About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

17 Jan 2019 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 17 Jan 2019 at 01:30 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: "(horizontal or lateral) "gene transfer"" NOT pmcbook NOT ispreviousversion NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-01-09
CmpDate: 2019-01-09

Alizadeh N, Seyyed Mousavi MN, Hajibonabi F, et al (2018)

Microbes involving in carcinogenesis; growing state of the art.

Microbial pathogenesis, 125:1-6.

Lateral gene transfer (LGT) has been demonstrated as a transfer process of novel genes between different species. LGT proceedings are occurring between microbes and plants, as well as between microbes and animals. New evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Due to the important role of genetic changes in the increase of cell proliferation and cancer development, we reviewed the effects of microbial-animal LGT in human oncogenesis. In addition, viral DNA can induce cancer development by random insertion into cancer-related genes or by inducing translocations. In conclusion, growing evidence shows the contribution of the microbial genome in cancer and autoimmune disease.

RevDate: 2019-01-09
CmpDate: 2019-01-09

Huang H, Yu W, Wang R, et al (2017)

Genomic and transcriptomic analyses of Agrobacterium tumefaciens S33 reveal the molecular mechanism of a novel hybrid nicotine-degrading pathway.

Scientific reports, 7(1):4813.

Agrobacterium tumefaciens S33 is able to degrade nicotine via a novel hybrid of the pyridine and pyrrolidine pathways. It can be utilized to remove nicotine from tobacco wastes and transform nicotine into important functionalized pyridine precursors for some valuable drugs and insecticides. However, the molecular mechanism of the hybrid pathway is still not completely clear. Here we report the genome analysis of strain S33 and its transcriptomes grown in glucose-ammonium medium and nicotine medium. The complete gene cluster involved in nicotine catabolism was found to be located on a genomic island composed of genes functionally similar but not in sequences to those of the pyridine and pyrrolidine pathways, as well as genes encoding plasmid partitioning and replication initiation proteins, conjugal transfer proteins and transposases. This suggests that the evolution of this hybrid pathway is not a simple fusion of the genes involved in the two pathways, but the result of a complicated lateral gene transfer. In addition, other genes potentially involved in the hybrid pathway could include those responsible for substrate sensing and transport, transcription regulation and electron transfer during nicotine degradation. This study provides new insights into the molecular mechanism of the novel hybrid pathway for nicotine degradation.

RevDate: 2018-12-28

Duricki DA, Drndarski S, Bernanos M, et al (2018)

Stroke Recovery in Rats after 24-Hour-Delayed Intramuscular Neurotrophin-3 Infusion.

Annals of neurology [Epub ahead of print].

OBJECTIVE: Neurotrophin-3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke.

METHODS: Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps.

RESULTS: Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri-infarct blood oxygenation level-dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways.

INTERPRETATION: Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke. Ann Neurol 2018; 1-15.

RevDate: 2018-12-27

Oliveira ACP, Ferreira RM, Ferro MIT, et al (2018)

Transposons and pathogenicity in Xanthomonas: acquisition of murein lytic transglycosylases by TnXax1 enhances Xanthomonas citri subsp. citri 306 virulence and fitness.

PeerJ, 6:e6111 pii:6111.

Xanthomonas citri subsp. citri 306 (XccA) is the causal agent of type A citrus canker (CC), one of the most significant citriculture diseases. Murein lytic transglycosylases (LT), potentially involved in XccA pathogenicity, are enzymes responsible for peptidoglycan structure assembly, remodeling and degradation. They directly impact cell wall expansion during bacterial growth, septum division allowing cell separation, cell wall remodeling allowing flagellar assembly, bacterial conjugation, muropeptide recycling, and secretion system assembly, in particular the Type 3 Secretion System involved in bacterial virulence, which play a fundamental role in XccA pathogenicity. Information about the XccA LT arsenal is patchy: little is known about family diversity, their exact role or their connection to virulence in this bacterium. Among the LTs with possible involvement in virulence, two paralogue open reading frames (ORFs) (one on the chromosome and one in plasmid pXAC64) are passenger genes of the Tn3 family transposon TnXax1, known to play a significant role in the evolution and emergence of pathogenicity in Xanthomonadales and to carry a variety of virulence determinants. This study addresses LT diversity in the XccA genome and examines the role of plasmid and chromosomal TnXax1 LT passenger genes using site-directed deletion mutagenesis and functional characterization. We identified 13 XccA LTs: 12 belong to families 1A, 1B, 1C, 1D (two copies), 1F, 1G, 3A, 3B (two copies), 5A, 6A and one which is non-categorized. The non-categorized LT is exclusive to the Xanthomonas genus and related to the 3B family but contains an additional domain linked to carbohydrate metabolism. The categorized LTs are probably involved in cell wall remodeling to allow insertion of type 3, 4 and 6 secretion systems, flagellum assembly, division and recycling of cell wall and degradation and control of peptidoglycan production. The TnXax1 passenger LT genes (3B family) are not essential to XccA or for CC development but are implicated in peptidoglycan metabolism, directly impacting bacterial fitness and CC symptom enhancement in susceptible hosts (e.g., Citrus sinensis). This underlines the role of TnXax1 as a virulence and pathogenicity-propagating agent in XccA and suggests that LT acquisition by horizontal gene transfer mediated by TnXax1 may improve bacterial fitness, conferring adaptive advantages to the plant-pathogen interaction process.

RevDate: 2018-12-19

Pang TY, MJ Lercher (2018)

Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment.

Proceedings of the National Academy of Sciences of the United States of America pii:1718997115 [Epub ahead of print].

Even closely related prokaryotes often show an astounding diversity in their ability to grow in different nutritional environments. It has been hypothesized that complex metabolic adaptations-those requiring the independent acquisition of multiple new genes-can evolve via selectively neutral intermediates. However, it is unclear whether this neutral exploration of phenotype space occurs in nature, or what fraction of metabolic adaptations is indeed complex. Here, we reconstruct metabolic models for the ancestors of a phylogeny of 53 Escherichia coli strains, linking genotypes to phenotypes on a genome-wide, macroevolutionary scale. Based on the ancestral and extant metabolic models, we identify 3,323 phenotypic innovations in the history of the E. coli clade that arose through changes in accessory genome content. Of these innovations, 1,998 allow growth in previously inaccessible environments, while 1,325 increase biomass yield. Strikingly, every observed innovation arose through the horizontal acquisition of a single DNA segment less than 30 kb long. Although we found no evidence for the contribution of selectively neutral processes, 10.6% of metabolic innovations were facilitated by horizontal gene transfers on earlier phylogenetic branches, consistent with a stepwise adaptation to successive environments. Ninety-eight percent of metabolic phenotypes accessible to the combined E. coli pangenome can be bestowed on any individual strain by transferring a single DNA segment from one of the extant strains. These results demonstrate an amazing ability of the E. coli lineage to adapt to novel environments through single horizontal gene transfers (followed by regulatory adaptations), an ability likely mirrored in other clades of generalist bacteria.

RevDate: 2018-12-17
CmpDate: 2018-12-17

Chen Y, Hammer EE, VP Richards (2018)

Phylogenetic signature of lateral exchange of genes for antibiotic production and resistance among bacteria highlights a pattern of global transmission of pathogens between humans and livestock.

Molecular phylogenetics and evolution, 125:255-264.

The exchange of bacterial virulence factors driven by lateral gene transfer (LGT) can help indicate possible bacterial transmission among different hosts. Specifically, overlaying the phylogenetic signal of LGT among bacteria onto the distribution of respective isolation sources (hosts) can indicate patterns of transmission among these hosts. Here, we apply this approach towards a better understanding of patterns of bacterial transmission between humans and livestock. We utilize comparative genomics to trace patterns of LGT for an 11-gene operon responsible for the production of the antibiotic nisin and infer transmission of bacteria among respective host species. A total of 147 bacterial genomes obtained from NCBI were determined to contain the complete operon. Isolated from human, porcine and bovine hosts, these genomes represented six Streptococcus and one Staphylococcus species. Phylogenetic analyses of the operon sequences revealed a signature of frequent and recent lateral gene transfer that indicated extensive bacterial transmission between humans and pigs. For 11 isolates, we detected a Tn916-like transposon inserted into the operon. The transposon contained the tetM gene (tetracycline resistance) and additional phylogenetic analyses indicated transmission among human and animal hosts. The bacteria possessing the nisin operon and transposon were isolated from hosts distributed globally. These findings possibly reflect both the globalization of the food industry and an increasingly mobile and expanding human population. In addition to concerns regarding zoonosis, these findings also highlight the potential threat to livestock worldwide due to reverse zoonosis.

RevDate: 2018-12-11
CmpDate: 2018-12-11

Vanrompay D, Nguyen TLA, Cutler SJ, et al (2018)

Antimicrobial Resistance in Chlamydiales, Rickettsia, Coxiella, and Other Intracellular Pathogens.

Microbiology spectrum, 6(2):.

This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.

RevDate: 2018-11-14

Sand KK, S Jelavić (2018)

Mineral Facilitated Horizontal Gene Transfer: A New Principle for Evolution of Life?.

Frontiers in microbiology, 9:2217.

A number of studies have highlighted that adsorption to minerals increases DNA longevity in the environment. Such DNA-mineral associations can essentially serve as pools of genes that can be stored across time. Importantly, this DNA is available for incorporation into alien organisms through the process of horizontal gene transfer (HGT). Here we argue that minerals hold an unrecognized potential for successfully transferring genetic material across environments and timescales to distant organisms and hypothesize that this process has significantly influenced the evolution of life. Our hypothesis is illustrated in the context of the evolution of early microbial life and the oxygenation of the Earth's atmosphere and offers an explanation for observed outbursts of evolutionary events caused by HGT.

RevDate: 2018-11-14

Chelkha N, Levasseur A, Pontarotti P, et al (2018)

A Phylogenomic Study of Acanthamoeba polyphaga Draft Genome Sequences Suggests Genetic Exchanges With Giant Viruses.

Frontiers in microbiology, 9:2098.

Acanthamoeba are ubiquitous phagocytes predominant in soil and water which can ingest many microbes. Giant viruses of amoebae are listed among the Acanthamoeba-resisting microorganisms. Their sympatric lifestyle within amoebae is suspected to promote lateral nucleotide sequence transfers. Some Acanthamoeba species have shown differences in their susceptibility to giant viruses. Until recently, only the genome of a single Acanthamoeba castellanii Neff was available. We analyzed the draft genome sequences of Acanthamoeba polyphaga through several approaches, including comparative genomics, phylogeny, and sequence networks, with the aim of detecting putative nucleotide sequence exchanges with giant viruses. We identified a putative sequence trafficking between this Acanthamoeba species and giant viruses, with 366 genes best matching with viral genes. Among viruses, Pandoraviruses provided the greatest number of best hits with 117 (32%) for A. polyphaga. Then, genes from mimiviruses, Mollivirus sibericum, marseilleviruses, and Pithovirus sibericum were best hits in 67 (18%), 35 (9%), 24 (7%), and 2 (0.5%) cases, respectively. Phylogenetic reconstructions showed in a few cases that the most parsimonious evolutionary scenarios were a transfer of gene sequences from giant viruses to A. polyphaga. Nevertheless, in most cases, phylogenies were inconclusive regarding the sense of the sequence flow. The number and nature of putative nucleotide sequence transfers between A. polyphaga, and A. castellanii ATCC 50370 on the one hand, and pandoraviruses, mimiviruses and marseilleviruses on the other hand were analyzed. The results showed a lower number of differences within the same giant viral family compared to between different giant virus families. The evolution of 10 scaffolds that were identified among the 14 Acanthamoeba sp. draft genome sequences and that harbored ≥ 3 genes best matching with viruses showed a conservation of these scaffolds and their 46 viral genes in A. polyphaga, A. castellanii ATCC 50370 and A. pearcei. In contrast, the number of conserved genes decreased for other Acanthamoeba species, and none of these 46 genes were present in three of them. Overall, this work opens up several potential avenues for future studies on the interactions between Acanthamoeba species and giant viruses.

RevDate: 2018-11-14

Sitaraman R (2018)

Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities.

Microbiome, 6(1):163 pii:10.1186/s40168-018-0551-z.

The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.

RevDate: 2018-11-14

Andrews M, De Meyer S, James EK, et al (2018)

Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance.

Genes, 9(7): pii:genes9070321.

Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.

RevDate: 2018-08-11

Yair Y, U Gophna (2018)

Repeat modularity as a beneficial property of multiple CRISPR-Cas systems.

RNA biology [Epub ahead of print].

CRISPR-Cas systems are a highly effective immune mechanism for prokaryotes, providing defense against invading foreign DNA. By definition, all CRISPR-Cas systems have short repeats interspersing their spacers. These repeats play a key role in preventing cleavage of self DNA and in the integration of new spacers. Here we focus on the phenomenon of repeat modularity, namely the unexpectedly high degree of repeat conservation across different systems within a genome or between different species. We hypothesize that modularity can be beneficial for CRISPR-Cas containing organisms, because it facilitates horizontal acquisition of 'pre-immunized' CRISPR arrays and allows the utilization of spacers acquired by one system for use by other systems within the same cell.

RevDate: 2018-11-14

Hernandez AM, JF Ryan (2018)

Horizontally transferred genes in the ctenophore Mnemiopsis leidyi.

PeerJ, 6:e5067 pii:5067.

Horizontal gene transfer (HGT) has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that HGT between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are homologous to characterized enzymes, supporting previous observations that genes encoding enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during development, suggesting that they are active and play a role in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.

RevDate: 2018-11-14

Dunning Hotopp JC (2018)

Grafting or pruning in the animal tree: lateral gene transfer and gene loss?.

BMC genomics, 19(1):470 pii:10.1186/s12864-018-4832-5.

BACKGROUND: Lateral gene transfer (LGT), also known as horizontal gene transfer, into multicellular eukaryotes with differentiated tissues, particularly gonads, continues to be met with skepticism by many prominent evolutionary and genomic biologists. A detailed examination of 26 animal genomes identified putative LGTs in invertebrate and vertebrate genomes, concluding that there are fewer predicted LGTs in vertebrates/chordates than invertebrates, but there is still evidence of LGT into chordates, including humans. More recently, a reanalysis of a subset of these putative LGTs into vertebrates concluded that there is not horizontal gene transfer in the human genome. One of the genes in dispute is an N-acyl-aromatic-L-amino acid amidohydrolase (ENSG00000132744), which encodes ACY3. This gene was initially identified as a putative bacteria-chordate LGT but was later debunked as it has a significant BLAST match to a more recently deposited genome of Saccoglossus kowalevskii, a flatworm, Metazoan, and hemichordate.

RESULTS: Using BLAST searches, HMM searches, and phylogenetics to assess the evidence for LGT, gene loss, and rate variation in ACY3/ASPA homologues, the most parsimonious explanation for the distribution of ACY3/ASPA genes in eukaryotes involves both gene loss and bacteria-animal LGT, albeit LGT that occurred hundreds of millions of years ago prior to the divergence of gnathostomes.

CONCLUSIONS: ACY3/ASPA is most likely a bacteria-animal LGT. LGTs at these time scales in the ancestors of humans are not unexpected given the many known, well-characterized, and adaptive LGTs from bacteria to insects and nematodes.

RevDate: 2018-11-14
CmpDate: 2018-10-30

Méheust R, Watson AK, Lapointe FJ, et al (2018)

Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution.

Genome biology, 19(1):75 pii:10.1186/s13059-018-1454-9.

BACKGROUND: Haloarchaea, a major group of archaea, are able to metabolize sugars and to live in oxygenated salty environments. Their physiology and lifestyle strongly contrast with that of their archaeal ancestors. Amino acid optimizations, which lowered the isoelectric point of haloarchaeal proteins, and abundant lateral gene transfers from bacteria have been invoked to explain this deep evolutionary transition. We use network analyses to show that the evolution of novel genes exclusive to Haloarchaea also contributed to the evolution of this group.

RESULTS: We report the creation of 320 novel composite genes, both early in the evolution of Haloarchaea during haloarchaeal genesis and later in diverged haloarchaeal groups. One hundred and twenty-six of these novel composite genes derived from genetic material from bacterial genomes. These latter genes, largely involved in metabolic functions but also in oxygenic lifestyle, constitute a different gene pool from the laterally acquired bacterial genes formerly identified. These novel composite genes were likely advantageous for their hosts, since they show significant residence times in haloarchaeal genomes-consistent with a long phylogenetic history involving vertical descent and lateral gene transfer-and encode proteins with optimized isoelectric points.

CONCLUSIONS: Overall, our work encourages a systematic search for composite genes across all archaeal major groups, in order to better understand the origins of novel prokaryotic genes, and in order to test to what extent archaea might have adjusted their lifestyles by incorporating and recycling laterally acquired bacterial genetic fragments into new archaeal genes.

RevDate: 2018-06-05

Bertelli C, Tilley KE, FSL Brinkman (2018)

Microbial genomic island discovery, visualization and analysis.

Briefings in bioinformatics pii:5032564 [Epub ahead of print].

Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.

RevDate: 2018-11-14
CmpDate: 2018-07-05

Hendrickson HL, Barbeau D, Ceschin R, et al (2018)

Chromosome architecture constrains horizontal gene transfer in bacteria.

PLoS genetics, 14(5):e1007421 pii:PGENETICS-D-18-00142.

Despite significant frequencies of lateral gene transfer between species, higher taxonomic groups of bacteria show ecological and phenotypic cohesion. This suggests that barriers prevent panmictic dissemination of genes via lateral gene transfer. We have proposed that most bacterial genomes have a functional architecture imposed by Architecture IMparting Sequences (AIMS). AIMS are defined as 8 base pair sequences preferentially abundant on leading strands, whose abundance and strand-bias are positively correlated with proximity to the replication terminus. We determined that inversions whose endpoints lie within a single chromosome arm, which would reverse the polarity of AIMS in the inverted region, are both shorter and less frequent near the replication terminus. This distribution is consistent with the increased selection on AIMS function in this region, thus constraining DNA rearrangement. To test the hypothesis that AIMS also constrain DNA transfer between genomes, AIMS were identified in genomes while ignoring atypical, potentially laterally-transferred genes. The strand-bias of AIMS within recently acquired genes was negatively correlated with the distance of those genes from their genome's replication terminus. This suggests that selection for AIMS function prevents the acquisition of genes whose AIMS are not found predominantly in the permissive orientation. This constraint has led to the loss of at least 18% of genes acquired by transfer in the terminus-proximal region. We used completely sequenced genomes to produce a predictive road map of paths of expected horizontal gene transfer between species based on AIMS compatibility between donor and recipient genomes. These results support a model whereby organisms retain introgressed genes only if the benefits conferred by their encoded functions outweigh the detriments incurred by the presence of foreign DNA lacking genome-wide architectural information.

RevDate: 2018-09-26

Simbaqueba J, Catanzariti AM, González C, et al (2018)

Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

Molecular plant pathology, 19(10):2302-2318.

RNA sequencing (RNAseq) reads from cape gooseberry plants (Physalis peruviana) infected with Fusarium oxysporumf. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporumf. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1(designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1bwere tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant shows reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3.These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph.Alternatively, cape gooseberry germplasm could be explored for I-3homologues capable of providing resistance to Foph.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Gupta S, Lemenze A, Donnelly RJ, et al (2018)

Keeping it together: absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation.

Research in microbiology, 169(4-5):237-243.

The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.

RevDate: 2018-11-26
CmpDate: 2018-11-26

Gambetta GA, Matthews MA, M Syvanen (2018)

The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges.

BMC genomics, 19(1):329 pii:10.1186/s12864-018-4731-9.

BACKGROUND: Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions.

RESULTS: We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species.

CONCLUSIONS: These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element.

RevDate: 2018-11-27
CmpDate: 2018-11-27

Kapust N, Nelson-Sathi S, Schönfeld B, et al (2018)

Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication.

Genome biology and evolution, 10(5):1198-1209.

In prokaryotes, known mechanisms of lateral gene transfer (transformation, transduction, conjugation, and gene transfer agents) generate new combinations of genes among chromosomes during evolution. In eukaryotes, whose host lineage is descended from archaea, lateral gene transfer from organelles to the nucleus occurs at endosymbiotic events. Recent genome analyses studying gene distributions have uncovered evidence for sporadic, discontinuous events of gene transfer from bacteria to archaea during evolution. Other studies have used traditional models designed to investigate gene family size evolution (Count) to support claims that gene transfer to archaea was continuous during evolution, rather than involving occasional periodic mass gene influx events. Here, we show that the methodology used in analyses favoring continuous gene transfers to archaea was misapplied in other studies and does not recover known events of single simultaneous origin for many genes followed by differential loss in real data: plastid genomes. Using the same software and the same settings, we reanalyzed presence/absence pattern data for proteins encoded in plastid genomes and for eukaryotic protein families acquired from plastids. Contrary to expectations under a plastid origin model, we found that the methodology employed inferred that gene acquisitions occurred uniformly across the plant tree. Sometimes as many as nine different acquisitions by plastid DNA were inferred for the same protein family. That is, the methodology that recovered gradual and continuous lateral gene transfer among lineages for archaea obtains the same result for plastids, even though it is known that massive gains followed by gradual differential loss is the true evolutionary process that generated plastid gene distribution data. Our findings caution against the use of models designed to study gene family size evolution for investigating gene transfer processes, especially when transfers involving more than one gene per event are possible.

RevDate: 2018-09-04
CmpDate: 2018-09-04

Godde JS, Baichoo S, Mungloo-Dilmohamud Z, et al (2018)

Comparison of genomic islands in cyanobacteria: Evidence of bacteriophage-mediated horizontal gene transfer from eukaryotes.

Microbiological research, 211:31-46.

A number of examples of putative eukaryote-to-prokaryote horizontal gene transfer (HGT) have been proposed in the past using phylogenetic analysis in support of these claims but none have attempted to map these gene transfers to the presence of genomic islands (GIs) in the host. Two of these cases have been examined in detail, including an ATP sulfurylase (ATPS) gene and a class I fructose bisphosphate aldolase (FBA I) gene that were putatively transferred to cyanobacteria of the genus Prochlorococcus from either green or red algae, respectively. Unlike previous investigations of HGT, parametric methods were initially used to detect genomic islands, then more traditional phylogenomic and phylogenetic methods were used to confirm or deny the HGT status of these genes. The combination of these three methods of analysis- detection of GIs, the determination of genomic neighborhoods, as well as traditional phylogeny, lends strong support to the claim that trans-domain HGT has occurred in only one of these cases and further suggests a new insight into the method of transmission of FBA I, namely that cyanophage-mediated transfer may have been responsible for the HGT event in question. The described methods were then applied to a range of prochlorococcal genomes in order to characterize a candidate for eukaryote-to-prokaryote HGT that had not been previously studied by others. Application of the same methodology used to confirm or deny HGT for ATPS and FBA I identified a ⊗12 fatty acid desaturase (FAD) gene that was likely transferred to Prochlorococcus from either green or red algae.

RevDate: 2018-11-14

Stairs CW, Eme L, Muñoz-Gómez SA, et al (2018)

Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis.

eLife, 7: pii:34292.

Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rquA, a gene encoding an RQ biosynthetic enzyme. RquA is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rquA from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RquA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.

RevDate: 2018-10-29

Vigliotti C, Bicep C, Bapteste E, et al (2018)

Tracking the Rules of Transmission and Introgression with Networks.

Microbiology spectrum, 6(2):.

Understanding how an animal organism and its gut microbes form an integrated biological organization, known as a holobiont, is becoming a central issue in biological studies. Such an organization inevitably involves a complex web of transmission processes that occur on different scales in time and space, across microbes and hosts. Network-based models are introduced in this chapter to tackle aspects of this complexity and to better take into account vertical and horizontal dimensions of transmission. Two types of network-based models are presented, sequence similarity networks and bipartite graphs. One interest of these networks is that they can consider a rich diversity of important players in microbial evolution that are usually excluded from evolutionary studies, like plasmids and viruses. These methods bring forward the notion of "gene externalization," which is defined as the presence of redundant copies of prokaryotic genes on mobile genetic elements (MGEs), and therefore emphasizes a related although distinct process from lateral gene transfer between microbial cells. This chapter introduces guidelines to the construction of these networks, reviews their analysis, and illustrates their possible biological interpretations and uses. The application to human gut microbiomes shows that sequences present in a higher diversity of MGEs have both biased functions and a broader microbial and human host range. These results suggest that an "externalized gut metagenome" is partly common to humans and benefits the gut microbial community. We conclude that testing relationships between microbial genes, microbes, and their animal hosts, using network-based methods, could help to unravel additional mechanisms of transmission in holobionts.

RevDate: 2018-11-14
CmpDate: 2018-06-26

Druzhinina IS, Chenthamara K, Zhang J, et al (2018)

Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts.

PLoS genetics, 14(4):e1007322 pii:PGENETICS-D-17-02166.

Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass.

RevDate: 2018-11-14

Shen Y, Cai J, Davies MR, et al (2018)

Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China.

Frontiers in microbiology, 9:542.

Streptococcus pyogenes, also known as group A Streptococcus (GAS), is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ) non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ) non-susceptibility in Shanghai, China. GAS (n = 2,258) recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258), with the phenotype more prevalent in GAS isolated from adults (14.3%) than from children (1.2%). Eighty percent (24/30) of FQ-non-susceptible isolates were also resistant to both macrolides (ermB) and tetracycline (tetM) including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs) identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152) of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12) were macrolide and tetracycline resistant. Phylogenetic analysis of the parC QRDR sequences suggested the possibility that FQ resistance may be acquired through inter-species lateral gene transfer. This study reports the emergence of macrolide, tetracycline, and fluoroquinolone multidrug-resistant clones across several GAS emm types including emm1 and emm12, warranting continual surveillance given the extensive use of fluoroquinolones in clinical use.

RevDate: 2018-11-17

Westbye AB, Kater L, Wiesmann C, et al (2018)

The Protease ClpXP and the PAS Domain Protein DivL Regulate CtrA and Gene Transfer Agent Production in Rhodobacter capsulatus.

Applied and environmental microbiology, 84(11): pii:AEM.00275-18.

Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.

RevDate: 2018-11-14
CmpDate: 2018-10-02

Murillo T, Ramírez-Vargas G, Riedel T, et al (2018)

Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms.

Genome biology and evolution, 10(3):982-998.

Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301-8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.

RevDate: 2018-11-14

Shalev Y, Soucy SM, Papke RT, et al (2018)

Comparative Analysis of Surface Layer Glycoproteins and Genes Involved in Protein Glycosylation in the Genus Haloferax.

Genes, 9(3): pii:genes9030172.

Within the Haloferax genus, both the surface (S)-layer protein, and the glycans that can decorate it, vary between species, which can potentially result in many different surface types, analogous to bacterial serotypes. This variation may mediate phenotypes, such as sensitivity to different viruses and mating preferences. Here, we describe S-layer glycoproteins found in multiple Haloferax strains and perform comparative genomics analyses of major and alternative glycosylation clusters of isolates from two coastal sites. We analyze the phylogeny of individual glycosylation genes and demonstrate that while the major glycosylation cluster tends to be conserved among closely related strains, the alternative cluster is highly variable. Thus, geographically- and genetically-related strains may exhibit diverse surface structures to such an extent that no two isolates present an identical surface profile.

RevDate: 2018-04-20

Leger MM, Eme L, Stairs CW, et al (2018)

Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115).

BioEssays : news and reviews in molecular, cellular and developmental biology, 40(5):e1700242.

In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.

RevDate: 2018-11-14

Ward LM, Hemp J, Shih PM, et al (2018)

Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer.

Frontiers in microbiology, 9:260.

The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.

RevDate: 2018-11-13

Watson BNJ, Staals RHJ, PC Fineran (2018)

CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.

mBio, 9(1): pii:mBio.02406-17.

A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution.

RevDate: 2018-09-04
CmpDate: 2018-09-04

Poey ME, M Laviña (2018)

Horizontal transfer of class 1 integrons from uropathogenic Escherichia coli to E. coli K12.

Microbial pathogenesis, 117:16-22.

Class 1 integrons are genetic elements that carry a variable set of antibiotic resistance genes, being frequently found in clinical Gram-negative isolates. It is generally assumed that they easily spread horizontally among bacteria, thus contributing to the appearance of multidrug resistant clones. However, there are few experimental studies on the lateral transfer of these elements performed with bacterial collections that had been gathered following an epidemiological design. In this work, a collection with these characteristics, comprising uropathogenic Escherichia coli (UPEC) isolates bearing class 1 integrons, was employed to study the horizontal transfer of the integron to an E. coli K12 strain by means of conjugation and transduction experiments. Donor and resultant strains were characterized for their antibiotic resistances, presence of sul1, sul2 and sul3 genes, integron cassette arrays, plasmid replicons and tra region. Conjugation assays were carried out using 45 UPEC isolates as integron donors and transconjugants were obtained in 18 cases (40%). P1-transduction experiments only added the integron transfer from a single donor isolate. Thus, a collection of E. coli K12 strains carrying the class 1 integron from 19 UPEC isolates was generated. In all cases, the integron was co-transferred with at least one low-copy-number plasmid, generally of the F replicon type. Several variables were searched for that could be related to the ability to horizontally transfer the integron. Although no strict correlation was observed, the phylogenetic background of the donor strain and the presence of the sul2 gene appeared as candidates to influence the process. Therefore, there appears that besides being carried by mobile genetic elements, class 1 integrons may be influenced by other factors to accomplish their horizontal transfer, a topic that requires further studies.

RevDate: 2018-11-13

Corel E, Méheust R, Watson AK, et al (2018)

Bipartite Network Analysis of Gene Sharings in the Microbial World.

Molecular biology and evolution, 35(4):899-913.

Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.

RevDate: 2018-11-13

Dunning Hotopp JC, L Klasson (2018)

The Complexities and Nuances of Analyzing the Genome of Drosophila ananassae and Its Wolbachia Endosymbiont.

G3 (Bethesda, Md.), 8(1):373-374 pii:g3.117.300164.

In "Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element," Leung et al. (2017) improved contigs attributed to the Muller F element from the original CAF1 assembly, and used them to conclude that most of the sequence expansion of the fourth chromosome of D. ananassae is due to a higher transposon load than previously thought, but is not due to Wolbachia DNA integrations. While we do not disagree with the first conclusion, the authors base their second conclusion on the lack of homology detected between their improved CAF1 genome assembly attributed to D. ananassae and reference Wolbachia genomes. While the consensus CAF1 genome assembly lacks any sequence similarity to the reference genome of the Wolbachia endosymbiont of Drosophila melanogaster (wMel), numerous studies from multiple laboratories provide experimental support for a large lateral/horizontal gene transfer (LGT) of a Wolbachia genome into this D. ananassae line. As such, we strongly suspect that the original whole genome assembly was either constructed after the removal of all Wolbachia reads, or that Wolbachia sequences were directly removed from the contigs in the CAF1 assembly. Hence, Leung et al. (2017) could not have identified the Wolbachia LGT using the CAF1 assembly. This manuscript by Leung et al. (2017) highlights that an assembly of the Wolbachia sequence reads and their mate pairs was erroneously attributed solely to the Wolbachia endosymbiont, albeit before we understood the extent of LGT in D. ananassae As such, we recommend that the sequences deposited at the National Center for Biotechnology Information (NCBI) under PRJNA13365 should not be attributed to Wolbachia endosymbiont of D. ananassae, but should have their taxonomy reclassified by NCBI as "Unclassified sequences." As our knowledge about genome biology improves, we need to reconsider and reanalyze earlier genomes removing the prejudice introduced from now defunct paradigms.

RevDate: 2018-09-26

Rödelsperger C (2018)

Comparative Genomics of Gene Loss and Gain in Caenorhabditis and Other Nematodes.

Methods in molecular biology (Clifton, N.J.), 1704:419-432.

Nematodes, such as Caenorhabditis elegans, form one of the most species-rich animal phyla. By now more than 30 nematode genomes have been published allowing for comparative genomic analyses at various different time-scales. The majority of a nematode's gene repertoire is represented by either duplicated or so-called orphan genes of unknown origin. This indicates the importance of mechanisms that generate new genes during the course of evolution. While it is certain that nematodes have acquired genes by horizontal gene transfer from various donors, this process only explains a small portion of the nematode gene content. As evolutionary genomic analyses strongly support that most orphan genes are indeed protein-coding, future studies will have to decide, whether they are result from extreme divergence or evolved de novo from previously noncoding sequences. In this contribution, I summarize several studies investigating gene loss and gain in nematodes and discuss the strengths and weaknesses of individual approaches and datasets. These approaches can be used to ask nematode-specific questions such as associated with the evolution of parasitism or with switches in mating systems, but also can complement studies in other animal phyla like vertebrates and insects to broaden our general view on genome evolution.

RevDate: 2018-11-13
CmpDate: 2018-10-22

Brito PH, Chevreux B, Serra CR, et al (2018)

Genetic Competence Drives Genome Diversity in Bacillus subtilis.

Genome biology and evolution, 10(1):108-124.

Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them.

RevDate: 2018-11-13
CmpDate: 2017-12-29

Dan H, Ikeda N, Fujikami M, et al (2017)

Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid.

PloS one, 12(12):e0189779 pii:PONE-D-17-39906.

The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a serious pest worldwide, transmitting Candidatus Liberibacter spp. (Alphaproteobacteria), the causative agents of a devastating citrus disease known as huanglongbing or greening disease. In a symbiotic organ called the bacteriome, D. citri possesses an organelle-like defensive symbiont, Candidatus Profftella armatura (Betaproteobacteria), and a nutritional symbiont, Ca. Carsonella ruddii (Gammaproteobacteria). Drastically reduced symbiont genomes and metabolic complementarity among the symbionts and D. citri indicate their mutually indispensable association. Moreover, horizontal gene transfer between the Profftella and Liberibacter lineages suggests ecological and evolutionary interactions between the bacteriome symbiont and the HLB pathogen. Using fluorescence in situ hybridization, we examined the behavior of Profftella and Carsonella during transovarial transmission and the development of D. citri. In the bacteriomes of sexually-mature female adults, symbionts transformed from an extremely elongated tubular form into spherical or short-rod forms, which migrated toward the ovary. The symbionts then formed mosaic masses, which entered at the posterior pole of the vitellogenic oocytes. After anatrepsis, Carsonella and Profftella migrated to the central and peripheral parts of the mass, respectively. Following the appearance of host nuclei, the mass cellularized, segregating Carsonella and Profftella in the central syncytium and peripheral uninucleate bacteriocytes, respectively. Subsequently, the uninucleate bacteriocytes harboring Profftella assembled at the posterior pole, while the syncytium, containing Carsonella, sat on the anterior side facing the germ band initiating katatrepsis. During dorsal closure, the syncytium was divided into uninuclear bacteriocytes, which surrounded the mass of bacteriocytes containing Profftella. Once fully surrounded, the bacteriocyte mass containing Profftella was fused into a syncytium. Prior to hatching, a pair of wing-like protrusions arose from both lateral sides of the bacteriome, which continued to grow throughout the nymphal stages. These findings provide a foundation for better understanding the intricate relationship between D. citri and its microbiota.

RevDate: 2018-11-13
CmpDate: 2018-03-09

Abrahamian M, Kagda M, Ah-Fong AMV, et al (2017)

Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

BMC evolutionary biology, 17(1):241 pii:10.1186/s12862-017-1087-8.

BACKGROUND: An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides.

RESULTS: Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin.

CONCLUSIONS: Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.

RevDate: 2018-11-13
CmpDate: 2018-03-13

Wang Z, M Wu (2017)

Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a "Melting Pot" Shaping the Rickettsiales Evolution.

Genome biology and evolution, 9(11):3214-3224.

Amoebae have been considered as a genetic "melting pot" for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the "melting pot" hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the "melting pot" hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba-symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the "melting pot" hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution.

RevDate: 2018-11-13
CmpDate: 2018-06-25

Stubenrauch CJ, Dougan G, Lithgow T, et al (2017)

Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function.

Open biology, 7(11):.

Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli, and further focus on a so far undescribed chaperone-usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer.

RevDate: 2018-11-13

Drezen JM, Josse T, Bézier A, et al (2017)

Impact of Lateral Transfers on the Genomes of Lepidoptera.

Genes, 8(11): pii:genes8110315.

Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.

RevDate: 2018-11-13
CmpDate: 2018-07-02

Novick RP, G Ram (2017)

Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament.

Current opinion in microbiology, 38:197-204.

The staphylococcal pathogenicity islands (SaPIs) are highly mobile 15kb genomic islands that carry superantigen genes and other virulence factors and are mobilized by helper phages. Helper phages counteract the SaPI repressor to induce the SaPI replication cycle, resulting in encapsidation in phage like particles, enabling high frequency transfer. The SaPIs split from a protophage lineage in the distant past, have evolved a variety of novel and salient features, and have become an invaluable component of the staphylococcal genome. This review focuses on recent studies describing three different mechanisms of SaPI interference with helper phage reproduction and other studies demonstrating that helper phage mutations to resistance against this interference impact phage evolution. Also described are recent results showing that SaPIs contribute in a major way to lateral transfer of host genes as well as enabling their own transfer. SaPI-like elements, readily identifiable in the bacterial genome, are widespread throughout the Gram-positive cocci, though functionality has thus far been demonstrated for only a single one of these.

RevDate: 2018-07-02
CmpDate: 2018-07-02

Steel M, S Kauffman (2018)

A note on random catalytic branching processes.

Journal of theoretical biology, 437:222-224.

A variety of evolutionary processes in biology can be viewed as settings where organisms 'catalyse' the formation of new types of organisms. One example, relevant to the origin of life, is where transient biological colonies (e.g. prokaryotes or protocells) give rise to new colonies via lateral gene transfer. In this short note, we describe and analyse a simple random process which models such settings. By applying theory from general birth-death processes, we describe how the survival of a population under catalytic diversification depends on interplay of the catalysis rate and the initial population size. We also note how such process can also be viewed within the framework of 'self-sustaining autocatalytic networks'.

RevDate: 2018-07-12
CmpDate: 2018-07-12

Martin WF (2017)

Too Much Eukaryote LGT.

BioEssays : news and reviews in molecular, cellular and developmental biology, 39(12):.

The realization that prokaryotes naturally and frequently disperse genes across steep taxonomic boundaries via lateral gene transfer (LGT) gave wings to the idea that eukaryotes might do the same. Eukaryotes do acquire genes from mitochondria and plastids and they do transfer genes during the process of secondary endosymbiosis, the spread of plastids via eukaryotic algal endosymbionts. From those observations it, however, does not follow that eukaryotes transfer genes either in the same ways as prokaryotes do, or to a quantitatively similar degree. An important illustration of the difference is that eukaryotes do not exhibit pangenomes, though prokaryotes do. Eukaryotes reveal no detectable cumulative effects of LGT, though prokaryotes do. A critical analysis suggests that something is deeply amiss with eukaryote LGT theories.

RevDate: 2018-11-13
CmpDate: 2018-05-14

Hall JPJ, Brockhurst MA, E Harrison (2017)

Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 372(1735):.

In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.

RevDate: 2018-04-10
CmpDate: 2018-04-10

Zhu C, Wang Y, Cai C, et al (2017)

Bacterial Infection and Associated Cancers.

Advances in experimental medicine and biology, 1018:181-191.

Bacterial infections were traditionally not considered as major causes of cancer. However, increasing evidence in the past decades has suggested that several cancers are highly associated with bacterial infection. The bacterial infections have evolved some unique strategies including lateral gene transfer, biofilm and microbiome to induce genome instability and chronic inflammation, as well as escape of immune surveillance for carcinogenesis. Here we summarize and highlight the recent progress on understanding of how bacterial infection plays a role in tumor formation and malignancy.

RevDate: 2018-11-13

Rancurel C, Legrand L, EGJ Danchin (2017)

Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life.

Genes, 8(10): pii:genes8100248.

Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.

RevDate: 2018-11-13
CmpDate: 2018-05-25

Monier A, Chambouvet A, Milner DS, et al (2017)

Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton.

Proceedings of the National Academy of Sciences of the United States of America, 114(36):E7489-E7498.

Phytoplankton community structure is shaped by both bottom-up factors, such as nutrient availability, and top-down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.

RevDate: 2018-11-13
CmpDate: 2018-05-02

Vigil-Stenman T, Ininbergs K, Bergman B, et al (2017)

High abundance and expression of transposases in bacteria from the Baltic Sea.

The ISME journal, 11(11):2611-2623.

Transposases are mobile genetic elements suggested to have an important role in bacterial genome plasticity and host adaptation but their transcriptional activity in natural bacterial communities is largely unexplored. Here we analyzed metagenomes and -transcriptomes of size fractionated (0.1-0.8, 0.8-3.0 and 3.0-200 μm) bacterial communities from the brackish Baltic Sea, and adjacent marine waters. The Baltic Sea transposase levels, up to 1.7% of bacterial genes and 2% of bacterial transcripts, were considerably higher than in marine waters and similar to levels reported for extreme environments. Large variations in expression were found between transposase families and groups of bacteria, with a two-fold higher transcription in Cyanobacteria than in any other phylum. The community-level results were corroborated at the genus level by Synechococcus transposases reaching up to 5.2% of genes and 6.9% of transcripts, which is in contrast to marine Synechococcus that largely lack these genes. Levels peaked in Synechococcus from the largest size fraction, suggesting high frequencies of lateral gene transfer and high genome plasticity in colony-forming picocyanobacteria. Together, the results support an elevated rate of transposition-based genome change and adaptation in bacterial populations of the Baltic Sea, and possibly also of other highly dynamic estuarine waters.

RevDate: 2018-11-13

Koehorst JJ, Saccenti E, Schaap PJ, et al (2016)

Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics.

F1000Research, 5:1987.

A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic boundaries, and it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness.

RevDate: 2018-04-17
CmpDate: 2018-04-17

Kim JS, Kim S, Park J, et al (2017)

Plasmid-mediated transfer of CTX-M-55 extended-spectrum beta-lactamase among different strains of Salmonella and Shigella spp. in the Republic of Korea.

Diagnostic microbiology and infectious disease, 89(1):86-88.

We screened 10 CTX-M-55-producing Shigella and Salmonella isolates from a national surveillance in Korea. The blaCTX-M-55 was located on the IncI1 (n=5), IncA/C (n=4) and IncZ (n=1) plasmids, downstream of ISEcp1, IS26-ISEcp1 and ISEcp1-IS5 sequences, respectively. These results indicate that CTX-M-55 has disseminated to other bacteria by lateral plasmid transfer.

RevDate: 2018-11-13
CmpDate: 2017-09-26

Kim BJ, Kim GN, Kim BR, et al (2017)

Phylogenetic analysis of Mycobacterium massiliense strains having recombinant rpoB gene laterally transferred from Mycobacterium abscessus.

PloS one, 12(6):e0179237 pii:PONE-D-17-05944.

Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.

RevDate: 2018-11-13
CmpDate: 2018-03-02

McDonald BR, CR Currie (2017)

Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

mBio, 8(3): pii:mBio.00644-17.

Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces, with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new insight into the evolutionary history of life on Earth, as the vast majority of this history is microbial.

RevDate: 2018-11-13
CmpDate: 2017-08-08

Mina JG, Thye JK, Alqaisi AQI, et al (2017)

Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

The Journal of biological chemistry, 292(29):12208-12219.

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote.

RevDate: 2018-10-24
CmpDate: 2018-03-21

Gavelis GS, Keeling PJ, BS Leander (2017)

How exaptations facilitated photosensory evolution: Seeing the light by accident.

BioEssays : news and reviews in molecular, cellular and developmental biology, 39(7):.

Exaptations are adaptations that have undergone a major change in function. By recruiting genes from sources originally unrelated to vision, exaptation has allowed for sudden and critical photosensory innovations, such as lenses, photopigments, and photoreceptors. Here we review new or neglected findings, with an emphasis on unicellular eukaryotes (protists), to illustrate how exaptation has shaped photoreception across the tree of life. Protist phylogeny attests to multiple origins of photoreception, as well as the extreme creativity of evolution. By appropriating genes and even entire organelles from foreign organisms via lateral gene transfer and endosymbiosis, protists have cobbled photoreceptors and eyespots from a diverse set of ingredients. While refinement through natural selection is paramount, exaptation helps illustrate how novelties arise in the first place, and is now shedding light on the origins of photoreception itself.

RevDate: 2017-08-29

Weiss RA (2017)

Exchange of Genetic Sequences Between Viruses and Hosts.

Current topics in microbiology and immunology, 407:1-29.

Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.

RevDate: 2018-11-13
CmpDate: 2018-01-11

Moses AS, Millar JA, Bonazzi M, et al (2017)

Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology.

Frontiers in cellular and infection microbiology, 7:174.

Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella-like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide-a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii, a strain that lacks tRNAGlu2 exhibited reduced growth, indicating its importance to Coxiella's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti-Coxiella therapies.

RevDate: 2018-11-13

Mandal SK, Mandal A, Fleming JC, et al (2017)

Surgical Outcome of Epicanthus and Telecanthus Correction by Double Z-Plasty and Trans-Nasal Fixation with Prolene Suture in Blepharophimosis Syndrome.

Journal of clinical and diagnostic research : JCDR, 11(3):NC05-NC08.

INTRODUCTION: Blepharophimosis Syndrome (BPES) is a complex and rare disease characterized by epicanthus inversus, telecanthus, lateral ectropion, narrowed or shortened inter-palpebral fissure distance and ptosis. It is mostly bilateral and may or may not be symmetrical. It is typically inherited as an autosomal dominant trait. In sporadic cases, the disease may occur without a prior family history as a genetic mutation from a deletion or translocation of the FOXL2 gene, which maps to chromosome 3q23. Surgical treatment of this disease poses an oculoplastic challenge due to multiple complex eyelid deformities.

AIM: To evaluate the functional and cosmetic outcome of telecanthus and epicanthus correction by a Mustarde's rectangular double Z-Plasty and trans-nasal fixation using 1-0 prolene suture in BPES.

MATERIALS AND METHODS: This was prospective, interventional study of 16 patients over a period of three years. In this study, all patients had BPES with prominent epicanthus and telecanthus. Mustarde's double Z-plasty and trans-nasal fixation with 1-0 prolene suture was performed in the first of a two-stage operation. If ectropion was present, the lateral ectropion was corrected by a base-out flap transfer from the upper eyelid to the lower eyelid. After three months, a 2nd stage was undertaken, involving a lateral canthoplasty for horizontal widening of a short palpebral fissure and a tarso frontalis sling with silicone rod for correction of moderate to severe ptosis. Patients were followed up for six months to one year with postoperative ophthalmologic examinations and photographs.

RESULTS: Out of 16 patients, 10 were females and six were males. All the patients had bilateral involvement. In this study preoperative Inner Intercanthal Distance (IICD) ranged from 38 mm to 42 mm and the mean IICD was 41.2±0.57 mm. Postoperative IICD ranged from 31 mm to 34 mm. Horizontal Palpebral Fissure Length (HPFL) ranged from 20 mm to 23 mm and the mean value of HPFL was 21.50 mm preoperatively. Postoperative HPFL ranged from 26 mm to 29 mm and had a mean value of 28.50 mm, which was much improved after a combined correction of telecanthus and lateral canthoplasty. The mean preoperative IICD and HPFL ratio was 1.77 and was reduced to a postoperative value of 1.2. The Marginal Reflex Distance1 (MRD-1) test value improved from +1.25 mm to +3.50 mm postoperatively after placement of a tarsofrontalis sling with silicone rod using the Fox's Pentagon technique. In this study, two eyes had minimal unequal correction but were cosmetically and functionally acceptable. Correction of IICD is possible up to 6 mm. No major complication e.g., CSF rhinorrhea was noted in this series and preoperative prominent epicanthal folds were abolished.

CONCLUSION: Here we propose a two-staged procedure involving a combined Mustarde's double Z-plasty with transnasal fixation using a 1-0 prolene suture with a flap transfer from the upper lid to the lower lid in the first stage and a lateral canthoplasty with a tarsofrontalis sling and silicone rod in the second stage. This technique is effective to correct epicanthus, telecanthus, ptosis and lateral ectropion in BPES with good cosmetic and functional outcome.

RevDate: 2018-11-13
CmpDate: 2018-06-08

Toribio-Fernández R, Bella JL, Martínez-Rodríguez P, et al (2017)

Chromosomal localization of Wolbachia inserts in the genomes of two subspecies of Chorthippus parallelus forming a Pyrenean hybrid zone.

Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 25(3-4):215-225.

Wolbachia are endosymbiotic bacteria of arthropods and nematodes that can manipulate the reproduction of various host organisms to facilitate their own maternal transmission. Moreover, Wolbachia's presence in host germ cells may contribute to the many cases of lateral gene transfer from Wolbachia to host genomes that have been described. A previous study in Chorthippus parallelus, a well-known orthopteroid forming a hybrid zone in the Pyrenees, identified Wolbachia sequences from two major supergroups in the genomes of infected and uninfected Chorthippus parallelus parallelus (Cpp) and Chorthippus parallelus erythropus (Cpe) subspecies. In this study, we map the Wolbachia genomic inserts to specific regions on the chromosomes of Cpp and Cpe by fluorescent in situ hybridization (FISH) using tyramides to increase the accuracy and detection of these insertions. Additionally, we consider some of the possible roles that these bacterial inserts play in the organization and function of the grasshopper genome, as well as how they can serve as markers for phylogenetic relationships of these organisms.

RevDate: 2018-11-13
CmpDate: 2017-11-16

Cardona G, JC Pons (2017)

Reconstruction of LGT networks from tri-LGT-nets.

Journal of mathematical biology, 75(6-7):1669-1692.

Phylogenetic networks have gained attention from the scientific community due to the evidence of the existence of evolutionary events that cannot be represented using trees. A variant of phylogenetic networks, called LGT networks, models specifically lateral gene transfer events, which cannot be properly represented with generic phylogenetic networks. In this paper we treat the problem of the reconstruction of LGT networks from substructures induced by three leaves, which we call tri-LGT-nets. We first restrict ourselves to a class of LGT networks that are both mathematically treatable and biologically significant, called BAN-LGT networks. Then, we study the decomposition of such networks in subnetworks with three leaves and ask whether or not this decomposition determines the network. The answer to this question is negative, but if we further impose time-consistency (species involved in a later gene transfer must coexist) the answer is affirmative, up to some redundancy that can never be recovered but is fully characterized.

RevDate: 2018-11-27
CmpDate: 2018-11-27

Zeman M, Mašlaňová I, Indráková A, et al (2017)

Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene.

Scientific reports, 7:46319 pii:srep46319.

Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

RevDate: 2018-11-13
CmpDate: 2018-09-05

Dunning Hotopp JC, Slatko BE, JM Foster (2017)

Targeted Enrichment and Sequencing of Recent Endosymbiont-Host Lateral Gene Transfers.

Scientific reports, 7(1):857 pii:10.1038/s41598-017-00814-4.

Lateral gene transfer (LGT) from microbial symbionts to invertebrate animals is described at an increasing rate, particularly between Wolbachia endosymbionts and their diverse invertebrate hosts. We sought to assess the use of a capture system to cost-effectively sequence such LGT from the host genome. The sequencing depth of Illumina paired end data obtained with a Wolbachia capture system correlated well with that for an Illumina paired end data set used to detect LGT in Wolbachia-depleted B. malayi (p-value: <2e-16). Using a sequencing depth threshold of two or three standard deviations above the mean, 96.9% or 96.7% of positions, respectively, are predicted in the same manner between the two datasets, with 24.7% or 42.5% of the known 49.0 kbp of LGT sequence predicted correctly, respectively. Prior qPCR results for nuwts showed similar correlations for both datasets supporting our conclusion that oligonucleotide-based capture methods can be used to obtain sequences from Wolbachia-host LGT. However, at least 121 positions had a minority of the reads supporting the endosymbiont reference base call using the capture data, illustrating that sequence reads from endosymbiont-host LGTs can confound endosymbiont genome projects, erroneously altering the called consensus genome, a problem that is irrespective to the sequencing technology or platform.

RevDate: 2018-11-13
CmpDate: 2018-09-05

Chamosa LS, Álvarez VE, Nardelli M, et al (2017)

Lateral Antimicrobial Resistance Genetic Transfer is active in the open environment.

Scientific reports, 7(1):513 pii:10.1038/s41598-017-00600-2.

Historically, the environment has been viewed as a passive deposit of antimicrobial resistance mechanisms, where bacteria show biological cost for maintenance of these genes. Thus, in the absence of antimicrobial pressure, it is expected that they disappear from environmental bacterial communities. To test this scenario, we studied native IntI1 functionality of 11 class 1 integron-positive environmental strains of distant genera collected in cold and subtropical forests of Argentina. We found natural competence and successful site-specific insertion with no significant fitness cost of both aadB and bla VIM-2 antimicrobial resistance gene cassettes, in a model system without antibiotic pressure. A bidirectional flow of antimicrobial resistance gene cassettes between natural and nosocomial habitats is proposed, which implies an active role of the open environment as a reservoir, recipient and source of antimicrobial resistance mechanisms, outlining an environmental threat where novel concepts of rational use of antibiotics are extremely urgent and mandatory.

RevDate: 2018-11-13
CmpDate: 2017-12-11

Ito D, Ihara Y, Nishihara H, et al (2017)

Phylogenetic analysis of proteins involved in the stringent response in plant cells.

Journal of plant research, 130(4):625-634.

The nucleotide (p)ppGpp is a second messenger that controls the stringent response in bacteria. The stringent response modifies expression of a large number of genes and metabolic processes and allows bacteria to survive under fluctuating environmental conditions. Recent genome sequencing analyses have revealed that genes responsible for the stringent response are also found in plants. These include (p)ppGpp synthases and hydrolases, RelA/SpoT homologs (RSHs), and the pppGpp-specific phosphatase GppA/Ppx. However, phylogenetic relationship between enzymes involved in bacterial and plant stringent responses is as yet generally unclear. Here, we investigated the origin and evolution of genes involved in the stringent response in plants. Phylogenetic analysis and primary structures of RSH homologs from different plant phyla (including Embryophyta, Charophyta, Chlorophyta, Rhodophyta and Glaucophyta) indicate that RSH gene families were introduced into plant cells by at least two independent lateral gene transfers from the bacterial Deinococcus-Thermus phylum and an unidentified bacterial phylum; alternatively, they were introduced into a proto-plant cell by a lateral gene transfer from the endosymbiotic cyanobacterium followed by gene loss of an ancestral RSH gene in the cyanobacterial linage. Phylogenetic analysis of gppA/ppx families indicated that plant gppA/ppx homologs form an individual cluster in the phylogenetic tree, and show a sister relationship with some bacterial gppA/ppx homologs. Although RSHs contain a plastidial transit peptide at the N terminus, GppA/Ppx homologs do not, suggesting that plant GppA/Ppx homologs function in the cytosol. These results reveal that a proto-plant cell obtained genes for the stringent response by lateral gene transfer events from different bacterial phyla and have utilized them to control metabolism in plastids and the cytosol.

RevDate: 2018-08-01
CmpDate: 2018-08-01

Eme L, Gentekaki E, Curtis B, et al (2017)

Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut.

Current biology : CB, 27(6):807-820.

Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired by LGT. We identify LGTs both from prokaryote and eukaryote donors. Several transfers occurred specifically in ancestors of a subset of Blastocystis subtypes, demonstrating that LGT is an ongoing process. Functional predictions reveal that these genes are involved in diverse metabolic pathways, many of which appear related to adaptation of Blastocystis to the gut environment. Specifically, we identify genes involved in carbohydrate scavenging and metabolism, anaerobic amino acid and nitrogen metabolism, oxygen-stress resistance, and pH homeostasis. A number of the transferred genes encoded secreted proteins that are potentially involved in infection, escaping host defense, or most likely affect the prokaryotic microbiome and the inflammation state of the gut. We also show that Blastocystis subtypes differ in the nature and copy number of LGTs that could relate to variation in their prevalence and virulence. Finally, we identified bacterial-derived genes encoding NH3-dependent nicotinamide adenine dinucleotide (NAD) synthase in Blastocystis and other protozoan parasites, which are promising targets for drug development. Collectively, our results suggest new avenues for research into the role of Blastocystis in intestinal disease and unequivocally demonstrate that LGT is an important mechanism by which eukaryotic microbes adapt to new environments.

RevDate: 2018-11-13
CmpDate: 2018-07-10

Dupont PY, MP Cox (2017)

Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi.

G3 (Bethesda, Md.), 7(4):1301-1314 pii:g3.116.038448.

Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported.

RevDate: 2018-11-13
CmpDate: 2017-10-18

Sieber KB, Bromley RE, JC Dunning Hotopp (2017)

Lateral gene transfer between prokaryotes and eukaryotes.

Experimental cell research, 358(2):421-426.

Lateral gene transfer (LGT) is an all-encompassing term for the movement of DNA between diverse organisms. LGT is synonymous with horizontal gene transfer, and the terms are used interchangeably throughout the scientific literature. While LGT has been recognized within the bacteria domain of life for decades, inter-domain LGTs are being increasingly described. LGTs between bacteria and complex multicellular organisms are of interest because they challenge the long-held dogma that such transfers could only occur in closely-related, single-celled organisms. Scientists will continue to challenge our understanding of LGT as we sequence more, diverse organisms, as we sequence more endosymbiont-colonized arthropods, and as we continue to appreciate LGT events, both young and old.

RevDate: 2018-11-13
CmpDate: 2017-08-17

Khan MA, Mahmudi O, Ullah I, et al (2016)

Probabilistic inference of lateral gene transfer events.

BMC bioinformatics, 17(Suppl 14):431 pii:10.1186/s12859-016-1268-2.

BACKGROUND: Lateral gene transfer (LGT) is an evolutionary process that has an important role in biology. It challenges the traditional binary tree-like evolution of species and is attracting increasing attention of the molecular biologists due to its involvement in antibiotic resistance. A number of attempts have been made to model LGT in the presence of gene duplication and loss, but reliably placing LGT events in the species tree has remained a challenge.

RESULTS: In this paper, we propose probabilistic methods that samples reconciliations of the gene tree with a dated species tree and computes maximum a posteriori probabilities. The MCMC-based method uses the probabilistic model DLTRS, that integrates LGT, gene duplication, gene loss, and sequence evolution under a relaxed molecular clock for substitution rates. We can estimate posterior distributions on gene trees and, in contrast to previous work, the actual placement of potential LGT, which can be used to, e.g., identify "highways" of LGT.

CONCLUSIONS: Based on a simulation study, we conclude that the method is able to infer the true LGT events on gene tree and reconcile it to the correct edges on the species tree in most cases. Applied to two biological datasets, containing gene families from Cyanobacteria and Molicutes, we find potential LGTs highways that corroborate other studies as well as previously undetected examples.

RevDate: 2018-11-13

Cong Y, Chan YB, Phillips CA, et al (2017)

Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF.

Frontiers in microbiology, 8:21.

Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k.

RevDate: 2018-06-01
CmpDate: 2018-06-01

Paul D, Garg A, A Bhattacharjee (2017)

Occurrence of blaNDM-1 and blaNDM-5 in a Tertiary Referral Hospital of North India.

Microbial drug resistance (Larchmont, N.Y.), 23(7):815-821.

Antimicrobial resistance poses a great challenge to clinicians leaving very limited treatment options available. A panel of carbapenem-resistant bacterial isolates was selected based on Rapidec Carba NP test from a total of 900 samples, which were collected from different specialities hospitals of Kanpur, India. Carba NP-positive isolates were screened for carbapenemases, extended-spectrum beta-lactamases (ESBLs), quinolone resistance, and 16s methyltransferase genes. Presence of diverse blaNDM (blaNDM-1 and blaNDM-5) were detected and horizontal transferability was determined by transformation and conjugation assay. Elimination of blaNDM-1 and blaNDM-5 harboring plasmid was done by treating the isolates with sodium dodecyl sulfate. The transcriptional response of blaNDM-1 and blaNDM-5 under the exposure of imipenem, meropenem, and ertapenem stress was determined by quantitative real-time polymerase chain reaction. blaNDM harboring isolates were found to be horizontally transferable through IncFrepB and K type plasmid and could be successfully eliminated after the single treatment with sodium dodecyl sulfate. A distinct pattern of transcriptional response was observed for blaNDM-1 and blaNDM-5 under the pressure of carbapenem antibiotics where an upregulated expression of both blaNDM-1 and blaNDM-5 was observed. Minimum inhibitory concentration (MIC) results revealed that blaNDM harboring strains showed a high MIC range against imipenem, meropenem, ertapenem, cefepime, and aztreonam. Thus, prudent action should be taken to control the spread of these multidrug-resistant determinants or at least slowing down their lateral transfer in the hospital settings.

RevDate: 2018-11-13
CmpDate: 2017-09-19

Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L, et al (2017)

A Clostridium difficile Lineage Endemic to Costa Rican Hospitals Is Multidrug Resistant by Acquisition of Chromosomal Mutations and Novel Mobile Genetic Elements.

Antimicrobial agents and chemotherapy, 61(4): pii:AAC.02054-16.

The antimicrobial resistance (AMR) rates and levels recorded for Clostridium difficile are on the rise. This study reports the nature, levels, diversity, and genomic context of the antimicrobial resistance of human C. difficile isolates of the NAPCR1/RT012/ST54 genotype, which caused an outbreak in 2009 and is endemic in Costa Rican hospitals. To this end, we determined the susceptibilities of 38 NAPCR1 isolates to 10 antibiotics from seven classes using Etests or macrodilution tests and examined 31 NAPCR1 whole-genome sequences to identify single nucleotide polymorphisms (SNPs) and genes that could explain the resistance phenotypes observed. The NAPCR1 isolates were multidrug resistant (MDR) and commonly exhibited very high resistance levels. By sequencing their genomes, we showed that they possessed resistance-associated SNPs in gyrA and rpoB and carried eight to nine acquired antimicrobial resistance (AMR) genes. Most of these genes were located on known or novel mobile genetic elements shared by isolates recovered at different hospitals and at different time points. Metronidazole and vancomycin remain the first-line treatment options for these isolates. Overall, the NAPCR1 lineage showed an enhanced ability to acquire AMR genes through lateral gene transfer. On the basis of this finding, we recommend further vigilance and the adoption of improved control measures to limit the dissemination of this lineage and the emergence of more C. difficile MDR strains.

RevDate: 2018-07-04
CmpDate: 2018-07-04

Vera MA, A Brune (2017)

Hand over that gun: lateral gene transfer provides an amoeba with a bacterial weapon.

Environmental microbiology, 19(3):847-848.

RevDate: 2018-11-13
CmpDate: 2017-06-30

Keen EC, Bliskovsky VV, Malagon F, et al (2017)

Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

mBio, 8(1): pii:mBio.02115-16.

Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications.

IMPORTANCE: Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological entities and kill vast numbers of bacteria in natural environments. Many of these bacteria carry plasmids, extrachromosomal DNA elements that frequently encode antibiotic resistance. However, it is largely unknown whether plasmids are destroyed during phage infection or released intact upon phage lysis, whereupon their encoded resistance could be acquired and manifested by other bacteria (transformation). Because phages are being developed to combat antibiotic-resistant bacteria and because transformation is a principal form of horizontal gene transfer, this question has important implications for biomedicine and microbial evolution alike. Here we report the isolation and characterization of two novel Escherichia coli phages, dubbed "superspreaders," that promote extensive plasmid transformation and efficiently disperse antibiotic resistance genes. Our work suggests that phage superspreaders are not suitable for use in medicine but may help drive bacterial evolution in natural environments.

RevDate: 2018-11-13
CmpDate: 2017-05-18

Druzhinina IS, Kubicek EM, CP Kubicek (2016)

Several steps of lateral gene transfer followed by events of 'birth-and-death' evolution shaped a fungal sorbicillinoid biosynthetic gene cluster.

BMC evolutionary biology, 16(1):269 pii:10.1186/s12862-016-0834-6.

BACKGROUND: Sorbicillinoids are a family of complex cyclic polyketides produced by only a small number of distantly related ascomycete fungi such as Trichoderma (Sordariomycetes) and Penicillium (Eurotiomycetes). In T. reesei, they are synthesized by a gene cluster consisting of eight genes including two polyketide synthases (PKS). To reconstruct the evolutionary origin of this gene cluster, we examined the occurrence of these eight genes in ascomycetes.

RESULTS: A cluster comprising at least six of them was only found in Hypocreales (Acremonium chrysogenum, Ustilaginoidea virens, Trichoderma species from section Longibrachiatum) and in Penicillium rubens (Eurotiales). In addition, Colletotrichum graminicola contained the two pks (sor1 and sor2), but not the other sor genes. A. chrysogenum was the evolutionary eldest species in which sor1, sor2, sor3, sor4 and sor6 were present. Sor5 was gained by lateral gene transfer (LGT) from P. rubens. In the younger Hypocreales (U. virens, Trichoderma spp.), the cluster evolved by vertical transfer, but sor2 was lost and regained by LGT from C. graminicola. SorB (=sor2) and sorD (=sor4) were symplesiomorphic in P. rubens, whereas sorA, sorC and sorF were obtained by LGT from A. chrysogenum, and sorE by LGT from Pestalotiopsis fici (Xylariales). The sorbicillinoid gene cluster in Trichoderma section Longibrachiatum is under strong purifying selection. The T. reesei sor genes are expressed during fast vegetative growth, during antagonism of other fungi and regulated by the secondary metabolism regulator LAE1.

CONCLUSIONS: Our findings pinpoint the evolution of the fungal sorbicillinoid biosynthesis gene cluster. The core cluster arose in early Hypocreales, and was complemented by LGT. During further speciation in the Hypocreales, it became subject to birth and death evolution in selected lineages. In P. rubrens (Eurotiales), two cluster genes were symplesiomorphic, and the whole cluster formed by LGT from at least two different fungal donors.

RevDate: 2018-03-26
CmpDate: 2017-09-25

Khowal S, Siddiqui MZ, Ali S, et al (2017)

A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

Molecular phylogenetics and evolution, 107:443-454.

The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains.

RevDate: 2018-07-03
CmpDate: 2017-08-22

Nývltová E, Šut'ák R, Žárský V, et al (2017)

Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi.

Environmental microbiology, 19(3):1091-1102.

p-Cresol and indole are volatile biologically active products of the bacterial degradation of tyrosine and tryptophan respectively. They are typically produced by bacteria in animal intestines, soil and various sediments. Here, we demonstrate that the free-living eukaryote Mastigamoeba balamuthi and its pathogenic relative Entamoeba histolytica produce significant amounts of indole via tryptophanase activity. Unexpectedly, M. balamuthi also produces p-cresol in concentrations that are bacteriostatic to non-p-cresol-producing bacteria. The ability of M. balamuthi to produce p-cresol, which has not previously been observed in any eukaryotic microbe, was gained due to the lateral acquisition of a bacterial gene for 4-hydroxyphenylacetate decarboxylase (HPAD). In bacteria, the genes for HPAD and the S-adenosylmethionine-dependent activating enzyme (AE) are present in a common operon. In M. balamuthi, HPAD displays a unique fusion with the AE that suggests the operon-mediated transfer of genes from a bacterial donor. We also clarified that the tyrosine-to-4-hydroxyphenylacetate conversion proceeds via the Ehrlich pathway. The acquisition of the bacterial HPAD gene may provide M. balamuthi a competitive advantage over other microflora in its native habitat.

RevDate: 2018-04-20
CmpDate: 2018-01-22

de Oliveira Martins L, D Posada (2017)

Species Tree Estimation from Genome-Wide Data with guenomu.

Methods in molecular biology (Clifton, N.J.), 1525:461-478.

The history of particular genes and that of the species that carry them can be different for a variety of reasons. In particular, gene trees and species trees can differ due to well-known evolutionary processes such as gene duplication and loss, lateral gene transfer, or incomplete lineage sorting. Species tree reconstruction methods have been developed to take this incongruence into account; these can be divided grossly into supertree and supermatrix approaches. Here we introduce a new Bayesian hierarchical model that we have recently developed and implemented in the program guenomu. The new model considers multiple sources of gene tree/species tree disagreement. Guenomu takes as input posterior distributions of unrooted gene tree topologies for multiple gene families, in order to estimate the posterior distribution of rooted species tree topologies.

RevDate: 2018-04-20
CmpDate: 2018-01-22

Chan CX, Beiko RG, MA Ragan (2017)

Scaling Up the Phylogenetic Detection of Lateral Gene Transfer Events.

Methods in molecular biology (Clifton, N.J.), 1525:421-432.

Lateral genetic transfer (LGT) is the process by which genetic material moves between organisms (and viruses) in the biosphere. Among the many approaches developed for the inference of LGT events from DNA sequence data, methods based on the comparison of phylogenetic trees remain the gold standard for many types of problem. Identifying LGT events from sequenced genomes typically involves a series of steps in which homologous sequences are identified and aligned, phylogenetic trees are inferred, and their topologies are compared to identify unexpected or conflicting relationships. These types of approach have been used to elucidate the nature and extent of LGT and its physiological and ecological consequences throughout the Tree of Life. Advances in DNA sequencing technology have led to enormous increases in the number of sequenced genomes, including ultra-deep sampling of specific taxonomic groups and single cell-based sequencing of unculturable "microbial dark matter." Environmental shotgun sequencing enables the study of LGT among organisms that share the same habitat.This abundance of genomic data offers new opportunities for scientific discovery, but poses two key problems. As ever more genomes are generated, the assembly and annotation of each individual genome receives less scrutiny; and with so many genomes available it is tempting to include them all in a single analysis, but thousands of genomes and millions of genes can overwhelm key algorithms in the analysis pipeline. Identifying LGT events of interest therefore depends on choosing the right dataset, and on algorithms that appropriately balance speed and accuracy given the size and composition of the chosen set of genomes.

RevDate: 2018-11-13
CmpDate: 2017-06-09

Furukawa R, Nakagawa M, Kuroyanagi T, et al (2017)

Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases.

Journal of molecular evolution, 84(1):51-66.

The three-domain phylogenetic system of life has been challenged, particularly with regard to the position of Eukarya. The recent increase of known genome sequences has allowed phylogenetic analyses of all extant organisms using concatenated sequence alignment of universally conserved genes; these data supported the two-domain hypothesis, which place eukaryal species as ingroups of the Domain Archaea. However, the origin of Eukarya is complicated: the closest archaeal species to Eukarya differs in single-gene phylogenetic analyses depending on the genes. In this report, we performed molecular phylogenetic analyses of 23 aminoacyl-tRNA synthetases (ARS). Cytoplasmic ARSs in 12 trees showed a monophyletic Eukaryotic branch. One ARS originated from TACK superphylum. One ARS originated from Euryarchaeota and three originated from DPANN superphylum. Four ARSs originated from different bacterial species. The other 8 cytoplasmic ARSs were split into two or three groups in respective trees, which suggested that the cytoplasmic ARSs were replaced by secondary ARSs, and the original ARSs have been lost during evolution of Eukarya. In these trees, one original cytoplasmic ARS was derived from Euryarchaeota and three were derived from DPANN superphylum. Our results strongly support the two-domain hypothesis. We discovered that rampant-independent lateral gene transfers from several archaeal species of DPANN superphylum have contributed to the formation of Eukaryal cells. Based on our phylogenetic analyses, we proposed a model for the establishment of Eukarya.

RevDate: 2018-11-13
CmpDate: 2017-10-26

Danchin EG (2016)

Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube?.

BMC biology, 14(1):101 pii:10.1186/s12915-016-0330-x.

Lateral gene transfer (LGT) is the transmission of genes, sometimes across species barriers, outwith the classic vertical inheritance from parent to offspring. LGT is recognized as an important phenomenon that has shaped the genomes and biology of prokaryotes. Whether LGT in eukaryotes is important and widespread remains controversial. A study in BMC Biology concludes that LGT in eukaryotes is neither continuous nor prevalent and suggests a rule of thumb for judging when apparent LGT may reflect contamination.See research article: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0315-9 .

RevDate: 2018-11-13
CmpDate: 2018-06-28

Watanabe T, Kojima H, M Fukui (2016)

Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase.

Scientific reports, 6:36262 pii:srep36262.

Adenylylsulfate reductase is a heterodimeric complex of two subunits, AprB and AprA, and is a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. Common use of aprA as a functional marker gene has revealed the diversity of sulfur-cycle prokaryotes in diverse environments. In this study, we established a comprehensive sequence set of apr genes and employed it to reanalyze apr phylogeny, evaluate the coverage of a widely used primer set (AprA-1-FW/AprA-5-RV), and categorize environmental aprA sequences. Phylogenetic tree construction revealed new members of Apr lineage II and several previously unrecognized lateral gene transfer events. Using the established phylogenetic tree, we classified all previously reported aprA sequences amplified from freshwater lakes with the primer pair AprA-1-FW/AprA-5-RV in addition to the aprA sequences newly retrieved from freshwater lakes; the obtained results were complemented by 16S rRNA clone library analysis. Apr-based classifications of some of operational taxonomic units were supported by 16S rRNA-based analysis. This study updates our knowledge on the phylogeny of aprBA and shows the identities of several sulfur-cycle bacteria, which could not be classified to a known taxa until now. The established apr sequence set is publicly available and can be applied to assign environmental sequences to known lineages.

RevDate: 2018-11-13
CmpDate: 2017-09-26

Maumus F, G Blanc (2016)

Study of Gene Trafficking between Acanthamoeba and Giant Viruses Suggests an Undiscovered Family of Amoeba-Infecting Viruses.

Genome biology and evolution, 8(11):3351-3363 pii:evw260.

The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain unicellular eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. These findings prompted us to search the genome of Acanthamoeba castellanii strain Neff (Neff), one of the most prolific hosts in the discovery of giant NCLDVs, for possible DNA inserts of viral origin. We report the identification of 267 markers of lateral gene transfer with viruses, approximately half of which are clustered in Neff genome regions of viral origins, transcriptionally inactive or exhibit nucleotide-composition signatures suggestive of a foreign origin. The integrated viral genes had diverse origin among relatives of viruses that infect Neff, including Mollivirus, Pandoravirus, Marseillevirus, Pithovirus, and Mimivirus However, phylogenetic analysis suggests the existence of a yet-undiscovered family of amoeba-infecting NCLDV in addition to the five already characterized. The active transcription of some apparently anciently integrated virus-like genes suggests that some viral genes might have been domesticated during the amoeba evolution. These insights confirm that genomic insertion of NCLDV DNA is a common theme in eukaryotes. This gene flow contributed fertilizing the eukaryotic gene repertoire and participated in the occurrence of orphan genes, a long standing issue in genomics. Search for viral inserts in eukaryotic genomes followed by environmental screening of the original viruses should be used to isolate radically new NCLDVs.

RevDate: 2018-11-13
CmpDate: 2017-06-30

LaRoche-Johnston F, Monat C, B Cousineau (2016)

Recent horizontal transfer, functional adaptation and dissemination of a bacterial group II intron.

BMC evolutionary biology, 16(1):223 pii:10.1186/s12862-016-0789-7.

BACKGROUND: Group II introns are catalytically active RNA and mobile retroelements present in certain eukaryotic organelles, bacteria and archaea. These ribozymes self-splice from the pre-mRNA of interrupted genes and reinsert within target DNA sequences by retrohoming and retrotransposition. Evolutionary hypotheses place these retromobile elements at the origin of over half the human genome. Nevertheless, the evolution and dissemination of group II introns was found to be quite difficult to infer.

RESULTS: We characterized the functional and evolutionary relationship between the model group II intron from Lactococcus lactis, Ll.LtrB, and Ef.PcfG, a newly discovered intron from a clinical strain of Enterococcus faecalis. Ef.PcfG was found to be homologous to Ll.LtrB and to splice and mobilize in its native environment as well as in L. lactis. Interestingly, Ef.PcfG was shown to splice at the same level as Ll.LtrB but to be significantly less efficient to invade the Ll.LtrB recognition site. We also demonstrated that specific point mutations between the IEPs of both introns correspond to functional adaptations which developed in L. lactis as a response to selective pressure on mobility efficiency independently of splicing. The sequence of all the homologous full-length variants of Ll.LtrB were compared and shown to share a conserved pattern of mutation acquisition.

CONCLUSIONS: This work shows that Ll.LtrB and Ef.PcfG are homologous and have a common origin resulting from a recent lateral transfer event followed by further adaptation to the new target site and/or host environment. We hypothesize that Ef.PcfG is the ancestor of Ll.LtrB and was initially acquired by L. lactis, most probably by conjugation, via a single event of horizontal transfer. Strong selective pressure on homing site invasion efficiency then led to the emergence of beneficial point mutations in the IEP, enabling the successful establishment and survival of the group II intron in its novel lactococcal environment. The current colonization state of Ll.LtrB in L. lactis was probably later achieved through recurring episodes of conjugation-based horizontal transfer as well as independent intron mobility events. Overall, our data provide the first evidence of functional adaptation of a group II intron upon invading a new host, offering strong experimental support to the theory that bacterial group II introns, in sharp contrast to their organellar counterparts, behave mostly as mobile elements.

RevDate: 2018-11-13
CmpDate: 2017-10-19

Ku C, WF Martin (2016)

A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule.

BMC biology, 14(1):89 pii:10.1186/s12915-016-0315-9.

BACKGROUND: The literature harbors many claims for lateral gene transfer (LGT) from prokaryotes to eukaryotes. Such claims are typically founded in analyses of genome sequences. It is undisputed that many genes entered the eukaryotic lineage via the origin of mitochondria and the origin of plastids. Claims for lineage-specific LGT to eukaryotes outside the context of organelle origins and claims of continuous LGT to eukaryotic lineages are more problematic. If eukaryotes acquire genes from prokaryotes continuously during evolution, then sequenced eukaryote genomes should harbor evidence for recent LGT, like prokaryotic genomes do.

RESULTS: Here we devise an approach to investigate 30,358 eukaryotic sequences in the context of 1,035,375 prokaryotic homologs among 2585 phylogenetic trees containing homologs from prokaryotes and eukaryotes. Prokaryote genomes reflect a continuous process of gene acquisition and inheritance, with abundant recent acquisitions showing 80-100 % amino acid sequence identity to their phylogenetic sister-group homologs from other phyla. By contrast, eukaryote genomes show no evidence for either continuous or recent gene acquisitions from prokaryotes. We find that, in general, genes in eukaryotic genomes that share ≥70 % amino acid identity to prokaryotic homologs are genome-specific; that is, they are not found outside individual genome assemblies.

CONCLUSIONS: Our analyses indicate that eukaryotes do not acquire genes through continual LGT like prokaryotes do. We propose a 70 % rule: Coding sequences in eukaryotic genomes that share more than 70 % amino acid sequence identity to prokaryotic homologs are most likely assembly or annotation artifacts. The findings further uncover that the role of differential loss in eukaryote genome evolution has been vastly underestimated.

RevDate: 2018-11-13
CmpDate: 2018-09-05

Bordenstein SR, SR Bordenstein (2016)

Eukaryotic association module in phage WO genomes from Wolbachia.

Nature communications, 7:13155 pii:ncomms13155.

Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia.

RevDate: 2018-11-13
CmpDate: 2017-12-12

Hofstatter PG, Tice AK, Kang S, et al (2016)

Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages.

Proceedings. Biological sciences, 283(1840):.

Recombinase enzymes promote DNA repair by homologous recombination. The genes that encode them are ancestral to life, occurring in all known dominions: viruses, Eubacteria, Archaea and Eukaryota. Bacterial recombinases are also present in viruses and eukaryotic groups (supergroups), presumably via ancestral events of lateral gene transfer. The eukaryotic recA genes have two distinct origins (mitochondrial and plastidial), whose acquisition by eukaryotes was possible via primary (bacteria-eukaryote) and/or secondary (eukaryote-eukaryote) endosymbiotic gene transfers (EGTs). Here we present a comprehensive phylogenetic analysis of the recA genealogy, with substantially increased taxonomic sampling in the bacteria, viruses, eukaryotes and a special focus on the key eukaryotic supergroup Amoebozoa, earlier represented only by Dictyostelium We demonstrate that several major eukaryotic lineages have lost the bacterial recombinases (including Opisthokonta and Excavata), whereas others have retained them (Amoebozoa, Archaeplastida and the SAR-supergroups). When absent, the bacterial recA homologues may have been lost entirely (secondary loss of canonical mitochondria) or replaced by other eukaryotic recombinases. RecA proteins have a transit peptide for organellar import, where they act. The reconstruction of the RecA phylogeny with its EGT events presented here retells the intertwined evolutionary history of eukaryotes and bacteria, while further illuminating the events of endosymbiosis in eukaryotes by expanding the collection of widespread genes that provide insight to this deep history.

RevDate: 2018-04-24
CmpDate: 2017-08-07

Gillings MR (2017)

Lateral gene transfer, bacterial genome evolution, and the Anthropocene.

Annals of the New York Academy of Sciences, 1389(1):20-36.

Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process.

RevDate: 2018-11-13
CmpDate: 2017-08-01

Popa O, Landan G, T Dagan (2017)

Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction.

The ISME journal, 11(2):543-554.

Bacteriophages are recognized DNA vectors and transduction is considered as a common mechanism of lateral gene transfer (LGT) during microbial evolution. Anecdotal events of phage-mediated gene transfer were studied extensively, however, a coherent evolutionary viewpoint of LGT by transduction, its extent and characteristics, is still lacking. Here we report a large-scale evolutionary reconstruction of transduction events in 3982 genomes. We inferred 17 158 recent transduction events linking donors, phages and recipients into a phylogenomic transduction network view. We find that LGT by transduction is mostly restricted to closely related donors and recipients. Furthermore, a substantial number of the transduction events (9%) are best described as gene duplications that are mediated by mobile DNA vectors. We propose to distinguish this type of paralogy by the term autology. A comparison of donor and recipient genomes revealed that genome similarity is a superior predictor of species connectivity in the network in comparison to common habitat. This indicates that genetic similarity, rather than ecological opportunity, is a driver of successful transduction during microbial evolution. A striking difference in the connectivity pattern of donors and recipients shows that while lysogenic interactions are highly species-specific, the host range for lytic phage infections can be much wider, serving to connect dense clusters of closely related species. Our results thus demonstrate that DNA transfer via transduction occurs within the context of phage-host specificity, but that this tight constraint can be breached, on rare occasions, to produce long-range LGTs of profound evolutionary consequences.

RevDate: 2018-11-13
CmpDate: 2017-09-15

Pinhassi J, DeLong EF, Béjà O, et al (2016)

Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.

Microbiology and molecular biology reviews : MMBR, 80(4):929-954 pii:80/4/929.

The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.

RevDate: 2018-11-13
CmpDate: 2017-10-12

Gilbert MJ, Miller WG, Yee E, et al (2016)

Comparative Genomics of Campylobacter iguaniorum to Unravel Genetic Regions Associated with Reptilian Hosts.

Genome biology and evolution, 8(9):3022-3029 pii:evw218.

Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa.

RevDate: 2018-11-13
CmpDate: 2017-07-17

Willems M, Lord E, Laforest L, et al (2016)

Using hybridization networks to retrace the evolution of Indo-European languages.

BMC evolutionary biology, 16:180 pii:10.1186/s12862-016-0745-6.

BACKGROUND: Curious parallels between the processes of species and language evolution have been observed by many researchers. Retracing the evolution of Indo-European (IE) languages remains one of the most intriguing intellectual challenges in historical linguistics. Most of the IE language studies use the traditional phylogenetic tree model to represent the evolution of natural languages, thus not taking into account reticulate evolutionary events, such as language hybridization and word borrowing which can be associated with species hybridization and horizontal gene transfer, respectively. More recently, implicit evolutionary networks, such as split graphs and minimal lateral networks, have been used to account for reticulate evolution in linguistics.

RESULTS: Striking parallels existing between the evolution of species and natural languages allowed us to apply three computational biology methods for reconstruction of phylogenetic networks to model the evolution of IE languages. We show how the transfer of methods between the two disciplines can be achieved, making necessary methodological adaptations. Considering basic vocabulary data from the well-known Dyen's lexical database, which contains word forms in 84 IE languages for the meanings of a 200-meaning Swadesh list, we adapt a recently developed computational biology algorithm for building explicit hybridization networks to study the evolution of IE languages and compare our findings to the results provided by the split graph and galled network methods.

CONCLUSION: We conclude that explicit phylogenetic networks can be successfully used to identify donors and recipients of lexical material as well as the degree of influence of each donor language on the corresponding recipient languages. We show that our algorithm is well suited to detect reticulate relationships among languages, and present some historical and linguistic justification for the results obtained. Our findings could be further refined if relevant syntactic, phonological and morphological data could be analyzed along with the available lexical data.

RevDate: 2018-11-13
CmpDate: 2017-05-23

Dang UJ, Devault AM, Mortimer TD, et al (2016)

Estimation of Gene Insertion/Deletion Rates with Missing Data.

Genetics, 204(2):513-529.

Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.

RevDate: 2018-11-13
CmpDate: 2016-08-10

Koonin EV (2016)

Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions.

F1000Research, 5:.

The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of 'lateral genomics' to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller's ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies.

RevDate: 2018-06-05
CmpDate: 2017-08-21

Jaffe AL, Corel E, Pathmanathan JS, et al (2016)

Bipartite graph analyses reveal interdomain LGT involving ultrasmall prokaryotes and their divergent, membrane-related proteins.

Environmental microbiology, 18(12):5072-5081.

Based on their small size and genomic properties, ultrasmall prokaryotic groups like the Candidate Phyla Radiation have been proposed as possible symbionts dependent on other bacteria or archaea. In this study, we use a bipartite graph analysis to examine patterns of sequence similarity between draft and complete genomes from ultrasmall bacteria and other complete prokaryotic genomes, assessing whether the former group might engage in significant gene transfer (or even endosymbioses) with other community members. Our results provide preliminary evidence for many lateral gene transfers with other prokaryotes, including members of the archaea, and report the presence of divergent, membrane-associated proteins among these ultrasmall taxa. In particular, these divergent genes were found in TM6 relatives of the intracellular parasite Babela massiliensis.

RevDate: 2018-11-13
CmpDate: 2018-04-23

Cong Y, Chan YB, MA Ragan (2016)

A novel alignment-free method for detection of lateral genetic transfer based on TF-IDF.

Scientific reports, 6:30308 pii:srep30308.

Lateral genetic transfer (LGT) plays an important role in the evolution of microbes. Existing computational methods for detecting genomic regions of putative lateral origin scale poorly to large data. Here, we propose a novel method based on TF-IDF (Term Frequency-Inverse Document Frequency) statistics to detect not only regions of lateral origin, but also their origin and direction of transfer, in sets of hierarchically structured nucleotide or protein sequences. This approach is based on the frequency distributions of k-mers in the sequences. If a set of contiguous k-mers appears sufficiently more frequently in another phyletic group than in its own, we infer that they have been transferred from the first group to the second. We performed rigorous tests of TF-IDF using simulated and empirical datasets. With the simulated data, we tested our method under different parameter settings for sequence length, substitution rate between and within groups and post-LGT, deletion rate, length of transferred region and k size, and found that we can detect LGT events with high precision and recall. Our method performs better than an established method, ALFY, which has high recall but low precision. Our method is efficient, with runtime increasing approximately linearly with sequence length.

RevDate: 2018-11-13
CmpDate: 2018-05-21

Cong Y, Chan YB, MA Ragan (2016)

Exploring lateral genetic transfer among microbial genomes using TF-IDF.

Scientific reports, 6:29319 pii:srep29319.

Many microbes can acquire genetic material from their environment and incorporate it into their genome, a process known as lateral genetic transfer (LGT). Computational approaches have been developed to detect genomic regions of lateral origin, but typically lack sensitivity, ability to distinguish donor from recipient, and scalability to very large datasets. To address these issues we have introduced an alignment-free method based on ideas from document analysis, term frequency-inverse document frequency (TF-IDF). Here we examine the performance of TF-IDF on three empirical datasets: 27 genomes of Escherichia coli and Shigella, 110 genomes of enteric bacteria, and 143 genomes across 12 bacterial and three archaeal phyla. We investigate the effect of k-mer size, gap size and delineation of groups on the inference of genomic regions of lateral origin, finding an interplay among these parameters and sequence divergence. Because TF-IDF identifies donor groups and delineates regions of lateral origin within recipient genomes, aggregating these regions by gene enables us to explore, for the first time, the mosaic nature of lateral genes including the multiplicity of biological sources, ancestry of transfer and over-writing by subsequent transfers. We carry out Gene Ontology enrichment tests to investigate which biological processes are potentially affected by LGT.

RevDate: 2018-11-13
CmpDate: 2017-09-22

Cenci U, Ducatez M, Kadouche D, et al (2016)

Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?.

Frontiers in cellular and infection microbiology, 6:67.

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.

RevDate: 2018-11-13
CmpDate: 2018-05-10

Bernard G, Chan CX, MA Ragan (2016)

Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

Scientific reports, 6:28970 pii:srep28970.

Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

RevDate: 2018-11-13
CmpDate: 2018-09-17

Glöckner G, Lawal HM, Felder M, et al (2016)

The multicellularity genes of dictyostelid social amoebas.

Nature communications, 7:12085 pii:ncomms12085.

The evolution of multicellularity enabled specialization of cells, but required novel signalling mechanisms for regulating cell differentiation. Early multicellular organisms are mostly extinct and the origins of these mechanisms are unknown. Here using comparative genome and transcriptome analysis across eight uni- and multicellular amoebozoan genomes, we find that 80% of proteins essential for the development of multicellular Dictyostelia are already present in their unicellular relatives. This set is enriched in cytosolic and nuclear proteins, and protein kinases. The remaining 20%, unique to Dictyostelia, mostly consists of extracellularly exposed and secreted proteins, with roles in sensing and recognition, while several genes for synthesis of signals that induce cell-type specialization were acquired by lateral gene transfer. Across Dictyostelia, changes in gene expression correspond more strongly with phenotypic innovation than changes in protein functional domains. We conclude that the transition to multicellularity required novel signals and sensors rather than novel signal processing mechanisms.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

21454 NE 143rd Street
Woodinville, WA 98077


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )