About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

14 Nov 2022 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Pangenome


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 14 Nov 2022 at 01:30 Created: 


Although the enforced stability of genomic content is ubiquitous among MCEs, the opposite is proving to be the case among prokaryotes, which exhibit remarkable and adaptive plasticity of genomic content. Early bacterial whole-genome sequencing efforts discovered that whenever a particular "species" was re-sequenced, new genes were found that had not been detected earlier — entirely new genes, not merely new alleles. This led to the concepts of the bacterial core-genome, the set of genes found in all members of a particular "species", and the flex-genome, the set of genes found in some, but not all members of the "species". Together these make up the species' pan-genome.

Created with PubMed® Query: pangenome or "pan-genome" or "pan genome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-11-09

Dong X, Zhu M, Li Y, et al (2022)

Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China.

Microbiology spectrum [Epub ahead of print].

Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an "open" tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the blaACT genes were the most dominant (145/247, 58.70%), followed by the blaTEM genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. blaACT-2 and blaACT-3 were only present in E. asburiae, while blaACT-9, blaACT-12, and blaACT-6 exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (blaNDM-1, blaNDM-5, blaIMP-1, blaIMP-4, blaIMP-26, and blaKPC-2) identified, two (blaNDM-1 and blaIMP-1) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.

RevDate: 2022-11-07

Otani H, Udwary DW, NJ Mouncey (2022)

Comparative and pangenomic analysis of the genus Streptomyces.

Scientific reports, 12(1):18909.

Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.

RevDate: 2022-11-07

Lynch T, Nandi T, Jayaprakash T, et al (2022)

Genomic analysis of group A Streptococcus isolated during a correctional facility outbreak of MRSA in 2004.

Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada, 7(1):23-35.

BACKGROUND: In 2004-2005, an outbreak of impetigo occurred at a correctional facility during a sentinel outbreak of methicillin- resistant Staphylococcus aureus (MRSA) in Alberta, Canada. Next-generation sequencing (NGS) was used to characterize the group A Streptococcus (GAS) isolates and evaluate whether genomic biomarkers could distinguish between those recovered alone and those co-isolated with S. aureus.

METHODS: Superficial wound swabs collected from all adults with impetigo during this outbreak were cultured using standard methods. NGS was used to characterize and compare all of the GAS and S. aureus genomes.

RESULTS: Fifty-three adults were culture positive for GAS, with a subset of specimens also positive for MRSA (n = 5) or methicillin-sensitive S. aureus (n = 3). Seventeen additional MRSA isolates from this facility from the same time frame (no GAS co-isolates) were also included. All 78 bacterial genomes were analyzed for the presence of known virulence factors, plasmids, and antimicrobial resistance (AMR) genes. Among the GAS isolates were 12 emm types, the most common being 41.2 (n = 27; 51%). GAS genomes were phylogenetically compared with local and public datasets of invasive and non-invasive isolates. GAS genomes had diverse profiles for virulence factors, plasmids, and AMR genes. Pangenome analysis did not identify horizontally transferred genes in the co-infection versus single infections.

CONCLUSIONS: GAS recovered from invasive and non-invasive sources were not genetically distinguishable. Virulence factors, plasmids, and AMR profiles grouped by emm type, and no genetic changes were identified that predict co-infection or horizontal gene transfer between GAS and S. aureus.

RevDate: 2022-11-06

Weigert S, Perez-Garcia P, Gisdon FJ, et al (2022)

Investigation of the halophilic PET hydrolase PET6 from Vibrio gazogenes.

Protein science : a publication of the Protein Society [Epub ahead of print].

The handling of plastic waste and the associated ubiquitous occurrence of microplastic poses one of the biggest challenges of our time. Recent investigations of plastic degrading enzymes have opened new prospects for biological microplastic decomposition as well as recycling applications. For polyethylene terephthalate, in particular, several natural and engineered enzymes are known to have such promising properties. From a previous study that identified new PETase candidates by homology search, we chose the candidate PET6 from the globally distributed, halophilic organism Vibrio gazogenes for further investigation. By mapping the occurrence of Vibrios containing PET6 homologs we demonstrated their ubiquitous prevalence in the pangenome of several Vibrio strains. The biochemical characterization of PET6 showed that PET6 has a comparatively lower activity than other enzymes but also revealed a superior turnover at very high salt concentrations. The crystal structure of PET6 provides structural insights into this adaptation to saline environments. By grafting only a few beneficial mutations from other PET degrading enzymes onto PET6, we increased the activity up to three-fold, demonstrating the evolutionary potential of the enzyme. MD simulations of the variant helped rationalize the mutational effects of those mutants and elucidate the interaction of the enzyme with a PET substrate. With tremendous amounts of plastic waste in the Ocean and the prevalence of Vibrio gazogenes in marine biofilms and estuarine marshes, our findings suggest that Vibrio and the PET6 enzyme are worthy subjects to study the PET degradation in marine environments. This article is protected by copyright. All rights reserved.

RevDate: 2022-11-05

Luo X, Kang X, A Schönhuth (2022)

VeChat: correcting errors in long reads using variation graphs.

Nature communications, 13(1):6657.

Error correction is the canonical first step in long-read sequencing data analysis. Current self-correction methods, however, are affected by consensus sequence induced biases that mask true variants in haplotypes of lower frequency showing in mixed samples. Unlike consensus sequence templates, graph-based reference systems are not affected by such biases, so do not mistakenly mask true variants as errors. We present VeChat, as an approach to implement this idea: VeChat is based on variation graphs, as a popular type of data structure for pangenome reference systems. Extensive benchmarking experiments demonstrate that long reads corrected by VeChat contain 4 to 15 (Pacific Biosciences) and 1 to 10 times (Oxford Nanopore Technologies) less errors than when being corrected by state of the art approaches. Further, using VeChat prior to long-read assembly significantly improves the haplotype awareness of the assemblies. VeChat is an easy-to-use open-source tool and publicly available at https://github.com/HaploKit/vechat .

RevDate: 2022-11-04

Alsowayeh N, A Albutti (2022)

Designing a novel chimeric multi-epitope vaccine against Burkholderia pseudomallei, a causative agent of melioidosis.

Frontiers in medicine, 9:945938.

Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium, is primarily considered a causative agent of melioidosis infection in both animals and humans. Despite the severity of the disease, there is currently no licensed vaccine on the market. The development of an effective vaccine against B. pseudomallei could help prevent the spread of infection. The purpose of this study was to develop a multi-epitope-based vaccine against B. pseudomallei using advanced bacterial pan-genome analysis. A total of four proteins were prioritized for epitope prediction by using multiple subtractive proteomics filters. Following that, a multi-epitopes based chimeric vaccine construct was modeled and joined with an adjuvant to improve the potency of the designed vaccine construct. The structure of the construct was predicted and analyzed for flexibility. A population coverage analysis was performed to evaluate the broad-spectrum applicability of B. pseudomallei. The computed combined world population coverage was 99.74%. Molecular docking analysis was applied further to evaluate the binding efficacy of the designed vaccine construct with the human toll-like receptors-5 (TLR-5). Furthermore, the dynamic behavior and stability of the docked complexes were investigated using molecular dynamics simulation, and the binding free energy determined for Vaccine-TLR-5 was delta total -168.3588. The docking result revealed that the vaccine construct may elicit a suitable immunological response within the host body. Hence, we believe that the designed in-silico vaccine could be helpful for experimentalists in the formulation of a highly effective vaccine for B. pseudomallei.

RevDate: 2022-11-03

Amulyasai B, Anusha R, Sasikala C, et al (2022)

Phylogenomic analysis of a metagenome-assembled genome indicates a new taxon of an anoxygenic phototroph bacterium in the family Chromatiaceae and the proposal of "Candidatus Thioaporhodococcus" gen. nov.

Archives of microbiology, 204(12):688.

In this study, three metagenome-assembled genomes of a sediment sample were constructed. A Bin1 (JB001) genome was identified as a photo-litho-auto/heterotroph (purple sulfur bacteria) bacterium with the ability to fix nitrogen, tolerate salt, and to produce bacteriochlorophyll a. It has a genome length of 4.1 Mb and a G + C content of 64.9%. Phylogenetic studies based on concatenated 92 core genes and photosynthetic genes (pufLM and bchY) showed that Bin JB001 is related to Thiococcus pfennigii, "Thioflavicoccus mobilis" and to the Lamprocystis purpurea lineage. Bin JB001 and its closely related members were subjected to the genome-based study of phenotypic and phylogenomic analysis. Genomic similarity indices (dDDH and ANI) showed that Bin JB001 could be defined as a novel species. The average amino acid identity (AAI) and percentage of conserved proteins (POCP) values were below 60 and 50%, respectively. The pan-genome analysis indicated that the pan-genome was an open type wherein Bin JB001 had 855 core genes. This study shows that the binned genome, Bin JB001 could represent a novel species of a new genus under the family Chromatiaceae, for which the name "Candidatus Thioaporhodococcus sediminis" gen. nov. sp. nov. is proposed.

RevDate: 2022-11-03

Amas J, Thomas WJW, Zhang Y, et al (2022)

Key advances in the new era of genomics-assisted disease resistance improvement of Brassica species.

Phytopathology [Epub ahead of print].

Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance (QR). This facilitates the development of molecular markers for marker assisted selection (MAS) and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies, and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives (CWRs) and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demand.

RevDate: 2022-11-02

Maynard-Smith L, Derrick JP, Borrow R, et al (2022)

Genome-wide association studies identify an association of transferrin binding protein B variation and invasive serogroup Y meningococcal disease in older adults.

The Journal of infectious diseases pii:6794087 [Epub ahead of print].

BACKGROUND: Neisseria meningitidis serogroup Y, especially ST-23 clonal complex (Y:cc23), represents a larger proportion of invasive meningococcal disease (IMD) in older adults compared to younger individuals. This study explored the meningococcal genetic variation underlying this association.

METHODS: Maximum-likelihood phylogenies and the pangenome were analysed using whole genome sequence (WGS) data from 200 Y:cc23 isolates in the Neisseria PubMLST database. Genome-wide association studies (GWAS) were performed on WGS data from 250 Y:cc23 isolates from individuals with IMD aged ≥65 years versus < 65 years.

RESULTS: Y:cc23 meningococcal variants did not cluster by age-group or disease phenotype in phylogenetic analyses. Pangenome comparisons found no differences in presence or absence of genes in IMD isolates from the different age groups. GWAS identified differences in nucleotide polymorphisms within the transferrin-binding protein B (tbpB) gene in isolates from individuals ≥65 years of age. TbpB structure modelling suggests these may impact binding of human transferrin.

CONCLUSION: These data suggest differential iron scavenging capacity amongst Y:cc23 meningococci isolated from older compared to younger patients. Iron acquisition is essential for many bacterial pathogens including the meningococcus. These polymorphisms may facilitate colonisation, thereby increasing the risk of disease in vulnerable older people with altered nasopharyngeal microbiomes and nutritional status.

RevDate: 2022-11-01

Martin FJ, Amode MR, Aneja A, et al (2022)

Ensembl 2023.

Nucleic acids research pii:6786199 [Epub ahead of print].

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.

RevDate: 2022-11-01

Liu N, Liu D, Li K, et al (2022)

Pan-Genome Analysis of Staphylococcus aureus Reveals Key Factors Influencing Genomic Plasticity.

Microbiology spectrum [Epub ahead of print].

The massive quantities of bacterial genomic data being generated have facilitated in-depth analyses of bacteria for pan-genomic studies. However, the pan-genome compositions of one species differed significantly between different studies, so we used Staphylococcus aureus as a model organism to explore the influences driving bacterial pan-genome composition. We selected a series of diverse strains for pan-genomic analysis to explore the pan-genomic composition of S. aureus at the species level and the actual contribution of influencing factors (sequence type [ST], source of isolation, country of isolation, and date of collection) to pan-genome composition. We found that the distribution of core genes in bacterial populations restrained under different conditions differed significantly and showed "local core gene regions" in the same ST. Therefore, we propose that ST may be a key factor driving the dynamic distribution of bacterial genomes and that phylogenetic analyses using whole-genome alignment are no longer appropriate in populations containing multiple ST strains. Pan-genomic analysis showed that some of the housekeeping genes of multilocus sequence typing (MLST) are carried at less than 60% in S. aureus strains. Consequently, we propose a new set of marker genes for the classification of S. aureus, which provides a reference for finding a new set of housekeeping genes to apply to MLST. In this study, we explored the role of driving factors influencing pan-genome composition, providing new insights into the study of bacterial pan-genomes. IMPORTANCE We sought to explore the impact of driving factors influencing pan-genome composition using Staphylococcus aureus as a model organism to provide new insights for the study of bacterial pan-genomes. We believe that the sequence type (ST) of the strains under consideration plays a significant role in the dynamic distribution of bacterial genes. Our findings indicate that there are a certain number of essential genes in Staphylococcus aureus; however, the number of core genes is not as high as previously thought. The new classification method proposed herein suggests that a new set of housekeeping genes more suitable for Staphylococcus aureus must be identified to improve the current classification status of this species.

RevDate: 2022-11-01

Yuan Y, Seif Y, Rychel K, et al (2022)

Pan-Genome Analysis of Transcriptional Regulation in Six Salmonella enterica Serovar Typhimurium Strains Reveals Their Different Regulatory Structures.

mSystems [Epub ahead of print].

Establishing transcriptional regulatory networks (TRNs) in bacteria has been limited to well-characterized model strains. Using machine learning methods, we established the transcriptional regulatory networks of six Salmonella enterica serovar Typhimurium strains from their transcriptomes. By decomposing a compendia of RNA sequencing (RNA-seq) data with independent component analysis, we obtained 400 independently modulated sets of genes, called iModulons. We (i) performed pan-genome analysis of the phylogroup structure of S. Typhimurium and analyzed the iModulons against this background, (ii) revealed different genetic signatures in pathogenicity islands that explained phenotypes, (iii) discovered three transport iModulons linked to antibiotic resistance, (iv) described concerted responses to cationic antimicrobial peptides, and (v) uncovered new regulons. Thus, by combining pan-genome and transcriptomic analytics, we revealed variations in TRNs across six strains of serovar Typhimurium. IMPORTANCE Salmonella enterica serovar Typhimurium is a pathogen involved in human nontyphoidal infections. Treating S. Typhimurium infections is difficult due to the species's dynamic adaptation to its environment, which is dictated by a complex transcriptional regulatory network (TRN) that is different across strains. In this study, we describe the use of independent component analysis to characterize the differential TRNs across the S. Typhimurium pan-genome using a compendium of high-quality RNA-seq data. This approach provided unprecedented insights into the differences between regulation of key cellular functions and pathogenicity in the different strains. The study provides an impetus to initiate a large-scale effort to reveal the TRN differences between the major phylogroups of the pathogenic bacteria, which could fundamentally impact personalizing treatments of bacterial pathogens.

RevDate: 2022-10-31

Hur JI, Kim J, Ryu S, et al (2022)

Phylogenetic Association and Genetic Factors in Cold Stress Tolerance in Campylobacter jejuni.

Microbiology spectrum [Epub ahead of print].

Campylobacter jejuni is a major foodborne pathogen transmitted to humans primarily via contaminated poultry meat. Since poultry meat is generally processed, distributed, and stored in the cold chain, the survival of C. jejuni at refrigeration temperatures crucially affects human exposure to C. jejuni. Here, we investigated genetic factors associated with cold stress tolerance in C. jejuni. Seventy-nine C. jejuni strains isolated from retail raw chicken exhibited different survival levels at 4°C for 21 days. Multilocus sequence typing (MLST) clonal complex 21 (CC-21) and CC-443 were dominant among cold stress-tolerant strains, whereas CC-45 was common among cold stress-sensitive strains. Genome-wide average nucleotide identity (ANI) analysis identified a phylogenetic cluster associated with cold stress tolerance. Moreover, a pangenome analysis revealed 58 genes distinctively present in the cold stress-tolerant phylogenetic cluster. Among these 58 genes, cfrA, encoding the ferric enterobactin receptor involved in ion transport and metabolism, was selected for further analysis. Remarkably, the viability of a ΔcfrA mutant at 4°C was significantly decreased, while the levels of total reactive oxygen species and intracellular iron exceeded those of the wild type. Additionally, a knockout mutation of cfrA also significantly decreased the viability of three cold stress-tolerant isolates at 4°C, confirming the role of cfrA in cold stress tolerance. The results of this study demonstrate that unique phylogenetic clusters of C. jejuni associated with cold stress tolerance exist and that cfrA is a genetic factor contributing to cold stress tolerance in C. jejuni. IMPORTANCE The tolerance of foodborne pathogens to environmental stresses significantly affects food safety. Several studies have demonstrated that C. jejuni survives extended exposures to low temperatures, but the mechanisms of cold stress tolerance are not fully understood. Here, we demonstrate that C. jejuni strains in certain phylogenetic groups exhibit increased tolerance to cold stress. Notably, cfrA is present in the phylogenetic cluster associated with cold stress tolerance and plays a role in the survival of C. jejuni at low temperatures by alleviating oxidative stress. This is the first study to discover phylogenetic associations involving cold stress tolerance and to identify genetic elements conferring cold stress tolerance to C. jejuni.

RevDate: 2022-10-28

Chen Y, Miao Y, Bai W, et al (2022)

Characteristics and potential functional effects of long insertions in Asian butternuts.

BMC genomics, 23(1):732.

BACKGROUND: Structural variants (SVs) play important roles in adaptation evolution and species diversification. Especially, in plants, many phenotypes of response to the environment were found to be associated with SVs. Despite the prevalence and significance of SVs, long insertions remain poorly detected and studied in all but model species.

RESULTS: We used whole-genome resequencing of paired reads from 80 Asian butternuts to detect long insertions and further analyse their characteristics and potential functional effects. By combining of mapping-based and de novo assembly-based methods, we obtained a multiple related species pangenome representing higher taxonomic groups. We obtained 89,312 distinct contigs totaling 147,773,999 base pair (bp) of new sequences, of which 347 were putative long insertions placed in the reference genome. Most of the putative long insertions appeared in multiple species; in contrast, only 62 putative long insertions appeared in one species, which may be involved in the response to the environment. 65 putative long insertions fell into 61 distinct protein-coding genes involved in plant development, and 105 putative long insertions fell into upstream of 106 distinct protein-coding genes involved in cellular respiration. 3,367 genes were annotated in 2,606 contigs. We propose PLAINS (https://github.com/CMB-BNU/PLAINS.git), a streamlined, comprehensive pipeline for the prediction and analysis of long insertions using whole-genome resequencing.

CONCLUSIONS: Our study lays down an important foundation for further whole-genome long insertion studies, allowing the investigation of their effects by experiments.

RevDate: 2022-10-29

Zia K, Rao MJ, Sadaqat M, et al (2022)

Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance.

Frontiers in genetics, 13:1034921.

Cyclic nucleotide-gated channels (CNGC) gene family has been found to be involved in physiological processes including signaling pathways, environmental stresses, plant growth, and development. This gene family of non-selective cation channels is known to regulate the uptake of calcium and is reported in several plant species. The pangenome-wide studies enable researchers to understand the genetic diversity comprehensively; as a comparative analysis of multiple plant species or member of a species at once helps to better understand the evolutionary relationships and diversity present among them. In the current study, pangenome-wide analysis of the CNGC gene family has been performed on five Citrus species. As a result, a total of 32 genes in Citrus sinensis, 27 genes in Citrus recticulata, 30 genes in Citrus grandis, 31 genes in Atalantia buxfolia, and 30 genes in Poncirus trifoliata were identified. In addition, two unique genes CNGC13 and CNGC14 were identified, which may have potential roles. All the identified CNGC genes were unevenly distributed on 9 chromosomes except P. trifoliata had genes distributed on 7 chromosomes and were classified into four major groups and two sub-groups namely I, II, III, IV-A, and IV-B. Cyclic nucleotide binding (CNB) motif, calmodulin-binding motif (CaMB), and motif for IQ-domain were conserved in Citrus Spp. Intron exon structures of citrus species were not exactly as same as the gene structures of Arabidopsis. The majority of cis-regulatory elements (CREs) were light responsive and others include growth, development, and stress-related indicating potential roles of the CNGC gene family in these functions. Both segmental and tandem duplication were involved in the expansion of the CNGC gene family in Citrus Spp. The miRNAs are involved in the response of CsCNGC genes towards drought stress along with having regulatory association in the expression of these genes. Protein- Protein interaction (PPI) analysis also showed the interaction of CNGC proteins with other CNGCs which suggested their potential role in pathways regulating different biological processes. GO enrichment revealed that CNGC genes were involved in the transport of ions across membranes. Furthermore, tissue-specific expression patterns of leaves sample of C. sinensis were studied under drought stress. Out of 32 genes of C. sinensis 3 genes i.e., CsCNGC1.4, CsCNGC2.1, and CsCNGC4.2 were highly up-regulated, and only CsCNGC4.6 was highly down-regulated. The qRT-PCR analysis also showed that CNGC genes were highly expressed after treatment with drought stress, while gene expression was lower under controlled conditions. This work includes findings based on multiple genomes instead of one, therefore, this will provide more genomic information rather than single genome-based studies. These findings will serve as a basis for further functional insights into the CNGC gene family.

RevDate: 2022-10-28

Zhang J, Xu J, Lei H, et al (2023)

The development of variation-based rifampicin resistance in Staphylococcus aureus deciphered through genomic and transcriptomic study.

Journal of hazardous materials, 442:130112.

Rifampicin (RIF) resistance imposes a challenge on the antimicrobial treatment of pathogen infections. Figuring out the development mechanism of RIF resistance is critical to improving antimicrobial therapy strategy in clinics and biological treatment strategy of RIF polluted sewage in environmental engineering. The RIF resistance development of Staphylococcus aureus (S. aureus) with exposure to RIF at sub-inhibitory concentrations was comprehensively investigated via genomic and transcriptomic approaches in this study. RIF minimal inhibitory concentration (MIC) for S. aureus rapidly increased from 0.032 to 256 mg/L. Membrane permeability decrease, biofilm formation enhancement, and ROS production increase associated with RIF resistance were observed in RIF-induced strains. Through comparative genomic analysis, mutations in rpoB and rpoC were considered to be associated with RIF resistance in S. aureus mutants. Pan-genome-wide single-nucleotide variant analysis indicated that mutations at rpoB-1412, rpoB-1451, and rpoB-1457 were prevalent in 13849 public genomes of S. aureus, while mutations at rpoB-2256, and rpoC-3092 were first discovered in this study. The panorama of adaptative alteration of cellular physiological processes was observed via transcriptomic analysis. The oxidation pressure responses, metabolism, transporters, virulence factors, and multiple steps of DNA and RNA machinery were found to be perturbed by RIF in S. aureus.

RevDate: 2022-10-27

Leigh RJ, McKenna C, McWade R, et al (2022)

Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals.

Journal of medical microbiology, 71(10):.

Introduction. Enterococcus faecium has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.Hypothesis/Gap statement. Vancomycin resistance rates persist amongst E. faecium isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of E. faecium persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.Conclusions. These results highlight the evolutionary history of Irish E. faecium isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible E. faecium should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.

RevDate: 2022-10-27

Nawaz M, Ullah A, Al-Harbi AI, et al (2022)

Genome-Based Multi-Antigenic Epitopes Vaccine Construct Designing against Staphylococcus hominis Using Reverse Vaccinology and Biophysical Approaches.

Vaccines, 10(10): pii:vaccines10101729.

Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host's immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.

RevDate: 2022-10-27

Liu Y, Cui X, Yang R, et al (2022)

Genomic Insights into the Radiation-Resistant Capability of Sphingomonas qomolangmaensis S5-59T and Sphingomonas glaciei S8-45T, Two Novel Bacteria from the North Slope of Mount Everest.

Microorganisms, 10(10): pii:microorganisms10102037.

Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.

RevDate: 2022-10-27

Zhang Z, Guo Y, Yang F, et al (2022)

Pan-Genome Analysis Reveals Functional Divergences in Gut-Restricted Gilliamella and Snodgrassella.

Bioengineering (Basel, Switzerland), 9(10): pii:bioengineering9100544.

Gilliamella and Snodgrassella, members of core gut microbiota in corbiculate bees, have high species diversity and adaptability to a wide range of hosts. In this study, we performed species taxonomy and phylogenetic analysis for Gilliamella and Snodgrassella strains that we isolated in our laboratory, in combination with published whole-genome. Functional effects of accessory and unique genes were investigated by KEGG category and pathway annotation in pan-genome analysis. Consequently, in Gilliamella, we inferred the importance of carbohydrate metabolism, amino acid metabolism, membrane transport, energy metabolism, and metabolism of cofactors and vitamins in accessory or unique genes. The pathway mentioned above, plus infectious disease, lipid metabolism, nucleotide metabolism as well as replication and repair exert a pivotal role in accessory or unique genes of Snodgrassella. Further analysis revealed the existence of functional differentiation of accessory and unique genes among Apis-derived genomes and Bombus-derived genomes. We also identified eight and four biosynthetic gene clusters in all Gilliamella and Snodgrassella genomes, respectively. Our study provides a good insight to better understand how host heterogeneity influences the bacterial speciation and affects the versatility of the genome of the gut bacteria.

RevDate: 2022-10-26

Rodrigues Blanco I, José Luduverio Pizauro L, Victor Dos Anjos Almeida J, et al (2022)

Pan-genomic and comparative analysis of Pediococcus pentosaceus focused on the in silico assessment of pediocin-like bacteriocins.

Computational and structural biotechnology journal, 20:5595-5606 pii:S2001-0370(22)00446-9.

Bacteriocins are antimicrobial peptides produced by different species of bacteria, especially the Gram-positive lactic acid bacteria (LAB). Pediococcus pentosaceus is widely applied in the industry and stands out as Bacteriocin-Like Inhibitory Substances (BLIS) producer known to inhibit pathogens commonly considered a concern in the food industries. This study aimed to perform in silico comparisons of P. pentosaceus genomes available in the public GenBank database focusing on their pediocin-like bacteriocins repertoire. The pan-genome analysis evidenced a temporal signal in the pattern of gene gain and loss, supporting the hypothesis that the complete genetic repertoire of this group of bacteria is still uncovered. Thirteen bacteriocin genes from Class II and III were predicted in the accessory genome. Four pediocin-like bacteriocins (54% of the detected bacteriocin repertoire) and their accompanying immunity genes are highlighted; penocin A, coagulin A, pediocin PA-1, and plantaricin 423. Additionally, in silico, modeling of the pediocin-like bacteriocins revealed different configurations of the helix motif compared to other physically determined pediocin-like structures. Comparative and phylogenomic analyses support the hypothesis that a dynamic mechanism of bacteriocin acquisition and purging is not dependent on the bacterial isolation source origin. Synteny analysis revealed that while coagulin A, pediocin PA-1, and Plantaricin 423 loci are associated with insertion sequences mainly from the IS30 family and are likely of plasmid origin, penocin A lies in a conserved chromosomal locus. The results presented here provide insights into the unique pediocin-like bacteriocin peptide fold, genomic diversity, and the evolution of the bacteriocin genetic repertoire of P. pentosaceus, shedding new insights into the role of these biomolecules for application in inhibiting bacterial pathogens, and suggesting that prospecting and sequencing new strains is still an alternative to mining for new probiotic compounds.

RevDate: 2022-10-25

Gourlie R, McDonald M, Hafez M, et al (2022)

The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB.

BMC biology, 20(1):239.

BACKGROUND: In fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens. Pyrenophora tritici-repentis (Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements.

RESULTS: A comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr's adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr's effectors: ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb 'Starship' transposon (dubbed 'Horizon') with a clearly defined target site and target site duplications. 'Horizon' was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer of ToxA) was nested within this newly identified Starship. Additionally, ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative 'Starship' (dubbed 'Icarus') in a ToxB-producing isolate. ToxB and its putative transposon were missing from the ToxB non-coding reference isolate, but the homolog toxb and 'Icarus' were both present in a different non-coding isolate. This suggests that ToxB may have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption of ToxB vertical inheritance. Finally, the genome architecture of Ptr was defined as 'one-compartment' based on calculated gene distances and evolutionary rates.

CONCLUSIONS: These findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.

RevDate: 2022-10-24

Suryaletha K, Savithri AV, Nayar SA, et al (2022)

Demystifying Bacteriocins of human microbiota by genome guided prospects: An impetus to rekindle the antimicrobial research.

Current protein & peptide science pii:CPPS-EPUB-127084 [Epub ahead of print].

The human microbiome is a reservoir of potential bacteriocins that can counteract with the multidrug resistant bacterial pathogens. Unlike antibiotics, bacteriocins selectively inhibit a spectrum of competent bacteria and are said to safeguard gut commensals, reducing the chance of dysbiosis. Bacteriocinogenic probiotics or bacteriocins of human origin will be more pertinent in human physiological conditions for therapeutic applications to act against invading pathogens. Recent advancement in the omics approach enables the mining of diverse and novel bacteriocins by identifying biosynthetic gene clusters from the human microbial genome, pangenome or shotgun metagenome, which is a breakthrough in the discovery line of novel bacteriocins. This review summarizes the most recent trends and therapeutic potential of bacteriocins of human microbial origin, and the advancement in the in silico algorithms and databases in the discovery of novel bacteriocin, and how to bridge the gap between the discovery of bacteriocin genes from big datasets and their in vitro production. Besides, the later part of the review discussed the various impediments in their clinical applications and possible solution to bring them in the frontline therapeutics to control infections, thereby meeting the challenges of global antimicrobial resistance.

RevDate: 2022-10-20

González-Torres B, González-Gómez JP, Ramírez K, et al (2022)

Population structure of the Salmonella enterica serotype Oranienburg reveals similar virulence, regardless of isolation years and sources.

Gene pii:S0378-1119(22)00786-7 [Epub ahead of print].

Salmonella enterica serotype Oranienburg is a multi-host, ubiquitous, and prevalent Non-typhoidal Salmonella (NTS) in subtropical rivers, particularly in sediments; little studied so far possible the adaptation and establishment of this microorganism based on its genetic content. This study was focused on the first five genomes of S. Oranienburg in sediments through whole-genome sequencing (WGS) and 61 river water genomes isolated in previous studies. Results showed an open pangenome with 5,594 gene clusters (GCs), and the division of their categories showed; 3,303 core genes, 741 persistent genes, 1,282 accessory genes, and 268 unique genes. Additionally, it showed three main subclades within the same serotype and showed a conserved genetic content, suggesting the display of different adaptation strategies to its establishment. Nine genes for antimicrobial resistance were detected: aac (6 ') - Iy, H-NS, golS, marA, mdsABC, mdtK, and sdiA, and a mutation in the parC gene p. T57S generating a resistance. In addition, virulence genes and pathogenicity islands (SPI's) were analyzed, finding 92 genes and an identity above 80% in the SPI's 1 to 5, and the centisomes 54 and 63. The environmental strains of S. Oranienburg do not represent a concern as multidrug resistance (MDR) bacterium; however, virulence genes remain a potential health risk. This study contributes to understanding its adaptation to aquatic environments in Mexico.

RevDate: 2022-10-20

Dyrhage K, Garcia-Montaner A, Tamarit D, et al (2022)

Genome Evolution of a Symbiont Population for Pathogen Defence in Honeybees.

Genome biology and evolution pii:6764223 [Epub ahead of print].

The honeybee gut microbiome is thought to be important for bee health, but the role of the individual members is poorly understood. Here, we present closed genomes and associated mobilomes of 102 Apilactobacillus kunkeei isolates obtained from the honey crop (foregut) of honeybees sampled from beehives in Helsingborg in the south of Sweden and from the islands Gotland and Åland in the Baltic Sea. Each beehive contained a unique composition of isolates and repeated sampling of similar isolates from two beehives in Helsingborg suggests that the bacterial community is stably maintained across bee generations during the summer months. The sampled bacterial population contained an open pan-genome structure with a high genomic density of transposons. A subset of strains affiliated with phylogroup A inhibited growth of the bee pathogen Melissococcus plutonius, all of which contained a 19.5 kb plasmid for the synthesis of the antimicrobial compound kunkecin A, while a subset of phylogroups B and C strains contained a 32.9 kb plasmid for the synthesis of a putative polyketide antibiotic. This study suggests that the mobile gene pool of A. kunkeei plays a key role in pathogen defence in honeybees, providing new insights into the evolutionary dynamics of defensive symbiont populations.

RevDate: 2022-10-19

Jarvis ED, Formenti G, Rhie A, et al (2022)

Semi-automated assembly of high-quality diploid human reference genomes.

Nature [Epub ahead of print].

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.

RevDate: 2022-10-18

Abram KZ, Jun SR, Z Udaondo (2022)

Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen.

Advances in experimental medicine and biology, 1386:3-28.

In this chapter, we leverage a novel approach to assess the seamless population structure of Pseudomonas aeruginosa, using the full repertoire of genomes sequenced to date (GenBank, April 6, 2020). In order to assess the set of core functions that represents the species as well as the differences in these core functions among the phylogroups observed in the population structure analysis, we performed pangenome analyses at the species level and at the phylogroup level. The existence of the phylogroups described in the population structure analyses was supported by their different profiles of antibiotic-resistant determinants. Finally, we utilized a presence/absence matrix of protein families from the entire species to evaluate if P. aeruginosa phylogroups can be differentiated according to their accessory genomic content. Our analysis shows that the core genome of P. aeruginosa is approximately 62% of the average gene content for the species, and it is highly enriched with pathways related to the metabolism of carbohydrates and amino acids as well as cellular processes and cell maintenance. The analysis of the accessory genome of P. aeruginosa performed in this chapter confirmed not only the existence of the three phylogroups previously described in the population structure analysis, but also of 29 genetic substructures (subgroups) within the main phylogroups. Our work illustrates the utility of populations genomics pipelines to better understand highly complex bacterial species such as P. aeruginosa.

RevDate: 2022-10-18

Wang S, Qian YQ, Zhao RP, et al (2022)

Graph-based pan-genome: increased opportunities in plant genomics.

Journal of experimental botany pii:6762754 [Epub ahead of print].

Due to the development of sequencing technology and the great reduction in sequencing costs, the genomes of an increasing number of plant species have been assembled, and the numerous genomes have revealed large amounts of variation. However, a single reference genome does not allow the exploration of species diversity; therefore, the concept of the pan-genome was developed. A pan-genome is a collection of all sequences available for a species, including a large number of consensus sequences, large structural variations (SVs), and small variations, including single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). A simple linear pan-genome does not allow these SVs to be intuitively characterized, so graph-based pan-genomes have been developed. These pan-genomes store sequence and SV information in the form of nodes and paths to store and display species variation information in a more intuitive manner. The key role of graph-based pan-genome is to expand the coordinate system of the linear reference genome to accommodate more regions of genetic diversity. Here, we review the origin and development of graph-based pan-genomes, explore their application in plant research, and further highlight the application of graph-based pan-genomes for future plant breeding.

RevDate: 2022-10-17

Monshizadeh M, Zomorodi S, Mortensen K, et al (2022)

Revealing bacteria-phage interactions in human microbiome through the CRISPR-Cas immune systems.

Frontiers in cellular and infection microbiology, 12:933516.

The human gut microbiome is composed of a diverse consortium of microorganisms. Relatively little is known about the diversity of the bacteriophage population and their interactions with microbial organisms in the human microbiome. Due to the persistent rivalry between microbial organisms (hosts) and phages (invaders), genetic traces of phages are found in the hosts' CRISPR-Cas adaptive immune system. Mobile genetic elements (MGEs) found in bacteria include genetic material from phage and plasmids, often resultant from invasion events. We developed a computational pipeline (BacMGEnet), which can be used for inference and exploratory analysis of putative interactions between microbial organisms and MGEs (phages and plasmids) and their interaction network. Given a collection of genomes as the input, BacMGEnet utilizes computational tools we have previously developed to characterize CRISPR-Cas systems in the genomes, which are then used to identify putative invaders from publicly available collections of phage/prophage sequences. In addition, BacMGEnet uses a greedy algorithm to summarize identified putative interactions to produce a bacteria-MGE network in a standard network format. Inferred networks can be utilized to assist further examination of the putative interactions and for discovery of interaction patterns. Here we apply the BacMGEnet pipeline to a few collections of genomic/metagenomic datasets to demonstrate its utilities. BacMGEnet revealed a complex interaction network of the Phocaeicola vulgatus pangenome with its phage invaders, and the modularity analysis of the resulted network suggested differential activities of the different P. vulgatus' CRISPR-Cas systems (Type I-C and Type II-C) against some phages. Analysis of the phage-bacteria interaction network of human gut microbiome revealed a mixture of phages with a broad host range (resulting in large modules with many bacteria and phages), and phages with narrow host range. We also showed that BacMGEnet can be used to infer phages that invade bacteria and their interactions in wound microbiome. We anticipate that BacMGEnet will become an important tool for studying the interactions between bacteria and their invaders for microbiome research.

RevDate: 2022-10-14

Palevich N, Palevich FP, Gardner A, et al (2022)

Genome collection of Shewanella spp. isolated from spoiled lamb.

Frontiers in microbiology, 13:976152.

The diversity of the genus Shewanella and their roles across a variety of ecological niches is largely unknown highlighting the phylogenetic diversity of these bacteria. From a food safety perspective, Shewanella species have been recognized as causative spoilage agents of vacuum-packed meat products. However, the genetic basis and metabolic pathways for the spoilage mechanism are yet to be explored due to the unavailability of relevant Shewanella strains and genomic resources. In this study, whole-genome sequencing of 32 Shewanella strains isolated from vacuum-packaged refrigerated spoiled lamb was performed to examine their roles in meat spoilage. Phylogenomic reconstruction revealed their genomic diversity with 28 Shewanella spp. strains belonging to the same putative novel species, two Shewanella glacialipiscicola strains (SM77 and SM91), Shewanella xiamenensis NZRM825, and Shewanella putrefaciens DSM 50426 (ATCC 8072) isolated from butter. Genome-wide clustering of orthologous gene families revealed functional groupings within the major Shewanella cluster but also considerable plasticity across the different species. Pan-genome analysis revealed conserved occurrence of spoilage genes associated with sulfur and putrescine metabolism, while the complete set of trimethylamine metabolism genes was observed in only Shewanella sp. SM74, S. glacialipiscicola SM77 and SM91 strains. Through comparative genomics, some variations were also identified pertaining to genes associated with adaptation to environmental cues such as temperature, osmotic, salt, oxidative, antimicrobial peptide, and drug resistance stresses. Here we provide a reference collection of draft Shewanella genomes for subsequent species descriptions and future investigations into the molecular spoilage mechanisms for further applications in the meat industry.

RevDate: 2022-10-13

Jana B, Keppel K, Fridman CM, et al (2022)

Multiple T6SSs, Mobile Auxiliary Modules, and Effectors Revealed in a Systematic Analysis of the Vibrio parahaemolyticus Pan-Genome.

mSystems [Epub ahead of print].

Type VI secretion systems (T6SSs) play a major role in interbacterial competition and in bacterial interactions with eukaryotic cells. The distribution of T6SSs and the effectors they secrete vary between strains of the same bacterial species. Therefore, a pan-genome investigation is required to better understand the T6SS potential of a bacterial species of interest. Here, we performed a comprehensive, systematic analysis of T6SS gene clusters and auxiliary modules found in the pan-genome of Vibrio parahaemolyticus, an emerging pathogen widespread in marine environments. We identified 4 different T6SS gene clusters within genomes of this species; two systems appear to be ancient and widespread, whereas the other 2 systems are rare and appear to have been more recently acquired via horizontal gene transfer. In addition, we identified diverse T6SS auxiliary modules containing putative effectors with either known or predicted toxin domains. Many auxiliary modules are possibly horizontally shared between V. parahaemolyticus genomes, since they are flanked by DNA mobility genes. We further investigated a DUF4225-containing protein encoded on an Hcp auxiliary module, and we showed that it is an antibacterial T6SS effector that exerts its toxicity in the bacterial periplasm, leading to cell lysis. Computational analyses of DUF4225 revealed a widespread toxin domain associated with various toxin delivery systems. Taken together, our findings reveal a diverse repertoire of T6SSs and auxiliary modules in the V. parahaemolyticus pan-genome, as well as novel T6SS effectors and toxin domains that can play a major role in the interactions of this species with other cells. IMPORTANCE Gram-negative bacteria employ toxin delivery systems to mediate their interactions with neighboring cells. Vibrio parahaemolyticus, an emerging pathogen of humans and marine animals, was shown to deploy antibacterial toxins into competing bacteria via the type VI secretion system (T6SS). Here, we analyzed 1,727 V. parahaemolyticus genomes and revealed the pan-genome T6SS repertoire of this species, including the T6SS gene clusters, horizontally shared auxiliary modules, and toxins. We also identified a role for a previously uncharacterized domain, DUF4225, as a widespread antibacterial toxin associated with diverse toxin delivery systems.

RevDate: 2022-10-12

Wang F, Guo Y, Liu Z, et al (2022)

New insights into the novel sequences of the chicken pangenome by liquid chip.

Journal of animal science pii:6759641 [Epub ahead of print].

Increasing evidence indicates that the missing sequences and genes in the chicken reference genome are involved in many crucial biological pathways, including metabolism and immunity. The low detection rate of novel sequences by resequencing hindered the acquisition of these sequences and the exploration of the relationship between new genes and economic traits. To improve the capture ratio of novel sequences, a 48K liquid chip including 25K from the reference sequence and 23K from the novel sequence was designed. The assay was tested on a panel of 218 animals from 5 chicken breeds. The average capture ratio of the reference sequence was 99.55%, and the average sequencing depth of the target sites was approximately 187 X, indicating a good performance and successful application of liquid chips in farm animals. For the target region in the novel sequence, the average capture ratio was 33.15% and the average sequencing depth of target sites was approximately 60X, both of which were higher than that of resequencing. However, the different capture ratios and capture regions among varieties and individuals proved the difficulty of capturing these regions with complex structures. After genotyping, GWAS showed variations in novel sequences potentially relevant to immune-related traits. For example, a SNP close to the differentiation of lymphocyte-related gene IGHV3-23-like was associated with the H/L ratio. These results suggest that targeted capture sequencing is a preferred method to capture these sequences with complex structures and genes potentially associated with immune-related traits.

RevDate: 2022-10-12

Wagner DM, Birdsell DN, McDonough RF, et al (2022)

Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples.

PloS one, 17(10):e0273273 pii:PONE-D-22-21903.

Francisella tularensis, the bacterium that causes the zoonosis tularemia, and its genetic near neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there is a lack of genomic information for these species that has, among other things, limited the development of robust detection assays for F. tularensis that are both specific and sensitive. The objective of this study was to develop and validate approaches to capture, enrich, sequence, and analyze Francisella DNA present in DNA extracts generated from complex samples. RNA capture probes were designed based upon the known pan genome of F. tularensis and other diverse species in the family Francisellaceae. Probes that targeted genomic regions also present in non-Francisellaceae species were excluded, and probes specific to particular Francisella species or phylogenetic clades were identified. The capture-enrichment system was then applied to diverse, complex DNA extracts containing low-level Francisella DNA, including human clinical tularemia samples, environmental samples (i.e., animal tissue and air filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of the detection of F. tularensis or other Francisella species in complex samples, identification of mixtures of different Francisella species in the same sample, analysis of gene content (e.g., known virulence and antimicrobial resistance loci), and high-resolution whole genome-based genotyping. The benefits of this capture-enrichment system include: even very low target DNA can be amplified; it is culture-independent, reducing exposure for research and/or clinical personnel and allowing genomic information to be obtained from samples that do not yield isolates; and the resulting comprehensive data not only provide robust means to confirm the presence of a target species in a sample, but also can provide data useful for source attribution, which is important from a genomic epidemiology perspective.

RevDate: 2022-10-11

Bista PK, Pillai D, Roy C, et al (2022)

Comparative Genomic Analysis of Fusobacterium necrophorum Provides Insights into Conserved Virulence Genes.

Microbiology spectrum [Epub ahead of print].

Fusobacterium necrophorum is a Gram-negative, filamentous anaerobe prevalent in the mucosal flora of animals and humans. It causes necrotic infections in cattle, resulting in a substantial economic impact on the cattle industry. Although infection severity and management differ within F. necrophorum species, little is known about F. necrophorum speciation and the genetic virulence determinants between strains. To characterize the clinical isolates, we performed whole-genome sequencing of four bovine isolates (8L1, 212, B17, and SM1216) and one human isolate (MK12). To determine the phylogenetic relationship and evolution pattern and investigate the presence of antimicrobial resistance genes (ARGs) and potential virulence genes of F. necrophorum, we also performed comparative genomics with publicly available Fusobacterium genomes. Using up-to-date bacterial core gene (UBCG) set analysis, we uncovered distinct Fusobacterium species and F. necrophorum subspecies clades. Pangenome analyses revealed a high level of diversity among Fusobacterium strains down to species levels. The output also identified 14 and 26 genes specific to F. necrophorum subsp. necrophorum and F. necrophorum subsp. funduliforme, respectively, which could be essential for bacterial survival under different environmental conditions. ClonalFrameML-based recombination analysis suggested that extensive recombination among accessory genes led to species divergence. Furthermore, the only strain of F. necrophorum with ARGs was F. necrophorum subsp. funduliforme B35, with acquired macrolide and tetracycline resistance genes. Our custom search revealed common virulence genes, including toxins, adhesion proteins, outer membrane proteins, cell envelope, type IV secretion system, ABC (ATP-binding cassette) transporters, and transporter proteins. A focused study on these genes could help identify major virulence genes and inform effective vaccination strategies against fusobacterial infections. IMPORTANCE Fusobacterium necrophorum is an anaerobic bacterium that causes liver abscesses in cattle with an annual incidence rate of 10% to 20%, resulting in a substantial economic impact on the cattle industry. The lack of definite biochemical tests makes it difficult to distinguish F. necrophorum subspecies phenotypically, where genomic characterization plays a significant role. However, due to the lack of a good reference genome for comparison, F. necrophorum subspecies-level identification represents a significant challenge. To overcome this challenge, we used comparative genomics to validate clinical test strains for subspecies-level identification. The findings of our study help predict specific clades of previously uncharacterized strains of F. necrophorum. Our study identifies both general and subspecies-specific virulence genes through a custom search-based analysis. The virulence genes identified in this study can be the focus of future studies aimed at evaluating their potential as vaccine targets to prevent fusobacterial infections in cattle.

RevDate: 2022-10-10

Moolhuijzen PM, See PT, Shi G, et al (2022)

A global pangenome for the wheat fungal pathogen Pyrenophora tritici-repentis and prediction of effector protein structural homology.

Microbial genomics, 8(10):.

The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.

RevDate: 2022-10-10

Kim E, Yang SM, Kim IS, et al (2022)

Identification of Leuconostoc species based on novel marker genes identified using real-time PCR via computational pangenome analysis.

Frontiers in microbiology, 13:1014872.

Leuconostoc species are important microorganisms in food fermentation but also cause food spoilage. Although these species are commercially important, their taxonomy is still based on inaccurate identification methods. Here, we used computational pangenome analysis to develop a real-time PCR-based method for identifying and differentiating the 12 major Leuconostoc species found in food. Analysis of pan and core-genome phylogenies showed clustering of strains into 12 distinct groups according to the species. Pangenome analysis of 130 Leuconostoc genomes from these 12 species enabled the identification of each species-specific gene. In silico testing of the species-specific genes against 143 publicly available Leuconostoc and 100 other lactic acid bacterial genomes showed that all the assays had 100% inclusivity/exclusivity. We also verified the specificity for each primer pair targeting each specific gene using 23 target and 124 non-target strains and found high specificity (100%). The sensitivity of the real-time PCR method was 102 colony forming units (CFUs)/ml in pure culture and spiked food samples. All standard curves showed good linear correlations, with an R 2 value of ≥0.996, suggesting that screened targets have good specificity and strong anti-interference ability from food sample matrices and non-target strains. The real-time PCR method can be potentially used to determine the taxonomic status and identify the Leuconostoc species in foods.

RevDate: 2022-10-08

Marcet-Houben M, Alvarado M, Ksiezopolska E, et al (2022)

Chromosome-level assemblies from diverse clades reveal limited structural and gene content variation in the genome of Candida glabrata.

BMC biology, 20(1):226.

BACKGROUND: Candida glabrata is an opportunistic yeast pathogen thought to have a large genetic and phenotypic diversity and a highly plastic genome. However, the lack of chromosome-level genome assemblies representing this diversity limits our ability to accurately establish how chromosomal structure and gene content vary across strains.

RESULTS: Here, we expanded publicly available assemblies by using long-read sequencing technologies in twelve diverse strains, obtaining a final set of twenty-one chromosome-level genomes spanning the known C. glabrata diversity. Using comparative approaches, we inferred variation in chromosome structure and determined the pan-genome, including an analysis of the adhesin gene repertoire. Our analysis uncovered four new adhesin orthogroups and inferred a rich ancestral adhesion repertoire, which was subsequently shaped through a still ongoing process of gene loss, gene duplication, and gene conversion.

CONCLUSIONS: C. glabrata has a largely stable pan-genome except for a highly variable subset of genes encoding cell wall-associated functions. Adhesin repertoire was established for each strain and showed variability among clades.

RevDate: 2022-10-08

Harling-Lee JD, Gorzynski J, Yebra G, et al (2022)

A graph-based approach for the visualisation and analysis of bacterial pangenomes.

BMC bioinformatics, 23(1):416.

BACKGROUND: The advent of low cost, high throughput DNA sequencing has led to the availability of thousands of complete genome sequences for a wide variety of bacterial species. Examining and interpreting genetic variation on this scale represents a significant challenge to existing methods of data analysis and visualisation.

RESULTS: Starting with the output of standard pangenome analysis tools, we describe the generation and analysis of interactive, 3D network graphs to explore the structure of bacterial populations, the distribution of genes across a population, and the syntenic order in which those genes occur, in the new open-source network analysis platform, Graphia. Both the analysis and the visualisation are scalable to datasets of thousands of genome sequences.

CONCLUSIONS: We anticipate that the approaches presented here will be of great utility to the microbial research community, allowing faster, more intuitive, and flexible interaction with pangenome datasets, thereby enhancing interpretation of these complex data.

RevDate: 2022-10-07

Deb S (2022)

Pan-genome evolution and its association with divergence of metabolic functions in Bifidobacterium genus.

World journal of microbiology & biotechnology, 38(12):231.

Previous studies were mainly focused on genomic evolution and diversity of type species of Bifidobacterium genus due to their health-promoting effect on host. However, those studies were mainly based on species-level taxonomic resolution, adaptation, and characterization of carbohydrate metabolic features of the bifidobacterial species. Here, a comprehensive analysis of the type strain genome unveils the association of pan-genome evolution with the divergence of metabolic function of the Bifidobacterium genus. This study has also demonstrated that horizontal gene transfer, as well as genome expansion and reduction events, leads to the divergence of metabolic functions in Bifidobacterium genus. Furthermore, the genome-based search of probiotic traits among all the available bifidobacterial type strains gives hints on type species, that could confer health benefits to nutrient-deficient individuals. Altogether, the present study provides insight into the developments of genomic evolution, functional divergence, and potential probiotic type species of the Bifidobacterium genus.

RevDate: 2022-10-07

Nisar T, Tahir MHN, Iqbal S, et al (2022)

Genome-wide characterization and sequence polymorphism analyses of cysteine-rich poly comb-like protein in Glycine max.

Frontiers in plant science, 13:996265.

Cysteine-rich poly comb-like protein (CPP) is a member of cysteine-rich transcription factors that regulates plant growth and development. In the present work, we characterized twelve CPP transcription factors encoding genes in soybean (Glycine max). Phylogenetic analyses classified CPP genes into six clades. Sequence logos analyses between G. max and G. soja amino acid residues exhibited high conservation. The presence of growth and stress-related cis-acting elements in the upstream regions of GmCPPs highlight their role in plant development and tolerance against abiotic stress. Ka/Ks levels showed that GmCPPs experienced limited selection pressure with limited functional divergence arising from segmental or whole genome duplication events. By using the PAN-genome of soybean, a single nucleotide polymorphism was identified in GmCPP-6. To perform high throughput genotyping, a kompetitive allele-specific PCR (KASP) marker was developed. Association analyses indicated that GmCPP-6-T allele of GmCPP-6 (in exon region) was associated with higher thousand seed weight under both water regimes (well-water and water-limited). Taken together, these results provide vital information to further decipher the biological functions of CPP genes in soybean molecular breeding.

RevDate: 2022-10-06

Torres-Miranda A, Melis-Arcos F, D Garrido (2022)

Characterization and Identification of Probiotic Features in Lacticaseibacillus Paracasei Using a Comparative Genomic Analysis Approach.

Probiotics and antimicrobial proteins [Epub ahead of print].

Lacticaseibacillus paracasei species are widely used for their health-promoting properties in food and agricultural applications. These bacteria have been isolated from various habitats such as the oral cavity, cereals, vegetables, meats, and dairy products conferring them the ability to consume different carbohydrates. Two subspecies are recognized, Lacticaseibacillus paracasei subsp. paracasei and Lacticaseibacillus paracasei subsp. tolerans according to their acid production from carbohydrates. Some strains are currently used as probiotics. In this study, we performed a comparative genomic analysis of 181 genomes of the Lacticaseibacillus paracasei species to reveal genomic differences at the subspecies level and to reveal adaptive and probiotic features, and special emphasis is given to inulin consumption. No clear distinction at the subspecies level for L. paracasei was shown using a phylogenetic tree with orthologous genes from the core-genome set. In general, a good correlation was observed between genomic distance and isolation origin, suggesting that L. paracasei strains are adapted to their natural habitat, giving rise to genetic differences at the genomic level. A low frequency of undesirable characteristics such as plasmids, prophages, antibiotic resistance genes, absence of virulence factors, and frequent bacteriocin production supports these species being good candidates for use as probiotics. Lastly, we found that the inulin gene cluster in L. paracasei strains seems to differ slightly in the presence or absence of some genes but maintains a core defined by at least three fructose-PTS proteins, one hypothetical protein, and extracellular β-fructosidase. Finally, we conclude that further work has to be done for L. paracasei subspecies classification. Improving outgroup selection criteria is a key factor for their correct subspecies assignation.

RevDate: 2022-10-06

Karthik K, Anbazhagan S, Chitra MA, et al (2022)

First report of the whole genome of Moraxella bovoculi genotype 1 from India and comparative genomics of Moraxella bovoculi to identify genotype-specific markers.

Archives of microbiology, 204(11):663.

Moraxella bovoculi has been isolated frequently from cattle with Infectious bovine keratoconjunctivitis (IBK). Two diverse genotypes of M. bovoculi, 1 and 2 were identified based on whole genome sequence analysis. It is essential to discriminate between the two genotypes to frame prevention and control measures. The whole genome of M. bovoculi TN7 was sequenced and compared to other M. bovoculi strains available in the NCBI database. M. bovoculi TN7 was found to be genotype 1, had an RTX toxin operon and pilA gene that are the known virulence factors in related Moraxella sp., but lacked antimicrobial resistance genes. M. bovoculi was found to have an open pangenome with 4051 (75.31%) accessory genes, and the addition of each new genome adds 18 genes to the pangenome. Comparison of pilin protein amino acid sequences revealed three new sequence types. Furthermore, the presence of linx, nagL, swrC and mdtA genes was found to be genotype 1 specific, whereas hyaD, garR, gbsA, yhdG, gabT, iclR, higB2, hmuU, hmuT and hemS were found only in genotype 2. Polymerase Chain Reaction (PCR) primers were designed and evaluated on strain TN7 plus seven additional strains accessible to us that had not been whole genome sequenced. This initial evaluation of the designed primers for the linX and hyaD genes produced the expected banding patterns on PCR gels for genotypes 1 and 2, respectively, among the 8 strains. The genotype-specific genes identified in this study can be used as markers for accurate diagnosis of genotype 1 isolates and this can aid in the development of autogenous or other molecular vaccines for treatment of infectious bovine keratoconjunctivitis (IBK) in resource-limited research settings.

RevDate: 2022-10-06

Hildebrand RE, Chandrasekar SS, Riel M, et al (2022)

Superinfection with SARS-CoV-2 Has Deleterious Effects on Mycobacterium bovis BCG Immunity and Promotes Dissemination of Mycobacterium tuberculosis.

Microbiology spectrum [Epub ahead of print].

An estimated one-third of the world's population is infected with Mycobacterium tuberculosis, with the majority being vaccinated with Mycobacterium bovis BCG. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat, and we must understand how SARS-CoV-2 can modulate both BCG immunity and tuberculosis pathogenesis. Interestingly, neither BCG vaccination nor tuberculosis infection resulted in differences in clinical outcomes associated with SARS-CoV-2 in transgenic mice. Surprisingly, earlier M. tuberculosis infection resulted in lower SARS-CoV-2 viral loads, mediated by the heightened immune microenvironment of the murine lungs, unlike vaccination with BCG, which had no impact. In contrast, M. tuberculosis-infected tissues had increased bacterial loads and decreased histiocytic inflammation in the lungs following SARS-CoV-2 superinfection. SARS-CoV-2 modulated BCG-induced type 17 responses while decreasing type 1 and increasing type 2 cytokines in M. tuberculosis-infected mice. These findings challenge initial findings of BCG's positive impact on SARS-CoV-2 infection and suggest potential ramifications for M. tuberculosis reactivation upon SARS-CoV-2 superinfection. IMPORTANCE Prior to SARS-CoV-2, M. tuberculosis was the leading infectious disease killer, with an estimated one-third of the world's population infected and 1.7 million deaths a year. Here, we show that SARS-CoV-2 superinfection caused increased bacterial dissemination in M. tuberculosis-infected mice along with immune and pathological changes. SARS-CoV-2 also impacted the immunity of BCG-vaccinated mice, resulting in decreased interleukin-17 (IL-17) levels, while offering no protective effect against SARS-CoV-2. These results demonstrate that SARS-CoV-2 may have a deleterious effect on the ongoing M. tuberculosis pandemic and potentially limit BCG's efficacy.

RevDate: 2022-10-06

Srivastava P, CK Jain (2022)

Computer Aided Reverse Vaccinology: A Game-changer Approach for Vaccine Development.

Combinatorial chemistry & high throughput screening pii:CCHTS-EPUB-126683 [Epub ahead of print].

One of the most dynamic approaches in biotechnology is reverse vaccinology, which plays a huge role in today's developing vaccines. It has the capability of exploring and identifying the most potent vaccine candidate in a limited period of time. The first successful novel approach of reverse vaccinology was observed in Neisseria meningitidis serogroup B, which has revolutionised the whole field of computational biology. In this review, we have summarized the application of reverse vaccinology for different infectious diseases, brief about the epitope prediction and the various available bioinformatic tools, and the advantages, limitations and necessary elements of this approach. e have also outlined some of the modifications in the reverse vaccinology approach, like pan-genome and comparative reverse vaccinology. Vaccines for illnesses like AIDS and hepatitis Chave not yet been developed. Computer Aided Reverse vaccinology has the potential to be a game-changer in this area. The use of computational tools, pipelines and advanced soft-computing methods, such as artificial intelligence, deep learning and exploitation of available omics data in integration, has opened a new plethora for speedy and effective vaccine designing. Is reverse vaccinology a viable option for developing vaccines against such infections, or is it a myth? Vaccines against various illnesses have clearly been triggered by infection and death of persons following immunization; these vaccines were created using the traditional technique, which included inactivated microorganisms. As a result, reverse vaccinology may be a far superior technique for creating an effective vaccine.

RevDate: 2022-10-04

Grytten I, Dagestad Rand K, GK Sandve (2022)

KAGE: fast alignment-free graph-based genotyping of SNPs and short indels.

Genome biology, 23(1):209.

Genotyping is a core application of high-throughput sequencing. We present KAGE, a genotyper for SNPs and short indels that is inspired by recent developments within graph-based genome representations and alignment-free methods. KAGE uses a pan-genome representation of the population to efficiently and accurately predict genotypes. Two novel ideas improve both the speed and accuracy: a Bayesian model incorporates genotypes from thousands of individuals to improve prediction accuracy, and a computationally efficient method leverages correlation between variants. We show that the accuracy of KAGE is at par with the best existing alignment-free genotypers, while being an order of magnitude faster.

RevDate: 2022-10-03

Xu Z, C Yuan (2022)

Molecular Epidemiology of Staphylococcus aureus in China Reveals the Key Gene Features Involved in Epidemic Transmission and Adaptive Evolution.

Microbiology spectrum [Epub ahead of print].

Staphylococcus aureus is a Gram-positive pathogen that causes various infections in humans and domestic animals. In China, S. aureus is the most common Gram-positive pathogen that causes clinical infections. However, there are few comprehensive genome-based molecular epidemiology studies to investigate the genotypic background of the major S. aureus clones that are epidemic in China. Here, four S. aureus isolates that were recovered from hospital personnel were sequenced. In combination with whole-genome sequencing (WGS) data of 328 S. aureus strains as references, we performed a comprehensive molecular epidemiology study to reveal the molecular epidemic characterization of S. aureus that is epidemic in China. It was found that 332 S. aureus isolates were phylogenetically categorized into 4 major epidemic groups with different epidemiology phenotypes. Each group has exclusive features in virulence genotypic profiles, antimicrobial resistance genotypic profiles, core and pangenome features representing the differences involved in genetic features, evolutionary processes, and potential future evolutionary directions. Moreover, a comparative core genome analysis of 332 S. aureus isolates indicated several key genes that contributed to differences in molecular epidemic characterization and promoted the adaptive evolutionary process of each group. This study provides a comprehensive understanding of molecular epidemiological characteristics and adaptive evolutionary directions of major S. aureus clones that are epidemic in China. IMPORTANCE Staphylococcus aureus is an important Gram-positive pathogen that is epidemic worldwide and causes various infections in humans and domestic animals. However, there has been relatively little research on comprehensive molecular epidemiology in China. In this research, we reconstructed the phylogenetic relationship based on whole-genome data of strains almost all over China, screened for resistance and virulence genes, and took core and pan genome analysis to perform a comprehensive molecular epidemiology study of S. aureus that is epidemic in China. Our results highlight that there are 4 major epidemic groups with different epidemiology phenotypes after phylogenetic categorization with exclusive genetic features in virulence genotypic profiles, antimicrobial-resistance genotypic profiles, and core and pangenome features, and we found key gene features involved in epidemic transmission and adaptive evolution. Our findings are critical in describing molecular characteristic profiles of S. aureus infection, which could update existing preventive measures and take appropriate strategies.

RevDate: 2022-10-03

Park M, Kim J, Horn L, et al (2022)

Sugar Modification of Wall Teichoic Acids Determines Serotype-Dependent Strong Biofilm Production in Listeria monocytogenes.

Microbiology spectrum [Epub ahead of print].

Biofilm production is responsible for persistent food contamination by Listeria monocytogenes, threatening food safety and public health. Human infection and food contamination with L. monocytogenes are caused primarily by serotypes 1/2a, 1/2b, and 4b. However, the association of biofilm production with phylogenic lineage and serotype has not yet been fully understood. In this study, we measured the levels of biofilm production in 98 clinical strains of L. monocytogenes at 37°C, 25°C, and 4°C. The phylogenetic clusters grouped by core genome multilocus sequence typing (cgMLST) exhibited association between biofilm production and phylogenetic lineage and serotype. Whereas clusters 1 and 3 consisting of serotype 4b strains exhibited weak biofilm production, clusters 2 (serotype 1/2b) and 4 (serotype 1/2a) were composed of strong biofilm formers. Particularly, cluster 2 (serotype 1/2b) strains exhibited the highest levels of biofilm production at 37°C, and the levels of biofilm production of cluster 4 (serotype 1/2a) strains were significantly elevated at all tested temperatures. Pan-genome analysis identified 22 genes unique to strong biofilm producers, most of which are related to the synthesis and modification of teichoic acids. Notably, a knockout mutation of the rml genes related to the modification of wall teichoic acids with l-rhamnose, which is specific to serogroup 1/2, significantly reduced the level of biofilm production by preventing biofilm maturation. Here, the results of our study show that biofilm production in L. monocytogenes is related to phylogeny and serotype and that the modification of wall teichoic acids with l-rhamnose is responsible for serotype-specific strong biofilm formation in L. monocytogenes. IMPORTANCE Biofilm formation on the surface of foods or food-processing facilities by L. monocytogenes is a serious food safety concern. Here, our data demonstrate that the level of biofilm production differs among serotypes 1/2a, 1/2b, and 4b depending on the temperature. Furthermore, sugar decoration of bacterial cell walls with l-rhamnose is responsible for strong biofilm production in serotypes 1/2a and 1/2b, commonly isolated from foods and listeriosis cases. The findings in this study improve our understanding of the association of biofilm production with phylogenetic lineage and serotype in L. monocytogenes.

RevDate: 2022-10-03

Lv Z, Chen Y, Zhou H, et al (2022)

Genomic characterization of two metagenome-assembled genomes of Tropheryma whipplei from China.

Frontiers in cellular and infection microbiology, 12:947486.

Whipple's disease is a rare chronic systemic disease that affects almost any organ system of the body caused by the intracellular bacterium Tropheryma whipplei, which is found ubiquitously in the environment. Sequencing of the T. whipplei genome has revealed that it has a reduced genome (0.93 Mbp), a characteristic shared with other intracellular bacteria. Until our research started, 19 T. whipplei strains had been sequenced from cultures originated in France, Canada, and Germany. The genome of T. whipplei bacterium has not been studied in Asia yet. Here, two metagenome-assembled genomes (MAGs) of T. whipplei from China were reconstructed through metagenomic next-generation sequencing (mNGS) and genome binning. We also provided genomic insights into the geographical role and genomic features by analyzing the whole genome. The whole-genome phylogenetic tree was constructed based on single-nucleotide polymorphism (SNP) distance calculations and then grouped by distance similarity. The phylogenetic tree shows inconsistencies with geographic origins, thus suggesting that the variations in geographical origins cannot explain the phylogenetic relationships among the 21 T. whipplei strains. The two Chinese strains were closely related to each other, and also found to be related to strains from Germany (T. whipplei TW08/27) and France (T. whipplei Bcu26 and T. whipplei Neuro1). Furthermore, the Average Nucleotide Identity (ANI) matrix also showed no association between geographic origins and genomic similarities. The pan-genome analysis revealed that T. whipplei has a closed pan-genome composed of big core-genomes and small accessory genomes, like other intracellular bacteria. By examining the genotypes of the sequenced strains, all 21 T. whipplei strains were found to be resistant to fluoroquinolones, due to the genetic mutations in genes gyrA, gyrB, parC, and parE. The 21 T. Whipplei strains shared the same virulence factors, except for the alpC gene, which existed in 7 out of the 21 T. whipplei strains. When comparing 21 entire T. whipplei pan-genomes from various nations, it was discovered that the bacterium also possessed a closed genome, which was a trait shared by intracellular pathogens.

RevDate: 2022-10-03

Walker AR, RC Shields (2022)

Investigating CRISPR spacer targets and their impact on genomic diversification of Streptococcus mutans.

Frontiers in genetics, 13:997341 pii:997341.

CRISPR-Cas is a bacterial immune system that restricts the acquisition of mobile DNA elements. These systems provide immunity against foreign DNA by encoding CRISPR spacers that help target DNA if it re-enters the cell. In this way, CRISPR spacers are a type of molecular tape recorder of foreign DNA encountered by the host microorganism. Here, we extracted ∼8,000 CRISPR spacers from a collection of over three hundred Streptococcus mutans genomes. Phage DNA is a major target of S. mutans spacers. S. mutans strains have also generated immunity against mobile DNA elements such as plasmids and integrative and conjugative elements. There may also be considerable immunity generated against bacterial DNA, although the relative contribution of self-targeting versus bona fide intra- or inter-species targeting needs to be investigated further. While there was clear evidence that these systems have acquired immunity against foreign DNA, there appeared to be minimal impact on horizontal gene transfer (HGT) constraints on a species-level. There was little or no impact on genome size, GC content and 'openness' of the pangenome when comparing between S. mutans strains with low or high CRISPR spacer loads. In summary, while there is evidence of CRISPR spacer acquisition against self and foreign DNA, CRISPR-Cas does not act as a barrier on the expansion of the S. mutans accessory genome.

RevDate: 2022-10-03

Wang S, Sun L, Narsing Rao MP, et al (2022)

Comparative Genome Analysis of a Novel Alkaliphilic Actinobacterial Species Nesterenkonia haasae.

Polish journal of microbiology, 71(3):453-461 pii:pjm-2022-040.

In the present study, a comparative genome analysis of the novel alkaliphilic actinobacterial Nesterenkonia haasae with other members of the genus Nesterenkonia was performed. The genome size of Nesterenkonia members ranged from 2,188,008 to 3,676,111 bp. N. haasae and Nesterenkonia members of the present study encode the essential glycolysis and pentose phosphate pathway genes. In addition, some Nesterenkonia members encode the crucial genes for Entner-Doudoroff pathways. Some Nesterenkonia members possess the genes responsible for sulfate/thiosulfate transport system permease protein/ ATP-binding protein and conversion of sulfate to sulfite. Nesterenkonia members also encode the genes for assimilatory nitrate reduction, nitrite reductase, and the urea cycle. All Nesterenkonia members have the genes to overcome environmental stress and produce secondary metabolites. The present study helps to understand N. haasae and Nesterenkonia members' environmental adaptation and niches specificity based on their specific metabolic properties. Further, based on genome analysis, we propose reclassifying Nesterenkonia jeotgali as a later heterotypic synonym of Nesterenkonia sandarakina.

RevDate: 2022-10-02

Sharma V, Sood A, Ray P, et al (2022)

Comparative genomics reveals the evolution of antimicrobial resistance in Bacteroides nordii.

Microbial pathogenesis pii:S0882-4010(22)00424-7 [Epub ahead of print].

Bacteroides nordii, is an understudied member of the pathogenic B. fragilis group which comprises several multidrug-resistant (MDR) strains. Thus, it is of great interest to study the genome biology of Bacteroides nordii. However, no detailed study is available that characterized B. nordii at the genetic level and explored its role as a potential pathogen. We isolated an MDR strain viz., B. nordii PGMM4098 from the pus sample and subjected it to whole genome sequencing using Illumina technology. The draft genome was de-novo assembled and annotated, followed by comprehensive comparative genomics analyses using the publicly available genome dataset of B. nordii. The pan-genome analysis revealed the open nature of B. nordii, indicating the continuous accumulation of novel genes in non-core components leading to the emergence of new strains of this species. The thirteen antimicrobial resistance (AMR) genes identified in the genomes of all B. nordii strains were part of the non-core component of the pan-genome. Of these, four AMR genes, nimE, aadS, mef(En2), and ermB/F/G were found to be acquired via the process of horizontal gene transfer (HGT) from anaerobic Bacteroidetes. Importantly, the nimE gene conferring metronidazole resistance was found to be present only in B. nordii PGMM4098, which harbors five other AMR genes encoded in its genome. Of these, nimE (metronidazole resistance), ermB/F/G (macrolide-lincosamide-streptogramin B resistance), and cfxA2/A3 (class A β-lactam resistance) genes were further validated using targeted polymerase chain reaction assay. Notably, these three genes were also found to be under the operation of positive selective pressure suggesting the diversification of these genes, which might lead to the emergence of new MDR strains of B. nordii in the near future. Our study reported and characterized the genome of the first MDR strain of B. nordii and revealed the AMR evolution in this species using a comprehensive comparative genomics approach.

RevDate: 2022-09-30

Sirén J, B Paten (2022)

GBZ File Format for Pangenome Graphs.

Bioinformatics (Oxford, England) pii:6731924 [Epub ahead of print].

MOTIVATION: Pangenome graphs representing aligned genome assemblies are being shared in the text-based Graphical Fragment Assembly format. As the number of assemblies grows, there is a need for a file format that can store the highly repetitive data space-efficiently.

RESULTS: We propose the GBZ file format based on data structures used in the Giraffe short read aligner. The format provides good compression, and the files can be efficiently loaded into in-memory data structures. We provide compression and decompression tools and libraries for using GBZ graphs, and we show that they can be efficiently used on a variety of systems.

AVAILABILITY: C ++ and Rust implementations are available at https://github.com/jltsiren/gbwtgraph and https://github.com/jltsiren/gbwt-rs, respectively.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2022-09-28

Zhang Y, Zhang H, Zhang Z, et al (2022)

ProPan: a comprehensive database for profiling prokaryotic pan-genome dynamics.

Nucleic acids research pii:6725771 [Epub ahead of print].

Compared with conventional comparative genomics, the recent studies in pan-genomics have provided further insights into species genomic dynamics, taxonomy and identification, pathogenicity and environmental adaptation. To better understand genome characteristics of species of interest and to fully excavate key metabolic and resistant genes and their conservations and variations, here we present ProPan (https://ngdc.cncb.ac.cn/propan), a public database covering 23 archaeal species and 1,481 bacterial species (in a total of 51,882 strains) for comprehensively profiling prokaryotic pan-genome dynamics. By analyzing and integrating these massive datasets, ProPan offers three major aspects for the pan-genome dynamics of the species of interest: 1) the evaluations of various species' characteristics and composition in pan-genome dynamics; 2) the visualization of map association, the functional annotation and presence/absence variation for all contained species' gene clusters; 3) the typical characteristics of the environmental adaptation, including resistance genes prediction of 126 substances (biocide, antimicrobial drug and metal) and evaluation of 31 metabolic cycle processes. Besides, ProPan develops a very user-friendly interface, flexible retrieval and multi-level real-time statistical visualization. Taken together, ProPan will serve as a weighty resource for the studies of prokaryotic pan-genome dynamics, taxonomy and identification as well as environmental adaptation.

RevDate: 2022-09-27

Duarte IO, Hissa DC, Quintela BCSF, et al (2022)

Genomic Analysis of Surfactant-Producing Bacillus vallismortis TIM68: First Glimpse at Species Pangenome and Prediction of New Plipastatin-Like Lipopeptide.

Applied biochemistry and biotechnology [Epub ahead of print].

Surfactants are applied in several industrial processes when the modification of interface activity and the stability of colloidal systems are required. Lipopeptides are a class of microbial biosurfactants produced by species of the Bacillus genus. The present study aimed at assembling and analyzing the genome of a new Bacillus vallismortis strain, TIM68, that was shown to produce surfactant lipopeptides. The draft genome was also screened for common virulence factors and antibiotics resistance genes to investigate the strain biosafety. Comparative genomics analyses, i.e., synteny, average nucleotide identity (ANI), and pangenome, were also carried out using strain TIM68 and publicly available B. vallismortis complete and partial genomes. Three peptide synthetase operons were found in TIM68 genome, and they were surfactin A, mojavensin, and a novel plipastatin-like lipopeptide named vallisin. No virulence factors that render pathogenicity to the strain have been identified, but a region of prophage, that may contain unknown pathogenic factors, has been predicted. The pangenome of the species was characterized as closed, with 57% of genes integrating the core genome. The results obtained here on the genetic potential of TIM68 strain should contribute to its exploration in biotechnological applications.

RevDate: 2022-09-28
CmpDate: 2022-09-28

Tong X, Han MJ, Lu K, et al (2022)

High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation.

Nature communications, 13(1):5619.

The silkworm Bombyx mori is an important economic insect for producing silk, the "queen of fabrics". The currently available genomes limit the understanding of its genetic diversity and the discovery of valuable alleles for breeding. Here, we deeply re-sequence 1,078 silkworms and assemble long-read genomes for 545 representatives. We construct a high-resolution pan-genome dataset representing almost the entire genomic content in the silkworm. We find that the silkworm population harbors a high density of genomic variants and identify 7308 new genes, 4260 (22%) core genes, and 3,432,266 non-redundant structure variations (SVs). We reveal hundreds of genes and SVs that may contribute to the artificial selection (domestication and breeding) of silkworm. Further, we focus on four genes responsible, respectively, for two economic (silk yield and silk fineness) and two ecologically adaptive traits (egg diapause and aposematic coloration). Taken together, our population-scale genomic resources will promote functional genomics studies and breeding improvement for silkworm.

RevDate: 2022-09-28
CmpDate: 2022-09-28

Cherchame E, Ilango G, Noël V, et al (2022)

Polyphyly in widespread Salmonella enterica serovars and using genomic proximity to choose the best reference genome for bioinformatics analyses.

Frontiers in public health, 10:963188.

Salmonella is the most common cause of gastroenteritis in the world. Over the past 5 years, whole-genome analysis has led to the high-resolution characterization of clinical and foodborne Salmonella responsible for typhoid fever, foodborne illness or contamination of the agro-food chain. Whole-genome analyses are simplified by the availability of high-quality, complete genomes for mapping analysis and for calculating the pairwise distance between genomes, but unfortunately some difficulties may still remain. For some serovars, the complete genome is not available, or some serovars are polyphyletic and knowing the serovar alone is not sufficient for choosing the most appropriate reference genome. For these serovars, it is essential to identify the genetically closest complete genome to be able to carry out precise genome analyses. In this study, we explored the genomic proximity of 650 genomes of the 58 Salmonella enterica subsp. enterica serovars most frequently isolated in humans and from the food chain in the United States (US) and in Europe (EU), with a special focus on France. For each serovar, to take into account their genomic diversity, we included all the multilocus sequence type (MLST) profiles represented in EnteroBase with 10 or more genomes (on 19 July 2021). A phylogenetic analysis using both core- and pan-genome approaches was carried out to identify the genomic proximity of all the Salmonella studied and 20 polyphyletic serovars that have not yet been described in the literature. This study determined the genetic proximity between all 58 serovars studied and revealed polyphyletic serovars, their genomic lineages and MLST profiles. Finally, we enhanced the open-access databases with 73 new genomes and produced a list of high-quality complete reference genomes for 48 S. enterica subsp. enterica serovars among the most isolated in the US, EU, and France.

RevDate: 2022-09-28
CmpDate: 2022-09-28

Smith-Zaitlik T, Shibu P, McCartney AL, et al (2022)

Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes.

Microbiology (Reading, England), 168(9):.

High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.

RevDate: 2022-09-23

Phanse Y, Puttamreddy S, Loy D, et al (2022)

RNA Nanovaccine Protects against White Spot Syndrome Virus in Shrimp.

Vaccines, 10(9): pii:vaccines10091428.

In the last 15 years, crustacean fisheries have experienced billions of dollars in economic losses, primarily due to viral diseases caused by such pathogens as white spot syndrome virus (WSSV) in the Pacific white shrimp Litopenaeus vannamei and Asian tiger shrimp Penaeus monodon. To date, no effective measures are available to prevent or control disease outbreaks in these animals, despite their economic importance. Recently, double-stranded RNA-based vaccines have been shown to provide specific and robust protection against WSSV infection in cultured shrimp. However, the limited stability of double-stranded RNA is the most significant hurdle for the field application of these vaccines with respect to delivery within an aquatic system. Polyanhydride nanoparticles have been successfully used for the encapsulation and release of vaccine antigens. We have developed a double-stranded RNA-based nanovaccine for use in shrimp disease control with emphasis on the Pacific white shrimp L. vannamei. Nanoparticles based on copolymers of sebacic acid, 1,6-bis(p-carboxyphenoxy)hexane, and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane exhibited excellent safety profiles, as measured by shrimp survival and histological evaluation. Furthermore, the nanoparticles localized to tissue target replication sites for WSSV and persisted through 28 days postadministration. Finally, the nanovaccine provided ~80% protection in a lethal WSSV challenge model. This study demonstrates the exciting potential of a safe, effective, and field-applicable RNA nanovaccine that can be rationally designed against infectious diseases affecting aquaculture.

RevDate: 2022-09-23

Gontijo JB, Paula FS, Venturini AM, et al (2022)

Insights into the Genomic Potential of a Methylocystis sp. from Amazonian Floodplain Sediments.

Microorganisms, 10(9): pii:microorganisms10091747.

Although floodplains are recognized as important sources of methane (CH4) in the Amazon basin, little is known about the role of methanotrophs in mitigating CH4 emissions in these ecosystems. Our previous data reported the genus Methylocystis as one of the most abundant methanotrophs in these floodplain sediments. However, information on the functional potential and life strategies of these organisms living under seasonal flooding is still missing. Here, we described the first metagenome-assembled genome (MAG) of a Methylocystis sp. recovered from Amazonian floodplains sediments, and we explored its functional potential and ecological traits through phylogenomic, functional annotation, and pan-genomic approaches. Both phylogenomics and pan-genomics identified the closest placement of the bin.170_fp as Methylocystis parvus. As expected for Type II methanotrophs, the Core cluster from the pan-genome comprised genes for CH4 oxidation and formaldehyde assimilation through the serine pathway. Furthermore, the complete set of genes related to nitrogen fixation is also present in the Core. Interestingly, the MAG singleton cluster revealed the presence of unique genes related to nitrogen metabolism and cell motility. The study sheds light on the genomic characteristics of a dominant, but as yet unexplored methanotroph from the Amazonian floodplains. By exploring the genomic potential related to resource utilization and motility capability, we expanded our knowledge on the niche breadth of these dominant methanotrophs in the Amazonian floodplains.

RevDate: 2022-09-23

Lee JH, Lee SR, Han S, et al (2022)

Comparative Genomic Analysis of Agarolytic Flavobacterium faecale WV33T.

International journal of molecular sciences, 23(18): pii:ijms231810884.

Flavobacteria are widely dispersed in a variety of environments and produce various polysaccharide-degrading enzymes. Here, we report the complete genome of Flavobacterium faecale WV33T, an agar-degrading bacterium isolated from the stools of Antarctic penguins. The sequenced genome of F. faecale WV33T represents a single circular chromosome (4,621,116 bp, 35.2% G + C content), containing 3984 coding DNA sequences and 85 RNA-coding genes. The genome of F. faecale WV33T contains 154 genes that encode carbohydrate-active enzymes (CAZymes). Among the CAZymes, seven putative genes encoding agarases have been identified in the genome. Transcriptional analysis revealed that the expression of these putative agarases was significantly enhanced by the presence of agar in the culture medium, suggesting that these proteins are involved in agar hydrolysis. Pangenome analysis revealed that the genomes of the 27 Flavobacterium type strains, including F. faecale WV33T, tend to be very plastic, and Flavobacterium strains are unique species with a tiny core genome and a large non-core region. The average nucleotide identity and phylogenomic analysis of the 27 Flavobacterium-type strains showed that F. faecale WV33T was positioned in a unique clade in the evolutionary tree.

RevDate: 2022-09-23

Ismail S, Alsowayeh N, Abbasi HW, et al (2022)

Pan-Genome-Assisted Computational Design of a Multi-Epitopes-Based Vaccine Candidate against Helicobacter cinaedi.

International journal of environmental research and public health, 19(18): pii:ijerph191811579.

Helicobacter cinaedi is a Gram-negative bacterium from the family Helicobacteraceae and genus Helicobacter. The pathogen is a causative agent of gastroenteritis, cellulitis, and bacteremia. The increasing antibiotic resistance pattern of the pathogen prompts the efforts to develop a vaccine to prevent dissemination of the bacteria and stop the spread of antibiotic resistance (AR) determinants. Herein, a pan-genome analysis of the pathogen strains was performed to shed light on its core genome and its exploration for potential vaccine targets. In total, four vaccine candidates (TonB dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system effector, flagellar motor protein MotB) were identified as promising vaccine candidates and subsequently subjected to an epitopes' mapping phase. These vaccine candidates are part of the pathogen core genome: they are essential, localized at the pathogen surface, and are antigenic. Immunoinformatics was further applied on the selected vaccine proteins to predict potential antigenic, non-allergic, non-toxic, virulent, and DRB*0101 epitopes. The selected epitopes were then fused using linkers to structure a multi-epitopes' vaccine construct. Molecular docking simulations were conducted to determine a designed vaccine binding stability with TLR5 innate immune receptor. Further, binding free energy by MMGB/PBSA and WaterSwap was employed to examine atomic level interaction energies. The designed vaccine also stimulated strong humoral and cellular immune responses as well as interferon and cytokines' production. In a nutshell, the designed vaccine is promising in terms of immune responses' stimulation and could be an ideal candidate for experimental analysis due to favorable physicochemical properties.

RevDate: 2022-09-23

Hurtado R, Barh D, Weimer BC, et al (2022)

WGS-Based Lineage and Antimicrobial Resistance Pattern of Salmonella Typhimurium Isolated during 2000-2017 in Peru.

Antibiotics (Basel, Switzerland), 11(9): pii:antibiotics11091170.

Salmonella Typhimurium is associated with foodborne diseases worldwide, including in Peru, and its emerging antibiotic resistance (AMR) is now a global public health problem. Therefore, country-specific monitoring of the AMR emergence is vital to control this pathogen, and in these aspects, whole genome sequence (WGS)-based approaches are better than gene-based analyses. Here, we performed the antimicrobial susceptibility test for ten widely used antibiotics and WGS-based various analyses of 90 S. Typhimurium isolates (human, animal, and environment) from 14 cities of Peru isolated from 2000 to 2017 to understand the lineage and antimicrobial resistance pattern of this pathogen in Peru. Our results suggest that the Peruvian isolates are of Typhimurium serovar and predominantly belong to sequence type ST19. Genomic diversity analyses indicate an open pan-genome, and at least ten lineages are circulating in Peru. A total of 48.8% and 31.0% of isolates are phenotypically and genotypically resistant to at least one antibiotic, while 12.0% are multi-drug resistant (MDR). Genotype-phenotype correlations for ten tested drugs show >80% accuracy, and >90% specificity. Sensitivity above 90% was only achieved for ciprofloxacin and ceftazidime. Two lineages exhibit the majority of the MDR isolates. A total of 63 different AMR genes are detected, of which 30 are found in 17 different plasmids. Transmissible plasmids such as lncI-gamma/k, IncI1-I(Alpha), Col(pHAD28), IncFIB, IncHI2, and lncI2 that carry AMR genes associated with third-generation antibiotics are also identified. Finally, three new non-synonymous single nucleotide variations (SNVs) for nalidixic acid and eight new SNVs for nitrofurantoin resistance are predicted using genome-wide association studies, comparative genomics, and functional annotation. Our analysis provides for the first time the WGS-based details of the circulating S. Typhimurium lineages and their antimicrobial resistance pattern in Peru.

RevDate: 2022-09-22

Yang T, Liu R, Luo Y, et al (2022)

Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics.

Nature genetics [Epub ahead of print].

Complete and accurate reference genomes and annotations provide fundamental resources for functional genomics and crop breeding. Here we report a de novo assembly and annotation of a pea cultivar ZW6 with contig N50 of 8.98 Mb, which features a 243-fold increase in contig length and evident improvements in the continuity and quality of sequence in complex repeat regions compared with the existing one. Genome diversity of 118 cultivated and wild pea demonstrated that Pisum abyssinicum is a separate species different from P. fulvum and P. sativum within Pisum. Quantitative trait locus analyses uncovered two known Mendel's genes related to stem length (Le/le) and seed shape (R/r) as well as some candidate genes for pod form studied by Mendel. A pan-genome of 116 pea accessions was constructed, and pan-genes preferred in P. abyssinicum and P. fulvum showed distinct functional enrichment, indicating the potential value of them as pea breeding resources in the future.

RevDate: 2022-09-20

Li T, Y Yin (2022)

Critical assessment of pan-genomic analysis of metagenome-assembled genomes.

Briefings in bioinformatics pii:6702672 [Epub ahead of print].

Pan-genome analyses of metagenome-assembled genomes (MAGs) may suffer from the known issues with MAGs: fragmentation, incompleteness and contamination. Here, we conducted a critical assessment of pan-genomics of MAGs, by comparing pan-genome analysis results of complete bacterial genomes and simulated MAGs. We found that incompleteness led to significant core gene (CG) loss. The CG loss remained when using different pan-genome analysis tools (Roary, BPGA, Anvi'o) and when using a mixture of MAGs and complete genomes. Contamination had little effect on core genome size (except for Roary due to in its gene clustering issue) but had major influence on accessory genomes. Importantly, the CG loss was partially alleviated by lowering the CG threshold and using gene prediction algorithms that consider fragmented genes, but to a less degree when incompleteness was higher than 5%. The CG loss also led to incorrect pan-genome functional predictions and inaccurate phylogenetic trees. Our main findings were supported by a study of real MAG-isolate genome data. We conclude that lowering CG threshold and predicting genes in metagenome mode (as Anvi'o does with Prodigal) are necessary in pan-genome analysis of MAGs. Development of new pan-genome analysis tools specifically for MAGs are needed in future studies.

RevDate: 2022-09-19

Vassallo CN, Doering CR, Littlehale ML, et al (2022)

A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome.

Nature microbiology [Epub ahead of print].

The ancient, ongoing coevolutionary battle between bacteria and their viruses, bacteriophages, has given rise to sophisticated immune systems including restriction-modification and CRISPR-Cas. Many additional anti-phage systems have been identified using computational approaches based on genomic co-location within defence islands, but these screens may not be exhaustive. Here we developed an experimental selection scheme agnostic to genomic context to identify defence systems in 71 diverse E. coli strains. Our results unveil 21 conserved defence systems, none of which were previously detected as enriched in defence islands. Additionally, our work indicates that intact prophages and mobile genetic elements are primary reservoirs and distributors of defence systems in E. coli, with defence systems typically carried in specific locations or hotspots. These hotspots encode dozens of additional uncharacterized defence system candidates. Our findings reveal an extended landscape of antiviral immunity in E. coli and provide an approach for mapping defence systems in other species.

RevDate: 2022-09-15

Yu Y, Zhang Z, Dong X, et al (2022)

Pangenomic analysis of Chinese gastric cancer.

Nature communications, 13(1):5412.

Pangenomic study might improve the completeness of human reference genome (GRCh38) and promote precision medicine. Here, we use an automated pipeline of human pangenomic analysis to build gastric cancer pan-genome for 185 paired deep sequencing data (370 samples), and characterize the gene presence-absence variations (PAVs) at whole genome level. Genes ACOT1, GSTM1, SIGLEC14 and UGT2B17 are identified as highly absent genes in gastric cancer population. A set of genes from unaligned sequences with GRCh38 are predicted. We successfully locate one of predicted genes GC0643 on chromosome 9q34.2. Overexpression of GC0643 significantly inhibits cell growth, cell migration and invasion, cell cycle progression, and induces cell apoptosis in cancer cells. The tumor suppressor functions can be reversed by shGC0643 knockdown. The GC0643 is approved by NCBI database (GenBank: MW194843.1). Collectively, the robust pan-genome strategy provides a deeper understanding of the gene PAVs in the human cancer genome.

RevDate: 2022-09-15

Ruggieri AA, Livraghi L, Lewis JJ, et al (2022)

A butterfly pan-genome reveals that a large amount of structural variation underlies the evolution of chromatin accessibility.

Genome research pii:gr.276839.122 [Epub ahead of print].

Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual H. charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.

RevDate: 2022-09-16

Bhat SV, Maughan H, Cameron ADS, et al (2022)

Phylogenomic analysis of the genus Delftia reveals distinct major lineages with ecological specializations.

Microbial genomics, 8(9):.

Delftia is a diverse betaproteobacterial genus with many strains having agricultural and industrial relevance, including plant-growth promotion, bioremediation of hydrocarbon-contaminated soils, and heavy metal immobilization. Delftia spp. are broadly distributed in the environment, and have been isolated from plant hosts as well as healthy and diseased animal hosts, yet the genetic basis of this ecological versatility has not been characterized. Here, we present a phylogenomic comparison of published Delftia genomes and show that the genus is divided into two well-supported clades: one 'Delftia acidovorans' clade with isolates from soils and plant rhizospheres, and a second 'Delftia lacustris and Delftia tsuruhatensis' clade with isolates from humans and sludge. The pan-genome inferred from 61 Delftia genomes contained over 28 000 genes, of which only 884 were found in all genomes. Analysis of industrially relevant functions highlighted the ecological versatility of Delftia and supported their role as generalists.

RevDate: 2022-09-15

Jiang C, Kasai H, Mino S, et al (2022)

The pan-genome of Splendidus clade species in the family Vibrionaceae: insights into evolution, adaptation, and pathogenicity.

Environmental microbiology [Epub ahead of print].

The Splendidus clade is the largest clade in Vibrionaceae, and its members are often related to mortality of marine animals with huge economic losses. The molecular bases of their pathogenicity and virulence, however, remain largely unknown. In particular, the complete genome sequences of the Splendidus clade species are rarely registered, which is one of the obstacles to predict core and/or unique genes responsible to their adaptation and pathogenicity, and to perform a fine scale meta-transcriptome during bacterial infection to their hosts. In this study, we obtained the complete genomes of all type strains in the Splendidus clade and revealed that 1) different genome sizes (4.4-5.9 Mb) with V. lentus the biggest and most of them had several big plasmids, likely because of the different features on mobilome elements, 2) the Splendidus clade consists of 19 species except V. cortegadensis, and 3 sub-clades (SC) were defined with the 15 most closely related members as SC1; 3) different carbohydrate degradation preferences may be the result of environmental adaptation, 4) a broad prediction of virulence factors (VFs) revealed core and species unique VF genes. This article is protected by copyright. All rights reserved.

RevDate: 2022-09-15

Rosconi F, Rudmann E, Li J, et al (2022)

A bacterial pan-genome makes gene essentiality strain-dependent and evolvable.

Nature microbiology [Epub ahead of print].

Many bacterial species are represented by a pan-genome, whose genetic repertoire far outstrips that of any single bacterial genome. Here we investigate how a bacterial pan-genome might influence gene essentiality and whether essential genes that are initially critical for the survival of an organism can evolve to become non-essential. By using Transposon insertion sequencing (Tn-seq), whole-genome sequencing and RNA-seq on a set of 36 clinical Streptococcus pneumoniae strains representative of >68% of the species' pan-genome, we identify a species-wide 'essentialome' that can be subdivided into universal, core strain-specific and accessory essential genes. By employing 'forced-evolution experiments', we show that specific genetic changes allow bacteria to bypass essentiality. Moreover, by untangling several genetic mechanisms, we show that gene essentiality can be highly influenced by and/or be dependent on: (1) the composition of the accessory genome, (2) the accumulation of toxic intermediates, (3) functional redundancy, (4) efficient recycling of critical metabolites and (5) pathway rewiring. While this functional characterization underscores the evolvability potential of many essential genes, we also show that genes with differential essentiality remain important antimicrobial drug target candidates, as their inactivation almost always has a severe fitness cost in vivo.

RevDate: 2022-09-13

Beavan AJS, JO McInerney (2022)

Gene essentiality evolves across a pangenome.

Nature microbiology [Epub ahead of print].

RevDate: 2022-09-12

Batarseh TN, Morales-Cruz A, Ingel B, et al (2022)

Using Genomes and Evolutionary Analyses to Screen for Host-Specificity and Positive Selection in the Plant Pathogen Xylella fastidiosa.

Applied and environmental microbiology [Epub ahead of print].

Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2, which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya, which modulates gene expression in pathogenic bacteria, and barA, a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCE Xylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation.

RevDate: 2022-09-10

Irfan M, Tariq M, Basharat Z, et al (2022)

Genomic analysis of Chryseobacterium indologenes and conformational dynamics of the selected DD-peptidase.

Research in microbiology pii:S0923-2508(22)00071-7 [Epub ahead of print].

Chrysobacterium indologenes is an emerging MDR pathogen that belongs to the family Flavobacteriaceae. The genome of the C. indologenes, isolated from the nephrotic patient, was sequenced through Illumina MiSeq. The pangenomics of available 56 C. indologenes strains using BPGA revealed an open pangenome (n=5553 CDS), core genome (2141), and accessory genome (2013). The CEG/DEG database identified 662 essential genes that drastically reduced to 68 genes after non-homology analyses towards human and gut microbiome. Further filtering the data for other drug target prioritizing parameters resulted in 32 putative targets. Keeping in view the crucial role played in cell wall biosynthesis, dacB was selected as the final target that encodes D-alanyl-D-alanine carboxypeptidase/endopeptidase (DD-peptidase). The 3D structure of dacB was modelled and rendered to docking analyses against two compound libraries of African plants (n=6842) and Tibetan medicines (n=52). The ADMET profiling exhibited the physicochemical properties of final compounds. The MD simulations showed the stability of inhibitor-DD-peptidase complex and interactions in terms of RMSD, RMSF, binding free energy calculation and H-bonding. We propose that the novel compounds Leptopene and ZINC95486338 from our findings might be potent DD-peptidase inhibitors that could aid in the development of new antibiotic-resistant therapy for the emerging MDR C. indologenes.

RevDate: 2022-09-18

Ribeiro IDA, Bach E, LMP Passaglia (2022)

Alternative nitrogenase of Paenibacillus sonchi genomovar Riograndensis: An insight in the origin of Fe-nitrogenase in the Paenibacillaceae family.

Molecular phylogenetics and evolution, 177:107624 pii:S1055-7903(22)00237-8 [Epub ahead of print].

Paenibacillus sonchi genomovar Riograndensis is a nitrogen-fixing bacteria isolated from wheat that displays diverse plant growth-promoting abilities. Beyond conventional Mo-nitrogenase, this organism also harbors an alternative Fe-nitrogenase, whose many aspects related to regulation, physiology, and evolution remain to be elucidated. In this work, the origins of this alternative system were investigated, exploring the distribution and diversification of nitrogenases in the Panibacillaceae family. Our analysis showed that diazotrophs represent 17% of Paenibacillaceae genomes, of these, only 14.4% (2.5% of all Paenibacillaceae genomes) also contained Fe or V- nitrogenases. Diverse nif-like sequences were also described, occurring mainly in genomes that also harbor the alternative systems. The analysis of genomes containing Fe-nitrogenase showed a conserved cluster of nifEN anfHDGK across three genera: Gorillibacterium, Fontibacillus, and Paenibacillus. A phylogeny of anfHDGK separated the Fe-nitrogenases into three main groups. Our analysis suggested that Fe-nitrogenase was acquired by the ancestral lineage of Fontibacillus, Gorillibacterium, and Paenibacillus genera via horizontal gene transfer (HGT), and further events of transfer and gene loss marked the evolution of this alternative nitrogenase in these groups. The species phylogeny of N-fixing Paenibacillaceae separated the diazotrophs into five clades, one of these containing all occurrences of strains harboring alternative nitrogenases in the Paenibacillus genus. The pangenome of this clade is open and composed of more than 96% of accessory genes. Diverse functional categories were enriched in the flexible genome, including functions related to replication and repair. The latter involved diverse genes related to HGT, suggesting that such events may have an important role in the evolution of diazotrophic Paenibacillus. This study provided an insight into the organization, distribution, and evolution of alternative nitrogenase genes in Paenibacillaceae, considering different genomic aspects.

RevDate: 2022-09-09

de Lima Ferreira JK, de Mello Varani A, Tótola MR, et al (2022)

Phylogenomic characterization and pangenomic insights into the surfactin-producing bacteria Bacillus subtilis strain RI4914.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.

RevDate: 2022-09-10

Zhai Y, C Wei (2022)

Open pangenome of Lactococcus lactis generated by a combination of metagenome-assembled genomes and isolate genomes.

Frontiers in microbiology, 13:948138.

Lactococcus lactis (L. lactis) is a well isolated and cultured lactic acid bacterium, but if utilizing the isolate genomes alone, the genome-based analysis of this taxon would be incomplete, because there are still uncultured strains in some ecological niches. In this study, we recovered 93 high-quality metagenome-assembled genomes (MAGs) of L. lactis from food and human gut metagenomes with a culture-independent method. We then constructed a unified genome catalog of L. lactis by integrating these MAGs with 70 publicly available isolated genomes. Having this comprehensive resource, we assessed the genomic diversity and phylogenetic relationships to further explore the genetic and functional properties of L. lactis. An open pangenome of L. lactis was generated using our genome catalog, consisting of 13,066 genes in total, from which 5,448 genes were not identified in the isolate genomes. The core genome-based phylogenetic analysis showed that L. lactis strains we collected were separated into two main subclades corresponding to two subspecies, with some uncultured phylogenetic lineages discovered. The species disparity was also indicated in PCA analysis based on accessory genes of our pangenome. These various analyzes shed further light on unexpectedly high diversity within the taxon at both genome and gene levels and gave clues about its population structure and evolution. Lactococcus lactis has a long history of safe use in food fermentations and is considered as one of the important probiotic microorganisms. Obtaining the complete genetic information of L. lactis is important to the food and health industry. However, it can naturally inhabit many environments other than dairy products, including drain water and human gut samples. Here we presented an open pan-genome of L. lactis constructed from 163 high-quality genomes obtained from various environments, including MAGs recovered from environmental metagenomes and isolate genomes. This study expanded the genetic information of L. lactis about one third, including more than 5,000 novel genes found in uncultured strains. This more complete gene repertoire of L. lactis is crucial to further understanding the genetic and functional properties. These properties may be harnessed to impart additional value to dairy fermentation or other industries.

RevDate: 2022-09-13
CmpDate: 2022-09-12

Lau NS, Heng WL, Miswan N, et al (2022)

Comparative Genomic Analyses of the Genus Photobacterium Illuminate Biosynthetic Gene Clusters Associated with Antagonism.

International journal of molecular sciences, 23(17):.

The genus Photobacterium is known for its ecophysiological versatility encompassing free-living, symbiotic, and pathogenic lifestyles. Photobacterium sp. CCB-ST2H9 was isolated from estuarine sediment collected at Matang Mangrove, Malaysia. In this study, the genome of CCB-ST2H9 was sequenced, and the pan-genome of 37 Photobacterium strains was analysed. Phylogeny based on core genes showed that CCB-ST2H9 clustered with P. galatheae, forming a distinct clade with P. halotolerans, P. salinisoli, and P. arenosum. The core genome of Photobacterium was conserved in housekeeping functions, while the flexible genome was well represented by environmental genes related to energy production and carbohydrate metabolism. Genomic metrics including 16S rRNA sequence similarity, average nucleotide identity, and digital DNA-DNA hybridization values were below the cut-off for species delineation, implying that CCB-ST2H9 potentially represents a new species. Genome mining revealed that biosynthetic gene clusters (BGCs) involved in producing antimicrobial compounds such as holomycin in CCB-ST2H9 could contribute to the antagonistic potential. Furthermore, the EtOAc extract from the culture broth of CCB-ST2H9 exhibited antagonistic activity against Vibrio spp. Intriguingly, clustering based on BGCs profiles grouped P. galatheae, P. halotolerans, P. salinisoli, P. arenosum, and CCB-ST2H9 together in the heatmap by the presence of a large number of BGCs. These BGCs-rich Photobacterium strains represent great potential for bioactive secondary metabolites production and sources for novel compounds.

RevDate: 2022-09-13
CmpDate: 2022-09-12

Ravin NV, Rudenko TS, Smolyakov DD, et al (2022)

History of the Study of the Genus Thiothrix: From the First Enrichment Cultures to Pangenomic Analysis.

International journal of molecular sciences, 23(17):.

Representatives of the genus Thiothrix are filamentous, sulfur-oxidizing bacteria found in flowing waters with counter-oriented sulfide and oxygen gradients. They were first described at the end of the 19th century, but the first pure cultures of this species only became available 100 years later. An increase in the number of described Thiothrix species at the beginning of the 21st century shows that the classical phylogenetic marker, 16S rRNA gene, is not informative for species differentiation, which is possible based on genome analysis. Pangenome analysis of the genus Thiothrix showed that the core genome includes genes for dissimilatory sulfur metabolism and central metabolic pathways, namely the Krebs cycle, Embden-Meyerhof-Parnas pathway, glyoxylate cycle, Calvin-Benson-Bassham cycle, and genes for phosphorus metabolism and amination. The shell part of the pangenome includes genes for dissimilatory nitrogen metabolism and nitrogen fixation, for respiration with thiosulfate. The dispensable genome comprises genes predicted to encode mainly hypothetical proteins, transporters, transcription regulators, methyltransferases, transposases, and toxin-antitoxin systems.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Yu L, Zang X, Chen Y, et al (2022)

Phenotype-genotype analysis of Latilactobacills curvatus from different niches: Carbohydrate metabolism, antibiotic resistance, bacteriocin, phage fragments and linkages with CRISPR-Cas systems.

Food research international (Ottawa, Ont.), 160:111640.

The potential probiotic function of Latilactobacills curvatus has attracted the attention of researchers. To explore the differences in the genomes of L. curvatus, nine strains were isolated from various sources, including feces and fermented vegetables and compared with 25 strains from the NCBI database. The findings indicated that the average genome size, GC content, and CDS of L. curvatus were 1.94 MB, 41.9%, and 1825, respectively. Its core genome is associated with transcription, translation, carbohydrate transport and metabolism, and defense functions. The pan-genome of L. curvatus was in a closed state. The genetic diversity of L. curatus is mainly manifested in its ability to use carbohydrates, antibiotic resistance, bacteriocin operon, and polymeric regularly interspaced short palindromic repeats (CRISPR)-Cas for bacterial immunity. The CRISPR system of 34 strains of L. curvatus was predominantly found to be of the IIA type with a few IIC and IE types. These findings will contribute to a better understanding of this species.

RevDate: 2022-09-08

McLean AR, Torres-Morales J, Dewhirst FE, et al (2022)

Site-tropism of streptococci in the oral microbiome.

Molecular oral microbiology [Epub ahead of print].

A detailed understanding of where bacteria localize is necessary to advance microbial ecology and microbiome-based therapeutics. The site-specialist hypothesis predicts that most microbes in the human oral cavity have a primary habitat type within the mouth where they are most abundant. We asked whether this hypothesis accurately describes the distribution of the members of the genus Streptococcus, a clinically relevant taxon that dominates most oral sites. Prior analysis of 16S rRNA gene sequencing data indicated that some oral Streptococcus clades are site-specialists while others may be generalists. However, within complex microbial populations composed of numerous closely related species and strains, such as the oral streptococci, genome-scale analysis is necessary to provide the resolution to discriminate closely related taxa with distinct functional roles. Here we assess whether individual species within this genus are specialists using publicly available genomic sequence data that provides species-level resolution. We chose a set of high-quality representative genomes for human oral Streptococcus species. Onto these genomes, we mapped shotgun metagenomic sequencing reads from supragingival plaque, tongue dorsum, and other sites in the oral cavity. We found that every abundant Streptococcus species in the healthy human oral cavity showed strong site tropism and that even closely related species such as S. mitis, S. oralis, and S. infantis specialized in different sites. These findings indicate that closely related bacteria can have distinct habitat distributions in the absence of dispersal limitation and under similar environmental conditions and immune regimes. Substantial overlap between the core genes of these three species suggests that site-specialization is determined by subtle differences in genomic content. This article is protected by copyright. All rights reserved.

RevDate: 2022-09-07

Zhong C, Qu B, Hu G, et al (2022)

Pan-Genome Analysis of Campylobacter: Insights on the Genomic Diversity and Virulence Profile.

Microbiology spectrum [Epub ahead of print].

The genus Campylobacter contains pathogens that cause bacterial gastroenteritis in humans and animals. Despite large-scale sequencing efforts to raise clinical awareness of Campylobacter, little is known about the diversity and functions of virulence factors. Here, we constructed the pan-genome of Campylobacter using 39 representative genomes, elucidating their genetic diversity, evolutionary characteristics, and virulence and resistance profiles. The Campylobacter pan-genome was open and showed extensive genome variability, with high levels of gene expansion and contraction as the organism evolved. These Campylobacter members had diverse virulence gene content, and six potential core virulence genes (porA, PEB4, cheY, htrB, Cj1135, and kpsF) have been identified. The conserved mechanisms for Campylobacter pathogenicity were related to adherence, motility, and immune modulation. We emphasized the relative importance of variable virulence genes. Many virulence genes have experienced expansion or contraction in specific lineages, which may be one of the factors causing differences in the content of virulence genes. Additionally, these Campylobacter genomes have a high prevalence of the cmeA and cmeC genes, which are linked to the CmeABC pump and contribute to multidrug resistance. The genomic variations, core and variable virulence factors, and resistance genes of Campylobacter characterized in this study would contribute to a better understanding of the virulence of Campylobacter and more effective use of candidates for drug development and prevention of Campylobacter infections. IMPORTANCE Pathogenic members of the genus Campylobacter are recognized as one of the major causative agents of human bacterial gastroenteritis. This study revealed the pan-genome of 39 Campylobacter species, provided the most updated reconstruction of the global virulence gene pool of 39 Campylobacter species, and identified species-related virulence differences. This study highlighted the basic conserved functionality and specificity of pathogenicity that are crucial to infection, which was critical for improving the diagnosis and prevention of Campylobacter infections.

RevDate: 2022-09-15

Hitch TCA, Bisdorf K, Afrizal A, et al (2022)

A taxonomic note on the genus Prevotella: Description of four novel genera and emended description of the genera Hallella and Xylanibacter.

Systematic and applied microbiology, 45(6):126354 pii:S0723-2020(22)00061-3 [Epub ahead of print].

The genus Prevotella comprises 55 species with validly published, and correct, names (at June 2021) that are phenotypically, ecologically and functionally diverse. This study used a range of comparative genome approaches (marker gene-based genome phylogeny, core genome phylogeny, average amino acid identity, percentage of conserved proteins and clade-specific marker genes) to identify large differences between the 53 species for which genomes are available, as well as two effectively published yet not validly named species and four novel species. These differences were consistent between the various analysis methods and justify the separation of Prevotella into multiple genera. While the distribution across 19 ecosystem types was unique for each species and inconsistent within clades, the functional repertoire based on the presence/absence of both PFAMs and CAZy families revealed distinct clustering based on the proposed genera. Based on the integration of all results, we propose the reclassification of species previously assigned to the genus Prevotella into seven genera, including four novel genera for which the names Segatella, Hoylesella, Leyella and Palleniella are proposed. In addition to the reclassification of Prevotella, this work describes four novel species, Hallella faecis, Xylanibacter rodentium, Xylanibacter muris, and Palleniella intestinalis.

RevDate: 2022-09-06

Cai K, Kuang L, Yue W, et al (2022)

Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses.

Frontiers in plant science, 13:964888.

Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.

RevDate: 2022-09-17

Ribeiro M, Sousa M, Borges V, et al (2022)

Bioinformatics study of expression from genomes of epidemiologically related MRSA CC398 isolates from human and wild animal samples.

Journal of proteomics, 268:104714.

One of the most important livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) genetic lineages is the clonal complex (CC) 398, which can cause typical S. aureus-associated infections in people. In this work, whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics were applied to study the genetic characteristics of three MRSA CC398 isolates recovered from humans (strains C5621 and C9017), and from an animal (strain OR418). Of the three strains, C9017 presented the broadest resistance genotype, including resistance to fluroquinolone, clindamycin, tiamulin, macrolide and aminoglycoside antimicrobial classes. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains. For example, the immunoglobulin-binding protein Sbi was more abundant in OR418. Considering that Sbi is a multifunctional immune evasion factor in S. aureus, the results point to OR418 strain having high zoonotic potential. Overall, multiomics biomarker signatures can assume an important role to advance precision medicine in the years to come. SIGNIFICANCE: MRSA is one of the most representative drug-resistant pathogens and its dissemination is increasing due to MRSA capability of establishing new reservoirs. LA-MRSA is considered an emerging problem worldwide and CC398 is one of the most important genetic lineages. In this study, three MRSA CC398 isolates recovered from humans and from a wild animal were analyzed through whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics in order to gather systems-wide omics data and better understand the genetic characteristics of this lineage to identify distinctive markers and genomic features of relevance to public health.

RevDate: 2022-09-03

Dai Z, Wu T, Xu S, et al (2022)

Characterization of toxin-antitoxin systems from public sequencing data: A case study in Pseudomonas aeruginosa.

Frontiers in microbiology, 13:951774.

The toxin-antitoxin (TA) system is a widely distributed group of genetic modules that play important roles in the life of prokaryotes, with mobile genetic elements (MGEs) contributing to the dissemination of antibiotic resistance gene (ARG). The diversity and richness of TA systems in Pseudomonas aeruginosa, as one of the bacterial species with ARGs, have not yet been completely demonstrated. In this study, we explored the TA systems from the public genomic sequencing data and genome sequences. A small scale of genomic sequencing data in 281 isolates was selected from the NCBI SRA database, reassembling the genomes of these isolates led to the findings of abundant TA homologs. Furthermore, remapping these identified TA modules on 5,437 genome/draft genomes uncovers a great diversity of TA modules in P. aeruginosa. Moreover, manual inspection revealed several TA systems that were not yet reported in P. aeruginosa including the hok-sok, cptA-cptB, cbeA-cbtA, tomB-hha, and ryeA-sdsR. Additional annotation revealed that a large number of MGEs were closely distributed with TA. Also, 16% of ARGs are located relatively close to TA. Our work confirmed a wealth of TA genes in the unexplored P. aeruginosa pan-genomes, expanded the knowledge on P. aeruginosa, and provided methodological tips on large-scale data mining for future studies. The co-occurrence of MGE, ARG, and TA may indicate a potential interaction in their dissemination.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Anonymous (2022)

One pangenome to bind them all.

Nature biotechnology, 40(9):1301.

RevDate: 2022-08-30
CmpDate: 2022-08-30

Tian C, Xing M, Fu L, et al (2022)

Emergence of uncommon KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases.

Frontiers in cellular and infection microbiology, 12:943735.

Objective: To characterize one KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases.

Methods: A. pittii TCM strain was isolated from a bloodstream infection (BSI). Antimicrobial susceptibility tests were conducted via disc diffusion and broth microdilution. Stability experiments of bla NDM-1 and bla OXA-820 carbapenemase genes were further performed. Whole-genome sequencing (WGS) was performed on the Illumina and Oxford Nanopore platforms. Multilocus sequence typing (MLST) was analyzed based on the Pasteur and Oxford schemes. Resistance genes, virulence factors, and insertion sequences (ISs) were identified with ABRicate based on ResFinder 4.0, virulence factor database (VFDB), and ISfinder. Capsular polysaccharide (KL), lipooligosaccharide outer core (OCL), and plasmid reconstruction were tested using Kaptive and PLACNETw. PHASTER was used to predict prophage regions. A comparative genomics analysis of all ST220 A. pittii strains from the public database was carried out. Point mutations, average nucleotide identity (ANI), DNA-DNA hybridization (DDH) distances, and pan-genome analysis were performed.

Results: A. pittii TCM was ST220Pas and ST1818Oxf with KL38 and OCL6, respectively. It was resistant to imipenem, meropenem, and ciprofloxacin but still susceptible to amikacin, colistin, and tigecycline. WGS revealed that A. pittii TCM contained one circular chromosome and four plasmids. The Tn125 composite transposon, including bla NDM-1, was located in the chromosome with 3-bp target site duplications (TSDs). Many virulence factors and the bla OXA-820 carbapenemase gene were also identified. The stability assays revealed that bla NDM-1 and bla OXA-820 were stabilized by passage in an antibiotic-free medium. Moreover, 12 prophage regions were identified in the chromosome. Phylogenetic analysis showed that there are 11 ST220 A. pittii strains, and one collected from Anhui, China was closely related. All ST220 A. pittii strains presented high ANI and DDH values; they ranged from 99.85% to 100% for ANI and from 97.4% to 99.9% for DDH. Pan-genome analysis revealed 3,200 core genes, 0 soft core genes, 1,571 shell genes, and 933 cloud genes among the 11 ST220 A. pittii strains.

Conclusions: The coexistence of chromosomal NDM-1 and OXA-820 carbapenemases in A. pittii presents a huge challenge in healthcare settings. Increased surveillance of this species in hospital and community settings is urgently needed.

RevDate: 2022-08-30

Yousaf M, Ullah A, Sarosh N, et al (2022)

Design of Multi-Epitope Vaccine for Staphylococcus saprophyticus: Pan-Genome and Reverse Vaccinology Approach.

Vaccines, 10(8):.

Staphylococcus saprophyticus is a Gram-positive coccus responsible for the occurrence of cystitis in sexually active, young females. While effective antibiotics against this organism exist, resistant strains are on the rise. Therefore, prevention via vaccines appears to be a viable solution to address this problem. In comparison to traditional techniques of vaccine design, computationally aided vaccine development demonstrates marked specificity, efficiency, stability, and safety. In the present study, a novel, multi-epitope vaccine construct was developed against S. saprophyticus by targeting fully sequenced proteomes of its five different strains, which were examined using a pangenome and subtractive proteomic strategy to characterize prospective vaccination targets. The three immunogenic vaccine targets which were utilized to map the probable immune epitopes were verified by annotating the entire proteome. The predicted epitopes were further screened on the basis of antigenicity, allergenicity, water solubility, toxicity, virulence, and binding affinity towards the DRB*0101 allele, resulting in 11 potential epitopes, i.e., DLKKQKEKL, NKDLKKQKE, QDKLKDKSD, NVMDNKDLE, TSGTPDSQA, NANSDGSSS, GSDSSSSNN, DSSSSNNDS, DSSSSDRNN, SSSDRNNGD, and SSDDKSKDS. All these epitopes have the efficacy to cover 99.74% of populations globally. Finally, shortlisted epitopes were joined together with linkers and three different adjuvants to find the most stable and immunogenic vaccine construct. The top-ranked vaccine construct was further scrutinized on the basis of its physicochemical characterization and immunological profile. The non-allergenic and antigenic features of modeled vaccine constructs were initially validated and then subjected to docking with immune receptor major histocompatibility complex I and II (MHC-I and II), resulting in strong contact. In silico cloning validations yielded a codon adaptation index (CAI) value of 1 and an ideal percentage of GC contents (46.717%), indicating a putative expression of the vaccine in E. coli. Furthermore, immune simulation demonstrated that, after injecting the proposed MEVC, powerful antibodies were produced, resulting in the sharpest peaks of IgM + IgG formation (>11,500) within 5 to 15 days. Experimental testing against S. saprophyticus can evaluate the safety and efficacy of these prophylactic vaccination designs.

RevDate: 2022-08-30

Jing L, Xu Z, Zhang Y, et al (2022)

Metagenomic Insights into Pathogenic Characterization of ST410 Acinetobacter nosocomialis Prevalent in China.

Pathogens (Basel, Switzerland), 11(8):.

Acinetobacter nosocomialis is a prevalent opportunistic pathogen that causes hospital-acquired infections. The increasing threats from A. nosocomialis infections have led to attention from the scientific and medical communities. Metagenomic next-generation sequencing (mNGS) was performed for an exudate specimen collected from an ICU patient with wound infection, followed by sepsis, in Tongji Hospital. Three assembly strategies were employed to recover the genome of A. nosocomialis in the metagenomic sample. Together with publicly available genomes of A. nosocomialis, the features of population genetics and molecular epidemiology were deeply analyzed. A draft genome was reconstructed for the metagenomic strain WHM01, derived from the ST410 A. nosocomialis dominating the microbial community, thereby prompting its highly pathogenic risk, which is associated with infection and persistence. The structure of the bacterial pangenome was characterized, including the 1862 core and 11,815 accessory genes present in the 157 strains. The genetic diversity of the genes coding for the 128 virulence factors assigned to 14 functional categories was uncovered in this nosocomial pathogen, such as the lipooligosaccharide, capsule, type IV pilus, and outer membrane proteins. Our work revealed genomic properties of ST410 A. nosocomialis, which is prevalent in China, and further highlighted that metagenomic surveillance may be a prospective application for evaluating the pathogenic characteristics of the nosocomial opportunistic pathogens.

RevDate: 2022-08-30

Zoclanclounon YAB, Rostás M, Chung NJ, et al (2022)

Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame.

Life (Basel, Switzerland), 12(8):.

Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.

RevDate: 2022-08-30

Ogaji YO, Lee RC, Sawbridge TI, et al (2022)

De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea.

Journal of fungi (Basel, Switzerland), 8(8):.

Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Woldegiorgis ST, Wu T, Gao L, et al (2022)

Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs.

Genes, 13(8):.

The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Rodriguez Jimenez A, Guiglielmoni N, Goetghebuer L, et al (2022)

Comparative genome analysis of Vagococcus fluvialis reveals abundance of mobile genetic elements in sponge-isolated strains.

BMC genomics, 23(1):618.

BACKGROUND: Vagococcus fluvialis is a species of lactic acid bacteria found both free-living in river and seawater and associated to hosts, such as marine sponges. This species has been greatly understudied, with no complete genome assembly available to date, which is essential for the characterisation of the mobilome.

RESULTS: We sequenced and assembled de novo the complete genome sequences of five V. fluvialis isolates recovered from marine sponges. Pangenome analysis of the V. fluvialis species (total of 17 genomes) showed a high intraspecific diversity, with 45.5% of orthologous genes found to be strain specific. Despite this diversity, analyses of gene functions clustered all V. fluvialis species together and separated them from other sequenced Vagococcus species. V. fluvialis strains from different habitats were highly similar in terms of functional diversity but the sponge-isolated strains were enriched in several functions related to the marine environment. Furthermore, sponge-isolated strains carried a significantly higher number of mobile genetic elements (MGEs) compared to previously sequenced V. fluvialis strains from other environments. Sponge-isolated strains carried up to 4 circular plasmids each, including a 48-kb conjugative plasmid. Three of the five strains carried an additional circular extrachromosomal sequence, assumed to be an excised prophage as it contained mainly viral genes and lacked plasmid replication genes. Insertion sequences (ISs) were up to five times more abundant in the genomes of sponge-isolated strains compared to the others, including several IS families found exclusively in these genomes.

CONCLUSIONS: Our findings highlight the dynamics and plasticity of the V. fluvialis genome. The abundance of mobile genetic elements in the genomes of sponge-isolated V. fluvialis strains suggests that the mobilome might be key to understanding the genomic signatures of symbiosis in bacteria.

RevDate: 2022-08-25

Ashrafi S, Kuzmanović N, Patz S, et al (2022)

Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies.

Microbiology spectrum [Epub ahead of print].

Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.

RevDate: 2022-08-25

Liu H, Wang X, Liu S, et al (2022)

Citrus Pan-genome to Breeding Database (CPBD): A comprehensive genome database for citrus breeding.

Molecular plant pii:S1674-2052(22)00269-6 [Epub ahead of print].

RevDate: 2022-08-24

Holm MKA, Jørgensen KM, Bagge K, et al (2022)

Estimated Roles of the Carrier and the Bacterial Strain When Methicillin-Resistant Staphylococcus aureus Decolonization Fails: a Case-Control Study.

Microbiology spectrum [Epub ahead of print].

Methicillin-resistant Staphylococcus aureus (MRSA) is a common bacterial pathogen that frequently colonizes healthy individuals, with potential to cause invasive infection. In Denmark, to keep the prevalence low, MRSA carriers are recommended to undergo decolonization treatments, but achieving decolonization is challenging. Knowledge about the factors contributing to decolonization is scarce. We aimed to identify bacterial genome and clinical factors influencing MRSA decolonization. We identified all new MRSA patients above 2 years of age within the Hvidovre catchment area, Copenhagen, Denmark, in 2017 and 2018. Carriers were defined as chronic carriers (cases) if they were MRSA positive after two or more treatments and as nonchronic carriers (controls) if they were MRSA free after the first or second treatment. Using whole-genome sequencing (WGS), we constructed a pangenome of bacterial strains. With the incorporation of bacterial genome and clinical patient data, machine learning and multivariate analyses were performed to determine the factors associated with decolonization. A total of 477 MRSA carriers were included. An age of ≥13 years was significantly associated with nonchronic carriage. We identified 278 bacterial genetic features that were statistically significantly associated with chronic carriage (P < 0.05 by Fisher's exact test). Chronic MRSA carriage was predicted with 68% accuracy using a combination of bacterial genome data and patient clinical data. Decolonization success is multifactorial. Apart from the 68% predicted accuracy found in this study, we estimate that the remaining 32% is a result of host factors and microbiome composition. IMPORTANCE Carriage of methicillin-resistant Staphylococcus aureus (MRSA) and other multiresistant bacteria is a prerequisite for infection and transmission. Successful decolonization treatment removes these risks. We aimed to identify bacterial genome and host clinical factors that influence MRSA decolonization to estimate the roles of the carrier and the bacterial strain, respectively, when decolonization fails. The long-term goal, beyond this study, is to optimize decolonization success, minimize MRSA transmission, and, ultimately, improve the quality of life of MRSA carriers.

RevDate: 2022-08-27
CmpDate: 2022-08-25

Gui S, Wei W, Jiang C, et al (2022)

A pan-Zea genome map for enhancing maize improvement.

Genome biology, 23(1):178.

BACKGROUND: Maize (Zea mays L.) is at the vanguard facing the upcoming breeding challenges. However, both a super pan-genome for the Zea genus and a comprehensive genetic variation map for maize breeding are still lacking.

RESULTS: Here, we construct an approximately 6.71-Gb pan-Zea genome that contains around 4.57-Gb non-B73 reference sequences from fragmented de novo assemblies of 721 pan-Zea individuals. We annotate a total of 58,944 pan-Zea genes and find around 44.34% of them are dispensable in the pan-Zea population. Moreover, 255,821 common structural variations are identified and genotyped in a maize association mapping panel. Further analyses reveal gene presence/absence variants and their potential roles during domestication of maize. Combining genetic analyses with multi-omics data, we demonstrate how structural variants are associated with complex agronomic traits.

CONCLUSIONS: Our results highlight the underexplored role of the pan-Zea genome and structural variations to further understand domestication of maize and explore their potential utilization in crop improvement.

RevDate: 2022-08-22

Baker JL (2022)

Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples.

mSystems [Epub ahead of print].

Obtaining complete, high-quality reference genomes is essential to the study of any organism. Recent advances in nanopore sequencing, as well as genome assembly and analysis methods, have made it possible to obtain complete bacterial genomes from metagenomic (i.e., multispecies) samples, including those from the human microbiome. In this study, methods are presented to obtain complete bacterial genomes from human saliva using complementary Oxford Nanopore (ONT) and Illumina sequencing. Applied to 3 human saliva samples, these methods resulted in 11 complete bacterial genomes: 3 Saccharibacteria clade G6 (also known as Ca. Nanogingivalaceae HMT-870), 1 Saccharibacteria clade G1 HMT-348, 2 Rothia mucilaginosa, 2 Actinomyces graevenitzii, 1 Mogibacterium diversum, 1 Lachnospiraceae HMT-096, and 1 Lancefieldella parvula; and one circular chromosome of Ruminococcaceae HMT-075 (which likely has at least 2 chromosomes). The 4 Saccharibacteria genomes, as well as the Actinomyces graeventizii genomes, represented the first complete genomes from their respective bacterial taxa. Aside from the complete genomes, the assemblies contained 147 contigs of over 500,000 bp each and thousands of smaller contigs, together representing a myriad of additional draft genomes including many which are likely nearly complete. The complete genomes enabled highly accurate pangenome analysis, which identified unique and missing features of each genome compared to its closest relatives with complete genomes available in public repositories. These features provide clues as to the lifestyle and ecological role of these bacteria within the human oral microbiota, which will be particularly useful in designing future studies of the taxa that have never been isolated or cultivated. IMPORTANCE Obtaining complete and accurate genomes is crucial to the study of any organism. Previously, obtaining complete genomes of bacteria, including those of the human microbiome, frequently required isolation of the organism, as well as low-throughput, manual sequencing methods to resolve repeat regions. Advancements in long-read sequencing technologies, including Oxford Nanopore (ONT), have made it possible to obtain complete, closed bacterial genomes from metagenomic samples. This study reports methods to obtain complete genomes from the human oral microbiome using complementary ONT and Illumina sequencing of saliva samples. Eleven complete genomes were obtained from 3 human saliva samples, with genomes of Saccharibacteria HMT-870, Saccharibacteria HMT-348, and Actinomyces graeventzii being the first complete genomes from their respective taxa. Obtaining complete bacterial genomes in a high-throughput manner will help illuminate the metabolic and ecological roles of important members of the human microbiota, particularly those that have remained recalcitrant to isolation and cultivation.

RevDate: 2022-08-23

Jia Y, Pradeep K, Vance WH, et al (2022)

Identification of two chickpea multidrug and toxic compound extrusion transporter genes transcriptionally upregulated upon aluminum treatment in root tips.

Frontiers in plant science, 13:909045.

Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 μM Al3+) and Al treatments (15, 30 μM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.

RevDate: 2022-09-17

Zhou Y, Yang L, Han X, et al (2022)

Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history.

Genome research [Epub ahead of print].

A cattle pangenome representation was created based on the genome sequences of 898 cattle representing 57 breeds. The pangenome identified 83 Mb of sequence not found in the cattle reference genome, representing 3.1% novel sequence compared with the 2.71-Gb reference. A catalog of structural variants developed from this cattle population identified 3.3 million deletions, 0.12 million inversions, and 0.18 million duplications. Estimates of breed ancestry and hybridization between cattle breeds using insertion/deletions as markers were similar to those produced by single nucleotide polymorphism-based analysis. Hundreds of deletions were observed to have stratification based on subspecies and breed. For example, an insertion of a Bov-tA1 repeat element was identified in the first intron of the APPL2 gene and correlated with cattle breed geographic distribution. This insertion falls within a segment overlapping predicted enhancer and promoter regions of the gene, and could affect important traits such as immune response, olfactory functions, cell proliferation, and glucose metabolism in muscle. The results indicate that pangenomes are a valuable resource for studying diversity and evolutionary history, and help to delineate how domestication, trait-based breeding, and adaptive introgression have shaped the cattle genome.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important; we now know that roughly eight percent of the human genome arrived sideways by viral infection—a type of HGT. In The Tangled Tree, “the grandest tale in biology….David Quammen presents the science—and the scientists involved—with patience, candor, and flair” (Nature). We learn about the major players, such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )