About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

14 Nov 2022 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 14 Nov 2022 at 01:30 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: "(horizontal OR lateral) "gene transfer"" NOT pmcbook NOT ispreviousversion NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-11-04
CmpDate: 2022-11-04

Corning PA (2022)

The synergism hypothesis (revisited): a theory whose time has come?.

Theoretical biology forum, 115(1-2):85-97.

A major theoretical issue in evolutionary biology over the past two decades has concerned the rise of complexity over time in the natural world, and a search has been underway for "a Grand Unified Theory" - as biologist Daniel McShea characterized it - that is consistent with Darwin's great vision. As it happens, such a theory already exists. It was first proposed many years ago in The Synergism Hypothesis: A Theory of Progressive Evolution, and it involves an economic (or perhaps bioeconomic) theory of complexity. Simply stated, cooperative interactions of various kinds, however they may occur, can produce novel combined effects - synergies - with functional advantages that may, in turn, become direct causes of natural selection. In other words, the Synergism Hypothesis is a theory about the unique combined effects produced by the relationships between things. I refer to it as Holistic Darwinism; it is entirely con - sistent with natural selection theory, properly understood. Because the Synergism Hypothesis was first proposed during a time when the genecentric, neo-Darwinist paradigm was domi nant in evolutionary biology, it was largely overlooked. But times have changed. Biologist Richard Michod has concluded that "cooperation is now seen as the primary creative force behind ever greater levels of complexity and organization in all of biology." And Martin Nowak has called cooperation "the master architect of evolution." Here I will revisit this theory in the light of the many theoretical developments and research findings in recent years that are supportive of it, including the role of symbiogenesis in evolution, the phenomenon of hybridization, lateral gene transfer in prokaryotes, "developmental plasticity" (evo-devo), epigenetic inheritance, the role of behaviour (and teleonomy) in evolution, and gene-culture coevolution. The Synergism Hypothesis is especially relevant to the evolution of humankind.

RevDate: 2022-09-20

Philips JG, Martin-Avila E, AV Robold (2022)

Horizontal gene transfer from genetically modified plants - Regulatory considerations.

Frontiers in bioengineering and biotechnology, 10:971402.

Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.

RevDate: 2022-09-20
CmpDate: 2022-09-13

Davín AA, Schrempf D, Williams TA, et al (2022)

Relative Time Inference Using Lateral Gene Transfers.

Methods in molecular biology (Clifton, N.J.), 2569:75-94.

Many organisms are able to incorporate exogenous DNA into their genomes. This process, called lateral gene transfer (LGT), has the potential to benefit the recipient organism by providing useful coding sequences, such as antibiotic resistance genes or enzymes which expand the organism's metabolic niche. For evolutionary biologists, LGTs have often been considered a nuisance because they complicate the reconstruction of the underlying species tree that many analyses aim to recover. However, LGT events between distinct organisms harbor information on the relative divergence time of the donor and recipient lineages. As a result transfers provide a novel and as yet mostly unexplored source of information to determine the order of divergence of clades, with the potential for absolute dating if linked to the fossil record.

RevDate: 2022-09-03
CmpDate: 2022-08-24

Colnaghi M, Lane N, A Pomiankowski (2022)

Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes.

Proceedings of the National Academy of Sciences of the United States of America, 119(35):e2205041119.

The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.

RevDate: 2022-08-26
CmpDate: 2022-08-17

Macedo G, Olesen AK, Maccario L, et al (2022)

Horizontal Gene Transfer of an IncP1 Plasmid to Soil Bacterial Community Introduced by Escherichia coli through Manure Amendment in Soil Microcosms.

Environmental science & technology, 56(16):11398-11408.

The quantification and identification of new plasmid-acquiring bacteria in representative mating conditions is critical to characterize the risk of horizontal gene transfer in the environment. This study aimed to quantify conjugation events resulting from manure application to soils and identify the transconjugants resulting from these events. Conjugation was quantified at multiple time points by plating and flow cytometry, and the transconjugants were recovered by fluorescence-activated cell sorting and identified by 16S rRNA sequencing. Overall, transconjugants were only observed within the first 4 days after manure application and at values close to the detection limits of this experimental system (1.00-2.49 log CFU/g of manured soil, ranging between 10-5 and 10-4 transconjugants-to-donor ratios). In the pool of recovered transconjugants, we found amplicon sequence variants (ASVs) of genera whose origin was traced to soils (Bacillus and Nocardioides) and manure (Comamonas and Rahnella). This work showed that gene transfer from fecal to soil bacteria occurred despite the less-than-optimal conditions faced by manure bacteria when transferred to soils, but these events were rare, mainly happened shortly after manure application, and the plasmid did not colonize the soil community. This study provides important information to determine the risks of AMR spread via manure application.

RevDate: 2022-09-20
CmpDate: 2022-09-08

Nies F, Springstein BL, Hanke DM, et al (2022)

Natural Competence in the Filamentous, Heterocystous Cyanobacterium Chlorogloeopsis fritschii PCC 6912.

mSphere, 7(4):e0099721.

Lateral gene transfer plays an important role in the evolution of genetic diversity in prokaryotes. DNA transfer via natural transformation depends on the ability of recipient cells to actively transport DNA from the environment into the cytoplasm, termed natural competence, which relies on the presence of type IV pili and other competence proteins. Natural competence has been described in cyanobacteria for several organisms, including unicellular and filamentous species. However, natural competence in cyanobacteria that differentiate specialized cells for N2-fixation (heterocysts) and form branching or multiseriate cell filaments (termed subsection V) remains unknown. Here, we show that genes essential for natural competence are conserved in subsection V cyanobacteria. Furthermore, using the replicating plasmid pRL25C, we experimentally demonstrate natural competence in a subsection V organism: Chlorogloeopsis fritschii PCC 6912. Our results suggest that natural competence is a common trait in cyanobacteria forming complex cell filament morphologies. IMPORTANCE Cyanobacteria are crucial players in the global biogeochemical cycles, where they contribute to CO2- and N2-fixation. Their main ecological significance is the primary biomass production owing to oxygenic photosynthesis. Cyanobacteria are a diverse phylum, in which the most complex species differentiate specialized cell types and form true-branching or multiseriate cell filament structures (termed subsection V cyanobacteria). These bacteria are considered a peak in the evolution of prokaryotic multicellularity. Among others, species in that group inhabit fresh and marine water habitats, soil, and extreme habitats such as thermal springs. Here, we show that the core genes required for natural competence are frequent in subsection V cyanobacteria and demonstrate for the first time natural transformation in a member of subsection V. The prevalence of natural competence has implications for the role of DNA acquisition in the genome evolution of cyanobacteria. Furthermore, the presence of mechanisms for natural transformation opens up new possibilities for the genetic modification of subsection V cyanobacteria.

RevDate: 2022-09-15
CmpDate: 2022-08-30

Chouhan B, Tak N, Bissa G, et al (2022)

Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer.

FEMS microbiology ecology, 98(9):.

More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA, these were identified as strains of Ensifer, Mesorhizobium, Rhizobium, and Bradyrhizobium. In multilocus sequence analysis (MLSA) strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa, and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic, and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena, the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Dickinson A (2022)

Neck of the woods: Microbes, memory, and resistance.

Endeavour, 46(1-2):100821.

Horizontal Gene Transfer (HGT) is a key mechanism allowing bacteria to enact genetic changes in response to shifting environmental conditions. The swift lateral movement of genes makes possible antibiotic resistance, which is an increasing medical and ultimately cultural problem. There is evidence that HGT also takes place between species. Bacterial DNA appears in the human mitochondrial genome of acute myeloid leukemia (AML) samples. Responding to a recent diagnosis of AML, this creative piece imagines a literary form of HGT. Adjacency is intrinsic to the conceptual and formal concerns of the text. Moving back and forth between essay and poem, between the personal and the planetary, between the real and the imagined, and between the right and left margins of the page, this piece unfolds beside itself, exploring the lateral movement of memory and family history through concerns with antibiotic resistance, illness, writing, and science. While there are no embedded citations or footnotes, a glossary of terms (Appendix 1) follows the main text, and a brief bibliographic essay (Appendix 2) at the end identifies cited sources that correspond to a list of references.

RevDate: 2022-07-16
CmpDate: 2022-07-07

Cote-L'Heureux A, Maurer-Alcalá XX, LA Katz (2022)

Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events.

PLoS genetics, 18(6):e1010239.

Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Pepperell CS (2022)

Evolution of Tuberculosis Pathogenesis.

Annual review of microbiology, 76:661-680.

Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made.

RevDate: 2022-08-18
CmpDate: 2022-06-23

Tvedte ES, Gasser M, Zhao X, et al (2022)

Accumulation of endosymbiont genomes in an insect autosome followed by endosymbiont replacement.

Current biology : CB, 32(12):2786-2795.e5.

Eukaryotic genomes can acquire bacterial DNA via lateral gene transfer (LGT).1 A prominent source of LGT is Wolbachia,2 a widespread endosymbiont of arthropods and nematodes that is transmitted maternally through female germline cells.3,4 The DNA transfer from the Wolbachia endosymbiont wAna to Drosophila ananassae is extensive5-7 and has been localized to chromosome 4, contributing to chromosome expansion in this lineage.6 As has happened frequently with claims of bacteria-to-eukaryote LGT, the contribution of wAna transfers to the expanded size of D. ananassae chromosome 4 has been specifically contested8 owing to an assembly where Wolbachia sequences were classified as contaminants and removed.9 Here, long-read sequencing with DNA from a Wolbachia-cured line enabled assembly of 4.9 Mbp of nuclear Wolbachia transfers (nuwts) in D. ananassae and a 24-kbp nuclear mitochondrial transfer. The nuwts are <8,000 years old in at least two locations in chromosome 4 with at least one whole-genome integration followed by rapid extensive duplication of most of the genome with regions that have up to 10 copies. The genes in nuwts are accumulating small indels and mobile element insertions. Among the highly duplicated genes are cifA and cifB, two genes associated with Wolbachia-mediated Drosophila cytoplasmic incompatibility. The wAna strain that was the source of nuwts was subsequently replaced by a different wAna endosymbiont. Direct RNA Nanopore sequencing of Wolbachia-cured lines identified nuwt transcripts, including spliced transcripts, but functionality, if any, remains elusive.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Gophna U, N Altman-Price (2022)

Horizontal Gene Transfer in Archaea-From Mechanisms to Genome Evolution.

Annual review of microbiology, 76:481-502.

Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important. Furthermore, some mechanisms of gene exchange, such as plasmids that transmit themselves via membrane vesicles and the formation of cytoplasmic bridges that allows transfer of both chromosomal and plasmid DNA, may be archaea-specific. This review summarizes what we know about HGT in archaea, and the barriers that restrict it, highlighting exciting recent discoveries and pointing out opportunities for future research.

RevDate: 2022-07-27

Davies PL (2022)

Reflections on antifreeze proteins and their evolution.

Biochemistry and cell biology = Biochimie et biologie cellulaire [Epub ahead of print].

The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.

RevDate: 2022-06-09
CmpDate: 2022-05-18

Estrada A, Suárez-Díaz E, A Becerra (2022)

Reconstructing the Last Common Ancestor: Epistemological and Empirical Challenges.

Acta biotheoretica, 70(2):15.

Reconstructing the genetic traits of the Last Common Ancestor (LCA) and the Tree of Life (TOL) are two examples of the reaches of contemporary molecular phylogenetics. Nevertheless, the whole enterprise has led to paradoxical results. The presence of Lateral Gene Transfer poses epistemic and empirical challenges to meet these goals; the discussion around this subject has been enriched by arguments from philosophers and historians of science. At the same time, a few but influential research groups have aimed to reconstruct the LCA with rich-in-detail hypotheses and high-resolution gene catalogs and metabolic traits. We argue that LGT poses insurmountable challenges for detailed and rich in details reconstructions and propose, instead, a middle-ground position with the reconstruction of a slim LCA based on traits under strong pressures of Negative Natural Selection, and for the need of consilience with evidence from organismal biology and geochemistry. We defend a cautionary perspective that goes beyond the statistical analysis of gene similarities and assumes the broader consequences of evolving empirical data and epistemic pluralism in the reconstruction of early life.

RevDate: 2022-06-12
CmpDate: 2022-05-05

Kong S, Pons JC, Kubatko L, et al (2022)

Classes of explicit phylogenetic networks and their biological and mathematical significance.

Journal of mathematical biology, 84(6):47.

The evolutionary relationships among organisms have traditionally been represented using rooted phylogenetic trees. However, due to reticulate processes such as hybridization or lateral gene transfer, evolution cannot always be adequately represented by a phylogenetic tree, and rooted phylogenetic networks that describe such complex processes have been introduced as a generalization of rooted phylogenetic trees. In fact, estimating rooted phylogenetic networks from genomic sequence data and analyzing their structural properties is one of the most important tasks in contemporary phylogenetics. Over the last two decades, several subclasses of rooted phylogenetic networks (characterized by certain structural constraints) have been introduced in the literature, either to model specific biological phenomena or to enable tractable mathematical and computational analyses. In the present manuscript, we provide a thorough review of these network classes, as well as provide a biological interpretation of the structural constraints underlying these networks where possible. In addition, we discuss how imposing structural constraints on the network topology can be used to address the scalability and identifiability challenges faced in the estimation of phylogenetic networks from empirical data.

RevDate: 2022-07-16

Nagar S, Talwar C, Motelica-Heino M, et al (2022)

Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India.

Frontiers in microbiology, 13:848010.

Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.

RevDate: 2022-07-21
CmpDate: 2022-07-01

Bartha L, Mandáková T, Kovařík A, et al (2022)

Intact ribosomal DNA arrays of Potentilla origin detected in Erythronium nucleus suggest recent eudicot-to-monocot horizontal transfer.

The New phytologist, 235(3):1246-1259.

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.

RevDate: 2022-05-06

Borodovich T, Shkoporov AN, Ross RP, et al (2022)

Phage-mediated horizontal gene transfer and its implications for the human gut microbiome.

Gastroenterology report, 10:goac012.

Horizontal gene transfer (HGT) in the microbiome has profound consequences for human health and disease. The spread of antibiotic resistance genes, virulence, and pathogenicity determinants predominantly occurs by way of HGT. Evidence exists of extensive horizontal transfer in the human gut microbiome. Phage transduction is a type of HGT event in which a bacteriophage transfers non-viral DNA from one bacterial host cell to another. The abundance of tailed bacteriophages in the human gut suggests that transduction could act as a significant mode of HGT in the gut microbiome. Here we review in detail the known mechanisms of phage-mediated HGT, namely specialized and generalized transduction, lateral transduction, gene-transfer agents, and molecular piracy, as well as methods used to detect phage-mediated HGT, and discuss its potential implications for the human gut microbiome.

RevDate: 2022-07-16

Aytan-Aktug D, Clausen PTLC, Szarvas J, et al (2022)

PlasmidHostFinder: Prediction of Plasmid Hosts Using Random Forest.

mSystems, 7(2):e0118021.

Plasmids play a major role facilitating the spread of antimicrobial resistance between bacteria. Understanding the host range and dissemination trajectories of plasmids is critical for surveillance and prevention of antimicrobial resistance. Identification of plasmid host ranges could be improved using automated pattern detection methods compared to homology-based methods due to the diversity and genetic plasticity of plasmids. In this study, we developed a method for predicting the host range of plasmids using machine learning-specifically, random forests. We trained the models with 8,519 plasmids from 359 different bacterial species per taxonomic level; the models achieved Matthews correlation coefficients of 0.662 and 0.867 at the species and order levels, respectively. Our results suggest that despite the diverse nature and genetic plasticity of plasmids, our random forest model can accurately distinguish between plasmid hosts. This tool is available online through the Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/PlasmidHostFinder/). IMPORTANCE Antimicrobial resistance is a global health threat to humans and animals, causing high mortality and morbidity while effectively ending decades of success in fighting against bacterial infections. Plasmids confer extra genetic capabilities to the host organisms through accessory genes that can encode antimicrobial resistance and virulence. In addition to lateral inheritance, plasmids can be transferred horizontally between bacterial taxa. Therefore, detection of the host range of plasmids is crucial for understanding and predicting the dissemination trajectories of extrachromosomal genes and bacterial evolution as well as taking effective countermeasures against antimicrobial resistance.

RevDate: 2022-04-06
CmpDate: 2022-04-06

Marti H, Suchland RJ, DD Rockey (2022)

The Impact of Lateral Gene Transfer in Chlamydia.

Frontiers in cellular and infection microbiology, 12:861899.

Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and pathogenesis, especially regarding pathogen evolution and the spread of antibiotic resistance across species. The obligate intracellular chlamydiae, which cause a range of diseases in humans and animals, were historically thought to be highly deficient in this process. However, research over the past few decades has demonstrated that this was not the case. The first reports of homologous recombination in the Chlamydiaceae family were published in the early 1990s. Later, the advent of whole-genome sequencing uncovered clear evidence for LGT in the evolution of the Chlamydiaceae, although the acquisition of tetracycline resistance in Chlamydia (C.) suis is the only recent instance of interphylum LGT. In contrast, genome and in vitro studies have shown that intraspecies DNA exchange occurs frequently and can even cross species barriers between closely related chlamydiae, such as between C. trachomatis, C. muridarum, and C. suis. Additionally, whole-genome analysis led to the identification of various DNA repair and recombination systems in C. trachomatis, but the exact machinery of DNA uptake and homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we reviewed the current state of knowledge concerning LGT in Chlamydia by focusing on the effect of homologous recombination on the chlamydial genome, the recombination machinery, and its potential as a genetic tool for Chlamydia.

RevDate: 2022-05-02
CmpDate: 2022-05-02

Sanders WB (2022)

The photoaerogens: algae and plants reunited conceptually.

American journal of botany, 109(3):363-365.

RevDate: 2022-07-16
CmpDate: 2022-04-29

Yin Z, Liu X, Qian C, et al (2022)

Pan-Genome Analysis of Delftia tsuruhatensis Reveals Important Traits Concerning the Genetic Diversity, Pathogenicity, and Biotechnological Properties of the Species.

Microbiology spectrum, 10(2):e0207221.

Delftia tsuruhatensis strains have long been known to promote plant growth and biological control. Recently, it has become an emerging opportunistic pathogen in humans. However, the genomic characteristics of the genetic diversity, pathogenicity, and biotechnological properties have not yet been comprehensively investigated. Here, a comparative pan-genome analysis was constructed. The open pan-genome with a large and flexible gene repertoire exhibited a high degree of genetic diversity. The purifying selection was the main force to drive pan-genome evolution. Significant differences were observed in the evolutionary relationship, functional enrichment, and degree of selective pressure between the different components of the pan-genome. A high degree of genetic plasticity was characterized by the determinations of diverse mobile genetic elements (MGEs), massive genomic rearrangement, and horizontal genes. Horizontal gene transfer (HGT) plays an important role in the genetic diversity of this bacterium and the formation of genomic traits. Our results revealed the occurrence of diverse virulence-related elements associated with macromolecular secretion systems, virulence factors associated with multiple nosocomial infections, and antimicrobial resistance, indicating the pathogenic potential. Lateral flagellum, T1SS, T2SS, T6SS, Tad pilus, type IV pilus, and a part of virulence-related genes exhibited general properties, whereas polar flagellum, T4SS, a part of virulence-related genes, and resistance genes presented heterogeneous properties. The pan-genome also harbors abundant genetic traits related to secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter, indicating rhizosphere adaptation, plant growth promotion, and great potential uses in agriculture and biological control. This study provides comprehensive insights into this uncommon species from the genomic perspective. IMPORTANCE D. tsuruhatensis is considered a plant growth-promoting rhizobacterium (PGPR), an organic pollutant degradation strain, and an emerging opportunistic pathogen to the human. However, the genetic diversity, the evolutionary dynamics, and the genetic basis of these remarkable traits are still little known. We constructed a pan-genome analysis for D. tsuruhatensis and revealed extensive genetic diversity and genetic plasticity exhibited by open pan-genome, diverse mobile genetic elements (MGEs), genomic rearrangement, and horizontal genes. Our results highlight that horizontal gene transfer (HGT) and purifying selection are important forces in D. tsuruhatensis genetic evolution. The abundant virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance could contribute to the pathogenicity of this bacterium. Therefore, clinical microbiologists need to be aware of D. tsuruhatensis as an opportunistic pathogen. The genetic profiles of secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter could provide insight into the genetic armory of potential applications for agriculture and biological control of D. tsuruhatensis in general.

RevDate: 2022-03-18
CmpDate: 2022-03-18

Patané JSL, Moreira LM, de Melo Teixeira M, et al (2022)

New insights into plant natriuretic peptide evolution: From the lysogenic conversion in Xanthomonas to the lateral transfer to the whitefly Bemisia tabaci.

Gene, 821:146326.

Plant natriuretic peptide-like (PNP) are signaling molecules related to adaptive responses to stress. The Arabidopsis thaliana PNP (AtPNP-A) is capable of modulating catalase 2 (CAT2) and rubisco activase (RCA) activity in some circumstances. Interestingly, many plant-pathogens co-opted PNP-like molecules to their benefit. For instance, the citrus pathogen Xanthomonas citri carries a PNP-like (XacPNP) that can mimic and regulate plant homeostasis, and many phytopathogenic fungi carry effectors (e.g., Ave1 and AvrLm6) that are indeed PNP-like homologs. This work investigates the PNP-like evolution across the tree of life, revealing many parallel gains and duplications in plant and fungi kingdoms. All PNP-like proteins in the final dataset are structurally similar, containing the AtPNP-A active domains modulating CAT2 activity and RCA interaction. Comparative genomics evinced that XacPNP is a lysogenic conversion factor associated with a Myoviridae-like prophage identified in many Xanthomonas species. Surprisingly, a PNP-like homolog was identified in Bemisia tabaci, an important agricultural pest, being to date the second example of lateral gene transfer (LGT) from plant to the whitefly. Moreover, the Bemisia PNP-like homolog can also be considered a potential new effector of this phloem-feeding insect. Noteworthy, the whiteflies infest many plants carrying PNP-like copies and interact with some of their bacterial and fungal pathogens, strongly suggesting complex recipient/donor traits of PNP by LGT and bringing new insights into the evolution of host-pathogen arms race across the tree of life.

RevDate: 2022-03-03
CmpDate: 2022-03-03

Akimova E, Gassner FJ, Greil R, et al (2022)

Detecting Bacterial-Human Lateral Gene Transfer in Chronic Lymphocytic Leukemia.

International journal of molecular sciences, 23(3):.

Chronic lymphocytic leukemia (CLL) is a very common and mostly incurable B-cell malignancy. Recent studies revealed high interpatient mutational heterogeneity and worsened therapy response and survival of patients with complex genomic aberrations. In line with this, a better understanding of the underlying mechanisms of specific genetic aberrations would reveal new prognostic factors and possible therapeutic targets. It is known that chromosomal rearrangements including DNA insertions often play a role during carcinogenesis. Recently it was reported that bacteria (microbiome)-human lateral gene transfer occurs in somatic cells and is enriched in cancer samples. To further investigate this mechanism in CLL, we analyzed paired-end RNA sequencing data of 45 CLL patients and 9 healthy donors, in which we particularly searched for bacterial DNA integrations into the human somatic genome. Applying the Burrows-Wheeler aligner (BWA) first on a human genome and then on bacterial genome references, we differentiated between sequencing reads mapping to the human genome, to the microbiome or to bacterial integrations into the human genome. Our results indicate that CLL samples featured bacterial DNA integrations more frequently (approx. two-fold) compared to normal samples, which corroborates the latest findings in other cancer entities. Moreover, we determined common integration sites and recurrent integrated bacterial transcripts. Finally, we investigated the contribution of bacterial integrations to oncogenesis and disease progression.

RevDate: 2022-03-15
CmpDate: 2022-03-15

Bowring JZ, Su Y, Alsaadi A, et al (2022)

Screening for Highly Transduced Genes in Staphylococcus aureus Revealed Both Lateral and Specialized Transduction.

Microbiology spectrum, 10(1):e0242321.

Bacteriophage-mediated transduction of bacterial DNA is a major route of horizontal gene transfer in the human pathogen, Staphylococcus aureus. Transduction involves the packaging of bacterial DNA by viruses and enables the transmission of virulence and resistance genes between cells. To learn more about transduction in S. aureus, we searched a transposon mutant library for genes and mutations that enhanced transfer mediated by the temperate phage, ϕ11. Using a novel screening strategy, we performed multiple rounds of transduction of transposon mutant pools selecting for an antibiotic resistance marker within the transposon element. When determining the locations of transferred mutations, we found that the screen had selected for just 1 or 2 transposon mutant(s) within each pool of 96 mutants. Subsequent analysis showed that the position of the transposon, rather than the inactivation of bacterial genes, was responsible for the phenotype. Interestingly, from multiple rounds, we identified a pattern of transduction that encompassed mobile genetic elements as well as chromosomal regions both upstream and downstream of the phage integration site. The latter was confirmed by DNA sequencing of purified phage lysates. Importantly, transduction frequencies were lower for phage lysates obtained by phage infection rather than induction. Our results confirmed previous reports of lateral transduction of bacterial DNA downstream of the integrated phage but also indicated a novel form of specialized transduction of DNA upstream of the phage. These findings illustrated the complexity of transduction processes and increased our understanding of the mechanisms by which phages transfer bacterial DNA. IMPORTANCE Horizontal transfer of DNA between bacterial cells contributes to the spread of virulence and antibiotic resistance genes in human pathogens. For Staphylococcus aureus, bacterial viruses play a major role in facilitating the horizontal transfer. These viruses, termed bacteriophages, can transfer bacterial DNA between cells by a process known as transduction, which despite its importance is only poorly characterized. Here, we employed a transposon mutant library to investigate transduction in S. aureus. We showed that the genomic location of bacterial DNA relative to where bacteriophages integrated into that bacterial genome affected how frequently that DNA was transduced. Based on serial transduction of transposon mutant pools and direct sequencing of bacterial DNA in bacteriophage particles, we demonstrated both lateral and specialized transduction. The use of mutant libraries to investigate the genomic patterns of bacterial DNA transferred between cells could help us understand how horizontal transfer influences virulence and resistance development.

RevDate: 2022-04-14
CmpDate: 2022-04-14

Kim D, Lee J, Cho CH, et al (2022)

Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs.

BMC biology, 20(1):2.

BACKGROUND: Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium.

RESULTS: Analysis of mitogenomes in three closely related species in this genus revealed they were 3-6-fold larger in size (56-132 kbp) than in other red algae, that have genomes of size 21-43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences.

CONCLUSION: Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA.

RevDate: 2022-01-18
CmpDate: 2022-01-18

Buysse M, Floriano AM, Gottlieb Y, et al (2021)

A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum.

eLife, 10:.

Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.

RevDate: 2022-05-02
CmpDate: 2022-05-02

Chen ZZ, Deng F, L Wang (2022)

Identifying duplications and lateral gene transfers simultaneously and rapidly.

Journal of bioinformatics and computational biology, 20(1):2150033.

This paper deals with the problem of enumerating all minimum-cost LCA-reconciliations involving gene duplications and lateral gene transfers (LGTs) for a given species tree [Formula: see text] and a given gene tree [Formula: see text]. Previously, [Tofigh A, Hallett M, Lagergren J, Simultaneous identification of duplications and lateral gene transfers, IEEE/ACM Trans Comput Biol Bioinf 517-535, 2011.] gave a fixed-parameter algorithm for this problem that runs in [Formula: see text] time, where [Formula: see text] is the number of vertices in [Formula: see text], [Formula: see text] is the number of vertices in [Formula: see text], and [Formula: see text] is the minimum cost of an LCA-reconciliation between [Formula: see text] and [Formula: see text]. In this paper, by refining their algorithm, we obtain a new one for the same problem that finds and outputs the solutions in a compact form within [Formula: see text] time. In the most interesting case where [Formula: see text], our algorithm is [Formula: see text] times faster.

RevDate: 2022-03-28
CmpDate: 2022-03-28

Bohr LL, Youngblom MA, Eldholm V, et al (2021)

Genome reorganization during emergence of host-associated Mycobacterium abscessus.

Microbial genomics, 7(12):.

Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.

RevDate: 2022-04-01
CmpDate: 2022-03-31

Wang Y, Batra A, Schulenburg H, et al (2022)

Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1842):20200467.

The emergence of antibiotic resistant bacteria is a major threat to modern medicine. Rapid adaptation to antibiotics is often mediated by the acquisition of plasmids carrying antibiotic resistance (ABR) genes. Nonetheless, the determinants of plasmid-mediated ABR gene transfer remain debated. Here, we show that the propensity of ABR gene transfer via plasmids is higher for accessory chromosomal ABR genes in comparison with core chromosomal ABR genes, regardless of the resistance mechanism. Analysing the pattern of ABR gene occurrence in the genomes of 2635 Enterobacteriaceae isolates, we find that 33% of the 416 ABR genes are shared between chromosomes and plasmids. Phylogenetic reconstruction of ABR genes occurring on both plasmids and chromosomes supports their evolution by lateral gene transfer. Furthermore, accessory ABR genes (encoded in less than 10% of the chromosomes) occur more abundantly in plasmids in comparison with core ABR genes (encoded in greater than or equal to 90% of the chromosomes). The pattern of ABR gene occurrence in plasmids and chromosomes is similar to that in the total Escherichia genome. Our results thus indicate that the previously recognized barriers for gene acquisition by lateral gene transfer apply also to ABR genes. We propose that the functional complexity of the underlying ABR mechanism is an important determinant of ABR gene transferability. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.

RevDate: 2021-12-14
CmpDate: 2021-12-03

Pswarayi F, Qiao N, Gaur G, et al (2022)

Antimicrobial plant secondary metabolites, MDR transporters and antimicrobial resistance in cereal-associated lactobacilli: is there a connection?.

Food microbiology, 102:103917.

Cereal-associated lactobacilli resist antimicrobial plant secondary metabolites. This study aimed to identify multi-drug-resistance (MDR) transporters in isolates from mahewu, a Zimbabwean fermented cereal beverage, and to determine whether these MDR-transporters relate to resistance against phenolic compounds and antibiotics. Comparative genomic analyses indicated that all seven mahewu isolates harbored multiple MATE and MFS MDR proteins. Strains of Lactiplantibacillus plantarum and Limosilactobacillus fermentum encoded for the same gene, termed mahewu phenolics resistance gene mprA, with more than 99% nucleotide identity, suggesting horizontal gene transfer. Strains of Lp. plantarum were more resistant than strains of Lm. fermentum to phenolic acids, other antimicrobials and antibiotics but the origins of strains were not related to resistance. The resistance of several strains exceeded EFSA thresholds for several antibiotics. Analysis of gene expression in one strain each of Lp. plantarum and Lm. fermentum revealed that at least one MDR gene in each strain was over-expressed during growth in wheat, sorghum and millet relative to growth in MRS5 broth. In addition, both strains over-expressed a phenolic acid reductase. The results suggest that diverse lactobacilli in mahewu share MDR transporters acquired by lateral gene transfer, and that these transporters mediate resistance to secondary plant metabolites and antibiotics.

RevDate: 2021-12-14
CmpDate: 2021-12-03

Pandey RS, RK Azad (2022)

A Protocol for Horizontally Acquired Metabolic Gene Detection in Algae.

Methods in molecular biology (Clifton, N.J.), 2396:61-69.

Horizontal gene transfer (HGT) or lateral gene transfer (LGT), the exchange of genetic materials among organisms by means of other than parent-to-offspring (vertical) inheritance, plays a major role in prokaryotic genome evolution, facilitating adaptation of prokaryotes to changes in the environment. Phylogenetic methods have been frequently invoked to catalog horizontally acquired genes; however, these methods are often constrained by the paucity of sequenced genomes of close relatives (and even distant relatives) for a robust analysis and reliable inference. In this chapter, we describe a HGT quantification protocol that exploits the complementary strengths of the integrative segmentation and clustering method and the comparative genomics approach to identify foreign genes. Users can use this pipeline in combination with phylogenetic tree reconstruction to identify foreign genes that are supported by multiple lines of evidence, that is, atypical composition, atypical distribution in close relatives, and aberrant phylogenetic pattern.

RevDate: 2022-04-06
CmpDate: 2022-04-06

Watkins A (2021)

Multi-model approaches to phylogenetics: Implications for idealization.

Studies in history and philosophy of science, 90:285-297.

Phylogenetic models traditionally represent the history of life as having a strictly-branching tree structure. However, it is becoming increasingly clear that the history of life is often not strictly-branching; lateral gene transfer, endosymbiosis, and hybridization, for example, can all produce lateral branching events. There is thus motivation to allow phylogenetic models to have a reticulate structure. One proposal involves the reconciliation of genealogical discordance. Briefly, this method uses patterns of disagreement - discordance - between trees of different genes to add lateral branching events to phylogenetic trees of taxa, and to estimate the most likely cause of these events. I use this practice to argue for: (1) a need for expanded accounts of multiple-models idealization, (2) a distinction between automatic and manual de-idealization, and (3) recognition that idealization may serve the meso-level aims of science in a different way than hitherto acknowledged.

RevDate: 2022-03-17
CmpDate: 2022-03-17

Go YK, C Leal (2021)

Polymer-Lipid Hybrid Materials.

Chemical reviews, 121(22):13996-14030.

Hierarchic self-assembly underpins much of the form and function seen in synthetic or biological soft materials. Lipids are paramount examples, building themselves in nature or synthetically in a variety of meso/nanostructures. Synthetic block copolymers capture many of lipid's structural and functional properties. Lipids are typically biocompatible and high molecular weight polymers are mechanically robust and chemically versatile. The development of new materials for applications like controlled drug/gene/protein delivery, biosensors, and artificial cells often requires the combination of lipids and polymers. The emergent composite material, a "polymer-lipid hybrid membrane", displays synergistic properties not seen in pure components. Specific examples include the observation that hybrid membranes undergo lateral phase separation that can correlate in registry across multiple layers into a three-dimensional phase-separated system with enhanced permeability of encapsulated drugs. It is timely to underpin these emergent properties in several categories of hybrid systems ranging from colloidal suspensions to supported hybrid films. In this review, we discuss the form and function of a vast number of polymer-lipid hybrid systems published to date. We rationalize the results to raise new fundamental understanding of hybrid self-assembling soft materials as well as to enable the design of new supramolecular systems and applications.

RevDate: 2022-05-06
CmpDate: 2021-12-27

Humphrey S, Fillol-Salom A, Quiles-Puchalt N, et al (2021)

Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements.

Nature communications, 12(1):6509.

It is commonly assumed that the horizontal transfer of most bacterial chromosomal genes is limited, in contrast to the frequent transfer observed for typical mobile genetic elements. However, this view has been recently challenged by the discovery of lateral transduction in Staphylococcus aureus, where temperate phages can drive the transfer of large chromosomal regions at extremely high frequencies. Here, we analyse previously published as well as new datasets to compare horizontal gene transfer rates mediated by different mechanisms in S. aureus and Salmonella enterica. We find that the horizontal transfer of core chromosomal genes via lateral transduction can be more efficient than the transfer of classical mobile genetic elements via conjugation or generalized transduction. These results raise questions about our definition of mobile genetic elements, and the potential roles played by lateral transduction in bacterial evolution.

RevDate: 2021-12-14
CmpDate: 2021-12-07

Vieira P, Myers RY, Pellegrin C, et al (2021)

Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis.

PLoS pathogens, 17(11):e1010036.

The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.

RevDate: 2022-07-16
CmpDate: 2022-02-25

Dimond ZE, Suchland RJ, Baid S, et al (2021)

Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability.

Molecular microbiology, 116(6):1433-1448.

Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero-genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis-like growth as well as poor mouse infection capabilities. Growth-independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis.

RevDate: 2022-01-31
CmpDate: 2022-01-31

Ott LC, Engelken M, Scott SM, et al (2021)

Drosophila Model for Gut-Mediated Horizontal Transfer of Narrow- and Broad-Host-Range Plasmids.

mSphere, 6(5):e0069821.

Horizontal gene transfer (HGT) is a driving force of microbial evolution. The gut of animals acts as a potent reservoir for the lateral transfer of virulence, fitness, and antimicrobial resistance genes through plasmids. Reduced-complexity models for the examination of host-microbe interactions involved in plasmid transfer are greatly desired. Thus, this study identifies the use of Drosophila melanogaster as a model organism for the conjugation of plasmids of various incompatibility groups in the gut. Enterobacteriaceae conjugation pairs were identified in vitro and used for oral inoculation of the Drosophila gut. Flies were enumerated for the donor, recipient, and transconjugant populations. Each donor-recipient pair was observed to persist in fly guts for the duration of the experiment. Gut concentrations of the donors and recipients were significantly different between male and female flies, with females generally demonstrating increased concentrations. Furthermore, host genetics significantly altered the concentrations of donors and recipients. However, transconjugant concentrations were not affected by host sex or genetics and were detected only in the IncPε and IncI1 plasmid groups. This study demonstrates Drosophila melanogaster as a model for gut-mediated plasmid transfer. IMPORTANCE Microbial evolution in the gut of animals due to horizontal gene transfer (HGT) is of significant interest for microbial evolution as well as within the context of human and animal health. Microbial populations evolve within the host, and factors from the bacteria and host interact to regulate this evolution. However, little is currently known about how host and bacterial factors regulate plasmid-mediated HGT in the gut. This study demonstrates the use of Drosophila and the roles of sexual dimorphism as well as plasmid incompatibility groups in HGT in the gut.

RevDate: 2022-07-16
CmpDate: 2022-06-20

Szöllõsi GJ, Höhna S, Williams TA, et al (2022)

Relative Time Constraints Improve Molecular Dating.

Systematic biology, 71(4):797-809.

Dating the tree of life is central to understanding the evolution of life on Earth. Molecular clocks calibrated with fossils represent the state of the art for inferring the ages of major groups. Yet, other information on the timing of species diversification can be used to date the tree of life. For example, horizontal gene transfer events and ancient coevolutionary interactions such as (endo)symbioses occur between contemporaneous species and thus can imply temporal relationships between two nodes in a phylogeny. Temporal constraints from these alternative sources can be particularly helpful when the geological record is sparse, for example, for microorganisms, which represent the majority of extant and extinct biodiversity. Here, we present a new method to combine fossil calibrations and relative age constraints to estimate chronograms. We provide an implementation of relative age constraints in RevBayes that can be combined in a modular manner with the wide range of molecular dating methods available in the software. We use both realistic simulations and empirical datasets of 40 Cyanobacteria and 62 Archaea to evaluate our method. We show that the combination of relative age constraints with fossil calibrations significantly improves the estimation of node ages. [Archaea, Bayesian analysis, cyanobacteria, dating, endosymbiosis, lateral gene transfer, MCMC, molecular clock, phylogenetic dating, relaxed molecular clock, revbayes, tree of life.].

RevDate: 2022-04-01
CmpDate: 2022-03-31

Hill T, Unckless RL, JI Perlmutter (2022)

Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia.

Molecular biology and evolution, 39(1):.

Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.

RevDate: 2022-04-01
CmpDate: 2022-03-31

Tria FDK, WF Martin (2021)

Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes.

Genome biology and evolution, 13(10):.

The contribution of gene duplications to the evolution of eukaryotic genomes is well studied. By contrast, studies of gene duplications in prokaryotes are scarce and generally limited to a handful of genes or careful analysis of a few prokaryotic lineages. Systematic broad-scale studies of prokaryotic genomes that sample available data are lacking, leaving gaps in our understanding of the contribution of gene duplications as a source of genetic novelty in the prokaryotic world. Here, we report conservative and robust estimates for the frequency of recent gene duplications within prokaryotic genomes relative to recent lateral gene transfer (LGT), as mechanisms to generate multiple copies of related sequences in the same genome. We obtain our estimates by focusing on evolutionarily recent events among 5,655 prokaryotic genomes, thereby avoiding vagaries of deep phylogenetic inference and confounding effects of ancient events and differential loss. We find that recent, genome-specific gene duplications are at least 50 times less frequent and probably 100 times less frequent than recent, genome-specific, gene acquisitions via LGT. The frequency of gene duplications varies across lineages and functional categories. The findings improve our understanding of genome evolution in prokaryotes and have far-reaching implications for evolutionary models that entail LGT to gene duplications ratio as a parameter.

RevDate: 2022-01-31
CmpDate: 2022-01-31

Wang Y, Baumdicker F, Schweiger P, et al (2021)

Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila.

BMC biology, 19(1):187.

BACKGROUND: How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS).

RESULTS: We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT).

CONCLUSION: Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation.

RevDate: 2021-11-16
CmpDate: 2021-11-16

Watanabe Y, Spangenberg GC, H Shinozuka (2021)

Fungus-originated glucanase and monooxygenase genes in creeping bent grass (Agrostis stolonifera L.).

PloS one, 16(9):e0257173.

Recent studies have revealed presence of fungus-originated genes in genomes of cool-season grasses, suggesting occurrence of multiple ancestral gene transfer events between the two distant lineages. The current article describes identification of glucanase-like and monooxygenase-like genes from creeping bent grass, as lateral gene transfer candidates. An in silico analysis suggested presence of the glucanase-like gene in Agrostis, Deyeuxia, and Polypogon genera, but not in other species belonging to the clade 1 of the Poeae tribe. Similarly, the monooxygenase-like gene was confined to Agrostis and Deyeuxia genera. A consistent result was obtained from PCR-based screening. The glucanase-like gene was revealed to be ubiquitously expressed in young seedlings of creeping bent grass. Although expression of the monooxygenase-like gene was suggested in plant tissues, the levels were considerably lower than those of the glucanase-like gene. A phylogenetic analysis revealed close relationships of the two genes between the corresponding genes in fungal endophyte species of the Epichloë genus, suggesting that the genes originated from the Epichloë lineage.

RevDate: 2021-09-13

Hass R, von der Ohe J, T Dittmar (2021)

Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo.

Cancers, 13(17):.

The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.

RevDate: 2021-09-08

Agarwal G, Choudhary D, Stice SP, et al (2021)

Pan-Genome-Wide Analysis of Pantoea ananatis Identified Genes Linked to Pathogenicity in Onion.

Frontiers in microbiology, 12:684756.

Pantoea ananatis, a gram negative and facultative anaerobic bacterium is a member of a Pantoea spp. complex that causes center rot of onion, which significantly affects onion yield and quality. This pathogen does not have typical virulence factors like type II or type III secretion systems but appears to require a biosynthetic gene-cluster, HiVir/PASVIL (located chromosomally comprised of 14 genes), for a phosphonate secondary metabolite, and the 'alt' gene cluster (located in plasmid and comprised of 11 genes) that aids in bacterial colonization in onion bulbs by imparting tolerance to thiosulfinates. We conducted a deep pan-genome-wide association study (pan-GWAS) to predict additional genes associated with pathogenicity in P. ananatis using a panel of diverse strains (n = 81). We utilized a red-onion scale necrosis assay as an indicator of pathogenicity. Based on this assay, we differentiated pathogenic (n = 51)- vs. non-pathogenic (n = 30)-strains phenotypically. Pan-genome analysis revealed a large core genome of 3,153 genes and a flexible accessory genome. Pan-GWAS using the presence and absence variants (PAVs) predicted 42 genes, including 14 from the previously identified HiVir/PASVIL cluster associated with pathogenicity, and 28 novel genes that were not previously associated with pathogenicity in onion. Of the 28 novel genes identified, eight have annotated functions of site-specific tyrosine kinase, N-acetylmuramoyl-L-alanine amidase, conjugal transfer, and HTH-type transcriptional regulator. The remaining 20 genes are currently hypothetical. Further, a core-genome SNPs-based phylogeny and horizontal gene transfer (HGT) studies were also conducted to assess the extent of lateral gene transfer among diverse P. ananatis strains. Phylogenetic analysis based on PAVs and whole genome multi locus sequence typing (wgMLST) rather than core-genome SNPs distinguished red-scale necrosis inducing (pathogenic) strains from non-scale necrosis inducing (non-pathogenic) strains of P. ananatis. A total of 1182 HGT events including the HiVir/PASVIL and alt cluster genes were identified. These events could be regarded as a major contributing factor to the diversification, niche-adaptation and potential acquisition of pathogenicity/virulence genes in P. ananatis.

RevDate: 2021-08-31

Agarwal G, Gitaitis RD, B Dutta (2021)

Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer.

Microorganisms, 9(8):.

Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.

RevDate: 2021-07-24

Kamal SM, Simpson DJ, Wang Z, et al (2021)

Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria.

Frontiers in microbiology, 12:696522.

The transmissible locus of stress tolerance (tLST) is found mainly in beta- and gamma-Proteobacteria and confers tolerance to elevated temperature, pressure, and chlorine. This genomic island, previously referred to as transmissible locus of protein quality control or locus of heat resistance likely originates from an environmental bacterium thriving in extreme habitats, but has been widely transmitted by lateral gene transfer. Although highly conserved, the gene content on the island is subject to evolution and gene products such as small heat shock proteins are present in several functionally distinct sequence variants. A number of these genes are xenologs of core genome genes with the gene products to widen the substrate spectrum and to be highly (complementary) expressed thus their functionality to become dominant over core genome genes. In this review, we will present current knowledge of the function of core tLST genes and discuss current knowledge on selection and counter-selection processes that favor maintenance of the tLST island, with frequent acquisition of gene products involved in cyclic di-GMP signaling, in different habitats from the environment to animals and plants, processed animal and plant products, man-made environments, and subsequently humans.

RevDate: 2021-11-08
CmpDate: 2021-11-08

Wein T, Wang Y, Barz M, et al (2021)

Essential gene acquisition destabilizes plasmid inheritance.

PLoS genetics, 17(7):e1009656.

Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their 'utility' to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements.

RevDate: 2021-06-19

Zhao C, Miao S, Yin Y, et al (2021)

Tripartite parasitic and symbiotic interactions as a possible mechanism of horizontal gene transfer.

Ecology and evolution, 11(11):7018-7028.

Herbivory is a highly sophisticated feeding behavior that requires abilities of plant defense suppression, phytochemical detoxification, and plant macromolecule digestion. For plant-sucking insects, salivary glands (SGs) play important roles in herbivory by secreting and injecting proteins into plant tissues to facilitate feeding. Little is known on how insects evolved secretory SG proteins for such specialized functions. Here, we investigated the composition and evolution of secretory SG proteins in the brown marmorated stink bug (Halyomorpha halys) and identified a group of secretory SG phospholipase C (PLC) genes with highest sequence similarity to the bacterial homologs. Further analyses demonstrated that they were most closely related to PLCs of Xenorhabdus, a genus of Gammaproteobacteria living in symbiosis with insect-parasitizing nematodes. These suggested that H. halys might acquire these PLCs from Xenorhabdus through the mechanism of horizontal gene transfer (HGT), likely mediated by a nematode during its parasitizing an insect host. We also showed that the original HGT event was followed by gene duplication and expansion, leading to functional diversification of the bacterial-origin PLC genes in H. halys. Thus, this study suggested that an herbivore might enhance adaptation through gaining genes from an endosymbiont of its parasite in the tripartite parasitic and symbiotic interactions.

RevDate: 2021-06-15

Hussain NAS, Kirchberger PC, Case RJ, et al (2021)

Modular Molecular Weaponry Plays a Key Role in Competition Within an Environmental Vibrio cholerae Population.

Frontiers in microbiology, 12:671092.

The type VI secretion system (T6SS) operons of Vibrio cholerae contain extraordinarily diverse arrays of toxic effector and cognate immunity genes, which are thought to play an important role in the environmental lifestyle and adaptation of this human pathogen. Through the T6SS, proteinaceous "spears" tipped with antibacterial effectors are injected into adjacent cells, killing those not possessing immunity proteins to these effectors. Here, we investigate the T6SS-mediated dynamics of bacterial competition within a single environmental population of V. cholerae. We show that numerous members of a North American V. cholerae population possess strain-specific repertoires of cytotoxic T6SS effector and immunity genes. Using pairwise competition assays, we demonstrate that the vast majority of T6SS-mediated duels end in stalemates between strains with different T6SS repertoires. However, horizontally acquired effector and immunity genes can significantly alter the outcome of these competitions. Frequently observed horizontal gene transfer events can both increase or reduce competition between distantly related strains by homogenizing or diversifying the T6SS repertoire. Our results also suggest temperature-dependent outcomes in T6SS competition, with environmental isolates faring better against a pathogenic strain under native conditions than under those resembling a host-associated environment. Taken altogether, these interactions produce density-dependent fitness effects and a constant T6SS-mediated arms race in individual V. cholerae populations, which could ultimately preserve intraspecies diversity. Since T6SSs are widespread, we expect within-population diversity in T6SS repertoires and the resulting competitive dynamics to be a common theme in bacterial species harboring this machinery.

RevDate: 2022-04-01
CmpDate: 2022-03-31

Assis RAB, Varani AM, Sagawa CHD, et al (2021)

A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence.

Genomics, 113(4):2513-2525.

Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Ojha AK, Shah NP, V Mishra (2021)

Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp.

Current microbiology, 78(8):2839-2849.

Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.

RevDate: 2021-11-04
CmpDate: 2021-11-04

Rahimlou S, Bahram M, L Tedersoo (2021)

Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia).

Microbiological research, 250:126788.

The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.

RevDate: 2021-06-04
CmpDate: 2021-06-04

Hibdige SGS, Raimondeau P, Christin PA, et al (2021)

Widespread lateral gene transfer among grasses.

The New phytologist, 230(6):2474-2486.

Lateral gene transfer (LGT) occurs in a broad range of prokaryotes and eukaryotes, occasionally promoting adaptation. LGT of functional nuclear genes has been reported among some plants, but systematic studies are needed to assess the frequency and facilitators of LGT. We scanned the genomes of a diverse set of 17 grass species that span more than 50 Ma of divergence and include major crops to identify grass-to-grass protein-coding LGT. We identified LGTs in 13 species, with significant variation in the amount each received. Rhizomatous species acquired statistically more genes, probably because this growth habit boosts opportunities for transfer into the germline. In addition, the amount of LGT increases with phylogenetic relatedness, which might reflect genomic compatibility among close relatives facilitating successful transfers. However, genetic exchanges among highly divergent species indicates that transfers can occur across almost the entire family. Overall, we showed that LGT is a widespread phenomenon in grasses that has moved functional genes across the grass family into domesticated and wild species alike. Successful LGTs appear to increase with both opportunity and compatibility.

RevDate: 2022-04-22
CmpDate: 2021-04-21

Van Vlierberghe M, Philippe H, D Baurain (2021)

Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages.

BMC research notes, 14(1):143.

OBJECTIVES: Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary.

DATA DESCRIPTION: We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.

RevDate: 2022-01-29

Ferreira JL, Coleman I, Addison ML, et al (2021)

The "Jack-of-all-Trades" Flagellum From Salmonella and E. coli Was Horizontally Acquired From an Ancestral β-Proteobacterium.

Frontiers in microbiology, 12:643180.

The γ-proteobacteria are a group of diverse bacteria including pathogenic Escherichia, Salmonella, Vibrio, and Pseudomonas species. The majority swim in liquids with polar, sodium-driven flagella and swarm on surfaces with lateral, non-chemotactic flagella. Notable exceptions are the enteric Enterobacteriaceae such as Salmonella and E. coli. Many of the well-studied Enterobacteriaceae are gut bacteria that both swim and swarm with the same proton-driven peritrichous flagella. How different flagella evolved in closely related lineages, however, has remained unclear. Here, we describe our phylogenetic finding that Enterobacteriaceae flagella are not native polar or lateral γ-proteobacterial flagella but were horizontally acquired from an ancestral β-proteobacterium. Using electron cryo-tomography and subtomogram averaging, we confirmed that Enterobacteriaceae flagellar motors resemble contemporary β-proteobacterial motors and are distinct to the polar and lateral motors of other γ-proteobacteria. Structural comparisons support a model in which γ-proteobacterial motors have specialized, suggesting that acquisition of a β-proteobacterial flagellum may have been beneficial as a general-purpose motor suitable for adjusting to diverse conditions. This acquisition may have played a role in the development of the enteric lifestyle.

RevDate: 2022-01-21
CmpDate: 2022-01-21

Blais C, JM Archibald (2021)

The past, present and future of the tree of life.

Current biology : CB, 31(7):R314-R321.

The advent of comparative genomics in the late 1990s led to the discovery of extensive lateral gene transfer in prokaryotes. The resulting debate over whether life as a whole is best represented as a tree or a network has since given way to a general consensus in which trees and networks co-exist rather than stand in opposition. Embracing this consensus allows us to move beyond the question of which is true or false. The future of the tree of life debate lies in asking what trees and networks can, and should, do for science.

RevDate: 2021-12-14
CmpDate: 2021-12-03

Tria FDK, Brueckner J, Skejo J, et al (2021)

Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity.

Genome biology and evolution, 13(5):.

The last eukaryote common ancestor (LECA) possessed mitochondria and all key traits that make eukaryotic cells more complex than their prokaryotic ancestors, yet the timing of mitochondrial acquisition and the role of mitochondria in the origin of eukaryote complexity remain debated. Here, we report evidence from gene duplications in LECA indicating an early origin of mitochondria. Among 163,545 duplications in 24,571 gene trees spanning 150 sequenced eukaryotic genomes, we identify 713 gene duplication events that occurred in LECA. LECA's bacterial-derived genes include numerous mitochondrial functions and were duplicated significantly more often than archaeal-derived and eukaryote-specific genes. The surplus of bacterial-derived duplications in LECA most likely reflects the serial copying of genes from the mitochondrial endosymbiont to the archaeal host's chromosomes. Clustering, phylogenies and likelihood ratio tests for 22.4 million genes from 5,655 prokaryotic and 150 eukaryotic genomes reveal no evidence for lineage-specific gene acquisitions in eukaryotes, except from the plastid in the plant lineage. That finding, and the functions of bacterial genes duplicated in LECA, suggests that the bacterial genes in eukaryotes are acquisitions from the mitochondrion, followed by vertical gene evolution and differential loss across eukaryotic lineages, flanked by concomitant lateral gene transfer among prokaryotes. Overall, the data indicate that recurrent gene transfer via the copying of genes from a resident mitochondrial endosymbiont to archaeal host chromosomes preceded the onset of eukaryotic cellular complexity, favoring mitochondria-early over mitochondria-late hypotheses for eukaryote origin.

RevDate: 2021-12-03
CmpDate: 2021-09-01

Haase MAB, Kominek J, Opulente DA, et al (2021)

Repeated horizontal gene transfer of GALactose metabolism genes violates Dollo's law of irreversible loss.

Genetics, 217(2):.

Dollo's law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.

RevDate: 2021-12-04
CmpDate: 2021-05-12

Liu X, Lin S, Liu T, et al (2021)

Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella.

Nucleic acids research, 49(6):3427-3440.

Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.

RevDate: 2022-01-18
CmpDate: 2022-01-18

Sibbald SJ, Lawton M, JM Archibald (2021)

Mitochondrial Genome Evolution in Pelagophyte Algae.

Genome biology and evolution, 13(3):.

The Pelagophyceae are marine stramenopile algae that include Aureoumbra lagunensis and Aureococcus anophagefferens, two microbial species notorious for causing harmful algal blooms. Despite their ecological significance, relatively few genomic studies of pelagophytes have been carried out. To improve understanding of the biology and evolution of pelagophyte algae, we sequenced complete mitochondrial genomes for A. lagunensis (CCMP1510), Pelagomonas calceolata (CCMP1756), and five strains of Aureoc. anophagefferens (CCMP1707, CCMP1708, CCMP1850, CCMP1984, and CCMP3368) using Nanopore long-read sequencing. All pelagophyte mitochondrial genomes assembled into single, circular mapping contigs between 39,376 bp (P. calceolata) and 55,968 bp (A. lagunensis) in size. Mitochondrial genomes for the five Aureoc. anophagefferens strains varied slightly in length (42,401-42,621 bp) and were 99.4-100.0% identical. Gene content and order were highly conserved between the Aureoc. anophagefferens and P. calceolata genomes, with the only major difference being a unique region in Aureoc. anophagefferens containingDNA adenine and cytosine methyltransferase (dam/dcm) genes that appear to be the product of lateral gene transfer from a prokaryotic or viral donor. Although the A. lagunensis mitochondrial genome shares seven distinct syntenic blocks with the other pelagophyte genomes, it has a tandem repeat expansion comprising ∼40% of its length, and lacks identifiable rps19 and glycine tRNA genes. Laterally acquired self-splicing introns were also found in the 23S rRNA (rnl) gene of P. calceolata and the coxI gene of the five Aureoc. anophagefferens genomes. Overall, these data provide baseline knowledge about the genetic diversity of bloom-forming pelagophytes relative to nonbloom-forming species.

RevDate: 2021-08-11
CmpDate: 2021-08-11

Žárský V, Klimeš V, Pačes J, et al (2021)

The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba.

Molecular biology and evolution, 38(6):2240-2259.

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).

RevDate: 2022-02-22
CmpDate: 2022-02-22

Rana S, Valentin K, Riehl J, et al (2021)

Analysis of organellar genomes in brown algae reveals an independent introduction of similar foreign sequences into the mitochondrial genome.

Genomics, 113(2):646-654.

Kelp species (Laminariales, Phaeophyceae) are globally widespread along temperate to Polar rocky coastal lines. Here we analyse the mitochondrial and chloroplast genomes of Laminaria rodriguezii, in comparison to the organellar genomes of other kelp species. We also provide the complete mitochondrial genome sequence of another endemic kelp species from a Polar habitat, the Arctic Laminaria solidungula. We compare phylogenetic trees derived from twenty complete mitochondrial and seven complete chloroplast kelp genomes. Interestingly, we found a stretch of more than 700 bp in the mitochondrial genome of L.rodriguezii, which is not present in any other yet sequenced member of the Phaeophyceae. This stretch matches a protein coding region in the mitochondrial genome from Desmarestia viridis, another brown seaweed. Their high similarity suggests that these sequences originated through independent introduction into the two species. Their origin could have been by infection by yet unknown similar mitoviruses, currently only known from fungi and plants.

RevDate: 2021-08-11
CmpDate: 2021-03-16

Altamia MA, Shipway JR, Stein D, et al (2021)

Teredinibacter haidensis sp. nov., Teredinibacter purpureus sp. nov. and Teredinibacter franksiae sp. nov., marine, cellulolytic endosymbiotic bacteria isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter.

International journal of systematic and evolutionary microbiology, 71(2):.

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter. The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).

RevDate: 2021-12-23
CmpDate: 2021-12-23

Harada R, Y Inagaki (2021)

Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids.

Genome biology and evolution, 13(2):.

Mitochondria retain their own genomes as other bacterial endosymbiont-derived organelles. Nevertheless, no protein for DNA replication and repair is encoded in any mitochondrial genomes (mtDNAs) assessed to date, suggesting that the nucleus primarily governs the maintenance of mtDNA. As the proteins of diverse evolutionary origins occupy a large proportion of the current mitochondrial proteomes, we anticipate finding the same evolutionary trend in the nucleus-encoded machinery for mtDNA maintenance. Indeed, none of the DNA polymerases (DNAPs) in the mitochondrial endosymbiont, a putative α-proteobacterium, seemingly had been inherited by their descendants (mitochondria), as none of the known types of mitochondrion-localized DNAP showed a specific affinity to the α-proteobacterial DNAPs. Nevertheless, we currently have no concrete idea of how and when the known types of mitochondrion-localized DNAPs emerged. We here explored the origins of mitochondrion-localized DNAPs after the improvement of the samplings of DNAPs from bacteria and phages/viruses. Past studies have revealed that a set of mitochondrion-localized DNAPs in kinetoplastids and diplonemids, namely PolIB, PolIC, PolID, PolI-Perk1/2, and PolI-dipl (henceforth designated collectively as "PolIBCD+") have emerged from a single DNAP. In this study, we recovered an intimate connection between PolIBCD+ and the DNAPs found in a particular group of phages. Thus, the common ancestor of kinetoplastids and diplonemids most likely converted a laterally acquired phage DNAP into a mitochondrion-localized DNAP that was ancestral to PolIBCD+. The phage origin of PolIBCD+ hints at a potentially large contribution of proteins acquired via nonvertical processes to the machinery for mtDNA maintenance in kinetoplastids and diplonemids.

RevDate: 2022-01-14
CmpDate: 2021-04-27

Epstein B, P Tiffin (2021)

Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.

Proceedings. Biological sciences, 288(1942):20201804.

Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia-legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.

RevDate: 2021-10-21
CmpDate: 2021-10-21

Ferguson KB, Visser S, Dalíková M, et al (2021)

Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest.

Insect molecular biology, 30(2):188-209.

Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.

RevDate: 2020-12-12

Jiao J, CF Tian (2020)

Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer?.

Computational and structural biotechnology journal, 18:3623-3631.

The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.

RevDate: 2022-08-09
CmpDate: 2021-03-17

Shinozuka H, Shinozuka M, de Vries EM, et al (2020)

Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer.

Scientific reports, 10(1):19883.

Evidence for ancestral gene transfer between Epichloë fungal endophyte ancestors and their host grass species is described. From genomes of cool-season grasses (the Poeae tribe), two Epichloë-originated genes were identified through DNA sequence similarity analysis. The two genes showed 96% and 85% DNA sequence identities between the corresponding Epichloë genes. One of the genes was specific to the Loliinae sub-tribe. The other gene was more widely conserved in the Poeae and Triticeae tribes, including wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The genes were independently transferred during the last 39 million years. The transferred genes were expressed in plant tissues, presumably retaining molecular functions. Multiple gene transfer events between the specific plant and fungal lineages are unique. A range of cereal crops is included in the Poeae and Triticeae tribes, and the Loliinae sub-tribe is consisted of economically important pasture and forage crops. Identification and characterisation of the 'natural' adaptation transgenes in the genomes of cereals, and pasture and forage grasses, that worldwide underpin the production of major foods, such as bread, meat, and milk, may change the 'unnatural' perception status of transgenic and gene-edited plants.

RevDate: 2021-01-07
CmpDate: 2021-01-07

Nagies FSP, Brueckner J, Tria FDK, et al (2020)

A spectrum of verticality across genes.

PLoS genetics, 16(11):e1009200.

Lateral gene transfer (LGT) has impacted prokaryotic genome evolution, yet the extent to which LGT compromises vertical evolution across individual genes and individual phyla is unknown, as are the factors that govern LGT frequency across genes. Estimating LGT frequency from tree comparisons is problematic when thousands of genomes are compared, because LGT becomes difficult to distinguish from phylogenetic artefacts. Here we report quantitative estimates for verticality across all genes and genomes, leveraging a well-known property of phylogenetic inference: phylogeny works best at the tips of trees. From terminal (tip) phylum level relationships, we calculate the verticality for 19,050,992 genes from 101,422 clusters in 5,655 prokaryotic genomes and rank them by their verticality. Among functional classes, translation, followed by nucleotide and cofactor biosynthesis, and DNA replication and repair are the most vertical. The most vertically evolving lineages are those rich in ecological specialists such as Acidithiobacilli, Chlamydiae, Chlorobi and Methanococcales. Lineages most affected by LGT are the α-, β-, γ-, and δ- classes of Proteobacteria and the Firmicutes. The 2,587 eukaryotic clusters in our sample having prokaryotic homologues fail to reject eukaryotic monophyly using the likelihood ratio test. The low verticality of α-proteobacterial and cyanobacterial genomes requires only three partners-an archaeal host, a mitochondrial symbiont, and a plastid ancestor-each with mosaic chromosomes, to directly account for the prokaryotic origin of eukaryotic genes. In terms of phylogeny, the 100 most vertically evolving prokaryotic genes are neither representative nor predictive for the remaining 97% of an average genome. In search of factors that govern LGT frequency, we find a simple but natural principle: Verticality correlates strongly with gene distribution density, LGT being least likely for intruding genes that must replace a preexisting homologue in recipient chromosomes. LGT is most likely for novel genetic material, intruding genes that encounter no competing copy.

RevDate: 2020-11-16
CmpDate: 2020-11-16

Sheridan PO, Raguideau S, Quince C, et al (2020)

Gene duplication drives genome expansion in a major lineage of Thaumarchaeota.

Nature communications, 11(1):5494.

Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Wang B, Gumerov VM, Andrianova EP, et al (2020)

Origins and Molecular Evolution of the NusG Paralog RfaH.

mBio, 11(5):.

The only universally conserved family of transcription factors comprises housekeeping regulators and their specialized paralogs, represented by well-studied NusG and RfaH. Despite their ubiquity, little information is available on the evolutionary origins, functions, and gene targets of the NusG family members. We built a hidden Markov model profile of RfaH and identified its homologs in sequenced genomes. While NusG is widespread among bacterial phyla and coresides with genes encoding RNA polymerase and ribosome in all except extremely reduced genomes, RfaH is mostly limited to Proteobacteria and lacks common gene neighbors. RfaH activates only a few xenogeneic operons that are otherwise silenced by NusG and Rho. Phylogenetic reconstructions reveal extensive duplications and horizontal transfer of rfaH genes, including those borne by plasmids, and the molecular evolution pathway of RfaH, from "early" exclusion of the Rho terminator and tightened RNA polymerase binding to "late" interactions with the ops DNA element and autoinhibition, which together define the RfaH regulon. Remarkably, NusG is not only ubiquitous in Bacteria but also common in plants, where it likely modulates the transcription of plastid genes.IMPORTANCE In all domains of life, NusG-like proteins make contacts similar to those of RNA polymerase and promote pause-free transcription yet may play different roles, defined by their divergent interactions with nucleic acids and accessory proteins, in the same cell. This duality is illustrated by Escherichia coli NusG and RfaH, which silence and activate xenogenes, respectively. We combined sequence analysis and recent functional and structural insights to envision the evolutionary transformation of NusG, a core regulator that we show is present in all cells using bacterial RNA polymerase, into a virulence factor, RfaH. Our results suggest a stepwise conversion of a NusG duplicate copy into a sequence-specific regulator which excludes NusG from its targets but does not compromise the regulation of housekeeping genes. We find that gene duplication and lateral transfer give rise to a surprising diversity within the only ubiquitous family of transcription factors.

RevDate: 2021-08-30
CmpDate: 2021-08-30

Rozenberg A, Oppermann J, Wietek J, et al (2020)

Lateral Gene Transfer of Anion-Conducting Channelrhodopsins between Green Algae and Giant Viruses.

Current biology : CB, 30(24):4910-4920.e5.

Channelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts. These previously unknown viral and green algal ChRs act as ACRs when expressed in cultured neuroblastoma-derived cells and are likely involved in behavioral responses to light.

RevDate: 2021-03-17
CmpDate: 2021-03-17

Colnaghi M, Lane N, A Pomiankowski (2020)

Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex.

eLife, 9:.

Prokaryotes acquire genes from the environment via lateral gene transfer (LGT). Recombination of environmental DNA can prevent the accumulation of deleterious mutations, but LGT was abandoned by the first eukaryotes in favour of sexual reproduction. Here we develop a theoretical model of a haploid population undergoing LGT which includes two new parameters, genome size and recombination length, neglected by previous theoretical models. The greater complexity of eukaryotes is linked with larger genomes and we demonstrate that the benefit of LGT declines rapidly with genome size. The degeneration of larger genomes can only be resisted by increases in recombination length, to the same order as genome size - as occurs in meiosis. Our results can explain the strong selective pressure towards the evolution of sexual cell fusion and reciprocal recombination during early eukaryotic evolution - the origin of meiotic sex.

RevDate: 2020-12-01
CmpDate: 2020-12-01

Sibbald SJ, Eme L, Archibald JM, et al (2020)

Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes.

Trends in parasitology, 36(11):927-941.

Lateral gene transfer (LGT) is well known as an important driver of genome evolution in bacteria and archaea, but its importance in eukaryote evolution has yet to be fully elucidated. There is now abundant evidence indicating that LGT has played a role in the adaptation of eukaryotes to new environments and conditions, including host-parasite interactions. However, the mechanisms and frequency of LGT across the tree of eukaryotes remain poorly understood. Here we review evidence for known and potential mechanisms of LGT into diverse eukaryote lineages with a particular focus on protists, and we discuss trends emerging from recently reported examples. We also explore the potential role of LGT in generating 'pan-genomes' in diverse eukaryotic species.

RevDate: 2021-06-17
CmpDate: 2021-06-17

Bohr LL, Mortimer TD, CS Pepperell (2020)

Lateral Gene Transfer Shapes Diversity of Gardnerella spp.

Frontiers in cellular and infection microbiology, 10:293.

Gardnerella spp. are pathognomonic for bacterial vaginosis, which increases the risk of preterm birth and the transmission of sexually transmitted infections. Gardnerella spp. are genetically diverse, comprising what have recently been defined as distinct species with differing functional capacities. Disease associations with Gardnerella spp. are not straightforward: patients with BV are usually infected with multiple species, and Gardnerella spp. are also found in the vaginal microbiome of healthy women. Genome comparisons of Gardnerella spp. show evidence of lateral gene transfer (LGT), but patterns of LGT have not been characterized in detail. Here we sought to define the role of LGT in shaping the genetic structure of Gardnerella spp. We analyzed whole genome sequencing data for 106 Gardnerella strains and used these data for pan genome analysis and to characterize LGT in the core and accessory genomes, over recent and remote timescales. In our diverse sample of Gardnerella strains, we found that both the core and accessory genomes are clearly differentiated in accordance with newly defined species designations. We identified putative competence and pilus assembly genes across most species; we also found them to be differentiated between species. Competence machinery has diverged in parallel with the core genome, with selection against deleterious mutations as a predominant influence on their evolution. By contrast, the virulence factor vaginolysin, which encodes a toxin, appears to be readily exchanged among species. We identified five distinct prophage clusters in Gardnerella genomes, two of which appear to be exchanged between Gardnerella species. Differences among species are apparent in their patterns of LGT, including their exchange with diverse gene pools. Despite frequent LGT and co-localization in the same niche, our results show that Gardnerella spp. are clearly genetically differentiated and yet capable of exchanging specific genetic material. This likely reflects complex interactions within bacterial communities associated with the vaginal microbiome. Our results provide insight into how such interactions evolve and are maintained, allowing these multi-species communities to colonize and invade human tissues and adapt to antibiotics and other stressors.

RevDate: 2021-04-09
CmpDate: 2021-04-09

Leu AO, McIlroy SJ, Ye J, et al (2020)

Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae.

mBio, 11(3):.

Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanoperedenaceae metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the Methanoperedenaceae to acquire genes for the oxidation of hydrogen and formate and the reduction of arsenate, selenate, and elemental sulfur. Numerous membrane-bound multiheme c-type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humic substances, and syntrophic partners.IMPORTANCE AOM by microorganisms limits the atmospheric release of the potent greenhouse gas methane and has consequent importance for the global carbon cycle and climate change modeling. While the oxidation of methane coupled to sulfate by consortia of anaerobic methanotrophic (ANME) archaea and bacteria is well documented, several other potential electron acceptors have also been reported to support AOM. In this study, we identify a number of novel respiratory strategies that appear to have been laterally acquired by members of the Methanoperedenaceae, as they are absent from related archaea and other ANME lineages. Expanding the known metabolic potential for members of the Methanoperedenaceae provides important insight into their ecology and suggests their role in linking methane oxidation to several global biogeochemical cycles.

RevDate: 2022-04-22
CmpDate: 2021-01-25

Ren FR, Sun X, Wang TY, et al (2020)

Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits.

The ISME journal, 14(10):2542-2553.

Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.

RevDate: 2021-06-07
CmpDate: 2021-06-07

Jaffe AL, Castelle CJ, Matheus Carnevali PB, et al (2020)

The rise of diversity in metabolic platforms across the Candidate Phyla Radiation.

BMC biology, 18(1):69.

BACKGROUND: A unifying feature of the bacterial Candidate Phyla Radiation (CPR) is a limited and highly variable repertoire of biosynthetic capabilities. However, the distribution of metabolic traits across the CPR and the evolutionary processes underlying them are incompletely resolved.

RESULTS: Here, we selected ~ 1000 genomes of CPR bacteria from diverse environments to construct a robust internal phylogeny that was consistent across two unlinked marker sets. Mapping of glycolysis, the pentose phosphate pathway, and pyruvate metabolism onto the tree showed that some components of these pathways are sparsely distributed and that similarity between metabolic platforms is only partially predicted by phylogenetic relationships. To evaluate the extent to which gene loss and lateral gene transfer have shaped trait distribution, we analyzed the patchiness of gene presence in a phylogenetic context, examined the phylogenetic depth of clades with shared traits, and compared the reference tree topology with those of specific metabolic proteins. While the central glycolytic pathway in CPR is widely conserved and has likely been shaped primarily by vertical transmission, there is evidence for both gene loss and transfer especially in steps that convert glucose into fructose 1,6-bisphosphate and glycerate 3P into pyruvate. Additionally, the distribution of Group 3 and Group 4-related NiFe hydrogenases is patchy and suggests multiple events of ancient gene transfer.

CONCLUSIONS: We infer that patterns of gene gain and loss in CPR, including acquisition of accessory traits in independent transfer events, could have been driven by shifts in host-derived resources and led to sparse but varied genetic inventories.

RevDate: 2021-06-15
CmpDate: 2020-08-26

Bárdy P, Füzik T, Hrebík D, et al (2020)

Structure and mechanism of DNA delivery of a gene transfer agent.

Nature communications, 11(1):3034.

Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.

RevDate: 2021-04-14
CmpDate: 2021-04-14

Phansopa C, Dunning LT, Reid JD, et al (2020)

Lateral Gene Transfer Acts As an Evolutionary Shortcut to Efficient C4 Biochemistry.

Molecular biology and evolution, 37(11):3094-3104.

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.

RevDate: 2020-09-28

Emamalipour M, Seidi K, Zununi Vahed S, et al (2020)

Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression.

Frontiers in cell and developmental biology, 8:229.

Flexibility in the exchange of genetic material takes place between different organisms of the same or different species. This phenomenon is known to play a key role in the genetic, physiological, and ecological performance of the host. Exchange of genetic materials can cause both beneficial and/or adverse biological consequences. Horizontal gene transfer (HGT) or lateral gene transfer (LGT) as a general mechanism leads to biodiversity and biological innovations in nature. HGT mediators are one of the genetic engineering tools used for selective introduction of desired changes in the genome for gene/cell therapy purposes. HGT, however, is crucial in development, emergence, and recurrence of various human-related diseases, such as cancer, genetic-, metabolic-, and neurodegenerative disorders and can negatively affect the therapeutic outcome by promoting resistant forms or disrupting the performance of genome editing toolkits. Because of the importance of HGT and its vital physio- and pathological roles, here the variety of HGT mechanisms are reviewed, ranging from extracellular vesicles (EVs) and nanotubes in prokaryotes to cell-free DNA and apoptotic bodies in eukaryotes. Next, we argue that HGT plays a role both in the development of useful features and in pathological states associated with emerging and recurrent forms of the disease. A better understanding of the different HGT mediators and their genome-altering effects/potentials may pave the way for the development of more effective therapeutic and diagnostic regimes.

RevDate: 2020-12-17
CmpDate: 2020-10-30

Gao R, Ding M, Jiang S, et al (2020)

The Evolutionary and Functional Paradox of Cerato-platanins in Fungi.

Applied and environmental microbiology, 86(13):.

Cerato-platanins (CPs) form a family of fungal small secreted cysteine-rich proteins (SSCPs) and are of particular interest not only because of their surface activity but also their abundant secretion by fungi. We performed an evolutionary analysis of 283 CPs from 157 fungal genomes with the focus on the environmental opportunistic plant-beneficial and mycoparasitic fungus Trichoderma Our results revealed a long evolutionary history of CPs in Dikarya fungi that have undergone several events of lateral gene transfer and gene duplication. Three genes were maintained in the core genome of Trichoderma, while some species have up to four CP-encoding genes. All Trichoderma CPs evolve under stabilizing natural selection pressure. The functional genomic analysis of CPs in Trichoderma guizhouense and Trichoderma harzianum revealed that only epl1 is active at all stages of development but that it plays a minor role in interactions with other fungi and bacteria. The deletion of this gene results in increased colonization of tomato roots by Trichoderma spp. Similarly, biochemical tests of EPL1 heterologously produced by Pichia pastoris support the claims described above. Based on the results obtained, we conclude that the function of CPs is probably linked to their surfactant properties and the ability to modify the hyphosphere of submerged mycelia and, thus, facilitate the nutritional versatility of fungi. The effector-like functions do not sufficiently describe the diversity and evolution of these proteins in fungi, as they are also maintained, duplicated, or laterally transferred in the genomes of nonherbivore fungi.IMPORTANCE Cerato-platanins (CPs) are surface-active small proteins abundantly secreted by filamentous fungi. Consequently, immune systems of plants and other organisms recognize CPs and activate defense mechanisms. Some CPs are toxic to plants and act as virulence factors in plant-pathogenic fungi. Our analysis, however, demonstrates that the interactions with plants do not explain the origin and evolution of CPs in the fungal kingdom. We revealed a long evolutionary history of CPs with multiple cases of gene duplication and events of interfungal lateral gene transfers. In the mycoparasitic Trichoderma spp., CPs evolve under stabilizing natural selection and hamper the colonization of roots. We propose that the ability to modify the hydrophobicity of the fungal hyphosphere is a key to unlock the evolutionary and functional paradox of these proteins.

RevDate: 2021-04-03
CmpDate: 2020-12-07

Chelkha N, Hasni I, Louazani AC, et al (2020)

Vermamoeba vermiformis CDC-19 draft genome sequence reveals considerable gene trafficking including with candidate phyla radiation and giant viruses.

Scientific reports, 10(1):5928.

Vermamoeba vermiformis is a predominant free-living amoeba in human environments and amongst the most common amoebae that can cause severe infections in humans. It is a niche for numerous amoeba-resisting microorganisms such as bacteria and giant viruses. Differences in the susceptibility to these giant viruses have been observed. V. vermiformis and amoeba-resisting microorganisms share a sympatric lifestyle that can promote exchanges of genetic material. This work analyzed the first draft genome sequence of a V. vermiformis strain (CDC-19) through comparative genomic, transcriptomic and phylogenetic analyses. The genome of V. vermiformis is 59.5 megabase pairs in size, and 22,483 genes were predicted. A high proportion (10% (n = 2,295)) of putative genes encoded proteins showed the highest sequence homology with a bacterial sequence. The expression of these genes was demonstrated for some bacterial homologous genes. In addition, for 30 genes, we detected best BLAST hits with members of the Candidate Phyla Radiation. Moreover, 185 genes (0.8%) best matched with giant viruses, mostly those related to the subfamily Klosneuvirinae (101 genes), in particular Bodo saltans virus (69 genes). Lateral sequence transfers between V. vermiformis and amoeba-resisting microorganisms were strengthened by Sanger sequencing, transcriptomic and phylogenetic analyses. This work provides important insights and genetic data for further studies about this amoeba and its interactions with microorganisms.

RevDate: 2021-03-12
CmpDate: 2021-03-12

Frost CL, Siozios S, Nadal-Jimenez P, et al (2020)

The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology.

mBio, 11(2):.

Mobile elements-plasmids and phages-are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis This microbe's genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements.

RevDate: 2021-03-02
CmpDate: 2021-03-02

Rainey PB, SD Quistad (2020)

Toward a dynamical understanding of microbial communities.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1798):20190248.

The challenge of moving beyond descriptions of microbial community composition to the point where understanding underlying eco-evolutionary dynamics emerges is daunting. While it is tempting to simplify through use of model communities composed of a small number of types, there is a risk that such strategies fail to capture processes that might be specific and intrinsic to complexity of the community itself. Here, we describe approaches that embrace this complexity and show that, in combination with metagenomic strategies, dynamical insight is increasingly possible. Arising from these studies is mounting evidence of rapid eco-evolutionary change among lineages and a sense that processes, particularly those mediated by horizontal gene transfer, not only are integral to system function, but are central to long-term persistence. That such dynamic, systems-level insight is now possible, means that the study and manipulation of microbial communities can move to new levels of inquiry. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Dunning LT, PA Christin (2020)

Reticulate evolution, lateral gene transfer, and innovation in plants.

American journal of botany, 107(4):541-544.

RevDate: 2020-09-28

Bykov A, Glazunova O, Alikina O, et al (2020)

Excessive Promoters as Silencers of Genes Horizontally Acquired by Escherichia coli.

Frontiers in molecular biosciences, 7:28.

Horizontally acquired genes are usually transcriptionally inactive, although most of them are associated with genomic loci enriched with promoter-like sequences forming "promoter islands." We hypothesized that lateral DNA transfer induces local mutagenesis, accumulating AT base pairs and creating promoter-like sequences, whose occupancy with RNA polymerase and a specific silencer H-NS suppresses the transcription of foreign genes. Error-prone mutagenesis was implemented for the "promoter island" of a foreign gene appY and the promoter region of an inherent gene dps. Derivatives with changed transcriptional activity were selected using a reporter plasmid pET28_eGFP. Only one cycle of mutagenesis with negative selection suppressed the activity of the main dps promoter to the background level due to a single substitution in its -10 element, while positive selection gave a sequence with improved -35 element, thus testifying feasibility of the approach. The same suppression for appY was achieved by three cycles, while eightfold transcription activation required nine iterations of mutagenesis. In both cases, the number of potential start points decreased resulting in an ordinary regulatory region with only one dominant promoter in the case of positive selection. Efficiency of H-NS binding remained virtually unchanged in all mutant constructs. Based on these findings we conclude that excessive promoters can adversely affect transcription by providing a platform for interference between several RNA polymerase molecules, which can act as a silencer at promoter-dense regions.

RevDate: 2020-09-02
CmpDate: 2020-09-02

Anyanwu MU, Jaja IF, OC Nwobi (2020)

Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review.

International journal of environmental research and public health, 17(3):.

The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1-3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.

RevDate: 2020-11-10
CmpDate: 2020-11-10

Zhang Z, Liu W, Shao S, et al (2020)

Diverse Genomic Backgrounds Vs. Highly Conserved Symbiotic Genes in Sesbania-Nodulating Bacteria: Shaping of the Rhizobial Community by Host and Soil Properties.

Microbial ecology, 80(1):158-168.

Aiming at investigating the overall diversity, biogeography, and symbiosis gene evolutionary history of the Sesbania cannabina-nodulating rhizobia in China, a total of 874 rhizobial isolates originating from the root nodules of this plant grown at different sites were characterized and compared with those of some reference strains. All of the S. cannabina-nodulating rhizobia were classified into 16 (geno) species, including seven novel genospecies in the genera Ensifer, Rhizobium, Neorhizobium, and Agrobacterium, with Ensifer sesbaniae and Neorhizobium huautlense as the dominant and universal species. Ten of these species were found to nodulate other leguminous hosts or to lack nodulating abilities and were defined as symbiovar sesbania. Biogeographic patterns were observed, for which pH, TN, AK, and AP were the main determinants. The effects of pH were opposite to those of TN and AK, while AP presented effects independently of TN, AK, and pH. Symbiotic genes of these rhizobia showed a common origin, but nodA evolved faster than nifH. Point mutation is the main driving force in the evolution of both nodA and nifH, and lateral transfer of symbiotic genes might play an important role in the formation of diverse S. cannabina-nodulating rhizobial species. S. cannabina only nodulates with Sesbania rhizobia, demonstrating its severe selection on rhizobial symbiosis genes. Soil pH and physiochemical characteristics could affect rhizobial survival and competitive nodulation. This study provides insight into the community shifts and evolution of rhizobia in relation to their host and soil environments.

RevDate: 2021-01-04
CmpDate: 2021-01-04

Patiño-Navarrete R, Rosinski-Chupin I, Cabanel N, et al (2020)

Stepwise evolution and convergent recombination underlie the global dissemination of carbapenemase-producing Escherichia coli.

Genome medicine, 12(1):10.

BACKGROUND: Carbapenem-resistant Enterobacteriaceae are considered by WHO as "critical" priority pathogens for which novel antibiotics are urgently needed. The dissemination of carbapenemase-producing Escherichia coli (CP-Ec) in the community is a major public health concern. However, the global molecular epidemiology of CP-Ec isolates remains largely unknown as well as factors contributing to the acquisition of carbapenemase genes.

METHODS: We first analyzed the whole-genome sequence and the evolution of the E. coli sequence type (ST) 410 and its disseminated clade expressing the carbapenemase OXA-181. We reconstructed the phylogeny of 19 E. coli ST enriched in CP-Ec and corresponding to a total of 2026 non-redundant isolates. Using the EpiCs software, we determined the significance of the association between specific mutations and the acquisition of a carbapenemase gene and the most probable order of events. The impact of the identified mutations was assessed experimentally by genetic manipulations and phenotypic testing.

RESULTS: In 13 of the studied STs, acquisition of carbapenemase genes occurred in multidrug-resistant lineages characterized by a combination of mutations in ftsI encoding the penicillin-binding protein 3 and in the porin genes ompC and ompF. Mutated ftsI genes and a specific ompC allele related to that from ST38 inducing reduced susceptibility to diverse β-lactams spread across the species by recombination. We showed that these mutations precede in most cases the acquisition of a carbapenemase gene. The ompC allele from ST38 might have contributed to the selection of CP-Ec disseminated lineages within this ST. On the other hand, in the pandemic ST131 lineage, CP-Ec were not associated with mutations in ompC or ftsI and show no signs of dissemination.

CONCLUSIONS: Lineages of CP-Ec have started to disseminate globally. However, their selection is a multistep process involving mutations, recombination, acquisition of antibiotic resistance genes, and selection by β-lactams from diverse families. This process did not yet occur in the high-risk lineage ST131.

RevDate: 2022-05-31
CmpDate: 2021-06-23

Loayza-Villa F, Salinas L, Tijet N, et al (2020)

Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household.

Journal of global antimicrobial resistance, 22:63-67.

OBJECTIVE: The aim of this study was to detect potential animal reservoirs of Escherichia coli carrying the mcr-1 gene in an Ecuadorian household.

METHODS: The mobile colistin-resistance gene, mcr-1, was first detected in Ecuador in a commensal E. coli isolate from a boy. A cross-sectional study was performed to detect the possible source of colistin-resistant E. coli in the boy's household. Faecal swabs and soil faecal samples were collected from companion animals. Samples were plated on selective media to isolate colistin-resistant E. coli and isolates were submitted to PCR detection of mcr-1, pulsed field gel electrophoresis (PFGE), and multi-locus sequences typing (MLST). Moreover, the genomes of all the isolates were sequenced.

RESULTS: Three different colistin-resistant E. coli sequence types (ST3941, 1630 and 2170), corresponding to three PFGE patterns, were obtained from a chicken and two dogs; these isolates were different from the human isolate (ST609). By whole-genome sequencing, the mcr-1.1 gene was found on IncI2 plasmids with very high nucleotide identity.

CONCLUSIONS: Our results indicate a polyclonal dissemination of mcr-1.1 in the environment surrounding the first MCR-producing E. coli strain reported in Ecuador. Our findings support the idea of lateral dissemination of mcr-1.1 gene between unrelated E. coli isolates.

RevDate: 2021-01-10
CmpDate: 2020-11-11

Hasni I, Chelkha N, Baptiste E, et al (2019)

Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome.

Scientific reports, 9(1):18318.

Willaertia magna c2c maky is a thermophilic amoeba closely related to the genus Naegleria. This free-living amoeba has the ability to eliminate Legionella pneumophila, which is an amoeba-resisting bacterium living in an aquatic environment. To prevent the proliferation of L. pneumophila in cooling towers, the use of W. magna as natural biocide has been proposed. To provide a better understanding of the W. magna genome, whole-genome sequencing was performed through the study of virulence factors and lateral gene transfers. This amoeba harbors a genome of 36.5 megabases with 18,519 predicted genes. BLASTp analyses reported protein homology between 136 W. magna sequences and amoeba-resistant microorganisms. Horizontal gene transfers were observed based on the basis of the phylogenetic reconstruction hypothesis. We detected 15 homologs of N. fowleri genes related to virulence, although these latter were also found in the genome of N. gruberi, which is a non-pathogenic amoeba. Furthermore, the cytotoxicity test performed on human cells supports the hypothesis that the strain c2c maky is a non-pathogenic amoeba. This work explores the genomic repertory for the first draft genome of genus Willaertia and provides genomic data for further comparative studies on virulence of related pathogenic amoeba, N. fowleri.

RevDate: 2020-12-10
CmpDate: 2020-09-29

Cheepudom J, Lin TL, Lee CC, et al (2019)

Characterization of a Novel Thermobifida fusca Bacteriophage P318.

Viruses, 11(11):.

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3'-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.

RevDate: 2020-11-12
CmpDate: 2020-11-12

Yubuki N, Galindo LJ, Reboul G, et al (2020)

Ancient Adaptive Lateral Gene Transfers in the Symbiotic Opalina-Blastocystis Stramenopile Lineage.

Molecular biology and evolution, 37(3):651-659.

Lateral gene transfer is a very common process in bacterial and archaeal evolution, playing an important role in the adaptation to new environments. In eukaryotes, its role and frequency remain highly debated, although recent research supports that gene transfer from bacteria to diverse eukaryotes may be much more common than previously appreciated. However, most of this research focused on animals and the true phylogenetic and functional impact of bacterial genes in less-studied microbial eukaryotic groups remains largely unknown. Here, we have analyzed transcriptome data from the deep-branching stramenopile Opalinidae, common members of frog gut microbiomes, and distantly related to the well-known genus Blastocystis. Phylogenetic analyses suggest the early acquisition of several bacterial genes in a common ancestor of both lineages. Those lateral gene transfers most likely facilitated the adaptation of the free-living ancestor of the Opalinidae-Blastocystis symbiotic group to new niches in the oxygen-depleted animal gut environment.

RevDate: 2021-01-10
CmpDate: 2020-09-09

Olofsson JK, Dunning LT, Lundgren MR, et al (2019)

Population-Specific Selection on Standing Variation Generated by Lateral Gene Transfers in a Grass.

Current biology : CB, 29(22):3921-3927.e5.

Evidence of eukaryote-to-eukaryote lateral gene transfer (LGT) has accumulated in recent years [1-14], but the selective pressures governing the evolutionary fate of these genes within recipient species remain largely unexplored [15, 16]. Among non-parasitic plants, successful LGT has been reported between different grass species [5, 8, 11, 16-19]. Here, we use the grass Alloteropsis semialata, a species that possesses multigene LGT fragments that were acquired recently from distantly related grass species [5, 11, 16], to test the hypothesis that the successful LGT conferred an advantage and were thus rapidly swept into the recipient species. Combining whole-genome and population-level RAD sequencing, we show that the multigene LGT fragments were rapidly integrated in the recipient genome, likely due to positive selection for genes encoding proteins that added novel functions. These fragments also contained physically linked hitchhiking protein-coding genes, and subsequent genomic erosion has generated gene presence-absence polymorphisms that persist in multiple geographic locations, becoming part of the standing genetic variation. Importantly, one of the hitchhiking genes underwent a secondary rapid spread in some populations. This shows that eukaryotic LGT can have a delayed impact, contributing to local adaptation and intraspecific ecological diversification. Therefore, while short-term LGT integration is mediated by positive selection on some of the transferred genes, physically linked hitchhikers can remain functional and augment the standing genetic variation with delayed adaptive consequences.

RevDate: 2021-01-10
CmpDate: 2020-10-13

Lewis WH, Lind AE, Sendra KM, et al (2020)

Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss.

Molecular biology and evolution, 37(2):524-539.

Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.

RevDate: 2022-04-17
CmpDate: 2020-03-30

Manzano-Marı N A, Coeur d'acier A, Clamens AL, et al (2020)

Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems.

The ISME journal, 14(1):259-273.

Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Medina EM, Walsh E, NE Buchler (2019)

Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain.

Current opinion in genetics & development, 58-59:103-110.

Fungi are found in diverse ecological niches as primary decomposers, mutualists, or parasites of plants and animals. Although animals and fungi share a common ancestor, fungi dramatically diversified their life cycle, cell biology, and metabolism as they evolved and colonized new niches. This review focuses on a family of fungal transcription factors (Swi4/Mbp1, APSES, Xbp1, Bqt4) derived from the lateral gene transfer of a KilA-N domain commonly found in prokaryotic and eukaryotic DNA viruses. These virus-derived fungal regulators play central roles in cell cycle, morphogenesis, sexual differentiation, and quiescence. We consider the possible origins of KilA-N and how this viral DNA binding domain came to be intimately associated with fungal processes.

RevDate: 2020-03-27
CmpDate: 2020-03-27

John J, George S, Nori SRC, et al (2019)

Phylogenomic Analysis Reveals the Evolutionary Route of Resistant Genes in Staphylococcus aureus.

Genome biology and evolution, 11(10):2917-2926.

Multidrug-resistant Staphylococcus aureus is a leading concern worldwide. Coagulase-Negative Staphylococci are claimed to be the reservoir and source of important resistant elements in S. aureus. However, the origin and evolutionary route of resistant genes in S. aureus are still remaining unknown. Here, we performed a detailed phylogenomic analysis of 152 completely sequenced S. aureus strains in comparison with 7,529 non-Staphylococcus aureus reference bacterial genomes. Our results reveal that S. aureus has a large open pan-genome where 97 (55%) of its known resistant-related genes belonging to its accessory genome. Among these genes, 47 (27%) were located within the Staphylococcal Cassette Chromosome mec (SCCmec), a transposable element responsible for resistance against major classes of antibiotics including beta-lactams, macrolides, and aminoglycosides. However, the physically linked mec-box genes (MecA-MecR-MecI) that are responsible for the maintenance of SCCmec elements is not unique to S. aureus, instead it is widely distributed within Staphylococcaceae family. The phyletic patterns of SCCmec-encoded resistant genes in Staphylococcus species are significantly different from that of its core genes indicating frequent exchange of these genes between Staphylococcus species. Our in-depth analysis of SCCmec-resistant gene phylogenies reveals that genes such as blaZ, ble, kmA, and tetK that are responsible for beta-lactam, bleomycin, kanamycin, and tetracycline resistance in S. aureus were laterally transferred from non-Staphylococcus sources. In addition, at least 11 non-SCCmec-encoded resistant genes in S. aureus, were laterally acquired from distantly related species. Our study evidently shows that gene transfers played a crucial role in shaping the evolution of antibiotic resistance in S. aureus.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important; we now know that roughly eight percent of the human genome arrived sideways by viral infection—a type of HGT. In The Tangled Tree, “the grandest tale in biology….David Quammen presents the science—and the scientists involved—with patience, candor, and flair” (Nature). We learn about the major players, such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )