About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

26 Jan 2022 at 01:35
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 26 Jan 2022 at 01:35 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: "microbial ecology" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-01-20

Aranda-Díaz A, Ng KM, Thomsen T, et al (2022)

Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota.

Cell host & microbe pii:S1931-3128(21)00579-5 [Epub ahead of print].

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.

RevDate: 2022-01-20

Quiroga MV, Valverde A, Mataloni G, et al (2022)

The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution.

Environmental microbiology [Epub ahead of print].

As functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e., clustering ASVs into OTUs with decreasing sequence identity thresholds). We found that the relative influence of the community assembly processes varies with phylogenetic resolution. More specifically, selection processes seem to impose stronger influence at finer (100% sequence similarity ASV) than at coarser (99%-97% sequence similarity OTUs) resolution. We identified environmental features related with the ecological processes and propose a conceptual model for the bacterial community assembly in this Antarctic ecosystem. Briefly, eco-evolutionary processes appear to be leading to different but very closely related ASVs in lotic, lentic and terrestrial environments. In all, this study shows that assessing community assembly processes at different phylogenetic resolutions is key to improve our understanding of microbial ecology. More importantly, a failure to detect selection processes at coarser phylogenetic resolution does not imply the absence of such processes at finer resolutions. This article is protected by copyright. All rights reserved.

RevDate: 2022-01-20

Boscaro V, Manassero V, Keeling PJ, et al (2022)

Single-cell Microbiomics Unveils Distribution and Patterns of Microbial Symbioses in the Natural Environment.

Microbial ecology [Epub ahead of print].

Protist-bacteria associations are extremely common. Among them, those involving ciliates of the genus Euplotes are emerging as models for symbioses between prokaryotes and eukaryotes, and a great deal of information is available from cultured representatives of this system. Even so, as for most known microbial symbioses, data on natural populations is lacking, and their ecology remains largely unexplored; how well lab cultures represent actual diversity is untested. Here, we describe a survey on natural populations of Euplotes based on a single-cell microbiomic approach, focusing on taxa that include known endosymbionts of this ciliate. The results reveal an unexpected variability in symbiotic communities, with individual hosts of the same population harboring different sets of bacterial endosymbionts. Co-occurring Euplotes individuals of the same population can even have different essential symbionts, Polynucleobacter and "Candidatus Protistobacter," which might suggest that replacement events could be more frequent in nature than previously hypothesized. Accessory symbionts are even more variable: some showed a strong affinity for one host species, some for a sampling site, and two ("Candidatus Cyrtobacter" and "Candidatus Anadelfobacter") displayed an unusual pattern of competitive exclusion. These data represent the first insight into the prevalence and patterns of bacterial symbionts in natural populations of free-living protists.

RevDate: 2022-01-20

Belibasakis GN (2020)

Grand Challenges in Oral Infections and Microbes.

Frontiers in oral health, 1:2.

RevDate: 2022-01-19

Kanisan DP, Quek ZBR, Oh RM, et al (2022)

Diversity and Distribution of Microbial Communities Associated with Reef Corals of the Malay Peninsula.

Microbial ecology [Epub ahead of print].

Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.

RevDate: 2022-01-19

Song B, Li Y, Yang L, et al (2022)

Soil Acidification Under Long-Term N Addition Decreases the Diversity of Soil Bacteria and Fungi and Changes Their Community Composition in a Semiarid Grassland.

Microbial ecology [Epub ahead of print].

Soil microorganisms play key roles in terrestrial biogeochemical cycles and ecosystem functions. However, few studies address how long-term nitrogen (N) addition gradients impact soil bacterial and fungal diversity and community composition simultaneously. Here, we investigated soil bacterial and fungal diversity and community composition based on a long-term (17 years) N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 year-1) in temperate grassland, using the high-throughput Illumina MiSeq sequencing. Results showed that both soil bacterial and fungal alpha diversity responded nonlinearly to the N input gradient and reduced drastically when the N addition rate reached 32 g N m-2 year-1. The relative abundance of soil bacterial phyla Proteobacteria increased and Acidobacteria decreased significantly with increasing N level. In addition, the relative abundance of bacterial functional groups associated with aerobic ammonia oxidation, aerobic nitrite oxidation, nitrification, respiration of sulfate and sulfur compounds, and chitinolysis significantly decreased under the highest N addition treatment. For soil fungi, the relative abundance of Ascomycota increased linearly along the N enrichment gradient. These results suggest that changes in soil microbial community composition under elevated N do not always support the copiotrophic-oligotrophic hypothesis, and some certain functional bacteria would not simply be controlled by soil nutrients. Further analysis illustrated that reduced soil pH under N addition was the main factor driving variations in soil microbial diversity and community structure in this grassland. Our findings highlight the consistently nonlinear responses of soil bacterial and fungal diversity to increasing N input and the significant effects of soil acidification on soil microbial communities, which can be helpful for the prediction of underground ecosystem processes in light of future rising N deposition.

RevDate: 2022-01-19

Kauffman KM, Chang WK, Brown JM, et al (2022)

Resolving the structure of phage-bacteria interactions in the context of natural diversity.

Nature communications, 13(1):372.

Microbial communities are shaped by viral predators. Yet, resolving which viruses (phages) and bacteria are interacting is a major challenge in the context of natural levels of microbial diversity. Thus, fundamental features of how phage-bacteria interactions are structured and evolve in the wild remain poorly resolved. Here we use large-scale isolation of environmental marine Vibrio bacteria and their phages to obtain estimates of strain-level phage predator loads, and use all-by-all host range assays to discover how phage and host genomic diversity shape interactions. We show that lytic interactions in environmental interaction networks (as observed in agar overlay) are sparse-with phage predator loads being low for most bacterial strains, and phages being host-strain-specific. Paradoxically, we also find that although overlap in killing is generally rare between tailed phages, recombination is common. Together, these results suggest that recombination during cryptic co-infections is an important mode of phage evolution in microbial communities. In the development of phages for bioengineering and therapeutics it is important to consider that nucleic acids of introduced phages may spread into local phage populations through recombination, and that the likelihood of transfer is not predictable based on lytic host range.

RevDate: 2022-01-18

Taylor D, Verdon N, Lomax P, et al (2022)

Tracking the stochastic growth of bacterial populations in microfluidic droplets.

Physical biology [Epub ahead of print].

Bacterial growth in microfluidic droplets is relevant in biotechnology, in microbial ecology, and in understanding stochastic population dynamics in small populations. However, it has proved challenging to automate measurement of absolute bacterial numbers within droplets, forcing the use of proxy measures for population size. Here we present a microfluidic device and imaging protocol that allows high-resolution imaging of thousands of droplets, such that individual bacteria stay in the focal plane and can be counted automatically. Using this approach, we track the stochastic growth of hundreds of replicate Escherichia coli populations within droplets. {We find that, for early times, the statistics of the growth trajectories obey the predictions of the Bellman-Harris model, in which there is no inheritance of division time. Our approach should allow further testing of models for stochastic growth dynamics, as well as contributing to broader applications of droplet-based bacterial culture.

RevDate: 2022-01-18

Runge P, Ventura F, Kemen E, et al (2022)

Distinct Phyllosphere Microbiome of Wild Tomato Species in Central Peru upon Dysbiosis.

Microbial ecology [Epub ahead of print].

Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world's most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.

RevDate: 2022-01-18

Dragone NB, Henley JB, Holland-Moritz H, et al (2022)

Elevational Constraints on the Composition and Genomic Attributes of Microbial Communities in Antarctic Soils.

mSystems [Epub ahead of print].

The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth.

RevDate: 2022-01-18

David MM, Tataru C, Pope Q, et al (2022)

Revealing General Patterns of Microbiomes That Transcend Systems: Potential and Challenges of Deep Transfer Learning.

mSystems [Epub ahead of print].

A growing body of research has established that the microbiome can mediate the dynamics and functional capacities of diverse biological systems. Yet, we understand little about what governs the response of these microbial communities to host or environmental changes. Most efforts to model microbiomes focus on defining the relationships between the microbiome, host, and environmental features within a specified study system and therefore fail to capture those that may be evident across multiple systems. In parallel with these developments in microbiome research, computer scientists have developed a variety of machine learning tools that can identify subtle, but informative, patterns from complex data. Here, we recommend using deep transfer learning to resolve microbiome patterns that transcend study systems. By leveraging diverse public data sets in an unsupervised way, such models can learn contextual relationships between features and build on those patterns to perform subsequent tasks (e.g., classification) within specific biological contexts.

RevDate: 2022-01-18

Liu H, Lin G, Gao D, et al (2022)

Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf.

Microbial ecology [Epub ahead of print].

Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.

RevDate: 2022-01-18

Silva-Sanzana C, Gangas MV, Zavala D, et al (2022)

A Recipe for Success: Three Key Strategies Used by Aphids and Pseudomonas syringae to Colonize the Phyllosphere.

Microbial ecology [Epub ahead of print].

Aphids and Pseudomonas syringae are a permanent challenge for agriculture, causing severe losses to the crop industry worldwide. Despite the obvious phylogenetic distance between them, both have become predominant colonizers of the plant kingdom. In this study, we reviewed three key steps of spread and colonization that aphids and P. syringae have mastered to successfully colonize the phyllosphere. These steps involve (i) plant-to-plant movement for locating new nutritional sources, (ii) disruption and modification of the apoplast to facilitate nutrient acquisition, and (iii) suppression of host defenses through effector proteins. In addition, we will provide insights about the direct interaction between aphids and P. syringae and how this yet underrated phenomenon could bring new ecological implications for both organisms beyond their pathogenicity.

RevDate: 2022-01-17

Tang G, Xu L, Wang X, et al (2022)

Effects of Leaf Morphological and Chemical Properties on the Population Sizes of Epiphytes.

Microbial ecology [Epub ahead of print].

To explore the main factors affecting the distribution of microbes on leaf surfaces, the relationship between population sizes of epiphytes and the morphological structure and main physical and chemical properties of leaves from stylo (Stylosanthes guianensis), alfalfa (Medicago sativa), maize (Zea mays), and cocksfoot (Dactylis glomerata) were investigated. The research results showed that the contents of soluble sugar and total phenolics on the leaf surfaces were positively correlated with those in the leaf tissues (P < 0.001). The leaves with high wax content had better moisture retention capacity. The content of soluble sugar on the leaf surfaces was positively correlated with population sizes of lactic acid bacteria (LAB), aerobic bacteria, yeasts, and molds (P < 0.001). Likewise, a positive correlation was found between the content of inorganic phosphorus on the leaf surfaces and population sizes of LAB and aerobic bacteria. The total amount of wax on leaf surfaces was negatively related to population sizes of microbes, especially aerobic bacteria (P < 0.01) and molds (P < 0.001). On the contrary, the presence of trichomes provides a shelter for epiphytes and was positively correlated with population sizes of epiphytes at different degrees of significance. In conclusion, population sizes of epiphytes on the leaf surfaces were not only affected by chemical properties, but also by morphological traits of leaves.

RevDate: 2022-01-16

Lin Y, Ye G, Hu HW, et al (2022)

Plant Species-Driven Distribution of Individual Clades of Comammox Nitrospira in a Subtropical Estuarine Wetland.

Microbial ecology [Epub ahead of print].

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.

RevDate: 2022-01-16

Sakarika M, Ganigué R, K Rabaey (2022)

Methylotrophs: from C1 compounds to food.

Current opinion in biotechnology, 75:102685 pii:S0958-1669(22)00005-2 [Epub ahead of print].

Microbial protein (MP) is back on the table after decades of slumbering interest. One-carbon (C1) substrates are attractive for MP production due to their efficient production from CO2 and renewable electricity, linking carbon capture to food while circumventing agriculture. Here we compared all reported combinations of C1 (formate/methanol/methane) and microorganisms (bacteria/yeasts) in terms of engineering and biomass quality parameters, focusing on the amino acid match with human requirements. This meta-analysis based on >100 studies suggests that methanol is the most promising C1, and methanol-grown microorganisms seem most nutritional with bacteria and yeasts having different merits. More sustainable MP could be produced if metabolic engineering tools yielding microorganisms with more efficient C1 assimilation pathways and steered amino acid profiles are deployed.

RevDate: 2022-01-16

Acquier M, De Précigout V, Delmas Y, et al (2022)

[Diagnosis and treatment of catheter-related bloodstream infection in hemodialysis: 10 years later].

Nephrologie & therapeutique pii:S1769-7255(21)00541-1 [Epub ahead of print].

Patients in hemodialysis on central venous catheter as vascular access are at risk of infections. Catheter-related bloodstream infection is one of the most serious catheter-complications in hemodialysis patients. Its clinical and microbiological diagnosis is challenging. The implementation of empiric antibiotic therapy is based on old recommendations proposing the combination of a molecule targeting methicillin-resistant Staphylococcus aureus and a betalactamin active on P. aeruginosa, and also adapting this probabilistic treatment by carrying out a microbiological register on a local scale, which is rarely done. In our hemodialysis center at Bordeaux University Hospital, an analysis of the microorganisms causing all catheter-related bloodstream infection over the period 2018-2020 enabled us to propose, in agreement with the infectious disease specialists, an adapted probabilistic antibiotic therapy protocol. This approach allowed us to observe a low incidence of meticillinoresistance of Staphylococcus. For catheters inserted more than 6 months ago, we observed no Staphylococcus, no multi-resistant Pseudomonas, and only 2% of Enterobacteria resistant to cephalosporins. A frequent updating of the microbiological epidemiology of catheter-related bloodstream infection, in partnership with the infectious diseases team in each hemodialysis center, allowing an adaptation of the probabilistic antibiotic therapy, and seems to have a good feasibility. This strategy might favor the preservation of microbial ecology on an individual and collective scale in maintenance hemodialysis patients.

RevDate: 2022-01-16

Tran HT, Nguyen HM, Nguyen TM, et al (2022)

Microbial Communities Along 2,3,7,8-tetrachlorodibenzodioxin Concentration Gradient in Soils Polluted with Agent Orange Based on Metagenomic Analyses.

Microbial ecology [Epub ahead of print].

The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.

RevDate: 2022-01-15

Wang W, Wang H, Cheng X, et al (2022)

Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(22)00026-4 [Epub ahead of print].

Bacterial communities in antimony (Sb) polluted soils have been well addressed, whereas the important players fungal communities are far less studied to date. Here, we report different responses of bacterial and fungal communities to Sb contamination and the ecological processes controlling their community assembly. Soil samples in the Xikuangshan mining area were collected and subjected to high through-put sequencing of 16S rRNA and ITS1 to investigate bacterial and fungal communities, respectively, along an Sb gradient. Sb speciation in the soil samples and other physicochemical parameters were analyzed as well. Bacterial communities were dominated by Deltaproteobacteria in the soil with highest Sb concentration, whereas Chloroflexi were dominant in the soil with lowest Sb concentration. Fungal communities in high-Sb soils were predominated by unclassified Fungi, whilst Leotiomycetes were dominant in low-Sb soil samples. Multivariate analysis indicated that Sb, pH and soil texture were the main drivers to strongly impact microbial communities. We further identified Sb-resistant microbial groups via correlation analysis. In total, 18 bacterial amplicon sequence variants (ASV) were found to potentially involve in biogeochemical cycles such as Sb oxidation, sulfur oxidation or nitrate reduction, whereas 12 fungal ASVs were singled out for potential heavy metal resistance and plant growth promotion. Community assembly analysis revealed that variable selection contributed 100% to bacterial community assembly under acidic or high Sb concentration conditions, whereas homogeneous selection dominated fungal community assembly with a contribution over 78.9%. The community assembly of Sb-resistant microorganisms was mainly controlled by stochastic process. The results offer new insights into microbial ecology in Sb-contaminated soils, especially on the different responses of microbial communities under identical environmental stress and the different ecological processes underlining bacterial and fungal community assembly.

RevDate: 2022-01-14

Lim K, Rolston M, Barnum S, et al (2022)

A biogeographic 16S rRNA survey of bacterial communities of ureolytic biomineralization from California public restrooms.

PloS one, 17(1):e0262425 pii:PONE-D-21-08739.

In this study, we examined the total bacterial community associated with ureolytic biomineralization from urine drainage systems. Biomineral samples were obtained from 11 California Department of Transportation public restrooms fitted with waterless, low-flow, or conventional urinals in 2019. Following high throughput 16S rRNA Illumina sequences processed using the DADA2 pipeline, the microbial diversity assessment of 169 biomineral and urine samples resulted in 3,869 reference sequences aggregated as 598 operational taxonomic units (OTUs). Using PERMANOVA testing, we found strong, significant differences between biomineral samples grouped by intrasystem sampling location and urinal type. Biomineral microbial community profiles and alpha diversities differed significantly when controlling for sampling season. Observational statistics revealed that biomineral samples obtained from waterless urinals contained the largest ureC/16S gene copy ratios and were the least diverse urinal type in terms of Shannon indices. Waterless urinal biomineral samples were largely dominated by the Bacilli class (86.1%) compared to low-flow (41.3%) and conventional samples (20.5%), and had the fewest genera that account for less than 2.5% relative abundance per OTU. Our findings are useful for future microbial ecology studies of urine source-separation technologies, as we have established a comparative basis using a large sample size and study area.

RevDate: 2022-01-14

Guzzon R, Bertoldi D, Roman T, et al (2022)

Spatial and Seasonal Structure of Bacterial Communities Within Alpine Vineyards: Trentino as a Case Study.

Microbial ecology [Epub ahead of print].

Bacteria have a fundamental role in determining the fitness of grapevine, the composition of grapes and the features of wines but at present, little information is available. In this work, the bacteria colonizing the different portions of grapevine (bark, leaves and grapes) were explored in the vineyards of the Alpine region of Trentino, considering the impact of different environmental and agronomical variables. The vineyards included in the work were selected based on their different geographical positions (altitude) and grapevine training systems in order to explore the whole variability of the grapevine ecosystem. Moreover, the surface amount of copper was measured on grapes and leaves during the vegetative growth. Bacterial analysis, performed using plate counts and Illumina MiSeq, revealed an increase in the concentration of grape bacteria proportional to the progress of the ripening stage. Conversely, the peak of bacterial concentration onto leaf and bark samples occurred in August, probably due to the more favourable environmental conditions. In bark samples, the bacterial microbiota reached the 7 log CFU/cm2, while 6 log UFC/g were measured in grape samples. A remarkable biodiversity was observed, with 13 phyla, 35 classes, 55 orders, 78 families and 95 genera of bacteria present. The presence of some taxa (Alphaproteobacteria, Desulfovibrionaceae, Clostriadiales, Oscillospira, Lachnospiraceae and Bacteroidales) was ubiquitous in all vineyards, but differences in terms of relative abundance were observed according to the vegetative stage, altitude of the vineyard and training system. Bacteria having oenological implication (Lactobacillus, Pediococcus and Oenococcus) were detected in grape samples collected in August, in low abundance. The data revealed a complex bacterial ecosystem inside the vineyard that, while maintaining common traits, evolves according to environmental and agronomical inputs. This study contributes to define the role of bacteria in the complex balance established in each vineyard between human actions and agricultural environment, known as terroir.

RevDate: 2022-01-13

Gregson BH, Bani A, Steinfield L, et al (2022)

Anaerobes and methanogens dominate the microbial communities in water harvesting ponds used by Kenyan rural smallholder farmers.

The Science of the total environment pii:S0048-9697(22)00130-9 [Epub ahead of print].

Many rural smallholder farmers in Kenya use water-harvesting ponds, to collect rainwater, as sustainable sources of water for domestic and agricultural purposes. There is currently limited information regarding the microbial ecology in these ponds. Here, we used High Throughput Sequencing (HTS) to characterize the microorganisms present (including potential pathogens and indicator species) alongside ion chromatography to measure water chemistry (anion and cation concentration). Fluoride and magnesium concentration were the strongest predictor variables of the microbial community. Obligately or facultatively anaerobic bacterial genera (e.g. Spirochaeta and Opitutus) were abundant within the bacterial community, whilst Woesearchaeota and methanogens dominated the archaeal community. This suggests the water in the ponds is hypoxic or anoxic, and if used for irrigation, may potentially impact crop yield and viability. In addition, the opportunistic pathogen non-tuberculous mycobacteria (NTM), Mycobacterium fortuitum was found, comprising >1% of the bacterial community, suggesting a potential human health risk. Here we suggest low-cost changes to pond management, to improve or ameliorate pond anoxia and remove pathogens to benefit the livelihoods and welfare of these farms. This study also shows the applicability of HTS to broadly screen the microbial communities, assess water quality, and identify potentially pathogenic groups.

RevDate: 2022-01-13

Cowan DA, Ferrari BC, CP McKay (2022)

Out of Thin Air? Astrobiology and Atmospheric Chemotrophy.

Astrobiology [Epub ahead of print].

The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.

RevDate: 2022-01-13

Pan C, Feng Q, Li Y, et al (2022)

Rare soil bacteria are more responsive in desertification restoration than abundant bacteria.

Environmental science and pollution research international pii:10.1007/s11356-021-16830-x [Epub ahead of print].

Soil microbes play key roles in ecosystem functions, especially in the recovery of ecosystems from disturbance, and exploring community assembly under changing environments has long been a central theme in microbial ecology. The response of abundant and rare bacteria in desertified land to restoration is still unclear. Here, we investigated the effects of vegetation restoration on the assemblage patterns of abundant and rare bacteria in soil across the four sandy lands (Hulunbeir, Horqin, Otindag, and Mu Us) in northern China. Our results revealed that abundant bacteria maintained a relatively stable state under restoration, whereas rare taxa were more responsive, indicating the higher resilience of the rare community to change. Our network analysis also showed that restoration promoted destabilizing properties in rare, but not in abundant, bacterial co-occurrence networks in soil. Environmental selection played a key role in abundant and rare community assembly under restoration. Of the two, the rare subcommunity was mainly affected by environmental filtering. The variations in the abundant and rare communities at the sampling sites under restoration were controlled mainly by plant species richness, and stronger effects were observed in the rare taxa. Overall, these results provide new insight into the mechanisms controlling bacterial community assembly in response to vegetation restoration.

RevDate: 2022-01-13

Gao C, Yang X, Zhao C, et al (2022)

Characterization of a novel Vibrio parahaemolyticus host-phage pair and antibacterial effect against the host.

Archives of virology [Epub ahead of print].

Vibrio parahaemolyticus is a widely recognized pathogen that has caused numerous outbreaks and is prevalent in the marine environment. In this study, we investigated the characteristics of the novel V. parahaemolyticus strain BTXS2 and its associated phage, VB_VpP_BT-1011, isolated from the Bohai Coast (Tianjin, China). Strain BTXS2 is a short coryneform bacterium with a terminal flagellum and is able to utilize and metabolize a wide variety of organic matter because of its unique carbon source utilization and enzyme activity. It grows well in medium between pH 5.0 and 9.0 and salinities of simulated freshwater, estuary water, and seawater (NaCl 0.5%-3%). Multiple antibiotic resistance genes and virulence genes that endanger human health were found in the BTXS2 genome. Phage VB_VpP_BT-1011, which infects BTXS2, is a 40,065-bp double-stranded DNA virus of the family Myoviridae with a latent time of 30 min and burst size of 24 PFU/cell. Like its host, the phage tolerates a broad range of environmental conditions (salinity, 0-3% NaCl; pH 5.0-9.0; temperature, 4-37°C). A host range test showed that the phage only infected and inhibited isolate BTXS2. In summary, we investigated a novel V. parahaemolyticus host-phage pair and the antibacterial effect of the phage on V. parahaemolyticus, providing insights into marine microbial ecology and risks.

RevDate: 2022-01-13

Djemiel C, Maron PA, Terrat S, et al (2022)

Inferring microbiota functions from taxonomic genes: a review.

GigaScience, 11(1):.

Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information. This cheaper approach in every aspect serves as an alternative to shotgun sequencing. Although these tools are increasingly used by ecologists, an objective evaluation of their modularity, portability, and robustness is lacking. Here, we reviewed 100 scientific papers on functional inference and ecological trait assignment to rank the advantages, specificities, and drawbacks of these tools, using a scientific benchmarking. To date, inference tools have been mainly devoted to bacterial functions, and ecological trait assignment tools, to fungal functions. A major limitation is the lack of reference genomes-compared with the human microbiota-especially for complex ecosystems such as soils. Finally, we explore applied research prospects. These tools are promising and already provide relevant information on ecosystem functioning, but standardized indicators and corresponding repositories are still lacking that would enable them to be used for operational diagnosis.

RevDate: 2022-01-13

Ghosh P, Bera A, Ghosh A, et al (2020)

Side-Chain Proline-Based Polymers as Effective Inhibitors for In Vitro Aggregation of Insulin.

ACS applied bio materials, 3(8):5407-5419.

Insulin fibril formation is considered as the hallmark of several debilitating pathological conditions. To develop effective therapeutics that are able to control the amyloidogenesis process and inhibit fibril formation, herein we have designed a side-chain proline (Pro)-based homopolymer and block copolymers through the reversible addition-fragmentation chain transfer (RAFT) polymerization technique and further explored their obligatory role in the in vitro insulin fibrillation process. Using a variety of biophysical tools, including turbidity measurements, thioflavin T (ThT) fluorescence kinetics, tyrosine (Tyr) fluorescence study, Nile red (NR) fluorescence assay, dynamic light scattering (DLS) study, circular dichroism (CD) measurements, and isothermal titration calorimetry (ITC) techniques, we demonstrated that Pro-based polymers can significantly inhibit the insulin fibrillation process. Among them, the Pro-based homopolymer acts as the most potent inhibitor of insulin fibrillation as confirmed by ThT assay, CD study, and transmission electron microscopic (TEM) analysis. Tyrosine fluorescence measurements and NR fluorescence assay revealed that hydrophobic interactions are the crucial factor that mainly controls the inhibition process. Apart from hydrophobic interactions, polar interactions may also be responsible for the inhibition process as evaluated by ITC study.

RevDate: 2022-01-12

Sahu PK, Tilgam J, Mishra S, et al (2022)

Surface sterilization for isolation of endophytes: Ensuring what (not) to grow.

Journal of basic microbiology [Epub ahead of print].

Endophytic microbiota opens a magnificent arena of metabolites that served as a potential source of medicines for treating a variety of ailments and having prospective uses in agriculture, food, cosmetics, and many more. There are umpteen reports of endophytes improving the growth and tolerance of plants. In addition, endophytes from lifesaving drug-producing plants such as Taxus, Nothapodytes, Catharanthus, and so forth have the ability to produce host mimicking compounds. To harness these benefits, it is imperative to isolate the true endophytes, not the surface microflora. The foremost step in endophyte isolation is the removal of epiphytic microbes from plant tissues, called as surface sterilization. The success of surface sterilization decides "what to grow" (the endophytes) and "what not to grow" (the epiphytes). It is very crucial to use an appropriate sterilant solution, concentration, and exposure time to ensure thorough surface disinfection with minimal damage to the endophytic diversity. Commonly used surface sterilants include sodium hypochlorite (2%-10%), ethanol (70%-90%), mercuric chloride (0.1%), formaldehyde (40%), and so forth. In addition, the efficiency could further be improved by pretreatment with surfactants such as Triton X-100, Tween 80, and Tween 20. This review comprehensively deals with the various sterilants and sterilization methods for the isolation of endophytic microbes. In addition, the mechanisms and rationale behind using specific surface sterilants have also been elaborated at length.

RevDate: 2022-01-12

Yin Y, Yuan Y, Zhang X, et al (2022)

Comparison of the Responses of Soil Fungal Community to Straw, Inorganic Fertilizer, and Compost in a Farmland in the Loess Plateau.

Microbiology spectrum [Epub ahead of print].

The Loess Plateau is located in the arid and semi-arid regions in northern China. The ecosystem is particularly sensitive to natural and anthropogenic disturbances. Fungi can produce extracellular enzymes, decompose a variety of organic matter, and regulate carbon and nutrient balance. We studied the changes of soil fungal community compositions in response to straw, inorganic fertilizer, and compost in a typical farmland in the Loess Plateau. Our results demonstrated that the addition of straw significantly reduces the Shannon index of the fungal community, in addition, the participation of straw significantly affects the composition of the fungal community. Functional prediction based on FUNGuild showed that straw significantly reduced the relative abundance of saprotrophs, pathotrophs, symbiotrophs, lichenized, ectomycorrhizal, and plant pathogens. Although fertilization practices destroyed the co-occurrence pattern among the fungal species, the addition of straw alleviated this affect. No significant effect of straw, compost, and inorganic fertilizers on the co-occurrence pattern among species in the soil fungal community was observed. Compared with compost and inorganic fertilizer, the addition of straw shaped the community composition by changing the relative abundance of fungal functional taxa. Thus, in the fragile Loess Plateau environment, over-fertilizing or non-order-fertilizing may destroy the co-occurrence pattern of the fungal communities and Loess Plateau ecosystem. IMPORTANCE Determining the response of soil fungi in sensitive ecosystems to external environmental disturbances is an important, yet little-known, topic in microbial ecology. In this study, we evaluated the impact of traditional fertilization management practices on the composition, co-occurrence pattern, and functional groups of fungal communities in loessial soil. Our results show that in the fragile Loess Plateau environment, fertilizer management changed the composition of the fungal community and disrupted the co-occurrence pattern between fungi. The application of straw alleviates the destroying of the co-occurrence pattern. The current research emphasizes the necessity of rational fertilization of farmland in loessial soil.

RevDate: 2022-01-12

Kong J, Wang L, Lin C, et al (2022)

Contrasting Community Assembly Mechanisms Underlie Similar Biogeographic Patterns of Surface Microbiota in the Tropical North Pacific Ocean.

Microbiology spectrum [Epub ahead of print].

Marine microbiota are critical components of global biogeochemical cycles. However, the biogeographic patterns and ecological processes that structure them remain poorly understood, especially in the oligotrophic ocean. In this study, we used high-throughput sequencing of 16S and 18S rRNA genes to investigate the distribution patterns of bacterial and microeukaryotic communities and their assembly mechanisms in the surface waters of the tropical North Pacific Ocean. The fact that both the bacterial and the microeukaryotic communities showed similar distribution patterns (i.e., similar distance-decay patterns) and were clustered according to their geographic origin (i.e., the western tropical North Pacific and central tropical North Pacific) suggested that there was a significant biogeographic pattern of microbiota in the North Pacific Ocean. Indices of alpha diversity such as species richness, phylogenetic diversity, and the Shannon diversity index also differed significantly between regions. The correlations were generally similar between spatial and environmental variables and the alpha and beta diversities of bacteria and microeukaryotes across the entire region. The relative importance of ecological processes differed between bacteria and microeukaryotes: ecological drift was the principal mechanism that accounted for the structure of bacterial communities; heterogeneous selection, dispersal limitation, and ecological drift collectively explained much of the turnover of the microeukaryote communities. IMPORTANCE Bacteria and microeukaryotes are extremely diverse groups in the ocean, where they regulate elemental cycling and energy flow. Studies of marine microbial ecology have benefited greatly from the rapid progress that has been made in genomic sequencing and theoretical microbial ecology. However, the spatial distribution of marine bacteria and microeukaryotes and the nature of the assembly mechanisms that determine their distribution patterns in oligotrophic marine waters are poorly understood. In this study, we used high-throughput sequencing methods to identify the distribution patterns and ecological processes of bacteria and microeukaryotes in an oligotrophic, tropical ocean. Our study showed that contrasting community assembly mechanisms underlaid similar biogeographic patterns of surface bacterial and microeukaryotic communities in the tropical North Pacific Ocean.

RevDate: 2022-01-12

Zhang W, Qi T, Yao L, et al (2022)

Influence of Environmental Factors on Salivary Microbiota and Their Metabolic Pathway: Next-Generation Sequencing Approach.

Microbial ecology [Epub ahead of print].

The current study aimed to investigate the effect of periodontitis and long-term heavy metal (HM) exposure on the salivary microbiome. The patients were divided into four groups as Wu Wei control (WWC) group involved healthy individuals, Wu Wei periodontitis (WWP) patients having periodontitis, Jing Chang with metal pollution periodontally healthy individuals (JCP), and Kuang periodontitis (KP). The most abundant bacteria identified at the phylum level in the WWC group were Bacteroides, Firmicutes, and Fusobacteria. Firmicutes were observed in a significantly higher proportion in the KP group than in the WWC, WWP, and JCP. At the genus level, the WWC has major dominating bacterial genera (such as Leptotrichia, Neisseria, and Fusobacterium) which were similar to WWP and KP group. The significant difference (p < 0.05) was found in alpha diversity while in beta diversity, the significant (p = 0.005) results were found among the four groups. The correlation of oral microbiota revealed that HMs present in the soil (Cr, Ni, and Cu) are associated with the growth of Capnocytophaga, Selenomonas, Aggregatibacter, and Campylobacter. The bacterial functions in the KP group were higher in translation and nucleotide metabolism than in the WWP group. This demonstrated that long-term exposure to HMs can influence the salivary microbiota which can alter the functioning, and diversity of bacteria.

RevDate: 2022-01-11

Cáliz J, Subirats J, Triadó-Margarit X, et al (2022)

Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions.

Environment international, 160:107077 pii:S0160-4120(22)00002-2 [Epub ahead of print].

Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.

RevDate: 2022-01-11

Olesen AK, Pinilla-Redondo R, Hansen MF, et al (2022)

IncHI1A plasmids potentially facilitate a horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage.

Molecular ecology [Epub ahead of print].

Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, that R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer to other families, even other phyla. Indicating, that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of especially Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range as R27. In contrast to R27, pB10 had a high host divergence. By culture enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.

RevDate: 2022-01-11

Martínez-Pérez C, Greening C, Bay SK, et al (2022)

Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf.

Nature communications, 13(1):117.

Throughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hundreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms in oceanic cavities below permanent ice shelves. However, little is known about the microbial composition and pathways that mediate these activities. In this study, we profiled the microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall, beneath-shelf microorganisms are of comparable abundance and diversity, though distinct composition, relative to those in the open meso- and bathypelagic ocean. Production of new organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely derived from in situ fixed carbon and potentially refractory organic matter laterally advected by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct microbial community potentially adapted to a highly oligotrophic marine environment and suggest that ocean cavity waters are primarily chemosynthetically-driven systems.

RevDate: 2022-01-11

Li Q, Van Herreweghen F, De Mey M, et al (2021)

The Donor-Dependent and Colon-Region-Dependent Metabolism of (+)-Catechin by Colonic Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem.

Molecules (Basel, Switzerland), 27(1): pii:molecules27010073.

The intestinal absorption of dietary catechins is quite low, resulting in most of them being metabolized by gut microbiota in the colon. It has been hypothesized that microbiota-derived metabolites may be partly responsible for the association between catechin consumption and beneficial cardiometabolic effects. Given the profound differences in gut microbiota composition and microbial load between individuals and across different colon regions, this study examined how microbial (+)-catechin metabolite profiles differ between colon regions and individuals. Batch exploration of the interindividual variability in (+)-catechin microbial metabolism resulted in a stratification based on metabolic efficiency: from the 12 tested donor microbiota, we identified a fast- and a slow-converting microbiota that was subsequently inoculated to SHIME, a dynamic model of the human gut. Monitoring of microbial (+)-catechin metabolites from proximal and distal colon compartments with UHPLC-MS and UPLC-IMS-Q-TOF-MS revealed profound donor-dependent and colon-region-dependent metabolite profiles with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the largest contributor to differences between the fast- and slow-converting microbiota and the distal colon being a more important region for (+)-catechin metabolism than the proximal colon. Our findings may contribute to further understanding the role of the gut microbiota as a determinant of interindividual variation in pharmacokinetics upon (+)-catechin ingestion.

RevDate: 2022-01-11

Naghizadeh M, Klaver L, Schönherz AA, et al (2022)

Impact of Dietary Sodium Butyrate and Salinomycin on Performance and Intestinal Microbiota in a Broiler Gut Leakage Model.

Animals : an open access journal from MDPI, 12(1): pii:ani12010111.

Unfavorable alterations of the commensal gut microbiota and dysbacteriosis is a major health problem in the poultry industry. Understanding how dietary intervention alters the microbial ecology of broiler chickens is important for prevention strategies. A trial was conducted with 672 Ross 308 day-old male broilers fed a basic diet (no additives, control) or the basic diet supplemented with 500 mg/kg encapsulated butyrate or 68 mg/kg salinomycin. Enteric challenge was induced by inclusion of 50 g/kg rye in a grower diet and oral gavage of a 10 times overdose of a vaccine against coccidiosis. Compared to control and butyrate-supplemented birds, salinomycin supplementation alleviated growth depression. Compared to butyrate and non-supplemented control, salinomycin increased potentially beneficial Ruminococcaceae and reduced potentially pathogenic Enterobacteriaceae and counts of Lactobacillus salivarius and Clostridium perfringens. Further, salinomycin supplementation was accompanied by a pH decrease and succinic acid increase in ceca, while coated butyrate (0.5 g/kg) showed no or limited effects. Salinomycin alleviated growth depression and maintained intestinal homeostasis in the challenged broilers, while butyrate in the tested concentration showed limited effects. Thus, further investigations are required to identify optimal dietary inclusion rates for butyrate used as alternative to ionophore coccidiostats in broiler production.

RevDate: 2022-01-11

Jiang L, Xian S, Liu X, et al (2021)

Metagenomic Study on Chinese Homemade Paocai: The Effects of Raw Materials and Fermentation Periods on the Microbial Ecology and Volatile Components.

Foods (Basel, Switzerland), 11(1): pii:foods11010062.

"Chinese paocai" is typically made by fermenting red radish or cabbage with aged brine (6-8 w/w). This study aimed to reveal the effects of paocai raw materials on fermentation microorganisms by metagenomics sequencing technology, and on volatile organic compounds (VOCs) by gas chromatography-mass spectroscopy, using red radish or cabbage fermented for six rounds with aged brine. The results showed that in the same fermentation period, the microbial diversity in cabbage was higher than that in red radish. Secundilactobacillus paracollinoides and Furfurilactobacillus siliginis were the characteristic bacteria in red radish paocai, whereas 15 species of characteristic microbes were found in cabbage. Thirteen kinds of VOCs were different between the two raw materials and the correlation between the microorganisms and VOCs showed that cabbage paocai had stronger correlations than radish paocai for the most significant relationship between 4-isopropylbenzyl alcohol, α-cadinol, terpinolene and isobutyl phenylacetate. The results of this study provide a theoretical basis for understanding the microbiota and their relation to the characteristic flavors of the fermented paocai.

RevDate: 2021-11-20

Tan FPY, Beltranena E, RT Zijlstra (2021)

Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review.

Journal of animal science and biotechnology, 12(1):124.

Starch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55% of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic α-amylase, and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose) for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation, which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD) and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut health and growth performance in pigs.

RevDate: 2022-01-10

Wang Z, Solanki MK, Yu ZX, et al (2021)

Genome Characteristics Reveal the Biocontrol Potential of Actinobacteria Isolated From Sugarcane Rhizosphere.

Frontiers in microbiology, 12:797889.

To understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi in vitro. Results showed that BTU6 (Streptomyces griseorubiginosus), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane. The genomic evaluation indicated that BTU6 has the ability to biosynthesize chitinase, β-1,3-glucanase, and various secondary metabolites and plays an essential role in the growth of sugarcane plants under biotic stress. Potential mechanisms of the strain in improving the disease resistance of sugarcane plants and its potential in biodegrading exogenous chemicals were also revealed. This study showed the importance of sugarcane rhizosphere actinobacteria in microbial ecology and plant growth promotion.

RevDate: 2022-01-08

Li L, Chen X, Fang D, et al (2022)

Genomes shed light on the evolution of Begonia, a mega-diverse genus.

The New phytologist [Epub ahead of print].

Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with ~2,000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana, and B. peltatifolia), and whole genome shot-gun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22,059 - 23,444 protein-coding genes. Synteny analysis revealed a lineage specific whole-genome duplication (WGD) that occurred just before the diversification of the Begonia. Functional enrichment of gene families retained after WGD highlight the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade-adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.

RevDate: 2022-01-08

Balacco JR, Vaidya BP, Hagmann DF, et al (2022)

Mycorrhizal Infection Can Ameliorate Abiotic Factors in Urban Soils.

Microbial ecology [Epub ahead of print].

Once abandoned, urban and post-industrial lands can undergo a re-greening, the natural regeneration and succession that leads to surprisingly healthy plant communities, but this process is dependent upon microbial activity and the health of the parent soil. This study aimed to evaluate the effects of arbuscular mycorrhizal fungi (AMF) in facilitating plant production in post-industrial soils. In so doing, we helped to resolve the mechanism through which AMF ameliorate environmental stress in terrestrial plants. An experiment was established in which rye grass (Lolium perenne) was grown in two heavy metal-contaminated soils from an urban brownfield in New Jersey, USA, and one non-contaminated control soil. One set of the treatments received an AMF inoculum (four species in a commercial mix: Glomus intraradices, G. mosseae, G. etunicatum and G. aggregatum) and the other did not. Upon harvest, dried plant biomass, root/shoot ratio, AMF colonization, and extracellular soil phosphatase activity, a proxy for soil microbial functioning, were all measured. Plant biomass increased across all treatments inoculated with AMF, with a significantly higher average shoot and root mass compared to non-inoculated treatments. AMF colonization of the roots in contaminated soil was significantly higher than colonization in control soil, and the root/shoot ratio of plants in contaminated soils was also higher when colonized by AMF. Mycorrhizal infection may help plants to overcome the production limits of post-industrial soils as is seen here with increased infection and growth. The application of this mechanistic understanding to remediation and restoration strategies will improve soil health and plant production in urban environments.

RevDate: 2022-01-08

Decker LE, San Juan PA, Warren ML, et al (2022)

Higher Variability in Fungi Compared to Bacteria in the Foraging Honey Bee Gut.

Microbial ecology [Epub ahead of print].

Along with bacteria, fungi can represent a significant component of animal- and plant-associated microbial communities. However, we have only begun to describe these fungi, much less examine their effects on most animals and plants. Bacteria associated with the honey bee, Apis mellifera, have been well characterized across different regions of the gut. The mid- and hindgut of foraging bees house a deterministic set of core species that affect host health, whereas the crop, or the honey stomach, harbors a more diverse set of bacteria that is highly variable in composition among individual bees. Whether this contrast between the two regions of the gut also applies to fungi remains unclear despite their potential influence on host health. In honey bees caught foraging at four sites across the San Francisco Peninsula of California, we found that fungi were less distinct in species composition between the crop and the mid- and hindgut than bacteria. Unlike bacteria, fungi varied substantially in species composition throughout the honey bee gut, and much of this variation could be predicted by the location where we collected the bees. These observations suggest that fungi may be transient passengers and unimportant as gut symbionts. However, our findings also indicate that honey bees could be vectors of infectious plant diseases as many of the fungi we found in the honey bee gut are recognized as plant pathogens.

RevDate: 2022-01-08

Li T, Cai Y, Q Ma (2022)

Microbial Diversity on the Surface of Historical Monuments in Lingyan Temple, Jinan, China.

Microbial ecology [Epub ahead of print].

Lingyan Temple is an important part of the World Heritage Mixed Property on Mount Taishan, in which numerous cultural heritage monuments, including exquisite painted arhat statues and inscriptions, display the ancient Chinese Buddhist culture. However, these monuments are suffering aesthetic and structural damage due to rich biofilms. In this study, the microbial communities colonized on historical monuments in different microenvironments were characterized through a combination of culture-dependent techniques and high-throughput sequencing. Microbial diversity was significantly different among the historical sites with different microenvironments. For example, Actinobacteria and Ascomycota were the core phyla in the indoor samples, while they were less abundant in the outdoor samples, and phototrophic microorganisms including Cyanobacteria and green algae were only dominant in the samples near springs. The results suggested that environmental factors such as water and airborne microorganisms may be the main causes influencing microbial distribution. Most of the identified dominant species were common on the historical monuments and could contribute to biodeterioration. This analysis of microbiota will provide further information on the biodeterioration processes and preservation strategies of cultural heritage monuments in Lingyan Temple.

RevDate: 2022-01-08

Shi L, Xia P, Lin T, et al (2022)

Temporal Succession of Bacterial Community Structure, Co-occurrence Patterns, and Community Assembly Process in Epiphytic Biofilms of Submerged Plants in a Plateau Lake.

Microbial ecology [Epub ahead of print].

In shallow macrophytic lakes, epiphytic biofilms are formed on the surface of submerged plant stems and leaves because of algae and bacterial accumulation. Epiphytic biofilms significantly impact the health of the host vegetation and the biogeochemical cycling of lake elements. However, community diversity, species interactions, and community assembly mechanisms in epiphytic bacterial communities (EBCs) of plants during different growth periods are not well understood. We investigated the successional dynamics, co-occurrence patterns, and community assembly processes of epiphytic biofilm bacterial communities of submerged plants, Najas marina and Potamogeton lucens, from July to November 2020. The results showed a significant seasonal variation in EBC diversity and richness. Community diversity and richness increased from July to November, and the temperature was the most important driving factor for predicting seasonal changes in EBC community structure. Co-occurrence network analysis revealed that the average degree and graph density of the network increased from July to November, indicating that the complexity of the EBC network increased. The bacterial community co-occurrence network was limited by temperature, pH, and transparency. The phylogeny-based null model analysis showed that deterministic processes dominated the microbial community assembly in different periods, increasing their contribution. In addition, we found that as the dominance of deterministic processes increased, the microbial co-occurrence links increased, and the potential interrelationships between species became stronger. Thus, the findings provide insights into the seasonal variability of EBC assemblage and co-occurrence patterns in lacustrine ecosystems.

RevDate: 2022-01-07

Bist P, S Choudhary (2022)

Impact of Heavy Metal Toxicity on the Gut Microbiota and Its Relationship with Metabolites and Future Probiotics Strategy: a Review.

Biological trace element research [Epub ahead of print].

The gut microbiota has a vital role in the maintenance of intestinal homeostasis. Several studies have revealed that environmental exposure to pollutants such as heavy metals may contribute to the progression of extensive list of diseases which may further lead to perturbations in the gut leading to dysbiosis. This manuscript critically reviews the alterations in the gut microbiota composition and function upon exposure to various toxic heavy metals prevalent in the environment. The disturbance in gut microbial ecology also affects the microbial metabolic profile which may alter the speciation state and bioavailability heavy metals thus affecting metal uptake-absorption/detoxification mechanisms associated to heavy metal metabolism. The toxic effects of various heavy metals either in single or in multimetallic combination and the gut microbiota associated host health and disease condition need a comprehensive assessment with important consideration for therapeutic and protective strategies against the damage to gut microbiota.

RevDate: 2022-01-06

Kim M, Sung J, N Chia (2022)

Resource-allocation constraint governs structure and function of microbial communities in metabolic modeling.

Metabolic engineering pii:S1096-7176(21)00196-8 [Epub ahead of print].

Predictive modeling tools for assessing microbial communities are important for realizing transformative capabilities of microbiomes in agriculture, ecology, and medicine. Constraint-based community-scale metabolic modeling is unique in its potential for making mechanistic predictions regarding both the structure and function of microbial communities. However, accessing this potential requires an understanding of key physicochemical constraints, which are typically considered on a per-species basis. What is needed is a means of incorporating global constraints relevant to microbial ecology into community models. Resource-allocation constraint, which describes how limited resources should be distributed to different cellular processes, sets limits on the efficiency of metabolic and ecological processes. In this study, we investigate the implications of resource-allocation constraints in community-scale metabolic modeling through a simple mechanism-agnostic implementation of resource-allocation constraints directly at the flux level. By systematically performing single-, two-, and multi-species growth simulations, we show that resource-allocation constraints are indispensable for predicting the structure and function of microbial communities. Our findings call for a scalable workflow for implementing a mechanistic version of resource-allocation constraints to ultimately harness the full potential of community-scale metabolic modeling tools.

RevDate: 2022-01-06

Gestuveo RJ, Parry R, Dickson LB, et al (2022)

Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs.

PLoS pathogens, 18(1):e1010202 pii:PPATHOGENS-D-21-01519 [Epub ahead of print].

The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3' overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.

RevDate: 2022-01-06

Hua Q, Han Y, Zhao H, et al (2022)

Punicalagin alleviates renal injury via the gut-kidney axis in high-fat diet-induced diabetic mice.

Food & function [Epub ahead of print].

Diabetic renal injury was associated with dysbiosis of the gut microbiota and intestinal barrier. Punicalagin (PU) from pomegranates potentially impacts the microbial ecosystem, intestinal barrier, and renal function. Therefore, we hypothesized that PU may improve diabetic renal injury by modulating the gut-kidney axis. The present study evaluated the effect of PU on the gut-kidney axis and kidney function in a diabetic renal injury mouse model induced by a high-fat diet (HFD). Mice were fed a HFD without PU or with at doses of 50 and 100 mg kg-1 d-1 for 8 weeks. Targeted metabolomics by GC-MS and 16S rRNA sequencing were implemented to determine short-chain fatty acids (SCFAs) and microbes. Further RNA sequencing analyses were performed to determine which differentially expressed genes were changed by PU. Compared with the DM model group, PU supplementation improved diabetic renal injury, ameliorated kidney architecture and function, and reshaped gut microbial ecology. Additionally, PU reversed HFD-induced gut barrier dysfunction, promoted cecal SCFA concentrations and inhibited serum lipopolysaccharide (LPS) and diamine oxidase (DAO) levels. Moreover, correlation analysis found that cecal SCFAs were significantly negatively correlated with inflammation-related genes in the kidney. The present results indicated that PU, a promising bioactive polyphenol, successfully improved diabetic renal injury, most likely through the gut-kidney axis.

RevDate: 2022-01-06

Liu Q, Lai Z, Wang C, et al (2022)

Seasonal variation significantly affected bacterioplankton and eukaryoplankton community composition in Xijiang River, China.

Environmental monitoring and assessment, 194(2):55.

Both bacterioplankton and eukaryoplankton communities play important roles in the geochemical cycles and energy flows of river ecosystems. However, whether a seasonal change in bacterioplankton and eukaryoplankton communities is synchronous remains unclear. To test the synchronicity and analyze how physical and chemical environmental factors affect these communities, we compared bacterioplankton and eukaryoplankton communities in surface water samples between March (dry season) and June (rainfall season) considering water environmental factors. Our results showed that there was no significant difference in operational taxonomic unit number, Shannon index, and Chao1 index in bacterioplankton and eukaryoplankton communities between March and June. However, principal component analysis showed that the communities were significantly different between the sampling times and sampling sites. Water temperature (WT), oxidation-reduction potential (ORP), water transparency (SD), NO3-N, and NH3 significantly influenced bacterioplankton communities, and WT, SD, ORP, and NH4-N significantly influenced eukaryoplankton communities in the river. These results implied that compared with the sampling sites, sampling times more significantly affected the bacterioplankton and eukaryoplankton river communities by influencing WT, ORP, SD, and nitrogen forms.

RevDate: 2022-01-06

Liberti A, Natarajan O, Atkinson CGF, et al (2022)

Secreted immunoglobulin domain effector molecules of invertebrates and management of gut microbial ecology.

Immunogenetics [Epub ahead of print].

The origins of a "pass-through" gut in early bilaterians facilitated the exploration of new habitats, motivated the innovation of feeding styles and behaviors, and helped drive the evolution of more complex organisms. The gastrointestinal tract has evolved to consist of a series of interwoven exchanges between nutrients, host immunity, and an often microbe-rich environmental interface. Not surprisingly, animals have expanded their immune repertoires to include soluble effectors that can be secreted into luminal spaces, e.g., in the gut, facilitating interactions with microbes in ways that influence their settlement dynamics, virulence, and their interaction with other microbes. The immunoglobulin (Ig) domain, which is also found in some non-immune molecules, is recognized as one of the most versatile recognition domains lying at the interface of innate and adaptive immunity; among vertebrates, secreted Igs are known to play crucial roles in the management of gut microbial communities. In this mini-review, we will focus on secreted immune effectors possessing Ig-like domains in invertebrates, such as the fibrinogen-related effector proteins first described in the gastropod Biomphalaria glabrata, the Down syndrome cellular adhesion molecule first described in the arthropod, Drosophila melanogaster, and the variable region-containing chitin-binding proteins of the protochordates. We will highlight our current understanding of their function and their potential role, if not yet recognized, in the establishment and maintenance of host-microbial interfaces and argue that these Igs are likely also essential to microbiome management.

RevDate: 2022-01-05

Maitre A, Wu-Chuang A, Aželytė J, et al (2022)

Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines.

Parasites & vectors, 15(1):4.

Human and animal pathogens that are transmitted by arthropods are a global concern, particularly those vectored by ticks (e.g. Borrelia burgdorferi and tick-borne encephalitis virus) and mosquitoes (e.g. malaria and dengue virus). Breaking the circulation of pathogens in permanent foci by controlling vectors using acaricide-based approaches is threatened by the selection of acaricide resistance in vector populations, poor management practices and relaxing of control measures. Alternative strategies that can reduce vector populations and/or vector-mediated transmission are encouraged worldwide. In recent years, it has become clear that arthropod-associated microbiota are involved in many aspects of host physiology and vector competence, prompting research into vector microbiota manipulation. Here, we review how increased knowledge of microbial ecology and vector-host interactions is driving the emergence of new concepts and tools for vector and pathogen control. We focus on the immune functions of host antibodies taken in the blood meal as they can target pathogens and microbiota bacteria within hematophagous arthropods. Anti-microbiota vaccines are presented as a tool to manipulate the vector microbiota and interfere with the development of pathogens within their vectors. Since the importance of some bacterial taxa for colonization of vector-borne pathogens is well known, the disruption of the vector microbiota by host antibodies opens the possibility to develop novel transmission-blocking vaccines.

RevDate: 2022-01-04

Vandermaesen J, Du S, Daly AJ, et al (2022)

Interspecies Interactions of the 2,6-Dichlorobenzamide Degrading Aminobacter sp. MSH1 with Resident Sand Filter Bacteria: Indications for Mutual Cooperative Interactions That Improve BAM Mineralization Activity.

Environmental science & technology [Epub ahead of print].

Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.

RevDate: 2022-01-04

Sangodkar N, Gonsalves MJ, DR Nazareth (2022)

Macrofaunal Distribution, Diversity, and Its Ecological Interaction at the Cold Seep Site of Krishna-Godavari Basin, East Coast of India.

Microbial ecology [Epub ahead of print].

Cold seeps are characterized by typical endemic communities with associated microorganisms that depend on sulfide, methane, reduced nitrogenous compounds, and metals as electron donors for their survival through chemosynthesis. The discovery of an active cold seep site in January 2018 in the Krishna-Godavari (K-G) basin of Bay of Bengal was followed by a transit cruise in March 2018 to investigate the distribution and diversity of macrofauna. Further, the ambient sediment and pore water biochemistry were estimated to understand its relationship with macrofauna and the microbial associates of the sediment. Samples were collected at a water depth of around 1750 m at 3 stations: SP1, SP2, and SP3, using the box corer. The benthic fauna at the sites consisted mainly of Bivalvia, shrimps of Caridea family, Gastropoda species, Malacostraca species, Polychaeta, and few species of Echinoidea, Ophiuroidea, and Echiura. A total of 2313 macrofaunal individuals belonging to 8 classes, 18 families, and 20 species were identified from all the three stations. The communities were diverse at these sites with an average Shannon diversity index of 1.64 and are closely related to the lineages previously studied in ecologically similar environments. Most of the macrofauna were found to be filter feeders preferring a low organic carbon environment. Relict vesicomyid clams at the present study site suggest the succession from vesicomyids to the present composition of bivalve mussels and siboglinid worms. The microbial associates in the sediment significantly correlated with methane and hydrogen sulfide concentrations. The study suggests that the K-G basin cold seep serves as a conducive environment for the flourishing of benthic communities and therefore can support a rich biodiversity.

RevDate: 2022-01-04

Nabeshima K, Sato S, Brinkerhoff RJ, et al (2022)

Prevalence and Genetic Diversity of Bartonella Spp. in Northern Bats (Eptesicus nilssonii) and Their Blood-Sucking Ectoparasites in Hokkaido, Japan.

Microbial ecology [Epub ahead of print].

We investigated the prevalence of Bartonella in 123 northern bats (Eptesicus nilssonii) and their ectoparasites from Hokkaido, Japan. A total of 174 bat fleas (Ischnopsyllus needhami) and two bat bugs (Cimex japonicus) were collected from the bats. Bartonella bacteria were isolated from 32 (26.0%) of 123 bats. Though Bartonella DNA was detected in 79 (45.4%) of the bat fleas, the bacterium was isolated from only one bat flea (0.6%). The gltA sequences of the isolates were categorized into genotypes I, II, and III, which were found in both bats and their fleas. The gltA sequences of genotypes I and II showed 97.6% similarity with Bartonella strains from a Finnish E. nilssonii and a bat flea from a E. serotinus in the Netherlands. The rpoB sequences of the genotypes showed 98.9% similarity with Bartonella strain 44722 from E. serotinus in Republic of Georgia. The gltA and rpoB sequences of genotype III showed 95.9% and 96.7% similarity with Bartonella strains detected in shrews in Kenya and France, respectively. Phylogenetic analysis revealed that Bartonella isolates of genotypes I and II clustered with Bartonella strains from Eptesicus bats in Republic of Georgia and Finland, Myotis bats in Romania and the UK, and a bat flea from an Eptesicus bat in Finland. In contrast, genotype III formed a clade with B. florencae, B. acomydis, and B. birtlesii. These data suggest that northern bats in Japan harbor two Bartonella species and the bat flea serves as a potential vector of Bartonella transmission among the bats.

RevDate: 2022-01-04

Yang Y, Sun J, Chen C, et al (2022)

Metagenomic and metatranscriptomic analyses reveal minor-yet-crucial roles of gut microbiome in deep-sea hydrothermal vent snail.

Animal microbiome, 4(1):3.

BACKGROUND: Marine animals often exhibit complex symbiotic relationship with gut microbes to attain better use of the available resources. Many animals endemic to deep-sea chemosynthetic ecosystems host chemoautotrophic bacteria endocellularly, and they are thought to rely entirely on these symbionts for energy and nutrition. Numerous investigations have been conducted on the interdependence between these animal hosts and their chemoautotrophic symbionts. The provannid snail Alviniconcha marisindica from the Indian Ocean hydrothermal vent fields hosts a Campylobacterial endosymbiont in its gill. Unlike many other chemosymbiotic animals, the gut of A. marisindica is reduced but remains functional; yet the contribution of gut microbiomes and their interactions with the host remain poorly characterised.

RESULTS: Metagenomic and metatranscriptomic analyses showed that the gut microbiome of A. marisindica plays key nutritional and metabolic roles. The composition and relative abundance of gut microbiota of A. marisindica were different from those of snails that do not depend on endosymbiosis. The relative abundance of microbial taxa was similar amongst three individuals of A. marisindica with significant inter-taxa correlations. These correlations suggest the potential for interactions between taxa that may influence community assembly and stability. Functional profiles of the gut microbiome revealed thousands of additional genes that assist in the use of vent-supplied inorganic compounds (autotrophic energy source), digest host-ingested organics (carbon source), and recycle the metabolic waste of the host. In addition, members of five taxonomic classes have the potential to form slime capsules to protect themselves from the host immune system, thereby contributing to homeostasis. Gut microbial ecology and its interplay with the host thus contribute to the nutritional and metabolic demands of A. marisindica.

CONCLUSIONS: The findings advance the understanding of how deep-sea chemosymbiotic animals use available resources through contributions from gut microbiota. Gut microbiota may be critical in the survival of invertebrate hosts with autotrophic endosymbionts in extreme environments.

RevDate: 2022-01-03

Lindner BG, Suttner B, Zhu KJ, et al (2021)

Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms.

Water research, 210:117993 pii:S0043-1354(21)01187-8 [Epub ahead of print].

Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, the abundance of β-lactamase encoding genes remained high throughout incubation relative to the control. Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic approach which leverages these libraries for identifying and apportioning contamination signal among multiple probable sources using shotgun metagenomic data.

RevDate: 2022-01-04

Vidhate RP, Dawkar VV, Punekar SA, et al (2022)

Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis.

Microbial ecology [Epub ahead of print].

Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.

RevDate: 2022-01-04

Cannesson A, N Elenga (2021)

Community-Acquired Pneumonia Requiring Hospitalization among French Guianese Children.

International journal of pediatrics, 2021:4358818.

Community-acquired pneumonia remains a leading cause of hospitalizations among children worldwide. The diagnosis is based on the history, the physical examination results in children with fever plus respiratory signs and symptoms, and chest radiography. The microbiological etiology is confirmed by viral testing and hemocultures. The most likely etiology depends on the age of the child. The features of childhood pneumonia vary between countries and territories. The purpose of this study was to describe the epidemiological characteristics and current microbial ecology of community-acquired pneumonia in children in French Guiana. We performed a retrospective, descriptive, and monocentric study between January 1, 2015, and December 31, 2017, in the pediatric ward of the Cayenne Hospital in French Guiana. The studied population was aged from 0 to 15 years and 3 months and hospitalized for acute community-acquired pneumonia. A total of 415 patients (mean age 3.62 years) were included. A pathogen was identifiable in 22.4% of cases, including bacteria in 61.3%, viruses in 43%, and coinfections in 14%. The main pathogens were respiratory syncytial virus (31.2%), Streptococcus pneumoniae (20.4%), Haemophilus influenzae (11.8%), and Mycoplasma pneumoniae (10.8%). The burden of hospitalization for children with community-acquired pneumonia was highest among less than 2 years, in whom respiratory viruses were the most commonly detected causes of pneumonia. The share of vaccine-preventable diseases (S. pneumoniae, H. influenzae, and influenza) remains high. With the vaccination requirement imposed since 1 January 2018 against pneumococcus, Haemophilus influenzae, and whooping cough and the possibility of practicing multiplex PCR in our hospital, it will be interesting to study the impact of this law enforcement on new child generations and compare these new data to our study.

RevDate: 2022-01-03

Chen P, Liu H, Xing Z, et al (2021)

Cometabolic degradation mechanism and microbial network response of methanotrophic consortia to chlorinated hydrocarbon solvents.

Ecotoxicology and environmental safety, 230:113110 pii:S0147-6513(21)01222-7 [Epub ahead of print].

The cometabolism mechanism of chlorinated hydrocarbon solvents (CHSs) in mixed consortia remains largely unknown. CHS biodegradation characteristics and microbial networks in methanotrophic consortia were studied for the first time. The results showed that all CHSs can efficiently be degraded via cometabolism with a maximum degradation rate of 4.8 mg/(h·gcell). Chloroalkane and chloroethylene were more easily degraded than chlorobenzenes by methanotrophic consortia, especially nonfully chlorinated aliphatic hydrocarbons, which were converted to Cl- with a production rate of 0.29-0.36 mg/(h·gcell). In addition, the microecological response results indicated that Methylocystaceae (49.0%), Methylomonas (65.3%) and Methylosarcina (41.9%) may be the major functional degraders in methanotrophic consortia. Furthermore, the results of the microbial correlation network suggested that interactive relationships constructed by type I methanotrophs and heterotrophs determined biodegradability. Additionally, PICRUSt analysis showed that CHSs could increase the relative abundance of CHS degradation genes and reduce the relative abundance of methane oxidation genes, which was in good agreement with the experimental results.

RevDate: 2022-01-04

Montiel-Molina JAM, Sexton JP, Frank AC, et al (2021)

Archaeal and Bacterial Diversity and Distribution Patterns in Mediterranean-Climate Vernal Pools of Mexico and the Western USA.

Microbial ecology [Epub ahead of print].

Biogeographic patterns in microorganisms are poorly understood, despite the importance of microbial communities for a range of ecosystem processes. Our knowledge of microbial ecology and biogeography is particularly deficient in rare and threatened ecosystems. We tested for three ecological patterns in microbial community composition within ephemeral wetlands-vernal pools-located across Baja California (Mexico) and California (USA): (1) habitat filtering; (2) a latitudinal diversity gradient; and (3) distance decay in community composition. Paired water and soil samples were collected along a latitudinal transect of vernal pools, and bacterial and archaeal communities were characterized using 16S rDNA sequencing. We identified two main microbial communities, with one community present in the soil matrix that included archaeal and bacterial soil taxa, and another community present in the overlying water that was dominated by common freshwater bacterial taxa. Aquatic microbial communities were more diverse in the north, and displayed a significant but inverted latitudinal diversity pattern. Aquatic communities also exhibited a significant distance-decay pattern, with geographic proximity, and precipitation explaining part of the community variation. Collectively these results indicate greater sensitivity to spatial and environmental variation in vernal pool aquatic microbial communities than in soil microbial communities. We conclude that vernal pool aquatic microbial communities can display distribution patterns similar to those exhibited by larger organisms, but differ in some key aspects, such as the latitudinal gradient in diversity.

RevDate: 2021-12-30

Wang D, Huang K, He X, et al (2021)

Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system.

The Science of the total environment pii:S0048-9697(21)07597-5 [Epub ahead of print].

The simultaneous anammox and denitrification (SAD) system has received growing interest for the enhanced nitrogen removal, while the ecological traits of microbial community including spatial distribution characteristics, assembly processes and interspecies interactions have not been fully unraveled. The present study applied metagenomics and ecological analysis methods to gain the ecological traits of microbial communities in the SAD system across different organic substrate loadings. Results showed that organic matter significantly affected the bioreactor performance, and the optimal total nitrogen removal efficiency reached 93.4 ± 0.7% under the COD concentrations of 180 ± 18.2 mg/L. Functional organisms including Candidatus Brocadia (3.9%), Denitratisoma (1.6%), Dokdonella (4.4%) and Thauera (4.6%) obviously enriched under the optimal organic loading conditions. Moreover, microbial communities were significantly governed by deterministic process under high organic concentrations, and the denitrifying organisms displayed important ecological roles in the communities. Although anammox bacteria obviously enriched at the middle of bioreactor, it possessed the highest expression activities at both bottom and middle sites. Denitrifying bacteria that enriched at the bottom sites strongly achieved nitrate reduction and provided nitrite for anammox bacteria, while these organisms trended to compete nitrite with anammox bacteria at the middle site. These findings highlight the importance of microbial ecology in the SAD systems, which may expand our understanding of the synergistic patterns between anammox and denitrifying bacteria.

RevDate: 2021-12-30

Scholz AH, Lange M, Habekost P, et al (2021)

Myth-busting the provider-user relationship for digital sequence information.

GigaScience, 10(12):.

BACKGROUND: The United Nations Convention on Biological Diversity (CBD) formally recognized the sovereign rights of nations over their biological diversity. Implicit within the treaty is the idea that mega-biodiverse countries will provide genetic resources and grant access to them and scientists in high-income countries will use these resources and share back benefits. However, little research has been conducted on how this framework is reflected in real-life scientific practice.

RESULT: Currently, parties to the CBD are debating whether digital sequence information (DSI) should be regulated under a new benefit-sharing framework. At this critical time point in the upcoming international negotiations, we test the fundamental hypothesis of provision and use of DSI by looking at the global patterns of access and use in scientific publications.

CONCLUSION: Our data reject the provider-user relationship and suggest a far more complex information flow for DSI. Therefore, any new policy decisions on DSI should be aware of the high level of use of DSI across low- and middle-income countries and seek to preserve open access to this crucial common good.

RevDate: 2021-12-30

Lange M, Alako BTF, Cochrane G, et al (2021)

Quantitative monitoring of nucleotide sequence data from genetic resources in context of their citation in the scientific literature.

GigaScience, 10(12):.

BACKGROUND: Linking nucleotide sequence data (NSD) to scientific publication citations can enhance understanding of NSD provenance, scientific use, and reuse in the community. By connecting publications with NSD records, NSD geographical provenance information, and author geographical information, it becomes possible to assess the contribution of NSD to infer trends in scientific knowledge gain at the global level.

FINDINGS: We extracted and linked records from the European Nucleotide Archive to citations in open-access publications aggregated at Europe PubMed Central. A total of 8,464,292 ENA accessions with geographical provenance information were associated with publications. We conducted a data quality review to uncover potential issues in publication citation information extraction and author affiliation tagging and developed and implemented best-practice recommendations for citation extraction. We constructed flat data tables and a data warehouse with an interactive web application to enable ad hoc exploration of NSD use and summary statistics.

CONCLUSIONS: The extraction and linking of NSD with associated publication citations enables transparency. The quality review contributes to enhanced text mining methods for identifier extraction and use. Furthermore, the global provision and use of NSD enable scientists worldwide to join literature and sequence databases in a multidimensional fashion. As a concrete use case, we visualized statistics of country clusters concerning NSD access in the context of discussions around digital sequence information under the United Nations Convention on Biological Diversity.

RevDate: 2021-12-29

Baliarda A, Winkler M, Tournier L, et al (2021)

Dynamic interspecies interactions and robustness in a four-species model biofilm.

MicrobiologyOpen, 10(6):e1254.

Interspecific interactions within biofilms determine relative species abundance, growth dynamics, community resilience, and success or failure of invasion by an extraneous organism. However, deciphering interspecific interactions and assessing their contribution to biofilm properties and function remain a challenge. Here, we describe the constitution of a model biofilm composed of four bacterial species belonging to four different genera (Rhodocyclus sp., Pseudomonas fluorescens, Kocuria varians, and Bacillus cereus), derived from a biofilm isolated from an industrial milk pasteurization unit. We demonstrate that the growth dynamics and equilibrium composition of this biofilm are highly reproducible. Based on its equilibrium composition, we show that the establishment of this four-species biofilm is highly robust against initial, transient perturbations but less so towards continuous perturbations. By comparing biofilms formed from different numbers and combinations of the constituent species and by fitting a growth model to the experimental data, we reveal a network of dynamic, positive, and negative interactions that determine the final composition of the biofilm. Furthermore, we reveal that the molecular determinant of one negative interaction is the thiocillin I synthesized by the B. cereus strain, and demonstrate its importance for species distribution and its impact on robustness by mutational analysis of the biofilm ecosystem.

RevDate: 2021-12-29

Bouchali R, Mandon C, Marti R, et al (2021)

Bacterial assemblages of urban microbiomes mobilized by runoff waters match land use typologies and harbor core species involved in pollutant degradation and opportunistic human infections.

The Science of the total environment pii:S0048-9697(21)07740-8 [Epub ahead of print].

Cities are patchworks of urban catchments divided into functional units according to their commercial, residential and industrial activities, and socio-urbanistic patterns. The hypothesis of city surface microbiomes being structured by socio-urbanistic variables leading to an emergence of synurbic taxa was tested. According to the r/K microbial ecology theory, a gradient of well-adapted synurbic K-strategists and of opportunistic -r-strategists should occur over city surfaces. K-strategists would be core components while r-ones would be transiently detected. To resolve these patterns, sub-catchments (n = 21) of an area of high commercial and industrial activities were investigated over three time periods covering one year. The sub-catchments' land use patterns and associated human behaviors were converted into socio-urbanistic variables and groupings. Bacterial cells mobilized by runoffs per sub-catchment were recovered, and analyzed by classical approaches, microbial source tracking DNA assays and DNA meta-barcoding approaches. Relationships between these datasets, the runoff physico-chemical properties, and descriptors of the socio-urbanistic groupings were investigated. 16S rRNA meta-barcoding analyses showed evidence of the occurrence of K- and r-like strategists. Twenty-eight core genera were identified, and correlation networks revealed large bacterial modules organized around actinobacterial taxa involved in hydrocarbon degradation processes. Other bacterial networks were related to the occurrences of hygienic wastes, and involved bacteria originating from fecal contaminations. Several r-strategists like Sulfurospirillum were recorded and found associated to point source pollutions. The tpm -metabarcoding approach deciphered these r / K strategists at the species level among more than ten genera. Nine core Klike Pseudomomas species were identified. The P. aeruginosa human opportunistic pathogen and P. syringae phytopathogens were part of these K-strategists. Other tpm -harboring bacterial pathogens showed r-like opportunistic distribution patterns. Correlation network analyses indicated a strong incidence of hygienic wastes and hydrocarbon-pollutions on tpm -harboring bacteria. These analyses demonstrated the occurrence of core synurbic bacterial K-strategists over city surfaces.

RevDate: 2021-12-28

Binder C, Schned H, Longford N, et al (2021)

A Mixed-Lipid Emulsion Containing Fish Oil for the Parenteral Nutrition of Preterm Infants: No Impact on Visual Neuronal Conduction.

Nutrients, 13(12): pii:nu13124241.

Fish oil is rich in omega-3 fatty acids and essential for neuronal myelination and maturation. The aim of this study was to investigate whether the use of a mixed-lipid emulsion composed of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF-LE) compared to a pure soybean oil-based lipid emulsion (S-LE) for parenteral nutrition had an impact on neuronal conduction in preterm infants. This study is a retrospective matched cohort study comparing preterm infants <1000 g who received SMOF-LE in comparison to S-LE for parenteral nutrition. Visual evoked potentials (VEPs) were assessed longitudinally from birth until discharge. The latencies of the evoked peaks N2 and P2 were analyzed. The analysis included 76 infants (SMOF-LE: n = 41 and S-LE: n = 35) with 344 VEP measurements (SMOF-LE: n= 191 and S-LE n = 153). Values of N2 and P2 were not significantly different between the SMOF-LE and S-LE groups. A possible better treatment effect in the SMOF-LE group was seen as a trend toward a shorter latency, indicating faster neural conduction at around term-equivalent age. Prospective trials and follow-up studies are necessary in order to evaluate the potential positive effect of SMOF-LE on neuronal conduction and visual pathway maturation.

RevDate: 2021-12-27

Blumberg KL, Ponsero AJ, Bomhoff M, et al (2021)

Ontology-Enriched Specifications Enabling Findable, Accessible, Interoperable, and Reusable Marine Metagenomic Datasets in Cyberinfrastructure Systems.

Frontiers in microbiology, 12:765268.

Marine microbial ecology requires the systematic comparison of biogeochemical and sequence data to analyze environmental influences on the distribution and variability of microbial communities. With ever-increasing quantities of metagenomic data, there is a growing need to make datasets Findable, Accessible, Interoperable, and Reusable (FAIR) across diverse ecosystems. FAIR data is essential to developing analytical frameworks that integrate microbiological, genomic, ecological, oceanographic, and computational methods. Although community standards defining the minimal metadata required to accompany sequence data exist, they haven't been consistently used across projects, precluding interoperability. Moreover, these data are not machine-actionable or discoverable by cyberinfrastructure systems. By making 'omic and physicochemical datasets FAIR to machine systems, we can enable sequence data discovery and reuse based on machine-readable descriptions of environments or physicochemical gradients. In this work, we developed a novel technical specification for dataset encapsulation for the FAIR reuse of marine metagenomic and physicochemical datasets within cyberinfrastructure systems. This includes using Frictionless Data Packages enriched with terminology from environmental and life-science ontologies to annotate measured variables, their units, and the measurement devices used. This approach was implemented in Planet Microbe, a cyberinfrastructure platform and marine metagenomic web-portal. Here, we discuss the data properties built into the specification to make global ocean datasets FAIR within the Planet Microbe portal. We additionally discuss the selection of, and contributions to marine-science ontologies used within the specification. Finally, we use the system to discover data by which to answer various biological questions about environments, physicochemical gradients, and microbial communities in meta-analyses. This work represents a future direction in marine metagenomic research by proposing a specification for FAIR dataset encapsulation that, if adopted within cyberinfrastructure systems, would automate the discovery, exchange, and re-use of data needed to answer broader reaching questions than originally intended.

RevDate: 2021-12-27

Krukenberg V, Reichart NJ, Spietz RL, et al (2021)

Microbial Community Response to Polysaccharide Amendment in Anoxic Hydrothermal Sediments of the Guaymas Basin.

Frontiers in microbiology, 12:763971.

Organic-rich, hydrothermal sediments of the Guaymas Basin are inhabited by diverse microbial communities including many uncultured lineages with unknown metabolic potential. Here we investigated the short-term effect of polysaccharide amendment on a sediment microbial community to identify taxa involved in the initial stage of macromolecule degradation. We incubated anoxic sediment with cellulose, chitin, laminarin, and starch and analyzed the total and active microbial communities using bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Our results show a response of an initially minor but diverse population of Clostridia particularly after amendment with the lower molecular weight polymers starch and laminarin. Thus, Clostridia may readily become key contributors to the heterotrophic community in Guaymas Basin sediments when substrate availability and temperature range permit their metabolic activity and growth, which expands our appreciation of the potential diversity and niche differentiation of heterotrophs in hydrothermally influenced sediments. BONCAT-FACS, although challenging in its application to complex samples, detected metabolic responses prior to growth and thus can provide complementary insight into a microbial community's metabolic potential and succession pattern. As a primary application of BONCAT-FACS on a diverse deep-sea sediment community, our study highlights important considerations and demonstrates inherent limitations associated with this experimental approach.

RevDate: 2021-12-27

Onyango SO, Juma J, De Paepe K, et al (2021)

Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease.

Frontiers in microbiology, 12:653448.

Inter-individual variability in the microbial gene complement encoding for carbohydrate-active enzymes (CAZymes) can profoundly regulate how the host interacts with diverse carbohydrate sources thereby influencing host health. CAZy-typing, characterizing the microbiota-associated CAZyme-coding genes within a host individual, can be a useful tool to predict carbohydrate pools that the host can metabolize, or identify which CAZyme families are underrepresented requiring supplementation via microbiota transplantation or probiotics. CAZy-typing, moreover, provides a novel framework to search for disease biomarkers. As a proof of concept, we used publicly available metagenomes (935) representing 310 type strain bacterial genomes to establish the link between disease status and CAZymes in the oral and gut microbial ecosystem. The abundance and distribution of 220 recovered CAZyme families in saliva and stool samples from patients with colorectal cancer, rheumatoid arthritis, and type 1 diabetes were compared with healthy subjects. Based on the multivariate discriminant analysis, the disease phenotype did not alter the CAZyme profile suggesting a functional conservation in carbohydrate metabolism in a disease state. When disease and healthy CAZyme profiles were contrasted in differential analysis, CAZyme markers that were underrepresented in type 1 diabetes (15), colorectal cancer (12), and rheumatoid arthritis (5) were identified. Of interest, are the glycosyltransferase which can catalyze the synthesis of glycoconjugates including lipopolysaccharides with the potential to trigger inflammation, a common feature in many diseases. Our analysis has also confirmed the expansive carbohydrate metabolism in the gut as evidenced by the overrepresentation of CAZyme families in the gut compared to the oral site. Nevertheless, each site exhibited specific CAZyme markers. Taken together, our analysis provides an insight into the CAZyme landscape in health and disease and has demonstrated the diversity in carbohydrate metabolism in host-microbiota which can be a sound basis for optimizing the selection of pre, pro, and syn-biotic candidate products.

RevDate: 2021-12-26

Antonelli P, Salerno B, Bordin P, et al (2021)

Tetrodotoxin in live bivalve mollusks from Europe: Is it to be considered an emerging concern for food safety?.

Comprehensive reviews in food science and food safety [Epub ahead of print].

Tetrodotoxins (TTXs) are a group of potent neurotoxins named after the Tetraodontidae fish family (pufferfish). TTXs have been reported in several animal taxa, both terrestrial and marine. The ingestion of TTX-contaminated flesh can cause serious neurotoxic symptomatology and can eventually lead to death. Traditionally, TTXs have been associated with Asian countries, in particular with pufferfish consumption. However, they have also been reported in bivalve mollusks farmed in the Pacific area and, recently, in European seas. In Europe, different countries have reported TTXs, especially those bordering the Mediterranean Sea. As a consequence, in 2017 the European Food Safety Authority (EFSA) released an opinion with reference to TTX present in marine gastropods and bivalves, proposing a safety limit of 44 µg/kg TTXs in shellfish meat, below which no adverse effects should be observed in humans. Nevertheless, this limit has been exceeded on many occasions in European shellfish and, while for bivalves there have been no registered human intoxications, that is not the case for marine gastropods. However, TTXs have not yet been included in the list of marine biotoxins officially monitored in live bivalve mollusks within the European Union (EU). Thus, the aims of this manuscript are to discuss the increasing occurrence of TTXs in live bivalve mollusks from European sea waters, to acknowledge the still ongoing knowledge gaps that should be covered and to stimulate constructive debate on the eventuality of adopting a shared regulatory context, at least in the EU, for monitoring and managing this potential threat to food safety.

RevDate: 2021-12-26

Soder-Walz JM, Torrentó C, Algora C, et al (2021)

Trichloromethane dechlorination by a novel Dehalobacter sp. strain 8 M reveals a third contrasting C and Cl isotope fractionation pattern within this genus.

The Science of the total environment pii:S0048-9697(21)07737-8 [Epub ahead of print].

Trichloromethane (TCM) is a pollutant frequently detected in contaminated aquifers, and only four bacterial strains are known to respire it. Here, we obtained a novel Dehalobacter strain capable of transforming TCM to dichloromethane, which was denominated Dehalobacter sp. strain 8 M. Besides TCM, strain 8 M also completely transformed 1,1,2-trichloroethane to vinyl chloride and 1,2-dichloroethane. Quantitative PCR analysis for the 16S rRNA genes confirmed growth of Dehalobacter with TCM and 1,1,2-trichloroethane as electron acceptors. Carbon and chlorine isotope fractionation during TCM transformation was studied in cultured cells and in enzymatic assays with cell suspensions and crude protein extracts. TCM transformation in the three studied systems resulted in small but significant carbon (εC = -2.7 ± 0.1‰ for respiring cells, -3.1 ± 0.1‰ for cell suspensions, and - 4.1 ± 0.5‰ for crude protein extracts) and chlorine (εCl = -0.9 ± 0.1‰, -1.1 ± 0.1‰, and - 1.2 ± 0.2‰, respectively) isotope fractionation. A characteristic and consistent dual CCl isotope fractionation pattern was observed for the three systems (combined ΛC/Cl = 2.8 ± 0.3). This ΛC/Cl differed significantly from previously reported values for anaerobic dechlorination of TCM by the corrinoid cofactor vitamin B12 and other Dehalobacter strains. These findings widen our knowledge on the existence of different enzyme binding mechanisms underlying TCM-dechlorination within the genus Dehalobacter and demonstrates that dual isotope analysis could be a feasible tool to differentiate TCM degraders at field studies.

RevDate: 2021-12-24

Etto RM, Jesus EDC, Cruz LM, et al (2021)

Influence of environmental factors on the tropical peatlands diazotrophic communities from the Southern Brazilian Atlantic Rain Forest.

Letters in applied microbiology [Epub ahead of print].

The tropical peatlands of southern Brazil are essential for the maintenance of the Atlantic Rain Forest, one of the 25 hotspots of biodiversity in the world. Although diazotrophic microorganisms are essential for the maintenance of this nitrogen limited ecosystem, so far studies have focused only on microorganisms involved in the carbon cycle. In this work, peat samples were collected from three tropical peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Our results showed that the structure of the diazotrophic communities in the Brazilian tropical peatlands differs in the evaluated seasons. The abundance of the genus Bradyrhizobium showed to be affected by rainfall and peat pH. Despite the shifts of the nitrogen fixing population in the tropical peatland caused by seasonality it showed to be constantly dominated by α-Proteobacteria followed by Cyanobacteria. In addition, more than 50% of nifH gene sequences have not been classified, indicating the necessity for more studies in tropical peatland, since the reduction of N supply in the peatlands stimulates the recalcitrant organic matter decomposition performed by peatland microorganisms, influencing the C stock.

RevDate: 2021-12-27

Sarker RK, Chakraborty P, Sarkar S, et al (2021)

Bioaugmentation of Enterobacter cloacae AKS7 causes an enhanced degradation of low-density polyethylene (LDPE) in soil: a promising approach for the sustainable management of LDPE waste.

Archives of microbiology, 204(1):74.

Enterobacter cloacae AKS7 was previously reported to degrade UV-treated low-density polyethylene (LDPE) more efficiently than UV-untreated LDPE. However, the degradation of LDPE by Enterobacter cloacae AKS7 at the LDPE-contaminated soil remained unaddressed. To address this issue, soil microcosms were prepared in which an equal amount of either UV-treated or UV-untreated LDPE was added. Then, the microcosms were either augmented with AKS7 or left non-augmented. We observed that the bioaugmented microcosms exhibited approximately twofold greater polymer degradation than non-bioaugmented microcosms. To investigate the underlying cause, we found that the abundance of LDPE-degrading organisms got increased by approximately fivefold in bioaugmented microcosms than non-bioaugmented microcosms. The microbial biomass carbon and nitrogen content got enhanced by approximately twofold in bioaugmented microcosms as contrasted to non-bioaugmented microcosms. Furthermore, the bioaugmented microcosms showed almost twofold increase in the level of dehydrogenase and fluorescein diacetate (FDA) hydrolyzing activity than the non-bioaugmented microcosms. To add on, Shannon-diversity index and Gini coefficient were determined in each microcosm to measure the microbial richness and evenness, respectively, using the results of carbon source utilization pattern of BiOLOG ECO plate. The bioaugmented microcosms exhibited ~ 30% higher functional richness and ~ 30% enhanced functional evenness than the non-bioaugmented microcosms indicating the formation of an enriched ecosystem that could offer various functions including polymer degradation. Taken together, the results suggested that Enterobacter cloacae AKS7 could be used as a promising bioaugmenting agent for the sustainable degradation of LDPE waste at a contaminated site.

RevDate: 2021-12-24

Christopher Y, Aguilar C, Gálvez D, et al (2021)

Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis.

Journal of fungi (Basel, Switzerland), 7(12): pii:jof7121007.

Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants' cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants' garden communities. Some Escovopsis spp. have been shown to attack the ants' cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe-microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis-Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here.

RevDate: 2021-12-24

Purushotham N, Jones E, Monk J, et al (2021)

Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth.

Microorganisms, 9(12): pii:microorganisms9122576.

The plant Pseudowintera colorata is well known for its antimicrobial and medicinal properties and is endemic to New Zealand. Using PCR-Denaturing gradient gel electrophoresis (DGGE), we investigated the factors influencing the composition of endophytic fungal communities in P. colorata from ten distinct sites across New Zealand. Our results showed that plant organs of P. colorata influenced the diversity and richness of endophytic fungi (PERMANOVA, p < 0.05). In addition, plant maturity and its interactions revealed that endophytic fungal communities formed discrete clusters in leaves, stems, and roots of mature and immature P. colorata plants (PERMANOVA; p = 0.002, p = 0.001 and p = 0.039, respectively). For identifying isolates with biocontrol potential, dual culture tests were set up against four different phytopathogenic fungi. Isolates with high activity (zone of inhibition > 10 mm) were sequenced and identified as Trichoderma harzianum, Pezicula neosporulosa, Fusariumtricinctum, Metarhizium sp., and Chaetomium sp. Applying selected endophytic fungi (n = 7) as soil drenchers significantly increased the growth of P. colorata seedlings and produced more internodes. Seedling shoots treated with Trichoderma sp. PRY2BA21 were 2.2 × longer (8.36 cm) than the untreated controls (3.72 cm). Our results elucidate the main plant factors influencing fungal community composition and demonstrate a role for endophytic fungi in P. colorata growth and further demonstrate that medicinal plants are a rich source of endophytes with potential as biocontrol agents.

RevDate: 2021-12-23

Das S, Paul P, Chatterjee S, et al (2021)

Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS).

Archives of microbiology, 204(1):59.

Staphylococcus aureus causes numerous community-acquired and nosocomial infections in humans by exploiting biofilm. In this context, this study aims to impede the formation of Staphylococcus aureus biofilm by exposing the cells to a plant-based alkaloid, piperine. Our study revealed that piperine exhibited considerable antimicrobial activity against the test organism. However, we had tested the lower concentrations (up to 32 µg/mL) of piperine to observe whether they could show any antibiofilm activity against the same organism. Several experiments, like crystal violet (CV) assay, estimation of total biofilm protein, and fluorescence microscopic observations, established that lower concentrations (up to 16 µg/mL) of piperine showed efficient antibiofilm activity against Staphylococcus aureus. In this connection, we also noticed that the lower concentrations (8 and 16 µg/mL) of piperine showed a considerable reduction in microbial metabolic activity. Besides, it was also observed that the mentioned concentrations of piperine did not compromise the microbial growth of the target organism while exhibiting antibiofilm activity. To understand the underlying mechanism of microbial biofilm inhibition under the influence of piperine, we observed that the compound was found to accumulate reactive oxygen species in the bacterial cells that could play an important role in the inhibition of biofilm formation. Furthermore, the tested concentrations (8 and 16 µg/mL) of piperine were able to inhibit the motility of the test organism that might compromise the development of biofilm. Thus, piperine could be considered as a potential agent for the effective management of biofilm threat caused by Staphylococcus aureus.

RevDate: 2021-12-23

Trzebny A, Slodkowicz-Kowalska A, Björkroth J, et al (2021)

Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content.

Microbial ecology [Epub ahead of print].

The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.

RevDate: 2021-12-23

Shi Y, Yang H, Chu M, et al (2021)

Differentiation and Variability in the Rhizosphere and Endosphere Microbiomes of Healthy and Diseased Cotton (Gossypium sp.).

Frontiers in microbiology, 12:765269.

The plant microbiome is a key determinant of health and productivity. However, it is still difficult to understand the structural composition of the bacterial and fungal microbiomes of diseased and healthy plants, especially the spatial dynamics and phylogenies of endophytic and rhizosphere microbial communities. We studied the differentiation and variability in the rhizosphere and endosphere microbiomes of healthy and diseased cotton from north and south of the Tianshan Mountains using the methods of PCR-based high-throughput sequencing and real-time quantitative PCR. The endophytic and rhizosphere bacterial abundances in the diseased plants were greater than those of healthy plants. The numbers of endophytic and rhizosphere fungi associated with diseased plants were greater than those associated healthy plants (p < 0.05). Endophytic and rhizosphere bacteria did not share common OTUs. The dominant rhizosphere bacteria were Proteobacteria (29.70%), Acidobacteria (23.14%), Gemmatimonadetes (15.17%), Actinobacteria (8.31%), Chloroflexi (7.99%), and Bacteroidetes (5.15%). The dominant rhizosphere fungi were Ascomycota (83.52%), Mortierellomycota (7.67%), Basidiomycota (2.13%), Chytridiomycota (0.39%), and Olpidiomycota (0.08%). The distribution of dominant bacteria in different cotton rhizosphere soils and roots differed, with the dominant bacteria Pseudomonas (15.54%) and Pantoea (9.19%), and the dominant fungi Alternaria (16.15%) and Cephalotrichum (9.10%) being present in the greatest numbers. At sampling points in different ecological regions, the total numbers of cotton endophytic and rhizosphere microbiome OTUs from southern to northern Xinjiang showed an increasing trend. There were significant differences in the composition and diversity of rhizosphere microbes and endophytes during the entire cotton growth period and in representative ecological regions (p < 0.01), whereas rhizosphere microbes and endophytes showed no significant differences among the four growth periods and in representative ecological regions. RB41, H16, Nitrospira, and Sphingomonas play important roles in the microbial ecology of cotton rhizosphere soil. Pseudomonas accounted for a large proportion of the microbes in the cotton rhizosphere soil. This study provides an in-depth understanding of the complex microbial composition and diversity associated with cotton north and south of the Tianshan Mountains.

RevDate: 2021-12-21

Šimek K, Mukherjee I, Nedoma J, et al (2021)

CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes.

Environmental microbiology [Epub ahead of print].

Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.

RevDate: 2021-12-21

Qi P, Li T, Hu C, et al (2021)

Effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation in drinking water distribution systems via interaction among iron particles, biofilms, and chlorine.

Chemosphere pii:S0045-6535(21)03838-8 [Epub ahead of print].

The effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation (N-DBPs) in drinking water distribution systems (DWDSs) were investigated. The results verified that in the effluent of corroded DWDSs simulated by annular reactors with corroded cast iron coupons, typical N-DBPs, including haloacetamides, halonitromethanes, and haloacetonitriles, increased significantly compared with the influent of DWDSs. In addition, more dissolved organic carbon, adenosine triphosphate, and iron particles were simultaneously detected in the bulk water of corroded DWDSs, thereby indicating that abundant iron particles acted as a "protective umbrella" for microorganisms. Under the condition of corroded DWDSs, the extracellular polymeric substances gradually exhibited distinct characteristics, including a higher content and lower flocculation efficiency, thereby resulting in a large supply of N-DBPs precursors. Corroded cast iron pipes, equivalent to a unique microbial interface, induced completely distinct microbial community structures and metabolic functions in DWDSs, thereby enhancing the formation of N-DBPs. This is the first study to successfully reveal the interactions among iron particles, biofilms, and chlorine in DWDSs, which may help to fully understand the biofilm transformation and microbial community succession in DWDSs.

RevDate: 2021-12-20

Ostermeyer P, Bonin L, Leon-Fernandez LF, et al (2021)

Electrified bioreactors: the next power-up for biometallurgical wastewater treatment.

Microbial biotechnology [Epub ahead of print].

Over the past decades, biological treatment of metallurgical wastewaters has become commonplace. Passive systems require intensive land use due to their slow treatment rates, do not recover embedded resources and are poorly controllable. Active systems however require the addition of chemicals, increasing operational costs and possibly negatively affecting safety and the environment. Electrification of biological systems can reduce the use of chemicals, operational costs, surface footprint and environmental impact when compared to passive and active technologies whilst increasing the recovery of resources and the extraction of products. Electrification of low rate applications has resulted in the development of bioelectrochemical systems (BES), but electrification of high rate systems has been lagging behind due to the limited mass transfer, electron transfer and biomass density in BES. We postulate that for high rate applications, the electrification of bioreactors, for example, through the use of electrolyzers, may herald a new generation of electrified biological systems (EBS). In this review, we evaluate the latest trends in the field of biometallurgical and microbial-electrochemical wastewater treatment and discuss the advantages and challenges of these existing treatment technologies. We advocate for future research to focus on the development of electrified bioreactors, exploring the boundaries and limitations of these systems, and their validity upon treating industrial wastewaters.

RevDate: 2021-12-20

Islam MM, Bhattacharya R, Sarkar B, et al (2021)

Different soil salinity imparts clear alteration in rhizospheric bacterial community dynamics in rice and peanut.

Archives of microbiology, 204(1):36.

The rhizospheric microbiome is capable of changing the physio-chemical properties of its own micro-environment and found to be indispensable in the overall health of the hostplant. The interplay between the rhizospheric environment and the microbiota residing therein tune the physiology of the associated plant. In this study, we have determined how the soil properties and the host-plant remains as an important parameter for microbial community dynamics in the rhizosphere of rice and peanut. In addition to check the physio-chemical parameters of the rhizospheric soil, we have also prepared the metagenomic DNA from each rhizospheric soil followed by high-throughput sequencing and sequence analysis to predict the OTUs that represents the community structure. The alpha-diversity of the bacterial community in the RRN sample was highest, while the lowest was in PRS sample. Actinobacteria is the most predominant phylum in PRN, PRS and RRN, whereas Acidobacteria in RRS. We found a clear shift in bacterial community over the rice and peanut rhizosphere and also over these host-rhizospheres from normal and high saline region. The rhizospheric bacterial community composition found to be affected by the close-by environmental factors. Thus, the rhizospheric bacterial community structure is related to both the adjoining soil characters and the type of the hosts.

RevDate: 2021-12-20

Cáceres PFF, Vélez LP, Junca H, et al (2021)

Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations.

Current research in microbial sciences, 2:100086 pii:S2666-5174(21)00066-3.

Heavy metals can be found in soil as natural components or as product of contaminations events; plants growing in soils are prone to bioaccumulate heavy metals on their biomass. Theobroma cacao L. can bioaccumulate cadmium (Cd) in the seed and could be in derived food products, it considered a human health risk; therefore, removal of Cd is desirable but not vet technically and economically feasible; only to avoid Cd in cocoa is by selecting lands plots exhibiting lower Cd concentrations in soils, imposing a serious limitation to farmers and regulators. The study of bacterial communities and isolation bacteria with tolerance and mechanisms to counteract the translocation of Cd to the parts of cocoa plant exhibits high relevance in Colombia economy and especially to companies producing chocolate and derivatives. Here, we explore bacterial communities associated with soils having relatively high natural Cd concentrations in a large agricultural cocoa plot located in the Santander region. We characterized the bacterial communities' compositions by amplicon 16S rRNA sequencing from metagenomics soil DNA and by culturing-based enumeration and isolation approaches. Culture-dependent techniques allowed the isolation of bacteria tolerant to Cd concentration, complement the information for Colombia, and expand the number of strains characterized with adaptive capacity against Cd with tolerance in a concentration of 120 mg/L, which represents the first capacity for Exiguobacterium sp., Ralstonia sp., Serratia sp., Dermacoccus sp., Klebsiella sp., Lactococcus sp. and Staphylococcus sp. In addition to confirming that there is a greater diversity of Cd-tolerant bacteria present in soils of farms cultivated with cocoa in Colombia. As for the results of new generation sequencing, they revealed that, the alpha-diversity in bacterial composition, according to the ANOVA, there are statistically significant differences of the bacterial communities present in the samples. Regarding Pearson correlation analysis, it was found the Shannon Simpson indices, have a positive correlation against OM, C, pH, Mn, C.E.C.I., Ca, P and negatively correlated with S; respect to bacterial community structure, a principal component analysis, which revealed that independent of the concentration of Cd present in soil samples, separates them according to pH value. Phyla to high abundance relative in all samples were Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes and NB1_J; the bacteria genera with higher relative abundance (>0.5%) Nitrospira, candidatus Udaeobacter, Haliangium, Cupriavidus, MND1, Bacillus, Kitasatospora, Niveibacterium, Acidothermus, Burkholderia, Acidibacter, Terrimonas, Gaiella, candidatus Solibacter, Kitasatospora, Sphingomonas, Streptomyces, this genus with a relationship with the Cd tolerance process. After it, redundancy analysis was performed between the variation of the bacterial communities identified by dependent and independent techniques and edaphic soil variables, where their positive correlation was found against K, OM, C, Ca, pH (p<0.01) and P, C.E.C.I (p<0.05). For soil samples, the bacterial genera that make up the core community were identified, which are present in all samples as Nitrospira sp., Cupriavidus sp., Burkholderia sp., Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter and Terramonas; the genera identified has a different and fundamental role in ecosystem functioning. The combination of different approaches offers new clues regarding the assessment of bacterial communities in soils cultivated with cocoa in soils with elevated Cd content in Colombia, and the ecological role and interplay of soil components and bacterial communities that contribute to modulate the effect of bioaccumulation in products.

RevDate: 2021-12-20

Yu J, Gonzalez JM, Dong Z, et al (2021)

Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato.

Frontiers in plant science, 12:768693.

Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.

RevDate: 2021-12-17

Fu S, Yang Q, Sheng Y, et al (2021)

Metagenomics combined with comprehensive validation as a public health risk assessment tool for urban and agricultural run-off.

Water research, 209:117941 pii:S0043-1354(21)01135-0 [Epub ahead of print].

Early detection of emerging and life-threatening pathogens circulating in complex environments is urgently required to combat infectious diseases. This study proposed a public health risk assessment workflow with three stages, pathogen screening, pathogen genotyping, and risk assessment. In stage one, pathogens were screened with metagenomic sequencing, microfluidic chip, and qPCR. In stage two, pathogens were isolated and genotyped with multi-locus sequence typing (MLST) or conventional PCR. Finally, virulence genes from metagenomic data were assessed for pathogenicity. Two regions (Donggang and Zhanjiang) with potential public health concerns were selected for evaluation, each of which comprised of one urban and one farming wastewater sampling location. Overall, metagenomic sequencing reflected the variation in the relative abundance of medically important bacteria. Over 90 bacterial pathogens were monitored in the metagenomic dataset, of which 56 species harbored virulence genes. In Donggang, a pathogenic Acinetobacter sp. reached high abundances in 2018 and 2020, whereas all pathogenic Vibrio spp. peaked in October 2019. In Zhanjiang, A. baumanni, and other Enterobacteriaceae species were abundantly present in 2019 and 2020, whereas Aeromonas and Vibrio spp. peaked in November-2017. Forty species were subsequently isolated and subtyped by MLST, half of which were prevalent genotypes in clinical data. Additionally, we identified the African Swine Fever Virus (ASFV) in water samples collected in 2017, ahead of the first reported ASFV outbreak in 2018 in China. RNA viruses like Hepatitis A virus (HAV) and Enterovirus 71 (EV71) were also detected, with concentrations peaking in April 2020 and April 2018, respectively. The dynamics of HAV and EV71 were consistent with local epidemic trends. Finally, based on the virulence gene profiles, our study identified the risk level in wastewater of two cities. This workflow illustrates the potential for an early warning of local epidemics, which helps to prioritize the preparedness for specific pathogens locally.

RevDate: 2021-12-15

Abramov SM, Straub D, Tejada J, et al (2021)

Biogeochemical Niches of Fe-cycling Communities Influencing Heavy Metal Transport Along the Rio Tinto, Spain.

Applied and environmental microbiology [Epub ahead of print].

In the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II) and Cl- on Fe-cycling microorganisms. We showed that the water column at the acidic (pH 2.2) middle course of the river was colonized by Fe(II) oxidizers affiliating with Acidithiobacillus and Leptospirillum. At the upper estuary, daily fluctuations of pH (2.7-3.7) and Cl- (6.9-16.6 g/L) contributed to the establishment of a unique microbial community, including Fe(II) oxidizers belonging to Acidihalobacter, Marinobacter and Mariprofundus identified at this site. Furthermore, DNA- and RNA-based profiles of the benthic community suggested that acidophilic and neutrophilic Fe(II) oxidizers (e.g., Acidihalobacter, Marinobacter and Mariprofundus), Fe(III) reducers (e.g., Thermoanaerobaculum) and sulfate-reducing bacteria drive the Fe cycle in the estuarine sediments. RNA-based relative abundances of Leptospirillum at the middle course as well as abundances of Acidohalobacter and Mariprofundus at the upper estuary were higher, compared to DNA-based results, suggesting potentially higher level of activity of these taxa. Based on our findings, we propose a model of how tidal water affects the composition and activity of the Fe-cycling taxa, playing an important role in the transport of HMs (e.g., As, Cd, Cr and Pb) along the Rio Tinto. Importance The estuary of the Rio Tinto is a unique environment in which extremely acidic, heavy metal- and especially iron-rich river water is mixed with seawater. Due to the mixing events, the estuarine water is characterized by a low pH, almost sea water salinity and high concentrations of bioavailable iron. The unusual hydrogeochemistry maintains unique microbial communities in the estuarine water and in the sediment. These communities include halotolerant iron-oxidizing microorganisms which typically inhabit acidic saline environments and marine iron-oxidizing microorganisms, which, in opposite, are not typically found in acidic environments. Furthermore, highly saline estuarine water favored the prosperity of acidophilic heterotrophs, typically inhabiting brackish and saline environments. The Rio Tinto estuarine sediment harbored a diverse microbial community with both, acidophilic and neutrophilic members that can mediate the iron cycle, and in turn, can directly impact the mobility and transport of heavy metals in the Rio Tinto estuary.

RevDate: 2021-12-15

Kim J, Hur JI, Ryu S, et al (2021)

Bacteriophage-Mediated Modulation of Bacterial Competition during Selective Enrichment of Campylobacter.

Microbiology spectrum [Epub ahead of print].

Selective media using antimicrobial supplements generate unique microbial ecology to facilitate bacterial isolation. However, antibiotic-resistant bacteria indigenous to samples can interfere with the isolation process using selective media. Recent studies showed that extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highly prevalent on retail raw chicken and compromises the efficacy of Campylobacter isolation because ESBL-producing E. coli are resistant to antimicrobial supplements in Campylobacter-selective media and outgrows Campylobacter. The objective of this study was to improve Campylobacter isolation by inhibiting the growth of ESBL-producing E. coli using bacteriophages (phages). The supplementation of Campylobacter-selective media with E. coli phages reduced the level of ESBL-producing E. coli during the enrichment step. When E. coli phages were combined with the antimicrobial supplements of Campylobacter-selective media, antimicrobial synergy was observed, particularly with rifampicin, an antibiotic used in Preston medium. Although the same materials (i.e., phages and selective media) were used, the sequence of combining the materials markedly influenced the inhibition of ESBL-producing E. coli and the isolation of Campylobacter. These findings indicated that the modulation of microbial competition at the enrichment step was critical to the successful isolation of fastidious bacteria and that phages can be utilized to facilitate the selective enrichment of target bacteria by inhibiting their competitive bacteria. IMPORTANCE Phages are promising antimicrobial alternatives. In this study, we first demonstrated that phages can be used to facilitate selective isolation of fastidious bacteria that are prone to be outgrown by bacterial competitors during isolation. The effectiveness of a phage-based isolation method was primarily dependent on the antimicrobial synergy between phages and antibiotics used in selective media. The same approach could be applied to the development of isolation methods for other fastidious bacteria.

RevDate: 2021-12-15

Ghignone S, Zampieri E, Tinti F, et al (2021)

Fungal Patterns from Soils in Madagascar: an Insight from Maromizaha Forest (Evergreen Humid Forest) to Outside (Deciduous Forest).

Microbial ecology [Epub ahead of print].

Soil fungal diversity was studied by next-generation sequencing and compared in two different Malagasy ecosystems, the first a New Protected Area (Maromizaha NAP) that is a rich humid evergreen forest and the second a degraded and declined deciduous forest (Andaravina) whose area has been also eroded. Both areas, however, have comparable annual rainfalls and soil pH values. So it was of interest to examine the soil fungal diversity in each system and compare them. We detected 1,817,658 reads representing Ascomycota, which were dominant in both habitats (55.9%), followed by unidentified fungi (21.5%), Basidiomycota (12.7%) and Mortierellomycota (6.7%), with Mucoromycota, Chytridiomycota, Glomeromycota and other phyla accounting for less than 5% in total. In detail, 1,142 OTUs out of 1,368 constitute the common core shared by both sampling areas, which are characterized by tropical climate, whereas 185 are Maromizaha specific and 41 Andaravina specific. The most represented guilds involve fungi related to saprotrophic behaviour, with a greater tendency towards pathotrophic mode. A significant variability in terms of richness and abundance is present within Maromizaha, which is a heterogeneous environment for fungi but also for plant composition, as it emerged from the vegetational survey of the investigated sites. A few fungal sequences match taxa from Madagascar, highlighting the scarce representativeness of fungi from this island in the fungal databases and their still low knowledge. Enlarging studies in Madagascar will help not only to unravel its largely unknown fungal biodiversity but also to give a contribution for studies on the reconstruction of the diversity of soil fungi worldwide.

RevDate: 2021-12-15

Chaudhari NM, Overholt WA, Figueroa-Gonzalez PA, et al (2021)

The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers.

Environmental microbiome, 16(1):24.

BACKGROUND: The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges.

RESULTS: Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell-cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota).

CONCLUSION: Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.

RevDate: 2021-12-14

Wang G, Gao Q, Yang Y, et al (2021)

Soil enzymes as indicators of soil function: a step toward greater realism in microbial ecological modeling.

Global change biology [Epub ahead of print].

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2 ×N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundance in ecosystem modeling can provide a basis for testing hypotheses about microbially-mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.

RevDate: 2021-12-14

Razak NA, AC Gange (2021)

Multitrophic Interactions Between Arbuscular Mycorrhizal Fungi, Foliar Endophytic Fungi and Aphids.

Microbial ecology [Epub ahead of print].

Almost all living plants can be simultaneously colonised by arbuscular mycorrhizal fungi in the roots and endophytes in the shoots, while also being attacked by insect herbivores. However, to date, no study has ever examined the multitrophic interactions between these two different fungal groups and insects on any species of forb. Here, we examined the effects of two commercial species mixtures of arbuscular mycorrhizal fungi (AMF) and two foliar endophytes (Colletotrichum acutatum and Cladosporium oxysporum) on the growth of an invasive weed, Impatiens glandulifera, and the aphids that attack it. AMF reduced plant biomass, which was most evident when C. oxysporum was inoculated. Mycorrhizal fungi had few effects on aphids, and these depended on the identity of the endophytes present. Meanwhile, endophytes tended to increase aphid numbers, but this depended on the identity of the AMF inoculum. Throughout, there were differences in the responses of the plant to the two mycorrhizal mixtures, demonstrating clear AMF specificity in this plant. These specific effects were also strongly affected by the endophytes, with a greater number of interactions found between the AMF and endophytes than between the endophytes themselves. In particular, AMF reduced infection levels by the endophytes, while some endophyte inoculations reduced mycorrhizal colonisation. We suggest that both AMF and endophytes could play an important part in future biological control programmes of weeds, but further multitrophic experiments are required to unravel the complexity of interactions between spatially separated parts of the plant microbiome.

RevDate: 2021-12-13

Wichmann S, Scherer S, Z Ardern (2021)

Biological factors in the synthetic construction of overlapping genes.

BMC genomics, 22(1):888.

BACKGROUND: Overlapping genes (OLGs) with long protein-coding overlapping sequences are disallowed by standard genome annotation programs, outside of viruses. Recently however they have been discovered in Archaea, diverse Bacteria, and Mammals. The biological factors underlying life's ability to create overlapping genes require more study, and may have important applications in understanding evolution and in biotechnology. A previous study claimed that protein domains from viruses were much better suited to forming overlaps than those from other cellular organisms - in this study we assessed this claim, in order to discover what might underlie taxonomic differences in the creation of gene overlaps.

RESULTS: After overlapping arbitrary Pfam domain pairs and evaluating them with Hidden Markov Models we find OLG construction to be much less constrained than expected. For instance, close to 10% of the constructed sequences cannot be distinguished from typical sequences in their protein family. Most are also indistinguishable from natural protein sequences regarding identity and secondary structure. Surprisingly, contrary to a previous study, virus domains were much less suitable for designing OLGs than bacterial or eukaryotic domains were. In general, the amount of amino acid change required to force a domain to overlap is approximately equal to the variation observed within a typical domain family. The resulting high similarity between natural sequences and those altered so as to overlap is mostly due to the combination of high redundancy in the genetic code and the evolutionary exchangeability of many amino acids.

CONCLUSIONS: Synthetic overlapping genes which closely resemble natural gene sequences, as measured by HMM profiles, are remarkably easy to construct, and most arbitrary domain pairs can be altered so as to overlap while retaining high similarity to the original sequences. Future work however will need to assess important factors not considered such as intragenic interactions which affect protein folding. While the analysis here is not sufficient to guarantee functional folding proteins, further analysis of constructed OLGs will improve our understanding of the origin of these remarkable genetic elements across life and opens up exciting possibilities for synthetic biology.

RevDate: 2021-12-10

Ryther CM, Ortmann AC, Wohlgeschaffen G, et al (2021)

Temperate Coastal Microbial Communities Rapidly Respond to Low Concentrations of Partially Weathered Diesel.

Microbial ecology [Epub ahead of print].

Diesel is frequently encountered in coastal ecosystems due to land run-off from road surfaces. The current study investigates how partially weathered diesel at environmentally relevant concentrations, as may be seen during a run-off event, affect coastal microbial communities. A mesocosm experiment using seawater from the Bedford Basin, Nova Scotia, was followed for 72 h after the addition of partially weathered diesel. Sequencing data suggests partially weathered diesel acts quickly to alter the prokaryotic community, as both opportunistic (Vibrio and Lentibacter) and oil-degrading (Colwellia, Sulfitobacter, and Pseudoalteromonas) bacteria proliferated after 24 h in comparison to the control. In addition, total prokaryotes seemed to recover in abundance after 24 h, where eukaryotes only ceased to decrease slightly at 72 h, likely because of an inability to adapt to the oil-laden conditions, unlike the prokaryotes. Considering there were no highly volatile components (benzene, toluene, ethylbenzene, and xylene) present in the diesel when the communities were exposed, the results indicate that even a relatively small concentration of diesel run-off can cause a drastic change to the microbial community under low energy conditions. Higher energy conditions due to wave action may mitigate the response of the microbial communities by dilution and additional weathering of the diesel.

RevDate: 2021-12-10

Goswami K, Shope AJ, Tokarev V, et al (2021)

Comparative meta-omics for identifying pathogens associated with prosthetic joint infection.

Scientific reports, 11(1):23749.

Prosthetic joint infections (PJI) are economically and personally costly, and their incidence has been increasing in the United States. Herein, we compared 16S rRNA amplicon sequencing (16S), shotgun metagenomics (MG) and metatranscriptomics (MT) in identifying pathogens causing PJI. Samples were collected from 30 patients, including 10 patients undergoing revision arthroplasty for infection, 10 patients receiving revision for aseptic failure, and 10 patients undergoing primary total joint arthroplasty. Synovial fluid and peripheral blood samples from the patients were obtained at time of surgery. Analysis revealed distinct microbial communities between primary, aseptic, and infected samples using MG, MT, (PERMANOVA p = 0.001), and 16S sequencing (PERMANOVA p < 0.01). MG and MT had higher concordance with culture (83%) compared to 0% concordance of 16S results. Supervised learning methods revealed MT datasets most clearly differentiated infected, primary, and aseptic sample groups. MT data also revealed more antibiotic resistance genes, with improved concordance results compared to MG. These data suggest that a differential and underlying microbial ecology exists within uninfected and infected joints. This study represents the first application of RNA-based sequencing (MT). Further work on larger cohorts will provide opportunities to employ deep learning approaches to improve accuracy, predictive power, and clinical utility.

RevDate: 2021-11-28

Liu J, Li C, Ma W, et al (2021)

Molecular Characterization of Distinct Fungal Communities in the Soil of a Rare Earth Mining Area.

Microbial ecology [Epub ahead of print].

The exploitation of ion-absorbed rare earth elements (REEs) has caused serious ecological destruction and environmental pollution. Effects on soil fungal structure and diversity exerted by mining activities are usually ignored, although fungus is one of the most important components in soil ecosystems. In the present research, quantitative polymerase chain reaction (qPCR) and high-throughput Illumina MiSeq sequencing were conducted to characterize fungal community composition and structure in soil of a rare earth mining area after in situ leaching. Statistical analyses, network, and FUNGuild were used to conduct in-depth analyses. Ascomycota, Basidiomycota, and Glomeromycota were the most abundant phyla in the mining soils. Fungal community structures were stable after leaching practice, but nutrition contents (organic matter, TC, and TN) significantly and positively contributed to fungal abundances and diversities. Saprotrophs in phyla Ascomycota and Basidiomycota were the dominant fungal trophic mode, and they played critical roles in nutrient cycling, transformation processes, and reducing REE toxicity. Symbiotrophs of phyla Glomeromycota contributed to soil aggregation and slowing down nutrient losses after in situ leaching practice. In addition, fungi could regulate the interactions between species to resist the harsh environment of REE toxicity or ammonium caused by in situ leaching practice.

RevDate: 2021-12-08

Wu L, Yang F, Feng J, et al (2021)

Permafrost thaw with warming reduces microbial metabolic capacities in sub-surface soils.

Molecular ecology [Epub ahead of print].

Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (P = 0.011) within the deep organic layer (15 -25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0 - 5 cm, 5 - 15 cm, and 45 - 55 cm). Warming treatment altered fungal community composition and microbial functional structure (P < 0.050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulfate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in sub-surface soils below 15 cm, despite a 25.2% higher (P < 0.05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in sub-surface soils are reduced, likely arising from enhanced thaw by warming.

RevDate: 2021-12-08

Kumar V, Kumar S, D Singh (2021)

Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies.

Extremophiles : life under extreme conditions, 26(1):3.

Glacial and kettle lakes in the high-altitude Himalayas are unique habitats with significant scope for microbial ecology. The present study provides insights into bacterial community structure and function of the sediments of two high-altitude lakes using 16S amplicon and whole-genome shotgun (WGS) metagenomics. Microbial communities in the sediments of Parvati kund (glacial lake) and Bhoot ground (kettle lake) majorly consist of bacteria and a small fraction of archaea and eukaryota. The bacterial population has an abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, and Verrucomicrobia. Despite the common phyla, the sediments from each lake have a distinct distribution of bacterial and archaeal taxa. The analysis of the WGS metagenomes at the functional level provides a broad picture of microbial community metabolism of key elements and suggested chemotrophs as the major primary producers. In addition, the findings also revealed that polyhydroxyalkanoates (PHA) are a crucial stress adaptation molecule. The abundance of PHA metabolism in Alpha- and Betaproteobacteria and less representation in other bacterial and archaeal classes in both metagenomes was disclosed. The metagenomic insights provided an incisive view of the microbiome from Himalayan lake's sediments. It has also opened the scope for further bioprospection from virgin Himalayan niches.

RevDate: 2021-12-08

Andrić S, Meyer T, Rigolet A, et al (2021)

Lipopeptide Interplay Mediates Molecular Interactions between Soil Bacilli and Pseudomonads.

Microbiology spectrum [Epub ahead of print].

Some Bacillus species, such as B. velezensis, are important members of the plant-associated microbiome, conferring protection against phytopathogens. However, our knowledge about multitrophic interactions determining the ecological fitness of these biocontrol bacteria in the competitive rhizosphere niche is still limited. Here, we investigated molecular mechanisms underlying interactions between B. velezensis and Pseudomonas as a soil-dwelling competitor. Upon their contact-independent in vitro confrontation, a multifaceted macroscopic outcome was observed and characterized by Bacillus growth inhibition, white line formation in the interaction zone, and enhanced motility. We correlated these phenotypes with the production of bioactive secondary metabolites and identified specific lipopeptides as key compounds involved in the interference interaction and motile response. Bacillus mobilizes its lipopeptide surfactin not only to enhance motility but also to act as a chemical trap to reduce the toxicity of lipopeptides formed by Pseudomonas. We demonstrated the relevance of these unsuspected roles of lipopeptides in the context of competitive tomato root colonization by the two bacterial genera. IMPORTANCE Plant-associated Bacillus velezensis and Pseudomonas spp. represent excellent model species as strong producers of bioactive metabolites involved in phytopathogen inhibition and the elicitation of plant immunity. However, the ecological role of these metabolites during microbial interspecies interactions and the way their expression may be modulated under naturally competitive soil conditions has been poorly investigated. Through this work, we report various phenotypic outcomes from the interactions between B. velezensis and 10 Pseudomonas strains used as competitors and correlate them with the production of specific metabolites called lipopeptides from both species. More precisely, Bacillus overproduces surfactin to enhance motility, which also, by acting as a chemical trap, reduces the toxicity of other lipopeptides formed by Pseudomonas. Based on data from interspecies competition on plant roots, we assume this would allow Bacillus to gain fitness and persistence in its natural rhizosphere niche. The discovery of new ecological functions for Bacillus and Pseudomonas secondary metabolites is crucial to rationally design compatible consortia, more efficient than single-species inoculants, to promote plant health and growth by fighting economically important pathogens in sustainable agriculture.

RevDate: 2021-12-08

Wang F, Harindintwali JD, Yuan Z, et al (2021)

Technologies and perspectives for achieving carbon neutrality.

Innovation (New York, N.Y.), 2(4):100180 pii:S2666-6758(21)00105-3.

Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.

RevDate: 2021-12-08

Xu Y, Liu X, Cao X, et al (2021)

Artificial intelligence: A powerful paradigm for scientific research.

Innovation (New York, N.Y.), 2(4):100179 pii:S2666-6758(21)00104-1.

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

This book covers the ecological activities of microbes in the biosphere with an emphasis on microbial interactions within their environments and communities In thirteen concise and timely chapters, Microbial Ecology presents a broad overview of this rapidly growing field, explaining the basic principles in an easy-to-follow manner. Using an integrative approach, it comprehensively covers traditional issues in ecology as well as cutting-edge content at the intersection of ecology, microbiology,

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )