picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
23 May 2019 at 01:42
HITS:
10549
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 23 May 2019 at 01:42 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: "microbial ecology" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-05-22

Beinart RA (2019)

The Significance of Microbial Symbionts in Ecosystem Processes.

mSystems, 4(3): pii:4/3/e00127-19.

It is increasingly accepted that the microbial symbionts of eukaryotes can have profound effects on host ecology and evolution. However, the relative contribution that they make directly to ecosystem processes, like energy and nutrient flows, is less explicitly acknowledged and, in many cases, only poorly constrained. Here, I explore the idea that, in some habitats, host-associated microbes may have an outsized role in ecosystem processes relative to functionally equivalent free-living microbes due to key aspects of the physiology, ecology, and evolution of symbiotic interactions. My research quantifying symbiont metabolism has shown that microbial symbionts have the potential to make a substantial impact on carbon and sulfur cycling. It is my perspective that direct measurement of symbiont activity and comparison to free-living counterparts will expand our understanding of the significance of microbial symbioses and, more broadly, the role of microbial processes in ecosystems.

RevDate: 2019-05-22

Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS, et al (2019)

Surveillance and Genomics of Toxigenic Vibrio cholerae O1 From Fish, Phytoplankton and Water in Lake Victoria, Tanzania.

Frontiers in microbiology, 10:901.

The occurrence of toxigenic Vibrio cholerae O1 during a non- outbreak period in Lake Victoria was studied and genetic characteristics for environmental persistence and relatedness to pandemic strains were assessed. We analyzed 360 samples of carps, phytoplankton and water collected in 2017 during dry and rainy seasons in the Tanzanian basin of Lake Victoria. Samples were tested using PCR (ompW and ctxA) with DNA extracted from bacterial isolates and samples enriched in alkaline peptone water. Isolates were screened with polyvalent antiserum O1 followed by antimicrobial susceptibility testing. Whole genome sequencing and bioinformatics tools were employed to investigate the genomic characteristics of the isolates. More V. cholerae positive samples were recovered by PCR when DNA was obtained from enriched samples than from isolates (69.0% vs. 21.3%, p < 0.05), irrespectively of season. We identified ten V. cholerae O1 among 22 ctxA-positive isolates. Further studies are needed to serotype the remaining ctxA-positive non-O1 strains. Sequenced strains belonged to El Tor atypical biotype of V. cholerae O1 of MLST ST69 harboring the seventh pandemic gene. Major virulence genes, ctxA, ctxB, zot, ace, tcpA, hlyA, rtxA, ompU, toxR, T6SS, alsD, makA and pathogenicity islands VPI-1, VPI-2, VSP-1, and VSP-2 were found in all strains. The strains contained Vibrio polysaccharide biosynthesis enzymes, the mshA gene and two-component response regulator proteins involved in stress response and autoinducers for quorum sensing and biofilm formation. They carried the SXT integrative conjugative element with phenotypic and genotypic resistance to aminoglycoside, sulfamethoxazole, trimethoprim, phenicol, and quinolones. Strains contained a multidrug efflux pump component and were resistant to toxic compounds with copper homeostasis and cobalt-zinc-cadmium resistance proteins. The environmental strains belonged to the third wave of the seventh pandemic and most are genetically closely related to recent outbreak strains from Tanzania, Kenya, and Uganda with as low as three SNPs difference. Some strains have persisted longer in the environment and were more related to older outbreak strains in the region. V. cholerae O1 of outbreak potential seem to persist in Lake Victoria through interactions with fish and phytoplankton supported by the optimum water parameters and intrinsic genetic features enhancing survival in the aquatic environment.

RevDate: 2019-05-22

Worrich A, Musat N, H Harms (2019)

Associational effects in the microbial neighborhood.

The ISME journal pii:10.1038/s41396-019-0444-6 [Epub ahead of print].

Even though "perfect" metagenomes or metatranscriptomes are close at hand, the implicit assumption of spatial homogeneity in the "omic" approaches makes it difficult if not impossible to relate those data to ecological processes occurring in natural and man-made ecosystems. In fact, the distribution of microbes in their habitats is far from being uniform and random. Microbial communities show a high degree of spatial organization that stems from environmental gradients and local interactions. These interactions can be very complex and may involve multiple species. Several studies highlighted the importance of indirect interactions for community stability, but the absence of a theoretical framework for microbial ecology restricts the possibilities to strike a balance between the investigation of simple communities with purely pairwise interactions and the attempts to understand interaction patterns in whole communities based on meta-omics studies. Here we suggest adapting the concept of Associational Effects (AE) from plant ecology, to better understand the link between ecological interactions, spatial arrangement, and stability in microbial communities. By bringing together a conceptual framework developed for plants and observations made for microbes, this perspective article fosters synthesis of related disciplines to yield novel insights into the advancing field of spatial microbial ecology. To promote the integration into microbial ecology, we (i) outline the theoretical background of AE, (ii) collect underlying mechanisms by literature synthesis, (iii) propose a three-point roadmap for the investigation of AE in microbial communities, and (iv) discuss its implications for microbial ecology research.

RevDate: 2019-05-21

Nathalie M, de Wiele Tom V, Fiona F, et al (2019)

Gut microbiome patterns depending on children's psychosocial stress: reports versus biomarkers.

Brain, behavior, and immunity pii:S0889-1591(18)31214-5 [Epub ahead of print].

AIM: Chronic stress increases disease vulnerability factors including inflammation, a pathological characteristic potentially regulated by the gut microbiota. We checked the association between the gut microbiome and psychosocial stress in children/adolescents and investigated which stress parameter (negative versus positive emotion, self-report versus parental report, events versus emotions, biomarker cortisol versus parasympathetic activity) is the most relevant indicator herein.

METHODS: Gut microbiome sequencing was completed in fecal samples from 93 Belgian 8-16y olds. Stress measures included negative events, negative emotions, emotional problems reported by parents, happiness, hair cortisol and heart rate variability (pnn50 parameter reflecting parasympathetic activity). Alpha diversity, beta diversity and linear discriminant analysis were the unadjusted analyses. Age, sex, socio-economic status, diet, physical activity, sleep and weight status were adjusted for via a redundancy analysis and differential abundance via zero-inflated negative binomial regression.

RESULTS: High stress as reflected by low pnn50 and more negative events were associated with a lower alpha diversity as indicated by the Simpson index. Happiness and pnn50 showed significant differences between high and low stress groups based on weighted UniFrac distance, and this remained significant after confounder adjustment. Adjusted and unadjusted taxonomic differences were also most pronounced for happiness and pnn50 being associated respectively with 24 OTU (=11.8% of bacterial counts) and 31 OTU (=13.0%). As a general pattern, high stress was associated with lower Firmicutes at the phylum level and higher Bacteroides, Parabacteroides, Rhodococcus, Methanobrevibacter and Roseburia but lower Phascolarctobacterium at genus level. Several genera gave conflicting results between different stress measures e.g. Ruminococcaceae UCG014, Tenericutes, Eubacterium coprostanoligenes, Prevotella 9 and Christensenellaceae R7. Differential results in preadolescents versus adolescents were also evident.

CONCLUSION: Even in this young healthy population, stress parameters were cross-sectionally associated with gut microbial composition but this relationship was instrument specific. Positive emotions and parasympathetic activity appeared the strongest parameters and should be integrated in future microbiota projects amongst other stress measures.

RevDate: 2019-05-21

Mesquita MCB, Prestes ACC, Gomes AMA, et al (2019)

Direct Effects of Temperature on Growth of Different Tropical Phytoplankton Species.

Microbial ecology pii:10.1007/s00248-019-01384-w [Epub ahead of print].

Temperature increase may influence competition among phytoplankton species, potentially intensifying cyanobacteria blooms that can be favored by direct and indirect effects of temperature. In this study, we aimed to clarify how cyanobacteria can be favored by the direct effects of increased temperature compared to diatoms and chlorophytes. Strains of the most representative species of a eutrophic coastal lagoon (Microcystis aeruginosa, Planktothrix agardhii, Desmodesmus communis, and Cyclotella meneghiniana) were used to test the hypothesis that cyanobacteria would be favored by the direct effect of temperature increase. First, we evaluated the effect of temperature increase on growth in monocultures (batch and chemostats) at 25 and 30 °C and after in mixed cultures (chemostats). In batch monocultures, the cyanobacteria showed higher growth rates in 30 °C than in 25 °C. However, in continuous culture experiments (chemostats), growth rates of M. aeruginosa and P. agardhii were not affected by temperature, but the strains showed higher biovolume in steady-state with the temperature increase. In continuous mixed cultures, M. aeruginosa was always dominant and C. meneghiniana was excluded, regardless of temperature tested. D. communis was able to coexist with lower biomass. This study shows that rising temperatures can be detrimental to diatoms, even for a tropical strain. Although some studies indicate that the dominance of cyanobacteria in warmer climates may be due to the indirect effect of warming that will promote physical conditions in the environment more favorable to cyanobacteria, the outcomes of mixed cultures demonstrate that the direct effect of temperature can also favor the dominance of cyanobacteria.

RevDate: 2019-05-21

Silva DP, Duarte G, Villela HDM, et al (2019)

Adaptable mesocosm facility to study oil spill impacts on corals.

Ecology and evolution, 9(9):5172-5185 pii:ECE35095.

Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow-through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow-through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm) of the algae associated with M. alcicornis decreased in response to an 1% crude-oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.

RevDate: 2019-05-21

Qi H, Wei Z, Zhang J, et al (2019)

Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials.

Waste management (New York, N.Y.), 87:326-334.

The humic-like substances (HLS) are proposed to be formed by biotic and abiotic pathways. The abiotic pathways were neglected in existed composting studies. The present study aims to accelerate the abiotic pathways, and to investigate how MnO2 drives the HLS transformation via changing the contribution of abiotic and biotic pathways during composting with different materials. Parallel factor analysis model (PARAFAC), hetero two-dimensional correlation spectra (hetero-2DCOS) and variance partitioning were used to identify the effects of MnO2 on the formation of humic acid (HA) and fluvic acid (FA) during composting of chicken manure (CM) and corn straw (CS). The addition of MnO2 could change the structures of HLS during CS and CM composting, mainly promoting the formation of complex components in HA and FA during CS composting, as well as the complex components of FA during CM composting. Meanwhile, the addition of MnO2 could reshape the microbial ecology, which enhanced the correlation between microbes and complex components formation during composting, especially in CM composting. Variance partitioning showed that both abiotic and biotic pathways were stimulated in conversion of HLS components after adding MnO2 during CS composting, especially for the abiotic pathways. During CM composting, the MnO2 promoted biotic effects on the conversion of HLS components. Above all, the addition of MnO2 could stimulate pathways of biotic, abiotic or both of them to improve the humification degree of HLS by changing microbial ecology, which could be a promising way for promoting the application value of composting products.

RevDate: 2019-05-20

Jørgensen BB, Findlay AJ, A Pellerin (2019)

The Biogeochemical Sulfur Cycle of Marine Sediments.

Frontiers in microbiology, 10:849.

Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.

RevDate: 2019-05-18

Jeong Y, Kim JW, You HJ, et al (2019)

Gut Microbial Composition and Function Are Altered in Patients with Early Rheumatoid Arthritis.

Journal of clinical medicine, 8(5): pii:jcm8050693.

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of the joints and extra-articular manifestations. Recent studies have shown that microorganisms affect RA pathogenesis. However, few studies have examined the microbial distribution of early RA patients, particularly female patients. In the present study, we investigated the gut microbiome profile and microbial functions in early RA female patients, including preclinical and clinically apparent RA cases. Changes in microbiological diversity, composition, and function in each group were analyzed using quantitative insights into microbial ecology (QIIME) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). The results revealed the dysbiosis due to decreased diversity in the early RA patients compared with healthy subjects. There were significant differences in the microbial distribution of various taxa from phylum to genus levels between healthy subjects and early RA patients. Phylum Bacteroidetes was enriched in early RA patients, while Actinobacteria, including the genus Collinsella, was enriched in healthy subjects. Functional analysis based on clusters of orthologous groups revealed that the genes related to the biosynthesis of menaquinone, known to be derived from gram-positive bacteria, were enriched in healthy subjects, while iron transport-related genes were enriched in early RA patients. Genes related to the biosynthesis of lipopolysaccharide, the gram-negative bacterial endotoxin, were enriched in clinically apparent RA patients. The obvious differences in microbial diversity, taxa, and associated functions of the gut microbiota between healthy subjects and early RA patients highlight the involvement of the gut microbiome in the early stages of RA.

RevDate: 2019-05-17

Bautista-de Los Santos QM, Chavarria KA, KL Nelson (2019)

Understanding the impacts of intermittent supply on the drinking water microbiome.

Current opinion in biotechnology, 57:167-174 pii:S0958-1669(18)30165-4 [Epub ahead of print].

Increasing access to piped water in low-income and middle-income countries combined with the many factors that threaten our drinking water supply infrastructure mean that intermittent water supply (IWS) will remain a common practice around the world. Common features of IWS include water stagnation, pipe drainage, intrusion, backflow, first flush events, and household storage. IWS has been shown to cause degradation as measured by traditional microbial water quality indicators. In this review, we build on new insights into the microbial ecology of continuous water supply systems revealed by sequencing methods to speculate about how intermittent supply conditions may further influence the drinking water microbiome, and identify priorities for future research.

RevDate: 2019-05-17

Nguyen B, Rubbens P, Kerckhof FM, et al (2019)

Learning Single-Cell Distances from Cytometry Data.

Cytometry. Part A : the journal of the International Society for Analytical Cytology [Epub ahead of print].

Recent years have seen an increased interest in employing data analysis techniques for the automated identification of cell populations in the field of cytometry. These techniques highly depend on the use of a distance metric, a function that quantifies the distances between single-cell measurements. In most cases, researchers simply use the Euclidean distance metric. In this article, we exploit the availability of single-cell labels to find an optimal Mahalanobis distance metric derived from the data. We show that such a Mahalanobis distance metric results in an improved identification of cell populations compared with the Euclidean distance metric. Once determined, it can be used for the analysis of multiple samples that were measured under the same experimental setup. We illustrate this approach for cytometry data from two different origins, that is, flow cytometry applied to microbial cells and mass cytometry for the analysis of human blood cells. We also illustrate that such a distance metric results in an improved identification of cell populations when clustering methods are employed. Generally, these results imply that the performance of data analysis techniques can be improved by using a more advanced distance metric. © 2019 International Society for Advancement of Cytometry.

RevDate: 2019-05-17

Sato Y, Hori T, Koike H, et al (2019)

Transcriptome analysis of activated sludge microbiomes reveals an unexpected role of minority nitrifiers in carbon metabolism.

Communications biology, 2:179 pii:418.

Although metagenomics researches have illuminated microbial diversity in numerous biospheres, understanding individual microbial functions is yet difficult due to the complexity of ecosystems. To address this issue, we applied a metagenome-independent, de novo assembly-based metatranscriptomics to a complex microbiome, activated sludge, which has been used for wastewater treatment for over a century. Even though two bioreactors were operated under the same conditions, their performances differed from each other with unknown causes. Metatranscriptome profiles in high- and low-performance reactors demonstrated that denitrifiers contributed to the anaerobic degradation of heavy oil; however, no marked difference in the gene expression was found. Instead, gene expression-based nitrification activities that fueled the denitrifiers by providing the respiratory substrate were notably high in the high-performance reactor only. Nitrifiers-small minorities with relative abundances of <0.25%-governed the heavy-oil degradation performances of the reactors, unveiling an unexpected linkage of carbon- and nitrogen-metabolisms of the complex microbiome.

RevDate: 2019-05-17

Brumley DR, Carrara F, Hein AM, et al (2019)

Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients.

Proceedings of the National Academy of Sciences of the United States of America pii:1816621116 [Epub ahead of print].

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear. Here, we use an experimental platform to create realistic submillimeter-scale nutrient pulses with controlled nutrient concentrations. By combining experiments, mathematical theory, and agent-based simulations, we show that individual Vibrio ordalii bacteria begin chemotaxis toward hotspots of dissolved organic matter (DOM) when the magnitude of the chemical gradient rises sufficiently far above the sensory noise that is generated by stochastic encounters with chemoattractant molecules. Each DOM hotspot is surrounded by a dynamic ring of chemotaxing cells, which congregate in regions of high DOM concentration before dispersing as DOM diffuses and gradients become too noisy for cells to respond to. We demonstrate that V. ordalii operates close to the theoretical limits on chemotactic precision. Numerical simulations of chemotactic bacteria, in which molecule counting noise is explicitly taken into account, point at a tradeoff between nutrient acquisition and the cost of chemotactic precision. More generally, our results illustrate how limits on sensory precision can be used to understand the location, spatial extent, and lifespan of bacterial behavioral responses in ecologically relevant environments.

RevDate: 2019-05-16

Di Lonardo DP, de Boer W, Zweers H, et al (2019)

Effect of the amount of organic trigger compounds, nitrogen and soil microbial biomass on the magnitude of priming of soil organic matter.

PloS one, 14(5):e0216730 pii:PONE-D-19-07199.

Priming effects (PEs) are defined as short-term changes in the turnover of soil organic matter (SOM) caused by the addition of easily degradable organic compounds to the soil. PEs are ubiquitous but the direction (acceleration or retardation of SOM decomposition) and magnitude are not easy to predict. It has been suggested that the ratio between the amount of added PE-triggering substrate to the size of initial soil microbial biomass is an important factor influencing PEs. However, this is mainly based on comparison of different studies and not on direct experimentation. The aim of the current study is to examine the impact of glucose-to-microbial biomass ratios on PEs for three different ecosystems. We did this by adding three different amounts of 13C-glucose with or without addition of mineral N (NH4NO3) to soils collected from arable lands, grasslands and forests. The addition of 13C-glucose was equivalent to 15%, 50% and 200% of microbial biomass C. After one month of incubation, glucose had induced positive PEs for almost all the treatments, with differences in magnitude related to the soil origin and the amount of glucose added. For arable and forest soils, the primed C increased with increasing amount of glucose added, whereas for grassland soils this relationship was negative. We found positive correlations between glucose-derived C and primed C and the strength of these correlations was different among the three ecosystems considered. Generally, additions of mineral N next to glucose (C:N = 15:1) had little effect on the flux of substrate-derived C and primed C. Overall, our study does not support the hypothesis that the trigger-substrate to microbial biomass ratio can be an important predictor of PEs. Rather our results indicate that the amount of energy obtained from decomposing trigger substrates is an important factor for the magnitude of PEs.

RevDate: 2019-05-16

Woodhams DC, Rollins-Smith LA, Reinert LK, et al (2019)

Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria.

Microbial ecology pii:10.1007/s00248-019-01385-9 [Epub ahead of print].

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.

RevDate: 2019-05-16

Hernández-Gómez O, Wuerthner V, J Hua (2019)

Amphibian Host and Skin Microbiota Response to a Common Agricultural Antimicrobial and Internal Parasite.

Microbial ecology pii:10.1007/s00248-019-01351-5 [Epub ahead of print].

Holistic approaches that simultaneously characterize responses of both microbial symbionts and their hosts to environmental shifts are imperative to understanding the role of microbiotas on host health. Using the northern leopard frog (Lithobates pipiens) as our model, we investigated the effects of a common trematode (family Echinostomatidae), a common agricultural antimicrobial (Sulfadimethoxine; SDM), and their interaction on amphibian skin microbiota and amphibian health (growth metrics and susceptibility to parasites). In the trematode-exposed individuals, we noted an increase in alpha diversity and a shift in microbial communities. In the SDM-treated individuals, we found a change in the composition of the skin microbiota similar to those induced by the trematode treatment. Groups treated with SDM, echinostomes, or a combination of SDM and echinostomes, had higher relative abundances of OTUs assigned to Flavobacterium and Acinetobacter. Both of these genera have been associated with infectious disease in amphibians and the production of anti-pathogen metabolites. Similar changes in microbial community composition between SDM and trematode exposed individuals may have resulted from stress-related disruption of host immunity. Despite changes in the microbiota, we found no effect of echinostomes and SDM on host health. Given the current disease- and pollution-related threats facing amphibians, our study highlights the need to continue to evaluate the influence of natural and anthropogenic stressors on host-associated microbial communities.

RevDate: 2019-05-15

Fapohunda AO, McMILLIN KW, Marshall DL, et al (1993)

A Simple and Effective Method for Obtaining Aseptic Raw Beef Tissues 1.

Journal of food protection, 56(6):543-544.

The need for gnotoxenic studies (defined microflora) in beef to better understand the microbial ecology of spoilage and pathogenic organisms necessitates the development of a simple and rapid method devoid of obvious disadvantages of existing ones. The aseptic technique described here is an improvement on the flaming and hot-iron searing methods already in use. It involved the use of a Sensa-Temp Heat Control Electric Frier (West Bend, IN) at 232°C to destroy practically all surface microflora on top round meat blocks of freshly slaughtered, healthy beef cattle, before aseptically removing the cooked exterior to a depth of approximately 1 cm. In two separate trials, 95 and 90%, respectively, of the total number of samples removed were sterile. We recommend this method to procure sterile samples suitable for inoculation with defined microflora and for other studies. The method seems applicable to a wide variety of muscle food types, including fish.

RevDate: 2019-05-16

Chong R, Shi M, Grueber CE, et al (2019)

Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics.

Journal of virology, 93(11): pii:JVI.00205-19.

The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumor disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and metatranscriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from two captive and four wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses, and a gammaherpesvirus, were identified, as well as known mammalian pathogens such as rabbit hemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with metatranscriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and metatranscriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and metatranscriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample.IMPORTANCE The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.

RevDate: 2019-05-15

Cordovez V, Dini-Andreote F, Carrión VJ, et al (2019)

Ecology and Evolution of Plant Microbiomes.

Annual review of microbiology [Epub ahead of print].

Microorganisms colonizing plant surfaces and internal tissues provide a number of life-support functions for their host. Despite increasing recognition of the vast functional capabilities of the plant microbiome, our understanding of the ecology and evolution of the taxonomically hyperdiverse microbial communities is limited. Here, we review current knowledge of plant genotypic and phenotypic traits as well as allogenic and autogenic factors that shape microbiome composition and functions. We give specific emphasis to the impact of plant domestication on microbiome assembly and how insights into microbiomes of wild plant relatives and native habitats can contribute to reinstate or enrich for microorganisms with beneficial effects on plant growth, development, and health. Finally, we introduce new concepts and perspectives in plant microbiome research, in particular how community ecology theory can provide a mechanistic framework to unravel the interplay of distinct ecological processes-i.e., selection, dispersal, drift, diversification-that structure the plant microbiome. Expected final online publication date for the Annual Review of Microbiology Volume 73 is September 9, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2019-05-15

König L, Wentrup C, Schulz F, et al (2019)

Symbiont-Mediated Defense against Legionella pneumophila in Amoebae.

mBio, 10(3): pii:mBio.00333-19.

Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.

RevDate: 2019-05-15

Geiger RA, Junghare M, Mergelsberg M, et al (2019)

Enzymes involved in phthalate degradation in sulfate-reducing bacteria.

Environmental microbiology [Epub ahead of print].

The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o-phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here we demonstrate a previously overseen growth of the δ-proteobacterium Desulfosarcina cetonica with phthalate/sulfate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short-lived phthaloyl-CoA by an ATP-dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl-CoA by an UbiD-like phthaloyl-CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulfate-reducing Desulfobacula toluolica, strain NaphS2, and other δ-proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl-CoA, the possibly most unstable CoA ester in biology. This article is protected by copyright. All rights reserved.

RevDate: 2019-05-15

Wu L, Ning D, Zhang B, et al (2019)

Global diversity and biogeography of bacterial communities in wastewater treatment plants.

Nature microbiology pii:10.1038/s41564-019-0426-5 [Epub ahead of print].

Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes.

RevDate: 2019-05-13

López JC, Porca E, Collins G, et al (2019)

Ammonium influences kinetics and structure of methanotrophic consortia.

Waste management (New York, N.Y.), 89:345-353.

The literature is conflicted on the influence of ammonium on the kinetics and microbial ecology of methanotrophy. In this study, methanotrophic cultures were enriched, under ammonium concentrations ranging from 0 to 200 mM, from an inoculum comprising leachate and top-cover soil from a landfill. Specific CH4 biodegradation rates were highest (7.8 × 10-4 ± 6.0 × 10-5 gCH4 gX-1 h-1) in cultures enriched at 4 mM NH4+, which were mainly dominated by type II methanotrophs belonging to Methylocystis spp. Lower specific CH4 oxidation rates (average values of 1.8-3.6 × 10-4 gCH4 gX-1 h-1) were achieved by cultures enriched at higher NH4+ concentrations (20 and 80 mM), and had higher affinity for CH4 compared to 4 mM enrichments. These lower affinities were attributed to lower diversity dominated by type I methanotrophs, of the Methylosarcina, Methylobacter and Methylomicrobium genera, encountered with increasing concentrations of NH4+. The study indicates that CH4 oxidation biotechnologies applied at low NH4+ concentrations can support efficient abatement of CH4 and high diversity of methanotrophic consortia, whilst enriching type II methanotrophs.

RevDate: 2019-05-13

Gralka M, O Hallatschek (2019)

Environmental heterogeneity can tip the population genetics of range expansions.

eLife, 8: pii:44359.

The population genetics of most range expansions is thought to be shaped by the competition between Darwinian selection and random genetic drift at the range margins. Here, we show that the evolutionary dynamics during range expansions is highly sensitive to additional fluctuations induced by environmental heterogeneities. Tracking mutant clones with a tunable fitness effect in bacterial colonies grown on randomly patterned surfaces we found that environmental heterogeneity can dramatically reduce the efficacy of selection. Time-lapse microscopy and computer simulations suggest that this effect arises generically from a local 'pinning' of the expansion front, whereby stretches of the front are slowed down on a length scale that depends on the structure of the environmental heterogeneity. This pinning focuses the range expansion into a small number of 'lucky' individuals with access to expansion paths, altering the neutral evolutionary dynamics and increasing the importance of chance relative to selection.

RevDate: 2019-05-12

Wanner M, Birkhofer K, Fischer T, et al (2019)

Soil Testate Amoebae and Diatoms as Bioindicators of an Old Heavy Metal Contaminated Floodplain in Japan.

Microbial ecology pii:10.1007/s00248-019-01383-x [Epub ahead of print].

Soil protists are rarely included in ecotoxicological investigations, despite their fundamental role in ecological processes. Moreover, testate amoebae and diatoms contribute considerably to silicon fluxes in soils. We investigated the effects of heavy metals on testate amoebae (species and individual densities) and diatoms (individual densities) in aged soils of a floodplain (Watarase retarding basin, Japan) taking soil samples from two unpolluted reference sites and two polluted sites. The total concentrations of Cu, Pb, and Zn in soil were higher at the polluted sites as compared with the reference sites. The available concentrations of Co, Cu, and Zn in CaCl2 extracts were higher at the polluted sites but available Pb was not detectable. Testate amoeba taxonomic richness was higher in the reference sites (45/38 taxa) than in the polluted sites (36/27 taxa). The reference sites had higher diatom and amoeba densities than the polluted sites. There was a significant negative correlation between total testate amoeba density and heavy metal concentration (available Co), while significant negative correlations were found between diatom density and Co, Cu, and Zn (available and total concentration). Densities of Cyclopyxis kahli cyclostoma, Centropyxis spp., and Trinema complanatum were negatively correlated to concentrations of available heavy metals. The observed decrease in individual numbers due to heavy metal pollution resulted in a considerable decline in protozoic (testate amoebae) and protophytic (pennate diatoms) silicon pools. Our data suggest that heavy metal pollution affects biogeochemical cycling in this system.

RevDate: 2019-05-12

Pillot G, Davidson S, Auria R, et al (2019)

Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney.

Microbial ecology pii:10.1007/s00248-019-01381-z [Epub ahead of print].

To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m-2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions. Graphical Abstract Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.

RevDate: 2019-05-10

Feng M, Tripathi BM, Shi Y, et al (2019)

Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales.

MicrobiologyOpen [Epub ahead of print].

It has been widely accepted that there is a distance-decay pattern in the soil microbiome. However, few studies have attempted to interpret the microbial distance-decay pattern from the perspective of quantifying underlying processes. In this study, we examined the processes governing bacterial community assembly at multiple spatial scales in maize fields of Northeast China using Illumina MiSeq sequencing. Results showed that the processes governing spatial turnover in bacterial community composition shifted regularly with spatial scale, with homogenizing dispersal dominating at small spatial scales and variable selection dominating at larger scales, which in turn explained the distance-decay pattern that closer located sites tended to have higher community similarity. Together, homogenizing dispersal and dispersal limitation resulting from geographic factors governed about 33% of spatial turnover in bacterial community composition. Deterministic selection processes had the strongest influence, at 57%, with biotic factors and abiotic environmental filtering (mainly imposed by soil pH) respectively contributing about 37% and 63% of variation. Our results provided a novel and comprehensive way to explain the distance-decay pattern of soil microbiome via quantifying the assembly processes at multiple spatial scales, as well as the method to quantify the influence of abiotic, biotic, and geographic factors in shaping microbial community structure, thus enabling understanding of widely acknowledged microbial biogeographic patterns and microbial ecology.

RevDate: 2019-05-09

Mani T, Primpke S, Lorenz C, et al (2019)

Microplastic Pollution in Benthic Midstream Sediments of the Rhine River.

Environmental science & technology [Epub ahead of print].

Rivers are major transport vectors for microplastics (MP) toward the sea. However, there is evidence that MP can temporarily or permanently be inhibited from migrating downstream by retention in sediments or ingestion by organisms. MP concentrations, compositions, and fate within the different compartments of the fluvial environment are poorly understood. Here, benthic, midstream sediments of two undammed, open-flowing stretches were investigated in the Rhine River, one of the world's busiest inland waterways. Twenty-five samples were collected at ten sites via riverbed access through a diving bell or dredging. We performed the first comprehensive analysis of riverbed sediment aliquots that avoids visual selection bias using state-of-the art automated micro-Fourier-transform infrared spectroscopy (μFTIR) imaging. MP numbers ranged between 0.26 ± 0.01 and 11.07 ± 0.6 × 103 MP kg-1 while MP particles <75 μm accounted for a mean numerical proportion ± SD of 96 ± 6%. MP concentrations decreased with sediment depth. Eighteen polymers were identified in the size range of 11-500 μm; the acrylates/polyurethane/varnish (APV) cluster was found at all sites (mean numerical proportion, 70 ± 19%), possibly indicating particulate pollution from ship antifouling paint. Overall, polymers denser than freshwater (>1 g cm-3) dominated (85 ± 18%), which contrasts the large proportions of low-density polymers previously reported in near-surface compartments of the Rhine.

RevDate: 2019-05-08

Mohammed AA, Jiang S, Jacobs JA, et al (2019)

Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress.

Poultry science pii:5486687 [Epub ahead of print].

The aim of this study was to examine the effect of a dietary synbiotic supplement on the cecal microflora, antioxidant status, and immune response of broiler chickens under heat stress (HS). A total of 360 one-day-old male Ross 708 broiler chicks were randomly distributed among 3 dietary treatments containing a synbiotic (PoultryStar consists of Bifidobacterium animalis, Enterococcus faecium, Lactobacillus reuteri, Pediococcus acidilactici, and fructooligosaccharides) at 0 (control), 0.5 (0.5X), and 1.0 (1.0X) g/kg. Each treatment contained 8 replicates of 15 birds each housed in floor pens. Heat stimulation was at 32°C for 9 h daily from day 15 to 42. Heat stress-induced changes of cecal bacteria were detected using bacteria-specific agars, and spleen protein concentration and mRNA expression of interleukins and antioxidants were examined using ELISA and real-time PCR, respectively. Under the HS condition, synbiotic fed broilers regardless of dose had lower cecal enumerations of Escherichia coli and coliforms, and a lower heterophil/lymphocyte (H/L) ratio (P < 0.05) compared to controls. 1.0X group also had higher cecal enumerations of Bifidobacterium spp. and Lactobacillus spp., spleen glutathione peroxidase (GPx), and plasma nuclear factor erythroid 2-related factor 2 (Nrf-2), and a lower H/L ratio compared to both control and 0.5X groups (P < 0.05). However, there were no treatment effects on the levels of Enterococcus spp., the circulating monocytes, eosinophils, and basophils, Toll like receptor-4 (TLR-4), interleukin-6 (IL-6), interlukin-10 (IL-10), and their mRNA expression, as well as plasma Kelch-like ECH-associated protein 1 (Keap-1) (P > 0.05). These results suggest that the synbiotic could inhibit the negative effects of HS on broiler health through the reduction of cecal pathogens, regulation of stress reactions, and improvement of antioxidant status.

RevDate: 2019-05-08

Pineda-Quiroga C, Borda-Molina D, Chaves-Moreno D, et al (2019)

Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics.

Microorganisms, 7(5): pii:microorganisms7050123.

Diet has an essential influence in the establishment of the cecum microbial communities in poultry, so its supplementation with safe additives, such as probiotics, prebiotics, and synbiotics might improve animal health and performance. This study showed the ceca microbiome modulations of laying hens, after feeding with dry whey powder as prebiotics, Pediococcus acidilactici as probiotics, and the combination of both as synbiotics. A clear grouping of the samples induced per diet was observed (p < 0.05). Operational taxonomic units (OTUs) identified as Olsenella spp., and Lactobacilluscrispatus increased their abundance in prebiotic and synbiotic treatments. A core of the main functions was shared between all metagenomes (45.5%), although the genes encoding for the metabolism of butanoate, propanoate, inositol phosphate, and galactose were more abundant in the prebiotic diet. The results indicated that dietary induced-changes in microbial composition did not imply a disturbance in the principal biological roles, while the specific functions were affected.

RevDate: 2019-05-07

Lindemann SR (2019)

Microbial Ecology: Functional 'Modules' Drive Assembly of Polysaccharide-Degrading Marine Microbial Communities.

Current biology : CB, 29(9):R330-R332.

Although ecological principles governing the competition of microbes for simple substrates are well-understood, less is known about how complex, structured substrates influence ecological outcomes in microbial communities. A new study sheds light on how marine microbial communities assemble on polysaccharide particles modeling marine snow.

RevDate: 2019-05-07

Panebianco C, V Pazienza (2019)

Body site-dependent variations of microbiota in pancreatic cancer pathophysiology.

Critical reviews in clinical laboratory sciences [Epub ahead of print].

Lack of specific symptoms and reliable biomarkers, along with aggressive nature and resistance to therapies make pancreatic cancer one of the leading causes of death for cancer worldwide. The search for new diagnostic, prognostic, predictive and therapeutic tools that could improve clinical outcomes of patients has led, in recent years, to the investigation of potential roles for microbiota in the pathogenesis of this disease. The human microbiota encompasses trillions of microorganisms residing within several body tissues and organs, where they provide beneficial functions for host homeostasis and health. Derangements of the microbial ecology in different anatomic districts have been described in pancreatic cancer, as in many other diseases, both in patients and in animal models. In detail, infection from the gastric pathogen Helicobacter pylori and changes in composition and diversity of oral, intestinal and pancreatic microbiota have been found to associate with pancreatic cancer. Future research should assess how to potentially exploit such differences in microbiota composition as diagnostic, prognostic or predictive biomarkers, and as targets for therapeutic interventions, in the hope of improving the dismal prognosis of this insidious cancer.

RevDate: 2019-05-06

Photos-Jones E (2018)

From mine to apothecary: an archaeo-biomedical approach to the study of the Greco-Roman lithotherapeutics industry.

World archaeology, 50(3):418-433 pii:1515034.

Western biomedicine has only partially developed its own tradition of mineral medicinals (lithotherapeutics), at least compared to botanicals. This is perhaps because these minerals were site-specific, and fundamental information associated with the empirical processes of mineral extraction, beneficiation, storage, trade and preparation was not widely available. In other words, there are many and serious breaks in the multi-link chain from mine to apothecary. This long-term investigation aims to rebuild this chain, on a mineral-by-mineral basis, by pulling together the extant documentary record, material culture, mineralogy, geochemistry and microbial ecology, as well as by testing against known pathogens as an indicator of their antimicrobial activity. Critical to understanding the nature and efficacy of lithotherapeutics is the recognition that these materials need to be investigated simultaneously at two levels: the empirical (ancient sources and practices); and the biomedical (application of physical and biological sciences). Both approaches require the same starting point, namely the field (mine or quarry) and in particular the 'point of contact' (relationship) between minerals and their microbiome.

RevDate: 2019-05-05

Ben Yahia H, Chairat S, Gharsa H, et al (2019)

First Report of KPC-2 and KPC-3-Producing Enterobacteriaceae in Wild Birds in Africa.

Microbial ecology pii:10.1007/s00248-019-01375-x [Epub ahead of print].

The increased incidence of antibiotic-resistant Enterobacteriaceae is a public health problem worldwide. The aim of this study was to analyze the potential role of wild birds, given their capacity of migrating over long distances, in the spreading of carbapenemase, extended-spectrum β-lactamase (ESBL), and acquired-AmpC beta-lactamase-producing Enterobacteriaceae in the environment. Fecal and pellet samples were recovered from 150 wild birds in seven Tunisian regions and were inoculated in MacConkey-agar plates for Enterobacteriaceae recovery (one isolate/animal). Ninety-nine isolates were obtained and acquired resistance mechanisms were characterized in the five detected imipenem-resistant and/or cefotaxime-resistant isolates, by PCR and sequencing. The following ESBL, carbapenemase, and acquired-AmpC beta-lactamase genes were detected: blaCTX-M-15 (two Escherichia fergusonii and one Klebsiella oxytoca isolates), blaKPC-2 (one K. oxytoca), blaKPC-3 (one E. fergusonii), blaACT-36, and blaACC-2 (two K. oxytoca, four E. fergusonii, and two E. coli). The IncFIIs, IncF, IncFIB, IncK, IncP, and IncX replicons were detected among these beta-lactamase Enterobacteriaceae producers. The blaKPC-2, tetA, sul3, qnrB, and cmlA determinants were co-transferred by conjugation from K. oxytoca strain to E. coli J153, in association with IncK and IncF replicons. Our results support the implication of wild birds as a biological vector for carbapenemase, ESBL, and acquired-AmpC-producing Enterobacteriaceae.

RevDate: 2019-05-04

Ma S, De Frenne P, Boon N, et al (2019)

Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests.

FEMS microbiology ecology pii:5485637 [Epub ahead of print].

Soil bacteria and understorey plants interact and drive forest ecosystem functioning. Yet, knowledge about biotic and abiotic factors that affect the composition of the bacterial community in the rhizosphere of understorey plants is largely lacking. Here, we assessed the effects of plant species identity (Milium effusum vs Stachys sylvatica), rhizospheric soil characteristics, large-scale environmental conditions (temperature, precipitation and nitrogen (N) deposition), and land-use history (ancient vs recent forests) on bacterial community composition in rhizosphere soil in temperate forests along a 1700 km latitudinal gradient in Europe. The dominant bacterial phyla in the rhizosphere soil of both plant species were Acidobacteria, Actinobacteria and Proteobacteria. Bacterial community composition differed significantly between the two plant species. Within plant species, soil chemistry was the most important factor determining soil bacterial community composition. More precisely, soil acidity correlated with the presence of multiple phyla, e.g. Acidobacteria (negatively), Chlamydiae (negatively) and Nitrospirae (positively), in both plant species. Large-scale environmental conditions were only important in S. sylvatica and land-use history was not important in either of the plant species. The observed role of understorey plant species identity and rhizosphere soil characteristics in determining soil bacterial community composition extends our understanding of plant-soil bacteria interactions in forest ecosystem functioning.

RevDate: 2019-05-04

Krstin L, Katanić Z, Repar J, et al (2019)

Genetic Diversity of Cryphonectria hypovirus 1, a Biocontrol Agent of Chestnut Blight, in Croatia and Slovenia.

Microbial ecology pii:10.1007/s00248-019-01377-9 [Epub ahead of print].

Transmissible hypovirulence associated with Cryphonectria hypovirus 1 (CHV1) has been used for biological control of chestnut blight, devastating disease of chestnut caused by the fungus Cryphonectria parasitica. The main aims of this study were to provide molecular characterization of CHV1 from Croatia and Slovenia and to reveal its genetic variability, phylogeny, and diversification of populations. Fifty-one CHV1 haplotypes were detected among 54 partially sequenced CHV1 isolates, all belonging to Italian subtype (I). Diversity was mainly generated by point mutations while evidence of recombination was not found. The level of conservation over analyzed parts of ORF-A proteins p29 and p40 varied, but functional sites were highly conserved. Phylogenetic analysis revealed close relatedness and intermixing of Croatian and Slovenian CHV1 populations. Our CHV1 isolates were also related to Swiss and Bosnian hypoviruses supporting previously suggested course of CHV1 invasion in Europe. Overall, this study indicates that phylogeny of CHV1 subtype I in Europe is complex and characterized with frequent point mutations resulting in many closely related variants of the virus. Possible association between variations within CHV1 ORF-A and growth of the hypovirulent fungal isolates is tested and presented.

RevDate: 2019-05-03

Moraïs S, I Mizrahi (2019)

Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem.

FEMS microbiology reviews pii:5435456 [Epub ahead of print].

The herbivore rumen ecosystem constitutes an extremely efficient degradation machinery for the intricate chemical structure of fiber biomass, thus, enabling the hosting animal to digest its feed. The challenging task of deconstructing and metabolizing fiber is performed by microorganisms inhabiting the rumen. Since most of the ingested feed is comprised of plant fiber, these fiber-degrading microorganisms are of cardinal importance to the ecology of the rumen microbial community and to the hosting animal, and have a great impact on our environment and food sustainability. We summarize herein the enzymological fundamentals of fiber degradation, how the genes encoding these enzymes are spread across fiber-degrading microbes, and these microbes' interactions with other members of the rumen microbial community and potential effect on community structure. An understanding of these concepts has applied value for agriculture and our environment, and will also contribute to a better understanding of microbial ecology and evolution in anaerobic ecosystems.

RevDate: 2019-05-03

Melo-Bolívar JF, Ruiz Pardo RY, Hume ME, et al (2019)

Establishment and characterization of a competitive exclusion bacterial culture derived from Nile tilapia (Oreochromis niloticus) gut microbiomes showing antibacterial activity against pathogenic Streptococcus agalactiae.

PloS one, 14(5):e0215375 pii:PONE-D-18-30856.

This study reports the characterization of the microbial community composition, and the establishment and dynamics of a continuous-flow competitive exclusion culture (CFCEC) derived from gut microbiomes of Nile tilapia (Oreochromis niloticus) specimens reared on aquaculture farms in Colombia. 16S rRNA gene amplicon Illumina sequencing was used to identify taxonomical changes in the CFCEC microbial community over time. The CFCEC was developed from adult tilapia from two farms in Colombia, and CFCEC samples were collected over two months. The pH varied from 6.25 to 6.35 throughout culturing, while anaerobic and aerobic cell counts stabilized at day 9, at 109 CFU mL-1 and were maintained to day 68. A variation in the CFCEC bacterial composition was observed over time. Cetobacterium was the most abundant in the first two days and coincided with a higher CFCEC supernatant antimicrobial effect against the fish pathogen Streptococcus agalactiae. Antimicrobial activity against S. agalactiae disappeared by day 3. Changes in bacterial composition continued to day 33 with Lactococcus spp. becoming the most abundant member of the community. In conclusion, the study of the CFCEC from intestinal tract of Nile tilapia (Oreochromis niloticus) by 16S rRNA gene sequencing allowed identification of predominant bacterial genera in the continuous-flow competitive exclusion culture exhibiting antibacterial activity against the fish pathogen Streptococcus agalactiae.

RevDate: 2019-05-03

Ma GC, Worthing KA, Ward MP, et al (2019)

Commensal Staphylococci Including Methicillin-Resistant Staphylococcus aureus from Dogs and Cats in Remote New South Wales, Australia.

Microbial ecology pii:10.1007/s00248-019-01382-y [Epub ahead of print].

Staphylococci are important opportunistic pathogens in human and veterinary medicine in addition to being part of the normal flora of the skin and mucous membranes of mammals and birds. The rise of antimicrobial resistance amongst staphylococci warrants closer investigation of the diversity of skin commensal organisms-including coagulase-negative staphylococci (CoNS)-due to their potential as a source of resistance genes. This study is aimed at characterising the commensal staphylococci-including methicillin-resistant Staphylococcus species (spp.)-from mucocutaneous sites of dogs and cats from remote New South Wales (NSW), Australia. Pet dogs and cats were recruited from participants in a community companion animal health programme in six communities in western NSW. Three swabs were collected from each animal (anterior nares, oropharynx, and perineum) and from skin lesions or wounds if present and cultured on selective media for Staphylococcus spp. In total, 383 pets (303 dogs, 80 cats) were enrolled. Staphylococcus spp. were isolated from 67.3% of dogs and 73.8% of cats (494 isolates). The diversity of CoNS was high (20 species) whilst only three coagulase-positive spp. were isolated (S. pseudintermedius, S. aureus, S. intermedius). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carriage in dogs was high (2.6%) relative to other studies but was only a small proportion of overall commensal staphylococci. No cats carried MRSA and no MRSP was isolated from either species. Dogs were significantly more likely to carry coagulase-positive staphylococci than cats (P < 0.001). Amongst dogs, males and those with skin lesions were more likely to carry S. pseudintermedius. This study highlights important differences in the diversity and patterns of carriage of commensal staphylococci between dogs and cats in remote NSW, Australia.

RevDate: 2019-05-03

Samba-Louaka A, Delafont V, Rodier MH, et al (2019)

Free-living amoebae and squatters in the wild: ecological and molecular features.

FEMS microbiology reviews pii:5484839 [Epub ahead of print].

Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into 1) the free-living amoeba diversity, assessed with molecular tools 2) the gene functions described to decipher the biology of the amoebae and 3) their interactions with other microorganisms in the environment.

RevDate: 2019-05-03

Schwank K, Bornemann TLV, Dombrowski N, et al (2019)

An archaeal symbiont-host association from the deep terrestrial subsurface.

The ISME journal pii:10.1038/s41396-019-0421-0 [Epub ahead of print].

DPANN archaea have reduced metabolic capacities and are diverse and abundant in deep aquifer ecosystems, yet little is known about their interactions with other microorganisms that reside there. Here, we provide evidence for an archaeal host-symbiont association from a deep aquifer system at the Colorado Plateau (Utah, USA). The symbiont, Candidatus Huberiarchaeum crystalense, and its host, Ca. Altiarchaeum hamiconexum, show a highly significant co-occurrence pattern over 65 metagenome samples collected over six years. The physical association of the two organisms was confirmed with genome-informed fluorescence in situ hybridization depicting small cocci of Ca. H. crystalense attached to Ca. A. hamiconexum cells. Based on genomic information, Ca. H. crystalense potentially scavenges vitamins, sugars, nucleotides, and reduced redox-equivalents from its host and thus has a similar metabolism as Nanoarchaeum equitans. These results provide insight into host-symbiont interactions among members of two uncultivated archaeal phyla that thrive in a deep subsurface aquifer.

RevDate: 2019-05-03

Bryce C, Blackwell N, Straub D, et al (2019)

Draft Genome Sequence of Chlorobium sp. Strain N1, a Marine Fe(II)-Oxidizing Green Sulfur Bacterium.

Microbiology resource announcements, 8(18): pii:8/18/e00080-19.

Here, we present the draft genome sequence of the halotolerant photoferrotroph Chlorobium sp. strain N1. This draft genome provides insights into the genomic potential of the only marine Fe(II)-oxidizing green sulfur bacterium (GSB) available in culture and expands our views on the metabolic capabilities of Fe(II)-oxidizing GSB more generally.

RevDate: 2019-05-03

Sharma A, Richardson M, Cralle L, et al (2019)

Longitudinal homogenization of the microbiome between both occupants and the built environment in a cohort of United States Air Force Cadets.

Microbiome, 7(1):70 pii:10.1186/s40168-019-0686-6.

BACKGROUND: The microbiome of the built environment has important implications for human health and wellbeing; however, bidirectional exchange of microbes between occupants and surfaces can be confounded by lifestyle, architecture, and external environmental exposures. Here, we present a longitudinal study of United States Air Force Academy cadets (n = 34), which have substantial homogeneity in lifestyle, diet, and age, all factors that influence the human microbiome. We characterized bacterial communities associated with (1) skin and gut samples from roommate pairs, (2) four built environment sample locations inside the pairs' dormitory rooms, (3) four built environment sample locations within shared spaces in the dormitory, and (4) room-matched outdoor samples from the window ledge of their rooms.

RESULTS: We analyzed 2,170 samples, which generated 21,866 unique amplicon sequence variants. Linear convergence of microbial composition and structure was observed between an occupants' skin and the dormitory surfaces that were only used by that occupant (i.e., desk). Conversely, bacterial community beta diversity (weighted Unifrac) convergence between the skin of both roommates and the shared dormitory floor between the two cadet's beds was not seen across the entire study population. The sampling period included two semester breaks in which the occupants vacated their rooms; upon their return, the beta diversity similarity between their skin and the surfaces had significantly decreased compared to before the break (p < 0.05). There was no apparent convergence between the gut and building microbiota, with the exception of communal bathroom door-handles, which suggests that neither co-occupancy, diet, or lifestyle homogenization had a significant impact on gut microbiome similarity between these cadets over the observed time frame. As a result, predictive classifier models were able to identify an individual more accurately based on the gut microbiota (74%) compared to skin (51%).

CONCLUSIONS: To the best of our knowledge, this is the first study to show an increase in skin microbial similarity of two individuals who start living together for the first time and who are not genetically related or romantically involved. Cohabitation was significantly associated with increased skin microbiota similarity but did not significantly influence the gut microbiota. Following a departure from the occupied space of several weeks, the skin microbiota, but not the gut microbiota, showed a significant reduction in similarity relative to the building. Overall, longitudinal observation of these dynamics enables us to dissect the influence of occupation, diet, and lifestyle factors on occupant and built environment microbial ecology.

RevDate: 2019-05-03

Schreiber L, Fortin N, Tremblay J, et al (2019)

Potential for Microbially Mediated Natural Attenuation of Diluted Bitumen on the Coast of British Columbia (Canada).

Applied and environmental microbiology, 85(10): pii:AEM.00086-19.

Western Canada produces large amounts of bitumen, a heavy, highly weathered crude oil. Douglas Channel and Hecate Strait on the coast of British Columbia are two water bodies that may be impacted by a proposed pipeline and marine shipping route for diluted bitumen (dilbit). This study investigated the potential of microbial communities from these waters to mitigate the impacts of a potential dilbit spill. Microcosm experiments were set up with water samples representing different seasons, years, sampling stations, and dilbit blends. While the alkane fraction of the tested dilbit blends was almost completely degraded after 28 days, the majority of the polycyclic aromatic hydrocarbons (PAHs) remained. The addition of the dispersant Corexit 9500A most often had either no effect or an enhancing effect on dilbit degradation. Dilbit-degrading microbial communities were highly variable between seasons, years, and stations, with dilbit type having little impact on community trajectories. Potential oil-degrading genera showed a clear succession pattern and were for the most part recruited from the "rare biosphere." At the community level, dispersant appeared to stimulate an accelerated enrichment of genera typically associated with hydrocarbon degradation, even in dilbit-free controls. This suggests that dispersant-induced growth of hydrocarbon degraders (and not only increased bioavailability of oil-associated hydrocarbons) contributes to the degradation-enhancing effect previously reported for Corexit 9500A.IMPORTANCE Western Canada hosts large petroleum deposits, which ultimately enter the market in the form of dilbit. Tanker-based shipping represents the primary means to transport dilbit to international markets. With anticipated increases in production to meet global energy needs, the risk of a dilbit spill is expected to increase. This study investigated the potential of microbial communities naturally present in the waters of a potential dilbit shipping lane to mitigate the effects of a spill. Here we show that microbial degradation of dilbit was mostly limited to n-alkanes, while the overall concentration of polycyclic aromatic hydrocarbons, which represent the most toxic fraction of dilbit, decreased only slightly within the time frame of our experiments. We further investigated the effect of the oil dispersant Corexit 9500A on microbial dilbit degradation. Our results highlight the fact that dispersant-associated growth stimulation, and not only increased bioavailability of hydrocarbons and inhibition of specific genera, contributes to the overall effect of dispersant addition.

RevDate: 2019-05-01

Engel F, Attermeyer K, Ayala AI, et al (2019)

Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: Insights from high frequency water quality monitoring.

Scientific reports, 9(1):6701 pii:10.1038/s41598-019-43008-w.

Damming alters carbon processing along river continua. Estimating carbon transport along rivers intersected by multiple dams requires an understanding of the effects of cascading impoundments on the riverine metabolism. We analyzed patterns of riverine metabolism and phytoplankton biomass (chlorophyll a; Chla) along a 74.4-km river reach intersected by six low-head navigation dams. Calculating gross primary production (GPP) from continuous measurements of dissolved oxygen concentration, we found a maximum increase in the mean GPP by a factor of 3.5 (absolute difference of 0.45 g C m-3 d-1) along the first 26.5 km of the study reach, while Chla increased over the entire reach by a factor of 2.9 (8.7 µg l-1). In the intermittently stratified section of the deepest impoundment the mean GPP between the 1 and 4 m water layer differed by a factor of 1.4 (0.31 g C m-3 d-1). Due to the strong increase in GPP, the river featured a wide range of conditions characteristic of low- to medium-production rivers. We suggest that cascading impoundments have the potential to stimulate riverine GPP, and conclude that phytoplankton CO2 uptake is an important carbon flux in the river Saar, where a considerable amount of organic matter is of autochthonous origin.

RevDate: 2019-04-30

Dong Y, Sanford RA, Inskeep WP, et al (2019)

Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats.

Astrobiology [Epub ahead of print].

The evolutionarily ancient Aquificales bacterium Sulfurihydrogenibium spp. dominates filamentous microbial mat communities in shallow, fast-flowing, and dysoxic hot-spring drainage systems around the world. In the present study, field observations of these fettuccini-like microbial mats at Mammoth Hot Springs in Yellowstone National Park are integrated with geology, geochemistry, hydrology, microscopy, and multi-omic molecular biology analyses. Strategic sampling of living filamentous mats along with the hot-spring CaCO3 (travertine) in which they are actively being entombed and fossilized has permitted the first direct linkage of Sulfurihydrogenibium spp. physiology and metabolism with the formation of distinct travertine streamer microbial biomarkers. Results indicate that, during chemoautotrophy and CO2 carbon fixation, the 87-98% Sulfurihydrogenibium-dominated mats utilize chaperons to facilitate enzyme stability and function. High-abundance transcripts and proteins for type IV pili and extracellular polymeric substances (EPSs) are consistent with their strong mucus-rich filaments tens of centimeters long that withstand hydrodynamic shear as they become encrusted by more than 5 mm of travertine per day. Their primary energy source is the oxidation of reduced sulfur (e.g., sulfide, sulfur, or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. The formation of elevated travertine ridges permits the Sulfurihydrogenibium-dominated mats to create a shallow platform from which to access low levels of dissolved oxygen at the virtual exclusion of other microorganisms. These ridged travertine streamer microbial biomarkers are well preserved and create a robust fossil record of microbial physiological and metabolic activities in modern and ancient hot-spring ecosystems.

RevDate: 2019-04-30

Wu C, Kan J, Liu H, et al (2019)

Heterotrophic Bacteria Dominate the Diazotrophic Community in the Eastern Indian Ocean (EIO) during Pre-Southwest Monsoon.

Microbial ecology pii:10.1007/s00248-019-01355-1 [Epub ahead of print].

The diazotrophic communities play an important role in sustaining primary productivity through adding new nitrogen to oligotrophic marine ecosystems. Yet, their composition in the oligotrophic Indian Ocean is poorly understood. Here, we report the first observation of phylogenetic diversity and distribution of diazotrophs in the Eastern Indian Ocean (EIO) surface water (to 200 m) during the pre-southwest monsoon period. Through high throughput sequencing of nifH genes, we identified diverse groups of diazotrophs in the EIO including both non-cyanobacterial and cyanobacterial phylotypes. Proteobacteria (mainly Alpha-, Beta-, and Gamma-proteobacteria) were the most diverse and abundant groups within all the diazotrophs, which accounted for more than 86.9% of the total sequences. Cyanobacteria were also retrieved, and they were dominated by the filamentous non-heterocystous cyanobacteria Trichodesmium spp. Other cyanobacteria such as unicellular diazotrophic cyanobacteria were detected sporadically. Interestingly, our qPCR analysis demonstrated that the depth-integrated gene abundances of the diazotrophic communities exhibited spatial heterogeneity with Trichodesmium spp. appeared to be more abundant in the Bay of Bengal (p < 0.05), while Sagittula castanea (Alphaproteobacteria) was found to be more dominating in the equatorial region and offshores (p < 0.05). Non-metric multidimensional scaling analysis (NMDS) further confirmed distinct vertical and horizontal spatial variations in the EIO. Canonical correspondence analysis (CCA) indicated that temperature, salinity, and phosphate were the major environmental factors driving the distribution of the diazotroph communities. Overall, our study provides the first insight into the diversity and distribution of the diazotrophic communities in EIO. The findings from this study highlight distinct contributions of both non-cyanobacteria and cyanobacteria to N2 fixation. Moreover, our study reveals information that is critical for understanding spatial heterogeneity and distribution of diazotrophs, and their vital roles in nitrogen and carbon cycling.

RevDate: 2019-04-30

Robledo-Mahón T, Silva-Castro GA, Kuhar U, et al (2019)

Effect of Composting Under Semipermeable Film on the Sewage Sludge Virome.

Microbial ecology pii:10.1007/s00248-019-01365-z [Epub ahead of print].

The addition of compost from sewage sludge to soils represents a sustainable option from an environmental and economic point of view, which involves the valorisation of these wastes. However, before their use as a soil amendment, compost has to reach the quality levels according to the normative, including microbial parameters. Viruses are not included in this regulation and they can produce agricultural problems and human diseases if the compost is not well sanitised. In this study, we carried out the analysis of the viral populations during a composting process with sewage sludge at an industrial scale, using semipermeable cover technology. Viral community was characterised by the presence of plant viruses and bacteriophages of enteric bacteria. The phytopathogen viruses were the group with the highest relative abundance in the sewage sludge sample and at 70 days of the composting process. The diversity of bacterial viruses and their specificity, with respect to the more abundant bacterial taxa throughout the process, highlights the importance of the interrelations between viral and bacterial communities in the control of pathogenic communities. These results suggest the possibility of using them as a tool to predict the effectiveness of the process.

RevDate: 2019-04-29

Collins GE, Hogg ID, Baxter JR, et al (2019)

Ancient landscapes of the Namib Desert harbor high levels of genetic variability and deeply divergent lineages for Collembola.

Ecology and evolution, 9(8):4969-4979 pii:ECE35103.

Aim: To assess spatial patterns of genetic and species-level diversity for Namib Desert Collembola using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene sequences.

Location: Namib Desert gravel plains.

Taxon: Collembola (springtails).

Methods: A total of 77 soil samples were collected along NE-SW (60 km) and E-W (160 km) transects from within a 4,000 km2 area of the Namib Desert gravel plains. We extracted 434 springtails from the 37 samples which contained Collembola and sequenced them at the COI gene locus. In the absence of specific taxonomic keys and previous genetic data for these taxa, we used Generalized Mixed Yule Coalescent (GMYC) analyses to provide putative species-level designations.

Results: We obtained 341 successful COI sequences, 175 of which were unique haplotypes. GMYC analyses identified 30 putative species, with up to 28% sequence divergence (uncorrected p-distance). The distribution of genetic variants was disjunct, with 97% of haplotypes and 70% of "GMYC species" found only at single sites.

Main conclusions: Dispersal events, although rare, may be facilitated by environmental events such as prevailing onshore winds or occasional flow of rainwater to the coast. We conclude that the high genetic diversity we observed is the result of ancient springtail lineages, patchy distribution of suitable habitats, and limited dispersal (gene flow) among habitable locations.

RevDate: 2019-04-29

Gomes J, Khandeparker R, Meena RM, et al (2019)

Bacterial Community Composition Markedly Altered by Coastal Hypoxia.

Indian journal of microbiology, 59(2):200-208.

Monsoonal upwelling along south and central west coast of India leads to intense biological productivity. As a consequence of excess organic matter production following upwelling during June-October and low dissolved oxygen in the upwelled waters, denitrification occurs in the near shore waters. Implicitly, these processes ought to bring alterations in microbial communities. Therefore, diversity and community structure of bacteria from subsurface layers of a tropical region experiencing intense seasonal lows of oxygen were analyzed through sequencing of 16S rRNA gene clones. The overall diversity was more during hypoxic period of Fall intermonsoon (FIM, October) compared either to Spring intermonsoon (SIM, March) or summer monsoon (SuM, June) months. As many as 14 lineages of bacterial domains: Gammaproteobacteria (37%), Alphaproteobacteria (21%), Cyanobacteria (20%), Deltaproteobacteria (3%), Firmicutes (3%), Betaproteobacteria (2%), Acidobacteria (2%), Actinobacteria (7%), Marinimicrobia (2%), Bacteroidetes (1%), Verrucomicrobia (1%), Planctomycetes (0.4%), Chloroflexi (0.2%) and Omnitrophica bacterium (0.2%), were recognized from our coastal location. Notably, sequences of Planctomycetes, Chloroflexi and Omnitrophica bacterium were found exclusively during FIM. A generally higher representation of sequences of Betaproteobacteria during SuM and of Actinobacteria and Firmicutes during SIM was discernible. This study is thus useful to recognize that microbial community might undergo strong temporal shifts in the monsoon affected tropical coastal ecosystems.

RevDate: 2019-04-29

Enke TN, Datta MS, Schwartzman J, et al (2019)

Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities.

Current biology : CB pii:S0960-9822(19)30345-8 [Epub ahead of print].

Understanding the principles that govern the assembly of microbial communities across earth's biomes is a major challenge in modern microbial ecology. This pursuit is complicated by the difficulties of mapping functional roles and interactions onto communities with immense taxonomic diversity and of identifying the scale at which microbes interact [1]. To address this challenge, here, we focused on the bacterial communities that colonize and degrade particulate organic matter in the ocean [2-4]. We show that the assembly of these communities can be simplified as a linear combination of functional modules. Using synthetic polysaccharide particles immersed in natural bacterioplankton assemblages [1, 5], we showed that successional particle colonization dynamics are driven by the interaction of two types of modules: a first type made of narrowly specialized primary degraders, whose dynamics are controlled by particle polysaccharide composition, and a second type containing substrate-independent taxa whose dynamics are controlled by interspecific interactions-in particular, cross-feeding via organic acids, amino acids, and other metabolic byproducts. We show that, as a consequence of this trophic structure, communities can assemble modularly-i.e., by a simple sum of substrate-specific primary degrader modules, one for each complex polysaccharide in the particle, connected to a single broad-niche range consumer module. Consistent with this model, a linear combination of the communities on single-polysaccharide particles accurately predicts community composition on mixed-polysaccharide particles. Our results suggest that the assembly of heterotrophic communities that degrade complex organic materials follows simple design principles that could be exploited to engineer heterotrophic microbiomes.

RevDate: 2019-04-29

Hull NM, Ling F, Pinto AJ, et al (2019)

Drinking Water Microbiome Project: Is it Time?.

Trends in microbiology pii:S0966-842X(19)30075-7 [Epub ahead of print].

Now is an opportune time to foster collaborations across sectors and geographical boundaries to enable development of best practices for drinking water (DW) microbiome research, focusing on accuracy and reproducibility of meta-omic techniques (while learning from past microbiome projects). A large-scale coordinated effort that builds on this foundation will enable the urgently needed comprehensive spatiotemporal understanding and control of DW microbiomes by engineering interventions to protect public health. This opinion paper highlights the need to initiate and conduct a large-scale coordinated DW microbiome project by addressing key knowledge gaps and recommends a roadmap for this effort.

RevDate: 2019-04-28

Omae K, Fukuyama Y, Yasuda H, et al (2019)

Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan.

Archives of microbiology pii:10.1007/s00203-019-01661-9 [Epub ahead of print].

In hydrothermal environments, carbon monoxide (CO) utilisation by thermophilic hydrogenogenic carboxydotrophs may play an important role in microbial ecology by reducing toxic levels of CO and providing H2 for fuelling microbial communities. We evaluated thermophilic hydrogenogenic carboxydotrophs by microbial community analysis. First, we analysed the correlation between carbon monoxide dehydrogenase (CODH)-energy-converting hydrogenase (ECH) gene cluster and taxonomic affiliation by surveying an increasing genomic database. We identified 71 genome-encoded CODH-ECH gene clusters, including 46 whose owners were not reported as hydrogenogenic carboxydotrophs. We identified 13 phylotypes showing > 98.7% identity with these taxa as potential hydrogenogenic carboxydotrophs in hot springs. Of these, Firmicutes phylotypes such as Parageobacillus, Carboxydocella, Caldanaerobacter, and Carboxydothermus were found in different environmental conditions and distinct microbial communities. The relative abundance of the potential thermophilic hydrogenogenic carboxydotrophs was low. Most of them did not show any symbiotic networks with other microbes, implying that their metabolic activities might be low.

RevDate: 2019-04-26

Han M, Dsouza M, Zhou C, et al (2019)

Agricultural Risk Factors Influence Microbial Ecology in Honghu Lake.

Genomics, proteomics & bioinformatics pii:S1672-0229(19)30062-2 [Epub ahead of print].

Agricultural activities, including stock-farming, planting industry, and fish aquaculture, can affect the physicochemical and biological characters of freshwater lakes. However, the effects of pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear. Hence, in this work, we selected Honghu lake as a typical lake that is influenced by agriculture activities. We collectedwater and sediment samples from 18 sites, which span a wide range of areas from impacted and less-impacted areas. We performed a geospatial analysis on the composition of microbial communities associated with physicochemical properties and antibiotic pollution of samples. The co-occurrence networks of water and sediment were also built and analyzed. Our results showed that the microbial communities of impacted and less-impacted samples of water were largely driven by the concentrations of TN, TP, NO3--N, and NO2--N, while those of sediment were affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline clearly reflected the variance in taxonomic diversity and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for samples from both water and sediment, large differences of network topology structures between impacted and less-impacted were also observed. Our results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu lake.

RevDate: 2019-04-26

Negi A, IP Sarethy (2019)

Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses.

Microbial ecology pii:10.1007/s00248-019-01366-y [Epub ahead of print].

Geochemical cycles result in the chemical, physical, and mineralogical modification of rocks, eventually leading to formation of soil. However, when the stones and rocks are a part of historic buildings and monuments, the effects are deleterious. In addition, microorganisms also colonize these monuments over a period of time, resulting in formation of biofilms; their metabolites lead to physical weakening and discoloration of stone eventually. This process, known as biodeterioration, leads to a significant loss of cultural heritage. For formulating effective conservation strategies to prevent biodeterioration and restore monuments, it is important to know which microorganisms are colonizing the substrate and the different energy sources they consume to sustain themselves. With this view in scope, this review focuses on studies that have attempted to understand the process of biodeterioration, the mechanisms by which they colonize and affect the monuments, the techniques used for assessment of biodeterioration, and conservation strategies that aim to preserve the original integrity of the monuments. This review also includes the "omics" technologies that have started playing a large role in elucidating the nature of microorganisms, and how they can play a role in hastening the formulation of effective conservation strategies.

RevDate: 2019-04-26

Zhao Z, Zhang X, Cheng M, et al (2019)

Influences of Iron Compounds on Microbial Diversity and Improvements in Organic C, N, and P Removal Performances in Constructed Wetlands.

Microbial ecology pii:10.1007/s00248-019-01379-7 [Epub ahead of print].

The effects of various combinations of iron compounds on the contaminant removal performance in constructed wetlands (CWs) were explored under various initial iron concentrations, contaminant concentrations, different hydraulic retention time (HRT), and different temperatures. The Combo 6 (nanoscale zero-valent iron combined with Fe3+) in CW treatments showed the highest pollutant removal performance under the conditions of C2 initial iron dosage concentration (total iron 0.2 mM) and I2 initial contaminant concentration (COD:TN:TP = 60 mg/L:60 mg/L:1 mg/L) in influent after 72-h HRT. These results were directly verified by two different microbial tests (Biolog test and high-throughput pyrosequencing) and microbial community analysis (principal component analysis of community-level physiological profile, biodiversity index, cluster tree, relative abundance at order of taxonomy level). Specific bacteria related to significant improvements in contaminant removal were domesticated by various combinations of iron compounds. Iron dosage was advised as a green, new, and effective option for wastewater treatment. Graphical Abstract .

RevDate: 2019-04-26

Cipriano MAP, Suleiman AKA, da Silveira APD, et al (2019)

Bacterial community composition and diversity of two different forms of an organic residue of bioenergy crop.

PeerJ, 7:e6768 pii:6768.

The use of residue of sugarcane ethanol industry named vinasse in fertirrigation is an established and widespread practice in Brazil. Both non-concentrated vinasse (NCV) and concentrated vinasse (CV) are used in fertirrigation, particularly to replace the potassium fertilizer. Although studies on the chemical and organic composition of vinasse and their impact on nitrous oxide emissions when applied in soil have been carried out, no studies have evaluated the microbial community composition and diversity in different forms of vinasse. We assessed the bacterial community composition of NCV and CV by non-culturable and culturable approaches. The non-culturable bacterial community was assessed by next generation sequencing of the 16S rRNA gene and culturable community by isolation of bacterial strains and molecular and biochemical characterization. Additionally, we assessed in the bacterial strains the presence of genes of nitrogen cycle nitrification and denitrification pathways. The microbial community based on 16S rRNA sequences of NCV was overrepresented by Bacilli and Negativicutes while CV was mainly represented by Bacilli class. The isolated strains from the two types of vinasse belong to class Bacilli, similar to Lysinibacillus, encode for nirK gene related to denitrification pathway. This study highlights the bacterial microbial composition particularly in CV what residue is currently recycled and recommended as a sustainable practice in sugarcane cultivation in the tropics.

RevDate: 2019-04-26

Lacerda-Júnior GV, Noronha MF, Cabral L, et al (2019)

Land Use and Seasonal Effects on the Soil Microbiome of a Brazilian Dry Forest.

Frontiers in microbiology, 10:648.

Drylands occupy approximately 41% of the Earth's terrestrial surface. Climate change and land use practices are expected to affect biogeochemical cycling by the soil microbiome in these ecosystems. Understanding how soil microbial community might respond to these drivers is extremely important to mitigate the processes of land degradation and desertification. The Caatinga, an exclusively Brazilian biome composed of an extensive seasonal tropical dry forest, is exposed to variable spatiotemporal rainfall patterns as well as strong human-driven pressures. Herein, an integrated analysis of shotgun metagenomics approach coupled to meteorological data was employed to unravel the impact of seasonality and land use change on soil microbiome from preserved and agriculture-affected experimental fields in Caatinga drylands. Multivariate analysis suggested that microbial communities of preserved soils under seasonal changes were shaped primarily by water deficit, with a strong increase of Actinobacteria and Proteobacteria members in the dry and rainy seasons, respectively. In contrast, nutrient availability notably played a critical role in driving the microbial community in agriculture-affected soils. The strong enrichment of bacterial genera belonging to the poorly-known phylum Acidobacteria ('Candidatus Solibacter' and 'Candidatus Koribacter') in soils from dry season affected by ferti-irrigation practices presupposes a contrasting copiotrophic lifestyle and ecological role in mitigating the impact of chemical fertilization. Functional analyses identify overrepresented genes related to osmotic stress response (synthesis of osmoprotectant compounds, accumulation of potassium ions) and preferential carbon and nitrogen utilization when comparing the microbiome of preserved soils under seasonal changes, reflecting differences in the genetic potential for nutrient cycling and C acquisition in the environment. However, the prevalence of nitrosative stress and denitrification functions in irrigation/fertilization-affected soils of the dry season clearly suggest that nutrient input and disruption of natural water regime may impact biogeochemical cycles linked to the microbial processes, with potential impacts on the ecosystem functionality. These findings help to better understand how natural seasonality and agricultural management differentially affect soil microbial ecology from dry forests, providing support for the development of more sustainable land management in dryland ecosystems.

RevDate: 2019-04-25

Parish ME, DP Higgins (1990)

Investigation of the Microbial Ecology of Commercial Grapefruit Sections 1.

Journal of food protection, 53(8):685-688.

Commercially prepared grapefruit sections were qualitatively surveyed for microorganisms prior to heat processing. The micro flora included 7 genera of yeasts (Candida , Cryptococcus , Hansenula , Rhodotorula , Saccharomyces , Torulaspora , Trichosporon , Zygosaccharomyces), 12 genera of molds (Aspergillus , Aureobasidium pullulans , Byssochlamys , Cladosporium , Fonseceae , Fusarium , Geotrichum , Mucor , Penicillium , Rhizopus , Trichoderma , Trichophyton), and 2 of bacteria (Lactobacillus and Leuconostoc). A quantitative analysis of the native microflora indicated that the overall microbial population was capable of significant growth (p ≥ 0.05) at 25°C within 2 to 4 h in the unprocessed product.

RevDate: 2019-04-25

Averill C, Cates LL, Dietze MC, et al (2019)

Spatial vs. temporal controls over soil fungal community similarity at continental and global scales.

The ISME journal pii:10.1038/s41396-019-0420-1 [Epub ahead of print].

Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental covariates, particularly climate covariates, explained some spatial-temporal effects, though it is unlikely the same mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not fully explain relationships between space, time and community composition. These baseline estimates of fungal community turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition and function.

RevDate: 2019-04-24

Nappi J, Soldi E, S Egan (2019)

Diversity and Distribution of Bacteria Producing Known Secondary Metabolites.

Microbial ecology pii:10.1007/s00248-019-01380-0 [Epub ahead of print].

There is an increasing interest in the utilisation of marine bioactive compounds as novel biopharmaceuticals and agrichemicals; however, little is known about the environmental distribution for many of these molecules. Here, we aimed to elucidate the environmental distribution and to detect the biosynthetic gene clusters in environmental samples of four bioactive compounds, namely violacein, tropodithietic acid (TDA), tambjamine and the antibacterial protein AlpP. Our database analyses revealed high bacterial diversity for AlpP and violacein producers, while TDA-producing bacteria were mostly associated with marine surfaces and all belonged to the roseobacter group. In contrast, the tambjamine cluster was only found in the genomes of two Pseudoalteromonas species and in one terrestrial species belonging to the Cupriavidus genus. Using a PCR-based screen of different marine samples, we detected TDA and violacein genes associated with the microbiome of Ulva and Protohyale niger and tambjamine genes associated with Nodilittorina unifasciata; however, alpP was not detected. These results highlight the variable distribution of the genes encoding these four bioactive compounds, including their detection from the surface of multiple marine eukaryotic hosts. Determining the natural distribution of these gene clusters will help to understand the ecological importance of these metabolites and the bacteria that produce them.

RevDate: 2019-04-24

Kits KD, Jung MY, Vierheilig J, et al (2019)

Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata.

Nature communications, 10(1):1836 pii:10.1038/s41467-019-09790-x.

Nitrous oxide (N2O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N2O and NO globally. However, nothing is known about N2O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N2O, and emits N2O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N2O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N2O during nitrification than AOB.

RevDate: 2019-04-24

Easton AV, Quiñones M, Vujkovic-Cvijin I, et al (2019)

The Impact of Anthelmintic Treatment on Human Gut Microbiota Based on Cross-Sectional and Pre- and Postdeworming Comparisons in Western Kenya.

mBio, 10(2): pii:mBio.00519-19.

Murine studies suggest that the presence of some species of intestinal helminths is associated with changes in host microbiota composition and diversity. However, studies in humans have produced varied conclusions, and the impact appears to vary widely depending on the helminth species present. To demonstrate how molecular approaches to the human gut microbiome can provide insights into the complex interplay among disparate organisms, DNA was extracted from cryopreserved stools collected from residents of 5 rural Kenyan villages prior to and 3 weeks and 3 months following albendazole (ALB) therapy. Samples were analyzed by quantitative PCR (qPCR) for the presence of 8 species of intestinal parasites and by MiSeq 16S rRNA gene sequencing. Based on pretreatment results, the presence of neither Ascaris lumbricoides nor Necator americanus infection significantly altered the overall diversity of the microbiota in comparison with age-matched controls. Following ALB therapy and clearance of soil-transmitted helminths (STH), there were significant increases in the proportion of the microbiota made up by Clostridiales (P = 0.0002; average fold change, 0.57) and reductions in the proportion made up by Enterobacteriales (P = 0.0004; average fold change, -0.58). There was a significant posttreatment decrease in Chao1 richness, even among individuals who were uninfected pretreatment, suggesting that antimicrobial effects must be considered in any posttreatment setting. Nevertheless, the helminth-associated changes in Clostridiales and Enterobacteriales suggest that clearance of STH, and of N. americanus in particular, alters the gut microbiota.IMPORTANCE The gut microbiome is an important factor in human health. It is affected by what we eat, what medicines we take, and what infections we acquire. In turn, it affects the way we absorb nutrients and whether we have excessive intestinal inflammation. Intestinal worms may have an important impact on the composition of the gut microbiome. Without a complete understanding of the impact of mass deworming programs on the microbiome, it is impossible to accurately calculate the cost-effectiveness of such public health interventions and to guard against any possible deleterious side effects. Our research examines this question in a "real-world" setting, using a longitudinal cohort, in which individuals with and without worm infections are treated with deworming medication and followed up at both three weeks and three months posttreatment. We quantify the impact of roundworms and hookworms on gut microbial composition, suggesting that the impact is small, but that treatment of hookworm infection results in significant changes. This work points to the need for follow-up studies to further examine the impact of hookworm on the gut microbiota and determine the health consequences of the observed changes.

RevDate: 2019-04-24

Corno G, Yang Y, Eckert EM, et al (2019)

Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies.

Water research, 158:72-81 pii:S0043-1354(19)30339-2 [Epub ahead of print].

Treated wastewater discharged into the environment acts as a disturbance of the natural microbial communities in terms of taxonomic composition and of functional gene pool, including antibiotic resistance genes. We tested whether stochastic and heterogeneous site-specific trajectories or generalities, potentially driven by deterministic processes, control the fate of allochthonous bacteria from anthropogenic sources and the persistence of their functional traits in freshwater. Finding generalities would allow the identification of wastewater treatments that could be effective in abating determinants of antibiotic resistance. We analysed the short-term response of native bacterial communities in waters exposed to the disturbance of wastewater at different dilutions, using a metagenomic approach that revealed both microbial community composition and the scope and abundance of the resistome that can pose indirect risks to human health. We found that the taxonomic composition of the communities after the disturbance was driven by case-specific stochastic processes, whereas the resistome had a deterministic trajectory, rapidly stabilising its functional traits with higher proportions of wastewater effluents, regardless of differences in taxonomic composition, richness of antibiotic resistance genes and of bacterial taxa, phenotypic features of the bacterial communities, and type of wastewater treatment. The observed deterministic proliferation of resistomes in freshwater bodies receiving wastewater effluents, suggests that this process may contribute to the global propagation of antibiotic resistance, and thus calls for new legislations promoting alternative tertiary treatments for the wastewater reuse, and targeting bacterial functional traits and not only bacterial abundances.

RevDate: 2019-04-22

Lin S, Wang TY, Xu HR, et al (2019)

A systemic combined nontargeted and targeted LC-MS based metabolomic strategy of plasma and liver on pathology exploration of alpha-naphthylisothiocyanate induced cholestatic liver injury in mice.

Journal of pharmaceutical and biomedical analysis, 171:180-192 pii:S0731-7085(18)32910-8 [Epub ahead of print].

The pathology of cholestatic liver injury (CLI) was complicated, which has limited the development of anti-cholestatic drugs for a long period. Metabolomic researches focused on global and dynamic changes of the organism could shed some light on mechanism investigation. In order to characterize and validate metabolite alterations of alpha-naphthylisothiocyanate (ANIT) induced CLI in C57BL/6 mice, a systemic metabolomic approach combining nontargeted HPLC-ESI-QTOF-MS and targeted UFLC-ESI-MS/MS technologies were developed innovatively. Multivariate data analysis was applied to determine the changes of metabolites in processed plasma and liver samples between control and model groups. Afterwards, 38 potential plasma biomarkers and 17 potential liver biomarkers involved in bile acid (BA) biosynthesis, phospholipid biosynthesis, sphingolipid metabolism, alpha linolenic acid and linoleic acid metabolism, as well as arachidonic acid metabolism were found and attributed as potential biomarkers and influential pathways of cholestasis. Based on correlation analysis, BA biosynthesis played the most important role in ANIT induced CLI, thereinto, major BAs were carried out with quantitative analysis. Targeted metabolomic results showed that the increase of BAs might have an impact on intestinal microbial ecology which could aggravate liver injury probably, among which cholic acid (CA) and taurocholic acid (TCA) were the most sensitive indicators of ANIT induced CLI in both plasma and liver. In conclusion, CLI might correlate significantly with hepatocyte necrosis, metabolic disorders and imbalance of intestinal microbiome ecology triggered by BA accumulation.

RevDate: 2019-04-21

Qian X, Gu J, Sun W, et al (2019)

Effects of passivators on antibiotic resistance genes and related mechanisms during composting of copper-enriched pig manure.

The Science of the total environment, 674:383-391 pii:S0048-9697(19)31726-7 [Epub ahead of print].

Due to the intensive use of feed additives in livestock farming, animal manure has become a hotspot for antibiotics, heavy metals, and antibiotic resistance genes (ARGs). Unlike antibiotics, heavy metals cannot be degraded during composting and thus could pose a persistent co-selective pressure in the proliferation of antibiotic resistance. Passivators are commonly applied to immobilize metals and improve the safety of compost. However, little is known about the effects of various passivators on ARGs and mobile genetic elements (MGEs) during composting and the underlying mechanisms involved. Thus, three typical passivators (biochar, fly ash, and zeolite) were applied during the composting of copper-enriched pig manure, and their effects on ARGs, copper resistance genes, MGEs, and the bacterial communities were examined. Compared to the control, all passivator treatments reduced the abundances of at least six ARGs (tetC, tetG, tetQ, tetX, sul1, and ermB) by 0.23-1.09 logs and of two MGEs (intI1 and ISCR1) by 26-85% after composting. Biochar and fly ash also significantly reduced the abundances of intI2 and Tn914/1545. In contrast, abundances of copper resistance genes were not reduced by passivators, implying that the decreased co-selective pressure may not be a major contributor to ARG reductions in this study. Procrustes analysis and redundancy analysis demonstrated that shifts in the bacterial community determined the changes in the abundances of ARGs, and the variation in MGEs and DTPA-Cu can also partially explain the ARG variance. Overall, all of three passivators can be used to reduce the health risks associated with ARGs in livestock manure, and biochar performed the best at reducing ARGs and MGEs.

RevDate: 2019-04-19

Mastan A, Bharadwaj R, Kushwaha RK, et al (2019)

Functional Fungal Endophytes in Coleus forskohlii Regulate Labdane Diterpene Biosynthesis for Elevated Forskolin Accumulation in Roots.

Microbial ecology pii:10.1007/s00248-019-01376-w [Epub ahead of print].

Coleus forskohlii is a perennial medicinal shrub cultivated mainly for its forskolin content. The plant has been used since ancient times in ayurvedic traditional medicines for the treatment of hypertension, glaucoma, asthma, congestive heart failures, obesity, and cancer. Use of endophytic microorganisms presents a special interest for the development of value-added bioactive compounds through agriculture. Limited investigations have been undertaken on in planta enhancement of forskolin content using endophytic fungus in sustainable agriculture. Here we report specific roles of three fungal endophytes, Fusarium redolens (RF1), Phialemoniopsis cornearis (SF1), and Macrophomina pseudophaseolina (SF2), functionally acting as plant probiotic fungus, regulating secondary metabolite (forskolin) biosynthesis in C. forskohlii. The root endophyte, RF1, and shoot endophytes, SF1 and SF2, were found to enhance forskolin content by 52 to 88% in pot and 60 to 84% in field experiments as compared to uninoculated control plants. The three endophytes also enhanced total biomass owing to plant growth promoting properties. The expression of diterpene synthases (CfTPSs) like CfTPS1, CfTPS2, CfTPS3, and CfTPS4 were significantly upregulated in endophyte-treated C. forskohlii plants. Elevated expression of key diterpene synthases (CfTPS2) in the forskolin biosynthesis pathway, exclusively present in the root cork of C. forskohlii, was observed following SF2 endophyte treatment. Furthermore, endophyte treatments conferred a variety of antagonistic activity against nematode galls (80%) and plant pathogens like Fusarium oxysporum, Colletotricum gloeosporioides, and Sclerotium rolfsii. RF1 and SF1 fungal endophytes showed positive for IAA production; however, SF1 also indicated phosphate solubilization activity. Overall, the qualitative and quantitative improvement of in planta forskolin enhancement represents an area of high commercial interest, and hence, our work focused on novel insights for the application of three fungal endophytes for in planta enhancement of forskolin content for C. forskohlii cultivation by a sustainable approach.

RevDate: 2019-04-19

Ladau J, EA Eloe-Fadrosh (2019)

Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology.

Trends in microbiology pii:S0966-842X(19)30067-8 [Epub ahead of print].

Microbial communities play a major role in disease, biogeochemical cycling, agriculture, and bioremediation. However, identifying the ecological processes that govern microbial community assembly and disentangling the relative impacts of those processes has proven challenging. Here, we propose that this discord is due to microbial systems being studied at different spatial, temporal, and phylogenetic scales. We argue that different processes dominate at different scales, and that through a more explicit consideration of spatial, temporal, and phylogenetic grains and extents (the two components of scale) a more accurate, clear, and useful understanding of microbial community assembly can be developed. We demonstrate the value of applying ecological concepts of scale to microbiology, specifically examining their application to nestedness, legacy effects, and taxa-area relationships of microbial systems. These proposed considerations of scale will help resolve long-standing debates in microbial ecology regarding the processes determining the assembly of microbial communities, and provide organizing principles around which hypotheses and theories can be developed.

RevDate: 2019-04-17

Li W, Wang M, Burgaud G, et al (2019)

Fungal Community Composition and Potential Depth-Related Driving Factors Impacting Distribution Pattern and Trophic Modes from Epi- to Abyssopelagic Zones of the Western Pacific Ocean.

Microbial ecology pii:10.1007/s00248-019-01374-y [Epub ahead of print].

Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding. Majority of the assigned OTUs were affiliated to Ascomycota, followed by three other minor phyla (Basidiomycota, Chytridiomycota, and Mucoromycota). The epipelagic zone harbored a higher OTU richness with distinct fungal communities as compared with meso-, bathy-, and abyssopelagic zones. Across the whole water column, depth appears as a key parameter for both fungal α- and β-diversity. However, when the dataset was split into the upper (5-500 m) and deeper (below 500 m) layers, no significant correlation was observed between depth and community compositions. In the upper layer, temperature and dissolved oxygen were recognized as the primary environmental factors shaping fungal α- and β- diversity. By parsing fungal OTUs into ecological categories, multi-trophic mode of nutrition was found to be more prevalent with increasing depth, suggesting a potential adaptation to the extreme conditions of the deep sea. This study provides new and meaningful information on the depth-stratified fungal diversity, community structure, and putative ecological roles in the open sea.

RevDate: 2019-04-17

Lax S, Cardona C, Zhao D, et al (2019)

Microbial and metabolic succession on common building materials under high humidity conditions.

Nature communications, 10(1):1767 pii:10.1038/s41467-019-09764-z.

Despite considerable efforts to characterize the microbial ecology of the built environment, the metabolic mechanisms underpinning microbial colonization and successional dynamics remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and metabolomics to longitudinally characterize the ecological dynamics of four common building materials maintained at high humidity. We varied the natural inoculum provided to each material and wet half of the samples to simulate a potable water leak. Wetted materials had higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting described the majority of the variance in bacterial, fungal, and metabolite structure. Inoculation location was weakly associated with bacterial and fungal beta diversity. Material type influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal) diversity. Metabolites indicative of microbial activity were identified, and they too differed by material.

RevDate: 2019-04-16

Zhao Y, Su JQ, Ye J, et al (2019)

AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic.

Environmental science & technology, 53(2):798-807.

Arsenic (As) is a ubiquitous toxic element adversely affecting human health. Microbe-mediated cycling of As is largely mediated by detoxification and energy metabolism in microorganisms. We here report the development of a novel high-throughput qPCR (HT-qPCR) chip (AsChip) for comprehensive profiling of genes involved in microbial As cycling (here collectively termed "As genes"). AsChip contained 81 primer sets targeting 19 As genes and the 16S rRNA gene as a reference gene. Gene amplicon sequencing showed high identity (>96%) of newly designed primers corresponding to their targets. AsChip displayed high sensitivity (plasmid template serial dilution test; r = -0.99), with more than 96% of all PCR assays yielding true positive signals. R2 coefficients for standard curves and PCR amplification efficiencies averaged 0.98 and 0.99, respectively. A high correlation between CT values obtained by AsChip and conventional qPCR was obtained (r = 0.962, P < 0.001). Finally, we successfully applied AsChip on soil samples from a chromium-copper-arsenic-contaminated field site and identified diverse As genes with total abundance average of 0.4 As gene copies per 16S rRNA. Our results indicate that AsChip constitutes a robust tool for comprehensive quantitative profiling of As genes in environmental samples.

RevDate: 2019-04-16

Nilsson LKJ, de Oliveira MR, Marinotti O, et al (2019)

Characterization of Bacterial Communities in Breeding Waters of Anopheles darlingi in Manaus in the Amazon Basin Malaria-Endemic Area.

Microbial ecology pii:10.1007/s00248-019-01369-9 [Epub ahead of print].

The microbiota in mosquito breeding waters can affect ovipositing mosquitoes, have effects on larval development, and can modify adult mosquito-gut bacterial composition. This, in turn, can affect transmission of human pathogens such as malaria parasites. Here, we explore the microbiota of four breeding sites for Anopheles darlingi, the most important malaria vector in Latin America. The sites are located in Manaus in the Amazon basin in Brazil, an area of active malaria transmission. Using 16S rRNA gene sequencing by MiSeq, we found that all sites were dominated by Proteobacteria and Firmicutes and that 94% of the total number of reads belonged to 36 operational taxonomic units (OTUs) identified in all sites. Of these, the most common OTUs belonged to Escherichia/Shigella, Staphylococcus, and Pseudomonas. Of the remaining 6% of the reads, the OTUs found to differentiate between the four sites belonged to the orders Burkholderiales, Actinomycetales, and Clostridiales. We conclude that An. darlingi can develop in breeding waters with different surface-water bacteria, but that the common microbiota found in all breeding sites might indicate or contribute to a suitable habitat for this important malaria vector.

RevDate: 2019-04-16

Newsham KK, Tripathi BM, Dong K, et al (2019)

Bacterial Community Composition and Diversity Respond to Nutrient Amendment but Not Warming in a Maritime Antarctic Soil.

Microbial ecology pii:10.1007/s00248-019-01373-z [Epub ahead of print].

A resumption of climate warming in maritime Antarctica, arising from continued greenhouse gas emissions to the atmosphere, is predicted to lead to further expansions of plant populations across the region, with consequent increases in nutrient inputs to soils. Here, we test the main and interactive effects of warming, applied with open top chambers (OTCs), and nutrient amendment with tryptic soy broth (TSB), an artificial growth substrate, on bacterial community composition and diversity using Illumina sequencing of 16S rRNA genes in soil from a field experiment in the southern maritime Antarctic. Substantial effects of TSB application on bacterial communities were identified after 49 months, including reduced diversity, altered phylogenetic community assembly processes, increased Proteobacteria-to-Acidobacteria ratios and significant divergence in community composition, notably increases in the relative abundances of the gram-positive genera Arthrobacter, Paeniglutamicibacter and Planococcus. Contrary to previous observations from other maritime Antarctic field warming experiments, we recorded no effects of warming with OTCs, or interactive effects of OTCs and TSB application, on bacterial community composition or diversity. Based on these findings, we conclude that further warming of the maritime Antarctic is unlikely to influence soil bacterial community composition or diversity directly, but that increased nutrient inputs arising from enhanced plant growth across the region may affect the composition of soil bacterial communities, with possible effects on ecosystem productivity.

RevDate: 2019-04-16

Tanaka SE, Dayi M, Maeda Y, et al (2019)

Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle.

Scientific reports, 9(1):6080 pii:10.1038/s41598-019-42570-7.

The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.

RevDate: 2019-04-11

Wei W, Wang N, Cai L, et al (2019)

Impacts of Freshwater and Seawater Mixing on the Production and Decay of Virioplankton in a Subtropical Estuary.

Microbial ecology pii:10.1007/s00248-019-01362-2 [Epub ahead of print].

Virioplankton is an important component of the aquatic ecosystem and plays multiple ecological and biogeochemical roles. Although the spatial and temporal distributions and dynamics of virioplankton have been well investigated in riverine and marine environments, little is known about the dynamics and environmental controlling mechanisms of virioplankton in estuaries. In this study, viral abundance, production and decay were examined in the Pearl River Estuary (PRE), one of the largest estuaries in China. The influences of freshwater and seawater mixing on viral ecological dynamics were evaluated with several cross-transplant experiments. In PRE, viral abundance, production and decay rates varied from 2.72 ± 0.09 to 27.5 ± 1.07 × 106 viruses ml-1, 7.98 ± 2.33 to 16.27 ± 2.85% h-1 and 0.80 ± 0.23 to 3.74 ± 0.98% h-1, respectively. When the riverine and marine microbial community were transferred into simulated brackish water, viral production rates were markedly inhibited by 83.8% and 47.3%, respectively. The decay of riverine and marine virioplankton was inhibited by 21.1% and 34.2%, respectively, in simulated brackish water. These results indicate change of estuarine environmental factors significantly alters the dynamics of riverine and marine virioplankton. In addition, the effects of mixing on viral production and decay differed between high- and low-fluorescence viruses. High-fluorescence viruses seemed more resistant to decay than low-fluorescence viruses, whereas the production of marine low-fluorescence viruses seemed more resistant to inhibition than that of marine high-fluorescence viruses. Together, these results provide new insights into the ecological dynamics of virioplankton in estuarine environments.

RevDate: 2019-04-13

Pratama AA, JD van Elsas (2019)

Gene mobility in microbiomes of the mycosphere and mycorrhizosphere -role of plasmids and bacteriophages.

FEMS microbiology ecology pii:5454738 [Epub ahead of print].

Microbial activity in soil, including horizontal gene transfer (HGT), occurs in soil hot spots and at 'hot moments'. Given their capacities to explore soil for nutrients, soil fungi (associated or not with plant roots) can act as (1) selectors of myco(rhizo)sphere-adapted organisms, and (2) accelerators of HGT processes across the cell populations that are locally present. This minireview critically examines our current understanding of the drivers of gene mobility in the myco(rhizo)sphere. We place a special focus on the role of two major groups of gene mobility agents, i.e. plasmids and bacteriophages. With respect to plasmids, there is mounting evidence that broad-host-range IncP-1β and PromA group plasmids are prominent drivers of gene mobility across mycosphere inhabitants. A role of IncP-1β plasmids in Fe uptake processes has been revealed. Moreover, a screening of typical mycosphere-inhabiting Paraburkholderia spp. revealed carriage of integrated plasmids, next to prophages, that presumably confer fitness enhancement. In particular, functions involved in biofilm formation and nutrient uptake were thus identified. The potential of the respective gene mobility agents to promote the movement of such genes is critically examined.

RevDate: 2019-04-13

Ogwu MC, Srinivasan S, Dong K, et al (2019)

Community Ecology of Deinococcus in Irradiated Soil.

Microbial ecology pii:10.1007/s00248-019-01343-5 [Epub ahead of print].

Deinococcus is a genus of soil bacteria known for radiation resistance. However, the effects of radiation exposure on its community structure are unknown. We exposed soil to three levels of gamma radiation, 0.1 kGy/h (low), 1 kGy/h (medium), and 3 kGy/h (high), once a week for 6 weeks and then extracted soil DNA for 16S rRNA amplicon sequencing. We found the following: (1) Increasing radiation dose produced a major increase in relative abundance of Deinococcus, reaching ~ 80% of reads at the highest doses. Differing abundances of the various Deinococcus species in relation to exposure levels indicate distinct "radiation niches." At 3 kGy/h, a single OTU identified as D. ficus overwhelmingly dominated the mesocosms. (2) Corresponding published genome data show that the dominant species at 3 kGy/h, D. ficus, has a larger and more complex genome than other Deinococcus species with a greater proportion of genes related to DNA and nucleotide metabolism, cell wall, membrane, and envelope biogenesis as well as more cell cycle control, cell division, and chromosome partitioning-related genes. Deinococcus ficus also has a higher guanine-cytosine ratio than most other Deinococcus. These features may be linked to genome stability and may explain its greater abundance in this apparently competitive system, under high-radiation exposures. (3) Genomic analysis suggests that Deinococcus, including D. ficus, are capable of utilizing diverse carbon sources derived from both microbial cells killed by the radiation (including C5-C12-containing compounds, like arabinose, lactose, N-acetyl-D-glucosamine) and plant-derived organic matter in the soil (e.g., cellulose and hemicellulose). (4) Overall, based on its metagenome, even the most highly irradiated (3 kGy/h) soil possesses a wide range of the activities necessary for a functional soil system. Future studies may consider the resilience and sustainability of such soils in a high-radiation environment.

RevDate: 2019-04-13

Lee KS, Palatinszky M, Pereira FC, et al (2019)

Publisher Correction: An automated Raman-based platform for the sorting of live cells by functional properties.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2019-04-12

Salerno C, Berardi G, Laera G, et al (2019)

Functional Response of MBR Microbial Consortia to Substrate Stress as Revealed by Metaproteomics.

Microbial ecology pii:10.1007/s00248-019-01360-4 [Epub ahead of print].

Bacterial consortia have a primary role in the biological degradations occurring in activated sludge for wastewater treatment, for their capacities to metabolize the polluting matter. Therefore, the knowledge of the main metabolic pathways for the degradation of pollutants becomes critical for a correct design and operation of wastewater treatment plants. The metabolic activity of the different bacterial groups in activated sludge is commonly investigated through respirometry. Furthermore, in the last years, the development of "omic" approaches has offered more opportunities to integrate or substitute the conventional microbiological assays and to deeply understand the taxonomy and dynamics of complex microbial consortia. In the present work, an experimental membrane bioreactor (MBR) was set up and operated for the treatment of municipal wastewater, and the effects of a sudden decrease of the organic supply on the activated sludge were investigated. Both respirometric and metaproteomic approaches revealed a resistance of autotrophic bacteria to the substrate stress, and particularly of nitrifying bacteria. Furthermore, metaproteomics allowed the identification of the taxonomy of the microbial consortium based on its protein expression, unveiling the prevalence of Sorangium and Nitrosomonas genera both before and after the organic load decrease. Moreover, it confirmed the results obtained through respirometry and revealed a general expression of proteins involved in metabolism and transport of nitrogen, or belonging to nitrifying species like Nitrosomonas europeae, Nitrosomonas sp. AL212, or Nitrospira defluvii.

RevDate: 2019-04-12

Vieira LC, da Silva DKA, de Melo MAC, et al (2019)

Edaphic Factors Influence the Distribution of Arbuscular Mycorrhizal Fungi Along an Altitudinal Gradient of a Tropical Mountain.

Microbial ecology pii:10.1007/s00248-019-01354-2 [Epub ahead of print].

Changes in relief in montane areas, with increasing altitude, provide different biotic and abiotic conditions, acting on the species of arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the influence of altitude, edaphic factors, and vegetation on the AMF species in a mountainous area. The list of AMF species was obtained from morphological identification of the spores, with 72 species recovered from field samples and trap cultures. Lower levels of Shannon's diversity occurred only at lower altitude; however, there was no difference in AMF richness. The structure of the AMF assembly between the two highest altitudes was similar and differed in relation to the lower altitude. There was variation in the distribution of AMF species, which was related to soil texture and chemical factors along the altitude gradient. Some species, genera, and families were indicative of a certain altitude, showing the preference of fungi for certain environmental conditions, which may aid in decisions to conserve montane ecosystems.

RevDate: 2019-04-12

Sedlacek CJ, McGowan B, Suwa Y, et al (2019)

A Physiological and Genomic Comparison of Nitrosomonas Cluster 6a and 7 Ammonia-Oxidizing Bacteria.

Microbial ecology pii:10.1007/s00248-019-01378-8 [Epub ahead of print].

Ammonia-oxidizing bacteria (AOB) within the genus Nitrosomonas perform the first step in nitrification, ammonia oxidation, and are found in diverse aquatic and terrestrial environments. Nitrosomonas AOB were grouped into six defined clusters, which correlate with physiological characteristics that contribute to adaptations to a variety of abiotic environmental factors. A fundamental physiological trait differentiating Nitrosomonas AOB is the adaptation to either low (cluster 6a) or high (cluster 7) ammonium concentrations. Here, we present physiological growth studies and genome analysis of Nitrosomonas cluster 6a and 7 AOB. Cluster 6a AOB displayed maximum growth rates at ≤ 1 mM ammonium, while cluster 7 AOB had maximum growth rates at ≥ 5 mM ammonium. In addition, cluster 7 AOB were more tolerant of high initial ammonium and nitrite concentrations than cluster 6a AOB. Cluster 6a AOB were completely inhibited by an initial nitrite concentration of 5 mM. Genomic comparisons were used to link genomic traits to observed physiological adaptations. Cluster 7 AOB encode a suite of genes related to nitrogen oxide detoxification and multiple terminal oxidases, which are absent in cluster 6a AOB. Cluster 6a AOB possess two distinct forms of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and select species encode genes for hydrogen or urea utilization. Several, but not all, cluster 6a AOB can utilize urea as a source of ammonium. Hence, although Nitrosomonas cluster 6a and 7 AOB have the capacity to fulfill the same functional role in microbial communities, i.e., ammonia oxidation, differentiating species-specific and cluster-conserved adaptations is crucial in understanding how AOB community succession can affect overall ecosystem function.

RevDate: 2019-04-12

Baker JL, Hendrickson EL, Tang X, et al (2019)

Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota.

Proceedings of the National Academy of Sciences of the United States of America pii:1820594116 [Epub ahead of print].

It is well-understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress-response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a ∼50-100-fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well-established sources of outbreaks of drug-resistant Enterobacteriaceae.

RevDate: 2019-04-11

Cahill N, O'Connor L, Mahon B, et al (2019)

Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales?.

The Science of the total environment, 672:618-624 pii:S0048-9697(19)31436-6 [Epub ahead of print].

Antimicrobial resistance is a major public health concern. Carbapenemase-producing Enterobacterales (CPE) represent a significant health threat as some strains are resistant to almost all available antibiotics. The aim of this research was to examine hospital effluent and municipal wastewater in an urban area in Ireland for CPE. Samples of hospital effluent (n = 5), municipal wastewater before (n = 5) and after (n = 4) the hospital effluent stream joined the municipal wastewater stream were collected over a nine-week period (May-June 2017). All samples were examined for CPE by direct plating onto Brilliance CRE agar. Isolates were selected for susceptibility testing to 15 antimicrobial agents in accordance with EUCAST criteria. Where relevant, isolates were tested for carbapenemase-encoding genes by real-time PCR. CPE were detected in five samples of hospital effluent, one sample of pre-hospital wastewater and three samples of post-hospital wastewater. Our findings suggest hospital effluent is a major contributor to CPE in municipal wastewater. Monitoring of hospital effluent for CPE could have important applications in detection and risk management of unrecognised dissemination of CPE in both the healthcare setting and the environment.

RevDate: 2019-04-11

Nakato GV, Fuentes Rojas JL, Verniere C, et al (2019)

A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset.

PloS one, 14(4):e0215090 pii:PONE-D-18-35061.

Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies.

RevDate: 2019-04-11

Perona-Vico E, Blasco-Gómez R, Colprim J, et al (2019)

[NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis.

PloS one, 14(4):e0215029 pii:PONE-D-18-36361.

Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at- 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp.

RevDate: 2019-04-10

Ai D, Li X, Pan H, et al (2019)

Explore mediated co-varying dynamics in microbial community using integrated local similarity and liquid association analysis.

BMC genomics, 20(Suppl 2):185 pii:10.1186/s12864-019-5469-8.

BACKGROUND: Discovering the key microbial species and environmental factors of microbial community and characterizing their relationships with other members are critical to ecosystem studies. The microbial co-occurrence patterns across a variety of environmental settings have been extensively characterized. However, previous studies were limited by their restriction toward pairwise relationships, while there was ample evidence of third-party mediated co-occurrence in microbial communities.

METHODS: We implemented and applied the triplet-based liquid association analysis in combination with the local similarity analysis procedure to microbial ecology data. We developed an intuitive scheme to visualize those complex triplet associations along with pairwise correlations. Using a time series from the marine microbial ecosystem as example, we identified pairs of operational taxonomic units (OTUs) where the strength of their associations appeared to relate to the values of a third "mediator" variable. These "mediator" variables appear to modulate the associations between pairs of bacteria.

RESULTS: Using this analysis, we were able to assess the OTUs' ability to regulate its functional partners in the community, typically not manifested in the pairwise correlation patterns. For example, we identified Flavobacteria as a multifaceted player in the marine microbial ecosystem, and its clades were involved in mediating other OTU pairs. By contrast, SAR11 clades were not active mediators of the community, despite being abundant and highly correlated with other OTUs. Our results suggested that Flavobacteria are more likely to respond to situations where particles and unusual sources of dissolved organic material are prevalent, such as after a plankton bloom. On the other hand, SAR11s are oligotrophic chemoheterotrophs with inflexible metabolisms, and their relationships with other organisms may be less governed by environmental or biological factors.

CONCLUSIONS: By integrating liquid association with local similarity analysis to explore the mediated co-varying dynamics, we presented a novel perspective and a useful toolkit to analyze and interpret time series data from microbial community. Our augmented association network analysis is thus more representative of the true underlying dynamic structure of the microbial community. The analytic software in this study was implemented as new functionalities of the ELSA (Extended local similarity analysis) tool, which is available for free download (http://bitbucket.org/charade/elsa).

RevDate: 2019-04-09

Barbaro L, Allan E, Ampoorter E, et al (2019)

Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests.

Proceedings. Biological sciences, 286(1894):20182193.

Bats and birds are key providers of ecosystem services in forests. How climate and habitat jointly shape their communities is well studied, but whether biotic predictors from other trophic levels may improve bird and bat diversity models is less known, especially across large bioclimatic gradients. Here, we achieved multi-taxa surveys in 209 mature forests replicated in six European countries from Spain to Finland, to investigate the importance of biotic predictors (i.e. the abundance or activity of defoliating insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic and functional diversity. We found that nine out of 12 bird and bat diversity metrics were best explained when biotic factors were added to models including climate and habitat variables, with a mean gain in explained variance of 38% for birds and 15% for bats. Tree functional diversity was the most important habitat predictor for birds, while bats responded more to understorey structure. The best biotic predictors for birds were spider abundance and defoliating insect activity, while only bat functional evenness responded positively to insect herbivory. Accounting for potential biotic interactions between bats, birds and other taxa of lower trophic levels will help to understand how environmental changes along large biogeographical gradients affect higher-level predator diversity in forest ecosystems.

RevDate: 2019-04-09

Tveit AT, Hestnes AG, Robinson SL, et al (2019)

Widespread soil bacterium that oxidizes atmospheric methane.

Proceedings of the National Academy of Sciences of the United States of America pii:1817812116 [Epub ahead of print].

The global atmospheric level of methane (CH4), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH4 from the atmosphere, but so far, bacteria that can grow on atmospheric CH4 have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4 [1.86 parts per million volume (p.p.m.v.)]. This organism, named Methylocapsa gorgona, is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH4 oxidation experiments and 13C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH4 aerobically and assimilates carbon from both CH4 and CO2 Its estimated specific affinity for CH4 (a0s) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed for Methylocapsa acidiphila and Methylocapsa aurea, close relatives with a lower specific affinity for CH4, suggesting that the ability to utilize atmospheric CH4 for growth is more widespread than previously believed. The closed genome of M. gorgona MG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH4 and CO2, and CO2 fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH4 oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).

RevDate: 2019-04-09

Dos Santos HRM, Argolo CS, Argôlo-Filho RC, et al (2019)

A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information.

BMC microbiology, 19(1):74 pii:10.1186/s12866-019-1446-2.

BACKGROUND: Subunits of ribosomal RNA genes (rDNAs) characterized by PCR-based protocols have been the proxy for studies in microbial taxonomy, phylogenetics, evolution and ecology. However, relevant factors have shown to interfere in the experimental outputs in a variety of systems. In this work, a 'theoretical' to 'actual' delta approach was applied to data on culturable mock bacterial communities (MBCs) to study the levels of losses in operational taxonomic units (OTUs) detectability. Computational and lab-bench strategies based on 16S rDNA amplification by 799F and U1492R primers were employed, using a fingerprinting method with highly improved detectability of fragments as a case-study tool. MBCs were of two major types: in silico MBCs, assembled with database-retrieved sequences, and in vitro MBCs, with AluI digestions of PCR data generated from culturable endophytes isolated from cacao trees.

RESULTS: Interfering factors for the 16 s rDNA amplifications, such as the type of template, direct and nested PCR, proportion of chloroplast DNA from a tropical plant source (Virola officinalis), and biased-amplification by the primers resulted in altered bacterial 16S rDNA amplification, both on MBCs and V. officinalis leaf-extracted DNA. For the theoretical data, the maximum number of fragments for in silico and in vitro cuts were not significantly different from each other. Primers' preferences for certain sequences were detected, depending on the MBCs' composition prior to PCR. The results indicated overall losses from 2.3 up to 8.2 times in the number of OTUs detected from actual AluI digestions of MBCs when compared to in silico and in vitro theoretical data.

CONCLUSIONS: Due to all those effects, the final amplification profile of the bacterial community assembled was remarkably simplified when compared to the expected number of detectable fragments known to be present in the MBC. From these findings, the scope of hypotheses generation and conclusions from experiments based on PCR amplifications of bacterial communities was discussed.

RevDate: 2019-04-08

Kim J, Gómez-Pastora J, Weigand M, et al (2019)

A Subpopulation of Monocytes in Normal Human Blood Has Significant Magnetic Susceptibility: Quantification and Potential Implications.

Cytometry. Part A : the journal of the International Society for Analytical Cytology [Epub ahead of print].

The presence of iron in circulating monocytes is well known as they play essential roles in iron recycling. Also, the storage of this metal as well as its incorrect uptake and/or release are important data to diagnose different pathologies. It has been demonstrated that iron storage in human blood cells can be measured through their magnetic behavior with high accuracy; however, the magnetic characteristics of monocytes have not been reported so far to the best of our knowledge. Therefore, in this work, we report, for the first time, the physical and magnetic properties of human monocytes, along with plasma platelets, oxyhemoglobin red blood cells (oxyHb-RBCs), and methemoglobin red blood cells (metHb-RBCs). The different cell populations were separated by Ficoll-density gradient centrifugation, followed by a flow sorting step to isolate monocytes from peripheral blood mononuclear cells. The different fractions were analyzed by Coulter Counter (for determining the size distribution and concentration) and the sorted monocytes were qualitatively analyzed on ImageStream, a state-of-the-art imaging cytometer. The analysis of the Coulter Counter and ImageStream data suggests that although there exists contamination in the monocyte fraction, the integrity of the sorted monocytes appears to be intact and the concentration was high enough to precisely measure their magnetic velocity by Cell Tracking Velocimetry. Surprisingly, monocytes reported the highest magnetic mobility from the four fractions under analysis, with an average magnetic velocity 7.8 times higher than MetHb-RBCs, which is the only type of cells with positive magnetic velocities. This value is equivalent to a susceptibility 2.5 times higher than the value reported by fresh MetHb-RBCs. It should be noted that this is the first study that reports that a subpopulation of human monocytes is much more magnetic than MetHb-RBCs, opening the door to the possible isolation of human monocytes by label-free magnetic techniques. Further, it is suggested that these magnetic monocytes could "contaminate" positively selected, immunomagnetically labeled blood cells (i.e., during a process using magnetically conjugated antibodies targeting cells, such as CD34 positive cells). Conversely, these magnetic monocytes could be inadvertently removed from a desired blood population when one is using a negative magnetic isolation technique to target cells for removal. © 2019 International Society for Advancement of Cytometry.

RevDate: 2019-04-08

Fanin N, Kardol P, Farrell M, et al (2019)

Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems.

Loss of plant diversity has an impact on ecosystems worldwide, but we lack a mechanistic understanding of how this loss may influence below-ground biota and ecosystem functions across contrasting ecosystems in the long term. We used the longest running biodiversity manipulation experiment across contrasting ecosystems in existence to explore the below-ground consequences of 19 years of plant functional group removals for each of 30 contrasting forested lake islands in northern Sweden. We found that, against expectations, the effects of plant removals on the communities of key groups of soil organisms (bacteria, fungi and nematodes), and organic matter quality and soil ecosystem functioning (decomposition and microbial activity) were relatively similar among islands that varied greatly in productivity and soil fertility. This highlights that, in contrast to what has been shown for plant productivity, plant biodiversity loss effects on below-ground functions can be relatively insensitive to environmental context or variation among widely contrasting ecosystems.

RevDate: 2019-04-08

Abad ED, Ferreira DC, Cavalcante FS, et al (2019)

High incidence of acquiring methicillin-resistant Staphylococcus aureus in Brazilian children with Atopic Dermatitis and associated risk factors.

Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi pii:S1684-1182(19)30025-8 [Epub ahead of print].

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) colonization in Atopic Dermatitis (AD) patients can contribute to worsening their clinical condition.

OBJECTIVE: A cohort study was carried out to determine the incidence of MRSA acquisition and its risk factors in AD children.

METHODS: Patients with AD (2 months-14 years old) were followed up for about 1 year at a reference center for AD treatment in Rio de Janeiro, Brazil, from September 2011 to February 2014. Nasal swabs from patients and contacts were collected every 2 months. The SCORAD system assessed the severity of the AD. S. aureus isolates were evaluated to determine the methicillin resistance and the clonal lineages.

RESULTS: Among 117 AD patients, 97 (82.9%) were already colonized with S. aureus and 26 (22.2%) had MRSA at the first evaluation. The incidence of MRSA acquisition in the cohort study was 27.47% (n = 25). The SCORAD assessments were: mild (46.15%), moderate (37.36%) or severe (16.48%). Risk factors were: colonized MRSA contacts (HR = 2.27; 95% CI: 1.16-7.54), use of cyclosporine (HR = 5.84; 95% CI: 1.70-19.98), moderate or severe AD (HR = 3.26; 95% CI: 1.13-9.37). Protective factors were: availability of running water (HR = 0.21; 95% CI: 0.049-0.96) and use of antihistamines (HR = 0.21; 95% IC: 0.64-0.75). MRSA isolates carried the SCCmec type IV and most of them were typed as USA800/ST5.

CONCLUSIONS: The high incidence of MRSA acquisition found among AD patients and the risk factors associated show that an effective surveillance of MRSA colonization in these patients is needed.

RevDate: 2019-04-08

Cotta SR, Cadete LL, van Elsas JD, et al (2019)

Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity.

Marine pollution bulletin, 141:586-594.

Mangrove forests are highly productive yet vulnerable ecosystems that act as important carbon sinks ("blue carbon"). The objective of this work was to analyze the impact of anthropogenic activities on microbiome structure and functioning. The metagenomic analysis revealed that the taxonomic compositions were grossly similar across all mangrove microbiomes. Remarkably, these microbiomes, along the gradient of anthropogenic impact, showed fluctuations in the relative abundances of bacterial taxa predicted to be involved in sulfur cycling processes. Functions involved in sulfur metabolism, such as APS pathways (associated with sulfate reduction and sulfur oxidation processes) were prevalent across the microbiomes, being sox and dsrAB genes highly expressed on anthropogenically-impacted areas. Apparently, the oil-impacted microbiomes were more affected in taxonomic than in functional terms, as high functional redundancies were noted across them. The microbial gene diversity found was typical for a functional system, even following the previous disturbance.

RevDate: 2019-04-06

Stamou GP, Monokrousos N, Gwynn-Jones D, et al (2019)

A Polyphasic Approach for Assessing Eco-System Connectivity Demonstrates that Perturbation Remodels Network Architecture in Soil Microcosms.

Microbial ecology pii:10.1007/s00248-019-01367-x [Epub ahead of print].

Network analysis was used to show changes in network attributes by analyzing the relations among the main soil microbial groups in a potted tomato soil inoculated with arbuscular mycorrhizal fungus, treated with low doses of Mentha spicata essential oil, or both, and then exposed to tenfold higher oil addition (stress pulse). Pretreatments were chosen since they can induce changes in the composition of the microbial community. Cellular phospholipid fatty acids (PLFAs) and the activity of six soil enzymes, mainly involved in the N-cycle were measured. Networks were constructed based on correlated changes in PLFA abundances. The values of all parameters were significantly different from those of random networks indicating modular architecture. Networks ranked from the lowest to highest modularity: control, non-pretreated and stressed, inoculated and stressed, oil treated and stressed, inoculated and treated with oil and stressed. The high values of network density and 1st/2nd eigenvalue ratio are related to arylamidase activity while N-acetyl-glucosaminidase, acid phosphomoesterase, and asparaginase activities related to high values of the clustering coefficient index. We concluded that modularity may be an efficient indicator of changes in the network of interactions among the members of the soil microbial community and the modular structure of the network may be related to the activity of specific enzymes. Communities that were stressed without a pretreatment were relatively resistant but prone to sudden transition towards instability, while oil or inoculation pretreatments gave networks which could be considered adaptable and susceptible to gradual change.

RevDate: 2019-04-06

Han J, Wang S, Fan D, et al (2019)

Time-Dependent Hormetic Response of Soil Alkaline Phosphatase Induced by Cd and the Association with Bacterial Community Composition.

Microbial ecology pii:10.1007/s00248-019-01371-1 [Epub ahead of print].

Hormetic dose-response that involved Cd in soils is increasingly paid attentions for risk assessment of Cd toxicity, but insufficient studies were conducted to define the temporary modification of soil enzyme and the potential microbial responses. The present study chooses soil alkaline phosphatase (ALP) as endpoint to uncover the time-dependent hormetic responses to low doses of Cd and its association with bacterial community composition. The results showed that addition of 0.01-3.0 mg kg-1 Cd significantly increased ALP's activities with maximum stimulatory magnitude of 11.4-27.2%, indicating a typical hormesis. The response started at 12 h after Cd addition and maintained about 24 h. This demonstrated that the hormetic response is time-dependent and transient. Changes of soil bacterial community composition showed that, at 6 h, relative abundances (RAs) of Proteobacteria and Firmicutes at phylum and Pontibacter, Bacillaceae-Bacillus, Bacillaceae1-Bacillus, and Paenisporosarcina at genus significantly correlated with ALP's activities at 12-36 h (P < 0.05). This suggests that soil bacteria likely showed an earlier response to Cd and potentially contributes to the subsequent soil enzyme's hormesis. In addition, it was found that Gram-negative bacteria other than Gram-positive bacteria are prone to exhibiting a hormetic response under Cd stress. Our findings provide much insight into ecotoxicological risk assessment for soil Cd pollution.

RevDate: 2019-04-06

Martiny AC (2019)

High proportions of bacteria are culturable across major biomes.

The ISME journal pii:10.1038/s41396-019-0410-3 [Epub ahead of print].

The paradigm that only 1% of microbes are culturable has had a profound impact on our understanding of microbial ecology and is still a major motivation for mostly using molecular tools to characterize microbial communities. However, this point is often expressed vaguely, suggesting that some scientists have different interpretations of the paradigm. In addition, there have been substantial advances in cultivation techniques suggesting that this paradigm may no longer be correct. To quantify bacterial culturability across six major biomes, I found that the median 16S rRNA similarity of bacteria to known cultured relatives was 97.3 ± 2.3% (s.d.). Furthermore, 52.0 ± 24% of sequences and 34.9 ± 23% of taxa (defined as >97% similar) had a closely related cultured relative. Thus, many cells and taxa across environments are culturable with known techniques, suggesting that the 1% paradigm is no longer correct.

RevDate: 2019-04-06

Wilschut RA, van der Putten WH, Garbeva P, et al (2019)

Root traits and belowground herbivores relate to plant-soil feedback variation among congeners.

Nature communications, 10(1):1564 pii:10.1038/s41467-019-09615-x.

Plant-soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant-soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop more similar plant-soil feedbacks than more distantly related species. Where previous comparisons included plant species from distant phylogenetic positions, we studied plant-soil feedbacks of congeneric species. Using eight intra-continentally range-expanding and native Geranium species, we tested relations between phylogenetic distances, chemical and structural root traits, root microbiomes, and plant-soil feedbacks. We show that root chemistry and specific root length better predict bacterial and fungal community composition than phylogenetic distance. Negative plant-soil feedback strength correlates with root-feeding nematode numbers, whereas microbiome dissimilarity, nativeness, or phylogeny does not predict plant-soil feedbacks. We conclude that root microbiome variation among congeners is best explained by root traits, and that root-feeding nematode abundances predict plant-soil feedbacks.

RevDate: 2019-04-05

Philip N, Bandara HMHN, Leishman SJ, et al (2019)

Effect of polyphenol-rich cranberry extracts on cariogenic biofilm properties and microbial composition of polymicrobial biofilms.

Archives of oral biology, 102:1-6 pii:S0003-9969(19)30004-4 [Epub ahead of print].

OBJECTIVE: To investigate the effect of cranberry extracts on saliva-derived polymicrobial biofilms with regards to biofilm biomass, acidogenicity, exopolysaccharide (EPS)/microbial biovolumes, colony forming unit (CFU) counts, and the relative abundance of specific caries- and health-associated bacteria.

METHODS: Saliva-derived polymicrobial biofilms were grown for 96 h in a cariogenic environment and treated for 2 min every 12 h over the entire biofilm growth period with 500 μg/mL cranberry extract or vehicle control. The effect of the cranberry extract on biofilm behaviour was evaluated using different assays and its influence on key cariogenic and health-associated bacterial populations was assessed with a microarray real-time quantitative PCR method.

RESULTS: Cranberry-treated biofilms showed significant drops in biomass (38% reduction, P < 0.001), acidogenicity (44% reduction, P < 0.001), EPS/microbial biovolume ratios (P = 0.033), and CFU counts (51% reduction, P = 0.001). Furthermore, the cranberry extracts effected a significantly lower relative abundance of caries-associated Streptococcus sobrinus (fold change 0.004, P = 0.002) and Provotella denticola (0.002, P < 0.001), and a significantly higher relative abundance of the health-associated Streptococcus sanguinis (fold change 90.715, P = 0.001).

CONCLUSIONS: The cranberry extract lowered biofilm biomass, acidogenicity, EPS/microbial biovolumes, CFU counts, and modulated a beneficial microbial ecological change in saliva-derived polymicrobial biofilms.

RevDate: 2019-04-05

Hughey MC, Sokol ER, Walke JB, et al (2019)

Ecological Correlates of Large-Scale Turnover in the Dominant Members of Pseudacris crucifer Skin Bacterial Communities.

Microbial ecology pii:10.1007/s00248-019-01372-0 [Epub ahead of print].

Animals host a wide diversity of symbiotic microorganisms that contribute important functions to host health, and our knowledge of what drives variation in the composition of these complex communities continues to grow. Microbiome studies at larger spatial scales present opportunities to evaluate the contribution of large-scale factors to variation in the microbiome. We conducted a large-scale field study to assess variation in the bacterial symbiont communities on adult frog skin (Pseudacris crucifer), characterized using 16S rRNA gene amplicon sequencing. We found that skin bacterial communities on frogs were less diverse than, and structurally distinct from, the surrounding habitat. Frog skin was typically dominated by one of two bacterial OTUs: at western sites, a Proteobacteria dominated the community, whereas eastern sites were dominated by an Actinobacteria. Using a metacommunity framework, we then sought to identify factors explaining small- and large-scale variation in community structure-that is, among hosts within a pond, and among ponds spanning the study transect. We focused on the presence of a fungal skin pathogen, Batrachochytrium dendrobatidis (Bd) as one potential driver of variation. We found no direct link between skin bacterial community structure and Bd infection status of individual frog hosts. Differences in pond-level community structure, however, were explained by Bd infection prevalence. Importantly, Bd infection prevalence itself was correlated with numerous other environmental factors; thus, skin bacterial diversity may be influenced by a complex suite of extrinsic factors. Our findings indicate that large-scale factors and processes merit consideration when seeking to understand microbiome diversity.

RevDate: 2019-04-05

Lan S, Thomas AD, Tooth S, et al (2019)

Small-Scale Spatial Heterogeneity of Photosynthetic Fluorescence Associated with Biological Soil Crust Succession in the Tengger Desert, China.

Microbial ecology pii:10.1007/s00248-019-01356-0 [Epub ahead of print].

In dryland regions, biological soil crusts (BSCs) have numerous important ecosystem functions. Crust species and functions are, however, highly spatially heterogeneous and remain poorly understood at a range of scales. In this study, chlorophyll fluorescence imaging was used to quantify millimeter-scale patterns in the distribution and activity of photosynthetic organisms in BSCs of different successional stages (including cyanobacterial, lichen, moss three main successional stages and three intermixed transitional stages) from the Tengger Desert, China. Chlorophyll fluorescence images derived from the Imaging PAM (Pulse Amplitude Modulation) showed that with the succession from cyanobacterial to lichen and to moss crusts, crust photosynthetic efficiency (including the maximum and effective photosynthetic efficiency, respectively) and fluorescence coverage increased significantly (P < 0.05), and that increasing photosynthetically active radiation (PAR) reduced the effective photosynthetic efficiency (Yield). The distribution of photosynthetic organisms in crusts determined Fv/Fm (ratio of variable fluorescence to maximum fluorescence) frequency pattern, although the photosynthetic heterogeneity (SHI index) was not significantly different (P > 0.05) between cyanobacterial and moss crusts, and showed a unimodal pattern of Fv/Fm values. In contrast, photosynthetic heterogeneity was significantly higher in lichen, cyanobacteria-moss and lichen-moss crusts (P < 0.05), with a bimodal pattern of Fv/Fm values. Point pattern analysis showed that the distribution pattern of chlorophyll fluorescence varied at different spatial scales and also among the different crust types. These new results provide a detailed (millimeter-scale) insight into crust photosynthetic mechanisms and spatial distribution patterns associated with their community types. Collectively, this information provides an improved theoretical basis for crust maintenance and management in dryland regions.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Order from Amazon

This book covers the ecological activities of microbes in the biosphere with an emphasis on microbial interactions within their environments and communities In thirteen concise and timely chapters, Microbial Ecology presents a broad overview of this rapidly growing field, explaining the basic principles in an easy-to-follow manner. Using an integrative approach, it comprehensively covers traditional issues in ecology as well as cutting-edge content at the intersection of ecology, microbiology,

21454 NE 143rd Street
Woodinville, WA 98077

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )