each chronic health condition plaguing today's society. Recent work has shown that the gut microbiota and its metabolites exhibit diurnal rhythmicity which predominantly respond to the feeding/fasting cycle. Persistent jet lag, an obesogenic diet, and clock gene deficiency can dampen the oscillatory nature of gut bacterial composition, which can subsequently be rescued by time restricted feeding. Contrastingly, gut microbial metabolites influence central and hepatic clock gene expression and sleep duration in the host and regulate body composition through circadian transcription factors. Both sleep fragmentation and short sleep duration are associated with gut dysbiosis which may be due to activation of the HPA-axis. Metabolic disturbances associated with sleep loss may in fact be mediated through the overgrowth of specific gut bacteria. Reciprocally, the end products of bacterial species which grow in response to sleep loss are able to induce fatigue. Furthermore, probiotic supplementation has been found to improve subjective sleep quality. Sleep quality and duration may be an important target for supporting healthy gut microbiota composition, but the cyclic nature of this relationship should not be overlooked.

RevDate: 2020-07-15

Zhao C, Wei Z, Yang J, et al (2020)

Characterization of the Vaginal Microbiome in Women with Infertility and Its Potential Correlation with Hormone Stimulation during In Vitro Fertilization Surgery.

mSystems, 5(4): pii:5/4/e00450-20.

Perturbation of vaginal microbiome of reproductive-age women influences all the phases of a woman's reproductive life. Although studies have shown that dynamic changes in vaginal microbiome can affect pregnancy, its role in secondary infertility (i.e., inability to become pregnant or to carry a pregnancy successfully after previous success in delivering a child) and in vitrofertilization (IVF) remains to be unraveled. To determine the vaginal microbiome in women undergoing in vitrofertilization and embryo transfer (IVF-ET) and investigate its potential correlations with hormone stimulation, we recruited 30 patients with secondary infertility and receiving IVF and 92 matched healthy women and analyzed their vaginal microbiome composition using 16S rRNA gene sequencing. Our results show that women suffering from infertility (infertile women) exhibit a significant decrease in microbiome diversity and richness compared with healthy women during the nonovulation period (follicular phase) (P < 0.01), whereas vaginal microbiome of healthy women reveals dramatic fluctuations during ovulation (P < 0.05). Interestingly, infertility patients show no change of the vaginal microbiome under conditions of gonadotropin-releasing hormone (GnRH) agonist and recombinant human chorionic gonadotropin (r-hCG) induction (P > 0.05). Moreover, our results indicate that infertile women show characteristic variations in vaginal microbiome, such as increased abundance of Atopobium, Aerococcus, and Bifidobacterium and decreased abundance of Lactobacillus and LeuconostocIMPORTANCE The microbiome had been hypothesized to be involved in the physiology and pathophysiology of assisted reproduction before the first success in IVF, while the data supporting or refuting this hypothesis were less than conclusive. Thanks to sequencing data from the 16S rRNA subunit, we characterized the microbiome in the reproductive tract of infertile women, and we found that changes in the vaginal microbiome are related to female infertility. We also found that the characteristic microbiome bacteria are mainly members of several genera and that the vaginal microbiome of infertile women is not sensitive to hormonal changes during IVF. In conclusion, our report provides data that can be used for discovering the role of the vaginal microbiome in patients suffering from secondary infertility.

RevDate: 2020-07-14

Arnolds KL, Martin CG, CA Lozupone (2020)

Blood type and the microbiome- untangling a complex relationship with lessons from pathogens.

Current opinion in microbiology, 56:59-66 pii:S1369-5274(20)30080-1 [Epub ahead of print].

The complex communities of microbes that constitute the human microbiome are influenced by host and environmental factors. Here, we address how a fundamental aspect of human biology, blood type, contributes to shaping this microscopic ecosystem. Although this question remains largely unexplored, we glean insights from decades of work describing relationships between pathogens and blood type. The bacterial strategies, molecular mechanisms, and host responses that shaped those relationships may parallel those that characterize how blood type and commensals interact. Understanding these nuanced interactions will expand our capacity to analyze and manipulate the human microbiome.

RevDate: 2020-07-14

Koslovsky MD, M Vannucci (2020)

MicroBVS: Dirichlet-tree multinomial regression models with Bayesian variable selection - an R package.

BMC bioinformatics, 21(1):301 pii:10.1186/s12859-020-03640-0.

BACKGROUND: Understanding the relation between the human microbiome and modulating factors, such as diet, may help researchers design intervention strategies that promote and maintain healthy microbial communities. Numerous analytical tools are available to help identify these relations, oftentimes via automated variable selection methods. However, available tools frequently ignore evolutionary relations among microbial taxa, potential relations between modulating factors, as well as model selection uncertainty.

RESULTS: We present MicroBVS, an R package for Dirichlet-tree multinomial models with Bayesian variable selection, for the identification of covariates associated with microbial taxa abundance data. The underlying Bayesian model accommodates phylogenetic structure in the abundance data and various parameterizations of covariates' prior probabilities of inclusion.

CONCLUSION: While developed to study the human microbiome, our software can be employed in various research applications, where the aim is to generate insights into the relations between a set of covariates and compositional data with or without a known tree-like structure.

RevDate: 2020-07-14

Huh JW, TY Roh (2020)

Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis.

BMC microbiology, 20(1):208 pii:10.1186/s12866-020-01887-4.

BACKGROUND: The essential roles of gut microbiome have been emphasized in modulating human health and disease. Fusobacterium nucleatum (F. nucleatum), an obligate Gram-negative microorganism residing in oral cavity, gastrointestinal tract and elsewhere, has been recently considered as a potential oncobacterium associated with human cancers. However, the consequence of its enrichment was not extensively explored in terms of microbial homeostasis and stability at the early stage of disease development.

RESULT: Our analysis on longitudinal metagenomic data generated by the Integrative Human Microbiome Project (iHMP) showed that F. nucleatum was frequently found in inflammatory bowel diseases (IBD) subjects with reduced microbial diversity. Using non-parametric logarithmic linear discriminant analysis (LDA) effect size (LEfSe) algorithm, 12 IBD- and 14 non-IBD-specific bacterial species were identified in the fecal metagenome and the IBD-specific ones were over-represented in the F. nucleatum-experienced subjects during long-term surveillance. In addition, F. nucleatum experience severely abrogated intra-personal stability of microbiome in IBD patients and induced highly variable gut microbiome between subjects. From the longitudinal comparison between microbial distributions prior and posterior to F. nucleatum detection, 41 species could be proposed as indicative "classifiers" for dysbiotic gut state. By multiple logistic regression models established on these classifiers, the high probability of experiencing F. nucleatum was significantly correlated with decreased alpha-diversity and increased number of biomarker species for IBD and colorectal cancer (CRC). Finally, microbial clustering confirmed that biomarker species for IBD and non-IBD conditions as well as CRC signature markers were well distinguishable and could be utilized for explaining gut symbiosis and dysbiosis.

CONCLUSION: F. nucleatum opportunistically appeared under early dysbiotic condition in gut, and discriminative classifier species associated with F. nucleatum were successfully applied to predict microbial alterations in both IBD and non-IBD conditions. Our prediction model and microbial classifier biomarkers for estimating gut dysbiosis should provide a novel aspect of microbial homeostasis/dynamics and useful information on non-invasive biomarker screening.

RevDate: 2020-07-13

Sutherland VL, McQueen CA, Mendrick D, et al (2020)

The Gut Microbiome and Xenobiotics: Identifying Knowledge Gaps.

Toxicological sciences : an official journal of the Society of Toxicology, 176(1):1-10.

There is an increasing awareness that the gut microbiome plays a critical role in human health and disease, but mechanistic insights are often lacking. In June 2018, the Health and Environmental Sciences Institute (HESI) held a workshop, "The Gut Microbiome: Markers of Human Health, Drug Efficacy and Xenobiotic Toxicity" (https://hesiglobal.org/event/the-gut-microbiome-workshop) to identify data gaps in determining how gut microbiome alterations may affect human health. Speakers and stakeholders from academia, government, and industry addressed multiple topics including the current science on the gut microbiome, endogenous and exogenous metabolites, biomarkers, and model systems. The workshop presentations and breakout group discussions formed the basis for identifying data gaps and research needs. Two critical issues that emerged were defining the microbial composition and function related to health and developing standards for models, methods and analysis in order to increase the ability to compare and replicate studies. A series of key recommendations were formulated to focus efforts to further understand host-microbiome interactions and the consequences of exposure to xenobiotics as well as identifying biomarkers of microbiome-associated disease and toxicity.

RevDate: 2020-07-13

Lahtinen P, Jalanka J, Hartikainen A, et al (2020)

Letter: faecal microbiota transplantation for irritable bowel syndrome. Authors' reply.

Alimentary pharmacology & therapeutics, 52(3):557-558.

RevDate: 2020-07-12

Cavaleiro Rufo J, Paciência IR, Hoffimann E, et al (2020)

The neighbourhood natural environment is associated with asthma in children: a birth cohort study.

Allergy [Epub ahead of print].

BACKGROUND: A lower exposure to the natural environment has been hypothesized to adversely affect the human microbiome and its immunomodulatory capacity. However,the underlying effects of this hypothesis are stillnot understood. We aimed to evaluate the effect of early-life exposure to greenness and species richness on the development of allergic diseases and asthma in children.

METHODS: A longitudinal study was conducted comprising 1050 children from a population-based birth cohort recruited in Portugal. Residential normalized difference vegetation index (NDVI) and species richness index (SRI) were assessed at baseline to estimate their association with allergic diseases and asthma at the ages of 4 and 7.

RESULTS: Significant predisposingassociations were observed between the exposure to species richness at baseline and the onset of asthma and wheezing at the age of 7. Children living in neighbourhoods surrounded by high levels of SRI were at a significantly higher risk developing allergic sensitization(OR [95%CI]= 2.00 [1.04 : 3.86] at age 4; 2.35 [1.20 : 4.63] at age 7). Living surrounded by greener environments was significantly associated with a lower prevalence of asthma and rhinitis at the age of 7(0.41 [0.18 : 0.97] and 0.37 [0.15 : 0.93], respectively).

CONCLUSIONS: Living in close proximity to a greener environment at birth has a protective effect on the development of allergic diseases and asthma at the age of 7. Conversely, living in neighbourhoods with a high number of fauna species appears to be associated with a higher risk for allergy, asthma and wheezing.

RevDate: 2020-07-10

Wiley CA (2020)

Emergent Viral Infections of the CNS.

Journal of neuropathology and experimental neurology pii:5869577 [Epub ahead of print].

Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.

RevDate: 2020-07-08

Filik K, Szermer-Olearnik B, Wernecki M, et al (2020)

The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica.

Frontiers in microbiology, 11:1356.

We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.

RevDate: 2020-07-08

Puccetti M, Xiroudaki S, Ricci M, et al (2020)

Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?.

Pharmaceutics, 12(7): pii:pharmaceutics12070624.

Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.

RevDate: 2020-07-08

Tavakoli S, Kari OK, Turunen T, et al (2020)

Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations.

Molecular pharmaceutics [Epub ahead of print].

The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.

RevDate: 2020-07-07

Yang Y, Liu S, Wang Y, et al (2020)

Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis.

Aging, 12: pii:103399 [Epub ahead of print].

The relationship between type 2 diabetes mellitus (T2DM) and oral microbiota is still insufficiently recognized. In the present study, we compared the salivary microbiome of nondiabetic individuals, treatment-naïve diabetic patients, and diabetic patients treated with metformin or a combination of insulin and other drugs. The α- and β-diversity demonstrated significant differences in the salivary microbiome between the nondiabetic people and patients with a history of diabetes, while little divergence was found among individuals with a history of diabetes. After characterizing the effects of periodontitis on the microbial composition of each group, the salivary microbiome of the treatment-naïve diabetic patient group was compared with that of nondiabetic people and the metformin/combined treatment groups. The results revealed changes in the contents of certain bacteria after both the onset and the treatment of diabetes; among these differential bacteria, Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_coeliaca and Selenomonas_artemidis varied in all processes. A subsequent correlational analysis of the differential bacteria and clinical characteristics demonstrated that salivary microbes were related to drug treatment and certain pathological changes. Finally, the four common differential bacteria were employed for distinguishing the treatment-naïve diabetic patients from the nondiabetic people and the treated patients, with prediction accuracies of 83.3%, 75% and 75%, respectively.

RevDate: 2020-07-04

Ianiro G, Mullish BH, Kelly CR, et al (2020)

Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic.

Gut pii:gutjnl-2020-321829 [Epub ahead of print].

The COVID-19 pandemic has led to an exponential increase in SARS-CoV-2 infections and associated deaths, and represents a significant challenge to healthcare professionals and facilities. Individual countries have taken several prevention and containment actions to control the spread of infection, including measures to guarantee safety of both healthcare professionals and patients who are at increased risk of infection from COVID-19. Faecal microbiota transplantation (FMT) has a well-established role in the treatment of Clostridioides difficile infection. In the time of the pandemic, FMT centres and stool banks are required to adopt a workflow that continues to ensure reliable patient access to FMT while maintaining safety and quality of procedures. In this position paper, based on the best available evidence, worldwide FMT experts provide guidance on issues relating to the impact of COVID-19 on FMT, including patient selection, donor recruitment and selection, stool manufacturing, FMT procedures, patient follow-up and research activities.

RevDate: 2020-07-04

Creswell R, Tan J, Leff JW, et al (2020)

High-resolution temporal profiling of the human gut microbiome reveals consistent and cascading alterations in response to dietary glycans.

Genome medicine, 12(1):59 pii:10.1186/s13073-020-00758-x.

BACKGROUND: Dietary glycans, widely used as food ingredients and not directly digested by humans, are of intense interest for their beneficial roles in human health through shaping the microbiome. Characterizing the consistency and temporal responses of the gut microbiome to glycans is critical for rationally developing and deploying these compounds as therapeutics.

METHODS: We investigated the effect of two chemically distinct glycans (fructooligosaccharides and polydextrose) through three clinical studies conducted with 80 healthy volunteers. Stool samples, collected at dense temporal resolution (~ 4 times per week over 10 weeks) and analyzed using shotgun metagenomic sequencing, enabled detailed characterization of participants' microbiomes. For analyzing the microbiome time-series data, we developed MC-TIMME2 (Microbial Counts Trajectories Infinite Mixture Model Engine 2.0), a purpose-built computational tool based on nonparametric Bayesian methods that infer temporal patterns induced by perturbations and groups of microbes sharing these patterns.

RESULTS: Overall microbiome structure as well as individual taxa showed rapid, consistent, and durable alterations across participants, regardless of compound dose or the order in which glycans were consumed. Significant changes also occurred in the abundances of microbial carbohydrate utilization genes in response to polydextrose, but not in response to fructooligosaccharides. Using MC-TIMME2, we produced detailed, high-resolution temporal maps of the microbiota in response to glycans within and across microbiomes.

CONCLUSIONS: Our findings indicate that dietary glycans cause reproducible, dynamic, and differential alterations to the community structure of the human microbiome.

RevDate: 2020-07-03

Ames NJ, Barb JJ, Schuebel K, et al (2020)

Longitudinal gut microbiome changes in alcohol use disorder are influenced by abstinence and drinking quantity.

Gut microbes, 11(6):1608-1631.

Many patients with alcohol use disorder (AUD) consume alcohol chronically and in large amounts that alter intestinal microbiota, damage the gastrointestinal tract, and thereby injure other organs via malabsorption and intestinal inflammation. We hypothesized that alcohol consumption and subsequent abstinence would change the gut microbiome in adults admitted to a treatment program. Stool and oral specimens, diet data, gastrointestinal assessment scores, anxiety, depression measures and drinking amounts were collected longitudinally for up to 4 weeks in 22 newly abstinent inpatients with AUD who were dichotomized as less heavy drinkers (LHD, <10 drinks/d) and very heavy drinkers (VHD, 10 or more drinks/d). Next-generation 16 S rRNA gene sequencing was performed to measure the gut and oral microbiome at up to ten time points/subject and LHD and VHD were compared for change in principal components, Shannon diversity index and specific genera. The first three principal components explained 46.7% of the variance in gut microbiome diversity across time and all study subjects, indicating the change in gut microbiome following abstinence. The first time point was an outlier in three-dimensional principal component space versus all other time points. The gut microbiota in LHD and VHD were significantly dissimilar in change from day 1 to day 5 (p = .03) and from day 1 to week 3 (p = .02). The VHD drinking group displayed greater change from baseline. The Shannon diversity index of the gut microbiome changed significantly during abstinence in five participants. In both groups, the Shannon diversity was lower in the oral microbiome than gut. Ten total genera were shared between oral and stool in the AUD participants. These data were compared with healthy controls from the Human Microbiome Project to investigate the concept of a core microbiome. Rapid changes in gut microbiome following abstinence from alcohol suggest resilience of the gut microbiome in AUD and reflects the benefits of refraining from the highest levels of alcohol and potential benefits of abstinence.

RevDate: 2020-07-02

Ogunrinola GA, Oyewale JO, Oshamika OO, et al (2020)

The Human Microbiome and Its Impacts on Health.

International journal of microbiology, 2020:8045646.

The human microbiome comprises bacteria, archaea, viruses, and eukaryotes which reside within and outside our bodies. These organisms impact human physiology, both in health and in disease, contributing to the enhancement or impairment of metabolic and immune functions. Micro-organisms colonise various sites on and in the human body, where they adapt to specific features of each niche. Facultative anaerobes are more dominant in the gastrointestinal tract, whereas strict aerobes inhabit the respiratory tract, nasal cavity, and skin surface. The indigenous organisms in the human body are well adapted to the immune system, due to the biological interaction of the organisms with the immune system over time. An alteration in the intestinal microbial community plays a major role in human health and disease pathogenesis. These alterations result from lifestyle and the presence of an underlying disease. Dysbiosis increases host susceptibility to infection, and the nature of which depends on the anatomical site involved. The unique diversity of the human microbiota accounts for the specific metabolic activities and functions of these micro-organisms within each body site. It is therefore important to understand the microbial composition and activities of the human microbiome as they contribute to health and disease.

RevDate: 2020-07-01

Ohadian Moghadam S, SA Momeni (2020)

Human microbiome and prostate cancer development: current insights into the prevention and treatment.

Frontiers of medicine pii:10.1007/s11684-019-0731-7 [Epub ahead of print].

The huge communities of microorganisms that symbiotically colonize humans are recognized as significant players in health and disease. The human microbiome may influence prostate cancer development. To date, several studies have focused on the effect of prostate infections as well as the composition of the human microbiome in relation to prostate cancer risk. Current studies suggest that the microbiota of men with prostate cancer significantly differs from that of healthy men, demonstrating that certain bacteria could be associated with cancer development as well as altered responses to treatment. In healthy individuals, the microbiome plays a crucial role in the maintenance of homeostasis of body metabolism. Dysbiosis may contribute to the emergence of health problems, including malignancy through affecting systemic immune responses and creating systemic inflammation, and changing serum hormone levels. In this review, we discuss recent data about how the microbes colonizing different parts of the human body including urinary tract, gastrointestinal tract, oral cavity, and skin might affect the risk of developing prostate cancer. Furthermore, we discuss strategies to target the microbiome for risk assessment, prevention, and treatment of prostate cancer.

RevDate: 2020-07-01

Rees J, Christophersen CC, Lewis JR, et al (2020)

The study protocol for a pseudo-randomised pre-post designed controlled intervention trial to study the effects of a 7-week cooking program on self-efficacy and biomarkers of health: the ECU lifestyle and biomarkers get connected study (ECULABJMOF) including the Jamie's Ministry of Food WA participant experience.

BMC public health, 20(1):1037 pii:10.1186/s12889-020-09124-3.

BACKGROUND: Australia, like other nations, has experienced a shift in dietary patterns away from home cooking of nutritious foods, towards a reliance on pre-prepared convenience meals. These are typically energy-dense, nutrient-poor and contribute to the rising prevalence of obesity and chronic disease burden. The aims of this study were to evaluate whether a community-based cooking program instigated a change to participants' skills, attitudes, knowledge, enjoyment and satisfaction of cooking and cooking confidence (self-efficacy).

METHODS: The pseudo-random, pre-post study design consisted of an intervention and a control group. Participant recruitment and group allocation was based on their program start dates. Intervention participants were surveyed three times (baseline, 7 weeks and 6 months) and the control group were surveyed at baseline and 5 weeks. All participants were registered via an online website and were 18 years or over. Upon consent, participants were offered four levels of commitment, defined by different assessments. The minimum participation level included an online survey and levels 2, 3 and 4 involved attendance at a clinic with increasing functional, anthropometric and biomarker measurements. Primary endpoints were participants' cooking confidence as a proxy for self-efficacy. Secondary endpoints were dietary intake, physical activity levels, body composition, anthropometry, blood, urine and faecal biomarkers of systemic, physical and mental health.

DISCUSSION: The community cooking program provided participants with information and advice on food sourcing, preparation and nutrition to improve home cooking skills. The study was designed to explore whether food literacy programs are efficacious in improving participant physical health and well-being in order to combat the rise in obesity and diet-related disease. It will support future use of public health cooking program initiatives aimed at improving food literacy, self-efficacy and physical and mental health. The extensive data collected will inform future research into the relationship between diet, the gut-microbiota and human health.

TRIAL REGISTRATION: Retrospectively registered on 16.08.2019 with the Australian New Zealand Clinical Trials Registry (ANZCTR). ACTRN12619001144101 . Protocol version 4.

RevDate: 2020-07-01

Roder T, Wüthrich D, Bär C, et al (2020)

In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes.

Microorganisms, 8(7): pii:microorganisms8070966.

The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome's annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, g-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes.

RevDate: 2020-06-30

Qian XB, Chen T, Xu YP, et al (2020)

A guide to human microbiome research: study design, sample collection, and bioinformatics analysis.

Chinese medical journal [Epub ahead of print].

The purpose of this review is to provide medical researchers, especially those without a bioinformatics background, with an easy-to-understand summary of the concepts and technologies used in microbiome research. First, we define primary concepts such as microbiota, microbiome, and metagenome. Then, we discuss study design schemes, the methods of sample size calculation, and the methods for improving the reliability of research. We emphasize the importance of negative and positive controls in this section. Next, we discuss statistical analysis methods used in microbiome research, focusing on problems with multiple comparisons and ways to compare β-diversity between groups. Finally, we provide step-by-step pipelines for bioinformatics analysis. In summary, the meticulous study design is a key step to obtaining meaningful results, and appropriate statistical methods are important for accurate interpretation of microbiome data. The step-by-step pipelines provide researchers with insights into newly developed bioinformatics analysis methods.

RevDate: 2020-06-30

Delbeke H, Younas S, Casteels I, et al (2020)

Current knowledge on the human eye microbiome: a systematic review of available amplicon and metagenomic sequencing data.

Acta ophthalmologica [Epub ahead of print].

Insights in the ocular surface microbiome are still at an early stage and many more questions remain unanswered compared with other human-associated microbial communities. The current knowledge on the human microbiome changed our viewpoint on bacteria and human health and significantly enhanced our understanding of human pathophysiology. Also in ocular medicine, microbiome research might impact treatment. Here, we summarize the current knowledge on ocular microbiome research with a particular focus on potential confounding factors and their effects on microbiome composition. Moreover, we present the ocular surface core microbiome based on current available data and defined it as genera present in almost half of the published control cohorts with a relative abundance of at least 1%.

RevDate: 2020-06-30

Simões da Silva TM, Piazentin ACM, Mendonça CMN, et al (2020)

Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions.

Journal of dairy science pii:S0022-0302(20)30479-3 [Epub ahead of print].

Probiotic dairy beverages prepared from buffalo and cow milks with different levels of whey (0, 25, and 50%) were evaluated for kinetic fermentation parameters, protein and fat contents, post-acidification profile, viability of Streptococcus thermophilus, Lactobacillus bulgaricus, and Lactobacillus acidophilus during 21 d of refrigerated storage, and resistance to in vitro gastrointestinal conditions. Progressive acidification that occurred during storage of all dairy products was reduced in the presence of whey. Lactic acid bacteria showed viable cell counts at the end of shelf life, with the highest values (7.33 to 8.83 log cfu/mL) detected in buffalo dairy products. Compared with fermented cow milk products, those made with buffalo milk showed better bacterial viability during in vitro simulated gastrointestinal digestion, which suggests a beneficial protective effect on human microbiome.

RevDate: 2020-06-30

Marzano V, Pane S, Foglietta G, et al (2020)

Mass Spectrometry Based-Proteomic Analysis of Anisakis spp.: A Preliminary Study towards a New Diagnostic Tool.

Genes, 11(6): pii:genes11060693.

Anisakiasis is nowadays a well-known infection, mainly caused by the accidental ingestion of Anisakis larvae, following the consumption of raw or undercooked fishes and cephalopods. Due to the similarity of symptoms with those of common gastrointestinal disorders, this infection is often underestimated, and the need for new specific diagnostic tools is becoming crucial. Given the remarkable impact that MALDI-TOF MS biotyping had in the last decade in clinical routine practice for the recognition of bacterial and fungi strains, a similar scenario could be foreseen for the identification of parasites, such as nematodes. In this work, a MALDI-TOF MS profiling of Anisakis proteome was pursued with a view to constructing a first spectral library for the diagnosis of Anisakis infections. At the same time, a shotgun proteomics approach by LC-ESI-MS/MS was performed on the two main fractions obtained from protein extraction, to evaluate the protein species enriched by the protocol. A set of MALDI-TOF MS signals associated with proteins originating in the ribosomal fraction of the nematode extract was selected as a potential diagnostic tool for the identification of Anisakis spp.

RevDate: 2020-06-27

Ouabbou S, He Y, Butler K, et al (2020)

Inflammation in Mental Disorders: Is the Microbiota the Missing Link?.

Neuroscience bulletin pii:10.1007/s12264-020-00535-1 [Epub ahead of print].

Research suggests that inflammation is important in the pathophysiology of mental disorders. In addition, a growing body of evidence has led to the concept of the microbiota-gut-brain axis. To understand the potential interactions, we begin by exploring the liaison between the immune system and mental disorders, then we describe the evidence that the microbiota impact the immune response in the developing brain. Next, we review the literature that has documented microbiome alterations in major mental disorders. We end with a summary of therapeutic applications, ranging from psycho-biotics to immunomodulatory drugs that could affect the microbiota-gut-brain axis, and potential treatments to alleviate the adverse effects of antipsychotics. We conclude that there is promising evidence to support the position that the microbiota plays an important role in the immunological pathophysiology of mental disorders with an emphasis on psychotic disorders and mood disorders. However, more research is needed to elucidate the mechanisms.

RevDate: 2020-06-26

Xue AJ, Miao SJ, Sun H, et al (2020)

Intestinal dysbiosis in pediatric Crohn's disease patients with IL10RA mutations.

World journal of gastroenterology, 26(22):3098-3109.

BACKGROUND: Several studies have employed animal models to explore the association between microbiota and interleukin (IL) 10 signaling; however, limited information is available about the human microbiome.

AIM: To characterize the microbiome in patients with IL10RA mutations and to explore the association between gut dysbiosis and disease severity.

METHODS: Fecal samples were collected from patients who were diagnosed with loss-of-function mutations in the IL10RA gene between January 2017 and July 2018 at the Children's Hospital of Fudan University. Age-matched volunteer children were recruited as healthy controls. Patients with Crohn's disease (CD) were used as disease controls to standardize the antibiotic exposure. Microbial DNA was extracted from the fecal samples. All analyses were based on the 16S rRNA gene sequencing data.

RESULTS: Seventeen patients with IL10RA mutations (IL10RA group), 17 patients with pediatric CD, and 26 healthy children were included. Both patients with IL10RA mutations and those with CD exhibited a reduced diversity of gut microbiome with increased variability. The relative abundance of Firmicutes was substantially increased in the IL10RA group (P = 0.02). On further comparison of the relative abundance of taxa between patients with IL10RA mutations and healthy children, 13 taxa showed significant differences. The IL10RA-specific dysbiosis indices exhibited a significant positive correlation with weighted pediatric CD activity index and simple endoscopic score for CD.

CONCLUSION: In patients with IL10RA mutations and early onset inflammatory bowel disease, gut dysbiosis shows a moderate association with disease severity.

RevDate: 2020-06-25

Jiang S, Xiao G, Koh AY, et al (2020)

HARMONIES: A Hybrid Approach for Microbiome Networks Inference via Exploiting Sparsity.

Frontiers in genetics, 11:445.

The human microbiome is a collection of microorganisms. They form complex communities and collectively affect host health. Recently, the advances in next-generation sequencing technology enable the high-throughput profiling of the human microbiome. This calls for a statistical model to construct microbial networks from the microbiome sequencing count data. As microbiome count data are high-dimensional and suffer from uneven sampling depth, over-dispersion, and zero-inflation, these characteristics can bias the network estimation and require specialized analytical tools. Here we propose a general framework, HARMONIES, Hybrid Approach foR MicrobiOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome network. HARMONIES first utilizes a zero-inflated negative binomial (ZINB) distribution to model the skewness and excess zeros in the microbiome data, as well as incorporates a stochastic process prior for sample-wise normalization. This approach infers a sparse and stable network by imposing non-trivial regularizations based on the Gaussian graphical model. In comprehensive simulation studies, HARMONIES outperformed four other commonly used methods. When using published microbiome data from a colorectal cancer study, it discovered a novel community with disease-enriched bacteria. In summary, HARMONIES is a novel and useful statistical framework for microbiome network inference, and it is available at https://github.com/shuangj00/HARMONIES.

RevDate: 2020-06-25

Hermes GDA, Eckermann HA, de Vos WM, et al (2020)

Does entry to center-based childcare affect gut microbial colonization in young infants?.

Scientific reports, 10(1):10235 pii:10.1038/s41598-020-66404-z.

Entry to center-based childcare (CC) at three months of life can be an important challenge for infants as it includes major stressors such as long maternal separations and frequently changing caregivers. Stress and the new environment may in turn alter the composition of the gut microbiota with possible implications for future health outcomes. As part of an ongoing longitudinal study, we investigated whether CC, as compared to being cared for by the parents at home, alters the composition of the gut microbiota, while accounting for known covariates of the infant gut microbiota. Stool samples of infants who entered CC (n = 49) and control infants (n = 49) were obtained before and four weeks after CC entrance. Using Redundancy analysis, Random Forests and Bayesian linear models we found that infant gut microbiota was not affected in a uniform way by entry to CC. In line with the literature, breastfeeding, birth mode, age, and the presence of siblings were shown to significantly impact the microbial composition.

RevDate: 2020-06-24

López-Laguna H, Sánchez-García L, Serna N, et al (2020)

Engineering Protein Nanoparticles Out from Components of the Human Microbiome.

Small (Weinheim an der Bergstrasse, Germany) [Epub ahead of print].

Nanoscale protein materials are highly convenient as vehicles for targeted drug delivery because of their structural and functional versatility. Selective binding to specific cell surface receptors and penetration into target cells require the use of targeting peptides. Such homing stretches should be incorporated to larger proteins that do not interact with body components, to prevent undesired drug release into nontarget organs. Because of their low interactivity with human body components and their tolerated immunogenicity, proteins derived from the human microbiome are appealing and fully biocompatible building blocks for the biofabrication of nonreactive, inert protein materials within the nanoscale. Several phage and phage-like bacterial proteins with natural structural roles are produced in Escherichia coli as polyhistidine-tagged recombinant proteins, looking for their organization as discrete, nanoscale particulate materials. While all of them self-assemble in a variety of sizes, the stability of the resulting constructs at 37 °C is found to be severely compromised. However, the fine adjustment of temperature and Zn2+ concentration allows the formation of robust nanomaterials, fully stable in complex media and under physiological conditions. Then, microbiome-derived proteins show promise for the regulatable construction of scaffold protein nanomaterials, which can be tailored and strengthened by simple physicochemical approaches.

RevDate: 2020-06-23

Chauhan V, SS Kanwar (2020)

Lipopeptide(s) associated with human microbiome as potent cancer drug.

Seminars in cancer biology pii:S1044-579X(20)30148-6 [Epub ahead of print].

Human microbiota comprises of trillions of microbes which have evolved with and continued to live on/ within their human hosts. Different environmental factors and diet have a large impact upon human microbiota population. These microorganisms live in synergy with their hosts and are beneficial to the host in many different ways. Many microorganisms help to fight against human diseases. Cancer is one such diseases which effects a large human population often leading to death. Cancer is also one of the most fatal human diseases killing millions of people world-wide every year. Though many treatment procedures are available but none is 100 % effective in curing cancer. In this review, we seek to understand the role of human microbiota in cancer treatment. Lipopeptide(s) (LPs) produced by different microorganisms can act as efficient drug(s) against cancer. LPs are low molecular weight lipo-proteins that are also known for their anti-cancer activities. As human microbiota belongs to an environment within the host body, a drug prepared using these microorganisms will be easily accepted by the body. This novel approach of using LPs produced by human microbiota can be considered for the much needed change in cancer treatment. Therefore, it is proposed that research should focus on the host-microbe interaction which could pave the way in understanding role played by these microorganisms in cancer treatment.

RevDate: 2020-06-23

Baud D, Dimopoulou Agri V, Gibson GR, et al (2020)

Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic.

Frontiers in public health, 8:186.

RevDate: 2020-06-23

Alverdy JC, Keskey R, R Thewissen (2020)

Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis?.

Infection and immunity pii:IAI.00942-19 [Epub ahead of print].

A recent report by the National Institutes of Health on sepsis research has implied that there is a trend to move away from mouse models of sepsis. The most commonly used animal model to study the pathogenesis of human sepsis is cecal ligation and puncture (CLP) in mice. The model has been the mainstay of sepsis research for decades and continues to be considered the gold standard to inform novel pathways of sepsis physiology and its therapeutic direction. Although there have been many criticism of the model, particularly regarding its relevance to human disease, how this model might be repurposed to be more reflective of the human condition begs discussion. In this piece, we compare and contrast the mouse microbiome of the CLP model to the emerging science of the microbiome of human sepsis and discuss the relevance for mice to harbor the very pathogens present in the human microbiome during sepsis as well as an underlying disease process to mimic the characteristics of those patients with undesirable outcomes. How to repurpose this model to incorporate these "human factors" is discussed in detail and suggestions offered.

RevDate: 2020-06-21

Rattan P, Minacapelli CD, V Rustgi (2020)

The Microbiome and Hepatocellular Carcinoma.

Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society [Epub ahead of print].

The human microbiome is a vast and complex system encompassing all the microbes and their genes that occupy the environmentally exposed surfaces of the human body. The gut microbiota and its associated microbiome play an integral role in mammalian metabolism, immune tolerance as well as immunocompetence. Disruptions in the human gut microbiome are associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease (CLD). The persistence of this inflammation has been shown to induce the accumulation of genetic and epigenetic changes leading to hepatocellular carcinoma (HCC). Therefore, the importance and prognostic influence of the gut microbiome on hepatocarcinogenesis has been increasingly studied in recent years. This review discusses the mechanisms by which imbalances in the gut microbiome disturb the gut-liver axis to impact hepatocarcinogenesis, including disruption of the intestinal barrier, changes in bile acid metabolism and reduction in tumor-suppressing miRNA. Furthermore, this review summarizes recent advances in potential microbiome-based therapeutic opportunities in HCC.

RevDate: 2020-06-20

Hu Y, Fang L, Nicholson C, et al (2020)

Implications of Error-Prone Long-Read Whole-Genome Shotgun Sequencing on Characterizing Reference Microbiomes.

iScience, 23(6):101223 pii:S2589-0042(20)30408-9 [Epub ahead of print].

Long-read sequencing techniques, such as the Oxford Nanopore Technology, can generate reads that are tens of kilobases in length and are therefore particularly relevant for microbiome studies. However, owing to the higher per-base error rates than typical short-read sequencing, the application of long-read sequencing on microbiomes remains largely unexplored. Here we deeply sequenced two human microbiota mock community samples (HM-276D and HM-277D) from the Human Microbiome Project. We showed that assembly programs consistently achieved high accuracy (∼99%) and completeness (∼99%) for bacterial strains with adequate coverage. We also found that long-read sequencing provides accurate estimates of species-level abundance (R = 0.94 for 20 bacteria with abundance ranging from 0.005% to 64%). Our results not only demonstrate the feasibility of characterizing complete microbial genomes and populations from error-prone Nanopore sequencing data but also highlight necessary bioinformatics improvements for future metagenomics tool development.

RevDate: 2020-06-19

Ma ZS (2020)

Critical Network Structures and Medical Ecology Mechanisms Underlying Human Microbiome-Associated Diseases.

iScience, 23(6):101195 pii:S2589-0042(20)30380-1 [Epub ahead of print].

A fundamental problem in studies on human microbiome-associated diseases (MADs) is to understand the relationships between microbiome structures and health status of hosts. For example, species diversity metrics have been routinely evaluated in virtually all studies on MADs, yet a recent meta-analysis revealed that, in only approximately one-third of the cases, diversity and diseases were related. In this study, we ask whether Hubbell's neutral theory (supplemented with the normalized stochasticity ratio [NSR]) or critical microbiome network structures may offer better alternatives. Whereas neutral theory and NSR focus on stochastic processes, we use core/periphery and high-salience skeleton networks to evaluate deterministic, asymmetrical niche effects, assuming that all species or their interactions were not "born" equal and focusing on non-neutral, critical network structures. We found that properties of critical network structures are more indicative of disease effects. Finally, seven findings (mechanisms, interpretations, and postulations) regarding medical ecology mechanisms underlying MADs were summarized.

RevDate: 2020-06-19

Hampton-Marcell JT, Larsen P, Anton T, et al (2020)

Detecting personal microbiota signatures at artificial crime scenes.

Forensic science international, 313:110351 pii:S0379-0738(20)30213-9 [Epub ahead of print].

When mapped to the environments we interact with on a daily basis, the 36 million microbial cells per hour that humans emit leave a trail of evidence that can be leveraged for forensic analysis. We employed 16S rRNA amplicon sequencing to map unique microbial sequence variants between human skin and building surfaces in three experimental conditions: over time during controlled and uncontrolled incidental interactions with a door handle, and during multiple mock burglaries in ten real residences. We demonstrate that humans (n = 30) leave behind microbial signatures that can be used to track interaction with various surfaces within a building, but the likelihood of accurately detecting the specific burglar for a given home was between 20-25%. Also, the human microbiome contains rare microbial taxa that can be combined to create a unique microbial profile, which when compared to 600 other individuals can improve our ability to link an individual 'burglar' to a residence. In total, 5512 discriminating, non-singleton unique exact sequence variants (uESVs) were identified as unique to an individual, with a minimum of 1 and a maximum of 568, suggesting some people maintain a greater degree of unique taxa compared to our population of 600. Approximate 60-77% of the unique exact sequence variants originated from the hands of participants, and these microbial discriminators spanned 36 phyla but were dominated by the Proteobacteria (34%). A fitted regression generated to determine whether an intruder's uESVs found on door handles in an office decayed over time in the presence or absence of office workers, found no significant shift in proportion of uESVs over time irrespective of the presence of office workers. While it was possible to detect the correct burglars' microbiota as having contributed to the invaded space, the predictions were very weak in comparison to accepted forensic standards. This suggests that at this time 16S rRNA amplicon sequencing of the built environment microbiota cannot be used as a reliable trace evidence standard for criminal investigations.

RevDate: 2020-06-19

De Filippis F, Pasolli E, D Ercolini (2020)

The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health.

FEMS microbiology reviews pii:5859486 [Epub ahead of print].

Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.

RevDate: 2020-06-20

Coil DA, Neches RY, Lang JM, et al (2020)

Bacterial communities associated with cell phones and shoes.

PeerJ, 8:e9235.

Background: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively.

Findings: We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States.

Conclusions: We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of "environmental" taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.

RevDate: 2020-06-19

Puebla-Barragan S, Renaud J, Sumarah M, et al (2020)

Malodorous biogenic amines in Escherichia coli-caused urinary tract infections in women-a metabolomics approach.

Scientific reports, 10(1):9703.

Many women suffer from urinary tract infections (UTIs). In addition to pain and increased urgency to urinate, malodour is a significant issue for these patients. The specific factors causing this malodour are unclear, and there are no targeted treatment options to counteract it effectively. We used a metabolomics approach to compare the chemical composition of metabolites in the urine of women with E. coli UTIs (n = 15) and those who are healthy (n = 10). The biogenic amines trimethylamine and putrescine, which cause malodour in other urogenital conditions, were significantly increased in UTI patients. Conversely, the precursor of trimethylamine, trimethylamine N-oxide, was lower. To further confirm the source of the malodorous compounds, in vitro experiments were conducted by incubating strains of uropathogenic E. coli in sterilized urine from healthy women. All tested strains accumulated trimethylamine and putrescine. Notably, cadaverine was also produced by E. coli strains in vitro; however, it was not significantly different between both groups. We confirmed that the malodorous amines TMA and putrescine are found in higher concentrations in the urine of patients with an E.coli-caused UTI.

RevDate: 2020-06-16

Kenny DJ, Plichta DR, Shungin D, et al (2020)

Cholesterol Metabolism by Uncultured Human Gut Bacteria Influences Host Cholesterol Level.

Cell host & microbe pii:S1931-3128(20)30295-X [Epub ahead of print].

The human microbiome encodes extensive metabolic capabilities, but our understanding of the mechanisms linking gut microbes to human metabolism remains limited. Here, we focus on the conversion of cholesterol to the poorly absorbed sterol coprostanol by the gut microbiota to develop a framework for the identification of functional enzymes and microbes. By integrating paired metagenomics and metabolomics data from existing cohorts with biochemical knowledge and experimentation, we predict and validate a group of microbial cholesterol dehydrogenases that contribute to coprostanol formation. These enzymes are encoded by ismA genes in a clade of uncultured microorganisms, which are prevalent in geographically diverse human cohorts. Individuals harboring coprostanol-forming microbes have significantly lower fecal cholesterol levels and lower serum total cholesterol with effects comparable to those attributed to variations in lipid homeostasis genes. Thus, cholesterol metabolism by these microbes may play important roles in reducing intestinal and serum cholesterol concentrations, directly impacting human health.

RevDate: 2020-06-19

Diakite A, Dubourg G, Dione N, et al (2020)

Optimization and standardization of the culturomics technique for human microbiome exploration.

Scientific reports, 10(1):9674.

Culturomics is a high-throughput culture approach that has dramatically contributed to the recent renewal of culture. While metagenomics enabled substantial advances in exploring the microbiota, culturomics significantly expanded our knowledge regarding the bacterial gut repertoire through the discovery and the description of hundreds of new taxa. While this approach relies on the variation of culture conditions and media, we have tested so far more than 300 conditions since the beginning of culturomics studies. In this context, we aimed herein to identify the most profitable conditions for optimizing culturomics approach. For this purpose, we have analysed a set of 58 culturomics conditions that were previously applied to 8 faecal specimens, enabling the isolation of 497 bacterial species. As a result, we were able to reduce the number of conditions used to isolate these 497 of more than a half (i.e. to 25 culture conditions). We have also established a list of the 16 conditions that allowed to capture 98% of the total number of species previously isolated. These data constitute a methodological starting point for culture-based microbiota studies by improving the culturomics workflow without any loss of captured bacterial diversity.

RevDate: 2020-06-19

Philips A, Stolarek I, Handschuh L, et al (2020)

Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia.

BMC genomics, 21(1):402.

BACKGROUND: Recent advances in the next-generation sequencing (NGS) allowed the metagenomic analyses of DNA from many different environments and sources, including thousands of years old skeletal remains. It has been shown that most of the DNA extracted from ancient samples is microbial. There are several reports demonstrating that the considerable fraction of extracted DNA belonged to the bacteria accompanying the studied individuals before their death.

RESULTS: In this study we scanned 344 microbiomes from 1000- and 2000- year-old human teeth. The datasets originated from our previous studies on human ancient DNA (aDNA) and on microbial DNA accompanying human remains. We previously noticed that in many samples infection-related species have been identified, among them Tannerella forsythia, one of the most prevalent oral human pathogens. Samples containing sufficient amount of T. forsythia aDNA for a complete genome assembly were selected for thorough analyses. We confirmed that the T. forsythia-containing samples have higher amounts of the periodontitis-associated species than the control samples. Despites, other pathogens-derived aDNA was found in the tested samples it was too fragmented and damaged to allow any reasonable reconstruction of these bacteria genomes. The anthropological examination of ancient skulls from which the T. forsythia-containing samples were obtained revealed the pathogenic alveolar bone loss in tooth areas characteristic for advanced periodontitis. Finally, we analyzed the genetic material of ancient T. forsythia strains. As a result, we assembled four ancient T. forsythia genomes - one 2000- and three 1000- year-old. Their comparison with contemporary T. forsythia genomes revealed a lower genetic diversity within the four ancient strains than within contemporary strains. We also investigated the genes of T. forsythia virulence factors and found that several of them (KLIKK protease and bspA genes) differ significantly between ancient and modern bacteria.

CONCLUSIONS: In summary, we showed that NGS screening of the ancient human microbiome is a valid approach for the identification of disease-associated microbes. Following this protocol, we provided a new set of information on the emergence, evolution and virulence factors of T. forsythia, the member of the oral dysbiotic microbiome.

RevDate: 2020-06-15

Jian C, Luukkonen P, Sädevirta S, et al (2020)

Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults.

Clinical nutrition (Edinburgh, Scotland) pii:S0261-5614(20)30224-7 [Epub ahead of print].

BACKGROUNDS & AIMS: Intestinal microbiota may be causally involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We aimed to study the effect of short-term overfeeding on human gut microbiota in relation to baseline and overfeeding-induced liver steatosis. We also asked whether the baseline microbiota composition is associated to the overfeeding-induced increase in liver fat.

METHODS: In a randomized trial, 38 overweight and obese subjects were assigned to consume an excess of 1000 kcal/day of diets rich in either saturated fat, unsaturated fat, or simple sugars for 3 weeks. Fasting blood samples and 1H-MR spectroscopy were used for extensive clinical phenotyping as previously reported (PMID: 29844096). Fecal samples were collected for the analysis of the gut microbiota using 16S rRNA amplicon sequencing, imputed metagenomics and qPCR. Microbiota results were correlated with dietary intakes and clinical measurements before and during overfeeding.

RESULTS: The overall community structure of the microbiota remained highly stable and personalized during overfeeding based on between-sample Bray-Curtis dissimilarity, but the relative abundances of individual taxa were altered in a diet-specific manner: overfeeding saturated fat increased Proteobacteria, while unsaturated fat increased butyrate producers. Sugar overfeeding increased Lactococcus and Escherichia coli. Imputed functions of the gut microbiota were not affected by overfeeding. Several taxa affected by overfeeding significantly correlated with the changes in host metabolic markers. The baseline levels of proteobacterial family Desulfovibrionaceae, and especially genus Bilophila, were significantly associated to overfeeding-induced liver fat increase independently of the diet arm. In general, limited overlap was observed between the overfeeding-induced microbiota changes and the liver fat-associated microbiota features at baseline.

CONCLUSIONS: Our work indicates that the human gut microbiota is resilient to short-term overfeeding on community level, but specific taxa are altered on diet composition-dependent manner. Generalizable microbiota signatures directly associated with liver steatosis could not be identified. Instead, the carriage of Bilophila was identified as a potential novel risk factor for diet-induced liver steatosis in humans. Clinical trial registry number: NCT02133144 listed on NIH website: ClinicalTrials.gov.

RevDate: 2020-06-15

Ooi DS, Tan CP, Tay MJ, et al (2020)

Developmental Origins of Health and Disease: Impact of environmental dust exposure in modulating microbiome and its association with non-communicable diseases.

Journal of developmental origins of health and disease pii:S2040174420000549 [Epub ahead of print].

Non-communicable diseases (NCDs) including obesity, diabetes, and allergy are chronic, multi-factorial conditions that are affected by both genetic and environmental factors. Over the last decade, the microbiome has emerged as a possible contributor to the pathogenesis of NCDs. Microbiome profiles were altered in patients with NCDs, and shift in microbial communities was associated with improvement in these health conditions. Since the genetic component of these diseases cannot be altered, the ability to manipulate the microbiome holds great promise for design of novel therapies in the prevention and treatment of NCDs. Together, the Developmental Origins of Health and Disease concept and the microbial hypothesis propose that early life exposure to environmental stimuli will alter the development and composition of the human microbiome, resulting in health consequences. Recent studies indicated that the environment we are exposed to in early life is instrumental in shaping robust immune development, possibly through modulation of the human microbiome (skin, airway, and gut). Despite much research into human microbiome, the origin of their constituent microbiota remains unclear. Dust (also known as particulate matter) is a key determinant of poor air quality in the modern urban environment. It is ubiquitous and serves as a major source and reservoir of microbial communities that modulates the human microbiome, contributing to health and disease. There are evidence that reported significant associations between environmental dust and NCDs. In this review, we will focus on the impact of dust exposure in shaping the human microbiome and its possible contribution to the development of NCDs.

RevDate: 2020-06-13

Rotz SJ, CE Dandoy (2020)

The microbiome in pediatric oncology.

Cancer [Epub ahead of print].

The human microbiome comprises a diverse set of microorganisms, which play a mostly cooperative role in processes such as metabolism and host defense. Next-generation genomic sequencing of bacterial nucleic acids now can contribute a much broader understanding of the diverse organisms composing the microbiome. Emerging evidence has suggested several roles of the microbiome in pediatric hematology/oncology, including susceptibility to infectious diseases, immune response to neoplasia, and contributions to the tumor microenvironment as well as changes to the microbiome from chemotherapy and antibiotics with unclear consequences. In this review, the authors have examined the evidence of the role of the microbiome in pediatric hematology/oncology, discussed how the microbiome may be modulated, and suggested key questions in need of further exploration.

RevDate: 2020-06-13

Galli I, R Fasanelli (2020)

Public understanding of science and common sense: Social representations of the human microbiome among the expert and non-expert public.

Health psychology open, 7(1):2055102920913239.

The aim of this investigation is to examine the structure and the content of different social groups' representations of the human microbiome. We employed a non-probabilistic sample comprising two groups of participants. The first group (n = 244) included university students. The second group included lay people (n = 355). We chose a mixed-method approach. The data obtained were processed using IRaMuTeQ software. The results allow us to identify the anchoring and objectification processes activated by the two different groups of interviewees. The results could be useful to those in charge of implementing campaigns aimed at promoting health literacy.

RevDate: 2020-06-14

Sui HY, Weil AA, Nuwagira E, et al (2020)

Impact of DNA Extraction Method on Variation in Human and Built Environment Microbial Community and Functional Profiles Assessed by Shotgun Metagenomics Sequencing.

Frontiers in microbiology, 11:953.

Both the host microbiome and the microbiome of the built environment can have profound impacts on human health. While prior studies have suggested that the variability introduced by DNA extraction method is less than typical biologic variation, most studies have focused on 16S rRNA amplicon sequencing or on high biomass fecal samples. Shotgun metagenomic sequencing provides advantages over amplicon sequencing for surveying the microbiome, but is a challenge to perform in lower microbial biomass samples with high human DNA content such as sputum or vacuumed dust. Here we systematically evaluate the impact of four different extraction methods (phenol:choloroform, and three high-throughput kit-based approaches, the Promega Maxwell gDNA, Qiagen MagAttract PowerSoil DNA, and ZymoBIOMICS 96 MagBead). We report the variation in microbial community structure and predicted microbial function assessed by shotgun metagenomics sequencing in human stool, sputum, and vacuumed dust obtained from ongoing cohort studies or clinical trials. The same beadbeating protocol was used for all samples to focus our evaluation on the impact of kit chemistries on sequencing results. DNA yield was overall highest in the phenol:choloroform and Promega approaches. Only the phenol:choloroform approach showed evidence of contamination in negative controls. Bias was evaluated using mock community controls, and was noted across all extraction methods, although Promega exhibited the least amount of bias. The extraction method did not impact the proportion of human reads, although stool had the lowest proportion of human reads (0.1%) as compared to dust (44.1%) and sputum (80%). We calculated Bray-Curtis dissimilarity and Aitchison distances to evaluate the impact of extraction method on microbial community structure by sample type. Extraction method had the lowest impact in stool (extraction method responsible for 3.0-3.9% of the variability), the most impact in vacuumed dust (12-16% of the variability) and intermediate values for sputum (9.2-12% variability). Similar differences were noted when evaluating microbial community function. Our results will inform investigators planning microbiome studies using diverse sample types in large clinical studies. A consistent DNA extraction approach across all sample types is recommended, particularly with lower microbial biomass samples that are more heavily influenced by extraction method.

RevDate: 2020-06-16

Fukui S, Morimoto S, Ichinose K, et al (2020)

Comparison of lung microbiota between antineutrophil cytoplasmic antibody-associated vasculitis and sarcoidosis.

Scientific reports, 10(1):9466.

Microbial involvement in the pathogenesis have been suggested in both antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and sarcoidosis, both of which have lung involvement. However, exhaustive research to assess the bacteria in the lung in AAV and in sarcoidosis have not been performed. We sought to elucidate the distinct dysbiotic lung microbiota between AAV and sarcoidosis. We used 16S rRNA gene high-throughput sequencing to obtain the bacterial community composition of bronchoalveolar lavage fluid (BALF) in patients with AAV (n = 16) compared to patients with sarcoidosis (n = 21). The patients had not undergone therapy with immunosuppressive medication when their BALF was acquired. No difference was observed in α-diversity between patients with AAV and patients with sarcoidosis when using all the detected taxa. We defined the taxa of the oral cavity by using the data of oral microbiota of healthy individuals from the Human Microbiome Project (HMP). The analysis using only oral taxa made the difference in α-diversity between AAV and sarcoidosis clearer compared with those using all the detected taxa. Besides, the analysis using detected taxa except for oral taxa also made the difference in α-diversity between AAV and sarcoidosis clearer compared with those using all the detected taxa. A linear negative relationship between the α-diversity and Birmingham vasculitis activity score (BVAS) was detected in the AAV group. The observed p-value for the effect of the disease groups on the ß-diversity was small while the effect of other factors including sex and smoking status did not have small p-values. By excluding oral taxa from all the detected taxa, we found a cluster mainly consisted of sarcoidosis patients which was characterized with microbial community monopolized by Erythrobacteraceae family. Our results suggested the importance of considering the influence of oral microbiota in evaluating lung microbiota.

RevDate: 2020-06-13

Dekaboruah E, Suryavanshi MV, Chettri D, et al (2020)

Human microbiome: an academic update on human body site specific surveillance and its possible role.

Archives of microbiology [Epub ahead of print].

Human body is inhabited by vast number of microorganisms which form a complex ecological community and influence the human physiology, in the aspect of both health and diseases. These microbes show a relationship with the human immune system based on coevolution and, therefore, have a tremendous potential to contribute to the metabolic function, protection against the pathogen and in providing nutrients and energy. However, of these microbes, many carry out some functions that play a crucial role in the host physiology and may even cause diseases. The introduction of new molecular technologies such as transcriptomics, metagenomics and metabolomics has contributed to the upliftment on the findings of the microbiome linked to the humans in the recent past. These rapidly developing technologies are boosting our capacity to understand about the human body-associated microbiome and its association with the human health. The highlights of this review are inclusion of how to derive microbiome data and the interaction between human and associated microbiome to provide an insight on the role played by the microbiome in biological processes of the human body as well as the development of major human diseases.

RevDate: 2020-06-11

Topçuoğlu BD, Lesniak NA, Ruffin MT, et al (2020)

A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems.

mBio, 11(3): pii:mBio.00434-20.

Machine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made toward developing ML models that predict health outcomes using bacterial abundances, but inconsistent adoption of training and evaluation methods call the validity of these models into question. Furthermore, there appears to be a preference by many researchers to favor increased model complexity over interpretability. To overcome these challenges, we trained seven models that used fecal 16S rRNA sequence data to predict the presence of colonic screen relevant neoplasias (SRNs) (n = 490 patients, 261 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and interpret ML models. To show the effect of model selection, we assessed the predictive performance, interpretability, and training time of L2-regularized logistic regression, L1- and L2-regularized support vector machines (SVM) with linear and radial basis function kernels, a decision tree, random forest, and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs with an area under the receiver operating characteristic curve (AUROC) of 0.695 (interquartile range [IQR], 0.651 to 0.739) but was slow to train (83.2 h) and not inherently interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in predictive performance with an AUROC of 0.680 (IQR, 0.625 to 0.735), trained faster (12 min), and was inherently interpretable. Our analysis highlights the importance of choosing an ML approach based on the goal of the study, as the choice will inform expectations of performance and interpretability.IMPORTANCE Diagnosing diseases using machine learning (ML) is rapidly being adopted in microbiome studies. However, the estimated performance associated with these models is likely overoptimistic. Moreover, there is a trend toward using black box models without a discussion of the difficulty of interpreting such models when trying to identify microbial biomarkers of disease. This work represents a step toward developing more-reproducible ML practices in applying ML to microbiome research. We implement a rigorous pipeline and emphasize the importance of selecting ML models that reflect the goal of the study. These concepts are not particular to the study of human health but can also be applied to environmental microbiology studies.

RevDate: 2020-06-11

Leskinen K, Pajunen MI, Vilanova MVG, et al (2020)

YerA41, a Yersinia ruckeri Bacteriophage: Determination of a Non-Sequencable DNA Bacteriophage Genome via RNA-Sequencing.

Viruses, 12(6): pii:v12060620.

YerA41 is a Myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified in such a way that it is an unsuitable template for PCR amplification and for conventional sequencing. To determine the YerA41 genome sequence, we performed RNA-sequencing from phage-infected Y. ruckeri cells at different time points post-infection. The host-genome specific reads were subtracted and de novo assembly was performed on the remaining unaligned reads. This resulted in nine phage-specific scaffolds with a total length of 143 kb that shared only low level and scattered identity to known sequences deposited in DNA databases. Annotation of the sequences revealed 201 predicted genes, most of which found no homologs in the databases. Proteome studies identified altogether 63 phage particle-associated proteins. The RNA-sequencing data were used to characterize the transcriptional control of YerA41 and to investigate its impact on the bacterial gene expression. Overall, our results indicate that RNA-sequencing can be successfully used to obtain the genomic sequence of non-sequencable phages, providing simultaneous information about the phage-host interactions during the process of infection.

RevDate: 2020-06-09

Satokari R, Pietilä L, Mattila E, et al (2020)

Faecal banking at -20 °C facilitates faecal microbiota transplantation for recurrent Clostridioides difficile infection in clinical practice.

RevDate: 2020-06-16

Voth E, S Khanna (2020)

The Integrative Human microbiome project: a mile stone in the understanding of the gut microbiome.

RevDate: 2020-06-11

Hahn A, Burrell A, Ansusinha E, et al (2020)

Airway microbial diversity is decreased in young children with cystic fibrosis compared to healthy controls but improved with CFTR modulation.

Heliyon, 6(6):e04104.

Background: Culture-independent next generation sequencing has identified diverse microbial communities within the cystic fibrosis (CF) airway. The study objective was to test for differences in the upper airway microbiome of children with CF and healthy controls and age-related differences in children with CF.

Methods: Oropharyngeal swabs and clinical data were obtained from 25 children with CF and 50 healthy controls aged ≤6 years. Bacterial DNA was amplified and sequenced for the V4 region of 16S rRNA marker-gene. Alpha diversity was measured using operational taxonomic units (OTUs), Shannon diversity, and the inverse Simpson's index. Beta diversity was measured using Morisita-Horn and Bray-Curtis and Jaccard distances. General linear models were used for comparison of alpha diversity measures between groups to account for differences in demographics and exposures. Mixed effects general linear models were used for longitudinal comparisons 1) between children with CF of different ages and 2) between children with CF receiving CF transmembrane conductance regulator (CFTR) modulators, children with CF not receiving CFTR modulators, and healthy controls to adjust for repeated measures per subject.

Results: Children with CF were more likely to have received antibiotics in the prior year than healthy controls (92% vs 24%, p < 0.001). Controlling age, race, ethnicity, length of breastfeeding, and having siblings, children with CF had a lower richness than healthy controls: OTUs 62.1 vs 83, p = 0.022; and trended toward lower diversity: Shannon 2.09 vs 2.35, p = 0.057; inverse Simpson 5.7 vs 6.92, p = 0.118. Staphylococcus, three Rothia OTUs, and two Streptococcus OTUs were more abundant in CF children versus healthy controls (all p < 0.05). Bray-Curtis and Jaccard distances, which reflect overall microbial community composition, were also significantly different (both p = 0.001). In longitudinally collected samples from children with CF, Morisita-Horn trended toward more similarity in those aged 0-2 years compared to those aged 3-6 years (p = 0.070). In children >2 years of age, there was a significant trend in increasing alpha diversity measures between children with CF not receiving CFTR modulators, children with CF receiving CFTR modulators, and healthy controls: OTUs 63.7 vs 74.7 vs 97.6, p < 0.001; Shannon 2.11 vs 2.34 vs 2.56, p < 0.001; inverse Simpson 5.78 vs 7.23 vs 7.96, p < 0.001.

Conclusions: Children with CF have lower bacterial diversity and different composition of organisms compared with healthy controls. This appears to start in early childhood, is possibly related to the use of antibiotics, and may be partially corrected with the use of CFTR modulators.

RevDate: 2020-06-19

Chng KR, Li C, Bertrand D, et al (2020)

Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment.

Nature medicine, 26(6):941-951.

Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections.

RevDate: 2020-06-12

Douglas GM, Bielawski JP, MGI Langille (2020)

Re-evaluating the relationship between missing heritability and the microbiome.

Microbiome, 8(1):87.

Human genome-wide association studies (GWASs) have recurrently estimated lower heritability estimates than familial studies. Many explanations have been suggested to explain these lower estimates, including that a substantial proportion of genetic variation and gene-by-environment interactions are unmeasured in typical GWASs. The human microbiome is potentially related to both of these explanations, but it has been more commonly considered as a source of unmeasured genetic variation. In particular, it has recently been argued that the genetic variation within the human microbiome should be included when estimating trait heritability. We outline issues with this argument, which in its strictest form depends on the holobiont model of human-microbiome interactions. Instead, we argue that the microbiome could be leveraged to help control for environmental variation across a population, although that remains to be determined. We discuss potential approaches that could be explored to determine whether integrating microbiome sequencing data into GWASs is useful. Video abstract.

RevDate: 2020-06-20

Chopyk J, Akrami K, Bavly T, et al (2020)

Temporal variations in bacterial community diversity and composition throughout intensive care unit renovations.

Microbiome, 8(1):86.

BACKGROUND: Inanimate surfaces within a hospital serve as a reservoir of microbial life that may colonize patients and ultimately result in healthcare associated infections (HAIs). Critically ill patients in intensive care units (ICUs) are particularly vulnerable to HAIs. Little is known about how the microbiome of the ICU is established or what factors influence its evolution over time. A unique opportunity to bridge the knowledge gap into how the ICU microbiome evolves emerged in our health system, where we were able to characterize microbial communities in an established hospital ICU prior to closing for renovations, during renovations, and then after re-opening.

RESULTS: We collected swab specimens from ICU bedrails, computer keyboards, and sinks longitudinally at each renovation stage, and analyzed the bacterial compositions on these surfaces by 16S rRNA gene sequencing. Specimens collected before ICU closure had the greatest alpha diversity, while specimens collected after the ICU had been closed for over 300 days had the least. We sampled the ICU during the 45 days after re-opening; however, within that time frame, the alpha diversity never reached pre-closure levels. There were clear and significant differences in microbiota compositions at each renovation stage, which was driven by environmental bacteria after closure and human-associated bacteria after re-opening and before closure.

CONCLUSIONS: Overall, we identified significant differences in microbiota diversity and community composition at each renovation stage. These data help to decipher the evolution of the microbiome in the most critical part of the hospital and demonstrate the significant impacts that microbiota from patients and staff have on the evolution of ICU surfaces. Video Abstract.

RevDate: 2020-06-10

Liu Y, Liu Y, Du Z, et al (2020)

Skin microbiota analysis-inspired development of novel anti-infectives.

Microbiome, 8(1):85.

BACKGROUND: The alarming spread of antimicrobial resistance requires the development of novel anti-infective drugs. Despite the recent research focus on the human microbiome and its likely value to understand and exploit inter-bacterial inhibitory phenomena as a source for antimicrobial strategies, the human microbiota has barely been investigated for the purpose of drug development.

RESULTS: We performed a large screen analyzing over 3000 human skin isolates to evaluate bacterial competition within the human skin microbiota as a basis for the development of anti-infective therapeutics. We discovered a Staphylococcus hominis strain with strong and broad activity against Gram-positive pathogens that was mediated by the bacteriocin micrococcin P1 (MP1). In "probiotic" approaches, this strain led to reduced Staphylococcus aureus infection and accelerated closure of S. aureus-infected wounds. Furthermore, we used a nanoparticle strategy to overcome the physico-chemical limitations often encountered with natural substances such as MP1 and demonstrate a significant reduction of S. aureus infection by MP1-loaded nanoparticles.

CONCLUSIONS: Our study gives examples of how analysis of bacterial interactions in the human microbiota can be explored for the development of novel, effective anti-infective strategies. Video Abstract.

RevDate: 2020-06-05

Moles L, D Otaegui (2020)

The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation?.

Nutrients, 12(6): pii:nu12061654.

The human microbiome is emerging as an interesting field in research into the prevention of health problems and recovery from illness in humans. The complex ecosystem formed by the microbiota is continuously interacting with its host and the environment. Diet could be assumed to be one of the most prominent factors influencing the microbiota composition. Nevertheless, and in spite of numerous strategies proposed to modulate the human microbiota through dietary means, guidelines to achieve this goal have yet to be established. This review assesses the correlation between social and dietary changes over the course of human evolution and the adaptation of the human microbiota to those changes. In addition, it discusses the main dietary strategies for modulating the microbiota and the difficulties of putting them properly into practice.

RevDate: 2020-06-04

Wang CZ, Wan JY, Wan J, et al (2020)

Human intestinal microbiota derived metabolism signature from a North American native botanical Oplopanax horridus with UPLC/Q-TOF-MS analysis.

Biomedical chromatography : BMC [Epub ahead of print].

Oplopanax horridus, distributed in North America, is an herbal medicine traditionally used by Pacific indigenous peoples for various medical conditions. After oral ingestion, constituents in O. horridus extract (OhE) could be converted to their metabolites by enteric microbiome before absorption. In this study, in order to mimic gut environment, the OhE was biotransformed by using the enteric microbiome of healthy human subjects. For accurate and reliable data collection with optimized approaches in sample preparation and analytical conditions, ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) were used to characterize parent constituents and their metabolites. In the extract, 20 parent compounds were identified including polyynes, sesquiterpenes, monoterpeondids, phenylpropanoids, and phenolic acids. After the biotransformation, a total of 78 metabolites were identified, of which 37 of them belong to polyynes metabolites. The common biotransformation pathways are hydroxylation, acetylization, methylation, and demethylation. Based on the pathway distributions, the metabolism signature of OhE has been explored. The metabolism pathways of OhE compounds are dependent on their structural classifications and hydrophilic/hydrophobic properties. In summary, with comprehensive analysis, we systematically investigated human microbiome-derived OhE metabolites. The enteric microbial metabolism signature provides novel information for future effective use of Oplopanax horridus.

RevDate: 2020-06-04

Gascon M, Harrall KK, Beavers AW, et al (2020)

Feasibility of collection and analysis of microbiome data in a longitudinal randomized trial of community gardening.

Future microbiology [Epub ahead of print].

Aim: We explored the feasibility of collecting and analyzing human microbiome data in a longitudinal randomized controlled trial of community gardening. Methods & materials: Participants were randomly assigned to gardening (N = 8) or control (N = 8). Participants provided stool, mouth, hand and forehead microbiome samples at six timepoints. Analyses combined mixed models with Qiita output. Results: Participant satisfaction was high, with 75% of participants completing evaluations. While no microbial effects were statistically significant due to small sample size, the analysis pipeline utility was tested. Conclusion: Longitudinal collection and analysis of microbiome data in a community gardening randomized controlled trial is feasible. The analysis pipeline will be useful in larger studies for assessment of the pathway between microbiota, gardening and health outcomes.

RevDate: 2020-06-03

Rasmussen MA, Thorsen J, Dominguez-Bello MG, et al (2020)

Ecological succession in the vaginal microbiota during pregnancy and birth.

The ISME journal pii:10.1038/s41396-020-0686-3 [Epub ahead of print].

The mother's vaginal microbiota represents the first microbes to which a child is exposed when delivered vaginally. However, little is known about the composition and development of the vaginal microbiota during pregnancy and birth. Here, we analyzed the vaginal microbiota of 57 women in pregnancy week 24, 36 and at birth after rupture of membranes but before delivery, and further compared the composition with that of the gut and airways of the 1-week-old child. The vaginal community structure had dramatic changes in bacterial diversity and taxonomic distribution, yet carried an individual-specific signature. The relative abundance of most bacterial taxa increased stepwise from week 24 of pregnancy until birth, with a gradual decline of Lactobacillus. Mother-to-child vertical transfer, as suggested by sharing, was modest, with the strongest transfer being for Clostridiales followed by Lactobacillales and Enterobacteriales. In conclusion, late gestation is associated with an increase in maternal vaginal microbiota diversity, and vaginal bacteria at birth only modestly predict the composition of the neonatal microbiota.

RevDate: 2020-06-03

Brenes LR, Lohse MB, Hartooni N, et al (2020)

A Set of Diverse Genes Influence the Frequency of White-Opaque Switching in Candida albicans.

G3 (Bethesda, Md.) pii:g3.120.401249 [Epub ahead of print].

The fungal species Candida albicans is both a member of the human microbiome and a fungal pathogen. C. albicans undergoes several different morphological transitions, including one called white-opaque switching. Here, cells reversibly switch between two states, "white" and "opaque," and each state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology and they differ in many other properties including mating, nutritional specialization, and interactions with the innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this paper, we examined 172 deletion mutants covering a broad range of cell functions. We identified 28 deletion mutants with at least a five-fold effect on switching frequencies; these cover a wide variety of functions ranging from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage response pathway. Most of the genes we identified have not been previously implicated in white-opaque switching and serve as entry points to understand new aspects of this morphological transition.

RevDate: 2020-06-03

Badawy S, Pajunen MI, Haiko J, et al (2020)

Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii.

Viruses, 12(6): pii:v12060604.

Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52-54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A.baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A.baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A.baumannii.

RevDate: 2020-06-09

Singh A, Nayak N, Rathi P, et al (2020)

Microbiome and host crosstalk: A new paradigm to cancer therapy.

Seminars in cancer biology pii:S1044-579X(20)30110-3 [Epub ahead of print].

The commensal microbiome of humans has co-evolved for thousands of years. The microbiome regulates human health and is also linked to several diseases, including cancer. The advances in next-generation sequencing have significantly contributed to our understanding of the microbiome and its association with cancer and cancer therapy. Recent studies have highlighted a close relationship of the microbiome to the pharmacological effect of chemotherapy and immunotherapy. The chemo-drugs usually interfere with the host immune system and reduces the microbiome diversity inside the body, which in turn leads to decreased efficacy of these drugs. The human microbiome, specifically the gut microbiome, increases the potency of chemo-drugs through metabolism, enzymatic degradation, ecological differences, and immunomodulation. Recent research exploits the involvement of microbiome to shape the efficacy and decrease the toxicity of these chemo-drugs. In this review, we have highlighted the recent development in understanding the relationship of the human microbiome with cancer and also emphasize on various roles of the microbiome in the modulation of cancer therapy. Additionally, we also summarize the ongoing research focussed on the improved efficacy of chemotherapy and immunotherapy using the host microbiome.

RevDate: 2020-06-09

Dahl WJ, Rivero Mendoza D, JM Lambert (2020)

Diet, nutrients and the microbiome.

Progress in molecular biology and translational science, 171:237-263.

Although there is associative evidence linking fecal microbiome profile to health and disease, many studies have not considered the confounding effects of dietary intake. Consuming food provides fermentable substrate which sustains the microbial ecosystem that resides with most abundance in the colon. Western, Mediterranean and vegetarian dietary patterns have a role in modulating the gut microbiota, as do trending restrictive diets such the paleolithic and ketogenic. Altering the amount or ratio of carbohydrate, protein and fat, particularly at the extremes of intake, impacts the microbiome. Diets high in fermentable carbohydrates support the relative abundance of Bifidobacterium, Prevotella, Ruminococcus, Dorea and Roseburia, among others, capable of degrading polysaccharides, oligosaccharides and sugars. Conversely, very high fat diets increase bile-resistant organisms such as Bilophila and Bacteroides. Food form, whole foods vs. ultra-processed, alters the provision of macronutrient substrate to the colon due to differing digestibility, and thereby may impact the microbiota and its metabolic activity. In addition, phytochemicals in plant-based foods have specific and possibly prebiotic effects on the microbiome. Further, food ingredients such as certain low-calorie sweeteners enhance Bifidobacterium spp. The weight of evidence to date suggests a high level of interindividual variability in the human microbiome vs. clearly defined, dietary-induced profiles. Healthful dietary patterns, emphasizing plant foods high in microbial-available carbohydrate, support favorable microbiome profiles active in saccharolytic fermentation. Future research into diet and microbiome should consider the balance of gut microbial-generated metabolites, an important link between microbiome profile and human health.

RevDate: 2020-06-03

Prescott SL (2020)

A Butterfly Flaps its Wings: Extinction of Biological Experience and the Origins of Allergy.

Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology [Epub ahead of print].

OBJECTIVE: The grand global challenges of the Anthropocene are interdependent with ample evidence that reduced early-life 'experience' of biodiversity primes for immune dysregulation and a higher propensity low-grade inflammation, increasing the risk of allergy many other later-onset NCDs -also now implicated in the susceptibility to acute inflammation in COVID-19 infection. The objective of this review is to explore links between biodiversity on all scales and allergic disease as a measure of immune dysregulation.

DATA SOURCES: Were identified from PubMed and Web of Science using search terms pertaining to biodiversity, nature-relatedness, allergic disease, microbiome, NCDs, COVID-19 and associated terms.

STUDY SELECTIONS: Studies were selected based on relevance to human health and biodiversity.

RESULTS: Contact with natural environments enriches the human microbiome, promotes regulated immune responses, and protects from allergy and both acute and chronic inflammatory disorders. These important links to eco-psychological constructs of the 'extinction of experience' which indicates that loss of direct, personal contact with biodiversity-wildlife and the more visible elements of the natural world-might lead to emotional apathy and irresponsible behaviors toward the environment.

CONCLUSION: The immune system is a useful early barometer of environmental impacts, and via the microbiome, a measure of the way in which our current experiences differ from our ancestral past. While we would benefit from further research, efforts to increase direct, personal contact with biodiversity have clear benefits for multiple aspect of physical and mental health, the skin and gut microbiome, immune function, food choices, sleep, physical activity, and promotes environmental responsibility.

RevDate: 2020-06-20

Wu AH, Tseng C, Vigen C, et al (2020)

Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study.

Breast cancer research and treatment, 182(2):451-463.

OBJECTIVE: To investigate the association between gut microbiome with breast tumor characteristics (receptor status, stage and grade) and known breast cancer risk factors.

METHODS: In a pilot cross-sectional study of 37 incident breast cancer patients, fecal samples collected prior to chemotherapy were analyzed by 16S ribosomal RNA (rRNA) gene-based sequencing protocol. Alpha diversity and specific taxa by tumor characteristics and breast cancer risk factors were tested by Wilcoxon rank sum test, and by differential abundance analysis, using a zero-inflated negative binomial regression model with adjustment for total counts, age and race/ethnicity.

RESULTS: There were no significant alpha diversity or phyla differences by estrogen/progesterone receptor status, tumor grade, stage, parity and body mass index. However, women with human epidermal growth factor receptor 2 positive (HER2+) (n = 12) compared to HER2- (n = 25) breast cancer showed 12-23% lower alpha diversity [number of species (OTU) p = 0.033, Shannon index p = 0.034], lower abundance of Firmicutes (p = 0.005) and higher abundance of Bacteroidetes (p = 0.089). Early menarche (ages ≤ 11) (n = 11) compared with later menarche (ages ≥ 12) (n = 26) was associated with lower OTU (p = 0.036), Chao1 index (p = 0.020) and lower abundance of Firmicutes (p = 0.048). High total body fat (TBF) (> 46%) (n = 12) compared to lower (≤ 46%) TBF was also associated with lower Chao 1 index (p = 0.011). There were other significant taxa abundance differences by HER2 status, menarche age, as well as other tumor and breast cancer risk factors.

CONCLUSIONS AND RELEVANCE: Further studies are needed to identify characteristics of the human microbiome and the interrelationships between breast cancer hormone receptor status and established breast cancer risk factors.

RevDate: 2020-06-19

Vernocchi P, Del Chierico F, L Putignani (2020)

Gut Microbiota Metabolism and Interaction with Food Components.

International journal of molecular sciences, 21(10):.

The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe-nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.

RevDate: 2020-05-26

Thapa S, Runge JK, Venkatachalam A, et al (2020)

The Nasopharyngeal and Gut Microbiota in Children in a Pediatric Otolaryngology Practice.

The Pediatric infectious disease journal [Epub ahead of print].

BACKGROUND: The human microbiome evolves rapidly in early life with contributions from various factors such as diet, delivery mode, medical history, antibiotics exposure, genetics, immunomodulators and the environment. A high use of antibiotics in pediatric outpatient settings has been well documented, and improvement in antibiotic selection is required to reduce the risks of antibiotic resistance and disruption of the microbiome.

METHODS: We performed an exploratory study using 16S rRNA gene-based sequencing to characterize the gut and nasopharyngeal microbiome of children (n = 50) age 1-6 years of age in a pediatric otolaryngology practice.

RESULTS: Relative abundance of Haemophilus and Moraxella were higher in nasopharyngeal swabs, while Prevotella, Bacteroides, Porphyromonas and Faecalibacterium were highly abundant in rectal swabs. The gut microbiome composition in children <2 years old was different compared with children ≥2 years age. Gut bacterial diversity increased with an increase in age of the children. Children taking probiotics had a notable increase in abundance of potentially beneficial gut bacteria such as Bacteroides and Akkermansia. The nasopharyngeal microbiome differed between children who received antibiotics in the 3 months before sample collection compared with those that did not. Haemophilus spp. was highly abundant in children who received antibiotics 3 months before sampling.

CONCLUSIONS: The pediatric nasopharyngeal and rectal microbiomes differ in bacterial composition and diversity. The increased abundance of Haemophilus spp. in the nasopharyngeal microbiome of children who received antibiotics during the 3 months before sampling suggests a potential impact of antibiotics in colonization with the otopathogen and may be relevant to clinical practice.

RevDate: 2020-05-25

Sharma D, Paterson AD, W Xu (2020)

TaxoNN: Ensemble of Neural Networks on Stratified Microbiome Data for Disease Prediction.

Bioinformatics (Oxford, England) pii:5843784 [Epub ahead of print].

MOTIVATION: Research supports the potential use of microbiome as a predictor of some diseases. Motivated by the findings that microbiome data is complex in nature and there is an inherent correlation due to hierarchical taxonomy of microbial Operational Taxonomic Units (OTUs), we propose a novel machine learning method incorporating a stratified approach to group OTUs into phylum clusters. Convolutional Neural Networks (CNNs) were used to train within each of the clusters individually. Further, through an ensemble learning approach, features obtained from each cluster were then concatenated to improve prediction accuracy. Our two-step approach comprising of stratification prior to combining multiple CNNs, aided in capturing the relationships between OTUs sharing a phylum efficiently, as compared to using a single CNN ignoring OTU correlations.

RESULTS: We used simulated datasets containing 168 OTUs in 200 cases and 200 controls for model testing. Thirty-two OTUs, potentially associated with risk of disease were randomly selected and interactions between three OTUs were used to introduce non-linearity. We also implemented this novel method in two human microbiome studies: (i) cirrhosis with 118 cases, 114 controls; (ii) type 2 diabetes with 170 cases, 174 controls; to demonstrate the model's effectiveness. Extensive experimentation and comparison against conventional machine learning techniques yielded encouraging results. We obtained mean AUC values of 0.88, 0.92, 0.75, showing a consistent increment (5%, 3%, 7%) in simulations, cirrhosis and type 2 diabetes data respectively, against the next best performing method, Random Forest.

AVAILABILITY: https://github.com/divya031090/TaxoNN_OTU.

RevDate: 2020-05-24

Dannenberg L, Zikeli D, Benkhoff M, et al (2020)

Targeting the human microbiome and its metabolite TMAO in cardiovascular prevention and therapy.

Pharmacology & therapeutics pii:S0163-7258(20)30112-1 [Epub ahead of print].

The human gut microbiota is the most important active part of the intestinal micro-ecosystem. Lifestyle modification, drug intake and nutrition have an impact on the composition of the gut microbiota and its metabolites. This review focuses on the effects of changes in the gut microbiota as well as the important metabolite Trimethylamine-N-oxide (TMAO). Furthermore, relevant therapeutic options to target the human microbiome in patients with cardiovascular disease are presented.

RevDate: 2020-06-17

Ang QY, Alexander M, Newman JC, et al (2020)

Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells.

Cell, 181(6):1263-1275.e16.

Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.

RevDate: 2020-05-23

Ma ZS (2020)

Assessing and Interpreting the Metagenome Heterogeneity With Power Law.

Frontiers in microbiology, 11:648.

There are two major sequencing technologies for investigating the microbiome: the amplicon sequencing that generates the OTU (operational taxonomic unit) tables of marker genes (e.g., bacterial 16S-rRNA), and the metagenomic shotgun sequencing that generates metagenomic gene abundance (MGA) tables. The OTU table is the counterpart of species abundance tables in macrobial ecology of plants and animals, and has been the target of numerous ecological and network analyses in recent gold rush for microbiome research and in great efforts for establishing an inclusive theoretical ecology. Nevertheless, MGA analyses have been largely limited to bioinformatics pipelines and ad hoc statistical methods, and systematic approaches to MGAs guided by classic ecological theories are still few. Here, we argue that, the difference between "gene kinds" and "gene species" are nominal, and the metagenome that a microbiota carries is essentially a 'community' of metagenomic genes (MGs). Each row of a MGA table represents a metagenome of a microbiota, and the whole MGA table represents a 'meta-metagenome' (or an assemblage of metagenomes) of N microbiotas (microbiome samples). Consequently, the same ecological/network analyses used in OTU analyses should be equally applicable to MGA tables. Here we choose to analyze the heterogeneity of metagenome by introducing classic Taylor's power law (TPL) and its recent extensions in community ecology. Heterogeneity is a fundamental property of metagenome, particularly in the context of human microbiomes. Recent studies have shown that the heterogeneity of human metagenomes is far more significant than that of human genomes. Therefore, without deep understanding of the human metagenome heterogeneity, personalized medicine of the human microbiome-associated diseases is hardly feasible. The TPL extensions have been successfully applied to measure the heterogeneity of human microbiome based on amplicon-sequencing reads of marker genes (e.g., 16s-rRNA). In this article, we demonstrate the analysis of the metagenomic heterogeneity of human gut microbiome at whole metagenome scale (with type-I power law extension) and metagenomic gene scale (type-III), as well as the heterogeneity of gene clusters, respectively. We further examine the influences of obesity, IBD and diabetes on the heterogeneity, which is of important ramifications for the diagnosis and treatment of human microbiome-associated diseases.

RevDate: 2020-05-23

Sewall JM, Oliver A, Denaro K, et al (2020)

Fiber Force: A Fiber Diet Intervention in an Advanced Course-Based Undergraduate Research Experience (CURE) Course.

Journal of microbiology & biology education, 21(1):.

Course-based undergraduate research experiences (CUREs) are an effective way to introduce students to contemporary scientific research. Research experiences have been shown to promote critical thinking, improve understanding and proper use of the scientific method, and help students learn practical skills including writing and oral communication. We aimed to improve scientific training by engaging students enrolled in an upper division elective course in a human microbiome CURE. The "Fiber Force" course is aimed at studying the effect of a wholesome high-fiber diet (40 to 50 g/day for two weeks) on the students' gut microbiomes. Enrolled students participated in a noninvasive diet intervention, designed health surveys, tested hypotheses on the effect of a diet intervention on the gut microbiome, and analyzed their own samples (as anonymized aggregates). The course involved learning laboratory techniques (e.g., DNA extraction, PCR, and 16S sequencing) and the incorporation of computational techniques to analyze microbiome data with QIIME2 and within the R software environment. In addition, the learning objectives focused on effective student performance in writing, data analysis, and oral communication. Enrolled students showed high performance grades on writing, data analysis and oral communication assignments. Pre- and post-course surveys indicate that the students found the experience favorable, increased their interest in science, and heightened awareness of their diet habits. Fiber Force constitutes a validated case of a research experience on microbiology with the capacity to improve research training and promote healthy dietary habits.

RevDate: 2020-05-20

Gosens R, Hiemstra PS, Adcock IM, et al (2020)

Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease.

The European respiratory journal pii:13993003.02320-2019 [Epub ahead of print].

Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over the recent decades, the development of novel and effective therapeutic approaches has been slow. There is however new and increasing evidence that communities of microorganisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community.

RevDate: 2020-06-19

Spruit CM, Wicklund A, Wan X, et al (2020)

Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01.

Viruses, 12(5):.

The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.

RevDate: 2020-05-22

Herman RA (2020)

Increasing allergy: are antibiotics the elephant in the room?.

Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology, 16:35.

Antibiotics cause dramatic changes to the human microbiome. The composition of the microbiome has been associated with changes in the immune system and these changes are beginning to be linked to immune diseases. Thus, antibiotics have been implicated as a significant contributor to the continual rise of allergies and autoimmune disease in developed countries. This recognition will hopefully result in the development of post-antibiotic therapies that restore a healthy microbiome and reduce immune system disorders.

RevDate: 2020-06-20

Chipollini J, Wright JR, Nwanosike H, et al (2020)

Characterization of urinary microbiome in patients with bladder cancer: Results from a single-institution, feasibility study.

Urologic oncology, 38(7):615-621.

OBJECTIVES: The human microbiome has been linked to the development of several malignancies, but there is scarcity of data on the microbiome of bladder cancer patients. In this study, we analyzed microbial composition and diversity among patients with and without bladder cancer.

MATERIAL AND METHODS: Samples were collected from 38 urothelial carcinoma (UC) patients and 10 noncancer controls from August 2018 to May 2019. DNA was extracted and processed for 16 S ribosomal RNA sequencing. Alpha diversity community characteristics including evenness and richness as well as beta diversity metrics were obtained. Linear discriminant analysis effect size was used to identify microbial components whose sequences were more abundant. Pairwise statistics provided quantitative assessment of significant distributions among groups.

RESULTS: Thirty seven total samples contained high quality sequence data for subsequent analyses and divided into 3 cohorts: control (n = 10), muscle-invasive (n = 15) and superficial UC (n = 12). Control samples had significantly higher species evenness when compared to invasive (P = 0.031) and superficial tumors (P = 0.002). In addition, higher species richness was observed in noncancer versus cancer samples (Faith phylogenetic diversity, P < 0.05). Significantly enriched taxa were found in both control (Bacteroides, Lachnoclostridium, Burkholderiaceae) and cancer samples (Bacteroides and Faecalbacterium).

CONCLUSION: Significantly decreased microbial community diversity was seen in the urine of patients with bladder cancer when compared to a noncancer group. Distinct taxa were noted suggesting unique microbial communities in the urine of bladder cancer patients.

RevDate: 2020-05-18

Pinto D, Calabrese FM, De Angelis M, et al (2020)

Predictive Metagenomic Profiling, Urine Metabolomics, and Human Marker Gene Expression as an Integrated Approach to Study Alopecia Areata.

Frontiers in cellular and infection microbiology, 10:146.

Involvement of the microbiome in many different scalp conditions has been investigated over the years. Studies on the role of the scalp microbiome in specific diseases, such as those involving hair growth alterations like non-cicatricial [androgenetic alopecia (AGA), alopecia areata (AA)] and cicatricial alopecia lichen planopilaris, are of major importance. In the present work, we highlighted the differences in microbial populations inhabiting the scalp of AA subjects and a healthy sample cohort by using an integrated approach relying on metagenomic targeted 16S sequencing analysis, urine metabolomics, and human marker gene expression. Significant differences in genera abundances (p < 0.05) were found in the hypodermis and especially the dermis layer. Based on 16S sequencing data, we explored the differences in predicted KEGG pathways and identified some significant differences in predicted pathways related to the AA pathologic condition such as flagellar, assembly, bacterial chemotaxis, mineral absorption, ABC transporters, cellular antigens, glycosaminoglycan degradation, lysosome, sphingolipid metabolism, cell division, protein digestion and absorption, and energy metabolism. All predicted pathways were significantly enhanced in AA samples compared to expression in healthy samples, with the exceptions of mineral absorption, and ABC transporters. We also determined the expression of TNF-α, FAS, KCNA3, NOD-2, and SOD-2 genes and explored the relationships between human gene expression levels and microbiome composition by Pearson's correlation analysis; here, significant correlations both positive (SOD vs. Staphylococcus, Candidatus Aquiluna) and negative (FAS and SOD2 vs. Anaerococcus, Neisseria, and Acinetobacter) were highlighted. Finally, we inspected volatile organic metabolite profiles in urinary samples and detected statistically significant differences (menthol, methanethiol, dihydrodehydro-beta-ionone, 2,5-dimethylfuran, 1,2,3,4, tetrahydro-1,5,7-trimethylnapthalene) when comparing AA and healthy subject groups. This multiple comparison approach highlighted potential traits associated with AA and their relationship with the microbiota inhabiting the scalp, opening up novel therapeutic interventions in such kind of hair growth disorders mainly by means of prebiotics, probiotics, and postbiotics.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )