About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

12 Jul 2020 at 01:41
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: History of Genetics


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 12 Jul 2020 at 01:41 Created: 

History of Genetics

Created with PubMed® Query: "Genetics/*history"[MESH] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2020-07-09
CmpDate: 2020-07-09

Mason CA, SM Sherman (2019)

Editorial: Introduction to the special issue in honor of Ray Guillery.

The European journal of neuroscience, 49(7):884-887.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Mason C, R Guillery (2019)

Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development.

The European journal of neuroscience, 49(7):913-927.

In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.

RevDate: 2020-07-09
CmpDate: 2020-07-09

Walsh CA (2019)

Rainer W. Guillery and the genetic analysis of brain development.

The European journal of neuroscience, 49(7):900-908.

Ray Guillery had broad research interests that spanned cellular neuroanatomy, but was perhaps best known for his investigation of the connectivity and function of the thalamus, especially the visual pathways. His work on the genetics of abnormal vision in albino mammals served as an early paradigm for genetic approaches for studying brain connectivity of complex species in general, and remains of major relevance today. This work, especially on the Siamese cat, illustrates the complex relationship between genotype and physiology of cerebral cortical circuits, and anticipated many of the issues underlying the imperfect relationship between genes, circuits, and behavior in mammalian species including human. This review also briefly summarizes studies from our own lab inspired by Ray Guillery's legacy that continues to explore the relationship between genes, structure, and behavior in human cerebral cortex.

RevDate: 2020-07-09
CmpDate: 2020-07-09

LaMantia AS (2019)

The strengths of the genetic approach to understanding neural systems development and function: Ray Guillery's synthesis.

The European journal of neuroscience, 49(7):888-899.

The organization and function of sensory systems, especially the mammalian visual system, has been the focus of philosophers and scientists for centuries-from Descartes and Newton onward. Nevertheless, the utility of understanding development and its genetic foundations for deeper insight into neural function has been debated: Do you need to know how something is assembled-a car, for example-to understand how it works or how to use it-to turn on the ignition and drive? This review addresses this issue for sensory pathways. The pioneering work of the late Rainer W. (Ray) Guillery provides an unequivocal answer to this central question: Using genetics for mechanistic exploration of sensory system development yields essential knowledge of organization and function. Ray truly built the foundation for this now accepted tenet of modern neuroscience. His work on the development and reorganization of visual pathways in albino mammals-all with primary genetic mutations in genes for pigmentation-defined the genetic approach to neural systems development, function and plasticity. The work that followed his lead in a variety of sensory systems, including my own work in the developing olfactory system, proceeds directly from Ray's fundamental contributions.

RevDate: 2020-07-08
CmpDate: 2020-07-08

Jorrin-Novo JV, Komatsu S, Sanchez-Lucas R, et al (2019)

Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics!.

Journal of proteomics, 198:1-10.

In this century we have assisted at an unimaginable expansion of proteomics, with continuous innovations and optimizations in methods, techniques, protocols, equipment, and associated bioinformatics tools. We have moved forward very fast from first (gel electrophoresis based), to second (based on isotopic or isobaric labelling), to third (shotgun or gel-free, label-free), and to fourth (targeted, mass-western, or SRM/MRM) generation techniques. This evolution is clearly observed in the literature since 1994, when the term "proteome" was first coined, with plant proteomics progressing at a much lower speed than human and other model organisms. The question behind this review is: Is gel electrophoresis an obsolete technique? Is it still alive? The answer is that gel electrophoresis is still a valid technique, with its own particularities, strengths, and weaknesses, "irreplaceable" in top-down experiments directed at investigating protein species, loci and allelic variants, and isoforms, as well as in the post-translational modifications and interactions studies; it is an excellent complementary and alternative approach that could lead us to achieve a deeper visualization and knowledge of the cell proteome. The past, present, and future of this technique is being reviewed. It is not pretended to discuss in detail technical aspects, referring to key original papers or previous reviews, but instead, how it has contributed, from a historical perspective, to plant proteomics and biology research. It is our personal congratulations to "Journal of Proteomics" that celebrates this year its 10th anniversary, and, at the same time, a tribute to those scientists who have contributed to the establishment and development of the gel electrophoresis technique and its application to proteomics and plant biology research. Their direct or indirect teaching has been very valuable to those of us who once decided to enter proteomics, with no access to any sophisticated and expensive equipment. This gel electrophoresis-based plant proteomics review is divided into the following sections: introduction, history, methodology, contribution to plant biology research, and future directions.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Salomé PA (2019)

Sabeeha Merchant.

The Plant cell, 31(12):2814-2816.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Anonymous (2019)

The people behind the papers - Shai Eyal and Elazar Zelzer.

Development (Cambridge, England), 146(14): pii:146/14/dev182733.

Most bones in the vertebrate skeleton are made in the same way - endochondrial ossification - yet they display a variety of shapes and sizes. The question of how these unique bone morphologies, including the superstructures that protrude from their surfaces, arise during development is still unclear, and the subject of a new paper in Development We caught up with first author Shai Eyal and his supervisor Elazar Zelzer, Professor in the Department of Molecular Genetics at the Weizmann Institute of Science in Rehovot, Israel, to find out more about the story.

RevDate: 2020-07-06
CmpDate: 2020-07-06

Rubin MA, F Demichelis (2019)

The Genomics of Prostate Cancer: A Historic Perspective.

Cold Spring Harbor perspectives in medicine, 9(3): pii:cshperspect.a034942.

The genomics of prostate cancer (PCA) has been difficult to study compared with some other cancer types for a multitude of reasons, despite significant efforts since the early 1980s. Overcoming some of these obstacles has paved the way for greater insight into the genomics of PCA. The advent of high-throughput technologies coming from the initial use of microsatellite and oligonucleotide probes gave rise to techniques like comparative genomic hybridization (CGH). With the introduction of massively parallel genomic sequencing, referred to as next-generation sequencing (NGS), a deeper understanding of cancer genomics in general has occurred. Along with these technologic advances, there has been the development of computational biology and statistical approaches to address novel large data sets characterized by single base resolution. This review will provide a historic perspective of PCA genomics with an emphasis on the cardinal mutations and alterations observed to be consistently seen in PCA for both hormone-naïve localized PCA and castration-resistant prostate cancer (CRPC). There will be a focus on alterations that have the greatest potential to play a role in disease progression and therapy management.

RevDate: 2020-07-02
CmpDate: 2020-07-02

Nicol D, Dreyfuss RC, Gold ER, et al (2019)

International Divergence in Gene Patenting.

Annual review of genomics and human genetics, 20:519-541.

This review explores the recent divergence in international patent law relating to genes and associated subject matter. This divergence stems primarily from decisions of the highest courts in the United States and Australia on the eligibility of patent claims relating to the BRCA gene sequences. Patent offices, courts, and policy makers have struggled for many years to clearly articulate the bounds of patent claims on isolated and synthetic DNA and related products and processes, including methods for their use in genetic diagnostics. This review provides context to the current divergence by mapping key events in the gene patent journey from the early 1980s onward in five key jurisdictions: the United States, the member states of the European Patent Convention, Australia, Canada, and China. Early approaches to gene patenting had some commonalities across jurisdictions, which makes exploration of the recent divergence all the more interesting.There is insufficient empirical evidence to date to confidently predict the consequences of this recent divergence. However, it could potentially have a significant effect on local industry and on consumer access.

RevDate: 2020-07-01
CmpDate: 2020-07-01

Tanimoto H, CF Wu (2019)

Comparative behavioral genetics: the Yamamoto approach.

Journal of neurogenetics, 33(2):41-43.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Hyun J (2019)

Doctors Discussing "the Root of Koreans": Medical Genetics and the Korean Origin, 1975-1987.

Ui sahak, 28(2):551-590.

Anthropological genetics emerged as a new discipline to investigate the origin of human species in the second half of the twentieth century. Using the genetic database of blood groups and other protein polymorphisms, anthropological geneticists started redrawing the ancient migratory history of human populations. A peculiarity of the Korean experience is that clinical physicians were the first experts using genetic data to theorize the historical origin of the respective population. This paper examines how South Korean physicians produced the genetic knowledge and discourse of the Korean origin in the 1970s and 1980s. It argues that transnational scientific exchange led clinical researchers to engage in global anthropological studies. The paper focuses on two scientific cooperative cases in medical genetics at the time: the West German-South Korean pharmacogenetic research on the Korean population and the Asia-Oceania Histocompatibility Workshop. At the outset, physicians introduced medical genetics into their laboratory for clinical applications. Involved in cooperative projects on investigating anthropological implications of their clinical work, medical researchers came to use their genetic data for studying the Korean origin. In the process, physicians simply followed a nationalist narrative of the Korean origin rather than criticizing it. This was partially due to their lack of serious interest in anthropological work. Their explanations about the Korean origin would be considered "scientific" while hiding their embracing of the nationalist narrative.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Frank M, Harkess A, J Washburn (2019)

James A. Birchler.

The Plant cell, 31(10):2277-2280.

RevDate: 2020-06-30
CmpDate: 2020-06-30

Drineas P, Tsetsos F, Plantinga A, et al (2019)

Genetic history of the population of Crete.

Annals of human genetics, 83(6):373-388.

The medieval history of several populations often suffers from scarcity of contemporary records resulting in contradictory and sometimes biased interpretations by historians. This is the situation with the population of the island of Crete, which remained relatively undisturbed until the Middle Ages when multiple wars, invasions, and occupations by foreigners took place. Historians have considered the effects of the occupation of Crete by the Arabs (in the 9th and 10th centuries C.E.) and the Venetians (in the 13th to the 17th centuries C.E.) to the local population. To obtain insights on such effects from a genetic perspective, we studied representative samples from 17 Cretan districts using the Illumina 1 million or 2.5 million arrays and compared the Cretans to the populations of origin of the medieval conquerors and settlers. Highlights of our findings include (1) small genetic contributions from the Arab occupation to the extant Cretan population, (2) low genetic contribution of the Venetians to the extant Cretan population, and (3) evidence of a genetic relationship among the Cretans and Central, Northern, and Eastern Europeans, which could be explained by the settlement in the island of northern origin tribes during the medieval period. Our results show how the interaction between genetics and the historical record can help shed light on the historical record.

RevDate: 2020-06-08
CmpDate: 2020-06-08

Muenke M (2019)

Onward and upward.

American journal of medical genetics. Part A, 179(7):1119-1121.

RevDate: 2020-06-01
CmpDate: 2020-06-01

Kumar TR (2019)

An interview with Dr Blanche Capel.

Biology of reproduction, 100(4):865-868.

RevDate: 2020-05-29
CmpDate: 2020-05-29

Fernández-Irigoyen J, Corrales F, E Santamaría (2019)

The Human Brain Proteome Project: Biological and Technological Challenges.

Methods in molecular biology (Clifton, N.J.), 2044:3-23.

Brain proteomics has become a method of choice that allows zooming-in where neuropathophysiological alterations are taking place, detecting protein mediators that might eventually be measured in cerebrospinal fluid (CSF) as potential neuropathologically derived biomarkers. Following this hypothesis, mass spectrometry-based neuroproteomics has emerged as a powerful approach to profile neural proteomes derived from brain structures and CSF in order to map the extensive protein catalog of the human brain. This chapter provides a historical perspective on the Human Brain Proteome Project (HBPP), some recommendation to the experimental design in neuroproteomic projects, and a brief description of relevant technological and computational innovations that are emerging in the neurobiology field thanks to the proteomics community. Importantly, this chapter highlights recent discoveries from the biology- and disease-oriented branch of the HBPP (B/D-HBPP) focused on spatiotemporal proteomic characterizations of mouse models of neurodegenerative diseases, elucidation of proteostatic networks in different types of dementia, the characterization of unresolved clinical phenotypes, and the discovery of novel biomarker candidates in CSF.

RevDate: 2020-05-29
CmpDate: 2020-05-29

Woollard A (2019)

100 years of genetics.

Heredity, 123(1):1-3.

RevDate: 2020-05-29
CmpDate: 2020-05-29

van Heyningen V (2019)

Genome sequencing-the dawn of a game-changing era.

Heredity, 123(1):58-66.

The development of genome sequencing technologies has revolutionized the biological sciences in ways which could not have been imagined at the time. This article sets out to document the dawning of the age of genomics and to consider the impact of this revolution on biological investigation, our understanding of life, and the relationship between science and society.

RevDate: 2020-05-29
CmpDate: 2020-05-29

Hurst LD (2019)

A century of bias in genetics and evolution.

Heredity, 123(1):33-43.

Mendel proposed that the heritable material is particulate and that transmission of alleles is unbiased. An assumption of unbiased transmission was necessary to show how variation can be preserved in the absence of selection, so overturning an early objection to Darwinism. In the second half of the twentieth century, it was widely recognised that even strongly deleterious alleles can invade if they have strongly biased transmission (i.e. strong segregation distortion). The spread of alleles with distorted segregation can explain many curiosities. More recently, the selectionist-neutralist duopoly was broken by the realisation that biased gene conversion can explain phenomena such as mammalian isochore structures. An initial focus on unbiased transmission in 1919, has thus given way to an interest in biased transmission in 2019. A focus on very weak bias is now possible owing to technological advances, although technical biases may put a limit on resolving power. To understand the relevance of weak bias we could profit from having the concept of the effectively Mendelian allele, a companion to the effectively neutral allele. Understanding the implications of unbiased and biased transmission may, I suggest, be a good way to teach evolution so as to avoid psychological biases.

RevDate: 2020-05-27
CmpDate: 2020-05-27

Anonymous (2019)

13th East-West Immunogenetics Conference, 14-16 March 2019, Zagreb, Croatia.

HLA, 94 Suppl 2:3-76.

RevDate: 2020-05-26
CmpDate: 2020-05-26

Neill US (2019)

A conversation with Lucy Shapiro.

The Journal of clinical investigation, 129(8):2981-2982.

RevDate: 2020-05-18
CmpDate: 2020-05-18

Wolinsky H (2019)

Ancient DNA and contemporary politics: The analysis of ancient DNA challenges long-held beliefs about identity and history with potential for political abuse.

EMBO reports, 20(12):e49507.

The sequencing and analysis of ancient human DNA has helped to rewrite human history. But it is also tempting politicians, nationalists and supremacists to abuse this research for their agendas.

RevDate: 2020-05-18
CmpDate: 2020-05-18

Ortega-Del Vecchyo D, M Slatkin (2019)

FST between archaic and present-day samples.

Heredity, 122(6):711-718.

The increasing abundance of DNA sequences obtained from fossils calls for new population genetics theory that takes account of both the temporal and spatial separation of samples. Here, we exploit the relationship between Wright's FST and average coalescence times to develop an analytic theory describing how FST depends on both the distance and time separating pairs of sampled genomes. We apply this theory to several simple models of population history. If there is a time series of samples, partial population replacement creates a discontinuity in pairwise FST values. The magnitude of the discontinuity depends on the extent of replacement. In stepping-stone models, pairwise FST values between archaic and present-day samples reflect both the spatial and temporal separation. At long distances, an isolation by distance pattern dominates. At short distances, the time separation dominates. Analytic predictions fit patterns generated by simulations. We illustrate our results with applications to archaic samples from European human populations. We compare present-day samples with a pair of archaic samples taken before and after a replacement event.

RevDate: 2020-05-13
CmpDate: 2020-05-13

The Gene Ontology Consortium (2019)

The Gene Ontology Resource: 20 years and still GOing strong.

Nucleic acids research, 47(D1):D330-D338.

The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the 'GO ribbon' widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

RevDate: 2020-05-12
CmpDate: 2020-05-12

Buchan DWA, DT Jones (2019)

The PSIPRED Protein Analysis Workbench: 20 years on.

Nucleic acids research, 47(W1):W402-W407.

The PSIPRED Workbench is a web server offering a range of predictive methods to the bioscience community for 20 years. Here, we present the work we have completed to update the PSIPRED Protein Analysis Workbench and make it ready for the next 20 years. The main focus of our recent website upgrade work has been the acceleration of analyses in the face of increasing protein sequence database size. We additionally discuss any new software, the new hardware infrastructure, our webservices and web site. Lastly we survey updates to some of the key predictive algorithms available through our website.

RevDate: 2020-05-11
CmpDate: 2020-05-11

Suran M (2020)

Finding the tail end: The discovery of RNA splicing.

Proceedings of the National Academy of Sciences of the United States of America, 117(4):1829-1832.

RevDate: 2020-05-08
CmpDate: 2020-05-08

Temtamy SA (2019)

The Development of Human Genetics at the National Research Centre, Cairo, Egypt: A Story of 50 Years.

Annual review of genomics and human genetics, 20:1-19.

This article describes my experiences over more than 50 years in initiating and maintaining research on human genetics and genomics at the National Research Centre in Cairo, Egypt, from its beginnings in a small unit of human genetics to the creation of the Center of Excellence for Human Genetics. This was also the subject of a lecture I gave at the 10th Conference of the African Society of Human Genetics, held in Cairo in November 2017, after which Professor Michèle Ramsay, president of the society, suggested that I write an autobiographical article for the Annual Review of Genomics and Human Genetics. I hope that I succeeded in the difficult assignment of summarizing the efforts of a researcher from a developing country to initiate and maintain the rapidly advancing science of human genetics and genomics in my own country and make contributions to the worldwide scientific community.

RevDate: 2020-05-05
CmpDate: 2020-05-05

Marcus JH, Posth C, Ringbauer H, et al (2020)

Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia.

Nature communications, 11(1):939.

The island of Sardinia has been of particular interest to geneticists for decades. The current model for Sardinia's genetic history describes the island as harboring a founder population that was established largely from the Neolithic peoples of southern Europe and remained isolated from later Bronze Age expansions on the mainland. To evaluate this model, we generate genome-wide ancient DNA data for 70 individuals from 21 Sardinian archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest individuals show a strong affinity to western Mediterranean Neolithic populations, followed by an extended period of genetic continuity on the island through the Nuragic period (second millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium BCE), we observe spatially-varying signals of admixture with sources principally from the eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history of Sardinia, revealing how relationships to mainland populations shifted over time.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Aktories K, Gierschik P, Heringdorf DMZ, et al (2019)

cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs.

Naunyn-Schmiedeberg's archives of pharmacology, 392(8):887-911.

Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.

RevDate: 2020-05-01
CmpDate: 2020-05-01

Anonymous (2019)

Spotlight On Early Career Researchers: an interview with Lovorka Stojic.

Communications biology, 2:204 pii:466.

Dr. Lovorka Stojic is a postdoctoral research fellow at the University of Cambridge and will start her own research group at the Barts Cancer Institute this fall. Her research focuses on understanding how long noncoding RNAs and RNA-binding proteins regulate key cellular processes and how dysregulation of these processes can contribute to human diseases such as cancer. As part of our series on early-career researchers, we asked Dr. Stojic to tell us about her research and career path. She also shares her challenges from juggling between multiple roles and advice for job applications.

RevDate: 2020-05-01
CmpDate: 2020-05-01

Barahona A (2019)

Karyotyping and population genetics in Cold War Mexico: Armendares's and Lisker's characterization of child and indigenous populations, 1960s-1980s.

Historia, ciencias, saude--Manguinhos, 26(1):245-264.

This paper focuses on geneticists Salvador Armendares's and Rubén Lisker's studies from the 1960s to the 1980s, to explore how their work fits into the post-1945 human biological studies, and also how the populations they studied, child and indigenous, can be considered laboratories of knowledge production. This paper describes how populations were considered for different purposes: scientific inquiry, standardization of medical practices, and production or application of medicines. Through the narrative of the different trajectories and collaborations between Armendares and Lisker, this paper also attempts to show the contact of their scientific practices, which brought cytogenetics and population genetics together at the local and global levels from a transnational perspective.

RevDate: 2020-05-01
CmpDate: 2020-05-01

Torrens E (2019)

Biomedical knowledge in Mexico during the Cold War and its impact in pictorial representations of Homo sapiens and racial hierarchies.

Historia, ciencias, saude--Manguinhos, 26(1):219-244.

This paper provides an overview of the state of Mexican genetics and biomedical knowledge during the second half of the twentieth century, as well as its impact on the visual representation of human groups and racial hierarchies, based on social studies of scientific imaging and visualization (SIV) and theoretical concepts and methods. It also addresses the genealogy and shifts of the concept of race and racialization of Mexican bodies, concluding with the novel visual culture that resulted from genetic knowledge merged with the racist phenomenon in the second half of the twentieth century in Mexico.

RevDate: 2020-04-30
CmpDate: 2020-04-30

Carrasco N (2019)

Mentors: Ron Kaback.

The Journal of general physiology, 151(2):97-99.

RevDate: 2020-04-24
CmpDate: 2020-04-24

Schüpbach T (2019)

Genetic Screens to Analyze Pattern Formation of Egg and Embryo in Drosophila: A Personal History.

Annual review of genetics, 53:1-18.

In Drosophila development, the axes of the egg and future embryo are established during oogenesis. To learn about the underlying genetic and molecular pathways that lead to axis formation, I conducted a large-scale genetic screen at the beginning of my independent career. This led to the eventual understanding that both anterior-posterior and dorsal-ventral pattern information is transmitted from the oocyte to the surrounding follicle cells and in turn from the follicle cells back to the oocyte. How I came to conduct this screen and what further insights were gained by studying the mutants isolated in the screen are the topics of this autobiographical article.

RevDate: 2020-04-23
CmpDate: 2020-04-23

Veuille M (2019)

Chance, Variation and Shared Ancestry: Population Genetics After the Synthesis.

Journal of the history of biology, 52(4):537-567.

Chance has been a focus of attention ever since the beginning of population genetics, but neutrality has not, as natural selection once appeared to be the only worthwhile issue. Neutral change became a major source of interest during the neutralist-selectionist debate, 1970-1980. It retained interest beyond this period for two reasons that contributed to its becoming foundational for evolutionary reasoning. On the one hand, neutral evolution was the first mathematical prediction to emerge from Mendelian inheritance: until then evolution by natural selection was considered the alternative to the fixity of species; now it appears to be the alternative to continuous change. Second, neutral change generated a set of clear predictions on standing variation. These could be used as a reference for detecting more elusive alternative mechanisms of evolution including natural selection. In the wake of the transition from Mendelism to genomics, the combination of coalescent theory, DNA sequence variation, and numerical analysis made it possible to integrate contingent aspects of the history of species into a new null model, thus opening a new dimension in the concept of population that the Modern Synthesis formerly considered as a mere gene pool.

RevDate: 2020-04-23
CmpDate: 2020-04-23

Beatty J (2019)

The Creativity of Natural Selection? Part II: The Synthesis and Since.

Journal of the history of biology, 52(4):705-731.

This is the second of a two-part essay on the history of debates concerning the creativity of natural selection, from Darwin through the evolutionary synthesis and up to the present. In the first part, I focussed on the mid-late nineteenth century to the early twentieth, with special emphasis on early Darwinism and its critics, the self-styled "mutationists." The second part focuses on the evolutionary synthesis and some of its critics, especially the "neutralists" and "neo-mutationists." Like Stephen Gould, I consider the creativity of natural selection to be a key component of what has traditionally counted as "Darwinism." I argue that the creativity of natural selection is best understood in terms of (1) selection initiating evolutionary change, and (2) selection directing evolutionary change, for example by creating the variation that it subsequently acts upon. I consider the respects in which both of these claims sound non-Darwinian, even though they have long been understood by supporters and critics alike to be virtually constitutive of Darwinism.

RevDate: 2020-04-23
CmpDate: 2020-04-23

Huneman P (2019)

How the Modern Synthesis Came to Ecology.

Journal of the history of biology, 52(4):635-686.

Ecology in principle is tied to evolution, since communities and ecosystems result from evolution and ecological conditions determine fitness values (and ultimately evolution by natural selection). Yet the two disciplines of evolution and ecology were not unified in the twentieth-century. The architects of the Modern Synthesis, and especially Julian Huxley, constantly pushed for such integration, but the major ideas of the Synthesis-namely, the privileged role of selection and the key role of gene frequencies in evolution-did not directly or immediately translate into ecological science. In this paper I consider five stages through which the Synthesis was integrated into ecology and distinguish between various ways in which a possible integration was gained. I start with Elton's animal ecology (1927), then consider successively Ford's ecological genetics in the 1940s, the major textbook Principles of animal ecology edited by Allee et al. (1949), and the debates over the role of competition in population regulation in the 1950s, ending with Hutchinson's niche concept (1959) and McArthur and Wilson's Principles of Island Biogeography (1967) viewed as a formal transposition of Modern Synthesis explanatory schemes. I will emphasize the key role of founders of the Synthesis at each stage of this very nonlinear history.

RevDate: 2020-04-23
CmpDate: 2020-04-23

Grodwohl JB (2019)

Animal Behavior, Population Biology and the Modern Synthesis (1955-1985).

Journal of the history of biology, 52(4):597-633.

This paper examines the history of animal behavior studies after the synthesis period. Three episodes are considered: the adoption of the theory of natural selection, the mathematization of ideas, and the spread of molecular methods in behavior studies. In these three episodes, students of behavior adopted practices and standards developed in population ecology and population genetics. While they borrowed tools and methods from these fields, they made distinct uses (inclusive fitness method, evolutionary theory of games, emphasis on individual selection) that set them relatively apart and led them to contribute, in their own way, to evolutionary theory. These episodes also highlight some limitations of "conjunction narratives" centered on the relation between a discipline and the modern synthesis. A trend in conjunction narratives is to interpret any development related to evolution in a discipline as an "extension," an "integration," or as a "delayed" synthesis. I here suggest that this can lead to underestimate discontinuities in the history of evolutionary biology.

RevDate: 2020-04-23
CmpDate: 2020-04-23

Sepkoski D (2019)

The Unfinished Synthesis?: Paleontology and Evolutionary Biology in the 20th Century.

Journal of the history of biology, 52(4):687-703.

In the received view of the history of the Modern Evolutionary Synthesis, paleontology was given a prominent role in evolutionary biology thanks to the significant influence of paleontologist George Gaylord Simpson on both the institutional and conceptual development of the Synthesis. Simpson's 1944 Tempo and Mode in Evolution is considered a classic of Synthesis-era biology, and Simpson often remarked on the influence of other major Synthesis figures - such as Ernst Mayr and Theodosius Dobzhansky - on his developing thought. Why, then, did paleontologists of the 1970s and 1980s - Stephen Jay Gould, Niles Eldredge, David M. Raup, Steven Stanley, and others - so frequently complain that paleontology remained marginalized within evolutionary biology? This essay considers three linked questions: first, were paleontologists genuinely welcomed into the Synthetic project during its initial stages? Second, was the initial promise of the role for paleontology realized during the decades between 1950 and 1980, when the Synthesis supposedly "hardened" to an "orthodoxy"? And third, did the period of organized dissent and opposition to this orthodoxy by paleontologists during the 1970s and 1980s bring about a long-delayed completion to the Modern Synthesis, or rather does it highlight the wider failure of any such unified Darwinian evolutionary consensus?

RevDate: 2020-04-23
CmpDate: 2020-04-23

Plutynski A (2019)

Speciation Post Synthesis: 1960-2000.

Journal of the history of biology, 52(4):569-596.

Speciation-the origin of new species-has been one of the most active areas of research in evolutionary biology, both during, and since the Modern Synthesis. While the Modern Synthesis certainly shaped research on speciation in significant ways, providing a core framework, and set of categories and methods to work with, the history of work on speciation since the mid-twentieth century is a history of divergence and diversification. This piece traces this divergence, through both theoretical advances, and empirical insights into how different lineages, with different genetics and ecological conditions, are shaped by very different modes of diversification.

RevDate: 2020-04-20
CmpDate: 2020-04-20

Kashuba N, Kırdök E, Damlien H, et al (2019)

Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter-gatherers in Scandinavia.

Communications biology, 2:185.

Human demography research in grounded on the information derived from ancient DNA and archaeology. For example, the study on the early postglacial dual-route colonisation of the Scandinavian Peninsula is largely based on associating genomic data with the early dispersal of lithic technology from the East European Plain. However, a clear connection between material culture and genetics has been lacking. Here, we demonstrate that direct connection by analysing human DNA from chewed birch bark pitch mastics. These samples were discovered at Huseby Klev in western Sweden, a Mesolithic site with eastern lithic technology. We generated genome-wide data for three individuals, and show their affinity to the Scandinavian hunter-gatherers. Our samples date to 9880-9540 calBP, expanding the temporal range and distribution of the early Scandinavian genetic group. We propose that DNA from ancient mastics can be used to study environment and ecology of prehistoric populations.

RevDate: 2020-04-16
CmpDate: 2020-04-16

Genetic Selection Evolution’s Editorial Board (2019)

GSE's 50th anniversary: where do we go from now?.

Genetics, selection, evolution : GSE, 51(1):66 pii:10.1186/s12711-019-0504-4.

RevDate: 2020-04-13
CmpDate: 2020-04-13

Berthel E, Ferlazzo ML, Devic C, et al (2019)

What Does the History of Research on the Repair of DNA Double-Strand Breaks Tell Us?-A Comprehensive Review of Human Radiosensitivity.

International journal of molecular sciences, 20(21):.

Our understanding of the molecular and cellular response to ionizing radiation (IR) has progressed considerably. This is notably the case for the repair and signaling of DNA double-strand breaks (DSB) that, if unrepaired, can result in cell lethality, or if misrepaired, can cause cancer. However, through the different protocols, techniques, and cellular models used during the last four decades, the DSB repair kinetics and the relationship between cellular radiosensitivity and unrepaired DSB has varied drastically, moving from all-or-none phenomena to very complex mechanistic models. To date, personalized medicine has required a reliable evaluation of the IR-induced risks that have become a medical, scientific, and societal issue. However, the molecular bases of the individual response to IR are still unclear: there is a gap between the moderate radiosensitivity frequently observed in clinic but poorly investigated in the publications and the hyper-radiosensitivity of rare but well-characterized genetic diseases frequently cited in the mechanistic models. This paper makes a comprehensive review of semantic issues, correlations between cellular radiosensitivity and unrepaired DSB, shapes of DSB repair curves, and DSB repair biomarkers in order to propose a new vision of the individual response to IR that would be more coherent with clinical reality.

RevDate: 2020-04-10
CmpDate: 2020-04-10

Roelcke V (2019)

Eugenic concerns, scientific practices: international relations in the establishment of psychiatric genetics in Germany, Britain, the USA and Scandinavia, c.1910-60.

History of psychiatry, 30(1):19-37.

The article describes the emergence of research programmes, institutions and activities of the early protagonists in the field of psychiatric genetics: Ernst Rüdin in Munich, Eliot Slater in London, Franz Kallmann in New York and Erik Essen-Möller in Lund. During the 1930s and well into the Nazi period, the last three had been research fellows at the German Research Institute for Psychiatry in Munich. It is documented that there was a continuous mutual exchange of scientific ideas and practices between these actors, and that in all four contexts there were intrinsic relations between eugenic motivations and genetic research, but with specific national adaptations.

RevDate: 2020-04-08
CmpDate: 2020-04-06

Xia Z, Tian J, Wang X, et al (2019)

In memory of Prof. C. C. Li.

Protein & cell, 10(6):389-392.

RevDate: 2020-04-02
CmpDate: 2020-04-02

Miranda C M, MF Alamos (2019)

[The influence of medicine in Emile Zola's "Fortune of the Rougon-Macquart"].

Revista medica de Chile, 147(10):1329-1334.

Emile Zola is one of the greatest writers in universal literature. In his important series of novels called "The Fortune of the Rougon-Macquart", Zola shows a surprising medical knowledge even though he did not have a formal medical education. We highlight not only his outstanding literary talent, but also the scientific relevance of the tremendous contribution to the medical field that can be extracted from his work. In this series, which describe the history of five generations within a large family suffering from neuropsychiatric and general pathologies, Zola emphasizes the hereditary component of several diseases. These observations probably place him as the first novelist who made an explicit emphasis on the power of inheritance in human behavior. He also mentions for the first time several medical aspects that were seldom addressed in the scientific literature of the time, demonstrating the genius of the writer, his outstanding power of observation and the rigorous preparation with which he wrote his work.

RevDate: 2020-04-01
CmpDate: 2020-04-01

Hickey J, Hill WG, Blasco A, et al (2019)

Students', colleagues' and research partners' experience about work and accomplishments from collaborating with Robin Thompson.

Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, 136(4):301-309.

RevDate: 2020-03-31
CmpDate: 2020-03-31

Kirby T (2020)

Barbara Franke-unravelling ADHD's biology.

The lancet. Psychiatry, 7(4):310.

RevDate: 2020-03-31
CmpDate: 2020-03-31

Cox SL, Ruff CB, Maier RM, et al (2019)

Genetic contributions to variation in human stature in prehistoric Europe.

Proceedings of the National Academy of Sciences of the United States of America, 116(43):21484-21492.

The relative contributions of genetics and environment to temporal and geographic variation in human height remain largely unknown. Ancient DNA has identified changes in genetic ancestry over time, but it is not clear whether those changes in ancestry are associated with changes in height. Here, we directly test whether changes over the past 38,000 y in European height predicted using DNA from 1,071 ancient individuals are consistent with changes observed in 1,159 skeletal remains from comparable populations. We show that the observed decrease in height between the Early Upper Paleolithic and the Mesolithic is qualitatively predicted by genetics. Similarly, both skeletal and genetic height remained constant between the Mesolithic and Neolithic and increased between the Neolithic and Bronze Age. Sitting height changes much less than standing height-consistent with genetic predictions-although genetics predicts a small post-Neolithic increase that is not observed in skeletal remains. Geographic variation in stature is also qualitatively consistent with genetic predictions, particularly with respect to latitude. Finally, we hypothesize that an observed decrease in genetic heel bone mineral density in the Neolithic reflects adaptation to the decreased mobility indicated by decreased femoral bending strength. This study provides a model for interpreting phenotypic changes predicted from ancient DNA and demonstrates how they can be combined with phenotypic measurements to understand the relative contribution of genetic and developmentally plastic responses to environmental change.

RevDate: 2020-03-26
CmpDate: 2020-03-26

Azar B (2019)

QnAs with David Reich.

Proceedings of the National Academy of Sciences of the United States of America, 116(32):15752-15753.

RevDate: 2020-03-27
CmpDate: 2020-03-27

Wasant P, Padilla C, Lam S, et al (2019)

Asia Pacific Society of Human Genetics (APSHG) from conception to 2019: 13 years of collaboration to tackle congenital malformation and genetic disorders in Asia.

American journal of medical genetics. Part C, Seminars in medical genetics, 181(2):155-165.

Putting together the reports in this issue that come from a representation of the different countries in Asia presents an opportunity to share the unique story of the Asia Pacific Society of Human Genetics (APSHG), which has provided the authors of many of these articles. This paper, authored by the Past Presidents of the Society, shares glimpses of how medical genetics activities were first organized in the Asia Pacific region and provides interesting corollaries on how under-developed and developing countries in this part of the world had developed a unique network for exchange and sharing of expertise and resources. Although APSHG was formally registered as a Society in Singapore in 2006, the Society has its origins as far back as in the 1990s with members from different countries meeting informally, exchanging ideas, and collaborating. This treatise documents the story of the experiences of the Society and hopes it will provide inspiration on how members of a genetics community can foster and build a thriving environment to promote this field.

RevDate: 2020-03-19
CmpDate: 2020-03-19

Dobson CM (2019)

Biophysical Techniques in Structural Biology.

Annual review of biochemistry, 88:25-33.

Over the past six decades, steadily increasing progress in the application of the principles and techniques of the physical sciences to the study of biological systems has led to remarkable insights into the molecular basis of life. Of particular significance has been the way in which the determination of the structures and dynamical properties of proteins and nucleic acids has so often led directly to a profound understanding of the nature and mechanism of their functional roles. The increasing number and power of experimental and theoretical techniques that can be applied successfully to living systems is now ushering in a new era of structural biology that is leading to fundamentally new information about the maintenance of health, the origins of disease, and the development of effective strategies for therapeutic intervention. This article provides a brief overview of some of the most powerful biophysical methods in use today, along with references that provide more detailed information about recent applications of each of them. In addition, this article acts as an introduction to four authoritative reviews in this volume. The first shows the ways that a multiplicity of biophysical methods can be combined with computational techniques to define the architectures of complex biological systems, such as those involving weak interactions within ensembles of molecular components. The second illustrates one aspect of this general approach by describing how recent advances in mass spectrometry, particularly in combination with other techniques, can generate fundamentally new insights into the properties of membrane proteins and their functional interactions with lipid molecules. The third reviewdemonstrates the increasing power of rapidly evolving diffraction techniques, employing the very short bursts of X-rays of extremely high intensity that are now accessible as a result of the construction of free-electron lasers, in particular to carry out time-resolved studies of biochemical reactions. The fourth describes in detail the application of such approaches to probe the mechanism of the light-induced changes associated with bacteriorhodopsin's ability to convert light energy into chemical energy.

RevDate: 2020-03-12
CmpDate: 2020-03-12

Hunter DJ (2019)

Adventures in the environment and genes.

European journal of epidemiology, 34(12):1111-1117.

RevDate: 2020-03-12
CmpDate: 2020-03-12

Peterson A (2019)

On Reconstruction of ancestral footfalls in South Asia using genomic data By Saikat Chakraborty and Analabha Basu.

Journal of biosciences, 44(3):.

RevDate: 2020-03-12
CmpDate: 2020-03-12

Pitchappan R (2019)

On Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations By Ajai Kumar Pathak, et al.

Journal of biosciences, 44(3):.

RevDate: 2020-03-12
CmpDate: 2020-03-12

Silva M, Koch JT, Pala M, et al (2019)

On Methodological issues in the Indo-European debate By Michel Danino.

Journal of biosciences, 44(3):.

RevDate: 2020-03-10
CmpDate: 2020-03-10

Marnett LJ (2019)

Adventures with Bruce Ames and the Ames test.

Mutation research, 846:403070.

Bruce Ames has had an enormous impact on human health by developing facile methods for the identification of mutagens. This research also provided important insights into the relationship between mutagenesis and carcinogenesis. Bruce is a highly innovative and creative individual who has followed his interests across disciplines into diverse fields of inquiry. The present author had the pleasure of spending a sabbatical in the Ames lab and utilized the Ames test in multiple aspects of his research. He describes both in this honorific to Bruce on the occasion of his 90th birthday.

RevDate: 2020-03-09
CmpDate: 2020-03-09

Ekong R (2019)

In Memoriam: Emeritus Professor Sue (Margaret Susan) Povey [1942-2019].

Human mutation, 40(10):1627-1629.

RevDate: 2020-03-03
CmpDate: 2020-03-03

Berger F (2019)

Emil Heitz, a true epigenetics pioneer.

Nature reviews. Molecular cell biology, 20(10):572.

RevDate: 2020-02-25
CmpDate: 2020-02-25

Mariscal C, Barahona A, Aubert-Kato N, et al (2019)

Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report.

Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life, 49(3):111-145.

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.

RevDate: 2020-02-24
CmpDate: 2020-02-24

Fu L (2019)

Chia-Chen Tan and genetics in modern China.

Protein & cell, 10(5):313-314.

RevDate: 2020-02-13
CmpDate: 2020-02-13

Sakaki Y (2019)

A Japanese history of the Human Genome Project.

Proceedings of the Japan Academy. Series B, Physical and biological sciences, 95(8):441-458.

The Human Genome Project (HGP) is one of the most important international achievements in life sciences, to which Japanese scientists made remarkable contributions. In the early 1980s, Akiyoshi Wada pioneered the first project for the automation of DNA sequencing technology. Ken-ichi Matsubara exhibited exceptional leadership to launch the comprehensive human genome program in Japan. Hideki Kambara made a major contribution by developing a key device for high-speed DNA sequencers, which enabled scientists to construct human genome draft sequences. The RIKEN team led by Yoshiyuki Sakaki (the author) played remarkable roles in the draft sequencing and completion of chromosomes 21, 18, and 11. Additionally, the Keio University team led by Nobuyoshi Shimizu made noteworthy contributions to the completion of chromosomes 22, 21, and 8. In April 2003, the Japanese team joined the international consortium in declaring the completion of the human genome sequence. Consistent with the HGP mandate, Japan has successfully developed a wide range of ambitious genomic sciences.

RevDate: 2020-02-13
CmpDate: 2020-02-13

Lupski JR (2019)

A Human in Human Genetics.

Cell, 177(1):9-15.

RevDate: 2020-02-12
CmpDate: 2020-02-12

Anonymous (2019)

Five decades of eukaryotic transcription.

Nature structural & molecular biology, 26(9):757.

RevDate: 2020-02-12
CmpDate: 2020-02-12

Lis JT (2019)

A 50 year history of technologies that drove discovery in eukaryotic transcription regulation.

Nature structural & molecular biology, 26(9):777-782.

Transcription regulation is critical to organism development and homeostasis. Control of expression of the 20,000 genes in human cells requires many hundreds of proteins acting through sophisticated multistep mechanisms. In this Historical Perspective, I highlight the progress that has been made in elucidating eukaryotic transcriptional mechanisms through an array of disciplines and approaches, and how this concerted effort has been driven by the development of new technologies.

RevDate: 2020-02-12
CmpDate: 2020-02-12

Roeder RG (2019)

50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms.

Nature structural & molecular biology, 26(9):783-791.

The landmark 1969 discovery of nuclear RNA polymerases I, II and III in diverse eukaryotes represented a major turning point in the field that, with subsequent elucidation of the distinct structures and functions of these enzymes, catalyzed an avalanche of further studies. In this Review, written from a personal and historical perspective, I highlight foundational biochemical studies that led to the discovery of an expanding universe of the components of the transcriptional and regulatory machineries, and a parallel complexity in gene-specific mechanisms that continue to be explored to the present day.

RevDate: 2020-02-12
CmpDate: 2020-02-12

Conaway RC, JW Conaway (2019)

The hunt for RNA polymerase II elongation factors: a historical perspective.

Nature structural & molecular biology, 26(9):771-776.

The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.

RevDate: 2020-02-12
CmpDate: 2020-02-12

Kadonaga JT (2019)

The transformation of the DNA template in RNA polymerase II transcription: a historical perspective.

Nature structural & molecular biology, 26(9):766-770.

The discovery of RNA polymerases I, II, and III opened up a new era in gene expression. Here I provide a personal retrospective account of the transformation of the DNA template, as it evolved from naked DNA to chromatin, in the biochemical analysis of transcription by RNA polymerase II. These studies have revealed new insights into the mechanisms by which transcription factors function with chromatin to regulate gene expression.

RevDate: 2020-02-11
CmpDate: 2020-02-11

Heitman J (2019)

E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine.

Genetics, 213(1):1-7.

THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.

RevDate: 2020-02-07
CmpDate: 2020-02-07

Kumar TR (2019)

An interview with Dr Richard Behringer.

Biology of reproduction, 100(1):8-10.

RevDate: 2020-01-30
CmpDate: 2020-01-30

Meunier R (2019)

Project knowledge and its resituation in the design of research projects: Seymour Benzer's behavioral genetics, 1965-1974.

Studies in history and philosophy of science, 77:39-53.

The article introduces a framework for analyzing the knowledge that researchers draw upon when designing a research project by distinguishing four types of "project knowledge": goal knowledge, which concerns possible outcomes, and three forms of implementation knowledge that concern the realization of the project: 1) methodological knowledge that specifies possible experimental and non-experimental strategies to achieve the chosen goal; 2) representational knowledge that suggests ways to represent data, hypotheses, or outcomes; and 3) organizational knowledge that helps to build or navigate the material and social structures that enable a project. In the design of research projects such knowledge will be transferred from other successful projects and these processes will be analyzed in terms of modes of resituating knowledge. The account is developed by analyzing a case from the history of biology. In a reciprocal manner, it enables a better understanding of the historical episode in question: around 1970, several researchers who had made successful careers in the emerging field of molecular biology, working with bacterial model systems, attempted to create a molecular biology of the physiological processes in multicellular organisms. One of them was Seymour Benzer, who designed a research project addressing the physiological processes underlying behavior in Drosophila.

RevDate: 2020-01-30
CmpDate: 2020-01-30

Lean OM (2019)

Chemical arbitrariness and the causal role of molecular adapters.

Studies in history and philosophy of biological and biomedical sciences, 78:101180.

Jacques Monod (1971) argued that certain molecular processes rely critically on the property of chemical arbitrariness, which he claimed allows those processes to "transcend the laws of chemistry". It seems natural, as some philosophers have done, to interpret this in modal terms: a biological relationship is chemically arbitrary if it is possible, within the constraints of chemical "law", for that relationship to have been otherwise than it is. But while modality is certainly important for understanding chemical arbitrariness, understanding its biological role also requires an account of the concrete causal-functional features that distinguish arbitrary from non-arbitrary phenomena. In this paper I elaborate on this under-emphasised aspect by offering a general account of these features: arbitrary relations are instantiated by mechanisms that involve molecular adapters, which causally couple two properties or processes which would otherwise be uncorrelated. Additionally, adapters work by acting as intermediate rather than cooperating causes.

RevDate: 2020-01-29
CmpDate: 2020-01-29

Lowe JWE, A Bruce (2019)

Genetics without genes? The centrality of genetic markers in livestock genetics and genomics.

History and philosophy of the life sciences, 41(4):50 pii:10.1007/s40656-019-0290-x.

In this paper, rather than focusing on genes as an organising concept around which historical considerations of theory and practice in genetics are elucidated, we place genetic markers at the heart of our analysis. This reflects their central role in the subject of our account, livestock genetics concerning the domesticated pig, Sus scrofa. We define a genetic marker as a (usually material) element existing in different forms in the genome, that can be identified and mapped using a variety (and often combination) of quantitative, classical and molecular genetic techniques. The conjugation of pig genome researchers around the common object of the marker from the early-1990s allowed the distinctive theories and approaches of quantitative and molecular genetics concerning the size and distribution of gene effects to align (but never fully integrate) in projects to populate genome maps. Critical to this was the nature of markers as ontologically inert, internally heterogeneous and relational. Though genes as an organising and categorising principle remained important, the particular concatenation of limitations, opportunities, and intended research goals of the pig genetics community, meant that a progressively stronger focus on the identification and mapping of markers rather than genes per se became a hallmark of the community. We therefore detail a different way of doing genetics to more gene-centred accounts. By doing so, we reveal the presence of practices, concepts and communities that would otherwise be hidden.

RevDate: 2020-01-28
CmpDate: 2020-01-28

Pipas JM (2019)

DNA Tumor Viruses and Their Contributions to Molecular Biology.

Journal of virology, 93(9): pii:JVI.01524-18.

This summer marks the 51st anniversary of the DNA tumor virus meetings. Scientists from around the world will gather in Trieste, Italy, to report their latest results and to agree or disagree on the current concepts that define our understanding of this diverse class of viruses. This article offers a brief history of the impact the study of these viruses has had on molecular and cancer biology and discusses obstacles and opportunities for future progress.

RevDate: 2020-01-24
CmpDate: 2020-01-24

Sukumaran S, Sebastian W, Francis KX, et al (2019)

Contemporary and historic patterns of intraspecific diversity in Indian anchovy, Stolephorus indicus, from Indian peninsular waters.

Genetica, 147(3-4):259-267.

We analyzed intraspecific diversity of Indian anchovy, Stolephorus indicus, a commercially and ecologically important species, using mitochondrial DNA markers so as to derive insights into population structuring and historical demography. Analyses were carried out on 128 and 138 individuals collected from 5 locations along the range of distribution using mitochondrial ATPase (843 bp) and COI (663 bp) sequences respectively. Significant connectivity and gene flow was detected among fishes collected from all the geographic locations as indicated by lack of structuring in Bayesian clustering analysis along with insignificant ΦST values. Oceanographic features of the Bay of Bengal, Arabian Sea and Andaman Sea may be favorable for the dispersal of anchovy larvae and subsequent gene flow. Historical demographic analyses indicated a demographic and spatial expansion taken place approximately during 125,000 years before present, the Pleistocene epoch. Indian Ocean witnessed emergence of upwelling events and consequent increase in productivity during the Pleistocene epoch causing a demographic and spatial expansion of anchovies. Management measures for this species should be devised considering it as a single stock along its entire range of distribution.

RevDate: 2020-01-24
CmpDate: 2020-01-24

Womack JEJ (2019)

Mapping Genes Is Good for You.

Annual review of animal biosciences, 7:1-16.

I abandoned my original career choice of high school teaching to pursue dentistry and soon abandoned that path for genetics. The latter decision was due to a challenge by a professor that led to me reading Nobel speeches by pioneer geneticists before I had formal exposure to the subject. Even then, I was 15 years into my career before my interest in rodent genomes gave way to mapping cattle genes. Events behind these twists and turns in my career path comprise the first part of this review. The remainder is a review of the development of the field of bovine genomics from my personal perspective. I have had the pleasure of working with outstanding graduate students, postdocs, and colleagues to contribute my small part to a discipline that has evolved from a few individuals mapping an orphan genome to a discipline underlying a revolution in animal breeding.

RevDate: 2020-01-08
CmpDate: 2020-01-08

Weir BS (2019)

The Summer Institute in Statistical Genetics.

Genetics, 212(4):955-957.

The Elizabeth W. Jones Award for Excellence in Education recognizes an individual or group that has had significant, sustained impact on genetics education at any level, from K-12 through graduate school and beyond. Bruce Weir (University of Washington) is the 2019 recipient in recognition of his work training thousands of researchers in the rigorous use of statistical analysis methods for genetic and genomic data. His contributions fall into three categories: the acclaimed Summer Institute in Statistical Genetics, which has been held continuously for 23 years and has trained > 10,000 researchers worldwide; the popular graduate-level textbook Genetic Data Analysis; and the training of a growing number of forensic geneticists during the rise of DNA evidence in courts around the world.

RevDate: 2020-01-03
CmpDate: 2020-01-03

McConwell AK (2019)

Walking the Line: A Tempered View of Contingency and Convergence in Life's History : Review of Jonathan B. Losos: Improbable Destinies: Fate, Chance, and the Future of Evolution (2017).

Acta biotheoretica, 67(3):253-264.

RevDate: 2019-12-27
CmpDate: 2019-12-27

Nemec B, F Zimmer (2019)

[The Emergence of Genetic Prenatal Diagnosis from Environmental Research : On a Methodological Shift in Prevention Around 1970].

NTM, 27(1):39-78.

The history of genetic prenatal diagnosis has so far been analyzed as a part of the history of human genetics and its reorientation as a clinical and laboratory-based scientific discipline in the second half of the 20th century. Based on new source material, we show in this paper that the interest in prenatal diagnosis also arose within the context of research on mutagenicity (the capacity to induce mutations) that was concerned with environmental dangers to human health. Our analysis of the debates around the establishment of the German Research Foundation's (DFG) research program "Prenatal Diagnosis of Genetic Defects" reveals that amniocentesis was introduced in Western Germany by a group of scientists working on the dangers for the human organism caused by radiation, pharmaceuticals, and other substances and consumer goods. We argue that, in a period of growing environmental concern, the support of prenatal diagnosis aimed to close a perceived gap in the prevention of environmental mutagenicity, i. e. genetic anomalies induced by environmental factors. The expected financing of prenatal diagnosis by health insurance in the course of the reform of abortion rights was used as another argument for the new technology's introduction as a "defensive measure". Only in a second step did changes in research structures, but most importantly experience from gynecological practice lead to a reframing of the technology as a tool for the diagnosis and prevention of mostly genetic or spontaneously occurring anomalies. Eventually, prenatal diagnosis, as it became routinely used in Western Germany from the early 1980s onward, had little to do with "environmental" questions. This case study of the early history of genetic prenatal diagnosis analyzes the still poorly researched relationship between research in human genetics, environmental research and medical practice. Furthermore, we aim to shed new light on a shift in perspective in prevention around 1970 that has so far been described in different contexts.

RevDate: 2019-12-26
CmpDate: 2019-12-26

Cook-Deegan R, SJ McCormack (2019)

LeRoy Walters's Legacy of Bioethics in Genetics and Biotechnology Policy.

Kennedy Institute of Ethics journal, 29(1):51-66.

LeRoy Walters was at the center of public debate about emerging biological technologies, even as "biotechnology" began to take root. He chaired advisory panels on human gene therapy, the human genome project, and patenting DNA for the congressional Office of Technology Assessment. He chaired the subcommittee on Human Gene Therapy for NIH's Recombinant DNA Advisory Committee. He was also a regular advisor to Congress, the executive branch, and academics concerned about policy governing emerging biotechnologies. In large part due to Prof. Walters, the Kennedy Institute of Ethics was one of the primary sources of talent in bioethics, including staff who populated policy and science agencies dealing with reproductive and genetic technologies, such as NIH and OTA. His legacy lies not only in his writings, but in those people, documents, and discussions that guided biotechnology policy in the United States for three decades.

RevDate: 2019-12-23
CmpDate: 2019-12-23

Andrew DJ, Chen EH, Manoli DS, et al (2019)

Sex and the Single Fly: A Perspective on the Career of Bruce S. Baker.

Genetics, 212(2):365-376.

Bruce Baker, a preeminent Drosophila geneticist who made fundamental contributions to our understanding of the molecular genetic basis of sex differences, passed away July 1, 2018 at the age of 72. Members of Bruce's laboratory remember him as an intensely dedicated, rigorous, creative, deep-thinking, and fearless scientist. His trainees also remember his strong commitment to teaching students at every level. Bruce's career studying sex differences had three major epochs, where the laboratory was focused on: (1) sex determination and dosage compensation, (2) the development of sex-specific structures, and (3) the molecular genetic basis for sex differences in behavior. Several members of the Baker laboratory have come together to honor Bruce by highlighting some of the laboratory's major scientific contributions in these areas.

RevDate: 2019-12-23
CmpDate: 2019-12-23

L Hartl D (2019)

Q & A with Daniel L. Hartl, Recipient of the 2019 Thomas Hunt Morgan Medal.

Genetics, 212(2):361-363.

The Genetics Society of America's Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2019 Morgan Medal is Daniel Hartl of Harvard University, who is recognized for his influential and diverse contributions to genetics research. The unifying theme of Hartl's broad impacts on transmission, population, evolutionary, and medical genetics has been the combination of theoretical insights with cutting-edge experimental techniques. Some of his contributions include revealing the genetics of segregation distortion, developing statistical frameworks for estimating the effects of selection, application of these frameworks to natural and experimental populations, discovery of the mariner transposon and its influence on genome evolution, insights into the evolution of gene expression differences, and modeling the evolution of malaria parasite populations. Hartl is also known as a supportive mentor who has trained many prominent geneticists that continue to shape the field.

RevDate: 2019-12-20
CmpDate: 2019-12-20

Soriano V (2019)

Jérôme Lejeune passed away 25 years ago.

Hereditas, 156:18 pii:94.

RevDate: 2019-12-20
CmpDate: 2019-12-20

Santesmases MJ (2017)

Circulating biomedical images: Bodies and chromosomes in the post-eugenic era.

History of science; an annual review of literature, research and teaching, 55(4):395-430.

This essay presents the early days of human cytogenetics, from the late 1950s until the mid 1970s, as a historical series of images. I propose a chronology moving from photographs of bodies to chromosome sets, to be joined by ultrasound images, which provided a return to bodies, by then focused on the unborn. Images carried ontological significance and, as I will argue, are principal characters in the history of human cytogenetics. Inspired by the historiography of heredity and genetics, studies on visual cultures, the conceptualization of circulation, and the sociology of pregnancy, I suggest that cytogenetics, through its focus on pregnancy, pregnant women, and their offspring, found strategic living materials that stabilized human chromosome studies as a biomedical, post-eugenics practice. The historicity of each path displays a wide circulation of objects, tools, and methods that condensed on images that shared in the centuries-old visual expertise that medicine and botany had manufactured.

RevDate: 2019-12-18
CmpDate: 2019-12-18

Lupski JR (2019)

2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements.

American journal of human genetics, 104(3):391-406.

RevDate: 2019-12-18
CmpDate: 2019-12-18

Kathiresan S (2019)

2018 Curt Stern Award Address.

American journal of human genetics, 104(3):384-388.

This article is based on the address given by the author at the meeting of the American Society of Human Genetics (ASHG) on October 18, 2018, in San Diego, California. The audio of the original address can be found at the ASHG website.

RevDate: 2019-12-18
CmpDate: 2019-12-18

Lander ES (2019)

2018 William Allan Award: Discovering the Genes for Common Disease: From Families to Populations.

American journal of human genetics, 104(3):375-383.

RevDate: 2019-12-17
CmpDate: 2019-12-06

Szabó AT, P Poczai (2019)

The emergence of genetics from Festetics' sheep through Mendel's peas to Bateson's chickens.

Journal of genetics, 98(2):.

It is now common knowledge-but also a misbelief-that in 1905 William Bateson coined the term 'genetics' for the first time in his letter to Adam Sedgwick. This important term was already formulated 81 years ago in a paper written by a sheepbreeding noble called Imre (Emmerich) Festetics, who still remains somewhat mysterious even today. The articles written by Festetics summarized the results of a series of lasting and elegant breeding experiments he had conducted on his own property. Selecting the best rams, Festetics had painstakingly crossed and backcrossed his best sheep to reach better wool quality. These experiments later turned out to reveal a better understanding of inheritance outlining genetics as a new branch of natural sciences.

RevDate: 2019-12-17
CmpDate: 2019-12-16

Dujon B (2019)

My route to the intimacy of genomes.

FEMS yeast research, 19(3):.

Being invited by a prestigious journal to write the retrospective of one's life is first a great honor, and then a chore when starting to do it. These feelings did not spare me. But trying to recall my past to the best of my memory, I learned how lucky I was to have been born to a generation that witnessed so many scientific discoveries. There is little in common between the genetic courses I taught recently and those that I received more than 50 years ago. Thinking that a tiny bit of this fantastic evolution might come from my accidental encountering with yeasts is a stunning experience. I wish the same for the new generation.

RevDate: 2019-12-02
CmpDate: 2019-12-02

Bi K, Linderoth T, Singhal S, et al (2019)

Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change.

PLoS genetics, 15(5):e1008119 pii:PGENETICS-D-18-02441.

Many species have experienced dramatic changes in their abundance and distribution during recent climate change, but it is often unclear whether such ecological responses are accompanied by evolutionary change. We used targeted exon sequencing of 294 museum specimens (160 historic, 134 modern) to generate independent temporal genomic contrasts spanning a century of climate change (1911-2012) for two co-distributed chipmunk species: an endemic alpine specialist (Tamias alpinus) undergoing severe range contraction and a stable mid-elevation species (T. speciosus). Using a novel analytical approach, we reconstructed the demographic histories of these populations and tested for evidence of recent positive directional selection. Only the retracting species showed substantial population genetic fragmentation through time and this was coupled with positive selection and substantial shifts in allele frequencies at a gene, Alox15, involved in regulation of inflammation and response to hypoxia. However, these rapid population and gene-level responses were not detected in an analogous temporal contrast from another area where T. alpinus has also undergone severe range contraction. Collectively, these results highlight that evolutionary responses may be variable and context dependent across populations, even when they show seemingly synchronous ecological shifts. Our results demonstrate that temporal genomic contrasts can be used to detect very recent evolutionary responses within and among contemporary populations, even in the face of complex demographic changes. Given the wealth of specimens archived in natural history museums, comparative analyses of temporal population genomic data have the potential to improve our understanding of recent and ongoing evolutionary responses to rapidly changing environments.

RevDate: 2019-11-27
CmpDate: 2019-11-27

DI Felice F, Micheli G, G Camilloni (2019)

Restriction enzymes and their use in molecular biology: An overview.

Journal of biosciences, 44(2):.

Restriction enzymes have been identified in the early 1950s of the past century and have quickly become key players in the molecular biology of DNA. Forty years ago, the scientists whose pioneering work had explored the activity and sequence specificity of these enzymes, contributing to the definition of their enormous potential as tools for DNA characterization, mapping and manipulation, were awarded the Nobel Prize. In this short review, we celebrate the history of these enzymes in the light of their many different uses, as these proteins have accompanied the history of DNA for over 50 years representing active witnesses of major steps in the field.

RevDate: 2019-11-19
CmpDate: 2019-11-19

Giampietro PF (2019)

50 Years Ago in The Journal of Pediatrics: A Chromosome Survey of 2400 Normal Newborn Infants.

The Journal of pediatrics, 206:25.

RevDate: 2019-11-18
CmpDate: 2019-11-18

Anonymous (2019)

Nature at 150: evidence in pursuit of truth.

Nature, 575(7781):7-8.

RevDate: 2019-11-15
CmpDate: 2019-11-15

Hard JJ (2019)

Robin S. Waples-Recipient of the 2018 Molecular Ecology Prize.

Molecular ecology, 28(1):29-32.

RevDate: 2019-11-12
CmpDate: 2019-11-12

Nik-Zainal S (2019)

A path inspired by people.

Nature medicine, 25(9):1329.

RevDate: 2019-11-05
CmpDate: 2019-11-05

Neill US (2019)

A conversation with Mary-Claire King.

The Journal of clinical investigation, 129(1):1-3.

RevDate: 2019-10-29
CmpDate: 2019-10-29

Groden J, E Passarge (2018)

In memoriam James L. German, a pioneer in early human genetic research.

American journal of medical genetics. Part A, 176(12):2543-2544.

RevDate: 2019-10-24
CmpDate: 2019-10-24

Papp Z (2019)

[Dr. Éva Oláh (1943-2019)].

Orvosi hetilap, 160(17):643-645.

RevDate: 2019-10-24
CmpDate: 2019-10-24

Harper PS (2018)

Conversations with French medical geneticists. A personal perspective on the origins and early years of medical genetics in France.

Clinical genetics, 94(1):115-124.

The history of the beginnings of medical genetics in France is discussed, based on the personal perspective provided by recorded interviews with 16 early French workers in the field. The weakness of French genetics overall up to the beginning of the Second World War meant that post-war medical genetics had to start from new, with its origins largely derived from the medical fields of child health and the prevention of genetic disorders, rather than from basic science. The key people responsible for initiating these developments were Robert Debré and Maurice Lamy at Hôpital Necker in Paris and those interviewed included a number of their colleagues and successors, including Jean Frézal, Pierre Maroteaux, Josué Feingold, André and Joelle Boué, and Jean-Claude Kaplan. A separate group of paediatricians, originally at Hôpital Trousseau under Raymond Turpin, including Jérôme Lejeune, Marthe Gautier and Roland Berger, was responsible for major advances in human cytogenetics. Outside Paris, workers were interviewed from Marseille, Strasbourg and Nancy, although not from Lyon, where Jacques-Michel Robert was an early pioneer, particularly of genetic counselling. Challenges in the development of medical genetics in France included the advent of prenatal diagnosis with its ethical issues, the emergence of medical genetics as a distinct specialty from paediatrics, and its spread from Paris across France. These and other aspects are described by those interviewed from their own experiences, given in Appendix S1, while the fully edited transcripts for most interviews are accessible on the Web: www.genmedhist.org/interviews.

RevDate: 2019-10-07
CmpDate: 2019-10-04

Weiss KM (2018)

The tales genes tell (or not): A century of exploration.

American journal of physical anthropology, 165(4):741-753.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )