picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
26 Jun 2019 at 01:34
HITS:
10635
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jun 2019 at 01:34 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: "microbial ecology" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-06-24

Forger LV, Woolf MS, Simmons TL, et al (2019)

A eukaryotic community succession based method for postmortem interval (PMI) estimation of decomposing porcine remains.

Forensic science international, 302:109838 pii:S0379-0738(19)30246-4 [Epub ahead of print].

Recent, short-term studies on porcine and human models (albeit with few replicates) demonstrated that the succession of the microbial community of remains may be used to estimate time since death. Using a porcine model (N=6) over an extended period of time (1703 ADD, or two months), this study characterized the eukaryote community of decomposing remains. Skin microbial samples were collected from the torso of each set of remains every day during the first week, on alternate days during the second week, and once a week for the remainder of the 60-day period; all collection intervals were recorded in accumulated degree days (ADD). The eukaryote community of each sample was determined using 18S ribosomal DNA (rDNA) MiSeq high throughput sequencing; data were analyzed in the Mothur pipeline (v1.39.5) and in IBM SPSS and R statistical packages. The relative abundance of eukaryote taxa across ADD/Days and an Analysis of Molecular Variance (AMOVA) indicated similarities between sequential ADD/Days, but significant differences in the eukaryote communities as broad stage 'milestones' of decomposition were reached. Fresh remains (0-57 ADD/0-2 Days; exhibiting a total body score (TBS) of 0-10) were characterized by the combined presence of Saccharomycetaceae, Debaryomycetaceae, Trichosporonaceae, Rhabditida, and Trichostomatia. During bloat and active decay (87-209 ADD/3-7 Days; exhibiting TBS of 11-20), Diptera was the most abundant eukaryotic taxa. During advanced decay stage (267-448 ADD/9-15 Days; exhibiting TBS of 21-25), Rhabditida was the most dominant eukaryote. Dry/skeletal remains (734-1703 ADD/26-61 Days; TBS≥26) were dominated by fungal families Dipodascaceae, Debaryomycetaceae, Trichosporonaceae, and Sporidiobolaceae. Using the family-level eukaryote taxonomic data for the entire study, random forest modelling explained 89.58% of the variation in ADD/Days, with a root mean square error (RMSE) of 177.55 ADD (≈6 days). Overall, these results highlight the importance of the microbial eukaryote community during the process of decomposition and in estimation of PMI.

RevDate: 2019-06-24

Zealand AM, Mei R, Roskilly AP, et al (2019)

Molecular microbial ecology of stable versus failing rice straw anaerobic digesters.

Microbial biotechnology [Epub ahead of print].

Waste rice straw (RS) is generated in massive quantities around the world and is often burned, creating greenhouse gas and air quality problems. Anaerobic digestion (AD) may be a better option for RS management, but RS is presumed to be comparatively refractory under anaerobic conditions without pre-treatment or co-substrates. However, this presumption assumes frequent reactor feeding regimes but less frequent feeding may be better for RS due to slow hydrolysis rates. Here, we assess how feeding frequency (FF) and organic loading rate (OLR) impacts microbial communities and biogas production in RS AD reactors. Using 16S rDNA amplicon sequencing and bioinformatics, microbial communities from five bench-scale bioreactors were characterized. At low OLR (1.0 g VS l-1 day-1), infrequently fed units (once every 21 days) had higher specific biogas yields than more frequent feeding (five in 7 days), although microbial community diversities were statistically similar (P > 0.05; ANOVA with Tukey comparison). In contrast, an increase in OLR to 2.0 g VS l-1 day-1 significantly changed Archaeal and fermenting Eubacterial sub-communities and the least frequency fed reactors failed. 'Stable' reactors were dominated by Methanobacterium, Methanosarcina and diverse Bacteroidetes, whereas 'failed' reactors saw shifts towards Clostridia and Christensenellaceae among fermenters and reduced methanogen abundances. Overall, OLR impacted RS AD microbial communities more than FF. However, combining infrequent feeding and lower OLRs may be better for RS AD because of higher specific yields.

RevDate: 2019-06-24

Zhong X, Xu G, Min GS, et al (2019)

Can tidal events influence monitoring surveys using periphytic ciliates based on biological trait analysis in marine ecosystems?.

Marine pollution bulletin, 142:452-456.

To identify the influence of tidal events on community functioning of periphytic ciliates for monitoring program and community research using biological trait analysis, a 3-month baseline survey was conducted in Korean coastal waters using the polyurethane foam enveloped slide system (PFES) and conventional slide system (CS). Although the periphytic ciliate communities had similar biological trait categories, they represented considerable differences in community functioning and functional diversity measures within the PFES and CS systems. Multivariate analyses revealed different ways of the temporal shift in community functioning of the ciliates in both systems. The dispersion analysis demonstrated that the CS system was sensitive to the strong disturbance of tidal current and circulation compared to the PFES system. These findings suggest that the strong tidal event may significantly influence the output of analysis on community functioning of periphytic ciliates for bioassessment in marine ecosystems.

RevDate: 2019-06-23

Souza FFC, Rissi DV, Pedrosa FO, et al (2019)

Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest.

The Science of the total environment, 688:83-86 pii:S0048-9697(19)32791-3 [Epub ahead of print].

Biological aerosols (bioaerosol) are atmospheric particles that act as a dispersion unit of living organisms across the globe thereby affecting the biogeographic distribution of organisms. Despite their importance, there is virtually no knowledge about bioaerosols emitted by pristine forests. Here we provide the very first survey of the prokaryotic community of a bioaerosol collected inside pristine Amazon forest at 2 m above ground. Total atmospheric particles were collected at the Amazon Tall Tower Observatory, subjected to metagenomic DNA extraction and the prokaryotic diversity was determined by 16S rRNA gene amplicon sequencing. A total of 271,577 reads of 250 bp of the 16S rRNA gene amplicon were obtained. Only 27% of the reads could be classified using the 16S SILVA database. Most belonged to Proteobacteria, Actinobacteria and Firmicutes which is in good agreement with other bioaerosol studies. Further inspection of the reads using Blast searches and the 18S SILVA database revealed that most of the dataset was composed of Fungi sequences. The identified microbes suggest that the atmosphere may act as an important gateway to interchange bacteria between plants, soil and water ecosystems.

RevDate: 2019-06-23

Boyle MA, Kearney A, Carling P, et al (2019)

'Off the Rails': Hospital bed rail design, contamination, and the evaluation of their microbial ecology.

The Journal of hospital infection pii:S0195-6701(19)30266-X [Epub ahead of print].

Microbial contamination of the near-patient environment is an acknowledged reservoir for nosocomial pathogens. The hospital bed and specifically bed rails have been shown to be frequently and heavily contaminated in observational and interventional studies. While the complexity of bedrail design has evolved over the years, the microbial contamination of these surfaces has been incompletely evaluated. In many published studies, key design variables are not described, compromising the extrapolation of results to other settings. This report reviews the evolving structure of hospital beds and bed rails, the possible impact of different design elements on microbial contamination and their role in pathogen transmission. Our findings support the need for clearly defined standardized assessment protocols to accurately assess bedrail and similar patient zone surfaces levels of contamination, as part of environmental hygiene investigations.

RevDate: 2019-06-22

Jung MY, Gwak JH, Rohe L, et al (2019)

Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon.

The ISME journal pii:10.1038/s41396-019-0460-6 [Epub ahead of print].

Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas europaea). For all three strains acidification led to increased emission of N2O. However, changes of 15N site preference (SP) values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer. Unexpectedly, for N. oleophilus more than 50% of the N2O produced at pH 5.5 had both nitrogen atoms from nitrite and we demonstrated that under these conditions expression of a putative cytochrome P450 NO reductase is strongly upregulated. Collectively, our results indicate that N. oleophilus might be able to enzymatically denitrify nitrite to N2O at low pH.

RevDate: 2019-06-22

Webster TM, N Fierer (2019)

Microbial dynamics of biosand filters and contributions of the microbial food web to effective treatment of wastewater-impacted water sources.

Applied and environmental microbiology pii:AEM.01142-19 [Epub ahead of print].

Biosand filtration systems are widely used for drinking water treatment, from household-level, intermittently-operated filters to large-scale continuous municipal systems. While it is well-established that microbial activity within the filter is essential for the removal of potential pathogens and other contaminants, the microbial ecology of these systems and how microbial succession relates to their performance remain poorly resolved. We determined how different source waters influence the composition, temporal dynamics, and performance of microbial communities in intermittently-operated biosand filters. We operated lab-scale biosand filters, adding daily inputs from two contrasting water sources with differing nutrient concentrations, and found that total coliform removal increased and became less variable after four weeks, regardless of water source. Total effluent biomass was also lower than influent for both water sources. Bacterial community composition, assessed via cultivation-independent DNA sequencing, varied by water source, sample type (influent, effluent, or sand), and time. Despite these differences, we identified specific taxa that were consistently removed, including common aquatic and wastewater bacteria. In contrast, taxa consistently more abundant in the sand and effluent included predatory, intracellular, and symbiotic bacteria.IMPORTANCEAlthough microbial activities are known to contribute to the effectiveness of biosand filtration for drinking water treatment, we have a limited understanding of what microbial groups are most effectively removed, colonize the sand, or make it through the filter. This study tracked the microbial communities in the influent, sand, and effluent of lab-scale, intermittently-operated biosand filters over 8 weeks. These results represent the most detailed and time-resolved investigation of the microbial communities in biosand filters typical of those implemented at the household level in many developing countries. We show the importance of the microbial food web in biosand filtration and we identified taxa that are preferentially removed from wastewater-impacted water sources. We found consistent patterns in filter effectiveness from source waters with differing nutrient loads and, likewise, identified specific bacterial taxa that were consistently more abundant in effluent waters, taxa that are important targets for further study and post-treatment.

RevDate: 2019-06-21

Wang S, Zheng X, Xia H, et al (2019)

Archaeal community variation in the Qinhuangdao coastal aquaculture zone revealed by high-throughput sequencing.

PloS one, 14(6):e0218611 pii:PONE-D-19-09143.

The differences in archaeal diversity and community composition in the sediments and waters of the Qinhuangdao coastal aquaculture zone were investigated. Furthermore, the associations between dominant archaeal taxa with geographic and environmental variables were evaluated. High-throughput sequencing of archaeal 16S rRNA genes yielded a total of 176,211 quality-filtered reads and 1,178 operational taxonomic units (OTUs) overall. The most abundant phylum and class among all communities were Thaumarchaeota and Nitrososphaeria, respectively. Beta diversity analysis indicated that community composition was divided into two groups according to the habitat type (i.e., sediments or waters). Only 9.8% OTUs were shared by communities from the two habitats, while 73.9% and 16.3% of the OTUs were unique to sediment or water communities, respectively. Furthermore, the relative abundances of the dominant OTUs differed with habitat type. Investigations of relationships between dominant OTUs and environmental variables indicated that some dominant OTUs were more sensitive to variation in environmental factors, which could be due to individual taxonomic differences in lifestyles and biological processes. Overall, the investigation of archaeal community variation within the Qinhuangdao coastal aquaculture zone provides an important baseline understanding of the microbial ecology in this important ecosystem.

RevDate: 2019-06-21

Brehony C, McGrath E, Brennan W, et al (2019)

An MLST approach to support tracking of plasmids carrying OXA-48-like carbapenemase.

The Journal of antimicrobial chemotherapy, 74(7):1856-1862.

OBJECTIVES: The prevalence of infections caused by OXA-48-like carbapenemase-producing organisms in Ireland has increased dramatically since 2011 and is an urgent public health issue. Genome-based high-resolution genotyping was used to analyse clinical isolates submitted to the Irish Carbapenemase-Producing Enterobacteriaceae Reference Laboratory Service for a 13 month period (2016-17).

METHODS: A total of 109 OXA-48-producing non-duplicate clinical isolates from 16 submitting centres were sequenced. Using a gene-by-gene approach, isolate genomes were characterized by MLST and core genome MLST, and the presence of antimicrobial resistance determinants was determined. Reference mapping and a novel plasmid MLST-type approach was applied to determine plasmid background.

RESULTS: The OXA-48-like-producing isolates were Escherichia coli (n = 56), Klebsiella spp. (n = 46) and Enterobacter cloacae (n = 7). Amongst the E. coli isolates there were 37 different STs and amongst the Klebsiella spp. isolates there were 27 different STs. blaOXA-48 was present in 105/109 (96.3%) of isolates. Based on mapping analysis and detection of the pOXA-48 IncL-type plasmid replicon and backbone genes, a pOXA-48-like plasmid was identified in 93/109 isolates (85.3%). The remaining isolates (n = 16; 14.7%) harboured blaOXA-48-like genes in unknown environments. Using a gene-by-gene approach two pOXA-48-like plasmid groups with 2/71 pOXA-48-like locus differences between them were identified.

CONCLUSIONS: In Ireland we found a diversity of genotypes associated with OXA-48-like-producing clinical isolates with the IncL pOXA-48 plasmid type predominating as the blaOXA-48 genetic environment. A plasmid MLST approach can rapidly identify plasmids associated with outbreaks and monitor spread of types temporally and geographically.

RevDate: 2019-06-21

Otieno D, Pei Y, Gu I, et al (2019)

Effect of Quercetin on Non-shivering Thermogenesis and Intestinal Microbial Populations (P06-037-19).

Current developments in nutrition, 3(Suppl 1): pii:nzz031.P06-037-19.

Objectives: Activation of non-shivering thermogenesis in adipose tissues and alteration in intestinal microbiome have been linked with improved obese condition. With emerging evidences of dietary compounds to prevent obesity, the objective of this study was to examine whether quercetin activates non-shivering thermogenesis in adipose tissues and influences intestinal microbiome, which eventually improves obese condition.

Methods: Four-week-old C57BL/6 male mice were fed either a low-fat diet (LFD) or a high-fat diet (HFD) with or without 1% quercetin (Q) for 16 weeks. On the completion of the feeding study, brown adipose tissue (BAT), white adipose tissue (WAT), and cecum were collected. Total RNA was extracted from BAT and WAT, and then cDNA was synthesized. The expression of genes that are involved in the regulation of non-shivering thermogenesis such as uncoupling protein 1 (ucp1), cell death-inducing DFFA-like effector A (cidea), peroxisome proliferator-activated receptor gamma (pparγ), pparγ-coactivator 1 alpha (pgc1α), fibroblast growth factor 21 (fgf21), positive regulatory domain containing 16 (prdm16), and T-box protein 1 (tbx1) were determined by a real-time PCR. The expression of the proteins such as UCP1 and AMP-activated protein kinase (AMPK) was assessed by western blot analysis. Microbial populations in cecum were analyzed via the Illumnia MiSeq sequencing platform and QIIME (Quantitative Insights Into Microbial Ecology) Software.

Results: Mice fed HFDQ showed reduced body weight and retroperitoneal (R) WAT weight compared to mice fed HFD. Quercetin supplementation increased the expression of ucp1, prdm16, pgc1α, cidea, and tbx1 genes in BAT and RWAT of mice fed HFD. The expression of UCP1 protein and phosphorylation of AMPK were increased. However, browning effect was not observed in other WATs. Mice fed LFDQ and HFDQ exhibited higher relative abundance of Bacteroidetes than mice fed LFD and HFD whereas the relative abundance of Firmicutes was decreased.

Conclusions: Quercetin may be a potential dietary compound that increases energy metabolism by activating BAT and attracting beige adipocytes in RWAT. In addition, quercetin-induced energy metabolism may have a correlation with changes of microbial populations in intestine.

Funding Sources: The work was supported by USDA.

RevDate: 2019-06-21

Hammerbacher A, Coutinho TA, J Gershenzon (2019)

Roles of plant volatiles in defense against microbial pathogens and microbial exploitation of volatiles.

Plant, cell & environment [Epub ahead of print].

Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen-containing compounds, fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate and methyl salicylate. Given the general anti-microbial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defense against pathogens without much solid evidence. In this review we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighboring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions that stimulate immune responses that make plants more susceptible to infection. Although much more is known on plant volatile-herbivore interactions, knowledge of volatile-microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant-herbivore interactions.

RevDate: 2019-06-20

Trifi H, Najjari A, Achouak W, et al (2019)

Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: Insights for bioremediation.

Genomics pii:S0888-7543(19)30022-9 [Epub ahead of print].

Phosphogypsum (PG) is an acidic by-product from the phosphate fertilizer industry and it is characterized by a low nutrient availability and the presence of radionuclides and heavy metals which pose a serious problem in its management. Here, we have applied Illumina MiSeq sequencing technology and five bioinformatics pipelines to explore the phylogenetic communities in Tunisian PG. Taking One Codex as a reference method, we present the results of 16S-rDNA-gene-based metataxonomics abundances with four other alternative bioinformatics pipelines (MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST), mothur, MICrobial Community Analysis (MICCA) and Quantitative Insights into Microbial Ecology (QIIME)), when analyzing the Tunisian PG. Importantly, based on 16S rDNA datasets, the functional capabilities of microbial communities of PG were deciphered. They suggested the presence of PG autochthonous bacteria recoverable into (1) removal of radioactive elements and toxic heavy metals (2) promotion of plant growth (3) oxidation and (4) reduction of sulfate.

RevDate: 2019-06-20

Myer PR (2019)

Bovine Genome-Microbiome Interactions: Metagenomic Frontier for the Selection of Efficient Productivity in Cattle Systems.

mSystems, 4(3): pii:4/3/e00103-19.

The mutualistic, commensal, and parasitic microorganisms that reside in the rumen and lower gastrointestinal tract of cattle and other ruminants exert enormous influence over animal physiology and performance. Because these microbial communities are critical for host nutrient utilization and contribute to the metabolic capacity of the rumen, past research has aimed to define host-microbe symbioses in cattle by examining the rumen and lower gut microbiomes with respect to production phenotypes, such as feed efficiency. However, as the field of bovine gut microbial ecology progresses, multidisciplinary approaches must be employed, combining host genomics and other omics-based techniques to understand the complex host-microbe network. In this perspective, I discuss the direction of the field of bovine gut microbial ecology with regard to feed efficiency and explore how the grand challenge of such research will be to maintain host-efficient gut microbiomes in cattle production through manipulations of genome-microbiome interactions.

RevDate: 2019-06-20

Tedersoo L, S Anslan (2019)

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Environmental microbiology reports [Epub ahead of print].

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.

RevDate: 2019-06-20

Della Mónica IF, Godeas AM, JM Scervino (2019)

In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers.

Microbial ecology pii:10.1007/s00248-019-01396-6 [Epub ahead of print].

Phosphorus (P) is an essential nutrient with low bioavailability in soils for plant growth. The use of P solubilization fungi (PSF) has arisen as an eco-friendly strategy to increase this nutrient's bioavailability. The effect of PSF inoculation and its combination with P-transporting organisms (arbuscular mycorrhizal fungi, AMF) on plant growth has been previously studied. However, these studies did not evaluate the combined effect of PSF and AMF inoculation on plant growth, symbiosis, and soil quality. Therefore, the aim of this study is to assess the impact of PSF on the AMF-wheat symbiosis establishment and efficiency, considering the effect on plant growth and soil quality. We performed a greenhouse experiment with wheat under different treatments (+/-AMF: Rhizophagus irregularis; +/-PSF strains: Talaromyces flavus, T. helicus L7B, T. helicus N24, and T. diversus) and measured plant growth, AMF root colonization, symbiotic efficiency, and soil quality indicators. No interaction between PSF and R. irregularis was found in wheat growth, showcasing that their combination is not better than single inoculation. T. helicus strains did not interfere with the AMF-wheat symbiosis establishment, while T. diversus and T. flavus decreased it. The symbiotic efficiency was increased by T. flavus and T. helicus N24, and unchanged with T. helicus L7B and T. diversus inoculation. The soil quality indicators were higher with microbial co-inoculation, particularly the alkaline phosphatases parameter, showing the beneficial role of fungi in soil. This work highlights the importance of microbial interactions in the rhizosphere for crop sustainability and soil quality improvement, assessing the effects of PSF on AMF-wheat symbiosis.

RevDate: 2019-06-20

Fan Z, Lu S, Liu S, et al (2019)

Changes in Plant Rhizosphere Microbial Communities under Different Vegetation Restoration Patterns in Karst and Non-karst Ecosystems.

Scientific reports, 9(1):8761 pii:10.1038/s41598-019-44985-8.

Understanding how patterns of recovery and geological conditions affect microbial communities is important for determining the stability of karst ecosystems. Here, we investigated the diversity and composition of microorganisms in karst and non-karst environments under natural restoration and artificial rehabilitation conditions. The results showed no significant differences in soil microbial diversity, but the microbial communities associated with geological conditions and tree species differed significantly. Variation partitioning analysis (VPA) showed that a total of 77.3% of the variation in bacteria and a total of 69.3% of the variation in fungi could be explained by vegetation type and geological background. There were significant differences in six bacterial classes (Actinobacteria, Alphaproteobacteria, Ktedonobacteria, TK10, Gammaproteobacteria, and Anaerolineae) and nine fungal classes (Eurotiomycetes, Agaricomycetes, unclassified _p_Ascomycota, Sordariomycetes, Tremellomycetes, norank_k_Fungi, Pezizomycetes, Leotiomycetes and Archaeorhizomycetes) among the soils collected from six plots. A Spearman correlation heatmap showed that the microbial community was affected by the major soil properties. Principal coordinates analysis indicated that the microbial community of Pinus yunnanensis in the artificial forest, which was established for the protection of the environment was most similar to that in the natural secondary forest in the karst ecosystem. These findings further our understanding of microbial responses to vegetation restoration and geological conditions.

RevDate: 2019-06-19

Hounmanou YMG, Mdegela RH, Dougnon TV, et al (2019)

Tilapia (Oreochromis niloticus) as a Putative Reservoir Host for Survival and Transmission of Vibrio cholerae O1 Biotype El Tor in the Aquatic Environment.

Frontiers in microbiology, 10:1215.

Studies have reported the occurrence of Vibrio cholerae in fish but little is known about the interaction between fish and toxigenic V. cholerae as opposed to phytoplankton, which are well-established aquatic reservoirs for V. cholerae. The present study determined the role of tilapia (Oreochromis niloticus) as a reservoir host for survival and transmission of V. cholerae in aquatic environments. Three experiments were performed with one repetition each, where O. niloticus (∼2 g) kept in beakers were inoculated with four V. cholerae strains (5 × 107 cfu/mL). Firstly, infected tilapia were kept in stagnant water and fed live brine shrimp (Artemia salina) larvae daily. Secondly, infected tilapia were kept without feeding and water was changed every 24 h. Thirdly, infected tilapia were fed and water was renewed daily. Infected tilapia and non-infected controls were sacrificed on days 1, 2, 3, 7, and 14 post-inoculation and V. cholerae were enumerated in intestinal content and water. Another experiment assessed the transmission of V. cholerae from infected to non-infected tilapia. The study revealed that El Tor biotype V. cholerae O1 and V. cholerae non-O1 colonized tilapia intestines and persisted at stable concentrations during the second week of the experiment whereas the Classical biotype was undetectable after 1 week. In stagnant water with feeding, V. cholerae counts dropped to 105 cfu/ml in water and from 107 to 104 cfu/intestine in fish after 14 days. When water was renewed, counts in water decreased from 107 to 103 cfu/ml and intestinal counts went from 106 to 102 cfu/intestine regardless of feeding. All strains were transmitted from infected to naïve fish after 24 h of cohabitation. Tilapia like other fish may play an essential role in the survival and dissemination of V. cholerae O1 in aquatic environments, e.g., the seventh pandemic strains mostly. In this study, tilapia were exposed to high concentrations of V. cholerae to ensure initial uptake and follow-up studies with lower doses resembling natural concentrations of V. cholerae in the aquatic environment are needed to confirm our findings.

RevDate: 2019-06-19

El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, et al (2019)

Propionate-Producing Consortium Restores Antibiotic-Induced Dysbiosis in a Dynamic in vitro Model of the Human Intestinal Microbial Ecosystem.

Frontiers in microbiology, 10:1206.

Metabolic syndrome is a growing public health concern. Efforts at searching for links with the gut microbiome have revealed that propionate is a major fermentation product in the gut with several health benefits toward energy homeostasis. For instance, propionate stimulates satiety-inducing hormones, leading to lower energy intake and reducing weight gain and associated risk factors. In (disease) scenarios where microbial dysbiosis is apparent, gut microbial production of propionate may be decreased. Here, we investigated the effect of a propionogenic bacterial consortium composed of Lactobacillusplantarum, Bacteroidesthetaiotaomicron, Ruminococcusobeum, Coprococcuscatus, Bacteroidesvulgatus, Akkermansiamuciniphila, and Veillonellaparvula for its potential to restore in vitro propionate concentrations upon antibiotic-induced microbial dysbiosis. Using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME), we challenged the simulated colon microbiome with clindamycin. Addition of the propionogenic consortium resulted in successful colonization and subsequent restoration of propionate levels, while a positive effect on the mitochondrial membrane potential (ΔΨm) was observed in comparison with the controls. Our results support the development and application of next generation probiotics, which are composed of multiple bacterial strains with diverse functionality and phylogenetic background.

RevDate: 2019-06-19

Dai D, Wang T, Wu S, et al (2019)

Metabolic Dependencies Underlie Interaction Patterns of Gut Microbiota During Enteropathogenesis.

Frontiers in microbiology, 10:1205.

In recent decades, increasing evidence has strongly suggested that gut microbiota play an important role in many intestinal diseases including inflammatory bowel disease (IBD) and colorectal cancer (CRC). The composition of gut microbiota is thought to be largely shaped by interspecies competition for available resources and also by cooperative interactions. However, to what extent the changes could be attributed to external factors such as diet of choice and internal factors including mutual relationships among gut microbiota, respectively, are yet to be elucidated. Due to the advances of high-throughput sequencing technologies, flood of (meta)-genome sequence information and high-throughput biological data are available for gut microbiota and their association with intestinal diseases, making it easier to gain understanding of microbial physiology at the systems level. In addition, the newly developed genome-scale metabolic models that cover significant proportion of known gut microbes enable researchers to analyze and simulate the system-level metabolic response in response to different stimuli in the gut, providing deeper biological insights. Using metabolic interaction network based on pair-wise metabolic dependencies, we found the same interaction pattern in two IBD datasets and one CRC datasets. We report here for the first time that the growth of significantly enriched bacteria in IBD and CRC patients could be boosted by other bacteria including other significantly increased ones. Conversely, the growth of probiotics could be strongly inhibited from other species, including other probiotics. Therefore, it is very important to take the mutual interaction of probiotics into consideration when developing probiotics or "microbial based therapies." Together, our metabolic interaction network analysis can predict majority of the changes in terms of the changed directions in the gut microbiota during enteropathogenesis. Our results thus revealed unappreciated interaction patterns between species could underlie alterations in gut microbiota during enteropathogenesis, and between probiotics and other microbes. Our methods provided a new framework for studying interactions in gut microbiome and their roles in health and disease.

RevDate: 2019-06-19

You YA, Yoo JY, Kwon EJ, et al (2019)

Blood Microbial Communities During Pregnancy Are Associated With Preterm Birth.

Frontiers in microbiology, 10:1122.

Microbial infection of the placenta, amniotic fluid, vaginal canal, and oral cavity is known to significantly contribute to preterm birth (PTB). Although microbes can be translocated into the blood, little is known regarding the blood microbiota during pregnancy. To assess changes in the microbiome during pregnancy, blood samples were obtained 2 or 3 times during pregnancy from a cohort of 45 pregnant women enrolled between 2008 and 2010. To analyze the association with PTB, we conducted a case-control study involving 41 pregnant women upon admission for preterm labor and rupture of membrane (20 with term delivery; 21 with PTB). Bacterial diversity was assessed in number and composition between the first, second, and third trimesters in term delivered women according to 16S rRNA gene amplicon sequencing, and data were analyzed using Quantitative Insight Into Microbial Ecology (QIIME). Taxonomy was assigned using the GreenGenes 8.15.13 database. Dominant microorganisms at the phylum level in all pregnant women were identified as Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. However, the number and composition of bacteria in women with PTB differed from that in women with term delivery. Firmicutes and Bacteroidetes were more abundant in women with PTB than in women with term delivery, while Proteobacteria was less prevalent in women with PTB. At the genus level, Bacteroides, Lactobacillus, Sphingomonas, Fastidiosipila, Weissella, and Butyricicoccus were enriched in PTB samples. These observational results suggest that several taxa in the maternal blood microbiome are associated with PTB. Further studies are needed to confirm the composition of the blood microbiota in women with PTB. Additionally, the mechanism by which pathogenic microbes in maternal blood cause infection and PTB requires further analysis.

RevDate: 2019-06-17

Czechowska K, Lannigan J, Wang L, et al (2019)

Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2018 Conference Workshops.

Cytometry. Part A : the journal of the International Society for Analytical Cytology, 95(6):598-644.

RevDate: 2019-06-17

Yao R, Xu L, Lu G, et al (2019)

Evaluation of the Function of Wild Animal Gut Microbiomes Using Next-Generation Sequencing and Bioinformatics and its Relevance to Animal Conservation.

Evolutionary bioinformatics online, 15:1176934319848438 pii:10.1177_1176934319848438.

The relationship between animal conservation and the animal gut microbiome is a hot topic in current microbial ecology research. Our group has recently revealed that the occurrence of diverse combinations of gut microbial compositions and functions (metagenomics) in Père David's deer (Elaphurus davidianus) populations is likely to lead to increased evolutionary potential and resilience in response to environmental changes. Thus, considering the effects of diet on the gut microbiome and the importance of a stable gut microbial community to host health, we suggest that a transitional buffer period (with feeding on a regular diet and a diet from the translocation habitat) is needed before animal translocation. When the gut microbiome enters into relatively stable stages and adapts to the new diet from the translocation site, the time is suitable for translocation. Long-term monitoring of the gut microbiomes of translocated animals (by collecting fresh feces and carrying out next-generation sequencing) is still necessary after their translocation.

RevDate: 2019-06-17

Tian H, Hui M, Pan P, et al (2019)

Performance and microbial ecology of biofilms adhering on aerated membrane with distinctive conditions for the treatment of domestic sewage.

Environmental technology [Epub ahead of print].

When used to treat domestic wastewater, biofilms adhering to oxygen-permeable membranes are generally altered by environmental conditions. In this study, the effect of common conditions, including salinity, temperature, air-supplying pressure, flow velocity, influent COD, and NH4-N on the biofilm structure were determined. Principal component analysis revealed that archaeal community was more easily affected by the changing conditions than bacteria. The subsequent redundancy analysis showed that salinity had the most influence on bacteria, followed by temperature, influent COD, flow velocity, pressure, and influent NH4-N. In archaea, temperature had the highest effect, followed by flow velocity, salinity, influent NH4-N, pressure, and influent COD. The key bacterial class Anaerolineae was not easily influenced by the above conditions, but the population probably contributed to the nitrogen removal. Gammaproteobacteria was promoted significantly by influent NH4-N concentration, salinity, and pressure. Betaproteobacteria and Deltaproteobacteria were apparently inhibited by the high salinity and contributed to the organic compound degradation. Flow velocity primarily promoted the growth of Alphaproteobacteria. Candidatus Nitrososphaera had a higher tolerance for salinity but lower tolerance for influent NH4-N than Nitrosomonas. The former probably played a more crucial role in ammoxidation. Methanomethylovorans might disrupt nitrogen removal because it could consume the carbon source for denitrification.

RevDate: 2019-06-16

Wedel C, Wenning M, Dettling A, et al (2019)

Resistance of thermophilic spore formers isolated from milk and whey products towards cleaning-in-place conditions: Influence of pH, temperature and milk residues.

Food microbiology, 83:150-158.

The occurrence of thermophilic spore formers in dairy powders is a major concern for producers worldwide. This study aims to investigate the resistance of thermophilic endospores towards cleaning solutions typically used for cleaning-in-place in dairy manufacturing plants. From eleven tested strains, all were able to survive an alkaline treatment (NaOH) at 65 °C for 10 min (0.5%), whereas at concentrations of 2% eight strains withstood the treatment. Acid solutions were more sporicidal. At 0.5% of HNO3, only three strains survived the treatment. Milk impurities reduced the inactivation effect of the NaOH solutions towards thermophilic spore formers. For two selected strains, a detailed kinetic inactivation in NaOH and HNO3 solutions at different temperatures was performed and non-log-linear inactivation curves were observed. This study highlights the risk of reusing cleaning solutions in dairies.

RevDate: 2019-06-16

Soverini M, Turroni S, Biagi E, et al (2019)

HumanMycobiomeScan: a new bioinformatics tool for the characterization of the fungal fraction in metagenomic samples.

BMC genomics, 20(1):496 pii:10.1186/s12864-019-5883-y.

BACKGROUND: Modern metagenomic analysis of complex microbial communities produces large amounts of sequence data containing information on the microbiome in terms of bacterial, archaeal, viral and eukaryotic composition. The bioinformatics tools available are mainly devoted to profiling the bacterial and viral fractions and only a few software packages consider fungi. As the human fungal microbiome (human mycobiome) can play an important role in the onset and progression of diseases, a comprehensive description of host-microbiota interactions cannot ignore this component.

RESULTS: HumanMycobiomeScan is a bioinformatics tool for the taxonomic profiling of the mycobiome directly from raw data of next-generation sequencing. The tool uses hierarchical databases of fungi in order to unambiguously assign reads to fungal species more accurately and > 10,000 times faster than other comparable approaches. HumanMycobiomeScan was validated using in silico generated synthetic communities and then applied to metagenomic data, to characterize the intestinal fungal components in subjects adhering to different subsistence strategies.

CONCLUSIONS: Although blind to unknown species, HumanMycobiomeScan allows the characterization of the fungal fraction of complex microbial ecosystems with good performance in terms of sample denoising from reads belonging to other microorganisms. HumanMycobiomeScan is most appropriate for well-studied microbiomes, for which most of the fungal species have been fully sequenced. This released version is functionally implemented to work with human-associated microbiota samples. In combination with other microbial profiling tools, HumanMycobiomeScan is a frugal and efficient tool for comprehensive characterization of microbial ecosystems through shotgun metagenomics sequencing.

RevDate: 2019-06-15

Moisan K, Cordovez V, van de Zande EM, et al (2019)

Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects.

Oecologia pii:10.1007/s00442-019-04433-w [Epub ahead of print].

Plants are ubiquitously exposed to a wide diversity of (micro)organisms, including mutualists and antagonists. Prior to direct contact, plants can perceive microbial organic and inorganic volatile compounds (hereafter: volatiles) from a distance that, in turn, may affect plant development and resistance. To date, however, the specificity of plant responses to volatiles emitted by pathogenic and non-pathogenic fungi and the ecological consequences of such responses remain largely elusive. We investigated whether Arabidopsis thaliana plants can differentiate between volatiles of pathogenic and non-pathogenic soil-borne fungi. We profiled volatile organic compounds (VOCs) and measured CO2 emission of 11 fungi. We assessed the main effects of fungal volatiles on plant development and insect resistance. Despite distinct differences in VOC profiles between the pathogenic and non-pathogenic fungi, plants did not discriminate, based on plant phenotypic responses, between pathogenic and non-pathogenic fungi. Overall, plant growth was promoted and flowering was accelerated upon exposure to fungal volatiles, irrespectively of fungal CO2 emission levels. In addition, plants became significantly more susceptible to a generalist insect leaf-chewing herbivore upon exposure to the volatiles of some of the fungi, demonstrating that a prior fungal volatile exposure can negatively affect plant resistance. These data indicate that plant development and resistance can be modulated in response to exposure to fungal volatiles.

RevDate: 2019-06-15

Szafrański SP, Kilian M, Yang I, et al (2019)

Diversity patterns of bacteriophages infecting Aggregatibacter and Haemophilus species across clades and niches.

The ISME journal pii:10.1038/s41396-019-0450-8 [Epub ahead of print].

Aggregatibacter and Haemophilus species are relevant human commensals and opportunistic pathogens. Consequently, their bacteriophages may have significant impact on human microbial ecology and pathologies. Our aim was to reveal the prevalence and diversity of bacteriophages infecting Aggregatibacter and Haemophilus species that colonize the human body. Genome mining with comparative genomics, screening of clinical isolates, and profiling of metagenomes allowed characterization of 346 phages grouped in 52 clusters and 18 superclusters. Less than 10% of the identified phage clusters were represented by previously characterized phages. Prophage diversity patterns varied significantly for different phage types, host clades, and environmental niches. A more diverse phage community lysogenizes Haemophilus influenzae and Haemophilus parainfluenzae strains than Aggregatibacter actinomycetemcomitans and "Haemophilus ducreyi". Co-infections occurred more often in "H. ducreyi". Phages from Aggregatibacter actinomycetemcomitans preferably lysogenized strains of specific serotype. Prophage patterns shared by subspecies clades of different bacterial species suggest similar ecoevolutionary drivers. Changes in frequencies of DNA uptake signal sequences and guanine-cytosine content reflect phage-host long-term coevolution. Aggregatibacter and Haemophilus phages were prevalent at multiple oral sites. Together, these findings should help exploring the ecoevolutionary forces shaping virus-host interactions in the human microbiome. Putative lytic phages, especially phiKZ-like, may provide new therapeutic options.

RevDate: 2019-06-14

Giraffa G, Carminati D, E Neviani (1997)

Enterococci Isolated from Dairy Products: A Review of Risks and Potential Technological Use.

Journal of food protection, 60(6):732-738.

Enterococci are ubiquitous bacteria which frequently occur in large numbers in dairy and other food products. Although they share a number of biotechnological traits (e.g., bacteriocin production, probiotic characteristics, usefulness in dairy technology), there is no consensus on whether enterococci pose a threat as foodborne pathogens, The potential pathogenicity of lactic acid bacteria (LAB), including enterococci, in human clinical infections and their association with endocarditis have recently become a matter of controversy, in spite of the fact that foods containing enterococci have a long history of safe use. This article provides literature data available on microbial ecology, biochemical properties, production of anti- Listeria bacteriocins, and potential pathogenic traits of enterococci isolated from different dairy products.

RevDate: 2019-06-14

Hirano H, K Takemoto (2019)

Difficulty in inferring microbial community structure based on co-occurrence network approaches.

BMC bioinformatics, 20(1):329 pii:10.1186/s12859-019-2915-1.

BACKGROUND: Co-occurrence networks-ecological associations between sampled populations of microbial communities inferred from taxonomic composition data obtained from high-throughput sequencing techniques-are widely used in microbial ecology. Several co-occurrence network methods have been proposed. Co-occurrence network methods only infer ecological associations and are often used to discuss species interactions. However, validity of this application of co-occurrence network methods is currently debated. In particular, they simply evaluate using parametric statistical models, even though microbial compositions are determined through population dynamics.

RESULTS: We comprehensively evaluated the validity of common methods for inferring microbial ecological networks through realistic simulations. We evaluated how correctly nine widely used methods describe interaction patterns in ecological communities. Contrary to previous studies, the performance of the co-occurrence network methods on compositional data was almost equal to or less than that of classical methods (e.g., Pearson's correlation). The methods described the interaction patterns in dense and/or heterogeneous networks rather inadequately. Co-occurrence network performance also depended upon interaction types; specifically, the interaction patterns in competitive communities were relatively accurately predicted while those in predator-prey (parasitic) communities were relatively inadequately predicted.

CONCLUSIONS: Our findings indicated that co-occurrence network approaches may be insufficient in interpreting species interactions in microbiome studies. However, the results do not diminish the importance of these approaches. Rather, they highlight the need for further careful evaluation of the validity of these much-used methods and the development of more suitable methods for inferring microbial ecological networks.

RevDate: 2019-06-13

Johnson AJ, Vangay P, Al-Ghalith GA, et al (2019)

Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans.

Cell host & microbe, 25(6):789-802.e5.

Diet is a key determinant of human gut microbiome variation. However, the fine-scale relationships between daily food choices and human gut microbiome composition remain unexplored. Here, we used multivariate methods to integrate 24-h food records and fecal shotgun metagenomes from 34 healthy human subjects collected daily over 17 days. Microbiome composition depended on multiple days of dietary history and was more strongly associated with food choices than with conventional nutrient profiles, and daily microbial responses to diet were highly personalized. Data from two subjects consuming only meal replacement beverages suggest that a monotonous diet does not induce microbiome stability in humans, and instead, overall dietary diversity associates with microbiome stability. Our work provides key methodological insights for future diet-microbiome studies and suggests that food-based interventions seeking to modulate the gut microbiota may need to be tailored to the individual microbiome. Trial Registration: ClinicalTrials.gov: NCT03610477.

RevDate: 2019-06-13

Ali M, Wang Z, Salam KW, et al (2019)

Importance of Species Sorting and Immigration on the Bacterial Assembly of Different-Sized Aggregates in a Full-Scale Aerobic Granular Sludge Plant.

Environmental science & technology [Epub ahead of print].

In aerobic granular sludge (AGS) systems, different-sized microbial aggregates having different solids retention time (SRT) coexist in the same reactor compartment and are subjected to the same influent wastewater. Thus, the AGS system provides a unique ecosystem to study the importance of local (species sorting) and regional (immigration) processes in bacterial community assembly. The microbial communities of different-sized aggregates (flocs <0.2 mm, small granules (0.2-1.0 mm) and large granules >1.0 mm), influent wastewater, excess sludge and effluent of a full-scale AGS plant were characterized over a steady-state operation period of 6 months. Amplicon sequencing was integrated with mass balance to determine the SRT and net growth rate of operational taxonomic units (OTUs). We found strong evidence of species sorting as opposed to immigration, which was significantly higher at short SRT (i.e., flocs and small granules) than that at long SRT (large granules). Rare OTUs in wastewater belonging to putative functional groups responsible for nitrogen and phosphorus removal were progressively enriched with an increase in microbial aggregates size. In contrast, fecal- and sewage infrastructure-derived microbes progressively decreased in relative abundance with increase in microbial aggregate size. These findings highlight the importance of AGS as a unique model ecosystem to study fundamental microbial ecology concepts.

RevDate: 2019-06-13

Zhang B, Xu S, Xu W, et al (2019)

Leveraging Fecal Bacterial Survey Data to Predict Colorectal Tumors.

Frontiers in genetics, 10:447.

Colorectal cancer (CRC) ranks second in cancer-associated mortality and third in the incidence worldwide. Most of CRC follow adenoma-carcinoma sequence, and have more than 90% chance of survival if diagnosed at early stage. But the recommended screening by colonoscopy is invasive, expensive, and poorly adhered to. Recently, several studies reported that the fecal bacteria might provide non-invasive biomarkers for CRC and precancerous tumors. Therefore, we collected and uniformly re-analyzed these published fecal 16S rDNA sequencing datasets to verify the association and identify biomarkers to classify and predict colorectal tumors by random forest method. A total of 1674 samples (330 CRC, 357 advanced adenoma, 141 adenoma, and 846 control) from 7 studies were analyzed in this study. By random effects model and fixed effects model, we observed significant differences in alpha-diversity and beta-diversity between individuals with CRC and the normal colon, but not between adenoma and the normal. We identified various bacterial genera with significant odds ratios for colorectal tumors at different stages. Through building random forest model with 10-fold cross-validation as well as new test datasets, we classified individuals with CRC, advanced adenoma, adenoma and normal colon. All approaches obtained comparable performance at entire OTU level, entire genus level, and the common genus level as measured using AUC. When combined all samples, the AUC of random forest model based on 12 common genera reached 0.846 for CRC, although the predication performed poorly for advance adenoma and adenoma.

RevDate: 2019-06-13

Chronopoulou PM, Salonen I, Bird C, et al (2019)

Metabarcoding Insights Into the Trophic Behavior and Identity of Intertidal Benthic Foraminifera.

Frontiers in microbiology, 10:1169.

Foraminifera are ubiquitous marine protists with an important role in the benthic carbon cycle. However, morphological observations often fail to resolve their exact taxonomic placement and there is a lack of field studies on their particular trophic preferences. Here, we propose the application of metabarcoding as a tool for the elucidation of the in situ feeding behavior of benthic foraminifera, while also allowing the correct taxonomic assignment of the feeder, using the V9 region of the 18S (small subunit; SSU) rRNA gene. Living foraminiferal specimens were collected from two intertidal mudflats of the Wadden Sea and DNA was extracted from foraminiferal individuals and from the surrounding sediments. Molecular analysis allowed us to confirm that our foraminiferal specimens belong to three genetic types: Ammonia sp. T6, Elphidium sp. S5 and Haynesina sp. S16. Foraminiferal intracellular eukaryote communities reflected to an extent those of the surrounding sediments but at different relative abundances. Unlike sediment eukaryote communities, which were largely determined by the sampling site, foraminiferal intracellular eukaryote communities were driven by foraminiferal species, followed by sediment depth. Our data suggests that Ammonia sp. T6 can predate on metazoan classes, whereas Elphidium sp. S5 and Haynesina sp. S16 are more likely to ingest diatoms. These observations, alongside the use of metabarcoding in similar ecological studies, significantly contribute to our overall understanding of the ecological roles of these protists in intertidal benthic environments and their position and function in the benthic food webs.

RevDate: 2019-06-13

Bouslimani A, da Silva R, Kosciolek T, et al (2019)

The impact of skin care products on skin chemistry and microbiome dynamics.

BMC biology, 17(1):47 pii:10.1186/s12915-019-0660-6.

BACKGROUND: Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks.

RESULTS: Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5-1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics.

CONCLUSIONS: These findings may lead to next-generation precision beauty products and therapies for skin disorders.

RevDate: 2019-06-12

Saha M, Goecke F, P Bhadury (2018)

Correction to: Minireview: algal natural compounds and extracts as antifoulants.

Journal of applied phycology, 30(3):1875.

[This corrects the article DOI: 10.1007/s10811-017-1322-0.].

RevDate: 2019-06-12

Vissenaekens H, Grootaert C, Rajkovic A, et al (2019)

The response of five intestinal cell lines to anoxic conditions in vitro.

Biology of the cell [Epub ahead of print].

BACKGROUND INFORMATION: In vivo oxygen levels in tissues range from 1% to 15%, while, mechanistic cell culture studies employ an atmospheric oxygen level of 21% to grow cells. These oxygen concentrations are therefore not representative for conditions where the cell response is dependent on oxygen partial pressure. In pathological situation, such as (colon) cancer or chronic inflammation, tissue oxygenation is severely affected, and even under physiological conditions, a steep oxygen gradient is present in the large intestine, where epithelial cells co-exist with microbial species, resulting in almost anoxia at the midpoint of the lumen. In these situations, a better characterization of the essential cellular behavior under hypoxia or anoxia is required.

RESULTS: We have characterized the cellular response of commonly used cell cultures for the study of intestinal epithelial processes and colon cancer development (Caco-2, HT-29, SW480, HCT 116 and LoVo) under conventional normoxic conditions (21% O2) and in an anoxic (< 0.1% O2) environment generated in an anaerobic chamber. In general, anoxic conditions led to lower levels of oxidative stress, a reduction in GSH/GSSG ratio, the shift of the redox status to oxidized glutathione levels, reduced cell proliferation, decreased barrier function and higher glycolysis rates at the expense of oxidative respiration.

CONCLUSIONS: Continuous exposure to anoxic conditions, such as occurring at the host-microbe interface in the intestine, may create an adaptive metabolic cellular response of the cells.

SIGNIFICANCE: Considering adequate oxygen levels is essential for creating more physiologically relevant models for the study of host-microbe interactions and colon cancer development. This article is protected by copyright. All rights reserved.

RevDate: 2019-06-12

Johnke J, Fraune S, Bosch TCG, et al (2019)

Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups.

Microbial ecology pii:10.1007/s00248-019-01395-7 [Epub ahead of print].

Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.

RevDate: 2019-06-12

Pacheco AR, D Segrè (2019)

A multidimensional perspective on microbial interactions.

FEMS microbiology letters pii:5513995 [Epub ahead of print].

Beyond being simply positive or negative, beneficial or inhibitory, microbial interactions can involve a diverse set of mechanisms, dependencies, and dynamical properties. These more nuanced features have been described in great detail for some specific types of interactions, (e.g. pairwise metabolic cross-feeding, quorum sensing, or antibiotic killing), often with the use of quantitative measurements and insight derived from modeling. With a growing understanding of the composition and dynamics of complex microbial communities for human health and other applications, we face the challenge of integrating information about these different interactions into comprehensive quantitative frameworks. Here, we review literature on a wide set of microbial interactions, and explore the potential value of a formal categorization based on multidimensional vectors of attributes. We propose that such an encoding can facilitate systematic, direct comparisons of interaction mechanisms and dependencies, and we discuss the relevance of an atlas of interactions for future modeling and rational design efforts.

RevDate: 2019-06-12

Kehe J, Kulesa A, Ortiz A, et al (2019)

Massively parallel screening of synthetic microbial communities.

Proceedings of the National Academy of Sciences of the United States of America pii:1900102116 [Epub ahead of print].

Microbial communities have numerous potential applications in biotechnology, agriculture, and medicine. Nevertheless, the limited accuracy with which we can predict interspecies interactions and environmental dependencies hinders efforts to rationally engineer beneficial consortia. Empirical screening is a complementary approach wherein synthetic communities are combinatorially constructed and assayed in high throughput. However, assembling many combinations of microbes is logistically complex and difficult to achieve on a timescale commensurate with microbial growth. Here, we introduce the kChip, a droplets-based platform that performs rapid, massively parallel, bottom-up construction and screening of synthetic microbial communities. We first show that the kChip enables phenotypic characterization of microbes across environmental conditions. Next, in a screen of ∼100,000 multispecies communities comprising up to 19 soil isolates, we identified sets that promote the growth of the model plant symbiont Herbaspirillum frisingense in a manner robust to carbon source variation and the presence of additional species. Broadly, kChip screening can identify multispecies consortia possessing any optically assayable function, including facilitation of biocontrol agents, suppression of pathogens, degradation of recalcitrant substrates, and robustness of these functions to perturbation, with many applications across basic and applied microbial ecology.

RevDate: 2019-06-12

Biancalani T, J Gore (2019)

Disentangling bacterial invasiveness from lethality in an experimental host-pathogen system.

Molecular systems biology, 15(6):e8707.

Quantifying virulence remains a central problem in human health, pest control, disease ecology, and evolutionary biology. Bacterial virulence is typically quantified by the LT50 (i.e., the time taken to kill 50% of infected hosts); however, such an indicator cannot account for the full complexity of the infection process, such as distinguishing between the pathogen's ability to colonize versus kill the hosts. Indeed, the pathogen needs to breach the primary defenses in order to colonize, find a suitable environment to replicate, and finally express the virulence factors that cause disease. Here, we show that two virulence attributes, namely pathogen lethality and invasiveness, can be disentangled from the survival curves of a laboratory population of Caenorhabditis elegans nematodes exposed to three bacterial pathogens: Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica We first show that the host population eventually experiences a constant mortality rate, which quantifies the lethality of the pathogen. We then show that the time necessary to reach this constant mortality rate regime depends on the pathogen growth rate and colonization rate, and thus determines the pathogen invasiveness. Our framework reveals that Serratia marcescens is particularly good at the initial colonization of the host, whereas Salmonella enterica is a poor colonizer yet just as lethal once established. Pseudomonas aeruginosa, on the other hand, is both a good colonizer and highly lethal after becoming established. The ability to quantitatively characterize the ability of different pathogens to perform each of these steps has implications for treatment and prevention of disease and for the evolution and ecology of pathogens.

RevDate: 2019-06-10

Welch JLM, Dewhirst FE, GG Borisy (2019)

Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis.

Annual review of microbiology [Epub ahead of print].

Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general. Expected final online publication date for the Annual Review of Microbiology Volume 73 is September 9, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2019-06-10

Berlanas C, Berbegal M, Elena G, et al (2019)

The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards.

Frontiers in microbiology, 10:1142.

The microbiota colonizing the rhizosphere and the endorhizosphere contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Several studies suggested that different plants types and even genotypes of the same plant species harbor partially different microbiomes. Here, we characterize the rhizosphere bacterial and fungal microbiota across five grapevine rootstock genotypes cultivated in the same soil at two vineyards and sampling dates over 2 years by 16S rRNA gene and ITS high-throughput amplicon sequencing. In addition, we use quantitative PCR (qPCR) approach to measure the relative abundance and dynamic changes of fungal pathogens associated with black-foot disease. The objectives were to (1) unravel the effects of rootstock genotype on microbial communities in the rhizosphere of grapevine and (2) to compare the relative abundances of sequence reads and DNA amount of black-foot disease pathogens. Host genetic control of the microbiome was evident in the rhizosphere of the mature vineyard. Microbiome composition also shifted as year of sampling, and fungal diversity varied with sampling moments. Linear discriminant analysis identified specific bacterial (i.e., Bacillus) and fungal (i.e., Glomus) taxa associated with grapevine rootstocks. Host genotype did not predict any summary metrics of rhizosphere α- and β-diversity in the young vineyard. Regarding black-foot associated pathogens, a significant correlation between sequencing reads and qPCR was observed. In conclusion, grapevine rootstock genotypes in the mature vineyard were associated with different rhizosphere microbiomes. The latter could also have been affected by age of the vineyard, soil properties or field management practices. A more comprehensive study is needed to decipher the cause of the rootstock microbiome selection and the mechanisms by which grapevines are able to shape their associated microbial community. Understanding the vast diversity of bacteria and fungi in the rhizosphere and the interactions between microbiota and grapevine will facilitate the development of future strategies for grapevine protection.

RevDate: 2019-06-09

Liu H, Wu M, Liu J, et al (2019)

Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.

Microbial ecology pii:10.1007/s00248-019-01394-8 [Epub ahead of print].

Grasses often establish multiple simultaneous symbiotic associations with endophytic fungi and arbuscular mycorrhizal fungi (AMF). Many studies have examined pair-wise interactions between plants and endophytic fungi or between plants and AMF, overlooking the interplays among multiple endosymbionts and their combined impacts on hosts. Here, we examined both the way in which each symbiont affects the other symbionts and the tripartite interactions between leaf endophytic fungi, AMF, and Leymus chinensis. As for AMF, different species (Glomus etunicatum, GE; Glomus mosseae, GM; Glomus claroideum, GC; and Glomus intraradices, GI) and AMF richness (no AMF, single AMF taxa, double AMF mixtures, triple AMF mixtures, and all four together) were considered. Our results showed that significant interactions were observed between endophytes and AMF, with endophytes interacting antagonistically with GM but synergistically with GI. No definitive interactions were observed between the endophytes and GE or GC. Additionally, the concentration of endophytes in the leaf sheath was positively correlated with the concentration of AMF in the roots under low AMF richness. The shoot biomass of L. chinensis was positively related to both endophyte concentration and AMF concentration, with only endophytes contributing to shoot biomass more than AMF. Endophytes and AMF increased shoot growth by contributing to phosphorus uptake. The interactive effects of endophytes and AMF on host growth were affected by the identity of AMF species. The beneficial effect of the endophytes decreased in response to GM but increased in response to GI. However, no influences were observed with other GC and GE. In addition, endophyte presence can alter the response of host plants to AMF richness. When leaf endophytes were absent, shoot biomass increased with higher AMF richness, only the influence of AMF species identity outweighed that of AMF richness. However, when leaf endophytes were present, no significant association was observed between AMF richness and shoot biomass. AMF species identity rather than AMF richness promoted shoot growth. The results of this study demonstrate that the outcomes of interspecific symbiotic interactions are very complex and vary with partner identity such that the effects of simultaneous symbioses cannot be generalized and highlight the need for studies to evaluate fitness response of all three species, as the interactive effects may not be the same for each partner.

RevDate: 2019-06-10

Patel R, Kunjadia P, Koringa P, et al (2019)

Microbiological profiles in clinical and subclinical cases of mastitis in milking Jafarabadi buffalo.

Research in veterinary science, 125:94-99 pii:S0034-5288(16)30245-4 [Epub ahead of print].

Mastitis is one of the important diseases affecting the dairy industry across the globe. Identification of bacterial pathogens associated with mastitis becomes essential in order to understand the etiology of disease which in turn will help to new strategies to control it. Microbial diversity analysis using pyrosequencing is widely studied for mastitis pathogens in dairy cows. However it is unexplored in case of buffalo. In the present study 16SrDNA gene pyrosequencing was used to characterize microbiota associated with clinical and subclinical mastitis in 28 Jafarabadi buffalo. The obtained sequencing data were analyzed by Quantitative Insights into Microbial Ecology (QIIME) and statistical analysis was done using Paleontological Statistics (PAST). Pyrosequencing produced 47.3 million base pairs reads. Phylogenetic profiles using ribosomal database revealed differences in abundance of Staphylococcus (25.95%, 10.09% and 0.03%), Enterococcus (10.80%, 8.72% and 0.36%), Escherichia (8.88%, 0.38% and 0.00%), Streptococcus (3.97%, 0.42% and 0.00%), Lactococcus (3.73%, 23.96% and 0.01%), and Ralstonia (0.54%, 12.72% and 0.00%), genera in clinical, subclinical and healthy samples, respectively. Different microbial profiles in clinical and subclinical mastitis in buffalo suggest the composition of bacteria in the milk is more diverse and complex hence single therapeutic regimes cannot be applied.

RevDate: 2019-06-07

Roodt D, Li Z, Van de Peer Y, et al (2019)

Loss of wood formation genes in monocot genomes.

Genome biology and evolution pii:5512348 [Epub ahead of print].

Woodiness (secondary xylem derived from vascular cambium) has been gained and lost multiple times in the angiosperms, but has been lost ancestrally in all monocots. Here, we investigate the conservation of genes involved in xylogenesis in fully sequenced angiosperm genomes, hypothesising that monocots have lost some essential orthologs involved in this process. We analysed the conservation of genes preferentially expressed in the developing secondary xylem of two eudicot trees in the sequenced genomes of 26 eudicot and seven monocot species, and the early-diverging angiosperm Amborella trichopoda. We also reconstructed a regulatory model of early vascular cambial cell identity and differentiation and investigated the conservation of orthologs across the angiosperms. Additionally, we analysed the genome of the aquatic seagrass Zostera marina for additional losses of genes otherwise essential to, especially, secondary cell wall formation. Despite almost complete conservation of orthology within the early cambial differentiation gene network, we show a clear pattern of loss of genes preferentially expressed in secondary xylem in the monocots that are highly conserved across eudicot species. Our study provides candidate genes that may have led to the loss of vascular cambium in the monocots, and, by comparing terrestrial angiosperms to an aquatic monocot, highlights genes essential to vasculature on land.

RevDate: 2019-06-07

Verspecht T, Rodriguez Herrero E, Khodaparast L, et al (2019)

Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro.

Scientific reports, 9(1):8326 pii:10.1038/s41598-019-44822-y.

There is evidence that pathogenic bacteria can adapt to antiseptics upon repeated exposure. More alarming is the concomitant increase in antibiotic resistance that has been described for some pathogens. Unfortunately, effects of adaptation and cross-adaptation are hardly known for oral pathogens, which are very frequently exposed to antiseptics. Therefore, this study aimed to determine the in vitro increase in minimum inhibitory concentrations (MICs) in oral pathogens after repeated exposure to chlorhexidine or cetylpyridinium chloride, to examine if (cross-)adaptation to antiseptics/antibiotics occurs, if (cross-)adaptation is reversible and what the potential underlying mechanisms are. When the pathogens were exposed to antiseptics, their MICs significantly increased. This increase was in general at least partially conserved after regrowth without antiseptics. Some of the adapted species also showed cross-adaptation, as shown by increased MICs of antibiotics and the other antiseptic. In most antiseptic-adapted bacteria, cell-surface hydrophobicity was increased and mass-spectrometry analysis revealed changes in expression of proteins involved in a wide range of functional domains. These in vitro data shows the adaptation and cross-adaptation of oral pathogens to antiseptics and antibiotics. This was related to changes in cell surface hydrophobicity and in expression of proteins involved in membrane transport, virulence, oxidative stress protection and metabolism.

RevDate: 2019-06-07

Raskin L, PH Nielsen (2019)

Editorial overview: Integrating biotechnology and microbial ecology in urban water infrastructure through a microbiome continuum viewpoint.

RevDate: 2019-06-06

Ghashghavi M, Belova SE, Bodelier PLE, et al (2019)

Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments.

mSphere, 4(3): pii:4/3/e00631-18.

Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.

RevDate: 2019-06-05

Weinroth MD, Britton BC, McCullough KR, et al (2019)

Ground beef microbiome changes with antimicrobial decontamination interventions and product storage.

PloS one, 14(6):e0217947 pii:PONE-D-19-06132.

Ground beef makes up more than half of the beef consumed in the U.S. market. Although numerous studies have been conducted on microbial safety and shelf life of ground beef limited work has been done using a culture-independent approach. While past studies have allowed for the evaluation of a few organisms of interest, there is limited work on the microbial community associated with fresh ground beef. In order to have a more complete picture of the microbial ecology of the product, a culture-independent approach utilizing 16S rRNA gene amplicon sequencing was used. The objectives of this study were to characterize the fresh ground beef microbiome and the effect that antimicrobial interventions and antioxidants, applied to beef trim before grinding, and product storage have on community composition using 16S rRNA gene amplicon sequencing. Beef trimmings were treated with antimicrobials and an antioxidant. Samples were ground, loafed, and overwrapped before being packaged in modified-atmosphere packaging. Samples were in dark storage for 21 days followed by five days in retail display. Periodically during storage, samples were collected for microbiological analysis and DNA isolation. Due to low microbial biomass, only 52 of 210 samples were included in the final analysis. These samples represented two antimicrobial treatments (peroxyacetic acid, and a sulfuric acid and sodium sulfate blend) and a control, from day-15 of dark storage and day-5 of retail display. As sample age increased, so did the number of raw reads (P < 0.001) and aerobic plate counts (P < 0.001), which were correlated (r = 0.94, P = 0.017). Across all samples, lactic acid bacteria were most abundant followed by Enterobacteriaceae; several rare taxa were also identified (namely Geobacillus, Thermus, and Sporosarcina). Antimicrobial treatment altered the bacterial alpha (P < 0.001) and beta (P = 0.001) diversity, while storage day altered alpha (P = 0.001) diversity. Enterobacteriaceae relative abundance differed (P < 0.05) among treatments and was highest in control samples. In addition to confirming previously described dominant microbial differences in culture-dependent results, these data identified genera not typically associated with ground beef and allowed for study of shifts in the entire microbiome and not just a subset of indicator organisms.

RevDate: 2019-06-05

Maaroufi NI, Nordin A, Palmqvist K, et al (2019)

Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity.

Global change biology [Epub ahead of print].

There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free-living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long-term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6 and 12 kg N ha-1 yr-1) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha-1 yr-1). Our data showed that long-term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Further, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤ 12 kg N ha-1 yr-1) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter. This article is protected by copyright. All rights reserved.

RevDate: 2019-06-05

Li Y, Guo Q, He F, et al (2019)

Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota.

Microbial ecology pii:10.1007/s00248-019-01388-6 [Epub ahead of print].

Soil Actinomycetes have been used as biocontrol agents against soil-borne plant diseases, yet little is known about their effects on the structure of the rhizosphere microbiota and the long-term effects on crop yield and disease intensity after the application of Actinomycetes is stopped. Here, we conducted 3-year plot experiments to investigate the roles of two Actinomycetes strains (Streptomyces pactum Act12 and Streptomyces rochei D74) in the biocontrol of soil-borne root diseases and growth promotion of monkhood (Aconitum carmichaelii). We also examined their long-term effects after soil application of a mixed Actinomycetes preparation (spore powder) was completed. High-throughput sequencing was used to analyze shifts in the rhizosphere microbiota. The antifungal activity and root colonization ability of the two Actinomycetes were also tested. Disease severity of southern blight and root rot decreased following application of the Actinomycetes preparation, whereas biomass yield of tubers increased compared with the control group. Significant effects of disease control and plant growth promotion were also observed after application was stopped. The Actinomycetes preparation induced marked increases in the abundance of beneficial microbes and decreases in the abundance of harmful microbes in rhizosphere soil. Adding cell-free culture filtrates of both strains Act12 and D74 inhibited the growth of fungal pathogens capable of causing southern blight (Sclerotium rolfsii) and root rot (Fusarium oxysporum) in A. carmichaelii. A GFP-labeled strain was used to show that D74 can colonize roots of A. carmichaelii. In conclusion, a preparation of two Actinomycetes plays a role in the biocontrol of root diseases and growth promotion of A. carmichaelii by inhibiting pathogen growth and shaping the rhizosphere microbiota.

RevDate: 2019-06-05

Kruger A (2019)

Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin.

Microbial ecology pii:10.1007/s00248-019-01387-7 [Epub ahead of print].

The cutaneous microbial community can influence the health of amphibians exposed to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that has contributed to recent amphibian declines. Resistance to Bd in amphibian populations is correlated with the presence of anti-Bd cutaneous microbes, which confer disease resistance by inhibiting Bd growth. I aimed to determine if green frogs (Lithobates clamitans), an abundant and widely distributed species in New Jersey, harbored bacteria that inhibit Bd and whether the presence and identity of these microbes varied among sites. I used in vitro challenge assays to determine if bacteria isolated from green frog skin could inhibit or enhance the growth of Bd. I found that green frogs at all sites harbored anti-Bd bacteria. However, there were differences in Bd inhibition capabilities among bacterial isolates identified as the same operational taxonomic unit (OTU), lending support to the idea that phylogenetic relatedness does not always predict Bd inhibition status. Additionally, anti-Bd bacterial richness did not vary by site, but the composition of anti-Bd bacterial taxa was distinct at each site. This suggests that there is functional redundancy of Bd inhibition across unique communities of anti-Bd symbionts found on frogs at different sites. These findings highlight the need to better elucidate the structure-function relationship of microbiomes and their role in disease resistance.

RevDate: 2019-06-10

Guarcello R, Gaglio R, Todaro A, et al (2019)

Insights Into the Cultivable Microbial Ecology of "Manna" Ash Products Extracted From Fraxinus angustifolia (Oleaceae) Trees in Sicily, Italy.

Frontiers in microbiology, 10:984.

Microbial communities characterizing a specific food matrix, generally, strongly contribute to both its composition, and properties for food applications. To our knowledge, this is the first study to investigate the cultivable microbial ecology of Sicilian "Manna" ash products in order to acquire new information on the hygienic quality, shelf-life and potential application of this traditional food. To this purpose, several manna samples belonging to different commercial categories were collected and subjected to the analysis of bacteria, yeasts, and filamentous fungi. Furthermore, an investigation of the sugar content and physicochemical parameters was performed. The results of our study followed the trend generally reported for other sugary foods. Conversely, as regards microbiological analyses, in the present study, the presence of microorganisms at high levels confirmed their survival in stressing conditions characterizing this food matrix in a viable and cultivable form. Most species were osmophilic, endophytic bacteria, antagonistic of fungi pathogen of plants. Yeasts were the most abundant microbial populations and a total of six species were identified: Candida aaseri, Candida lactis-condensi, Citeromyces matritensis, Lachancea thermotolerans, Saccharomyces cerevisiae, and Zygosaccharomyces bailii. Filamentous fungi included five genera, which were considered common contaminants of honey and of other foods due to their xerophilic characteristics. Interestingly, our results suggest that the strains of L. thermotolerans isolated in this study might be evaluated for their potential to act as starters either singly or in multi-combination for food applications.

RevDate: 2019-06-05

Bik HM (2019)

Microbial Metazoa Are Microbes Too.

mSystems, 4(3): pii:4/3/e00109-19.

Microbial metazoa inhabit a certain "Goldilocks zone," where conditions are just right for the continued ignorance of these taxa. These microscopic animal species have body sizes of <1 mm and include diverse groups such as nematodes, tardigrades, kinorhynchs, loriciferans, and platyhelminths. The majority of species are too large to be considered in single-cell genomics approaches, yet too small to be wrapped into international genome sequencing initiatives. Other microbial eukaryote groups (namely the fungal and protist communities) have gained significant momentum in recent years, driven by a strong community of researchers united behind a common goal of culturing and sequencing new representatives. However, due to historical factors and difficult taxonomy, persistent research silos still exist for most microbial metazoan groups, and public molecular databases remain sparsely populated. Here, I argue that small metazoa should be embraced as a key component of microbial ecology studies, promoting a holistic and cutting-edge view of natural ecosystems.

RevDate: 2019-06-04

Philip N, Leishman SJ, Bandara HMHN, et al (2019)

Casein Phosphopeptide-Amorphous Calcium Phosphate Attenuates Virulence and Modulates Microbial Ecology of Saliva-Derived Polymicrobial Biofilms.

Caries research pii:000499869 [Epub ahead of print].

BACKGROUND: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) acts as a salivary biomimetic that provides bioavailable calcium and phosphate ions to augment fluoride-mediated remineralisation of early caries lesions. However, there are indications that it may also have beneficial ecological effects on the oral microbiome.

OBJECTIVE: This in vitro study investigated whether CPP-ACP could influence microbial counts, acidogenicity, and the relative abundance of specific caries- and health-associated bacterial -species in polymicrobial biofilms.

METHODS: Saliva-derived polymicrobial biofilms were grown for 96 h in a cariogenic environment and treated every 12 h with 2% CPP-ACP or vehicle control. Colony forming units (CFUs) and acidogenicity were estimated from the treated biofilms. Microbial ecological effects of CPP-ACP were assessed based on the relative abundance of 14 specific caries- and health-associated -bacterial species using a real-time quantitative PCR assay. -Results: CPP-ACP-treated biofilms showed relatively modest, but significant, reductions in microbial CFUs (21% reduction, p = 0.008) and acidogenicity (33% reduction, p < 0.001), compared to the control-treated biofilms. The CPP-ACP treated biofilms also exhibited significantly lower bacterial loads of cariogenic Scardovia wiggsiae (fold change 0.017, p < 0.001) and Prevotella denticola(fold change 0.005, p < 0.001), and higher bacterial loads of commensal Streptococcus sanguinis(fold change 30.22, p < 0.001), S. mitis/oralis(fold change 9.66, p = 0.012), and S. salivarius/thermophilus(fold change 89.35, p < 0.001) than the control-treated biofilms.

CONCLUSIONS: The results indicate that CPP-ACP has virulence-attenuating attributes that can influence a beneficial microbial ecological change in the biofilm.

RevDate: 2019-06-04

Momper L, Hu E, Moore KR, et al (2019)

Metabolic versatility in a modern lineage of cyanobacteria from terrestrial hot springs.

Free radical biology & medicine pii:S0891-5849(18)32470-5 [Epub ahead of print].

The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e., the Archean and the Proterozoic. To better understand the metabolic versatility and physiological properties of these organisms, we examined publicly available genomes of cyanobacteria from modern terrestrial hydrothermal systems and a newly sequenced genome of a cyanobacterium isolated from conical and ridged microbialites that grow in occasionally sulfidic hydrothermal springs in Yellowstone National Park, USA. Phylogenomic analyses reveal that cyanobacteria from globally distributed terrestrial and shallow marine hydrothermal systems form a monophyletic clade within the Cyanobacteria phylum. Comparative genomics of this clade reveals the genetic capacity for oxygenic photosynthesis that uses photosystems I and II, and anoxygenic photosynthesis that uses a putative sulfide quinone reductase to oxidize sulfide and bypass photosystem II. Surprisingly large proportions of the newly sequenced genome from Yellowstone National Park are also dedicated to secondary metabolite production (15.1-15.6%), of which ∼6% can be attributed to antibiotic production and resistance genes. All this may be advantageous to benthic, mat-forming photosynthesizers that have to compete for light and nutrients in sporadically or permanently sulfidic environments, and may have also improved the tolerance of ancient counterparts of these cyanobacteria to sulfidic conditions in benthic communities that colonized the coastal margins in the Archean and the Proterozoic.

RevDate: 2019-06-04

Etienne-Mesmin L, Chassaing B, Desvaux M, et al (2019)

Experimental models to study intestinal microbes-mucus interactions in health and disease.

FEMS microbiology reviews pii:5511270 [Epub ahead of print].

A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.

RevDate: 2019-06-04

Ilgrande C, Mastroleo F, Christiaens MER, et al (2019)

Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop.

Astrobiology [Epub ahead of print].

To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22°C ± 1°C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5°C ± 2°C) or room temperature (22°C ± 1°C and 21°C ± 0°C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.

RevDate: 2019-06-04

Mojica KDA, Carlson CA, MJ Behrenfeld (2019)

Regulation of Low and High Nucleic Acid Fluorescent Heterotrophic Prokaryote Subpopulations and Links to Viral-Induced Mortality Within Natural Prokaryote-Virus Communities.

Microbial ecology pii:10.1007/s00248-019-01393-9 [Epub ahead of print].

Flow cytometric analysis of marine prokaryotes routinely reveals two distinct clusters of heterotrophic cells referred to as high nucleic acid fluorescent (HNA) and low nucleic acid fluorescent (LNA) populations. Evidence suggests that these may represent physiologically and ecologically distinct prokaryote populations. According to the "kill the winner" hypothesis, viral lysis reduces the efficiency of the microbial loop by decreasing the biomass and activity of the most abundant and active members of a population (i.e., competition specialist). Thus, viral-induced mortality may vary according to the physiology of HNA and LNA cells, with implications for the marine carbon cycle. Here, the abundance and production of heterotrophic prokaryotic populations were assessed in the North Atlantic during two phases of the annual plankton cycle and related to bottom-up (i.e., organic carbon variability) and top-down processes (i.e., viral abundance and lytic production). Our results demonstrate that the relative abundance of HNA and LNA heterotrophic cells and heterotrophic prokaryote production vary according to organic carbon variability in the water column, which can be strongly influenced by the physical eddy field (i.e., type of eddy: cyclonic, anticyclonic, or no eddy). In addition, the abundance and lytic production of virus subpopulations were correlated with the cellular production and abundance of heterotrophic HNA and LNA prokaryote communities. Our data suggest group- and activity-specific linkages between hosts and viruses (i.e., HNA-V1 and LNA-V2). Specifically, V1 had a greater contribution to total viral production (i.e., 2.6-fold higher than V2 viruses), similar to their putative host. Finally, we explore potential implications of group- and activity-specific linkages between host and virus groups on the flux of carbon through the microbial food web.

RevDate: 2019-06-10

Wright RJ, Gibson MI, JA Christie-Oleza (2019)

Understanding microbial community dynamics to improve optimal microbiome selection.

Microbiome, 7(1):85 pii:10.1186/s40168-019-0702-x.

BACKGROUND: Artificial selection of microbial communities that perform better at a desired process has seduced scientists for over a decade, but the method has not been systematically optimised nor the mechanisms behind its success, or failure, determined. Microbial communities are highly dynamic and, hence, go through distinct and rapid stages of community succession, but the consequent effect this may have on artificially selected communities is unknown.

RESULTS: Using chitin as a case study, we successfully selected for microbial communities with enhanced chitinase activities but found that continuous optimisation of incubation times between selective transfers was of utmost importance. The analysis of the community composition over the entire selection process revealed fundamental aspects in microbial ecology: when incubation times between transfers were optimal, the system was dominated by Gammaproteobacteria (i.e. main bearers of chitinase enzymes and drivers of chitin degradation), before being succeeded by cheating, cross-feeding and grazing organisms.

CONCLUSIONS: The selection of microbiomes to enhance a desired process is widely used, though the success of artificially selecting microbial communities appears to require optimal incubation times in order to avoid the loss of the desired trait as a consequence of an inevitable community succession. A comprehensive understanding of microbial community dynamics will improve the success of future community selection studies.

RevDate: 2019-06-10

Joyner JL, Kerwin J, Deeb M, et al (2019)

Green Infrastructure Design Influences Communities of Urban Soil Bacteria.

Frontiers in microbiology, 10:982.

The importance of natural ecosystem processes is often overlooked in urban areas. Green Infrastructure (GI) features have been constructed in urban areas as elements to capture and treat excess urban runoff while providing a range of ancillary benefits, e.g., ecosystem processes mediated by microorganisms that improve air and water quality, in addition to the associations with plant and tree rhizospheres. The objective of this study was to characterize the bacterial community and diversity in engineered soils (Technosols) of five types of GI in New York City; vegetated swales, right of way bioswales (ROWB; including street-side infiltration systems and enhanced tree pits), and an urban forest. The design of ROWB GI features directly connects with the road to manage street runoff, which can increase the Technosol saturation and exposure to urban contaminants washed from the street and carried into the GI feature. This GI design specifically accommodates dramatic pulses of water that influence the bacterial community composition and diversity through the selective pressure of contaminants or by disturbance. The ROWB had the highest biodiversity, but no significant correlation with levels of soil organic matter and microbially-mediated biogeochemical functions. Another important biogeochemical parameter for soil bacterial communities is pH, which influenced the bacterial community composition, consistent with studies in non-urban soils. Bacterial community composition in GI features showed signs of anthropogenic disturbance, including exposure to animal feces and chemical contaminants, such as petroleum products. Results suggest the overall design and management of GI features with a channeled connection with street runoff, such as ROWB, have a comprehensive effect on soil parameters (particularly organic matter) and the bacterial community. One key consideration for future assessments of GI microbial community would be to determine the source of organic matter and elucidate the relationship between vegetation, Technosol, and bacteria in the designed GI features.

RevDate: 2019-06-10

Yue SJ, Liu J, Wang WX, et al (2019)

Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 116:109002 pii:S0753-3322(19)31071-6 [Epub ahead of print].

Berberine (BBR) is a non-prescription drug to treat various bacteria-associated diarrheas. However, BBR has also been reported to cause diarrhea in clinic, with underlying mechanisms poorly understood. Because altered gut microbial ecology is a potential basis for diarrhea, this study was conducted to investigate the impact of BBR on gut microbiota of treatment-emergent diarrhea. BBR treatment (200 mg/kg, i.g.) in normal rats exhibited no significant changes in serum biochemical parameters but mild diarrhea occurred, accompanied with the decreased gastrointestinal transit time and increased fecal moisture, suggestive of the local effects of BBR in the intestine. Colon histology revealed the decreased abundance of mucus-filled goblet cells in BBR group. Although BBR-treated rats had the enlarged cecum with watery caecal digesta, short-chain fatty acids concentration was significantly lower than control group. Additionally, BBR caused gut microbiota dysbiosis by evaluating the decreased observed species number and Shannon index. BBR increased the relative abundances of families Porphyromonadaceae and Prevotellaceae as well as genera Parabacteroides, Prevotellaceae_UCG-001 and Prevotellaceae_NK3B31_group. Spearman's correlation analysis revealed family Prevotellaceae and genus Prevotellaceae_UCG-001 as the most prominent drivers of the BBR treatment-emergent diarrhea, correlating positively with fecal moisture but negatively with gastrointestinal transit time. This study therefore demonstrated that the treatment-emergent mild diarrhea of BBR was most likely due to the dysbiosis of the gut microbiota.

RevDate: 2019-06-01

Herlemann DPR, Markert S, Meeske C, et al (2019)

Individual physiological adaptations enable selected bacterial taxa to prevail during long-term incubations.

Applied and environmental microbiology pii:AEM.00825-19 [Epub ahead of print].

Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their composition. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures at marine and mesohaline conditions were all dominated by gammaproteobacterial Spongiibacter In the oligohaline enclosures, actinobacterial hgc-I remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacterial Spongiibacter to prevail in long time incubations. Under oligohaline conditions the utilization of external recalcitrant carbon seem to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.ImportanceIn microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects ("bottle effect") may occur due to the enclosure itself. In this study we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their composition and physiological activity both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called "bottle effect", which is well-known to occur during enclosure experiments.

RevDate: 2019-05-31

Arias A, Saiz E, A Calbet (2019)

Towards an Understanding of Diel Feeding Rhythms in Marine Protists: Consequences of Light Manipulation.

Microbial ecology pii:10.1007/s00248-019-01390-y [Epub ahead of print].

Temporal programs synchronised with the daily cycle are of adaptive importance for organisms exposed to periodic fluctuations. This study deepens into several aspects of the exogenous and endogenous nature of microbial grazers. We investigated the diel rhythms of cell division and feeding activity of four marine protists under different light regimes. In particular, we tested if the feeding cycle of protistan grazers could be mediated by a light-aided enhancement of prey digestion, and also explored the consequences of cell division on diel feeding rhythms. Cell division occurred at night for the heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina. In contrast, the mixotrophic dinoflagellate Karlodinium armiger and the ciliate Strombidium sp. mostly divided during the day. Additionally, a significant diurnal feeding rhythm was observed in all species. When exposed to continuous darkness, nearly all species maintained the cell division rhythm, but lost the feeding cycle within several hours/days (with the exception of O. marina that kept the rhythm for 9.5 days). Additional feeding experiments under continuous light also showed the same pattern. We conclude that the feeding rhythms of protistan grazers are generally regulated not by cell division nor by the enhancement of digestion by light. Our study, moreover, indicates that the cell division cycle is under endogenous control, whereas an external trigger is required to maintain the feeding rhythm, at least for most of the species studied here.

RevDate: 2019-05-30

Farfour E, Henry A, Razillard A, et al (2019)

Rapid identification of Escherichia coli colonies from clinical sample inoculated on CHROMagar Orientation media (Becton Dickinson).

Annales de biologie clinique pii:abc.2019.1446 [Epub ahead of print].

CHROMmagar Orientation media (Becton Dickinson) was developed and validated for the culture of urinary samples. It allows a direct identification of E. coli colonies without additional tests. As CHROMmagar Orientation media is superior to non-chromogenic media for the distinction of enterobacterial colonies, it is used for the inoculation of a large variety of samples in clinical laboratories. Direct identification of E. coli colonies cultured from these samples is not validated by the manufacturer. The difference in microbial ecology and the nature of the sample may impact CHROMagar Orientation performances for this use. We evaluated these media for the direct identification of E. coli colonies from 410 samples (excluding urine). Its sensitivity of 99% allows a direct identification of E. coli colonies cultured from a wide variety of samples. On-site testing using a large number of representative samples, allows laboratories to assess agar media performance and adapt their uses. Suppliers who are aware of frequent and non-recommended use of their culture media should perform tests and if conclusive, adapt their technical instructions.

RevDate: 2019-05-30

Villa-Rodriguez JA, Ifie I, Gonzalez-Aguilar GA, et al (2019)

The Gastrointestinal Tract as Prime Site for Cardiometabolic Protection by Dietary Polyphenols.

Advances in nutrition (Bethesda, Md.) pii:5506541 [Epub ahead of print].

Substantial evidence from nutritional epidemiology links polyphenol-rich diets with reduced incidence of chronic disorders; however, biological mechanisms underlying polyphenol-disease relations remain enigmatic. Emerging evidence is beginning to unmask the contribution of the gastrointestinal tract on whole-body energy homeostasis, suggesting that the intestine may be a prime target for intervention and a fundamental site for the metabolic actions of polyphenols. During their transit through the gastrointestinal tract, polyphenols may activate enteric nutrient sensors ensuing appropriate responses from other peripheral organs to regulate metabolic homeostasis. Furthermore, polyphenols can modulate the absorption of glucose, attenuating exaggerated hormonal responses and metabolic imbalances. Polyphenols that escape absorption are metabolized by the gut microbiota and the resulting catabolites may act locally, activating nuclear receptors that control enteric functions such as intestinal permeability. Finally, polyphenols modulate gut microbial ecology, which can have profound effects on cardiometabolic health.

RevDate: 2019-05-30

Clairmont LK, RM Slawson (2019)

Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms.

Microbial ecology pii:10.1007/s00248-019-01389-5 [Epub ahead of print].

The impact of contrasting water quality treatments on wetland plant-associated microbial communities was investigated in this study using 12 lab-scale wetland mesocosms (subsurface flow design) planted with reed canary grass (Phalaris arundinacea) or water speedwell (Veronica anagallis-aquatica) over a 13-week period. Mesocosms received water collected from two sites along the Grand River (Ontario, Canada) designated as having either high or poor water quality according to Grand River Conservation Authority classifications. All mesocosms were established using sediment collected from the high water quality site and received water from this source pre-treatment. Resulting changes to microbial community structure were assessed using PCR-denaturing gel gradient electrophoresis (DGGE) on microbial 16S rDNA sequences extracted from rhizoplane, rhizosphere, and water samples before and after exposure to water quality treatments. Functional community changes were determined using Biolog™ EcoPlates which assess community-level carbon source utilization profiles. Wetland mesocosm removal of inorganic nutrients (N, P) and fecal coliforms was also determined, and compared among treatments. Treatment-specific effects were assessed using a repeated measures restricted maximum likelihood (REML) analysis. Structural and functional characteristics of rhizoplane microbial communities were significantly influenced by the interaction between plant species and water treatment (P = 0.04, P = 0.01). Plant species-specific effects were observed for rhizosphere structural diversity (P = 0.01) and wetland water community metabolic diversity (P = 0.03). The effect of water treatment alone was significant for structural diversity measurements in wetland water communities (P = 0.03). The effect of plant species, water quality treatment, and the interaction between the two is dependent on the microhabitat type (rhizoplane, rhizosphere, or water). Rhizoplane communities appear to be more sensitive to water quality-specific environmental changes and may be a good candidate for microbial community-based monitoring of wetland ecosystems.

RevDate: 2019-05-30

Han D, Kang HY, Kang CK, et al (2019)

Seasonal Mixing-Driven System in Estuarine-Coastal Zone Triggers an Ecological Shift in Bacterial Assemblages Involved in Phytoplankton-Derived DMSP Degradation.

Microbial ecology pii:10.1007/s00248-019-01392-w [Epub ahead of print].

The coastal zone has distinguishable but tightly connected ecosystems from rivers to the ocean and globally contributes to nutrient cycling including phytoplankton-derived organic matter. Particularly, bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) degradation have been recently evaluated by using advanced sequencing technologies to understand their role in the marine microbial food web. Here, we surveyed the bacterial diversity and community composition under seasonal water mixing in the bay of Gwangyang (GW), a semi-enclosed estuary at the southern tip of the Korea Peninsula. We detected phylogenetic dissimilarities among season-specific habitats in GW and their specific bacterial taxa. Additionally, bacterial contribution to degradation of phytoplankton-derived DMSP from estuarine to coastal waters at euphotic depths in GW was investigated as the presence or absence of DMSP demethylation gene, encoded by dmdA. Among the operational taxonomic units (OTUs) in GW bacterial communities, the most dominant and ubiquitous OTU1 was affiliated with the SAR11 clade (SAR11-OTU). The population dynamics of SAR11-OTU in dmdA-detected GW waters suggest that water mass mixing plays a major role in shaping bacterial communities involved in phytoplankton-derived DMSP demethylation.

RevDate: 2019-05-30

Bittar C, Machado RRG, Comelis MT, et al (2019)

Alphacoronavirus Detection in Lungs, Liver, and Intestines of Bats from Brazil.

Microbial ecology pii:10.1007/s00248-019-01391-x [Epub ahead of print].

Bats are flying mammals distributed worldwide known to host several types of Coronavirus (CoV). Since they were reported as the probable source of spillover of highly pathogenic CoV into the human population, investigating the circulation of this virus in bats around the world became of great importance. We analyzed samples from 103 bats from two distinct regions in Brazil. Coronavirus from the Alphacoronavirus genus was detected in 12 animals, 11 from São José do Rio Preto-SP region and 1 from Barreiras-BA region, resulting in a prevalence of 17.18% and 2.56% respectively. The virus was detected not only in intestines but also in lungs and liver. Phylogenetic analysis based on nsP12 genomic region suggests that the sequences group according to host family and sampling location. Studies on the circulation of these viruses in bats remain important to understand the ecology and evolutionary relationship of these pathogens.

RevDate: 2019-06-10

Conrads G, Wendt LK, Hetrodt F, et al (2019)

Deep sequencing of biofilm microbiomes on dental composite materials.

Journal of oral microbiology, 11(1):1617013 pii:1617013.

Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.

RevDate: 2019-06-10

Miller JI, Techtmann S, Fortney J, et al (2019)

Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities.

Frontiers in microbiology, 10:995.

The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation.

RevDate: 2019-06-10

Kuramae EE, Leite MFA, Suleiman AKA, et al (2019)

Wood Decay Characteristics and Interspecific Interactions Control Bacterial Community Succession in Populus grandidentata (Bigtooth Aspen).

Frontiers in microbiology, 10:979.

Few studies have investigated bacterial community succession and the role of bacterial decomposition over a continuum of wood decay. Here, we identified how (i) the diversity and abundance of bacteria changed along a chronosequence of decay in Populus grandidentata (bigtooth aspen); (ii) bacterial community succession was dependent on the physical and chemical characteristics of the wood; (iii) interspecific bacterial interactions may mediate community structure. Four hundred and fifty-nine taxa were identified through Illumina sequencing of 16S rRNA amplicons from samples taken along a continuum of decay, representing standing dead trees, downed wood, and soil. Community diversity increased as decomposition progressed, peaking in the most decomposed trees. While a small proportion of taxa displayed a significant pattern in regards to decay status of the host log, many bacterial taxa followed a stochastic distribution. Changes in the water availability and chemical composition of standing dead and downed trees and soil were strongly coupled with shifts in bacterial communities. Nitrogen was a major driver of succession and nitrogen-fixing taxa of the order Rhizobiales were abundant early in decomposition. Recently downed logs shared 65% of their bacterial abundance with the microbiomes of standing dead trees while only sharing 16% with soil. As decay proceeds, bacterial communities appear to respond less to shifting resource availability and more to interspecific bacterial interactions - we report an increase in both the proportion (+9.3%) and the intensity (+62.3%) of interspecific interactions in later stages of decomposition, suggesting the emergence of a more complex community structure as wood decay progresses.

RevDate: 2019-06-10

Castillo DJ, Rifkin RF, Cowan DA, et al (2019)

The Healthy Human Blood Microbiome: Fact or Fiction?.

Frontiers in cellular and infection microbiology, 9:148.

The blood that flows perpetually through our veins and arteries performs numerous functions essential to our survival. Besides distributing oxygen, this vast circulatory system facilitates nutrient transport, deters infection and dispenses heat throughout our bodies. Since human blood has traditionally been considered to be an entirely sterile environment, comprising only blood-cells, platelets and plasma, the detection of microbes in blood was consistently interpreted as an indication of infection. However, although a contentious concept, evidence for the existence of a healthy human blood-microbiome is steadily accumulating. While the origins, identities and functions of these unanticipated micro-organisms remain to be elucidated, information on blood-borne microbial phylogeny is gradually increasing. Given recent advances in microbial-hematology, we review current literature concerning the composition and origin of the human blood-microbiome, focusing on bacteria and their role in the configuration of both the diseased and healthy human blood-microbiomes. Specifically, we explore the ways in which dysbiosis in the supposedly innocuous blood-borne bacterial microbiome may stimulate pathogenesis. In addition to exploring the relationship between blood-borne bacteria and the development of complex disorders, we also address the matter of contamination, citing the influence of contaminants on the interpretation of blood-derived microbial datasets and urging the routine analysis of laboratory controls to ascertain the taxonomic and metabolic characteristics of environmentally-derived contaminant-taxa.

RevDate: 2019-06-10

León-Sobrino C, Ramond JB, Maggs-Kölling G, et al (2019)

Nutrient Acquisition, Rather Than Stress Response Over Diel Cycles, Drives Microbial Transcription in a Hyper-Arid Namib Desert Soil.

Frontiers in microbiology, 10:1054.

Hot desert surface soils are characterized by extremely low water activities for large parts of any annual cycle. It is widely assumed that microbial processes in such soils are very limited. Here we present the first metatranscriptomic survey of microbial community function in a low water activity hyperarid desert soil. Sequencing of total mRNA revealed a diverse and active community, dominated by Actinobacteria. Metatranscriptomic analysis of samples taken at different times over 3 days indicated that functional diel variations were limited at the whole community level, and mostly affected the eukaryotic subpopulation which was induced during the cooler night hours. High levels of transcription of chemoautotrophic carbon fixation genes contrasted with limited expression of photosynthetic genes, indicating that chemoautotrophy is an important alternative to photosynthesis for carbon cycling in desiccated desert soils. Analysis of the transcriptional levels of key N-cycling genes provided strong evidence that soil nitrate was the dominant nitrogen input source. Transcriptional network analyses and taxon-resolved functional profiling suggested that nutrient acquisition processes, and not diurnal environmental variation, were the main drivers of community activity in hyperarid Namib Desert soil. While we also observed significant levels of expression of common stress response genes, these genes were not dominant hubs in the co-occurrence network.

RevDate: 2019-05-29

Emerson JB (2019)

Soil Viruses: A New Hope.

mSystems, 4(3): pii:4/3/e00120-19.

As abundant members of microbial communities, viruses impact microbial mortality, carbon and nutrient cycling, and food web dynamics. Although most of our information about viral communities comes from marine systems, evidence is mounting to suggest that viruses are similarly important in soil. Here I outline soil viral metagenomic approaches and the current state of soil viral ecology as a field, and then I highlight existing knowledge gaps that we can begin to fill. We are poised to elucidate soil viral contributions to terrestrial ecosystem processes, considering: the full suite of potential hosts across trophic scales, the ecological impacts of different viral replication strategies, links to economically relevant outcomes like crop productivity, and measurable in situ virus-host population dynamics across spatiotemporal scales and environmental conditions. Soon, we will learn how soil viruses contribute to food webs linked to organic matter decomposition, carbon and nutrient cycling, greenhouse gas emissions, and agricultural productivity.

RevDate: 2019-06-10

Benítez-Páez A, Kjølbæk L, Gómez Del Pulgar EM, et al (2019)

A Multi-omics Approach to Unraveling the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight Humans.

mSystems, 4(4): pii:4/4/e00209-19.

Long-term consumption of dietary fiber is generally considered beneficial for weight management and metabolic health, but the results of interventions vary greatly depending on the type of dietary fibers involved. This study provides a comprehensive evaluation of the effects of a specific dietary fiber consisting of a wheat-bran extract enriched in arabinoxylan-oligosaccharides (AXOS) in a human intervention trial. An integrated multi-omics analysis has been carried out to evaluate the effects of an intervention trial with an AXOS-enriched diet in overweight individuals with indices of metabolic syndrome. Microbiome analyses were performed by shotgun DNA sequencing in feces; in-depth metabolomics using nuclear magnetic resonance in fecal, urine, and plasma samples; and massive lipid profiling using mass spectrometry in fecal and serum/plasma samples. In addition to their bifidogenic effect, we observed that AXOS boost the proportion of Prevotella species. Metagenome analysis showed increases in the presence of bacterial genes involved in vitamin/cofactor production, glycan metabolism, and neurotransmitter biosynthesis as a result of AXOS intake. Furthermore, lipidomics analysis revealed reductions in plasma ceramide levels. Finally, we observed associations between Prevotella abundance and short-chain fatty acids (SCFAs) and succinate concentration in feces and identified a potential protective role of Eubacterium rectale against metabolic disease given that its abundance was positively associated with plasma phosphatidylcholine levels, thus hypothetically reducing bioavailability of choline for methylamine biosynthesis. The metagenomics, lipidomics, and metabolomics data integration indicates that sustained consumption of AXOS orchestrates a wide variety of changes in the gut microbiome and the host metabolism that collectively would impact on glucose homeostasis. (This study has been registered at ClinicalTrials.gov under identifier NCT02215343)IMPORTANCE The use of dietary fiber food supplementation as a strategy to reduce the burden of diet-related diseases is a matter of study given its cost-effectiveness and the positive results demonstrated in clinical trials. This multi-omics assessment, on different biological samples of overweight subjects with signs of metabolic syndrome, sheds light on the early and less evident effects of short-term AXOS intake on intestinal microbiota and host metabolism. We observed a deep influence of AXOS on gut microbiota beyond their recognized bifidogenic effect by boosting concomitantly a wide diversity of butyrate producers and Prevotella copri, a microbial species abundant in non-Westernized populations with traditional lifestyle and diets enriched in fresh unprocessed foods. A comprehensive evaluation of hundreds of metabolites unveiled new benefits of the AXOS intake, such as reducing the plasma ceramide levels. Globally, we observed that multiple effects of AXOS consumption seem to converge in reversing the glucose homeostasis impairment.

RevDate: 2019-06-09

Liu L, Wu L, Knauth S, et al (2019)

Degradation of transgenic Bt-rice straw incorporated with two different paddy soils.

Journal of environmental management, 244:415-421.

Transgenic Bt-rice is rice that has been genetically modified to produce insecticidal proteins (Cry1Ab/Ac) within the plant. Rice straw is incorporated into paddy soils after harvest for fertilization or to improve the soil structure. The incorporation of straw from transgenic Bt-rice may pose risks to the paddy soil system. The decomposition of Bt-rice straw and degradation of Cry1Ab/Ac proteins from the straw were investigated under laboratory conditions. In addition, effects of the incorporation with chopped rice straw on microbial communities in differently textured paddy soils were studied. The results indicated that the incorporation of straw from transgenic Bt-rice might have a slight influence on soil respiration and CH4 emissions in two paddy soils, i.e. the Silt Loam soil and the Silty Clay soil. Differences were also observed in the cumulative emissions of CO2 between the two amended paddy soils in addition to the well-known increase in emissions of both CO2 and CH4 due to straw incorporation. The Cry1Ab/Ac proteins from straw of transgenic Bt-rice were degraded in paddy soils. The rate of decline in the concentration of Cry1Ab/Ac proteins was different in the two soils. After 29 d of incubation, 61% and 42% of initial Cry1Ab/Ac proteins were detected in the silt loam and silty clay, respectively. As a result of the presence of the rice straw, the abundance of bacteria, archaea, and total cells were increased in two soils. The numbers of bacteria and total cells were 6.4% and 11.5% higher in the silt loam amended with straw of Bt-rice than non-Bt-rice, respectively. The silty clay displayed a similar trend as the silt loam.

RevDate: 2019-06-10

Cramm MA, Chakraborty A, Li C, et al (2019)

Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments.

Frontiers in microbiology, 10:945.

Dormant endospores of anaerobic, thermophilic bacteria found in cold marine sediments offer a useful model for studying microbial biogeography, dispersal, and survival. The dormant endospore phenotype confers resistance to unfavorable environmental conditions, allowing dispersal to be isolated and studied independently of other factors such as environmental selection. To study the resilience of thermospores to conditions relevant for survival in extreme cold conditions, their viability following different freezing treatments was tested. Marine sediment was frozen at either -80°C or -20°C for 10 days prior to pasteurization and incubation at +50°C for 21 days to assess thermospore viability. Sulfate reduction commenced at +50°C following both freezing pretreatments indicating persistence of thermophilic endospores of sulfate-reducing bacteria. The onset of sulfate reduction at +50°C was delayed in -80°C pretreated microcosms, which exhibited more variability between triplicates, compared to -20°C pretreated microcosms and parallel controls that were not frozen in advance. Microbial communities were evaluated by 16S rRNA gene amplicon sequencing, revealing an increase in the relative sequence abundance of thermophilic endospore-forming Firmicutes in all microcosms. Different freezing pretreatments (-80°C and -20°C) did not appreciably influence the shift in overall bacterial community composition that occurred during the +50°C incubations. Communities that had been frozen prior to +50°C incubation showed an increase in the relative sequence abundance of operational taxonomic units (OTUs) affiliated with the class Bacilli, relative to unfrozen controls. These results show that freezing impacts but does not obliterate thermospore populations and their ability to germinate and grow under appropriate conditions. Indeed the majority of the thermospore OTUs detected in this study (21 of 22) could be observed following one or both freezing treatments. These results are important for assessing thermospore viability in frozen samples and following cold exposure such as the very low temperatures that would be encountered during panspermia.

RevDate: 2019-05-26

Huh YJ, Seo JY, Nam J, et al (2019)

Bariatric/Metabolic Surgery Induces Noticeable Changes of Microbiota and Their Secreting Extracellular Vesicle Composition in the Gut.

Obesity surgery pii:10.1007/s11695-019-03852-1 [Epub ahead of print].

INTRODUCTION: Microbial ecology is reported to be an important regulator of energy homeostasis and glucose metabolism. Microbes secrete extracellular vesicles (EVs) during their proliferation and death to communicate with other cells. To investigate the roles of gut microbiota in glucose metabolism, we analyzed serial changes of gut microbe and microbial EV composition before and after bariatric/metabolic surgery (BMS).

METHODS: Twenty-eight Wistar rats were fed on high-fat diet (HFD) to induce obesity and diabetes. Five of them compared with 5 rats fed on regular chow diet (RCD). Among the remaining 23 rats, Roux-en-Y gastric bypass (RYGB) (n = 10), sleeve gastrectomy (SG) (n = 10), or sham operation (n = 3) was randomly performed. Gut microbiota and EVs from fecal samples were analyzed by 16S rDNA amplicon sequencing.

RESULTS: The present study showed that microbial diversity was decreased in HFD-fed rats versus RCD-fed rats. In addition, BMS reversed glucose intolerance and microbial richness which were induced by HFD. In terms of microbiota and microbial EV composition, both RYGB and SG enhance the composition of phyla Proteobacteria, Verrucomicrobia, and their secreting EVs, but decrease phylum Firmicutes and its EVs. We tried to demonstrate specific genera showed a significant compositional difference in obesity/diabetes-induced rats compared with normal rats and then restored similarly toward normal rats' level after BMS. At the genus level, Lactococcus, Ruminococcus, Dorea in Firmicutes(p), Psychrobacter in Proteobacteria(p), and Akkermansia in Verrucomicrobia(p) fit these conditions after BMS.

CONCLUSION: We suggest that these genera are the candidates contributing to obesity and diabetes improvement mechanism after BMS.

RevDate: 2019-06-10

Meng Y, Zhou Z, F Meng (2019)

Impacts of diel temperature variations on nitrogen removal and metacommunity of anammox biofilm reactors.

Water research, 160:1-9 pii:S0043-1354(19)30401-4 [Epub ahead of print].

The influence of diel temperature variations (DTVs) on nitrogen removal and bacterial communities was investigated in two parallel anammox reactors (i.e., control and DTV reactors). The control reactor was operated at a constant temperature of 30 °C, whereas the DTV reactor was operated in a temperature fluctuation mode with a cycle of 12/12 h of high/low temperatures. Nine water temperature variations for the day/night periods were set from 30/30 °C (i.e., Δ0 °C) to 38/22 °C (i.e., Δ16 °C). An increase in DTVs from Δ8 °C (34/26 °C) to Δ16 °C (38/22 °C) caused a significant decline in reactor performance and a shift in bacterial diversity. Compared to the control reactor, for instance, nitrogen removal efficiency decreased (P < 0.05) when temperature fluctuations exceeded Δ8 °C in the DTV reactor with a decreasing ΔNO3-/ΔNH4+ ratio (from 0.21 ± 0.15 to 0.16 ± 0.04). The results of 16S rRNA gene sequencing showed that the initial disturbance of temperature variations led to increased levels of bacterial diversity (i.e., alpha diversity) and decreased community levels of anammox consortia whereas they slightly recovered at the end of each DTV phase. Notably, Candidatus Jettenia was more sensitive to strong water temperature fluctuations, with the lower relative abundance at Δ14 °C (17.11 ± 5.01%) and Δ16 °C (17.83 ± 7.22%) than at Δ4 °C (39.82 ± 0.01%). In contrast, Ca. Brocadia and Ca. Kuenenia had higher relative abundance at Δ14 °C (i.e., 0.24 ± 0.07% and 0.09 ± 0.02%, respectively) and Δ16 °C (i.e., 0.28 ± 0.05% and 0.12 ± 0.03%, respectively) compared to that at Δ4 °C (i.e., 0.15 ± 0.04% and 0.04 ± 0.01%, respectively). Nitrifiers (i.e., unidentified_Nitrospiraceae and Nitrosomonas) and denitrifiers (i.e., Denitratisoma) were also capable of tolerating high temperature perturbations. Overall this study furthers our knowledge of responses of the microbial ecology of anammox bacteria to DTVs in anammox processes, which could aid us in optimizing anammox-related wastewater treatment systems and in understanding the nitrogen cycles of natural ecosystems.

RevDate: 2019-06-04

Tsao HF, Scheikl U, Herbold C, et al (2019)

The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes.

Water research, 159:464-479.

Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.

RevDate: 2019-06-04

Zhou LJ, Han P, Yu Y, et al (2019)

Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers.

Water research, 159:444-453.

The abilities of three phylogenetically distant ammonia oxidizers, Nitrososphaera gargensis, an ammonia-oxidizing archaeon (AOA); Nitrosomomas nitrosa Nm90, an ammonia-oxidizing bacterium (AOB); and Nitrospira inopinata, the only complete ammonia oxidizer (comammox) available as a pure culture, to biotransform seven sulfonamides (SAs) were investigated. The removals and protein-normalized biotransformation rate constants indicated that the AOA strain N. gargensis exhibited the highest SA biotransformation rates, followed by N. inopinata and N. nitrosa Nm90. The transformation products (TPs) of sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX) and the biotransformation mechanisms were evaluated. Based on the analysis of the TP formulas and approximate structures, it was found that during biotransformation, i) the AOA strain carried out SA deamination, hydroxylation, and nitration; ii) the AOB strain mainly performed SA deamination; and iii) the comammox isolate participated only in deamination reactions. It is proposed that deamination was catalyzed by deaminases while hydroxylation and nitration were mediated by nonspecific activities of the ammonia monooxygenase (AMO). Additionally, it was demonstrated that among the three ammonia oxidizers, only AOB contributed to the formation of pterin-SA conjugates. The biotransformation of SDZ, SMZ and SMX occurred only when ammonia oxidation was active, suggesting a cometabolic transformation mechanism. Interestingly, SAs could also be transformed by hydroxylamine, an intermediate of ammonia oxidation, suggesting that in addition to enzymatic conversions, a microbially induced abiotic mechanism contributes to SA transformation during ammonia oxidation. Overall, using experiments with pure cultures, this study provides important insights into the roles played by ammonia oxidizers in SA biotransformation.

RevDate: 2019-05-23

Dove NC, Stark JM, Newman GS, et al (2019)

Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited.

Ecology [Epub ahead of print].

Understanding how altered soil organic carbon (SOC) availability affects microbial communities and their function is imperative in predicting impacts of global change on soil carbon (C) storage and ecosystem function. However, the response of soil microbial communities and their function to depleted C availability in situ is unclear. We evaluated the role of soil C inputs in controlling microbial biomass, community composition, physiology, and function by (1) experimentally excluding plant C inputs in situ for 9 yr in four temperate forest ecosystems along a productivity gradient in Oregon, USA; and (2) integrating these findings with published data from similar C-exclusion studies into a global meta-analysis. Excluding plant C inputs for 9 yr resulted in a 13% decrease in SOC across the four Oregon sites and an overall shift in the microbial community composition, with a 45% decrease in the fungal : bacterial ratio and a 13% increase in Gram-positive : Gram-negative bacterial ratio. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest-productivity site. Microbial biomass showed a variable response to C exclusion that was method dependent; however, we detected a 29% decrease in C-use efficiency across the sites, with greater declines occurring in less-productive sites. Although extracellular enzyme activity increased with C exclusion, C exclusion resulted in a 31% decrease in microbial respiration across all sites. Our meta-analyses of published data with similar C-exclusion treatments were largely consistent with our experimental results, showing decreased SOC, fungal : bacterial ratios, and microbial respiration, and increased Gram-positive : Gram-negative bacterial ratio following exclusion of C inputs to soil. Effect sizes of SOC and respiration correlated negatively with the duration of C exclusion; however, there were immediate effects of C exclusion on microbial community composition and biomass that were unaltered by duration of treatment. Our field-based experimental results and analyses demonstrate unequivocally the dominant control of C availability on soil microbial biomass, community composition, and function, and provide additional insight into the mechanisms for these effects in forest ecosystems.

RevDate: 2019-06-10

Roux S, Trubl G, Goudeau D, et al (2019)

Optimizing de novo genome assembly from PCR-amplified metagenomes.

PeerJ, 7:e6902 pii:6902.

Background: Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes.

Methods: Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes.

Results: Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes.

Conclusions: PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

RevDate: 2019-06-10

Sze MA, PD Schloss (2019)

The Impact of DNA Polymerase and Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence Data.

mSphere, 4(3): pii:4/3/e00163-19.

PCR amplification of 16S rRNA genes is a critical yet underappreciated step in the generation of sequence data to describe the taxonomic composition of microbial communities. Numerous factors in the design of PCR can impact the sequencing error rate, the abundance of chimeric sequences, and the degree to which the fragments in the product represent their abundance in the original sample (i.e., bias). We compared the performance of high fidelity polymerases and various numbers of rounds of amplification when amplifying a mock community and human stool samples. Although it was impossible to derive specific recommendations, we did observe general trends. Namely, using a polymerase with the highest possible fidelity and minimizing the number of rounds of PCR reduced the sequencing error rate, fraction of chimeric sequences, and bias. Evidence of bias at the sequence level was subtle and could not be ascribed to the fragments' fraction of bases that were guanines or cytosines. When analyzing mock community data, the amount that the community deviated from the expected composition increased with the number of rounds of PCR. This bias was inconsistent for human stool samples. Overall, the results underscore the difficulty of comparing sequence data that are generated by different PCR protocols. However, the results indicate that the variation in human stool samples is generally larger than that introduced by the choice of polymerase or number of rounds of PCR.IMPORTANCE A steep decline in sequencing costs drove an explosion in studies characterizing microbial communities from diverse environments. Although a significant amount of effort has gone into understanding the error profiles of DNA sequencers, little has been done to understand the downstream effects of the PCR amplification protocol. We quantified the effects of the choice of polymerase and number of PCR cycles on the quality of downstream data. We found that these choices can have a profound impact on the way that a microbial community is represented in the sequence data. The effects are relatively small compared to the variation in human stool samples; however, care should be taken to use polymerases with the highest possible fidelity and to minimize the number of rounds of PCR. These results also underscore that it is not possible to directly compare sequence data generated under different PCR conditions.

RevDate: 2019-06-10

Beinart RA (2019)

The Significance of Microbial Symbionts in Ecosystem Processes.

mSystems, 4(3): pii:4/3/e00127-19.

It is increasingly accepted that the microbial symbionts of eukaryotes can have profound effects on host ecology and evolution. However, the relative contribution that they make directly to ecosystem processes, like energy and nutrient flows, is less explicitly acknowledged and, in many cases, only poorly constrained. Here, I explore the idea that, in some habitats, host-associated microbes may have an outsized role in ecosystem processes relative to functionally equivalent free-living microbes due to key aspects of the physiology, ecology, and evolution of symbiotic interactions. My research quantifying symbiont metabolism has shown that microbial symbionts have the potential to make a substantial impact on carbon and sulfur cycling. It is my perspective that direct measurement of symbiont activity and comparison to free-living counterparts will expand our understanding of the significance of microbial symbioses and, more broadly, the role of microbial processes in ecosystems.

RevDate: 2019-06-10

Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS, et al (2019)

Surveillance and Genomics of Toxigenic Vibrio cholerae O1 From Fish, Phytoplankton and Water in Lake Victoria, Tanzania.

Frontiers in microbiology, 10:901.

The occurrence of toxigenic Vibrio cholerae O1 during a non- outbreak period in Lake Victoria was studied and genetic characteristics for environmental persistence and relatedness to pandemic strains were assessed. We analyzed 360 samples of carps, phytoplankton and water collected in 2017 during dry and rainy seasons in the Tanzanian basin of Lake Victoria. Samples were tested using PCR (ompW and ctxA) with DNA extracted from bacterial isolates and samples enriched in alkaline peptone water. Isolates were screened with polyvalent antiserum O1 followed by antimicrobial susceptibility testing. Whole genome sequencing and bioinformatics tools were employed to investigate the genomic characteristics of the isolates. More V. cholerae positive samples were recovered by PCR when DNA was obtained from enriched samples than from isolates (69.0% vs. 21.3%, p < 0.05), irrespectively of season. We identified ten V. cholerae O1 among 22 ctxA-positive isolates. Further studies are needed to serotype the remaining ctxA-positive non-O1 strains. Sequenced strains belonged to El Tor atypical biotype of V. cholerae O1 of MLST ST69 harboring the seventh pandemic gene. Major virulence genes, ctxA, ctxB, zot, ace, tcpA, hlyA, rtxA, ompU, toxR, T6SS, alsD, makA and pathogenicity islands VPI-1, VPI-2, VSP-1, and VSP-2 were found in all strains. The strains contained Vibrio polysaccharide biosynthesis enzymes, the mshA gene and two-component response regulator proteins involved in stress response and autoinducers for quorum sensing and biofilm formation. They carried the SXT integrative conjugative element with phenotypic and genotypic resistance to aminoglycoside, sulfamethoxazole, trimethoprim, phenicol, and quinolones. Strains contained a multidrug efflux pump component and were resistant to toxic compounds with copper homeostasis and cobalt-zinc-cadmium resistance proteins. The environmental strains belonged to the third wave of the seventh pandemic and most are genetically closely related to recent outbreak strains from Tanzania, Kenya, and Uganda with as low as three SNPs difference. Some strains have persisted longer in the environment and were more related to older outbreak strains in the region. V. cholerae O1 of outbreak potential seem to persist in Lake Victoria through interactions with fish and phytoplankton supported by the optimum water parameters and intrinsic genetic features enhancing survival in the aquatic environment.

RevDate: 2019-05-22

Worrich A, Musat N, H Harms (2019)

Associational effects in the microbial neighborhood.

The ISME journal pii:10.1038/s41396-019-0444-6 [Epub ahead of print].

Even though "perfect" metagenomes or metatranscriptomes are close at hand, the implicit assumption of spatial homogeneity in the "omic" approaches makes it difficult if not impossible to relate those data to ecological processes occurring in natural and man-made ecosystems. In fact, the distribution of microbes in their habitats is far from being uniform and random. Microbial communities show a high degree of spatial organization that stems from environmental gradients and local interactions. These interactions can be very complex and may involve multiple species. Several studies highlighted the importance of indirect interactions for community stability, but the absence of a theoretical framework for microbial ecology restricts the possibilities to strike a balance between the investigation of simple communities with purely pairwise interactions and the attempts to understand interaction patterns in whole communities based on meta-omics studies. Here we suggest adapting the concept of Associational Effects (AE) from plant ecology, to better understand the link between ecological interactions, spatial arrangement, and stability in microbial communities. By bringing together a conceptual framework developed for plants and observations made for microbes, this perspective article fosters synthesis of related disciplines to yield novel insights into the advancing field of spatial microbial ecology. To promote the integration into microbial ecology, we (i) outline the theoretical background of AE, (ii) collect underlying mechanisms by literature synthesis, (iii) propose a three-point roadmap for the investigation of AE in microbial communities, and (iv) discuss its implications for microbial ecology research.

RevDate: 2019-06-04

Michels N, Van de Wiele T, Fouhy F, et al (2019)

Gut microbiome patterns depending on children's psychosocial stress: Reports versus biomarkers.

Brain, behavior, and immunity pii:S0889-1591(18)31214-5 [Epub ahead of print].

AIM: Chronic stress increases disease vulnerability factors including inflammation, a pathological characteristic potentially regulated by the gut microbiota. We checked the association between the gut microbiome and psychosocial stress in children/adolescents and investigated which stress parameter (negative versus positive emotion, self-report versus parental report, events versus emotions, biomarker cortisol versus parasympathetic activity) is the most relevant indicator herein.

METHODS: Gut microbiome sequencing was completed in fecal samples from 93 Belgian 8-16y olds. Stress measures included negative events, negative emotions, emotional problems reported by parents, happiness, hair cortisol and heart rate variability (pnn50 parameter reflecting parasympathetic activity). Alpha diversity, beta diversity and linear discriminant analysis were the unadjusted analyses. Age, sex, socio-economic status, diet, physical activity, sleep and weight status were adjusted for via a redundancy analysis and differential abundance via zero-inflated negative binomial regression.

RESULTS: High stress as reflected by low pnn50 and more negative events were associated with a lower alpha diversity as indicated by the Simpson index. Happiness and pnn50 showed significant differences between high and low stress groups based on weighted UniFrac distance, and this remained significant after confounder adjustment. Adjusted and unadjusted taxonomic differences were also most pronounced for happiness and pnn50 being associated respectively with 24 OTU (=11.8% of bacterial counts) and 31 OTU (=13.0%). As a general pattern, high stress was associated with lower Firmicutes at the phylum level and higher Bacteroides, Parabacteroides, Rhodococcus, Methanobrevibacter and Roseburia but lower Phascolarctobacterium at genus level. Several genera gave conflicting results between different stress measures e.g. Ruminococcaceae UCG014, Tenericutes, Eubacterium coprostanoligenes, Prevotella 9 and Christensenellaceae R7. Differential results in preadolescents versus adolescents were also evident.

CONCLUSION: Even in this young healthy population, stress parameters were cross-sectionally associated with gut microbial composition but this relationship was instrument specific. Positive emotions and parasympathetic activity appeared the strongest parameters and should be integrated in future microbiota projects amongst other stress measures.

RevDate: 2019-05-21

Mesquita MCB, Prestes ACC, Gomes AMA, et al (2019)

Direct Effects of Temperature on Growth of Different Tropical Phytoplankton Species.

Microbial ecology pii:10.1007/s00248-019-01384-w [Epub ahead of print].

Temperature increase may influence competition among phytoplankton species, potentially intensifying cyanobacteria blooms that can be favored by direct and indirect effects of temperature. In this study, we aimed to clarify how cyanobacteria can be favored by the direct effects of increased temperature compared to diatoms and chlorophytes. Strains of the most representative species of a eutrophic coastal lagoon (Microcystis aeruginosa, Planktothrix agardhii, Desmodesmus communis, and Cyclotella meneghiniana) were used to test the hypothesis that cyanobacteria would be favored by the direct effect of temperature increase. First, we evaluated the effect of temperature increase on growth in monocultures (batch and chemostats) at 25 and 30 °C and after in mixed cultures (chemostats). In batch monocultures, the cyanobacteria showed higher growth rates in 30 °C than in 25 °C. However, in continuous culture experiments (chemostats), growth rates of M. aeruginosa and P. agardhii were not affected by temperature, but the strains showed higher biovolume in steady-state with the temperature increase. In continuous mixed cultures, M. aeruginosa was always dominant and C. meneghiniana was excluded, regardless of temperature tested. D. communis was able to coexist with lower biomass. This study shows that rising temperatures can be detrimental to diatoms, even for a tropical strain. Although some studies indicate that the dominance of cyanobacteria in warmer climates may be due to the indirect effect of warming that will promote physical conditions in the environment more favorable to cyanobacteria, the outcomes of mixed cultures demonstrate that the direct effect of temperature can also favor the dominance of cyanobacteria.

RevDate: 2019-06-10

Silva DP, Duarte G, Villela HDM, et al (2019)

Adaptable mesocosm facility to study oil spill impacts on corals.

Ecology and evolution, 9(9):5172-5185 pii:ECE35095.

Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow-through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow-through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm) of the algae associated with M. alcicornis decreased in response to an 1% crude-oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.

RevDate: 2019-05-21

Qi H, Wei Z, Zhang J, et al (2019)

Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials.

Waste management (New York, N.Y.), 87:326-334.

The humic-like substances (HLS) are proposed to be formed by biotic and abiotic pathways. The abiotic pathways were neglected in existed composting studies. The present study aims to accelerate the abiotic pathways, and to investigate how MnO2 drives the HLS transformation via changing the contribution of abiotic and biotic pathways during composting with different materials. Parallel factor analysis model (PARAFAC), hetero two-dimensional correlation spectra (hetero-2DCOS) and variance partitioning were used to identify the effects of MnO2 on the formation of humic acid (HA) and fluvic acid (FA) during composting of chicken manure (CM) and corn straw (CS). The addition of MnO2 could change the structures of HLS during CS and CM composting, mainly promoting the formation of complex components in HA and FA during CS composting, as well as the complex components of FA during CM composting. Meanwhile, the addition of MnO2 could reshape the microbial ecology, which enhanced the correlation between microbes and complex components formation during composting, especially in CM composting. Variance partitioning showed that both abiotic and biotic pathways were stimulated in conversion of HLS components after adding MnO2 during CS composting, especially for the abiotic pathways. During CM composting, the MnO2 promoted biotic effects on the conversion of HLS components. Above all, the addition of MnO2 could stimulate pathways of biotic, abiotic or both of them to improve the humification degree of HLS by changing microbial ecology, which could be a promising way for promoting the application value of composting products.

RevDate: 2019-05-22

Jørgensen BB, Findlay AJ, A Pellerin (2019)

The Biogeochemical Sulfur Cycle of Marine Sediments.

Frontiers in microbiology, 10:849.

Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.

RevDate: 2019-05-18

Jeong Y, Kim JW, You HJ, et al (2019)

Gut Microbial Composition and Function Are Altered in Patients with Early Rheumatoid Arthritis.

Journal of clinical medicine, 8(5): pii:jcm8050693.

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of the joints and extra-articular manifestations. Recent studies have shown that microorganisms affect RA pathogenesis. However, few studies have examined the microbial distribution of early RA patients, particularly female patients. In the present study, we investigated the gut microbiome profile and microbial functions in early RA female patients, including preclinical and clinically apparent RA cases. Changes in microbiological diversity, composition, and function in each group were analyzed using quantitative insights into microbial ecology (QIIME) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). The results revealed the dysbiosis due to decreased diversity in the early RA patients compared with healthy subjects. There were significant differences in the microbial distribution of various taxa from phylum to genus levels between healthy subjects and early RA patients. Phylum Bacteroidetes was enriched in early RA patients, while Actinobacteria, including the genus Collinsella, was enriched in healthy subjects. Functional analysis based on clusters of orthologous groups revealed that the genes related to the biosynthesis of menaquinone, known to be derived from gram-positive bacteria, were enriched in healthy subjects, while iron transport-related genes were enriched in early RA patients. Genes related to the biosynthesis of lipopolysaccharide, the gram-negative bacterial endotoxin, were enriched in clinically apparent RA patients. The obvious differences in microbial diversity, taxa, and associated functions of the gut microbiota between healthy subjects and early RA patients highlight the involvement of the gut microbiome in the early stages of RA.

RevDate: 2019-06-10

Bautista-de Los Santos QM, Chavarria KA, KL Nelson (2019)

Understanding the impacts of intermittent supply on the drinking water microbiome.

Current opinion in biotechnology, 57:167-174 pii:S0958-1669(18)30165-4 [Epub ahead of print].

Increasing access to piped water in low-income and middle-income countries combined with the many factors that threaten our drinking water supply infrastructure mean that intermittent water supply (IWS) will remain a common practice around the world. Common features of IWS include water stagnation, pipe drainage, intrusion, backflow, first flush events, and household storage. IWS has been shown to cause degradation as measured by traditional microbial water quality indicators. In this review, we build on new insights into the microbial ecology of continuous water supply systems revealed by sequencing methods to speculate about how intermittent supply conditions may further influence the drinking water microbiome, and identify priorities for future research.

RevDate: 2019-05-17

Nguyen B, Rubbens P, Kerckhof FM, et al (2019)

Learning Single-Cell Distances from Cytometry Data.

Cytometry. Part A : the journal of the International Society for Analytical Cytology [Epub ahead of print].

Recent years have seen an increased interest in employing data analysis techniques for the automated identification of cell populations in the field of cytometry. These techniques highly depend on the use of a distance metric, a function that quantifies the distances between single-cell measurements. In most cases, researchers simply use the Euclidean distance metric. In this article, we exploit the availability of single-cell labels to find an optimal Mahalanobis distance metric derived from the data. We show that such a Mahalanobis distance metric results in an improved identification of cell populations compared with the Euclidean distance metric. Once determined, it can be used for the analysis of multiple samples that were measured under the same experimental setup. We illustrate this approach for cytometry data from two different origins, that is, flow cytometry applied to microbial cells and mass cytometry for the analysis of human blood cells. We also illustrate that such a distance metric results in an improved identification of cell populations when clustering methods are employed. Generally, these results imply that the performance of data analysis techniques can be improved by using a more advanced distance metric. © 2019 International Society for Advancement of Cytometry.

RevDate: 2019-05-19

Sato Y, Hori T, Koike H, et al (2019)

Transcriptome analysis of activated sludge microbiomes reveals an unexpected role of minority nitrifiers in carbon metabolism.

Communications biology, 2:179 pii:418.

Although metagenomics researches have illuminated microbial diversity in numerous biospheres, understanding individual microbial functions is yet difficult due to the complexity of ecosystems. To address this issue, we applied a metagenome-independent, de novo assembly-based metatranscriptomics to a complex microbiome, activated sludge, which has been used for wastewater treatment for over a century. Even though two bioreactors were operated under the same conditions, their performances differed from each other with unknown causes. Metatranscriptome profiles in high- and low-performance reactors demonstrated that denitrifiers contributed to the anaerobic degradation of heavy oil; however, no marked difference in the gene expression was found. Instead, gene expression-based nitrification activities that fueled the denitrifiers by providing the respiratory substrate were notably high in the high-performance reactor only. Nitrifiers-small minorities with relative abundances of <0.25%-governed the heavy-oil degradation performances of the reactors, unveiling an unexpected linkage of carbon- and nitrogen-metabolisms of the complex microbiome.

RevDate: 2019-05-29

Brumley DR, Carrara F, Hein AM, et al (2019)

Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients.

Proceedings of the National Academy of Sciences of the United States of America, 116(22):10792-10797.

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear. Here, we use an experimental platform to create realistic submillimeter-scale nutrient pulses with controlled nutrient concentrations. By combining experiments, mathematical theory, and agent-based simulations, we show that individual Vibrio ordalii bacteria begin chemotaxis toward hotspots of dissolved organic matter (DOM) when the magnitude of the chemical gradient rises sufficiently far above the sensory noise that is generated by stochastic encounters with chemoattractant molecules. Each DOM hotspot is surrounded by a dynamic ring of chemotaxing cells, which congregate in regions of high DOM concentration before dispersing as DOM diffuses and gradients become too noisy for cells to respond to. We demonstrate that V. ordalii operates close to the theoretical limits on chemotactic precision. Numerical simulations of chemotactic bacteria, in which molecule counting noise is explicitly taken into account, point at a tradeoff between nutrient acquisition and the cost of chemotactic precision. More generally, our results illustrate how limits on sensory precision can be used to understand the location, spatial extent, and lifespan of bacterial behavioral responses in ecologically relevant environments.

RevDate: 2019-06-10

Di Lonardo DP, de Boer W, Zweers H, et al (2019)

Effect of the amount of organic trigger compounds, nitrogen and soil microbial biomass on the magnitude of priming of soil organic matter.

PloS one, 14(5):e0216730 pii:PONE-D-19-07199.

Priming effects (PEs) are defined as short-term changes in the turnover of soil organic matter (SOM) caused by the addition of easily degradable organic compounds to the soil. PEs are ubiquitous but the direction (acceleration or retardation of SOM decomposition) and magnitude are not easy to predict. It has been suggested that the ratio between the amount of added PE-triggering substrate to the size of initial soil microbial biomass is an important factor influencing PEs. However, this is mainly based on comparison of different studies and not on direct experimentation. The aim of the current study is to examine the impact of glucose-to-microbial biomass ratios on PEs for three different ecosystems. We did this by adding three different amounts of 13C-glucose with or without addition of mineral N (NH4NO3) to soils collected from arable lands, grasslands and forests. The addition of 13C-glucose was equivalent to 15%, 50% and 200% of microbial biomass C. After one month of incubation, glucose had induced positive PEs for almost all the treatments, with differences in magnitude related to the soil origin and the amount of glucose added. For arable and forest soils, the primed C increased with increasing amount of glucose added, whereas for grassland soils this relationship was negative. We found positive correlations between glucose-derived C and primed C and the strength of these correlations was different among the three ecosystems considered. Generally, additions of mineral N next to glucose (C:N = 15:1) had little effect on the flux of substrate-derived C and primed C. Overall, our study does not support the hypothesis that the trigger-substrate to microbial biomass ratio can be an important predictor of PEs. Rather our results indicate that the amount of energy obtained from decomposing trigger substrates is an important factor for the magnitude of PEs.

RevDate: 2019-05-16

Woodhams DC, Rollins-Smith LA, Reinert LK, et al (2019)

Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria.

Microbial ecology pii:10.1007/s00248-019-01385-9 [Epub ahead of print].

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Order from Amazon

This book covers the ecological activities of microbes in the biosphere with an emphasis on microbial interactions within their environments and communities In thirteen concise and timely chapters, Microbial Ecology presents a broad overview of this rapidly growing field, explaining the basic principles in an easy-to-follow manner. Using an integrative approach, it comprehensively covers traditional issues in ecology as well as cutting-edge content at the intersection of ecology, microbiology,

21454 NE 143rd Street
Woodinville, WA 98077

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )