About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

28 Sep 2021 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 28 Sep 2021 at 01:30 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: "(horizontal OR lateral) "gene transfer"" NOT pmcbook NOT ispreviousversion NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-09-27

Wang Y, Baumdicker F, Schweiger P, et al (2021)

Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila.

BMC biology, 19(1):187.

BACKGROUND: How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS).

RESULTS: We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT).

CONCLUSION: Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation.

RevDate: 2021-09-13

Hass R, von der Ohe J, T Dittmar (2021)

Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo.

Cancers, 13(17):.

The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.

RevDate: 2021-09-08

Agarwal G, Choudhary D, Stice SP, et al (2021)

Pan-Genome-Wide Analysis of Pantoea ananatis Identified Genes Linked to Pathogenicity in Onion.

Frontiers in microbiology, 12:684756.

Pantoea ananatis, a gram negative and facultative anaerobic bacterium is a member of a Pantoea spp. complex that causes center rot of onion, which significantly affects onion yield and quality. This pathogen does not have typical virulence factors like type II or type III secretion systems but appears to require a biosynthetic gene-cluster, HiVir/PASVIL (located chromosomally comprised of 14 genes), for a phosphonate secondary metabolite, and the 'alt' gene cluster (located in plasmid and comprised of 11 genes) that aids in bacterial colonization in onion bulbs by imparting tolerance to thiosulfinates. We conducted a deep pan-genome-wide association study (pan-GWAS) to predict additional genes associated with pathogenicity in P. ananatis using a panel of diverse strains (n = 81). We utilized a red-onion scale necrosis assay as an indicator of pathogenicity. Based on this assay, we differentiated pathogenic (n = 51)- vs. non-pathogenic (n = 30)-strains phenotypically. Pan-genome analysis revealed a large core genome of 3,153 genes and a flexible accessory genome. Pan-GWAS using the presence and absence variants (PAVs) predicted 42 genes, including 14 from the previously identified HiVir/PASVIL cluster associated with pathogenicity, and 28 novel genes that were not previously associated with pathogenicity in onion. Of the 28 novel genes identified, eight have annotated functions of site-specific tyrosine kinase, N-acetylmuramoyl-L-alanine amidase, conjugal transfer, and HTH-type transcriptional regulator. The remaining 20 genes are currently hypothetical. Further, a core-genome SNPs-based phylogeny and horizontal gene transfer (HGT) studies were also conducted to assess the extent of lateral gene transfer among diverse P. ananatis strains. Phylogenetic analysis based on PAVs and whole genome multi locus sequence typing (wgMLST) rather than core-genome SNPs distinguished red-scale necrosis inducing (pathogenic) strains from non-scale necrosis inducing (non-pathogenic) strains of P. ananatis. A total of 1182 HGT events including the HiVir/PASVIL and alt cluster genes were identified. These events could be regarded as a major contributing factor to the diversification, niche-adaptation and potential acquisition of pathogenicity/virulence genes in P. ananatis.

RevDate: 2021-08-31

Agarwal G, Gitaitis RD, B Dutta (2021)

Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer.

Microorganisms, 9(8):.

Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.

RevDate: 2021-07-24

Kamal SM, Simpson DJ, Wang Z, et al (2021)

Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria.

Frontiers in microbiology, 12:696522.

The transmissible locus of stress tolerance (tLST) is found mainly in beta- and gamma-Proteobacteria and confers tolerance to elevated temperature, pressure, and chlorine. This genomic island, previously referred to as transmissible locus of protein quality control or locus of heat resistance likely originates from an environmental bacterium thriving in extreme habitats, but has been widely transmitted by lateral gene transfer. Although highly conserved, the gene content on the island is subject to evolution and gene products such as small heat shock proteins are present in several functionally distinct sequence variants. A number of these genes are xenologs of core genome genes with the gene products to widen the substrate spectrum and to be highly (complementary) expressed thus their functionality to become dominant over core genome genes. In this review, we will present current knowledge of the function of core tLST genes and discuss current knowledge on selection and counter-selection processes that favor maintenance of the tLST island, with frequent acquisition of gene products involved in cyclic di-GMP signaling, in different habitats from the environment to animals and plants, processed animal and plant products, man-made environments, and subsequently humans.

RevDate: 2021-06-19

Zhao C, Miao S, Yin Y, et al (2021)

Tripartite parasitic and symbiotic interactions as a possible mechanism of horizontal gene transfer.

Ecology and evolution, 11(11):7018-7028.

Herbivory is a highly sophisticated feeding behavior that requires abilities of plant defense suppression, phytochemical detoxification, and plant macromolecule digestion. For plant-sucking insects, salivary glands (SGs) play important roles in herbivory by secreting and injecting proteins into plant tissues to facilitate feeding. Little is known on how insects evolved secretory SG proteins for such specialized functions. Here, we investigated the composition and evolution of secretory SG proteins in the brown marmorated stink bug (Halyomorpha halys) and identified a group of secretory SG phospholipase C (PLC) genes with highest sequence similarity to the bacterial homologs. Further analyses demonstrated that they were most closely related to PLCs of Xenorhabdus, a genus of Gammaproteobacteria living in symbiosis with insect-parasitizing nematodes. These suggested that H. halys might acquire these PLCs from Xenorhabdus through the mechanism of horizontal gene transfer (HGT), likely mediated by a nematode during its parasitizing an insect host. We also showed that the original HGT event was followed by gene duplication and expansion, leading to functional diversification of the bacterial-origin PLC genes in H. halys. Thus, this study suggested that an herbivore might enhance adaptation through gaining genes from an endosymbiont of its parasite in the tripartite parasitic and symbiotic interactions.

RevDate: 2021-06-15

Hussain NAS, Kirchberger PC, Case RJ, et al (2021)

Modular Molecular Weaponry Plays a Key Role in Competition Within an Environmental Vibrio cholerae Population.

Frontiers in microbiology, 12:671092.

The type VI secretion system (T6SS) operons of Vibrio cholerae contain extraordinarily diverse arrays of toxic effector and cognate immunity genes, which are thought to play an important role in the environmental lifestyle and adaptation of this human pathogen. Through the T6SS, proteinaceous "spears" tipped with antibacterial effectors are injected into adjacent cells, killing those not possessing immunity proteins to these effectors. Here, we investigate the T6SS-mediated dynamics of bacterial competition within a single environmental population of V. cholerae. We show that numerous members of a North American V. cholerae population possess strain-specific repertoires of cytotoxic T6SS effector and immunity genes. Using pairwise competition assays, we demonstrate that the vast majority of T6SS-mediated duels end in stalemates between strains with different T6SS repertoires. However, horizontally acquired effector and immunity genes can significantly alter the outcome of these competitions. Frequently observed horizontal gene transfer events can both increase or reduce competition between distantly related strains by homogenizing or diversifying the T6SS repertoire. Our results also suggest temperature-dependent outcomes in T6SS competition, with environmental isolates faring better against a pathogenic strain under native conditions than under those resembling a host-associated environment. Taken altogether, these interactions produce density-dependent fitness effects and a constant T6SS-mediated arms race in individual V. cholerae populations, which could ultimately preserve intraspecies diversity. Since T6SSs are widespread, we expect within-population diversity in T6SS repertoires and the resulting competitive dynamics to be a common theme in bacterial species harboring this machinery.

RevDate: 2021-07-07

Assis RAB, Varani AM, Sagawa CHD, et al (2021)

A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence.

Genomics, 113(4):2513-2525.

Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Ojha AK, Shah NP, V Mishra (2021)

Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp.

Current microbiology, 78(8):2839-2849.

Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.

RevDate: 2021-07-19

Rahimlou S, Bahram M, L Tedersoo (2021)

Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia).

Microbiological research, 250:126788.

The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.

RevDate: 2021-06-04
CmpDate: 2021-06-04

Hibdige SGS, Raimondeau P, Christin PA, et al (2021)

Widespread lateral gene transfer among grasses.

The New phytologist, 230(6):2474-2486.

Lateral gene transfer (LGT) occurs in a broad range of prokaryotes and eukaryotes, occasionally promoting adaptation. LGT of functional nuclear genes has been reported among some plants, but systematic studies are needed to assess the frequency and facilitators of LGT. We scanned the genomes of a diverse set of 17 grass species that span more than 50 Ma of divergence and include major crops to identify grass-to-grass protein-coding LGT. We identified LGTs in 13 species, with significant variation in the amount each received. Rhizomatous species acquired statistically more genes, probably because this growth habit boosts opportunities for transfer into the germline. In addition, the amount of LGT increases with phylogenetic relatedness, which might reflect genomic compatibility among close relatives facilitating successful transfers. However, genetic exchanges among highly divergent species indicates that transfers can occur across almost the entire family. Overall, we showed that LGT is a widespread phenomenon in grasses that has moved functional genes across the grass family into domesticated and wild species alike. Successful LGTs appear to increase with both opportunity and compatibility.

RevDate: 2021-04-22
CmpDate: 2021-04-21

Van Vlierberghe M, Philippe H, D Baurain (2021)

Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages.

BMC research notes, 14(1):143.

OBJECTIVES: Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary.

DATA DESCRIPTION: We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.

RevDate: 2021-09-24

Ferreira JL, Coleman I, Addison ML, et al (2021)

The "Jack-of-all-Trades" Flagellum From Salmonella and E. coli Was Horizontally Acquired From an Ancestral β-Proteobacterium.

Frontiers in microbiology, 12:643180.

The γ-proteobacteria are a group of diverse bacteria including pathogenic Escherichia, Salmonella, Vibrio, and Pseudomonas species. The majority swim in liquids with polar, sodium-driven flagella and swarm on surfaces with lateral, non-chemotactic flagella. Notable exceptions are the enteric Enterobacteriaceae such as Salmonella and E. coli. Many of the well-studied Enterobacteriaceae are gut bacteria that both swim and swarm with the same proton-driven peritrichous flagella. How different flagella evolved in closely related lineages, however, has remained unclear. Here, we describe our phylogenetic finding that Enterobacteriaceae flagella are not native polar or lateral γ-proteobacterial flagella but were horizontally acquired from an ancestral β-proteobacterium. Using electron cryo-tomography and subtomogram averaging, we confirmed that Enterobacteriaceae flagellar motors resemble contemporary β-proteobacterial motors and are distinct to the polar and lateral motors of other γ-proteobacteria. Structural comparisons support a model in which γ-proteobacterial motors have specialized, suggesting that acquisition of a β-proteobacterial flagellum may have been beneficial as a general-purpose motor suitable for adjusting to diverse conditions. This acquisition may have played a role in the development of the enteric lifestyle.

RevDate: 2021-09-01
CmpDate: 2021-09-01

Haase MAB, Kominek J, Opulente DA, et al (2021)

Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss.

Genetics, 217(2):.

Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.

RevDate: 2021-05-12
CmpDate: 2021-05-12

Liu X, Lin S, Liu T, et al (2021)

Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella.

Nucleic acids research, 49(6):3427-3440.

Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.

RevDate: 2021-08-11
CmpDate: 2021-08-11

Žárský V, Klimeš V, Pačes J, et al (2021)

The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba.

Molecular biology and evolution, 38(6):2240-2259.

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).

RevDate: 2021-08-11
CmpDate: 2021-03-16

Altamia MA, Shipway JR, Stein D, et al (2021)

Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter.

International journal of systematic and evolutionary microbiology, 71(2):.

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).

RevDate: 2021-04-27
CmpDate: 2021-04-27

Epstein B, P Tiffin (2021)

Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.

Proceedings. Biological sciences, 288(1942):20201804.

Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia-legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.

RevDate: 2020-12-12

Jiao J, CF Tian (2020)

Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer?.

Computational and structural biotechnology journal, 18:3623-3631.

The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.

RevDate: 2021-03-17
CmpDate: 2021-03-17

Shinozuka H, Shinozuka M, de Vries EM, et al (2020)

Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer.

Scientific reports, 10(1):19883.

Evidence for ancestral gene transfer between Epichloë fungal endophyte ancestors and their host grass species is described. From genomes of cool-season grasses (the Poeae tribe), two Epichloë-originated genes were identified through DNA sequence similarity analysis. The two genes showed 96% and 85% DNA sequence identities between the corresponding Epichloë genes. One of the genes was specific to the Loliinae sub-tribe. The other gene was more widely conserved in the Poeae and Triticeae tribes, including wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The genes were independently transferred during the last 39 million years. The transferred genes were expressed in plant tissues, presumably retaining molecular functions. Multiple gene transfer events between the specific plant and fungal lineages are unique. A range of cereal crops is included in the Poeae and Triticeae tribes, and the Loliinae sub-tribe is consisted of economically important pasture and forage crops. Identification and characterisation of the 'natural' adaptation transgenes in the genomes of cereals, and pasture and forage grasses, that worldwide underpin the production of major foods, such as bread, meat, and milk, may change the 'unnatural' perception status of transgenic and gene-edited plants.

RevDate: 2021-01-07
CmpDate: 2021-01-07

Nagies FSP, Brueckner J, Tria FDK, et al (2020)

A spectrum of verticality across genes.

PLoS genetics, 16(11):e1009200.

Lateral gene transfer (LGT) has impacted prokaryotic genome evolution, yet the extent to which LGT compromises vertical evolution across individual genes and individual phyla is unknown, as are the factors that govern LGT frequency across genes. Estimating LGT frequency from tree comparisons is problematic when thousands of genomes are compared, because LGT becomes difficult to distinguish from phylogenetic artefacts. Here we report quantitative estimates for verticality across all genes and genomes, leveraging a well-known property of phylogenetic inference: phylogeny works best at the tips of trees. From terminal (tip) phylum level relationships, we calculate the verticality for 19,050,992 genes from 101,422 clusters in 5,655 prokaryotic genomes and rank them by their verticality. Among functional classes, translation, followed by nucleotide and cofactor biosynthesis, and DNA replication and repair are the most vertical. The most vertically evolving lineages are those rich in ecological specialists such as Acidithiobacilli, Chlamydiae, Chlorobi and Methanococcales. Lineages most affected by LGT are the α-, β-, γ-, and δ- classes of Proteobacteria and the Firmicutes. The 2,587 eukaryotic clusters in our sample having prokaryotic homologues fail to reject eukaryotic monophyly using the likelihood ratio test. The low verticality of α-proteobacterial and cyanobacterial genomes requires only three partners-an archaeal host, a mitochondrial symbiont, and a plastid ancestor-each with mosaic chromosomes, to directly account for the prokaryotic origin of eukaryotic genes. In terms of phylogeny, the 100 most vertically evolving prokaryotic genes are neither representative nor predictive for the remaining 97% of an average genome. In search of factors that govern LGT frequency, we find a simple but natural principle: Verticality correlates strongly with gene distribution density, LGT being least likely for intruding genes that must replace a preexisting homologue in recipient chromosomes. LGT is most likely for novel genetic material, intruding genes that encounter no competing copy.

RevDate: 2020-11-16
CmpDate: 2020-11-16

Sheridan PO, Raguideau S, Quince C, et al (2020)

Gene duplication drives genome expansion in a major lineage of Thaumarchaeota.

Nature communications, 11(1):5494.

Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Wang B, Gumerov VM, Andrianova EP, et al (2020)

Origins and Molecular Evolution of the NusG Paralog RfaH.

mBio, 11(5):.

The only universally conserved family of transcription factors comprises housekeeping regulators and their specialized paralogs, represented by well-studied NusG and RfaH. Despite their ubiquity, little information is available on the evolutionary origins, functions, and gene targets of the NusG family members. We built a hidden Markov model profile of RfaH and identified its homologs in sequenced genomes. While NusG is widespread among bacterial phyla and coresides with genes encoding RNA polymerase and ribosome in all except extremely reduced genomes, RfaH is mostly limited to Proteobacteria and lacks common gene neighbors. RfaH activates only a few xenogeneic operons that are otherwise silenced by NusG and Rho. Phylogenetic reconstructions reveal extensive duplications and horizontal transfer of rfaH genes, including those borne by plasmids, and the molecular evolution pathway of RfaH, from "early" exclusion of the Rho terminator and tightened RNA polymerase binding to "late" interactions with the ops DNA element and autoinhibition, which together define the RfaH regulon. Remarkably, NusG is not only ubiquitous in Bacteria but also common in plants, where it likely modulates the transcription of plastid genes.IMPORTANCE In all domains of life, NusG-like proteins make contacts similar to those of RNA polymerase and promote pause-free transcription yet may play different roles, defined by their divergent interactions with nucleic acids and accessory proteins, in the same cell. This duality is illustrated by Escherichia coli NusG and RfaH, which silence and activate xenogenes, respectively. We combined sequence analysis and recent functional and structural insights to envision the evolutionary transformation of NusG, a core regulator that we show is present in all cells using bacterial RNA polymerase, into a virulence factor, RfaH. Our results suggest a stepwise conversion of a NusG duplicate copy into a sequence-specific regulator which excludes NusG from its targets but does not compromise the regulation of housekeeping genes. We find that gene duplication and lateral transfer give rise to a surprising diversity within the only ubiquitous family of transcription factors.

RevDate: 2021-08-30
CmpDate: 2021-08-30

Rozenberg A, Oppermann J, Wietek J, et al (2020)

Lateral Gene Transfer of Anion-Conducting Channelrhodopsins between Green Algae and Giant Viruses.

Current biology : CB, 30(24):4910-4920.e5.

Channelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts. These previously unknown viral and green algal ChRs act as ACRs when expressed in cultured neuroblastoma-derived cells and are likely involved in behavioral responses to light.

RevDate: 2021-03-17
CmpDate: 2021-03-17

Colnaghi M, Lane N, A Pomiankowski (2020)

Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex.

eLife, 9:.

Prokaryotes acquire genes from the environment via lateral gene transfer (LGT). Recombination of environmental DNA can prevent the accumulation of deleterious mutations, but LGT was abandoned by the first eukaryotes in favour of sexual reproduction. Here we develop a theoretical model of a haploid population undergoing LGT which includes two new parameters, genome size and recombination length, neglected by previous theoretical models. The greater complexity of eukaryotes is linked with larger genomes and we demonstrate that the benefit of LGT declines rapidly with genome size. The degeneration of larger genomes can only be resisted by increases in recombination length, to the same order as genome size - as occurs in meiosis. Our results can explain the strong selective pressure towards the evolution of sexual cell fusion and reciprocal recombination during early eukaryotic evolution - the origin of meiotic sex.

RevDate: 2020-12-01
CmpDate: 2020-12-01

Sibbald SJ, Eme L, Archibald JM, et al (2020)

Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes.

Trends in parasitology, 36(11):927-941.

Lateral gene transfer (LGT) is well known as an important driver of genome evolution in bacteria and archaea, but its importance in eukaryote evolution has yet to be fully elucidated. There is now abundant evidence indicating that LGT has played a role in the adaptation of eukaryotes to new environments and conditions, including host-parasite interactions. However, the mechanisms and frequency of LGT across the tree of eukaryotes remain poorly understood. Here we review evidence for known and potential mechanisms of LGT into diverse eukaryote lineages with a particular focus on protists, and we discuss trends emerging from recently reported examples. We also explore the potential role of LGT in generating 'pan-genomes' in diverse eukaryotic species.

RevDate: 2021-06-17
CmpDate: 2021-06-17

Bohr LL, Mortimer TD, CS Pepperell (2020)

Lateral Gene Transfer Shapes Diversity of Gardnerella spp.

Frontiers in cellular and infection microbiology, 10:293.

Gardnerella spp. are pathognomonic for bacterial vaginosis, which increases the risk of preterm birth and the transmission of sexually transmitted infections. Gardnerella spp. are genetically diverse, comprising what have recently been defined as distinct species with differing functional capacities. Disease associations with Gardnerella spp. are not straightforward: patients with BV are usually infected with multiple species, and Gardnerella spp. are also found in the vaginal microbiome of healthy women. Genome comparisons of Gardnerella spp. show evidence of lateral gene transfer (LGT), but patterns of LGT have not been characterized in detail. Here we sought to define the role of LGT in shaping the genetic structure of Gardnerella spp. We analyzed whole genome sequencing data for 106 Gardnerella strains and used these data for pan genome analysis and to characterize LGT in the core and accessory genomes, over recent and remote timescales. In our diverse sample of Gardnerella strains, we found that both the core and accessory genomes are clearly differentiated in accordance with newly defined species designations. We identified putative competence and pilus assembly genes across most species; we also found them to be differentiated between species. Competence machinery has diverged in parallel with the core genome, with selection against deleterious mutations as a predominant influence on their evolution. By contrast, the virulence factor vaginolysin, which encodes a toxin, appears to be readily exchanged among species. We identified five distinct prophage clusters in Gardnerella genomes, two of which appear to be exchanged between Gardnerella species. Differences among species are apparent in their patterns of LGT, including their exchange with diverse gene pools. Despite frequent LGT and co-localization in the same niche, our results show that Gardnerella spp. are clearly genetically differentiated and yet capable of exchanging specific genetic material. This likely reflects complex interactions within bacterial communities associated with the vaginal microbiome. Our results provide insight into how such interactions evolve and are maintained, allowing these multi-species communities to colonize and invade human tissues and adapt to antibiotics and other stressors.

RevDate: 2021-04-09
CmpDate: 2021-04-09

Leu AO, McIlroy SJ, Ye J, et al (2020)

Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae.

mBio, 11(3):.

Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanoperedenaceae metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the Methanoperedenaceae to acquire genes for the oxidation of hydrogen and formate and the reduction of arsenate, selenate, and elemental sulfur. Numerous membrane-bound multiheme c-type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humic substances, and syntrophic partners.IMPORTANCE AOM by microorganisms limits the atmospheric release of the potent greenhouse gas methane and has consequent importance for the global carbon cycle and climate change modeling. While the oxidation of methane coupled to sulfate by consortia of anaerobic methanotrophic (ANME) archaea and bacteria is well documented, several other potential electron acceptors have also been reported to support AOM. In this study, we identify a number of novel respiratory strategies that appear to have been laterally acquired by members of the Methanoperedenaceae, as they are absent from related archaea and other ANME lineages. Expanding the known metabolic potential for members of the Methanoperedenaceae provides important insight into their ecology and suggests their role in linking methane oxidation to several global biogeochemical cycles.

RevDate: 2021-05-19
CmpDate: 2021-01-25

Ren FR, Sun X, Wang TY, et al (2020)

Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits.

The ISME journal, 14(10):2542-2553.

Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.

RevDate: 2021-06-07
CmpDate: 2021-06-07

Jaffe AL, Castelle CJ, Matheus Carnevali PB, et al (2020)

The rise of diversity in metabolic platforms across the Candidate Phyla Radiation.

BMC biology, 18(1):69.

BACKGROUND: A unifying feature of the bacterial Candidate Phyla Radiation (CPR) is a limited and highly variable repertoire of biosynthetic capabilities. However, the distribution of metabolic traits across the CPR and the evolutionary processes underlying them are incompletely resolved.

RESULTS: Here, we selected ~ 1000 genomes of CPR bacteria from diverse environments to construct a robust internal phylogeny that was consistent across two unlinked marker sets. Mapping of glycolysis, the pentose phosphate pathway, and pyruvate metabolism onto the tree showed that some components of these pathways are sparsely distributed and that similarity between metabolic platforms is only partially predicted by phylogenetic relationships. To evaluate the extent to which gene loss and lateral gene transfer have shaped trait distribution, we analyzed the patchiness of gene presence in a phylogenetic context, examined the phylogenetic depth of clades with shared traits, and compared the reference tree topology with those of specific metabolic proteins. While the central glycolytic pathway in CPR is widely conserved and has likely been shaped primarily by vertical transmission, there is evidence for both gene loss and transfer especially in steps that convert glucose into fructose 1,6-bisphosphate and glycerate 3P into pyruvate. Additionally, the distribution of Group 3 and Group 4-related NiFe hydrogenases is patchy and suggests multiple events of ancient gene transfer.

CONCLUSIONS: We infer that patterns of gene gain and loss in CPR, including acquisition of accessory traits in independent transfer events, could have been driven by shifts in host-derived resources and led to sparse but varied genetic inventories.

RevDate: 2021-06-15
CmpDate: 2020-08-26

Bárdy P, Füzik T, Hrebík D, et al (2020)

Structure and mechanism of DNA delivery of a gene transfer agent.

Nature communications, 11(1):3034.

Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.

RevDate: 2021-04-14
CmpDate: 2021-04-14

Phansopa C, Dunning LT, Reid JD, et al (2020)

Lateral Gene Transfer Acts As an Evolutionary Shortcut to Efficient C4 Biochemistry.

Molecular biology and evolution, 37(11):3094-3104.

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.

RevDate: 2020-09-28

Emamalipour M, Seidi K, Zununi Vahed S, et al (2020)

Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression.

Frontiers in cell and developmental biology, 8:229.

Flexibility in the exchange of genetic material takes place between different organisms of the same or different species. This phenomenon is known to play a key role in the genetic, physiological, and ecological performance of the host. Exchange of genetic materials can cause both beneficial and/or adverse biological consequences. Horizontal gene transfer (HGT) or lateral gene transfer (LGT) as a general mechanism leads to biodiversity and biological innovations in nature. HGT mediators are one of the genetic engineering tools used for selective introduction of desired changes in the genome for gene/cell therapy purposes. HGT, however, is crucial in development, emergence, and recurrence of various human-related diseases, such as cancer, genetic-, metabolic-, and neurodegenerative disorders and can negatively affect the therapeutic outcome by promoting resistant forms or disrupting the performance of genome editing toolkits. Because of the importance of HGT and its vital physio- and pathological roles, here the variety of HGT mechanisms are reviewed, ranging from extracellular vesicles (EVs) and nanotubes in prokaryotes to cell-free DNA and apoptotic bodies in eukaryotes. Next, we argue that HGT plays a role both in the development of useful features and in pathological states associated with emerging and recurrent forms of the disease. A better understanding of the different HGT mediators and their genome-altering effects/potentials may pave the way for the development of more effective therapeutic and diagnostic regimes.

RevDate: 2020-12-17
CmpDate: 2020-10-30

Gao R, Ding M, Jiang S, et al (2020)

The Evolutionary and Functional Paradox of Cerato-platanins in Fungi.

Applied and environmental microbiology, 86(13):.

Cerato-platanins (CPs) form a family of fungal small secreted cysteine-rich proteins (SSCPs) and are of particular interest not only because of their surface activity but also their abundant secretion by fungi. We performed an evolutionary analysis of 283 CPs from 157 fungal genomes with the focus on the environmental opportunistic plant-beneficial and mycoparasitic fungus Trichoderma Our results revealed a long evolutionary history of CPs in Dikarya fungi that have undergone several events of lateral gene transfer and gene duplication. Three genes were maintained in the core genome of Trichoderma, while some species have up to four CP-encoding genes. All Trichoderma CPs evolve under stabilizing natural selection pressure. The functional genomic analysis of CPs in Trichoderma guizhouense and Trichoderma harzianum revealed that only epl1 is active at all stages of development but that it plays a minor role in interactions with other fungi and bacteria. The deletion of this gene results in increased colonization of tomato roots by Trichoderma spp. Similarly, biochemical tests of EPL1 heterologously produced by Pichia pastoris support the claims described above. Based on the results obtained, we conclude that the function of CPs is probably linked to their surfactant properties and the ability to modify the hyphosphere of submerged mycelia and, thus, facilitate the nutritional versatility of fungi. The effector-like functions do not sufficiently describe the diversity and evolution of these proteins in fungi, as they are also maintained, duplicated, or laterally transferred in the genomes of nonherbivore fungi.IMPORTANCE Cerato-platanins (CPs) are surface-active small proteins abundantly secreted by filamentous fungi. Consequently, immune systems of plants and other organisms recognize CPs and activate defense mechanisms. Some CPs are toxic to plants and act as virulence factors in plant-pathogenic fungi. Our analysis, however, demonstrates that the interactions with plants do not explain the origin and evolution of CPs in the fungal kingdom. We revealed a long evolutionary history of CPs with multiple cases of gene duplication and events of interfungal lateral gene transfers. In the mycoparasitic Trichoderma spp., CPs evolve under stabilizing natural selection and hamper the colonization of roots. We propose that the ability to modify the hydrophobicity of the fungal hyphosphere is a key to unlock the evolutionary and functional paradox of these proteins.

RevDate: 2021-04-03
CmpDate: 2020-12-07

Chelkha N, Hasni I, Louazani AC, et al (2020)

Vermamoeba vermiformis CDC-19 draft genome sequence reveals considerable gene trafficking including with candidate phyla radiation and giant viruses.

Scientific reports, 10(1):5928.

Vermamoeba vermiformis is a predominant free-living amoeba in human environments and amongst the most common amoebae that can cause severe infections in humans. It is a niche for numerous amoeba-resisting microorganisms such as bacteria and giant viruses. Differences in the susceptibility to these giant viruses have been observed. V. vermiformis and amoeba-resisting microorganisms share a sympatric lifestyle that can promote exchanges of genetic material. This work analyzed the first draft genome sequence of a V. vermiformis strain (CDC-19) through comparative genomic, transcriptomic and phylogenetic analyses. The genome of V. vermiformis is 59.5 megabase pairs in size, and 22,483 genes were predicted. A high proportion (10% (n = 2,295)) of putative genes encoded proteins showed the highest sequence homology with a bacterial sequence. The expression of these genes was demonstrated for some bacterial homologous genes. In addition, for 30 genes, we detected best BLAST hits with members of the Candidate Phyla Radiation. Moreover, 185 genes (0.8%) best matched with giant viruses, mostly those related to the subfamily Klosneuvirinae (101 genes), in particular Bodo saltans virus (69 genes). Lateral sequence transfers between V. vermiformis and amoeba-resisting microorganisms were strengthened by Sanger sequencing, transcriptomic and phylogenetic analyses. This work provides important insights and genetic data for further studies about this amoeba and its interactions with microorganisms.

RevDate: 2021-03-12
CmpDate: 2021-03-12

Frost CL, Siozios S, Nadal-Jimenez P, et al (2020)

The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology.

mBio, 11(2):.

Mobile elements-plasmids and phages-are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis This microbe's genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements.

RevDate: 2021-03-02
CmpDate: 2021-03-02

Rainey PB, SD Quistad (2020)

Toward a dynamical understanding of microbial communities.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1798):20190248.

The challenge of moving beyond descriptions of microbial community composition to the point where understanding underlying eco-evolutionary dynamics emerges is daunting. While it is tempting to simplify through use of model communities composed of a small number of types, there is a risk that such strategies fail to capture processes that might be specific and intrinsic to complexity of the community itself. Here, we describe approaches that embrace this complexity and show that, in combination with metagenomic strategies, dynamical insight is increasingly possible. Arising from these studies is mounting evidence of rapid eco-evolutionary change among lineages and a sense that processes, particularly those mediated by horizontal gene transfer, not only are integral to system function, but are central to long-term persistence. That such dynamic, systems-level insight is now possible, means that the study and manipulation of microbial communities can move to new levels of inquiry. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Dunning LT, PA Christin (2020)

Reticulate evolution, lateral gene transfer, and innovation in plants.

American journal of botany, 107(4):541-544.

RevDate: 2020-09-28

Bykov A, Glazunova O, Alikina O, et al (2020)

Excessive Promoters as Silencers of Genes Horizontally Acquired by Escherichia coli.

Frontiers in molecular biosciences, 7:28.

Horizontally acquired genes are usually transcriptionally inactive, although most of them are associated with genomic loci enriched with promoter-like sequences forming "promoter islands." We hypothesized that lateral DNA transfer induces local mutagenesis, accumulating AT base pairs and creating promoter-like sequences, whose occupancy with RNA polymerase and a specific silencer H-NS suppresses the transcription of foreign genes. Error-prone mutagenesis was implemented for the "promoter island" of a foreign gene appY and the promoter region of an inherent gene dps. Derivatives with changed transcriptional activity were selected using a reporter plasmid pET28_eGFP. Only one cycle of mutagenesis with negative selection suppressed the activity of the main dps promoter to the background level due to a single substitution in its -10 element, while positive selection gave a sequence with improved -35 element, thus testifying feasibility of the approach. The same suppression for appY was achieved by three cycles, while eightfold transcription activation required nine iterations of mutagenesis. In both cases, the number of potential start points decreased resulting in an ordinary regulatory region with only one dominant promoter in the case of positive selection. Efficiency of H-NS binding remained virtually unchanged in all mutant constructs. Based on these findings we conclude that excessive promoters can adversely affect transcription by providing a platform for interference between several RNA polymerase molecules, which can act as a silencer at promoter-dense regions.

RevDate: 2020-09-02
CmpDate: 2020-09-02

Anyanwu MU, Jaja IF, OC Nwobi (2020)

Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review.

International journal of environmental research and public health, 17(3):.

The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1-3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.

RevDate: 2020-11-10
CmpDate: 2020-11-10

Zhang Z, Liu W, Shao S, et al (2020)

Diverse Genomic Backgrounds Vs. Highly Conserved Symbiotic Genes in Sesbania-Nodulating Bacteria: Shaping of the Rhizobial Community by Host and Soil Properties.

Microbial ecology, 80(1):158-168.

Aiming at investigating the overall diversity, biogeography, and symbiosis gene evolutionary history of the Sesbania cannabina-nodulating rhizobia in China, a total of 874 rhizobial isolates originating from the root nodules of this plant grown at different sites were characterized and compared with those of some reference strains. All of the S. cannabina-nodulating rhizobia were classified into 16 (geno) species, including seven novel genospecies in the genera Ensifer, Rhizobium, Neorhizobium, and Agrobacterium, with Ensifer sesbaniae and Neorhizobium huautlense as the dominant and universal species. Ten of these species were found to nodulate other leguminous hosts or to lack nodulating abilities and were defined as symbiovar sesbania. Biogeographic patterns were observed, for which pH, TN, AK, and AP were the main determinants. The effects of pH were opposite to those of TN and AK, while AP presented effects independently of TN, AK, and pH. Symbiotic genes of these rhizobia showed a common origin, but nodA evolved faster than nifH. Point mutation is the main driving force in the evolution of both nodA and nifH, and lateral transfer of symbiotic genes might play an important role in the formation of diverse S. cannabina-nodulating rhizobial species. S. cannabina only nodulates with Sesbania rhizobia, demonstrating its severe selection on rhizobial symbiosis genes. Soil pH and physiochemical characteristics could affect rhizobial survival and competitive nodulation. This study provides insight into the community shifts and evolution of rhizobia in relation to their host and soil environments.

RevDate: 2021-01-04
CmpDate: 2021-01-04

Patiño-Navarrete R, Rosinski-Chupin I, Cabanel N, et al (2020)

Stepwise evolution and convergent recombination underlie the global dissemination of carbapenemase-producing Escherichia coli.

Genome medicine, 12(1):10.

BACKGROUND: Carbapenem-resistant Enterobacteriaceae are considered by WHO as "critical" priority pathogens for which novel antibiotics are urgently needed. The dissemination of carbapenemase-producing Escherichia coli (CP-Ec) in the community is a major public health concern. However, the global molecular epidemiology of CP-Ec isolates remains largely unknown as well as factors contributing to the acquisition of carbapenemase genes.

METHODS: We first analyzed the whole-genome sequence and the evolution of the E. coli sequence type (ST) 410 and its disseminated clade expressing the carbapenemase OXA-181. We reconstructed the phylogeny of 19 E. coli ST enriched in CP-Ec and corresponding to a total of 2026 non-redundant isolates. Using the EpiCs software, we determined the significance of the association between specific mutations and the acquisition of a carbapenemase gene and the most probable order of events. The impact of the identified mutations was assessed experimentally by genetic manipulations and phenotypic testing.

RESULTS: In 13 of the studied STs, acquisition of carbapenemase genes occurred in multidrug-resistant lineages characterized by a combination of mutations in ftsI encoding the penicillin-binding protein 3 and in the porin genes ompC and ompF. Mutated ftsI genes and a specific ompC allele related to that from ST38 inducing reduced susceptibility to diverse β-lactams spread across the species by recombination. We showed that these mutations precede in most cases the acquisition of a carbapenemase gene. The ompC allele from ST38 might have contributed to the selection of CP-Ec disseminated lineages within this ST. On the other hand, in the pandemic ST131 lineage, CP-Ec were not associated with mutations in ompC or ftsI and show no signs of dissemination.

CONCLUSIONS: Lineages of CP-Ec have started to disseminate globally. However, their selection is a multistep process involving mutations, recombination, acquisition of antibiotic resistance genes, and selection by β-lactams from diverse families. This process did not yet occur in the high-risk lineage ST131.

RevDate: 2021-07-13
CmpDate: 2021-06-23

Loayza-Villa F, Salinas L, Tijet N, et al (2020)

Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household.

Journal of global antimicrobial resistance, 22:63-67.

OBJECTIVE: The aim of this study was to detect potential animal reservoirs of Escherichia coli carrying the mcr-1 gene in an Ecuadorian household.

METHODS: The mobile colistin-resistance gene, mcr-1, was first detected in Ecuador in a commensal E. coli isolate from a boy. A cross-sectional study was performed to detect the possible source of colistin-resistant E. coli in the boy's household. Faecal swabs and soil faecal samples were collected from companion animals. Samples were plated on selective media to isolate colistin-resistant E. coli and isolates were submitted to PCR detection of mcr-1, pulsed field gel electrophoresis (PFGE), and multi-locus sequences typing (MLST). Moreover, the genomes of all the isolates were sequenced.

RESULTS: Three different colistin-resistant E. coli sequence types (ST3941, 1630 and 2170), corresponding to three PFGE patterns, were obtained from a chicken and two dogs; these isolates were different from the human isolate (ST609). By whole-genome sequencing, the mcr-1.1 gene was found on IncI2 plasmids with very high nucleotide identity.

CONCLUSIONS: Our results indicate a polyclonal dissemination of mcr-1.1 in the environment surrounding the first MCR-producing E. coli strain reported in Ecuador. Our findings support the idea of lateral dissemination of mcr-1.1 gene between unrelated E. coli isolates.

RevDate: 2021-01-10
CmpDate: 2020-11-11

Hasni I, Chelkha N, Baptiste E, et al (2019)

Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome.

Scientific reports, 9(1):18318.

Willaertia magna c2c maky is a thermophilic amoeba closely related to the genus Naegleria. This free-living amoeba has the ability to eliminate Legionella pneumophila, which is an amoeba-resisting bacterium living in an aquatic environment. To prevent the proliferation of L. pneumophila in cooling towers, the use of W. magna as natural biocide has been proposed. To provide a better understanding of the W. magna genome, whole-genome sequencing was performed through the study of virulence factors and lateral gene transfers. This amoeba harbors a genome of 36.5 megabases with 18,519 predicted genes. BLASTp analyses reported protein homology between 136 W. magna sequences and amoeba-resistant microorganisms. Horizontal gene transfers were observed based on the basis of the phylogenetic reconstruction hypothesis. We detected 15 homologs of N. fowleri genes related to virulence, although these latter were also found in the genome of N. gruberi, which is a non-pathogenic amoeba. Furthermore, the cytotoxicity test performed on human cells supports the hypothesis that the strain c2c maky is a non-pathogenic amoeba. This work explores the genomic repertory for the first draft genome of genus Willaertia and provides genomic data for further comparative studies on virulence of related pathogenic amoeba, N. fowleri.

RevDate: 2020-12-10
CmpDate: 2020-09-29

Cheepudom J, Lin TL, Lee CC, et al (2019)

Characterization of a Novel Thermobifida fusca Bacteriophage P318.

Viruses, 11(11):.

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3'-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.

RevDate: 2020-11-12
CmpDate: 2020-11-12

Yubuki N, Galindo LJ, Reboul G, et al (2020)

Ancient Adaptive Lateral Gene Transfers in the Symbiotic Opalina-Blastocystis Stramenopile Lineage.

Molecular biology and evolution, 37(3):651-659.

Lateral gene transfer is a very common process in bacterial and archaeal evolution, playing an important role in the adaptation to new environments. In eukaryotes, its role and frequency remain highly debated, although recent research supports that gene transfer from bacteria to diverse eukaryotes may be much more common than previously appreciated. However, most of this research focused on animals and the true phylogenetic and functional impact of bacterial genes in less-studied microbial eukaryotic groups remains largely unknown. Here, we have analyzed transcriptome data from the deep-branching stramenopile Opalinidae, common members of frog gut microbiomes, and distantly related to the well-known genus Blastocystis. Phylogenetic analyses suggest the early acquisition of several bacterial genes in a common ancestor of both lineages. Those lateral gene transfers most likely facilitated the adaptation of the free-living ancestor of the Opalinidae-Blastocystis symbiotic group to new niches in the oxygen-depleted animal gut environment.

RevDate: 2021-01-10
CmpDate: 2020-09-09

Olofsson JK, Dunning LT, Lundgren MR, et al (2019)

Population-Specific Selection on Standing Variation Generated by Lateral Gene Transfers in a Grass.

Current biology : CB, 29(22):3921-3927.e5.

Evidence of eukaryote-to-eukaryote lateral gene transfer (LGT) has accumulated in recent years [1-14], but the selective pressures governing the evolutionary fate of these genes within recipient species remain largely unexplored [15, 16]. Among non-parasitic plants, successful LGT has been reported between different grass species [5, 8, 11, 16-19]. Here, we use the grass Alloteropsis semialata, a species that possesses multigene LGT fragments that were acquired recently from distantly related grass species [5, 11, 16], to test the hypothesis that the successful LGT conferred an advantage and were thus rapidly swept into the recipient species. Combining whole-genome and population-level RAD sequencing, we show that the multigene LGT fragments were rapidly integrated in the recipient genome, likely due to positive selection for genes encoding proteins that added novel functions. These fragments also contained physically linked hitchhiking protein-coding genes, and subsequent genomic erosion has generated gene presence-absence polymorphisms that persist in multiple geographic locations, becoming part of the standing genetic variation. Importantly, one of the hitchhiking genes underwent a secondary rapid spread in some populations. This shows that eukaryotic LGT can have a delayed impact, contributing to local adaptation and intraspecific ecological diversification. Therefore, while short-term LGT integration is mediated by positive selection on some of the transferred genes, physically linked hitchhikers can remain functional and augment the standing genetic variation with delayed adaptive consequences.

RevDate: 2021-01-10
CmpDate: 2020-10-13

Lewis WH, Lind AE, Sendra KM, et al (2020)

Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss.

Molecular biology and evolution, 37(2):524-539.

Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.

RevDate: 2021-01-10
CmpDate: 2020-03-30

Manzano-Marı N A, Coeur d'acier A, Clamens AL, et al (2020)

Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems.

The ISME journal, 14(1):259-273.

Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Medina EM, Walsh E, NE Buchler (2019)

Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain.

Current opinion in genetics & development, 58-59:103-110.

Fungi are found in diverse ecological niches as primary decomposers, mutualists, or parasites of plants and animals. Although animals and fungi share a common ancestor, fungi dramatically diversified their life cycle, cell biology, and metabolism as they evolved and colonized new niches. This review focuses on a family of fungal transcription factors (Swi4/Mbp1, APSES, Xbp1, Bqt4) derived from the lateral gene transfer of a KilA-N domain commonly found in prokaryotic and eukaryotic DNA viruses. These virus-derived fungal regulators play central roles in cell cycle, morphogenesis, sexual differentiation, and quiescence. We consider the possible origins of KilA-N and how this viral DNA binding domain came to be intimately associated with fungal processes.

RevDate: 2020-03-27
CmpDate: 2020-03-27

John J, George S, Nori SRC, et al (2019)

Phylogenomic Analysis Reveals the Evolutionary Route of Resistant Genes in Staphylococcus aureus.

Genome biology and evolution, 11(10):2917-2926.

Multidrug-resistant Staphylococcus aureus is a leading concern worldwide. Coagulase-Negative Staphylococci are claimed to be the reservoir and source of important resistant elements in S. aureus. However, the origin and evolutionary route of resistant genes in S. aureus are still remaining unknown. Here, we performed a detailed phylogenomic analysis of 152 completely sequenced S. aureus strains in comparison with 7,529 non-Staphylococcus aureus reference bacterial genomes. Our results reveal that S. aureus has a large open pan-genome where 97 (55%) of its known resistant-related genes belonging to its accessory genome. Among these genes, 47 (27%) were located within the Staphylococcal Cassette Chromosome mec (SCCmec), a transposable element responsible for resistance against major classes of antibiotics including beta-lactams, macrolides, and aminoglycosides. However, the physically linked mec-box genes (MecA-MecR-MecI) that are responsible for the maintenance of SCCmec elements is not unique to S. aureus, instead it is widely distributed within Staphylococcaceae family. The phyletic patterns of SCCmec-encoded resistant genes in Staphylococcus species are significantly different from that of its core genes indicating frequent exchange of these genes between Staphylococcus species. Our in-depth analysis of SCCmec-resistant gene phylogenies reveals that genes such as blaZ, ble, kmA, and tetK that are responsible for beta-lactam, bleomycin, kanamycin, and tetracycline resistance in S. aureus were laterally transferred from non-Staphylococcus sources. In addition, at least 11 non-SCCmec-encoded resistant genes in S. aureus, were laterally acquired from distantly related species. Our study evidently shows that gene transfers played a crucial role in shaping the evolution of antibiotic resistance in S. aureus.

RevDate: 2021-04-08
CmpDate: 2021-04-08

Novák Vanclová AMG, Zoltner M, Kelly S, et al (2020)

Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid.

The New phytologist, 225(4):1578-1592.

Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.

RevDate: 2020-02-26
CmpDate: 2020-02-26

Mi-Ichi F, H Yoshida (2019)

Unique Features of Entamoeba Sulfur Metabolism; Compartmentalization, Physiological Roles of Terminal Products, Evolution and Pharmaceutical Exploitation.

International journal of molecular sciences, 20(19):.

Sulfur metabolism is essential for all living organisms. Recently, unique features of the Entamoeba metabolic pathway for sulfated biomolecules have been described. Entamoeba is a genus in the phylum Amoebozoa and includes the causative agent for amoebiasis, a global public health problem. This review gives an overview of the general features of the synthesis and degradation of sulfated biomolecules, and then highlights the characteristics that are unique to Entamoeba. Future biological and pharmaceutical perspectives are also discussed.

RevDate: 2020-09-30

Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, et al (2019)

Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition.

Frontiers in microbiology, 10:1965.

Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.

RevDate: 2020-08-03
CmpDate: 2020-08-03

Yoshida S, Kim S, Wafula EK, et al (2019)

Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism.

Current biology : CB, 29(18):3041-3052.e4.

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.

RevDate: 2020-03-09
CmpDate: 2020-03-09

Kim BJ, Kim GN, Kim BR, et al (2019)

New Mycobacteroides abscessus subsp. massiliense strains with recombinant hsp65 gene laterally transferred from Mycobacteroides abscessus subsp. abscessus: Potential for misidentification of M. abscessus strains with the hsp65-based method.

PloS one, 14(9):e0220312.

It has been reported that lateral gene transfer (LGT) events among Mycobacteroides abscessus strains are prevalent. The hsp65 gene, a chronometer gene for bacterial phylogenetic analysis, is resistant to LGT events, particularly among mycobacterial strains, rendering the hsp65-targeting method the most widely used method for mycobacterial detection. To determine the prevalence of M. abscessus strains that are subject to hsp65 LGT, we applied rpoB typing to 100 clinically isolated Korean strains of M. abscessus that had been identified by hsp65 sequence analysis. The analysis indicated the presence of 2 rough strains, showing a discrepancy between the 2 typing methods. MLST analysis based on the partial sequencing of seven housekeeping genes, erm(41) PCR and further hsp65 PCR-restriction enzyme and polymorphism analysis (PRA) were conducted to identify the two strains. The MLST results showed that the two strains belong to M. abscessus subsp. massiliense and not to M. abscessus subsp. abscessus, as indicated by the rpoB-based analysis, suggesting that their hsp65 genes are subject to LGT from M. abscessus subsp. abscessus. Further analysis of these strains using the hsp65 PRA method indicated that these strains possess a PRA pattern identical to that of M. abscessus subsp. abscessus and distinct from that of M. abscessus subsp. massiliense. In conclusion, we identified two M. abscessus subsp. massiliense rough strains from Korean patients with hsp65 genes that might be laterally transferred from M. abscessus subsp. abscessus. To the best of our knowledge, this is the first demonstration of possible LGT events associated with the hsp65 gene in mycobacteria. Our results also suggest that there is the potential for misidentification when the hsp65-based protocol is used for mycobacterial identification.

RevDate: 2020-03-16
CmpDate: 2020-03-16

Jiménez-González A, Xu F, JO Andersson (2019)

Lateral Acquisitions Repeatedly Remodel the Oxygen Detoxification Pathway in Diplomonads and Relatives.

Genome biology and evolution, 11(9):2542-2556.

Oxygen and reactive oxygen species (ROS) are important stress factors for cells because they can oxidize many large molecules. Fornicata, a group of flagellated protists that includes diplomonads, have anaerobic metabolism but are still able to tolerate fluctuating levels of oxygen. We identified 25 protein families putatively involved in detoxification of oxygen and ROS in this group using a bioinformatics approach and propose how these interact in an oxygen detoxification pathway. These protein families were divided into a central oxygen detoxification pathway and accessory pathways for the synthesis of nonprotein thiols. We then used a phylogenetic approach to investigate the evolutionary origin of the components of this putative pathway in Diplomonadida and other Fornicata species. Our analyses suggested that the diplomonad ancestor was adapted to low-oxygen levels, was able to reduce O2 to H2O in a manner similar to extant diplomonads, and was able to synthesize glutathione and l-cysteine. Several genes involved in the pathway have complex evolutionary histories and have apparently been repeatedly acquired through lateral gene transfer and subsequently lost. At least seven genes were acquired independently in different Fornicata lineages, leading to evolutionary convergences. It is likely that acquiring these oxygen detoxification proteins helped anaerobic organisms (like the parasitic Giardia intestinalis) adapt to low-oxygen environments (such as the digestive tract of aerobic hosts).

RevDate: 2020-03-27
CmpDate: 2020-03-27

Douglas GM, MGI Langille (2019)

Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes.

Genome biology and evolution, 11(10):2750-2766.

High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.

RevDate: 2020-06-09
CmpDate: 2020-06-09

Suchland RJ, Carrell SJ, Wang Y, et al (2019)

Chromosomal Recombination Targets in Chlamydia Interspecies Lateral Gene Transfer.

Journal of bacteriology, 201(23):.

Lateral gene transfer (LGT) among Chlamydia trachomatis strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any Chlamydia spp. from any other species. Interspecies LGT in this system was analyzed using crosses of tetracycline (Tc)-resistant C. trachomatis L2/434 and chloramphenicol (Cam)-resistant C. muridarum VR-123. Parental C. muridarum strains were created using a plasmid-based Himar transposition system, which led to integration of the Camr marker randomly across the chromosome. Fragments encompassing 79% of the C. muridarum chromosome were introduced into a C. trachomatis background, with the total coverage contained on 142 independent recombinant clones. Genome sequence analysis of progeny strains identified candidate recombination hot spots, a property not consistent with in vitro C. trachomatis × C. trachomatis (intraspecies) crosses. In both interspecies and intraspecies crosses, there were examples of duplications, mosaic recombination endpoints, and recombined sequences that were not linked to the selection marker. Quantitative analysis of the distribution and constitution of inserted sequences indicated that there are different constraints on interspecies LGT than on intraspecies crosses. These constraints may help explain why there is so little evidence of interspecies genetic exchange in this system, which is in contrast to very widespread intraspecies exchange in C. trachomatis IMPORTANCE Genome sequence analysis has demonstrated that there is widespread lateral gene transfer among strains within the species C. trachomatis and with other closely related Chlamydia species in laboratory experiments. This is in contrast to the complete absence of foreign DNA in the genomes of sequenced clinical C. trachomatis strains. There is no understanding of any mechanisms of genetic transfer in this important group of pathogens. In this report, we demonstrate that interspecies genetic exchange can occur but that the nature of the fragments exchanged is different than those observed in intraspecies crosses. We also generated a large hybrid strain library that can be exploited to examine important aspects of chlamydial disease.

RevDate: 2020-07-23
CmpDate: 2020-07-23

Vos M, Buckling A, B Kuijper (2019)

Sexual Selection in Bacteria?.

Trends in microbiology, 27(12):972-981.

A main mechanism of lateral gene transfer in bacteria is transformation, where cells take up free DNA from the environment which subsequently can be recombined into the genome. Bacteria are also known to actively release DNA into the environment through secretion or lysis, which could aid uptake via transformation. Various evolutionary benefits of DNA uptake and DNA release have been proposed but these have all been framed in the context of natural selection. Here, we interpret bacterial DNA uptake and release in the context of sexual selection theory, which has been central to our understanding of the bewildering diversity of traits associated with sexual reproduction in the eukaryote world but has never been applied to prokaryotes. Specifically, we explore potential scenarios where bacteria releasing DNA into the environment could compete for successful uptake by other cells, or where bacteria could selectively take up DNA to enhance their fitness. We conclude that there is potential for sexual selection to act in bacteria, and that this might in part explain the considerable diversity in transformation-related behaviours.

RevDate: 2021-01-10
CmpDate: 2020-06-17

Breusing C, Johnson SB, Vrijenhoek RC, et al (2019)

Host hybridization as a potential mechanism of lateral symbiont transfer in deep-sea vesicomyid clams.

Molecular ecology, 28(21):4697-4708.

Deep-sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co-occur at deep-sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome-wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep-sea chemosynthetic environments.

RevDate: 2020-10-01

Dunning Hotopp JC, Matsumura J, Bromley RE, et al (2019)

TwinBLAST: When Two Is Better than One.

Microbiology resource announcements, 8(35):.

Analysis of sequence read pairs can be essential for characterizing structural variation, including junction-spanning pairs of reads (JSPRs) suggesting recent lateral/horizontal gene transfer. TwinBLAST can be used to facilitate this analysis of JSPRs by enabling the visualization and curation of two BLAST reports side by side in a single interface.

RevDate: 2020-04-27
CmpDate: 2020-04-27

LaBrie SD, Dimond ZE, Harrison KS, et al (2019)

Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.

mBio, 10(4):.

Transposon mutagenesis is a widely applied and powerful genetic tool for the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a clinically significant, obligate intracellular bacterium for which many conventional genetic tools and capabilities have been developed only recently. This report describes the successful development and application of a Himar transposon mutagenesis system for generating single-insertion mutant clones of C. trachomatis This system was used to generate a pool of 105 transposon mutant clones that included insertions in genes encoding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis 148 [ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of Tn mutant clones was evaluated for growth differences under cell culture conditions, revealing that most phenocopied the parental strain; however, some strains displayed subtle and yet significant differences in infectious progeny production and inclusion sizes. Bacterial burden studies in mice also supported the idea that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for these infections. The ct339 gene encodes a hypothetical protein with limited sequence similarity to the DNA-uptake protein ComEC. A transposon insertion in ct339 rendered the mutant incapable of DNA acquisition during recombination experiments. This observation, along with in situ structural analysis, supports the idea that this protein is playing a role in the fundamental process of lateral gene transfer similar to that of ComEC. In all, the development of the Himar transposon system for Chlamydia provides an effective genetic tool for further discovery of genes that are important for basic biology and pathogenesis aspects.IMPORTANCE Chlamydia trachomatis infections have an immense impact on public health; however, understanding the basic biology and pathogenesis of this organism has been stalled by the limited repertoire of genetic tools. This report describes the successful adaptation of an important tool that has been lacking in Chlamydia studies: transposon mutagenesis. This advance enabled the generation of 105 insertional mutants, demonstrating that numerous gene products are not essential for in vitro growth. Mammalian infections using these mutants revealed that several gene products are important for infections in vivo Moreover, this tool enabled the investigation and discovery of a gene critical for lateral gene transfer; a process fundamental to the evolution of bacteria and likely for Chlamydia as well. The development of transposon mutagenesis for Chlamydia has broad impact for the field and for the discovery of genes associated with selected phenotypes, providing an additional avenue for the discovery of molecular mechanisms used for pathogenesis and for a more thorough understanding of this important pathogen.

RevDate: 2019-12-03
CmpDate: 2019-12-03

Negri A, Jąkalski M, Szczuka A, et al (2019)

Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor.

Nucleic acids research, 47(18):9542-9556.

Restriction-modification (R-M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R-M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R-M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R-M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.

RevDate: 2020-03-09
CmpDate: 2020-02-21

Kobras CM, D Falush (2019)

Adapting for life in the extreme.

eLife, 8:.

Red algae have adapted to extreme environments by acquiring genes from bacteria and archaea.

RevDate: 2020-09-30

Vigué L, A Eyre-Walker (2019)

The comparative population genetics of Neisseria meningitidis and Neisseria gonorrhoeae.

PeerJ, 7:e7216.

Neisseria meningitidis and N. gonorrhoeae are closely related pathogenic bacteria. To compare their population genetics, we compiled a dataset of 1,145 genes found across 20 N. meningitidis and 15 N. gonorrhoeae genomes. We find that N. meningitidis is seven-times more diverse than N. gonorrhoeae in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however, we find that N. meningitidis has acquired more of its diversity by recombination than N. gonorrhoeae. We find that linkage disequilibrium (LD) declines rapidly across the genomes of both species. Several observations suggest that N. meningitidis has a higher effective population size than N. gonorrhoeae; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and LD declines more rapidly to a lower asymptote in N. meningitidis. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different levels of lateral gene transfer. However, we also find some evidence that the effective population size varies across the genome. We test for adaptive evolution in the core genome using a McDonald-Kreitman test and by considering the diversity around non-synonymous sites that are fixed for different alleles in the two species. We find some evidence for adaptive evolution using both approaches.

RevDate: 2020-01-08
CmpDate: 2020-01-08

Watson AK, Lannes R, Pathmanathan JS, et al (2019)

The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evolution.

Methods in molecular biology (Clifton, N.J.), 1910:271-308.

In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are increasingly used to complement phylogenetic analysis in studies in molecular evolution, including comparative genomics, classification, and ecological studies. Using network methods, the vertical and horizontal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile genetic elements, can be explored in a single expandable graph. In recent years, development of new methods for the construction and analysis of networks has helped to broaden the availability of these approaches from programmers to a diversity of users. This chapter introduces the different kinds of networks based on sequence similarity that are already available to tackle a wide range of biological questions, including sequence similarity networks, gene-sharing networks and bipartite graphs, and a guide for their construction and analyses.

RevDate: 2019-11-04
CmpDate: 2019-11-04

Poey ME, Azpiroz MF, M Laviña (2019)

On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli.

Microbial pathogenesis, 135:103611.

Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1+ conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1+ plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1+ clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.

RevDate: 2021-01-09
CmpDate: 2020-10-26

Hongo Y, Yabuki A, Fujikura K, et al (2019)

Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes.

Scientific reports, 9(1):9009.

Toxic dinoflagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinoflagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identified 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinoflagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinoflagellates, whose plastids were derived from haptophytes. Notably, transcription levels of different plastid protein isoforms varied significantly. Based on these findings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinoflagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Parker BJ, JA Brisson (2019)

A Laterally Transferred Viral Gene Modifies Aphid Wing Plasticity.

Current biology : CB, 29(12):2098-2103.e5.

Organisms often respond to changing environments by altering development of particular traits. These plastic traits exhibit genetic variation; i.e., genotypes respond differently to the same environmental cues. Theoretical studies have demonstrated the importance of this variation, which is targeted by natural selection, in adapting plastic responses to maximize fitness [1, 2]. However, little is known about the underlying genetic mechanisms. We identify two laterally transferred genes that contribute to variation in a classic example of phenotypic plasticity: the pea aphid's ability to produce winged offspring in response to crowding. We discovered that aphid genotypes vary extensively for this trait and that aphid genes of viral origin are upregulated in response to crowding solely in highly inducible genotypes. We knocked down expression of these genes to demonstrate their functional role in wing plasticity. Through phylogenetic analysis, we found that these genes likely originated from a virus that infects rosy apple aphids and causes their hosts to produce winged offspring [3]. The function of these genes has therefore been retained following transfer to pea aphids. Our results uncover a novel role for co-opted viral genes, demonstrating that they are used to modulate ecologically relevant, plastic phenotypes. Our findings also address a critical question about the evolution of environmentally sensitive traits: whether the genes that control the expression of plastic traits also underlie variation in plasticity. The genes we identify originated from outside aphids themselves, and thus, our work shows that genes formerly unrelated to plasticity can fine-tune the strength of plastic responses to the environment.

RevDate: 2021-01-09
CmpDate: 2020-02-24

Rossoni AW, Price DC, Seger M, et al (2019)

The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions.

eLife, 8:.

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.

RevDate: 2020-04-02
CmpDate: 2020-04-02

Khanppnavar B, Chatterjee R, Choudhury GB, et al (2019)

Genome-wide survey and crystallographic analysis suggests a role for both horizontal gene transfer and duplication in pantothenate biosynthesis pathways.

Biochimica et biophysica acta. General subjects, 1863(10):1547-1559.

Pantothenate is the metabolic precursor of Coenzyme A, an indispensable cofactor for many fundamental cellular processes. In this study, we show that many bacterial species have acquired multiple copies of pantothenate biosynthesis pathway genes via horizontal and vertical gene transfer events. Some bacterial species were also found to lack panE and panD genes, and depended on alternative enzymes/metabolic sources for pantothenate production. To shed light on the factors responsible for such dynamic evolutionary selections, the structural and functional characteristics of P. aeruginosa ketopantoate reductase (KPR), an enzyme that catalyzes the rate-limiting step and also the most duplicated, was investigated. A comparative analysis of apo and NADP+ bound crystal structures of P. aeruginosa KPR with orthologs, revealed that the residues involved in the interaction with specific phosphate moiety of NADP+ are relatively less conserved, suggesting dynamic evolutionary trajectories in KPRs for redox cofactor selection. Our structural and biochemical data also show that the specific conformational changes mediated by NADPH binding facilitate the cooperative binding of ketopantoate. From drastically reduced catalytic activity for NADH catalyzed the reaction with significantly higher KM of ketopantoate, it appears that the binding of ketopantoate is allosterically regulated to confer redox cofactor specificity. Altogether, our results, in compliance with earlier studies, not only depict the role of lateral gene transfer events in many bacterial species for enhancing pantothenate production but also highlight the possible role of redox cofactor balance in the regulation of pantothenate biosynthesis pathways.

RevDate: 2020-01-22
CmpDate: 2020-01-22

Jung CM, Carr M, Blakeney GA, et al (2019)

Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9.

Journal of industrial microbiology & biotechnology, 46(9-10):1273-1281.

Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.

RevDate: 2020-03-09
CmpDate: 2020-02-06

Cummins ML, Roy Chowdhury P, Marenda MS, et al (2019)

Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate.

mSphere, 4(3):.

Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry bla NDM-1, bla VEB-6, and bla CTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3' end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023.IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3' end of trmE For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Kang CS, Dunfield PF, JD Semrau (2019)

The origin of aerobic methanotrophy within the Proteobacteria.

FEMS microbiology letters, 366(9):.

Aerobic methanotrophs play critical roles in the global carbon cycle, but despite their environmental ubiquity, they are phylogenetically restricted. Via bioinformatic analyses, it is shown that methanotrophy likely arose from methylotrophy from the lateral gene transfer of either of the two known forms of methane monooxygenase (particulate and soluble methane monooxygenases). Moreover, it appears that both known forms of pyrroloquinoline quinone-dependent methanol dehydrogenase (MeDH) found in methanotrophs-the calcium-containing Mxa-MeDH and the rare earth element-containing Xox-MeDH-were likely encoded in the genomes before the acquisition of the methane monooxygenases (MMOs), but that some methanotrophs subsequently received an additional copy of Xox-MeDH-encoding genes via lateral gene transfer. Further, data are presented that indicate the evolution of methanotrophy from methylotrophy not only required lateral transfer of genes encoding for methane monooxygenases, but also likely the pre-existence of a means of collecting copper. Given the emerging interest in valorizing methane via biological platforms, it is recommended that future strategies for heterologous expression of methane monooxygenase for conversion of methane to methanol also include cloning of genes encoding mechanism(s) of copper uptake, especially for expression of particulate methane monooxygenase.

RevDate: 2019-08-07
CmpDate: 2019-08-07

Aijuka M, EM Buys (2019)

Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health.

Food microbiology, 82:363-370.

Diarrheagenic Escherichia coli (DEC) is a leading cause of foodborne illness associated with intestinal disease. While known over the years that contamination of food sources occurs via the oral faecal-route, the mechanisms underlying its persistence within the open environments including the food chain remains virtually unknown. Therefore, in this mini-review we will shed light on bacterial processes such as initial attachment, biofilm formation, horizontal gene transfer and response to environmental stresses. These factors may enable persistence of DEC as well as the emergence of potentially more virulent strains within the agricultural and food production environment. Mechanistic studies in clinical microbiology and immunology have elucidated infection pathways in the human and other animal bodies leading to diagnostic and treatment solutions. Therefore, understanding DEC behaviour in the agricultural and food production environment is crucial for ensuring food safety and public health by reducing the burden of foodborne illnesses.

RevDate: 2020-03-09
CmpDate: 2019-07-08

Siddavattam D, Yakkala H, D Samantarrai (2019)

Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness.

Journal of genetics, 98:.

Genes encoding structurally independent phosphotriesterases (PTEs) are identified in soil bacteria. These pte genes, often identified on mobilizable and self-transmissible plasmids are organized as mobile genetic elements. Their dissemination through lateral gene transfer is evident due to the detection of identical organophosphate degradation genes among soil bacteria with little orno taxonomic relationship. Convergent evolution of PTEs provided selective advantages to the bacterial strain as they convert toxic phosphotriesters (PTs) into a source of phosphate. The residues of organophosphate (OP) compounds that accumulate in a soil are proposed to contribute to the evolution of PTEs through substrate-assisted gain-of-function. This review provides comprehensive information on lateral transfer of pte genes and critically examines proposed hypotheses on their evolution in the light of the short half-life of OPs in the environment. The review also proposes alternate factors that have possibly contributed to the evolution and lateral mobility of PTEs by taking into account their biology and analyses of pte genes in genomic and metagenomic databases.

RevDate: 2020-03-09
CmpDate: 2019-07-30

Panfilio KA, Vargas Jentzsch IM, Benoit JB, et al (2019)

Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.

Genome biology, 20(1):64.

BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.

RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding.

CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.

RevDate: 2020-02-10
CmpDate: 2020-02-10

Rahbar MR, Zarei M, Jahangiri A, et al (2019)

Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 71:116-127.

Trimeric autotransporter (TAA), also known as type Vc secretion system, is expressed by many strains of Acinetobacter baumannii, an opportunistic pathogen, which is responsible for nosocomial infections worldwide. TAAs, are modular homotrimeric virulence factors, containing a signal peptide, complex stalk, and conserved membrane anchoring domain. The evolutionary mechanisms underlying the evolvement of these adhesins are not clear. Here, we showed that TAA genes were laterally acquired and underwent gene duplication and recombination. The heterogeneity of TAA nucleotide sequences, GC content, codon usage, and the probability of recombination and duplication events were assessed by MEGA7. Given the heterogeneity of sequences, we used all-against-all BLAST for clustering the TAAs. The pattern of distribution of TAAs are highly scattered; GC content and codon usage for these genes are variable. Multiple events of lateral gene transfer from the early history of Acinetobacter and the occurrence of gene duplication, gene loss, and recombination after acquiring the alien genes may explain the scattered pattern of distribution of TAAs. Additionally, this gene is not present in many clinical isolates of A. baumannii, thus is not a single virulence factor attributing to the infection. The advantage of harboring such genes might be adopting to different environments by developing the biofilm communities. We suggested that TAA genes were laterally acquired in the environmental context and incidentally provided some benefits at the infection site. Thus, coincidental evolution theory may be better suited for describing the evolution of TAA genes in A. baumannii genomes.

RevDate: 2020-02-25
CmpDate: 2019-07-12

Oppong YEA, Phelan J, Perdigão J, et al (2019)

Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance.

BMC genomics, 20(1):252.

BACKGROUND: Continuing evolution of the Mycobacterium tuberculosis (Mtb) complex genomes associated with resistance to anti-tuberculosis drugs is threatening tuberculosis disease control efforts. Both multi- and extensively drug resistant Mtb (MDR and XDR, respectively) are increasing in prevalence, but the full set of Mtb genes involved are not known. There is a need for increased sensitivity of genome-wide approaches in order to elucidate the genetic basis of anti-microbial drug resistance and gain a more detailed understanding of Mtb genome evolution in a context of widespread antimicrobial therapy. Population structure within the Mtb complex, due to clonal expansion, lack of lateral gene transfer and low levels of recombination between lineages, may be reducing statistical power to detect drug resistance associated variants.

RESULTS: To investigate the effect of lineage-specific effects on the identification of drug resistance associations, we applied genome-wide association study (GWAS) and convergence-based (PhyC) methods to multiple drug resistance phenotypes of a global dataset of Mtb lineages 2 and 4, using both lineage-wise and combined approaches. We identify both well-established drug resistance variants and novel associations; uniquely identifying associations for both lineage-specific and -combined GWAS analyses. We report 17 potential novel associations between antimicrobial resistance phenotypes and Mtb genomic variants.

CONCLUSIONS: For GWAS, both lineage-specific and -combined analyses are useful, whereas PhyC may perform better in contexts of greater diversity. Unique associations with XDR in lineage-specific analyses provide evidence of diverging evolutionary trajectories between lineages 2 and 4 in response to antimicrobial drug therapy.

RevDate: 2020-10-01

Ayala-Ruano S, Santander-Gordón D, Tejera E, et al (2019)

A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications.

Ecology and evolution, 9(5):2602-2614.

Streptomyces clavuligerus is a Gram-positive bacterium that is a high producer of secondary metabolites with industrial applications. The production of antibiotics such as clavulanic acid or cephamycin has been extensively studied in this species; nevertheless, other aspects, such as evolution or ecology, have received less attention. Furthermore, genes that arise from ancient events of lateral transfer have been demonstrated to be implicated in important functions of host species. This approximation discovered relevant genes that genomic analyses overlooked. Thus, we studied the impact of horizontal gene transfer in the S. clavuligerus genome. To perform this task, we applied whole-genome analysis to identify a laterally transferred sequence from different domains. The most relevant result was a putative antimicrobial peptide (AMP) with a clear origin in the Hymenoptera order of insects. Next, we determined that two copies of these genes were present in the megaplasmid pSCL4 but absent in the S. clavuligerus ATCC 27064 chromosome. Additionally, we found that these sequences were exclusive to the ATCC 27064 strain (and so were not present in any other bacteria) and we also verified the expression of the genes using RNAseq data. Next, we used several AMP predictors to validate the original annotation extracted from Hymenoptera sequences and explored the possibility that these proteins had post-translational modifications using peptidase cleavage prediction. We suggest that Hymenoptera AMP-like proteins of S. clavuligerus ATCC 27064 may be useful for both species adaptation and as an antimicrobial molecule with industrial applications.

RevDate: 2020-02-25
CmpDate: 2019-05-31

Milner DS, Attah V, Cook E, et al (2019)

Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes.

Proceedings of the National Academy of Sciences of the United States of America, 116(12):5613-5622.

Many microbes acquire metabolites in a "feeding" process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein-protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a "transporter-gene acquisition ratchet," where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome.

RevDate: 2020-09-30
CmpDate: 2019-03-18

Forgione I, Bonavita S, TMR Regina (2019)

Mitochondria of Cedrus atlantica and allied species: A new chapter in the horizontal gene transfer history.

Plant science : an international journal of experimental plant biology, 281:93-101.

The extraordinary incidence of Horizontal Gene Transfer (HGT) mostly in mitochondrial genomes of flowering plants is well known. Here, we report another episode of HGT affecting a large mitochondrial gene region in the evergreen conifer Atlas cedar (Cedrus atlantica). Mitochondria of this Pinaceae species possess an rps3 gene that harbours two introns and shares the same genomic context with a downstream overlapping rpl16 gene, like in the major groups of gymnosperms and angiosperms analyzed so far. Interestingly, C. atlantica contains additional copies of the rps3 and rpl16 sequences that are more closely related to angiosperm counterparts than to those from gymnosperms, as also confirmed by phylogenetic analyses. This suggests that a lateral transfer from a flowering plant donor is the most likely mechanism for the origin of the Atlas cedar extra sequences. Quantitative PCR and reverse-transcription (RT)-PCR analyses demonstrate, respectively, mitochondrial location and lack of expression for the rps3 and rpl16 additional sequences in C. atlantica. Furthermore, our study provides evidence that a similar HGT event takes place in two other Cedrus species, which occurr in Cyprus and North Africa. Only the West Himalayan C. deodara lacks the transferred genes. The potential donor and the molecular mechanism underlying this lateral DNA transfer remain still unclear.

RevDate: 2019-07-16
CmpDate: 2019-07-16

Trasviña-Arenas CH, David SS, Delaye L, et al (2019)

Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer.

DNA repair, 76:76-88.

During its life cycle, the protist parasite Entamoeba histolytica encounters reactive oxygen and nitrogen species that alter its genome. Base excision repair (BER) is one of the most important pathways for the repair of DNA base lesions. Analysis of the E. histolytica genome revealed the presence of most of the BER components. Surprisingly, this included a gene encoding an apurinic/apyrimidinic (AP) endonuclease that previous studies had assumed was absent. Indeed, our analysis showed that the genome of E. histolytica harbors the necessary genes needed for both short and long-patch BER sub-pathways. These genes include DNA polymerases with predicted 5'-dRP lyase and strand-displacement activities and a sole DNA ligase. A distinct feature of the E. histolytica genome is the lack of several key damage-specific BER glycosylases, such as OGG1/MutM, MDB4, Mag1, MPG, SMUG, and TDG. Our evolutionary analysis indicates that several E. histolytica DNA glycosylases were acquired by lateral gene transfer (LGT). The genes that encode for MutY, AlkD, and UDG (Family VI) are included among these cases. Endonuclease III and UNG (family I) are the only DNA glycosylases with a eukaryotic origin in E. histolytica. A gene encoding a MutT 8-oxodGTPase was also identified that was acquired by LGT. The mixed composition of BER genes as a DNA metabolic pathway shaped by LGT in E. histolytica indicates that LGT plays a major role in the evolution of this eukaryote. Sequence and structural prediction of E. histolytica DNA glycosylases, as well as MutT, suggest that the E. histolytica DNA repair proteins evolved to harbor structural modifications that may confer unique biochemical features needed for the biology of this parasite.

RevDate: 2021-01-09
CmpDate: 2020-04-06

Dunning LT, Olofsson JK, Parisod C, et al (2019)

Lateral transfers of large DNA fragments spread functional genes among grasses.

Proceedings of the National Academy of Sciences of the United States of America, 116(10):4416-4425.

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Liu F, McDonald M, Schwessinger B, et al (2019)

Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity.

Molecular plant pathology, 20(5):656-672.

The rice XA21-mediated immune response is activated on recognition of the RaxX peptide produced by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The 60-residue RaxX precursor is post-translationally modified to form a sulfated tyrosine peptide that shares sequence and functional similarity with the plant sulfated tyrosine (PSY) peptide hormones. The 5-kb raxX-raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosylprotein sulfotransferase, and the RaxA and RaxB components of a predicted type I secretion system. To assess raxX-raxSTAB gene cluster evolution and to determine its phylogenetic distribution, we first identified rax gene homologues in other genomes. We detected the complete raxX-raxSTAB gene cluster only in Xanthomonas spp., in five distinct lineages in addition to X. oryzae. The phylogenetic distribution of the raxX-raxSTAB gene cluster is consistent with the occurrence of multiple lateral (horizontal) gene transfer events during Xanthomonas speciation. RaxX natural variants contain a restricted set of missense substitutions, as expected if selection acts to maintain peptide hormone-like function. Indeed, eight RaxX variants tested all failed to activate the XA21-mediated immune response, yet retained peptide hormone activity. Together, these observations support the hypothesis that the XA21 receptor evolved specifically to recognize Xoo RaxX.

RevDate: 2021-01-04
CmpDate: 2021-01-04

Pons JC, Scornavacca C, G Cardona (2020)

Generation of Level- k LGT Networks.

IEEE/ACM transactions on computational biology and bioinformatics, 17(1):158-164.

Phylogenetic networks provide a mathematical model to represent the evolution of a set of species where, apart from speciation, reticulate evolutionary events have to be taken into account. Among these events, lateral gene transfers need special consideration due to the asymmetry in the roles of the species involved in such an event. To take into account this asymmetry, LGT networks were introduced. Contrarily to the case of phylogenetic trees, the combinatorial structure of phylogenetic networks is much less known and difficult to describe. One of the approaches in the literature is to classify them according to their level and find generators of the given level that can be used to recursively generate all networks. In this paper, we adapt the concept of generators to the case of LGT networks. We show how these generators, classified by their level, give rise to simple LGT networks of the specified level, and how any LGT network can be obtained from these simple networks, that act as building blocks of the generic structure. The stochastic models of evolution of phylogenetic networks are also much less studied than those for phylogenetic trees. In this setting, we introduce a novel two-parameter model that generates LGT networks. Finally, we present some computer simulations using this model in order to investigate the complexity of the generated networks, depending on the parameters of the model.

RevDate: 2020-02-25
CmpDate: 2019-05-07

Nedelcu AM (2019)

Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer.

Development genes and evolution, 229(1):25-34.

The evolution of multicellularity is a premier example of phenotypic convergence: simple multicellularity evolved independently many times, and complex multicellular phenotypes are found in several distant groups. Furthermore, both animal and plant lineages have independently reached extreme levels of morphological, functional, and developmental complexity. This study explores the genetic basis for the parallel evolution of complex multicellularity and development in the animal and green plant (i.e., green algae and land plants) lineages. Specifically, the study (i) identifies the SAND domain-a DNA-binding domain with important roles in the regulation of cell proliferation and differentiation, as unique to animals, green algae, and land plants; and (ii) suggests that the parallel deployment of this ancestral domain in similar regulatory roles could have contributed to the independent evolution of complex development in these distant groups. Given the deep animal-green plant divergence, the limited distribution of the SAND domain is best explained by invoking a lateral gene transfer (LGT) event from a green alga to an early metazoan. The presence of a sequence motif specifically shared by a family of SAND-containing transcription factors involved in the evolution of complex multicellularity in volvocine algae and two types of SAND proteins that emerged early in the evolution of animals is consistent with this scenario. Overall, these findings imply that (i) in addition to be involved in the evolution of similar phenotypes, deep homologous sequences can also contribute to shaping parallel evolutionary trajectories in distant lineages, and (ii) LGT could provide an additional source of latent homologous sequences that can be deployed in analogous roles and affect the evolutionary potentials of distantly related groups.

RevDate: 2020-10-01

Oliveira ACP, Ferreira RM, Ferro MIT, et al (2018)

Transposons and pathogenicity in Xanthomonas: acquisition of murein lytic transglycosylases by TnXax1 enhances Xanthomonas citri subsp. citri 306 virulence and fitness.

PeerJ, 6:e6111.

Xanthomonas citri subsp. citri 306 (XccA) is the causal agent of type A citrus canker (CC), one of the most significant citriculture diseases. Murein lytic transglycosylases (LT), potentially involved in XccA pathogenicity, are enzymes responsible for peptidoglycan structure assembly, remodeling and degradation. They directly impact cell wall expansion during bacterial growth, septum division allowing cell separation, cell wall remodeling allowing flagellar assembly, bacterial conjugation, muropeptide recycling, and secretion system assembly, in particular the Type 3 Secretion System involved in bacterial virulence, which play a fundamental role in XccA pathogenicity. Information about the XccA LT arsenal is patchy: little is known about family diversity, their exact role or their connection to virulence in this bacterium. Among the LTs with possible involvement in virulence, two paralogue open reading frames (ORFs) (one on the chromosome and one in plasmid pXAC64) are passenger genes of the Tn3 family transposon TnXax1, known to play a significant role in the evolution and emergence of pathogenicity in Xanthomonadales and to carry a variety of virulence determinants. This study addresses LT diversity in the XccA genome and examines the role of plasmid and chromosomal TnXax1 LT passenger genes using site-directed deletion mutagenesis and functional characterization. We identified 13 XccA LTs: 12 belong to families 1A, 1B, 1C, 1D (two copies), 1F, 1G, 3A, 3B (two copies), 5A, 6A and one which is non-categorized. The non-categorized LT is exclusive to the Xanthomonas genus and related to the 3B family but contains an additional domain linked to carbohydrate metabolism. The categorized LTs are probably involved in cell wall remodeling to allow insertion of type 3, 4 and 6 secretion systems, flagellum assembly, division and recycling of cell wall and degradation and control of peptidoglycan production. The TnXax1 passenger LT genes (3B family) are not essential to XccA or for CC development but are implicated in peptidoglycan metabolism, directly impacting bacterial fitness and CC symptom enhancement in susceptible hosts (e.g., Citrus sinensis). This underlines the role of TnXax1 as a virulence and pathogenicity-propagating agent in XccA and suggests that LT acquisition by horizontal gene transfer mediated by TnXax1 may improve bacterial fitness, conferring adaptive advantages to the plant-pathogen interaction process.

RevDate: 2020-03-09
CmpDate: 2019-03-18

Pang TY, MJ Lercher (2019)

Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment.

Proceedings of the National Academy of Sciences of the United States of America, 116(1):187-192.

Even closely related prokaryotes often show an astounding diversity in their ability to grow in different nutritional environments. It has been hypothesized that complex metabolic adaptations-those requiring the independent acquisition of multiple new genes-can evolve via selectively neutral intermediates. However, it is unclear whether this neutral exploration of phenotype space occurs in nature, or what fraction of metabolic adaptations is indeed complex. Here, we reconstruct metabolic models for the ancestors of a phylogeny of 53 Escherichia coli strains, linking genotypes to phenotypes on a genome-wide, macroevolutionary scale. Based on the ancestral and extant metabolic models, we identify 3,323 phenotypic innovations in the history of the E. coli clade that arose through changes in accessory genome content. Of these innovations, 1,998 allow growth in previously inaccessible environments, while 1,325 increase biomass yield. Strikingly, every observed innovation arose through the horizontal acquisition of a single DNA segment less than 30 kb long. Although we found no evidence for the contribution of selectively neutral processes, 10.6% of metabolic innovations were facilitated by horizontal gene transfers on earlier phylogenetic branches, consistent with a stepwise adaptation to successive environments. Ninety-eight percent of metabolic phenotypes accessible to the combined E. coli pangenome can be bestowed on any individual strain by transferring a single DNA segment from one of the extant strains. These results demonstrate an amazing ability of the E. coli lineage to adapt to novel environments through single horizontal gene transfers (followed by regulatory adaptations), an ability likely mirrored in other clades of generalist bacteria.

RevDate: 2020-03-09
CmpDate: 2019-07-01

Jaffe AL, Castelle CJ, Dupont CL, et al (2019)

Lateral Gene Transfer Shapes the Distribution of RuBisCO among Candidate Phyla Radiation Bacteria and DPANN Archaea.

Molecular biology and evolution, 36(3):435-446.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the most abundant enzyme on Earth. Despite this, its full diversity and distribution across the domains of life remain to be determined. Here, we leverage a large set of bacterial, archaeal, and viral genomes recovered from the environment to expand our understanding of existing RuBisCO diversity and the evolutionary processes responsible for its distribution. Specifically, we report a new type of RuBisCO present in Candidate Phyla Radiation (CPR) bacteria that is related to the archaeal Form III enzyme and contains the amino acid residues necessary for carboxylase activity. Genome-level metabolic analyses supported the inference that these RuBisCO function in a CO2-incorporating pathway that consumes nucleotides. Importantly, some Gottesmanbacteria (CPR) also encode a phosphoribulokinase that may augment carbon metabolism through a partial Calvin-Benson-Bassham cycle. Based on the scattered distribution of RuBisCO and its discordant evolutionary history, we conclude that this enzyme has been extensively laterally transferred across the CPR bacteria and DPANN archaea. We also report RuBisCO-like proteins in phage genomes from diverse environments. These sequences cluster with proteins in the Beckwithbacteria (CPR), implicating phage as a possible mechanism of RuBisCO transfer. Finally, we synthesize our metabolic and evolutionary analyses to suggest that lateral gene transfer of RuBisCO may have facilitated major shifts in carbon metabolism in several important bacterial and archaeal lineages.

RevDate: 2020-03-09
CmpDate: 2019-11-25

Duricki DA, Drndarski S, Bernanos M, et al (2019)

Stroke Recovery in Rats after 24-Hour-Delayed Intramuscular Neurotrophin-3 Infusion.

Annals of neurology, 85(1):32-46.

OBJECTIVE: Neurotrophin-3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke.

METHODS: Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps.

RESULTS: Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri-infarct blood oxygenation level-dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways.

INTERPRETATION: Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke. ANN NEUROL 2019;85:32-46.

RevDate: 2020-02-25
CmpDate: 2019-03-26

Gong L, Yu P, Zheng H, et al (2019)

Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1.

Molecular genetics and genomics : MGG, 294(2):417-430.

Vibriocholerae, which is autochthonous to estuaries worldwide, can cause human cholera that is still pandemic in developing countries. A number of V. cholerae isolates of clinical and environmental origin worldwide have been subjected to genome sequencing to address their phylogenesis and bacterial pathogenesis, however, little genome information is available for V. cholerae isolates derived from estuaries, particularly in China. In this study, we determined the complete genome sequence of V. cholerae CHN108B (non-O1/O139 serogroup) isolated from the Yangtze River Estuary, China and performed comparative genome analysis between CHN108B and other eight representative V. cholerae isolates. The 4,168,545-bp V. cholerae CHN108B genome (47.2% G+C) consists of two circular chromosomes with 3,691 predicted protein-encoding genes. It has 110 strain-specific genes, the highest number among the eight representative V. cholerae whole genomes from serogroup O1: there are seven clinical isolates linked to cholera pandemics (1937-2010) and one environmental isolate from Brazil. Various mobile genetic elements (such as insertion sequences, prophages, integrative and conjugative elements, and super-integrons) were identified in the nine V. cholerae genomes of clinical and environmental origin, indicating that the bacterium undergoes extensive genetic recombination via lateral gene transfer. Comparative genomics also revealed different virulence and antimicrobial resistance gene patterns among the V. cholerae isolates, suggesting some potential virulence factors and the rising development of resistance among pathogenic V. cholerae. Additionally, draft genome sequences of multiple V. cholerae isolates recovered from the Yangtze River Estuary were also determined, and comparative genomics revealed many genes involved in specific metabolism pathways, which are likely shaped by the unique estuary environment. These results provide additional evidence of V. cholerae genome plasticity and will facilitate better understanding of the genome evolution and pathogenesis of this severe water-borne pathogen worldwide.

RevDate: 2021-01-09
CmpDate: 2019-04-11

Dong X, Chaisiri K, Xia D, et al (2018)

Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism.

GigaScience, 7(12):.

Background: Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium.

Results: Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae.

Conclusions: Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.

RevDate: 2019-12-17
CmpDate: 2019-12-10

Cenci U, Qiu H, Pillonel T, et al (2018)

Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida.

Scientific reports, 8(1):15243.

Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.

RevDate: 2020-10-01

Sand KK, S Jelavić (2018)

Mineral Facilitated Horizontal Gene Transfer: A New Principle for Evolution of Life?.

Frontiers in microbiology, 9:2217.

A number of studies have highlighted that adsorption to minerals increases DNA longevity in the environment. Such DNA-mineral associations can essentially serve as pools of genes that can be stored across time. Importantly, this DNA is available for incorporation into alien organisms through the process of horizontal gene transfer (HGT). Here we argue that minerals hold an unrecognized potential for successfully transferring genetic material across environments and timescales to distant organisms and hypothesize that this process has significantly influenced the evolution of life. Our hypothesis is illustrated in the context of the evolution of early microbial life and the oxygenation of the Earth's atmosphere and offers an explanation for observed outbursts of evolutionary events caused by HGT.

RevDate: 2021-01-09
CmpDate: 2020-03-23

Reid CJ, DeMaere MZ, SP Djordjevic (2019)

Australian porcine clonal complex 10 (CC10) Escherichia coli belong to multiple sublineages of a highly diverse global CC10 phylogeny.

Microbial genomics, 5(3):.

We recently identified clonal complex 10 (CC10) Escherichia coli as the predominant clonal group in two populations of healthy Australian food-production pigs. CC10 are highly successful, colonizing humans, food-production animals, fresh produce and environmental niches. Furthermore, E. coli within CC10 are frequently drug resistant and increasingly reported as human and animal extra-intestinal pathogens. In order to develop a high-resolution global phylogeny and determine the repertoire of antimicrobial-resistance genes, virulence-associated genes and plasmid types within this clonal group, we downloaded 228 publicly available CC10 short-read genome sequences for comparison with 20 porcine CC10 we have previously described. Core genome single nucleotide polymorphism phylogeny revealed a highly diverse global phylogeny consisting of multiple lineages that did not cluster by geography or source of the isolates. Australian porcine strains belonged to several of these divergent lineages, indicative that CC10 is present in these animals due to multiple colonization events. Differences in resistance gene and plasmid carriage between porcine strains and the global collection highlighted the role of lateral gene transfer in the evolution of CC10 strains. Virulence profiles typical of extra-intestinal pathogenic E. coli were present in both Australian porcine strains and the broader collection. As both the core phylogeny and accessory gene characteristics appeared unrelated to the geography or source of the isolates, it is likely that the global expansion of CC10 is not a recent event and may be associated with faecal carriage in humans.

RevDate: 2020-10-01

Chelkha N, Levasseur A, Pontarotti P, et al (2018)

A Phylogenomic Study of Acanthamoeba polyphaga Draft Genome Sequences Suggests Genetic Exchanges With Giant Viruses.

Frontiers in microbiology, 9:2098.

Acanthamoeba are ubiquitous phagocytes predominant in soil and water which can ingest many microbes. Giant viruses of amoebae are listed among the Acanthamoeba-resisting microorganisms. Their sympatric lifestyle within amoebae is suspected to promote lateral nucleotide sequence transfers. Some Acanthamoeba species have shown differences in their susceptibility to giant viruses. Until recently, only the genome of a single Acanthamoeba castellanii Neff was available. We analyzed the draft genome sequences of Acanthamoeba polyphaga through several approaches, including comparative genomics, phylogeny, and sequence networks, with the aim of detecting putative nucleotide sequence exchanges with giant viruses. We identified a putative sequence trafficking between this Acanthamoeba species and giant viruses, with 366 genes best matching with viral genes. Among viruses, Pandoraviruses provided the greatest number of best hits with 117 (32%) for A. polyphaga. Then, genes from mimiviruses, Mollivirus sibericum, marseilleviruses, and Pithovirus sibericum were best hits in 67 (18%), 35 (9%), 24 (7%), and 2 (0.5%) cases, respectively. Phylogenetic reconstructions showed in a few cases that the most parsimonious evolutionary scenarios were a transfer of gene sequences from giant viruses to A. polyphaga. Nevertheless, in most cases, phylogenies were inconclusive regarding the sense of the sequence flow. The number and nature of putative nucleotide sequence transfers between A. polyphaga, and A. castellanii ATCC 50370 on the one hand, and pandoraviruses, mimiviruses and marseilleviruses on the other hand were analyzed. The results showed a lower number of differences within the same giant viral family compared to between different giant virus families. The evolution of 10 scaffolds that were identified among the 14 Acanthamoeba sp. draft genome sequences and that harbored ≥ 3 genes best matching with viruses showed a conservation of these scaffolds and their 46 viral genes in A. polyphaga, A. castellanii ATCC 50370 and A. pearcei. In contrast, the number of conserved genes decreased for other Acanthamoeba species, and none of these 46 genes were present in three of them. Overall, this work opens up several potential avenues for future studies on the interactions between Acanthamoeba species and giant viruses.

RevDate: 2019-02-15
CmpDate: 2019-02-07

Sitaraman R (2018)

Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities.

Microbiome, 6(1):163.

The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.

RevDate: 2019-01-09
CmpDate: 2019-01-09

Alizadeh N, Seyyed Mousavi MN, Hajibonabi F, et al (2018)

Microbes involving in carcinogenesis; growing state of the art.

Microbial pathogenesis, 125:1-6.

Lateral gene transfer (LGT) has been demonstrated as a transfer process of novel genes between different species. LGT proceedings are occurring between microbes and plants, as well as between microbes and animals. New evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Due to the important role of genetic changes in the increase of cell proliferation and cancer development, we reviewed the effects of microbial-animal LGT in human oncogenesis. In addition, viral DNA can induce cancer development by random insertion into cancer-related genes or by inducing translocations. In conclusion, growing evidence shows the contribution of the microbial genome in cancer and autoimmune disease.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )