picture
RJR-logo

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
30 Mar 2023 at 01:31
HITS:
12908
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer

RJR-3x

Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 30 Mar 2023 at 01:31 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: ( "horizontal gene transfer" OR "lateral gene transfer") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2023-03-29

Sánchez-Arroyo A, Plaza-Vinuesa L, Rivas BL, et al (2023)

The salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans DSM 6986[T] is a bifunctional enzyme that inactivates the mycotoxin ochratoxin A by a novel amidohydrolase activity.

International journal of biological macromolecules pii:S0141-8130(23)01124-8 [Epub ahead of print].

The salicylate 1,2-dioxygenase from the bacterium Pseudaminobacter salicylatoxidans DSM 6986[T] (PsSDO) is a versatile metalloenzyme that participates in the aerobic biodegradation of aromatic compounds, such as gentisates and salicylates. Surprisingly, and unrelated to this metabolic role, it has been reported that PsSDO may transform the mycotoxin ochratoxin A (OTA), a molecule that appears in numerous food products that results in serious biotechnological concern. In this work, we show that PsSDO, together with its dioxygenase activity, behaves as an amidohydrolase with a marked specificity for substrates containing a C-terminal phenylalanine residue, similar to OTA, although its presence is not an absolute requirement. This side chain would establish aromatic stacking interactions with the indole ring of Trp104. PsSDO hydrolysed the amide bond of OTA rendering the much less toxic ochratoxin α and L-β-phenylalanine. The binding mode of OTA and of a diverse set of synthetic carboxypeptidase substrates these substrates have been characterized by molecular docking simulations, which has permitted us to propose a catalytic mechanism of hydrolysis by PsSDO that, similarly to metallocarboxypeptidases, assumes a water-induced pathway following a general acid/base mechanism in which the side chain of Glu82 would provide the solvent nucleophilicity required for the enzymatic reaction. Since the PsSDO chromosomal region, absent in other Pseudaminobacter strains, contained a set of genes present in conjugative plasmids, it could have been acquired by horizontal gene transfer, probably from a Celeribacter strain.

RevDate: 2023-03-29

Rathnapala JMSN, Ragab W, Kawato S, et al (2023)

Genomic characterization and identification of virulence-related genes in Vibrio nigripulchritudo isolated from white leg shrimp Penaeus vannamei.

Journal of fish diseases [Epub ahead of print].

Vibrio nigripulchritudo causes vibriosis in penaeid shrimps. Here, we used Illumina and Nanopore sequencing technologies to sequence the genomes of three of its strains (TUMSAT-V. nig1, TUMSAT-V. nig2, and TUMSAT-V. nig3) to explore opportunities for disease management. Putative virulence factors and mobile genetic elements were detected while evaluating the phylogenetic relationship of each isolated strain. The genomes consisted of two circular chromosomes (I and II) plus one or two plasmids. The size of chromosome I ranged from 4.02 to 4.07 Mb with an average GC content of 46%, while the number of predicted CDSs ranged from 3563 to 3644. The size of chromosome II ranged from 2.16 to 2.18 Mb, with an average GC content of 45.5%, and the number of predicted CDSs ranged from 1970 to 1987. Numerous virulence genes were identified related to adherence, antiphagocytosis, chemotaxis, motility, iron uptake, quorum sensing, secretion systems, and toxins in all three genomes. Higher numbers of prophages and genomic islands found in TUMSAT-V. nig1 suggest that the strain has experienced numerous horizontal gene transfer events. The presence of antimicrobial resistance genes suggests that the strains have multidrug resistance. Comparative genomic analysis showed that all three strains belonged to the same clade.

RevDate: 2023-03-29

Sanow S, Kuang W, Schaaf G, et al (2023)

Molecular mechanisms of Pseudomonas assisted plant nitrogen uptake - opportunities for modern agriculture.

Molecular plant-microbe interactions : MPMI [Epub ahead of print].

Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT and Pseudomonas sp. K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which in turn have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N), and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signalling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions, and differs at sufficient and deficient N. The molecular controls behind different plant response are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas driven nitrogen fixation and to point to possible agricultural solutions.

RevDate: 2023-03-29

Low WW, Seddon C, Beis K, et al (2023)

The Interaction of the F-Like Plasmid-Encoded TraN Isoforms with Their Cognate Outer Membrane Receptors.

Journal of bacteriology [Epub ahead of print].

Horizontal gene transfer via conjugation plays a major role in bacterial evolution. In F-like plasmids, efficient DNA transfer is mediated by close association between donor and recipient bacteria. This process, known as mating pair stabilization (MPS), is mediated by interactions between the plasmid-encoded outer membrane (OM) protein TraN in the donor and chromosomally-encoded OM proteins in the recipient. We have recently reported the existence of 7 TraN sequence types, which are grouped into 4 structural types, that we named TraNα, TraNβ, TraNγ, and TraNδ. Moreover, we have shown specific pairing between TraNα and OmpW, TraNβ and OmpK36 of Klebsiella pneumoniae, TraNγ and OmpA, and TraNδ and OmpF. In this study, we found that, although structurally similar, TraNα encoded by the Salmonella enterica pSLT plasmid (TraNα2) binds OmpW in both Escherichia coli and Citrobacter rodentium, while TraNα encoded by the R100-1 plasmid (TraNα1) only binds OmpW in E. coli. AlphaFold2 predictions suggested that this specificity is mediated by a single amino acid difference in loop 3 of OmpW, which we confirmed experimentally. Moreover, we show that single amino acids insertions into loop 3 of OmpK36 affect TraNβ-mediated conjugation efficiency of the K. pneumoniae resistance plasmid pKpQIL. Lastly, we report that TraNβ can also mediate MPS by binding OmpK35, making it the first TraN variant that can bind more than one OM protein in the recipient. Together, these data show that subtle sequence differences in the OM receptors can impact TraN-mediated conjugation efficiency. IMPORTANCE Conjugation plays a central role in the spread of antimicrobial resistance genes among bacterial pathogens. Efficient conjugation is mediated by formation of mating pairs via a pilus, followed by mating pair stabilization (MPS), mediated by tight interactions between the plasmid-encoded outer membrane protein (OMP) TraN in the donor (of which there are 7 sequence types grouped into the 4 structural isoforms α, β, γ, and δ), and an OMP receptor in the recipient (OmpW, OmpK36, OmpA, and OmpF, respectively). In this study, we found that subtle differences in OmpW and OmpK36 have significant consequences on conjugation efficiency and specificity, highlighting the existence of selective pressure affecting plasmid-host compatibility and the flow of horizontal gene transfer in bacteria.

RevDate: 2023-03-29

Gummalla VS, Zhang Y, Liao YT, et al (2023)

The Role of Temperate Phages in Bacterial Pathogenicity.

Microorganisms, 11(3): pii:microorganisms11030541.

Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.

RevDate: 2023-03-29

Urquhart AS, A Idnurm (2023)

A Polyphasic Approach including Whole Genome Sequencing Reveals Paecilomyces paravariotii sp. nov. as a Cryptic Sister Species to P. variotii.

Journal of fungi (Basel, Switzerland), 9(3): pii:jof9030285.

Whole genome sequencing is rapidly increasing phylogenetic resolution across many groups of fungi. To improve sequencing coverage in the genus Paecilomyces (Eurotiales), we report nine new Paecilomyces genomes representing five different species. Phylogenetic comparison between these genomes and those reported previously showed that Paecilomyces paravariotii is a distinct species from its close relative P. variotii. The independence of P. paravariotii is supported by analysis of overall gene identify (via BLAST), differences in secondary metabolism and an inability to form ascomata when paired with a fertile P. variotii strain of opposite mating type. Furthermore, whole genome sequencing resolves the P. formosus clade into three separate species, one of which lacked a valid name that is now provided.

RevDate: 2023-03-29

Liu W, Huang Y, Zhang H, et al (2023)

Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review.

International journal of molecular sciences, 24(6): pii:ijms24065919.

The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.

RevDate: 2023-03-29

Weltzer ML, D Wall (2023)

Social Diversification Driven by Mobile Genetic Elements.

Genes, 14(3): pii:genes14030648.

Social diversification in microbes is an evolutionary process where lineages bifurcate into distinct populations that cooperate with themselves but not with other groups. In bacteria, this is frequently driven by horizontal transfer of mobile genetic elements (MGEs). Here, the resulting acquisition of new genes changes the recipient's social traits and consequently how they interact with kin. These changes include discriminating behaviors mediated by newly acquired effectors. Since the producing cell is protected by cognate immunity factors, these selfish elements benefit from selective discrimination against recent ancestors, thus facilitating their proliferation and benefiting the host. Whether social diversification benefits the population at large is less obvious. The widespread use of next-generation sequencing has recently provided new insights into population dynamics in natural habitats and the roles MGEs play. MGEs belong to accessory genomes, which often constitute the majority of the pangenome of a taxon, and contain most of the kin-discriminating loci that fuel rapid social diversification. We further discuss mechanisms of diversification and its consequences to populations and conclude with a case study involving myxobacteria.

RevDate: 2023-03-28

Desingu PA, Nagarajan K, NR Sundaresan (2023)

Unique Tandem Repeats in the Inverted Terminal Repeat Regions of Monkeypox Viruses.

Microbiology spectrum [Epub ahead of print].

The genetic diversity, especially in noncoding regions between clade I, clade IIa, and clade IIb monkeypox viruses (MPXVs), is still not fully understood. Here, we report that unique 16-nucleotide-length tandem repeats in MPXVs viruses are located in the noncoding regions of inverted terminal repeats (ITR), and the copy number of this repeat is different among clade I, clade IIa, and clade IIb viruses. It is noteworthy that tandem repeats containing these specific sequences (AACTAACTTATGACTT) are only present in MPXVs and are not found in other poxviruses. Also, the tandem repeats containing these specific sequences (AACTAACTTATGACTT) do not correspond to the tandem repeats present in the human and rodent (mice and rat) genomes. On the other hand, some of the reported tandem repeats in the human and rodent (mice and rat) genomes are present in the clade IIb-B.1 lineage of MPXV. In addition, it is noteworthy that the genes flanking these tandem repeats are lost and gained compared between clade I, clade IIa, and clade IIb MPXV. IMPORTANCE The different groups of MPXVs contain unique tandem repeats with different copy numbers in the ITR regions, and these repeats may be likely to play a role in the genetic diversity of the virus. Clade IIb (B) MPXV contains 38 and 32 repeats similar to the Tandem repeats reported in the human and rodent genome, respectively. However, none of these 38 (human) and 32 (rodent) tandem repeats matched the tandem repeats (AACTAACTTATGACTT) found in the present study. Finally, when developing attenuated or modified MPXV vaccine strains, these repeats in noncoding genomic regions can be exploited to incorporate foreign proteins (adjuvants/other virus proteins/racking fluorescent proteins such as green fluorescent protein) to carry out studies such as vaccine production and virus pathogenesis.

RevDate: 2023-03-25

Kavagutti VS, Chiriac MC, Ghai R, et al (2023)

Isolation of phages infecting the abundant freshwater Actinobacteriota order 'Ca. Nanopelagicales'.

The ISME journal [Epub ahead of print].

Low-GC Actinobacteriota of the order 'Ca. Nanopelagicales' (also known as acI or hgcI clade) are abundant in freshwaters around the globe. Extensive predation pressure by phages has been assumed to be the reason for their high levels of microdiversity. So far, however, only a few metagenome-assembled phages have been proposed to infect them and no phages have been isolated. Taking advantage of recent advances in the cultivation of 'Ca. Nanopelagicales' we isolated a novel species of its genus 'Ca. Planktophila'. Using this isolate as bait, we cultivated the first two phages infecting this abundant bacterial order. Both genomes contained a whiB-like transcription factor and a RNA polymerase sigma-70 factor, which might aid in manipulating their host's metabolism. Both phages encoded a glycosyltransferase and one an anti-restriction protein, potential means to evade degradation of their DNA by nucleases present in the host genome. The two phage genomes shared only 6% of their genome with their closest relatives, with whom they form a previously uncultured family of actinophages within the Caudoviricetes. Read recruitment analyses against globally distributed metagenomes revealed the endemic distribution of this group of phages infecting 'Ca. Nanopelagicales'. The recruitment pattern against metagenomes from the isolation site and the modular distribution of shared genes between the two phages indicate high levels of horizontal gene transfer, likely mirroring the microdiversity of their host in the evolutionary arms race between host and phage.

RevDate: 2023-03-24

Belal NA, LS Heath (2023)

A complete theoretical framework for inferring horizontal gene transfers using partial order sets.

PloS one, 18(3):e0281824 pii:PONE-D-22-16953.

We present a method for detecting horizontal gene transfer (HGT) using partial orders (posets). The method requires a poset for each species/gene pair, where we have a set of species S, and a set of genes G. Given the posets, the method constructs a phylogenetic tree that is compatible with the set of posets; this is done for each gene. Also, the set of posets can be derived from the tree. The trees constructed for each gene are then compared and tested for contradicting information, where a contradiction suggests HGT.

RevDate: 2023-03-24
CmpDate: 2023-03-24

Molina-Santiago C, P Bernal (2023)

Nanotube-mediated plasmid transfer as a natural alternative for the improvement of industrially relevant bacteria.

Microbial biotechnology, 16(4):706-708.

RevDate: 2023-03-23

Bird SM, Ford S, Thompson CMA, et al (2023)

Compensatory mutations reducing the fitness cost of plasmid carriage occur in plant rhizosphere communities.

FEMS microbiology ecology pii:7084981 [Epub ahead of print].

Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche.

RevDate: 2023-03-23

Saha S, Xiong JQ, Patil SM, et al (2023)

Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate.

Journal of hazardous materials, 452:131200 pii:S0304-3894(23)00482-X [Epub ahead of print].

The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.

RevDate: 2023-03-23

Lin H, Moody ERR, Williams TA, et al (2023)

On the origin and evolution of microbial mercury methylation.

Genome biology and evolution pii:7084592 [Epub ahead of print].

The origin of microbial mercury methylation has long been a mystery. Here we employed genome-resolved phylogenetic analyses to decipher the evolution of the mercury methylating gene, hgcAB, constrain the ancestral origin of the hgc operon, and explain the distribution of hgc in Bacteria and Archaea. We infer the extent to which vertical inheritance and horizontal gene transfer have influenced the evolution of mercury methylators and hypothesize that evolution of this trait bestowed the ability to produce an antimicrobial compound (MeHg+) on a potentially resource-limited early Earth. We speculate that, in response, the evolution of MeHg + -detoxifying alkylmercury lyase (encoded by merB) reduced a selective advantage for mercury methylators and resulted in widespread loss of hgc in Bacteria and Archaea.

RevDate: 2023-03-23

Ding D, Wang B, Zhang X, et al (2023)

The spread of antibiotic resistance to humans and potential protection strategies.

Ecotoxicology and environmental safety, 254:114734.

Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.

RevDate: 2023-03-23

Guzmán-Herrador DL, Fernández-Gómez A, M Llosa (2023)

Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation.

Frontiers in cellular and infection microbiology, 13:1146000.

Bacterial secretion systems mediate the selective exchange of macromolecules between bacteria and their environment, playing a pivotal role in processes such as horizontal gene transfer or virulence. Among the different families of secretion systems, Type III, IV and VI (T3SS, T4SS and T6SS) share the ability to inject their substrates into human cells, opening up the possibility of using them as customized injectors. For this to happen, it is necessary to understand how substrates are recruited and to be able to engineer secretion signals, so that the transmembrane machineries can recognize and translocate the desired substrates in place of their own. Other factors, such as recruiting proteins, chaperones, and the degree of unfolding required to cross through the secretion channel, may also affect transport. Advances in the knowledge of the secretion mechanism have allowed heterologous substrate engineering to accomplish translocation by T3SS, and to a lesser extent, T4SS and T6SS into human cells. In the case of T4SS, transport of nucleoprotein complexes adds a bonus to its biotechnological potential. Here, we review the current knowledge on substrate recognition by these secretion systems, the many examples of heterologous substrate translocation by engineering of secretion signals, and the current and future biotechnological and biomedical applications derived from this approach.

RevDate: 2023-03-23

Wang Q, Wei S, Silva AF, et al (2023)

Cooperative antibiotic resistance facilitates horizontal gene transfer.

The ISME journal [Epub ahead of print].

The rise of β-lactam resistance among pathogenic bacteria, due to the horizontal transfer of plasmid-encoded β-lactamases, is a current global health crisis. Importantly, β-lactam hydrolyzation by β-lactamases, not only protects the producing cells but also sensitive neighboring cells cooperatively. Yet, how such cooperative traits affect plasmid transmission and maintenance is currently poorly understood. Here we experimentally show that KPC-2 β-lactamase expression and extracellular activity were higher when encoded on plasmids compared with the chromosome, resulting in the elevated rescue of sensitive non-producers. This facilitated efficient plasmid transfer to the rescued non-producers and expanded the potential plasmid recipient pool and the probability of plasmid transfer to new genotypes. Social conversion of non-producers by conjugation was efficient yet not absolute. Non-cooperative plasmids, not encoding KPC-2, were moderately more competitive than cooperative plasmids when β-lactam antibiotics were absent. However, in the presence of a β-lactam antibiotic, strains with non-cooperative plasmids were efficiently outcompeted. Moreover, plasmid-free non-producers were more competitive than non-producers imposed with the metabolic burden of a plasmid. Our results suggest that cooperative antibiotic resistance especially promotes the fitness of replicons that transfer horizontally such as conjugative plasmids.

RevDate: 2023-03-22

Tanaka E, Wajima T, Nakaminami H, et al (2023)

Contribution of amino acid substitutions in ParE to quinolone resistance in Haemophilus haemolyticus revealed through a horizontal transfer assay using Haemophilus influenzae.

The Journal of antimicrobial chemotherapy pii:7084150 [Epub ahead of print].

BACKGROUND: In 2019, a high-level quinolone-resistant Haemophilus haemolyticus strain (levofloxacin MIC = 16 mg/L) was isolated from a paediatric patient. In this study, we aimed to determine whether the quinolone resistance of H. haemolyticus could be transferred to Haemophilus influenzae and to identify the mechanism underlying the high-level quinolone resistance of H. haemolyticus.

METHODS: A horizontal gene transfer assay to H. influenzae was performed using genomic DNA or PCR-amplified quinolone-targeting genes from the high-level quinolone-resistant H. haemolyticus 2019-19 strain. The amino acids responsible for conferring quinolone resistance were identified through site-directed mutagenesis.

RESULTS: By adding the genomic DNA of H. haemolyticus 2019-19, resistant colonies were obtained on agar plates containing quinolones. Notably, H. influenzae grown on levofloxacin agar showed the same level of resistance as H. haemolyticus. Sequencing analysis showed that gyrA, parC and parE of H. influenzae were replaced by those of H. haemolyticus, suggesting that horizontal transfer occurred between the two strains. When the quinolone-targeting gene fragments were added sequentially, the addition of parE, as well as gyrA and parC, contributed to high-level resistance. In particular, amino acid substitutions at both the 439th and 502nd residues of ParE were associated with high-level resistance.

CONCLUSIONS: These findings indicate that quinolone resistance can be transferred between species and that amino acid substitutions at the 439th and 502nd residues of ParE, in addition to amino acid substitutions in both GyrA and ParC, contribute to high-level quinolone resistance.

RevDate: 2023-03-22

Fenibo EO, Selvarajan R, Abia ALK, et al (2023)

Medium-chain alkane biodegradation and its link to some unifyning attributes of alkB genes diversity.

The Science of the total environment pii:S0048-9697(23)01567-X [Epub ahead of print].

Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di‑iron monooxygenase (AlkB) with a di‑iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.

RevDate: 2023-03-22

Johnston EL, Zavan L, Bitto NJ, et al (2023)

Planktonic and Biofilm-Derived Pseudomonas aeruginosa Outer Membrane Vesicles Facilitate Horizontal Gene Transfer of Plasmid DNA.

Microbiology spectrum [Epub ahead of print].

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria package various cargo, including DNA that can be transferred to other bacteria or to host cells. OMV-associated DNA has been implicated in mediating horizontal gene transfer (HGT) between bacteria, which includes the dissemination of antibiotic resistance genes within and between bacterial species. Despite the known ability of OMVs to mediate HGT, the mechanisms of DNA packaging into OMVs remain poorly characterized, as does the effect of bacterial growth conditions on the DNA cargo composition of OMVs and their subsequent abilities to mediate HGT. In this study, we examined the DNA content of OMVs produced by the opportunistic pathogen Pseudomonas aeruginosa grown in either planktonic or biofilm conditions. Analysis of planktonic growth-derived OMVs revealed their ability to package and protect plasmid DNA from DNase degradation and to transfer plasmid-encoded antibiotic resistance genes to recipient, antibiotic-sensitive P. aeruginosa bacteria at a greater efficiency than transformation with plasmid alone. Comparisons of planktonic and biofilm-derived P. aeruginosa OMVs demonstrated that biofilm-derived OMVs were smaller but were associated with more plasmid DNA than planktonic-derived OMVs. Additionally, biofilm-derived P. aeruginosa OMVs were more efficient in the transformation of competent P. aeruginosa bacteria, compared to transformations with an equivalent number of planktonic-derived OMVs. The findings of this study highlight the importance of bacterial growth conditions for the packaging of DNA within P. aeruginosa OMVs and their ability to facilitate HGT, thus contributing to the spread of antibiotic resistance genes between P. aeruginosa bacteria. IMPORTANCE Bacterial membrane vesicles (BMVs) mediate interbacterial communication, and their ability to package DNA specifically contributes to biofilm formation, antibiotic resistance, and HGT between bacteria. However, the ability of P. aeruginosa OMVs to mediate HGT has not yet been demonstrated. Here, we reveal that P. aeruginosa planktonic and biofilm-derived OMVs can deliver plasmid-encoded antibiotic resistance to recipient P. aeruginosa. Additionally, we demonstrated that P. aeruginosa biofilm-derived OMVs were associated with more plasmid DNA compared to planktonic-derived OMVs and were more efficient in the transfer of plasmid DNA to recipient bacteria. Overall, this demonstrated the ability of P. aeruginosa OMVs to facilitate the dissemination of antibiotic resistance genes, thereby enabling the survival of susceptible bacteria during antibiotic treatment. Investigating the roles of biofilm-derived BMVs may contribute to furthering our understanding of the role of BMVs in HGT and the spread of antibiotic resistance in the environment.

RevDate: 2023-03-22

Wang Y, Zhang Y, Hu Y, et al (2023)

Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system.

Microbiome, 11(1):56.

BACKGROUND: Candidate phyla radiation (CPR) constitutes highly diverse bacteria with small cell sizes and are likely obligate intracellular symbionts. Given their distribution and complex associations with bacterial hosts, genetic and biological features of CPR bacteria in low-nutrient environments have received increasing attention. However, CPR bacteria in wastewater treatment systems remain poorly understood. We utilized genome-centric metagenomics to answer how CPR communities shift over 11 years and what kind of ecological roles they act in an activated sludge system.

RESULTS: We found that approximately 9% (135) of the 1,526 non-redundant bacterial and archaeal metagenome-assembled genomes were affiliated with CPR. CPR bacteria were consistently abundant with a relative abundance of up to 7.5% in the studied activated sludge system. The observed striking fluctuations in CPR community compositions and the limited metabolic and biosynthetic capabilities in CPR bacteria collectively revealed the nature that CPR dynamics may be directly determined by the available hosts. Similarity-based network analysis further confirmed the broad bacterial hosts of CPR lineages. The proteome contents of activated sludge-associated CPR had a higher similarity to those of environmental-associated CPR than to those of human-associated ones. Comparative genomic analysis observed significant enrichment of genes for oxygen stress resistance in activated sludge-associated CPR bacteria. Furthermore, genes for carbon cycling and horizontal gene transfer were extensively identified in activated sludge-associated CPR genomes.

CONCLUSIONS: These findings highlight the presence of specific host interactions among CPR lineages in activated sludge systems. Despite the lack of key metabolic pathways, these small, yet abundant bacteria may have significant involvements in biogeochemical cycling and bacterial evolution in activated sludge systems. Video Abstract.

RevDate: 2023-03-21

Nielsen FD, Skov MN, Sydenham TV, et al (2023)

Development and Clinical Application of a Multilocus Sequence Typing Scheme for Bacteroides fragilis Based on Whole-Genome Sequencing Data.

Microbiology spectrum [Epub ahead of print].

Bacteroides fragilis is among the most abundant and pathogenic bacterial species in the gut microbiota and is associated with diarrheal disease in children, inflammatory bowel disease, and the development of colorectal cancer. It is increasingly resistant to potent antimicrobial agents such as carbapenems and metronidazole, making it among the most resistant anaerobic bacteria. These factors combined call for increased monitoring of B. fragilis and its population structure on a worldwide scale. Here, we present a possible solution through the development of a multilocus sequence typing scheme (MLST). The scheme is based on seven core gene fragments: groL (hsp60), rpoB, recA, dnaJ, rprX, prfA, and fusA. These gene fragments possess high discriminatory power while retaining concordance with whole core genome-based phylogenetic analysis. The scheme proved capable of differentiating B. fragilis isolates at the strain level. It offers a standardized method for molecular typing and can be applied to isolates from various sampling backgrounds, such as patient isolates, environmental samples, and strains obtained from food and animal sources. In total, 567 B. fragilis genomes were sequence typed and their isolate data collected. The MLST scheme clearly divided the B. fragilis population into two divisions based on the presence of the cfiA and cepA resistance genes. However, no other specific subpopulations within the analyzed genomes were found to be associated with any specific diseases or geographical location. With this MLST scheme, we hope to provide a powerful tool for the study and monitoring of B. fragilis on an international scale. IMPORTANCE Here, we present the first MLST scheme for Bacteroides fragilis, one of the most abundant pathogenic bacteria in the human gut microbiota. The scheme enables standard classification and monitoring of B. fragilis on a worldwide scale and groups the majority of current isolate data in one place. A more unified approach to the collection and analysis of B. fragilis data could provide crucial insights into how the pathogen operates and develops as a species. Close monitoring of B. fragilis is especially relevant, as it is increasingly resistant to potent antimicrobial agents and engages in horizontal gene transfer with other bacteria. Hopefully, this approach will guide new discoveries into how B. fragilis evolves and interacts with its human host. Additionally, the scheme could potentially be applied to other species of the genus Bacteroides.

RevDate: 2023-03-21

Rao YZ, Li YX, Li ZW, et al (2023)

Metagenomic Discovery of "Candidatus Parvarchaeales"-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments.

mSystems [Epub ahead of print].

"Candidatus Parvarchaeales" microbes, representing a DPANN archaeal group with limited metabolic potential and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28 Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the names "Candidatus Jingweiarchaeum," "Candidatus Haiyanarchaeum," and "Candidatus Rehaiarchaeum," with the former two belonging to a new order, "Candidatus Jingweiarchaeales." Further analyses of the metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and the pentose phosphate pathway (PPP) for energy conservation reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales favor habitats with higher temperatures and that Parvarchaeales are better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages, especially Haiyanarchaeum, might rely on genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermophile featured genes such as rgy. Notably, the adaptation of Parvarchaeales to acidic environments was possibly driven by horizontal gene transfer (HGT). The reconstruction of ancestral states demonstrated that both may have originated from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation to oxygen-rich environments via HGT. IMPORTANCE "Candidatus Parvarchaeales" microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages, "Ca. Jingweiarchaeales," and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Furthermore, we show that the adaptation of these lineages to high-temperature and acidic environments was driven by different strategies, with the former relying more on genomic characteristics such as genome streamlining and amino acid compositions and the latter relying more on the acquisition of genes associated with acid tolerance. Finally, by the reconstruction of the ancestral states of the optimal growth temperature (OGT) and isoelectric point (pI), we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from the high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.

RevDate: 2023-03-21

Bhakta S, A Bhattacharya (2023)

In silico evolutionary and structural analysis of cAMP response proteins (CARPs) from Leishmania major.

Archives of microbiology, 205(4):125.

With unidentified chemical triggers and novel-effectors, cAMP signaling is broadly noncanonical in kinetoplastida parasites. Though novel protein kinase A regulatory subunits (PKAR) have been identified earlier, cAMP Response Proteins (CARPs) have been identified as a unique and definite cAMP effector of trypanosomatids. CARP1-CARP4 emerged as critical regulatory components of cAMP signaling pathway in Trypanosoma with evidences that CARP3 can directly interact with a flagellar adenylate cyclase (AC). CARP-mediated regulations, identified so far, reflects the mechanistic diversity of cAMP signaling. Albeit the function of the orthologous is not yet delineated, in kinetoplastids like Leishmania, presence of CARP1, 2 and 4 orthologues suggests existence of conserved effector mechanisms. Targeting CARP orthologues in Leishmania, a comprehensive evolutionary analysis of CARPs have been aimed in this study which revealed phylogenetic relationship, codon adaptation and structural heterogeneity among the orthologues, warranting functional analysis in future to explore their involvement in infectivity.

RevDate: 2023-03-21

Zumkeller S, Polsakiewicz M, V Knoop (2023)

Rickettsial DNA and a trans-splicing rRNA group I intron in the unorthodox mitogenome of the fern Haplopteris ensiformis.

Communications biology, 6(1):296.

Plant mitochondrial genomes can be complex owing to highly recombinant structures, lack of gene syntenies, heavy RNA editing and invasion of chloroplast, nuclear or even foreign DNA by horizontal gene transfer (HGT). Leptosporangiate ferns remained the last major plant clade without an assembled mitogenome, likely owing to a demanding combination of the above. We here present both organelle genomes now for Haplopteris ensiformis. More than 1,400 events of C-to-U RNA editing and over 500 events of reverse U-to-C edits affect its organelle transcriptomes. The Haplopteris mtDNA is gene-rich, lacking only the ccm gene suite present in ancestral land plant mitogenomes, but is highly unorthodox, indicating extraordinary recombinogenic activity. Although eleven group II introns known in disrupted trans-splicing states in seed plants exist in conventional cis-arrangements, a particularly complex structure is found for the mitochondrial rrnL gene, which is split into two parts needing reassembly on RNA level by a trans-splicing group I intron. Aside from ca. 80 chloroplast DNA inserts that complicated the mitogenome assembly, the Haplopteris mtDNA features as an idiosyncrasy 30 variably degenerated protein coding regions from Rickettiales bacteria indicative of heavy bacterial HGT on top of tRNA genes of chlamydial origin.

RevDate: 2023-03-20

Chaudhary S, Kishen S, Singh M, et al (2023)

Phylogeny-guided genome mining of roseocin family lantibiotics to generate improved variants of roseocin.

AMB Express, 13(1):34.

Roseocin, the two-peptide lantibiotic from Streptomyces roseosporus, carries extensive intramolecular (methyl)lanthionine bridging in the peptides and exhibits synergistic antibacterial activity against clinically relevant Gram-positive pathogens. Both peptides have a conserved leader but a diverse core region. The biosynthesis of roseocin involves post-translational modification of the two precursor peptides by a single promiscuous lanthipeptide synthetase, RosM, to install an indispensable disulfide bond in the Rosα core along with four and six thioether rings in Rosα and Rosβ cores, respectively. RosM homologs in the phylum actinobacteria were identified here to reveal twelve other members of the roseocin family which diverged into three types of biosynthetic gene clusters (BGCs). Further, the evolutionary rate among the BGC variants and analysis of variability within the core peptide versus leader peptide revealed a phylum-dependent lanthipeptide evolution. Analysis of horizontal gene transfer revealed its role in the generation of core peptide diversity. The naturally occurring diverse congeners of roseocin peptides identified from the mined novel BGCs were carefully aligned to identify the conserved sites and the substitutions in the core peptide region. These selected sites in the Rosα peptide were mutated for permitted substitutions, expressed heterologously in E. coli, and post-translationally modified by RosM in vivo. Despite a limited number of generated variants, two variants, RosαL8F and RosαL8W exhibited significantly improved inhibitory activity in a species-dependent manner compared to the wild-type roseocin. Our study proves that a natural repository of evolved variants of roseocin is present in nature and the key variations can be used to generate improved variants.

RevDate: 2023-03-20

Cao H, Liang S, Zhang C, et al (2023)

Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient.

Infection and drug resistance, 16:1367-1380.

BACKGROUND: The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat.

METHODS: Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR.

RESULTS: All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene.

CONCLUSION: A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.

RevDate: 2023-03-20
CmpDate: 2023-03-20

Daveri A, Benigno V, JR van der Meer (2023)

Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida.

Nucleic acids research, 51(5):2345-2362.

Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.

RevDate: 2023-03-18

Weaver BP, Haselwandter CA, JQ Boedicker (2023)

Stochastic effects in bacterial communication mediated by extracellular vesicles.

Physical review. E, 107(2-1):024409.

Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules.

RevDate: 2023-03-17

Zhao Q, Hu Z, Zhang J, et al (2023)

Determination of the fate of antibiotic resistance genes and the response mechanism of plants during enhanced antibiotic degradation in a bioelectrochemical-constructed wetland system.

Journal of hazardous materials, 451:131207 pii:S0304-3894(23)00489-2 [Epub ahead of print].

Chloramphenicol (CAP) has a high concentration and detection frequency in aquatic environments due to its insufficient degradation in traditional biological wastewater treatment processes. In this study, bioelectrochemical assistant-constructed wetland systems (BES-CWs) were developed as advanced processes for efficient CAP removal, in which the degradation and transfer of CAP and the fate of antibiotic resistance genes (ARGs) were evaluated. The CAP removal efficiency could reach as high as 90.2%, while the removed CAP can be partially adsorbed and bioaccumulated in plants, significantly affecting plant growth. The vertical gene transfer and horizontal gene transfer increased the abundance of ARGs under high voltage and CAP concentrations. Microbial community analysis showed that CAP pressure and electrical stimulation selected the functional bacteria to increase CAP removal and antibiotic resistance. CAP degradation species carrying ARGs could increase their opposition to the biotoxicity of CAP and maintain system performance. In addition, ARGs are transferred into the plant and upward, which can potentially enter the food chain. This study provides an essential reference for enhancing antibiotic degradation and offers fundamental support for the underlying mechanism and ARG proliferation during antibiotic biodegradation.

RevDate: 2023-03-17

Lin D, Zhu L, Yao Y, et al (2023)

The ecological and molecular mechanism underlying effective reduction of antibiotic resistance genes pollution in soil by fermentation broth from fruit and vegetable waste.

Journal of hazardous materials, 451:131201 pii:S0304-3894(23)00483-1 [Epub ahead of print].

The strategies to relieve antibiotic resistance genes (ARGs) pollution are urgently needed. Fermentation broth from fruit and vegetable waste (FFVW), an agricultural amendment, exhibits a remarkable capacity to reduce ARG pollution; however, the underlying mechanism of this effect remains unclear. We performed microcosm experiments to reappear the phenomenon of FFVW-driven reduction in ARGs. Moderate-level FFVW reduced gene resistance to sulfonamide (41.2 %), macrolide-lincosamide-streptogramin (MLS) (47.2 %), chloramphenicol (63.2 %), and tetracycline (61.4 %). Binning and network analyses revealed that Actinobacteria comprise the primary hosts of ARGs in arable soil, and FFVW substantially inhibited the growth and metabolic activity of these organisms. Moreover, tetracycline and MLS production was partially/completely inhibited by FFVW, further reducing the transfer frequency by 52.9-86.1 % and 46.6-66.6 % in the intragenic and intergenic mating systems, respectively. Furthermore, the expression of genes related to conjugation pairing and plasmid transfer was downregulated. Thus, FFVW effectively reduces ARG pollution by inhibiting Actinobacteria proliferation, thereby reducing selective pressure and restricting horizontal gene transfer. Our findings highlight the important underlying mechanisms of FFVW involved in ARG reduction, supporting its use in arable soil.

RevDate: 2023-03-17

Gandini CL, Garcia LE, Abbona CC, et al (2023)

Break-induced replication is the primary recombination pathway in plant somatic hybrid mitochondria: a model for mt-HGT.

Journal of experimental botany pii:7079270 [Epub ahead of print].

Somatic hybrids between distant species offer a remarkable model to study genomic recombination events after mitochondrial fusion. Recently, our lab described highly chimeric mitogenomes in two somatic hybrids between the Solanaceae Nicotiana tabacum and Hyoscyamus niger resulting from interparental homologous recombination. To better examine the recombination map in somatic hybrid mitochondria, we developed a more sensitive bioinformatic strategy to detect recombination activity based on high-throughput sequencing without assembling the hybrid mitogenome. We generated a new intergeneric somatic hybrid between N. tabacum and Physochlaina orientalis and re-analyzed the somatic hybrids previously generated in our lab. We inferred 213 homologous recombination events across repeats of 2.1 kb on average. Most of them (~80%) were asymmetrical, consistent with the break-induced replication (BIR) pathway. Only rare (2.74%) non-homologous events were detected. Interestingly, independent events frequently occurred in the same regions within and across somatic hybrids, suggesting the existence of recombination hotspots in plant mitogenomes. BIR is the main pathway of interparental recombination in somatic hybrid mitochondria. Findings of this study are relevant to mitogenome editing assays and to mechanistic aspects of DNA integration following mitochondrial DNA horizontal transfer events.

RevDate: 2023-03-17

Teklemariam AD, Al Hindi R, Qadri I, et al (2023)

Phage cocktails - an emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens.

Biotechnology & genetic engineering reviews [Epub ahead of print].

Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.

RevDate: 2023-03-17

Karnkowska A, Yubuki N, Maruyama M, et al (2023)

Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis.

Proceedings of the National Academy of Sciences of the United States of America, 120(12):e2220100120.

Kleptoplasts (kP) are distinct among photosynthetic organelles in eukaryotes (i.e., plastids) because they are routinely sequestered from prey algal cells and function only temporarily in the new host cell. Therefore, the hosts of kleptoplasts benefit from photosynthesis without constitutive photoendosymbiosis. Here, we report that the euglenozoan Rapaza viridis has only kleptoplasts derived from a specific strain of green alga, Tetraselmis sp., but no canonical plastids like those found in its sister group, the Euglenophyceae. R. viridis showed a dynamic change in the accumulation of cytosolic polysaccharides in response to light-dark cycles, and [13]C isotopic labeling of ambient bicarbonate demonstrated that these polysaccharides originate in situ via photosynthesis; these data indicate that the kleptoplasts of R. viridis are functionally active. We also identified 276 sequences encoding putative plastid-targeting proteins and 35 sequences of presumed kleptoplast transporters in the transcriptome of R. viridis. These genes originated in a wide range of algae other than Tetraselmis sp., the source of the kleptoplasts, suggesting a long history of repeated horizontal gene transfer events from different algal prey cells. Many of the kleptoplast proteins, as well as the protein-targeting system, in R. viridis were shared with members of the Euglenophyceae, providing evidence that the early evolutionary stages in the green alga-derived secondary plastids of euglenophytes also involved kleptoplasty.

RevDate: 2023-03-17

Cerbino GN, Traglia GM, Ayala Nuñez T, et al (2023)

Comparative genome analysis of the genus Shewanella unravels the association of key genetic traits with known and potential pathogenic lineages.

Frontiers in microbiology, 14:1124225.

Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.

RevDate: 2023-03-15
CmpDate: 2023-03-15

Zhang H, Song J, Zheng Z, et al (2023)

Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation.

Water research, 233:119789.

Co-pollution of soil with pesticide residues and antibiotic resistance genes (ARGs) is increasing due to the substantial usage of pesticides and organic fertilizers in greenhouse-based agricultural production. Non-antibiotic stresses, including those from agricultural fungicides, are potential co-selectors for the horizontal transfer of ARGs, but the underlying mechanism remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic resistant plasmid RP4 were established to examine conjugative transfer frequency under stress from four widely used fungicides: triadimefon, chlorothalonil, azoxystrobin, and carbendazim. The mechanisms were elucidated at the cellular and molecular levels using transmission electron microscopy, flow cytometry, RT-qPCR, and RNA-seq techniques. The conjugative transfer frequency of plasmid RP4 between Escherichia coli strains increased with the rising exposure concentrations of chlorothalonil, azoxystrobin, and carbendazim, but was suppressed between E. coli and Pseudomonas putida by a high fungicide concentration (10 µg/mL). Triadimefon did not significantly affect conjugative transfer frequency. Exploration of the underlying mechanisms revealed that: (i) chlorothalonil exposure mainly promoted generation of intracellular reactive oxygen species, stimulated the SOS response, and increased cell membrane permeability, while (ii) azoxystrobin and carbendazim primarily enhanced expression of conjugation-related genes on the plasmid. These findings reveal the fungicide-triggered mechanisms associated with plasmid conjugation and highlight the potential role of non-bactericidal pesticides on the dissemination of ARGs.

RevDate: 2023-03-14

Zumkeller S, V Knoop (2023)

Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.

BMC ecology and evolution, 23(1):5.

Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.

RevDate: 2023-03-13

Wang D, Fletcher GC, Gagic D, et al (2023)

Comparative genome identification of accessory genes associated with strong biofilm formation in Vibrio parahaemolyticus.

Food research international (Ottawa, Ont.), 166:112605.

Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.

RevDate: 2023-03-13

Despotovic M, de Nies L, Busi SB, et al (2023)

Reservoirs of antimicrobial resistance in the context of One Health.

Current opinion in microbiology, 73:102291 pii:S1369-5274(23)00028-0 [Epub ahead of print].

The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.

RevDate: 2023-03-13

Qi Q, Ghaly TM, Penesyan A, et al (2023)

Uncovering Bacterial Hosts of Class 1 Integrons in an Urban Coastal Aquatic Environment with a Single-Cell Fusion-Polymerase Chain Reaction Technology.

Environmental science & technology [Epub ahead of print].

Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.

RevDate: 2023-03-13

Deng L, Wang C, Zhang X, et al (2023)

Cell-to-cell natural transformation in Bacillus subtilis facilitates large scale of genomic exchanges and the transfer of long continuous DNA regions.

Nucleic acids research pii:7076482 [Epub ahead of print].

Natural transformation is one of the major mechanisms of horizontal gene transfer. Although it is usually studied using purified DNA in the laboratory, recent studies showed that many naturally competent bacteria acquired exogenous DNA from neighboring donor cells. Our previous work indicates that cell-to-cell natural transformation (CTCNT) using two different Bacillus subtilis strains is a highly efficient process; however, the mechanism is unclear. In this study, we further characterized CTCNT and mapped the transferred DNA in the recombinants using whole genome sequencing. We found that a recombinant strain generated by CTCNT received up to 66 transferred DNA segments; the average length of acquired continuous DNA stretches was approximately 27 kb with a maximum length of 347 kb. Moreover, up to 1.54 Mb genomic DNA (37% of the chromosome) was transferred from the donors into one recipient cell. These results suggest that B. subtilis CTCNT facilitates horizontal gene transfer by increasing the transfer of DNA segments and fostering the exchange of large continuous genomic regions. This indicates that the potency of bacterial natural transformation is underestimated using traditional approaches and reveals that DNA donor cells may play an important role in the transformation process in natural environments.

RevDate: 2023-03-13

Verhoeve VI, Lehman SS, Driscoll TP, et al (2023)

Metagenome diversity illuminates origins of pathogen effectors.

bioRxiv : the preprint server for biology pii:2023.02.26.530123.

Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.

RevDate: 2023-03-13

Boys IN, Johnson AG, Quinlan M, et al (2023)

Structural homology screens reveal poxvirus-encoded proteins impacting inflammasome-mediated defenses.

bioRxiv : the preprint server for biology pii:2023.02.26.529821.

Viruses acquire host genes via horizontal gene transfer and can express them to manipulate host biology during infections. Some viral and host homologs retain sequence identity, but evolutionary divergence can obscure host origins. We used structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identified vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirmed this homology and cell-based assays revealed that A47 inhibits pyroptosis. We also identified vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2 related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting a benefit to poxvirus replication in some circumstances. Our findings demonstrate the potential of structural homology screens to reveal genes that viruses capture from hosts and repurpose to benefit viral fitness.

RevDate: 2023-03-11

Sonnenberg CB, P Haugen (2023)

Bipartite Genomes in Enterobacterales: Independent Origins of Chromids, Elevated Openness and Donors of Horizontally Transferred Genes.

International journal of molecular sciences, 24(5): pii:ijms24054292.

Multipartite bacteria have one chromosome and one or more chromid. Chromids are believed to have properties that enhance genomic flexibility, making them a favored integration site for new genes. However, the mechanism by which chromosomes and chromids jointly contribute to this flexibility is not clear. To shed light on this, we analyzed the openness of chromosomes and chromids of the two bacteria, Vibrio and Pseudoalteromonas, both which belong to the Enterobacterales order of Gammaproteobacteria, and compared the genomic openness with that of monopartite genomes in the same order. We applied pangenome analysis, codon usage analysis and the HGTector software to detect horizontally transferred genes. Our findings suggest that the chromids of Vibrio and Pseudoalteromonas originated from two separate plasmid acquisition events. Bipartite genomes were found to be more open compared to monopartite. We found that the shell and cloud pangene categories drive the openness of bipartite genomes in Vibrio and Pseudoalteromonas. Based on this and our two recent studies, we propose a hypothesis that explains how chromids and the chromosome terminus region contribute to the genomic plasticity of bipartite genomes.

RevDate: 2023-03-10

Carr VR, Pissis SP, Mullany P, et al (2023)

Palidis: fast discovery of novel insertion sequences.

Microbial genomics, 9(3):.

The diversity of microbial insertion sequences, crucial mobile genetic elements in generating diversity in microbial genomes, needs to be better represented in current microbial databases. Identification of these sequences in microbiome communities presents some significant problems that have led to their underrepresentation. Here, we present a bioinformatics pipeline called Palidis that recognizes insertion sequences in metagenomic sequence data rapidly by identifying inverted terminal repeat regions from mixed microbial community genomes. Applying Palidis to 264 human metagenomes identifies 879 unique insertion sequences, with 519 being novel and not previously characterized. Querying this catalogue against a large database of isolate genomes reveals evidence of horizontal gene transfer events across bacterial classes. We will continue to apply this tool more widely, building the Insertion Sequence Catalogue, a valuable resource for researchers wishing to query their microbial genomes for insertion sequences.

RevDate: 2023-03-10

Wackett LP (2023)

Horizontal gene transfer (HGT) and microbial evolution: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology.

Environmental microbiology, 25(3):772-773.

RevDate: 2023-03-10

Yu R, Chen X, Long L, et al (2023)

De novo assembly and comparative analyses of mitochondrial genomes in Piperales.

Genome biology and evolution pii:7075204 [Epub ahead of print].

The mitochondrial genome of Liriodendron tulipifera exhibits many ancestral angiosperm features and a remarkably slow evolutionary rate, while mitochondrial genomes of other magnoliids remain yet to be characterized. We assembled nine new mitochondrial genomes, representing all genera of perianth-bearing Piperales, as well as for a member of the sister clade: three complete or nearly complete mitochondrial genomes from Aristolochiaceae and six additional draft assemblies including Thottea, Asaraceae, Lactoridaceae and Hydnoraceae. For comparative purpose, a complete mitochondrial genome was assembled for Saururus, a member of the perianth-less Piperales. The average number of short repeats (50-99 bp) was much larger in genus Aristolochia than in other angiosperm mitochondrial genome, and approximately 50% of repeats (< 350 bp) were found to have the capacity to mediate recombination. We found mitochondrial genomes in perianth-bearing Piperales comprising conserved repertories of protein-coding genes and rRNAs but variable copy numbers of tRNA genes. We identified several shifts from cis- to trans-splicing of the Group II introns of nad1i728, cox2i373 and nad7i209. Two short regions of the cox1 and atp8 genes were likely derived from independent horizontal gene transfer events in perianth-bearing Piperales. We found biased enrichment of specific substitution types in different lineages of magnoliids and the Aristolochiaceae family showed the highest ratio of A:T > T:A substitutions of all other investigated angiosperm groups. Our study reports the first mitochondrial genomes for Piperales and uses this new information for a better understanding of the evolutionary patterns of magnoliids and angiosperms in general.

RevDate: 2023-03-09

Khan AA, Nema V, M Ashraf (2023)

Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology.

Microbial pathogenesis pii:S0882-4010(23)00096-7 [Epub ahead of print].

A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, but there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.

RevDate: 2023-03-09

Große C, Scherer J, Schleuder G, et al (2023)

Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes.

Journal of bacteriology [Epub ahead of print].

Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.

RevDate: 2023-03-09

Brown PJB, Chang JH, C Fuqua (2023)

Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology.

Journal of bacteriology [Epub ahead of print].

Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.

RevDate: 2023-03-09

Sun H, Li H, Zhang X, et al (2023)

The honeybee gut resistome and its role in antibiotic resistance dissemination.

Integrative zoology [Epub ahead of print].

There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator, the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination. This article is protected by copyright. All rights reserved.

RevDate: 2023-03-08

Hussain M, Etebari K, S Asgari (2023)

Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia.

Virology, 581:48-55 pii:S0042-6822(23)00048-X [Epub ahead of print].

Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.

RevDate: 2023-03-08

Yang X, Niu Y, Yang Y, et al (2023)

Pheromone effect of estradiol regulates the conjugative transfer of pCF10 carrying antibiotic resistance genes.

Journal of hazardous materials, 451:131087 pii:S0304-3894(23)00369-2 [Epub ahead of print].

Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10[-2], up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.

RevDate: 2023-03-07

Veremeichik GN, Bulgakov DV, Solomatina TO, et al (2023)

In the interkingdom horizontal gene transfer, the small rolA gene is a big mystery.

Applied microbiology and biotechnology [Epub ahead of print].

The biological function of the agrobacterial oncogene rolA is very poorly understood compared to other components of the mechanism of horizontal gene transfer during agrobacterial colonization of plants. Research groups around the world have worked on this problem, and available information is reviewed in this review, but other rol oncogenes have been studied much more thoroughly. Having one unexplored element makes it impossible to form a complete picture. However, the limited data suggest that the rolA oncogene and its regulatory apparatus have great potential in plant biotechnology and genetic engineering. Here, we collect and discuss available experimental data about the function and structure of rolA. There is still no clear understanding of the mechanism of RolA and its structure and localization. We believe this is because of the nucleotide structure of a frameshift in the most well-studied rolA gene of the agropine type pRi. In fact, interest in the genes of agrobacteria as natural tools for the phenotypic or biochemical engineering of plants increased. We believe that a detailed understanding of the molecular mechanisms will be forthcoming. KEY POINTS: • Among pRi T-DNA oncogenes, rolA is the least understood in spite of many studies. • Frameshift may be the reason for the failure to elucidate the role of agropine rolA. • Understanding of rolA is promising for the phenotypic and biochemical engineering of plants.

RevDate: 2023-03-07

Tholl D, Rebholz Z, Morozov AV, et al (2023)

Terpene synthases and pathways in animals: enzymology and structural evolution in the biosynthesis of volatile infochemicals.

Natural product reports [Epub ahead of print].

Covering: up to the beginning of 2023Many animals release volatile or semi-volatile terpenes as semiochemicals in intra- and inter-specific interactions. Terpenes are important constituents of pheromones and serve as chemical defenses to ward off predators. Despite the occurrence of terpene specialized metabolites from soft corals to mammals, the biosynthetic origin of these compounds has largely remained obscure. An increasing number of animal genome and transcriptome resources is facilitating the identification of enzymes and pathways that allow animals to produce terpenes independent of their food sources or microbial endosymbionts. Substantial evidence has emerged for the presence of terpene biosynthetic pathways such as in the formation of the iridoid sex pheromone nepetalactone in aphids. In addition, terpene synthase (TPS) enzymes have been discovered that are evolutionary unrelated to canonical plant and microbial TPSs and instead resemble precursor enzymes called isoprenyl diphosphate synthases (IDSs) in central terpene metabolism. Structural modifications of substrate binding motifs in canonical IDS proteins presumably facilitated the transition to TPS function at an early state in insect evolution. Other arthropods such as mites appear to have adopted their TPS genes from microbial sources via horizontal gene transfer. A similar scenario likely occurred in soft corals, where TPS families with closer resemblance to microbial TPSs have been discovered recently. Together, these findings will spur the identification of similar or still unknown enzymes in terpene biosynthesis in other lineages of animals. They will also help develop biotechnological applications for animal derived terpenes of pharmaceutical value or advance sustainable agricultural practices in pest management.

RevDate: 2023-03-06

Yu X, Zhou ZC, Shuai XY, et al (2023)

Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes.

Journal of hazardous materials, 451:131130 pii:S0304-3894(23)00412-0 [Epub ahead of print].

Microplastic pollution is a rising environmental issue worldwide. Microplastics can provide a niche for the microbiome, especially for antibiotic-resistant bacteria, which could increase the transmission of antibiotic resistance genes (ARGs). However, the interactions between microplastics and ARGs are still indistinct in environmental settings. Microplastics were found to be significantly correlated with ARGs (p < 0.001), based on the analysis of samples taken from a chicken farm and its surrounding farmlands. Analysis of chicken feces revealed the highest abundance of microplastics (14.9 items/g) and ARGs (6.24 ×10[8] copies/g), suggesting that chicken farms could be the hotspot for the co-spread of microplastics and ARGs. Conjugative transfer experiments were performed to investigate the effects of microplastic exposure for different concentrations and sizes on the horizontal gene transfer (HGT) of ARGs between bacteria. Results showed that the microplastics significantly enhanced the bacterial conjugative transfer frequency by 1.4-1.7 folds indicating that microplastics could aggravate ARG dissemination in the environment. Potential mechanisms related to the up-regulation of rpoS, ompA, ompC, ompF, trbBp, traF, trfAp, traJ, and down-regulation of korA, korB, and trbA were induced by microplastics. These findings highlighted the co-occurrence of microplastics and ARGs in the agricultural environment and the exacerbation of ARGs' prevalence via rising the HGT derived from microplastics.

RevDate: 2023-03-06

Fuchsman CA, Garcia Prieto D, Hays MD, et al (2023)

Associations between picocyanobacterial ecotypes and cyanophage host genes across ocean basins and depth.

PeerJ, 11:e14924.

BACKGROUND: Cyanophages, viruses that infect cyanobacteria, are globally abundant in the ocean's euphotic zone and are a potentially important cause of mortality for marine picocyanobacteria. Viral host genes are thought to increase viral fitness by either increasing numbers of genes for synthesizing nucleotides for virus replication, or by mitigating direct stresses imposed by the environment. The encoding of host genes in viral genomes through horizontal gene transfer is a form of evolution that links viruses, hosts, and the environment. We previously examined depth profiles of the proportion of cyanophage containing various host genes in the Eastern Tropical North Pacific Oxygen Deficient Zone (ODZ) and at the subtropical North Atlantic (BATS). However, cyanophage host genes have not been previously examined in environmental depth profiles across the oceans.

METHODOLOGY: We examined geographical and depth distributions of picocyanobacterial ecotypes, cyanophage, and their viral-host genes across ocean basins including the North Atlantic, Mediterranean Sea, North Pacific, South Pacific, and Eastern Tropical North and South Pacific ODZs using phylogenetic metagenomic read placement. We determined the proportion of myo and podo-cyanophage containing a range of host genes by comparing to cyanophage single copy core gene terminase (terL). With this large dataset (22 stations), network analysis identified statistical links between 12 of the 14 cyanophage host genes examined here with their picocyanobacteria host ecotypes.

RESULTS: Picyanobacterial ecotypes, and the composition and proportion of cyanophage host genes, shifted dramatically and predictably with depth. For most of the cyanophage host genes examined here, we found that the composition of host ecotypes predicted the proportion of viral host genes harbored by the cyanophage community. Terminase is too conserved to illuminate the myo-cyanophage community structure. Cyanophage cobS was present in almost all myo-cyanophage and did not vary in proportion with depth. We used the composition of cobS phylotypes to track changes in myo-cyanophage composition.

CONCLUSIONS: Picocyanobacteria ecotypes shift with changes in light, temperature, and oxygen and many common cyanophage host genes shift concomitantly. However, cyanophage phosphate transporter gene pstS appeared to instead vary with ocean basin and was most abundant in low phosphate regions. Abundances of cyanophage host genes related to nutrient acquisition may diverge from host ecotype constraints as the same host can live in varying nutrient concentrations. Myo-cyanophage community in the anoxic ODZ had reduced diversity. By comparison to the oxic ocean, we can see which cyanophage host genes are especially abundant (nirA, nirC, and purS) or not abundant (myo psbA) in ODZs, highlighting both the stability of conditions in the ODZ and the importance of nitrite as an N source to ODZ endemic LLV Prochlorococcus.

RevDate: 2023-03-05

Yan K, Wei M, Li F, et al (2023)

Diffusion and enrichment of high-risk antibiotic resistance genes (ARGs) via the transmission chain (mulberry leave, guts and feces of silkworm, and soil) in an ecological restoration area of manganese mining, China: Role of heavy metals.

Environmental research pii:S0013-9351(23)00408-5 [Epub ahead of print].

This study investigated the diffusion and enrichment of antibiotic resistance genes (ARGs) and pathogens via the transmission chain (mulberry leaves - silkworm guts - silkworm feces - soil) near a manganese mine restoration area (RA) and control area (CA, away from RA). Horizontal gene transfer (HGT) of ARGs was testified by an IncP a-type broad host range plasmid RP4 harboring ARGs (tetA) and conjugative genes (e.g., korB, trbA, and trbB) as an indicator. Compared to leaves, the abundances of ARGs and pathogens in feces after silkworms ingested leaves from RA increased by 10.8% and 52.3%, respectively, whereas their abundance in feces from CA dropped by 17.1% and 97.7%, respectively. The predominant ARG types in feces involved the resistances to β-lactam, quinolone, multidrug, peptide, and rifamycin. Therein, several high-risk ARGs (e.g., qnrB, oqxA, and rpoB) carried by pathogens were more enriched in feces. However, HGT mediated by plasmid RP4 in this transmission chain was not a main factor to promote the enrichment of ARGs due to the harsh survival environment of silkworm guts for the plasmid RP4 host E. coli. Notably, Zn, Mn, and As in feces and guts promoted the enrichment of qnrB and oqxA. Worriedly, the abundance of qnrB and oqxA in soil increased by over 4-fold after feces were added into soil from RA for 30 days regardless of feces with or without E. coli RP4. Overall, ARGs and pathogens could diffuse and enrich in environment via the sericulture transmission chain developed on RA, especially some high-risk ARGs carried by pathogens. Thus, greater attention should be paid to dispel such high-risk ARGs to support benign development of sericulture industry in the safe utilization of some RAs.

RevDate: 2023-03-05

Loukili NH, Loquet A, Perrin A, et al (2023)

Time to intestinal clearance of carbapenemase-producing Enterobacterales in hospital patients: a longitudinal retrospective observational cohort study.

The Journal of hospital infection pii:S0195-6701(23)00066-X [Epub ahead of print].

BACKGROUND: Intestinal clearance of carbapenemase-producing Enterobacterales (CPE-IC) is a cornerstone to discontinue isolation precautions for CPE patients in hospitals. This study aimed to evaluate the time to spontaneous CPE-IC and identify its potential associated risk factors.

METHODS: This retrospective cohort study was carried out between January 2018 and September 2020 on all patients in a 3200-bed teaching referral hospital with confirmed CPE intestinal carriage. CPE-IC was defined as at least three consecutive CPE-negative rectal swab cultures without a subsequent positive result. A survival analysis was performed to determine the median time to CPE-IC. A multivariate Cox model was implemented to explore the factors associated with CPE-IC.

RESULTS: A total of 110 patients were positives for CPE, of whom 27 (24.5%) achieved CPE-IC. Median time to CPE-IC was 698 days. Univariate analysis showed that female sex (P=0.046), multiple CPE-species in index cultures (P=0.005), Escherichia coli or Klebsiella spp. (P=0.001 and P=0.028, respectively) were significantly associated with the time to CPE-IC. Multivariate analysis highlighted that identification of E. coli carbapenemase-producing or CPEs harbouring ESBL genes in index culture extended the median time to CPE-IC, respectively (adjusted hazard ratio (aHR) = 0.13 (95% confidence interval: 0.04-0.45]; P=0.001 and aHR = 0.34 (95% confidence interval: 0.12-0.90); P=0.031).

CONCLUSION: Intestinal decolonization of CPE can take several months to years to occur. Carbapenemase-producing E. coli are likely to play a key role in delaying intestinal decolonization, probably through horizontal gene transfer between species. Therefore, discontinuation of isolation precautions in CPE-patients should be considered with caution.

RevDate: 2023-03-03

Mirtaleb MS, Falak R, Heshmatnia J, et al (2023)

An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations.

International immunopharmacology, 117:109934 [Epub ahead of print].

The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has urged scientists to present some novel vaccine platforms during this pandemic to provide a rather prolonged immunity against this respiratory viral infection. In spite of many campaigns formed against the administration of mRNA-based vaccines, those platforms were the most novel types, which helped us meet the global demand by developing protection against COVID-19 and reducing the development of severe forms of this respiratory viral infection. Some societies are worry about the COVID-19 mRNA vaccine administration and the potential risk of genetic integration of inoculated mRNA into the human genome. Although the efficacy and long-term safety of mRNA vaccines have not yet been fully clarified, obviously their application has switched the mortality and morbidity of the COVID-19 pandemic. This study describes the structural features and technologies used in producing of COVID-19 mRNA-based vaccines as the most influential factor in controlling this pandemic and a successful pattern for planning to produce other kind of genetic vaccines against infections or cancers.

RevDate: 2023-03-02

Lee K, Raguideau S, Sirén K, et al (2023)

Population-level impacts of antibiotic usage on the human gut microbiome.

Nature communications, 14(1):1191.

The widespread usage of antimicrobials has driven the evolution of resistance in pathogenic microbes, both increased prevalence of antimicrobial resistance genes (ARGs) and their spread across species by horizontal gene transfer (HGT). However, the impact on the wider community of commensal microbes associated with the human body, the microbiome, is less well understood. Small-scale studies have determined the transient impacts of antibiotic consumption but we conduct an extensive survey of ARGs in 8972 metagenomes to determine the population-level impacts. Focusing on 3096 gut microbiomes from healthy individuals not taking antibiotics we demonstrate highly significant correlations between both the total ARG abundance and diversity and per capita antibiotic usage rates across ten countries spanning three continents. Samples from China were notable outliers. We use a collection of 154,723 human-associated metagenome assembled genomes (MAGs) to link these ARGs to taxa and detect HGT. This reveals that the correlations in ARG abundance are driven by multi-species mobile ARGs shared between pathogens and commensals, within a highly connected central component of the network of MAGs and ARGs. We also observe that individual human gut ARG profiles cluster into two types or resistotypes. The less frequent resistotype has higher overall ARG abundance, is associated with certain classes of resistance, and is linked to species-specific genes in the Proteobacteria on the periphery of the ARG network.

RevDate: 2023-03-02

Horne T, Orr VT, JP Hall (2023)

How do interactions between mobile genetic elements affect horizontal gene transfer?.

Current opinion in microbiology, 73:102282 pii:S1369-5274(23)00019-X [Epub ahead of print].

Horizontal gene transfer is central to bacterial adaptation and is facilitated by mobile genetic elements (MGEs). Increasingly, MGEs are being studied as agents with their own interests and adaptations, and the interactions MGEs have with one another are recognised as having a powerful effect on the flow of traits between microbes. Collaborations and conflicts between MGEs are nuanced and can both promote and inhibit the acquisition of new genetic material, shaping the maintenance of newly acquired genes and the dissemination of important adaptive traits through microbiomes. We review recent studies that shed light on this dynamic and oftentimes interlaced interplay, highlighting the importance of genome defence systems in mediating MGE-MGE conflicts, and outlining the consequences for evolutionary change, that resonate from the molecular to microbiome and ecosystem levels.

RevDate: 2023-03-02

Zhang Y, Xiang Y, Xu R, et al (2023)

Magnetic biochar promotes the risk of mobile genetic elements propagation in sludge anaerobic digestion.

Journal of environmental management, 335:117492 pii:S0301-4797(23)00280-3 [Epub ahead of print].

Mobile genetic elements (MGEs) mediated horizontal gene transfer is the primary reason for the propagation of antibiotic resistance genes in environment. The behavior of MGEs under magnetic biochar pressure in sludge anaerobic digestion (AD) is still unknown. This study evaluated the effects of different dosage magnetic biochar on the MGEs in AD reactors. The results showed that the biogas yield was highest (106.68 ± 1.16 mL g[-1] VSadded) with adding optimal dosage of magnetic biochar (25 mg g[-1] TSadded), due to it increased the microorganism's abundance involved in hydrolysis and methanogenesis. While, the total absolute abundance of MGEs in the reactors with magnetic biochar addition increased by 11.58%-77.37% compared with the blank reactor. When the dosage of magnetic biochar was 12.5 mg g[-1] TSadded, the relative abundance of most MGEs was the highest. The enrichment effect on ISCR1 was the most significant, and the enrichment rate reached 158.90-214.16%. Only the intI1 abundance was reduced and the removal rates yield 14.38-40.00%, which was inversely proportional to the dosage of magnetic biochar. Co-occurrence network explored that Proteobacteria (35.64%), Firmicutes (19.80%) and Actinobacteriota (15.84%) were the main potential host of MGEs. Magnetic biochar changed MGEs abundance by affecting the potential MGEs-host community structure and abundance. Redundancy analysis and variation partitioning analysis showed that the combined effect of polysaccharides, protein and sCOD exhibited the greatest contribution (accounted for 34.08%) on MGEs variation. These findings demonstrated that magnetic biochar increases the risk of MGEs proliferation in AD system.

RevDate: 2023-03-01

Martins SJ, Pasche JM, Silva HA, et al (2023)

The Use of Synthetic Microbial Communities (SynComs) to Improve Plant Health.

Phytopathology [Epub ahead of print].

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites and ability to induce plant resistance are some of the microbial traits to take into consideration when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors, as compared to the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability are still some of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

RevDate: 2023-02-28

Du Y, Zou J, Yin Z, et al (2023)

Pan-Chromosome and Comparative Analysis of Agrobacterium fabrum Reveal Important Traits Concerning the Genetic Diversity, Evolutionary Dynamics, and Niche Adaptation of the Species.

Microbiology spectrum [Epub ahead of print].

Agrobacterium fabrum has been critical for the development of plant genetic engineering and agricultural biotechnology due to its ability to transform eukaryotic cells. However, the gene composition, evolutionary dynamics, and niche adaptation of this species is still unknown. Therefore, we established a comparative genomic analysis based on a pan-chromosome data set to evaluate the genetic diversity of A. fabrum. Here, 25 A. fabrum genomes were selected for analysis by core genome phylogeny combined with the average nucleotide identity (ANI), amino acid identity (AAI), and in silico DNA-DNA hybridization (DDH) values. An open pan-genome of A. fabrum exhibits genetic diversity with variable accessorial genes as evidenced by a consensus pan-genome of 12 representative genomes. The genomic plasticity of A. fabrum is apparent in its putative sequences for mobile genetic elements (MGEs), limited horizontal gene transfer barriers, and potentially horizontally transferred genes. The evolutionary constraints and functional enrichment in the pan-chromosome were measured by the Clusters of Orthologous Groups (COG) categories using eggNOG-mapper software, and the nonsynonymous/synonymous rate ratio (dN/dS) was determined using HYPHY software. Comparative analysis revealed significant differences in the functional enrichment and the degree of purifying selection between the core genome and non-core genome. We demonstrate that the core gene families undergo stronger purifying selection but have a significant bias to contain one or more positively selected sites. Furthermore, although they shared similar genetic diversity, we observed significant differences between chromosome 1 (Chr I) and the chromid in their functional features and evolutionary constraints. We demonstrate that putative genetic elements responsible for plant infection, ecological adaptation, and speciation represent the core genome, highlighting their importance in the adaptation of A. fabrum to plant-related niches. Our pan-chromosome analysis of A. fabrum provides comprehensive insights into the genetic properties, evolutionary patterns, and niche adaptation of the species. IMPORTANCE Agrobacterium spp. live in diverse plant-associated niches such as soil, the rhizosphere, and vegetation, which are challenged by multiple stressors such as diverse energy sources, plant defenses, and microbial competition. They have evolved the ability to utilize diverse resources, escape plant defenses, and defeat competitors. However, the underlying genetic diversity and evolutionary dynamics of Agrobacterium spp. remain unexplored. We examined the phylogeny and pan-genome of A. fabrum to define intraspecies evolutionary relationships. Our results indicate an open pan-genome and numerous MGEs and horizontally transferred genes among A. fabrum genomes, reflecting the flexibility of the chromosomes and the potential for genetic exchange. Furthermore, we observed significant differences in the functional features and evolutionary constraints between the core and accessory genomes and between Chr I and the chromid, respectively.

RevDate: 2023-02-28

Elois MA, Silva RD, Pilati GVT, et al (2023)

Bacteriophages as Biotechnological Tools.

Viruses, 15(2):.

Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.

RevDate: 2023-02-28
CmpDate: 2023-02-28

McKeithen-Mead SA, AD Grossman (2023)

Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host.

PLoS genetics, 19(2):e1010524.

Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.

RevDate: 2023-02-27

Cooke MB, C Herman (2023)

Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex.

Journal of bacteriology [Epub ahead of print].

Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.

RevDate: 2023-02-27

Nielsen FD, Møller-Jensen J, MG Jørgensen (2023)

Adding context to the pneumococcal core genes using bioinformatic analysis of the intergenic pangenome of Streptococcus pneumoniae.

Frontiers in bioinformatics, 3:1074212.

Introduction: Whole genome sequencing offers great opportunities for linking genotypes to phenotypes aiding in our understanding of human disease and bacterial pathogenicity. However, these analyses often overlook non-coding intergenic regions (IGRs). By disregarding the IGRs, crucial information is lost, as genes have little biological function without expression. Methods/Results: In this study, we present the first complete pangenome of the important human pathogen Streptococcus pneumoniae (pneumococcus), spanning both the genes and IGRs. We show that the pneumococcus species retains a small core genome of IGRs that are present across all isolates. Gene expression is highly dependent on these core IGRs, and often several copies of these core IGRs are found across each genome. Core genes and core IGRs show a clear linkage as 81% of core genes are associated with core IGRs. Additionally, we identify a single IGR within the core genome that is always occupied by one of two highly distinct sequences, scattered across the phylogenetic tree. Discussion: Their distribution indicates that this IGR is transferred between isolates through horizontal regulatory transfer independent of the flanking genes and that each type likely serves different regulatory roles depending on their genetic context.

RevDate: 2023-02-26

Stockdale SR, Shkoporov AN, Khokhlova EV, et al (2023)

Interpersonal variability of the human gut virome confounds disease signal detection in IBD.

Communications biology, 6(1):221.

Viruses are increasingly recognised as important components of the human microbiome, fulfilling numerous ecological roles including bacterial predation, immune stimulation, genetic diversification, horizontal gene transfer, microbial interactions, and augmentation of metabolic functions. However, our current view of the human gut virome is tainted by previous sequencing requirements that necessitated the amplification of starting nucleic acids. In this study, we performed an original longitudinal analysis of 40 healthy control, 19 Crohn's disease, and 20 ulcerative colitis viromes over three time points without an amplification bias, which revealed and highlighted the interpersonal individuality of the human gut virome. In contrast to a 16 S rRNA gene analysis of matched samples, we show that α- and β-diversity metrics of unamplified viromes are not as efficient at discerning controls from patients with inflammatory bowel disease. Additionally, we explored the intrinsic properties of unamplified gut viromes and show there is considerable interpersonal variability in viral taxa, infrequent longitudinal persistence of intrapersonal viruses, and vast fluctuations in the abundance of temporal viruses. Together, these properties of unamplified faecal viromes confound the ability to discern disease associations but significantly advance toward an unbiased and accurate representation of the human gut virome.

RevDate: 2023-02-25

Densi A, Iyer RS, PJ Bhat (2023)

Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae.

Microbiology spectrum [Epub ahead of print].

Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).

RevDate: 2023-02-25

Winter M, Harms K, Johnsen P, et al (2023)

Collection of Annotated Acinetobacter Genome Sequences.

Microbiology resource announcements [Epub ahead of print].

The genus Acinetobacter contains environmental species as well as opportunistic pathogens of humans. Several species are competent for natural transformation, an important mechanism of horizontal gene transfer. Here, we present the genome sequences of 19 Acinetobacter strains used in past and upcoming studies of natural transformation.

RevDate: 2023-02-25

Tsilipounidaki K, Florou Z, Skoulakis A, et al (2023)

Diversity of Bacterial Clones and Plasmids of NDM-1 Producing Escherichia coli Clinical Isolates in Central Greece.

Microorganisms, 11(2): pii:microorganisms11020516.

The objective of the present study was to genetically characterize ten NDM-1 producing Escherichia coli isolates, recovered from patients in a hospital in Central Greece during the period 2017 to 2021.The isolates were studied by whole genome sequencing to obtain multi-locus sequencing typing (MLST), identification of blaNDM1-environment, resistome and plasmid content. MLST analysis showed the presence of eight sequence types: ST46* (two isolates), ST46, ST744, ST998, ST410, ST224, ST4380, ST683 and ST12 (one isolate each). Apart of the presence of blaNDM-1, the isolates carried a combination of various to β-lactams encoding resistance genes: blaTEM-1B, blaCTX-15, blaOXA-1, blaVIM-1, blaSHV-5, blaOXA-16, blaOXA-10 and blaVEB-1. Additionally, plurality of resistance genes to aminoglycosides, macrolides, rifamycin, phenicols, sulfonamides and tetracycline was detected. The presence of multiple replicons was observed, with predominance of IncFII and IncFIB. Analysis of blaNDM-1 genetic environment of the isolates showed that seven had 100% identity with the pS-3002cz plasmid (Accession Number KJ 958927), two with the pB-3002cz plasmid (Accession Number KJ958926) and one with the pEc19397-131 plasmid (Accession Number MG878866). Τhis latter plasmid was derived by the fusion of two, previously identified, plasmids, pAMPD2 and pLK75 (Accession Numbers CP078058 and KJ440076, respectively). The diversity of clones and plasmids of NDM-1 producing E. coli isolated from patients in Greece indicates a continuous horizontal gene transfer.

RevDate: 2023-02-25

Zayed AR, Bitar DM, Steinert M, et al (2023)

Comparative Genomics of Legionella pneumophila Isolates from the West Bank and Germany Support Molecular Epidemiology of Legionnaires' Disease.

Microorganisms, 11(2): pii:microorganisms11020449.

Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.

RevDate: 2023-02-25

Hirose J (2023)

Diversity and Evolution of Integrative and Conjugative Elements Involved in Bacterial Aromatic Compound Degradation and Their Utility in Environmental Remediation.

Microorganisms, 11(2): pii:microorganisms11020438.

Integrative and conjugative elements (ICEs) are mobile DNA molecules that can be transferred through excision, conjugation, and integration into chromosomes. They contribute to the horizontal transfer of genomic islands across bacterial species. ICEs carrying genes encoding aromatic compound degradation pathways are of interest because of their contribution to environmental remediation. Recent advances in DNA sequencing technology have increased the number of newly discovered ICEs in bacterial genomes and have enabled comparative analysis of their evolution. The two different families of ICEs carry various aromatic compound degradation pathway genes. ICEclc and its related ICEs contain a number of members with diverse catabolic capabilities. In addition, the Tn4371 family, which includes ICEs that carry the chlorinated biphenyl catabolic pathway, has been identified. It is apparent that they underwent evolution through the acquisition, deletion, or exchange of modules to adapt to an environmental niche. ICEs have the property of both stability and mobility in the chromosome. Perspectives on the use of ICEs in environmental remediation are also discussed.

RevDate: 2023-02-25

Werner KA, Feyen L, Hübner T, et al (2023)

Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta.

Microorganisms, 11(2): pii:microorganisms11020308.

Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.

RevDate: 2023-02-25

Ngcobo PE, Nkosi BVZ, Chen W, et al (2023)

Evolution of Cytochrome P450 Enzymes and Their Redox Partners in Archaea.

International journal of molecular sciences, 24(4): pii:ijms24044161.

Cytochrome P450 monooxygenases (CYPs/P450s) and their redox partners, ferredoxins, are ubiquitous in organisms. P450s have been studied in biology for over six decades owing to their distinct catalytic activities, including their role in drug metabolism. Ferredoxins are ancient proteins involved in oxidation-reduction reactions, such as transferring electrons to P450s. The evolution and diversification of P450s in various organisms have received little attention and no information is available for archaea. This study is aimed at addressing this research gap. Genome-wide analysis revealed 1204 P450s belonging to 34 P450 families and 112 P450 subfamilies, where some families and subfamilies are expanded in archaea. We also identified 353 ferredoxins belonging to the four types 2Fe-2S, 3Fe-4S, 7Fe-4S and 2[4Fe-4S] in 40 archaeal species. We found that bacteria and archaea shared the CYP109, CYP147 and CYP197 families, as well as several ferredoxin subtypes, and that these genes are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated lateral transfer of these genes from bacteria to archaea. The absence of ferredoxins and ferredoxin reductases in the P450 operons suggests that the lateral transfer of these genes is independent. We present different scenarios for the evolution and diversification of P450s and ferredoxins in archaea. Based on the phylogenetic analysis and high affinity to diverged P450s, we propose that archaeal P450s could have diverged from CYP109, CYP147 and CYP197. Based on this study's results, we propose that all archaeal P450s are bacterial in origin and that the original archaea had no P450s.

RevDate: 2023-02-25

Wittich RM, Haïdour A, Aguilar-Romero I, et al (2023)

Biodegradation of Microtoxic Phenylpropanoids (Phenylpropanoic Acid and Ibuprofen) by Bacteria and the Relevance for Their Removal from Wastewater Treatment Plants.

Genes, 14(2): pii:genes14020442.

The NSAID ibuprofen (2-(4-isobutylphenyl)propanoic acid) and the structurally related 3-phenylpropanoic acid (3PPA), are widely used pharmaceutical and personal care products (PPCPs) which enter municipal waste streams but whose relatively low rates of elimination by wastewater treatment plants (WWTPs) are leading to the contamination of aquatic resources. Here, we report the isolation of three bacterial strains from a municipal WWTP, which as a consortium are capable of mineralizing ibuprofen. These were identified as the Pseudomonas citronellolis species, termed RW422, RW423 and RW424, in which the first two of these isolates were shown to contain the catabolic ipf operon responsible for the first steps of ibuprofen mineralization. These ipf genes which are associated with plasmids could, experimentally, only be transferred between other Sphingomonadaceae species, such as from the ibuprofen degrading Sphingopyxis granuli RW412 to the dioxins degrading Rhizorhabdus wittichii RW1, generating RW421, whilst a transfer from the P. citronellolis isolates to R. wittichii RW1 was not observed. RW412 and its derivative, RW421, as well as the two-species consortium RW422/RW424, can also mineralize 3PPA. We show that IpfF can convert 3PPA to 3PPA-CoA; however, the growth of RW412 with 3PPA produces a major intermediate that was identified by NMR to be cinnamic acid. This and the identification of other minor products from 3PPA allows us to propose the major pathway used by RW412 to mineralize 3PPA. Altogether, the findings in this study highlight the importance of ipf genes, horizontal gene transfer, and alternative catabolic pathways in the bacterial populations of WWTPs to eliminate ibuprofen and 3PPA.

RevDate: 2023-02-25

Gosselin SP, Arsenault DR, Jennings CA, et al (2023)

The Evolutionary History of a DNA Methylase Reveals Frequent Horizontal Transfer and Within-Gene Recombination.

Genes, 14(2): pii:genes14020288.

Inteins, often referred to as protein introns, are highly mobile genetic elements that invade conserved genes throughout the tree of life. Inteins have been found to invade a wide variety of key genes within actinophages. While in the process of conducting a survey of these inteins in actinophages, we discovered that one protein family of methylases contained a putative intein, and two other unique insertion elements. These methylases are known to occur commonly in phages as orphan methylases (possibly as a form of resistance to restriction-modification systems). We found that the methylase family is not conserved within phage clusters and has a disparate distribution across divergent phage groups. We determined that two of the three insertion elements have a patchy distribution within the methylase protein family. Additionally, we found that the third insertion element is likely a second homing endonuclease, and that all three elements (the intein, the homing endonuclease, and what we refer to as the ShiLan domain) have different insertion sites that are conserved in the methylase gene family. Furthermore, we find strong evidence that both the intein and ShiLan domain are partaking in long-distance horizontal gene transfer events between divergent methylases in disparate phage hosts within the already dispersed methylase distribution. The reticulate evolutionary history of methylases and their insertion elements reveals high rates of gene transfer and within-gene recombination in actinophages.

RevDate: 2023-02-25

Liu S, Jiao J, CF Tian (2023)

Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction.

Genes, 14(2): pii:genes14020274.

There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.

RevDate: 2023-02-25

Zhao B, van Bodegom PM, KB Trimbos (2023)

Antibiotic Resistance Genes in Interconnected Surface Waters as Affected by Agricultural Activities.

Biomolecules, 13(2): pii:biom13020231.

Pastures have become one of the most important sources of antibiotic resistance genes (ARGs) pollution, bringing risks to human health through the environment and the food that is grown there. Another significant source of food production is greenhouse horticulture, which is typically located near pastures. Through waterways, pasture-originated ARGs may transfer to the food in greenhouses. However, how these pasture-originated ARGs spread to nearby waterways and greenhouses has been much less investigated, while this may pose risks to humans through agricultural products. We analyzed 29 ARGs related to the most used antibiotics in livestock in the Netherlands at 16 locations in an agricultural area, representing pastures, greenhouses and lakes. We found that ARGs were prevalent in all surface waters surrounding pastures and greenhouses and showed a similar composition, with sulfonamide ARGs being dominant. This indicates that both pastures and greenhouses cause antibiotic resistance pressures on neighboring waters. However, lower pressures were found in relatively larger and isolated lakes, suggesting that a larger water body or a non-agricultural green buffer zone could help reducing ARG impacts from agricultural areas. We also observed a positive relationship between the concentrations of the class 1 integron (intl1 gene)-used as a proxy for horizontal gene transfer-and ARG concentration and composition. This supports that horizontal gene transfer might play a role in dispersing ARGs through landscapes. In contrast, none of the measured four abiotic factors (phosphate, nitrate, pH and dissolved oxygen) showed any impact on ARG concentrations. ARGs from different classes co-occurred, suggesting simultaneous use of different antibiotics. Our findings help to understand the spatial patterns of ARGs, specifically the impacts of ARGs from pastures and greenhouses on each other and on nearby waterways. In this way, this study guides management aiming at reducing ARGs' risk to human health from agricultural products.

RevDate: 2023-02-25

Bunduruș IA, Balta I, Ștef L, et al (2023)

Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates.

Antibiotics (Basel, Switzerland), 12(2): pii:antibiotics12020402.

Campylobacter remains the most prevalent foodborne pathogen bacterium responsible for causing gastroenteritis worldwide. Specifically, this pathogen colonises a ubiquitous range of environments, from poultry, companion pets and livestock animals to humans. The bacterium is uniquely adaptable to various niches, leading to complicated gastroenteritis and, in some cases, difficult to treat due to elevated resistance to certain antibiotics. This increased resistance is currently detected via genomic, clinical or epidemiological studies, with the results highlighting worrying multi-drug resistant (MDR) profiles in many food and clinical isolates. The Campylobacter genome encodes a rich inventory of virulence factors offering the bacterium the ability to influence host immune defences, survive antimicrobials, form biofilms and ultimately boost its infection-inducing potential. The virulence traits responsible for inducing clinical signs are not sufficiently defined because several populations have ample virulence genes with physiological functions that reflect their pathogenicity differences as well as a complement of antimicrobial resistance (AMR) systems. Therefore, exhaustive knowledge of the virulence factors associated with Campylobacter is crucial for collecting molecular insights into the infectivity processes, which could pave the way for new therapeutical targets to combat and control the infection and mitigate the spread of MDR bacteria. This review provides an overview of the spread and prevalence of genetic determinants associated with virulence and antibiotic resistance from studies performed on livestock animals. In addition, we have investigated the relevant coincidental associations between the prevalence of the genes responsible for pathogenic virulence, horizontal gene transfer (HGT) and transmissibility of highly pathogenic Campylobacter strains.

RevDate: 2023-02-25

Shi H, Hu X, Li W, et al (2023)

Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes.

Antibiotics (Basel, Switzerland), 12(2): pii:antibiotics12020333.

In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.

RevDate: 2023-02-25

Michaelis C, E Grohmann (2023)

Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms.

Antibiotics (Basel, Switzerland), 12(2): pii:antibiotics12020328.

Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.

RevDate: 2023-02-25

Sánchez-Osuna M, Barbé J, I Erill (2023)

Systematic In Silico Assessment of Antimicrobial Resistance Dissemination across the Global Plasmidome.

Antibiotics (Basel, Switzerland), 12(2): pii:antibiotics12020281.

The emergence of pathogenic strains resistant to multiple antimicrobials is a pressing problem in modern healthcare. Antimicrobial resistance is mediated primarily by dissemination of resistance determinants via horizontal gene transfer. The dissemination of some resistance genes has been well documented, but few studies have analyzed the patterns underpinning the dissemination of antimicrobial resistance genes. Analyzing the %GC content of plasmid-borne antimicrobial resistance genes relative to their host genome %GC content provides a means to efficiently detect and quantify dissemination of antimicrobial resistance genes. In this work we automate %GC content analysis to perform a comprehensive analysis of known antimicrobial resistance genes in publicly available plasmid sequences. We find that the degree to which antimicrobial resistance genes are disseminated depends primarily on the resistance mechanism. Our analysis identifies conjugative plasmids as primary dissemination vectors and indicates that most broadly disseminated genes have spread from single genomic backgrounds. We show that resistance dissemination profiles vary greatly among antimicrobials, oftentimes reflecting stewardship measures. Our findings establish %GC content analysis as a powerful, intuitive and scalable method to monitor the dissemination of resistance determinants using publicly available sequence data.

RevDate: 2023-02-25

Tang J, Yao D, Zhou H, et al (2023)

Distinct Molecular Patterns of Two-Component Signal Transduction Systems in Thermophilic Cyanobacteria as Revealed by Genomic Identification.

Biology, 12(2): pii:biology12020271.

Two-component systems (TCSs) play crucial roles in sensing and responding to environmental signals, facilitating the acclimation of cyanobacteria to hostile niches. To date, there is limited information on the TCSs of thermophilic cyanobacteria. Here, genome-based approaches were used to gain insights into the structure and architecture of the TCS in 17 well-described thermophilic cyanobacteria, namely strains from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. The results revealed a fascinating complexity and diversity of the TCSs. A distinct composition of TCS genes existed among these thermophilic cyanobacteria. A majority of TCS genes were classified as orphan, followed by the paired and complex cluster. A high proportion of histidine kinases (HKs) were predicted to be cytosolic subcellular localizations. Further analyses suggested diversified domain architectures of HK and response regulators (RRs), putatively in association with various functions. Comparative and evolutionary genomic analyses indicated that the horizontal gene transfer, as well as duplications events, might be involved in the evolutionary history of TCS genes in Thermostichus and Thermosynechococcus strains. A comparative analysis between thermophilic and mesophilic cyanobacteria indicated that one HK cluster and one RR cluster were uniquely shared by all the thermophilic cyanobacteria studied, while two HK clusters and one RR cluster were common to all the filamentous thermophilic cyanobacteria. These results suggested that these thermophile-unique clusters may be related to thermal characters and morphology. Collectively, this study shed light on the TCSs of thermophilic cyanobacteria, which may confer the necessary regulatory flexibility; these findings highlight that the genomes of thermophilic cyanobacteria have a broad potential for acclimations to environmental fluctuations.

RevDate: 2023-02-24

Pardo-De la Hoz CJ, Magain N, Piatkowski B, et al (2023)

Ancient Rapid Radiation Explains Most Conflicts Among Gene Trees and Well-supported Phylogenomic Trees of Nostocalean Cyanobacteria.

Systematic biology pii:7056769 [Epub ahead of print].

Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread Horizontal Gene Transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic datasets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic datasets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated datasets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic datasets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies.

RevDate: 2023-02-24

Shippy TD, Miller S, Tamayo B, et al (2022)

Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri.

GigaByte (Hong Kong, China), 2022:gigabyte46 pii:46.

Chitinases are enzymes that digest the polysaccharide polymer chitin. During insect development, breakdown of chitin is an essential step in molting of the exoskeleton. Knockdown of chitinases required for molting is lethal to insects, making chitinase genes an interesting target for RNAi-based pest control methods. The Asian citrus psyllid, Diaphorina citri, carries the bacterium causing Huanglongbing, or citrus greening disease, a devastating citrus disease. We identified and annotated 12 chitinase family genes from D. citri as part of a community effort to create high-quality gene models to aid the design of interdictory molecules for pest control. We categorized the D. citri chitinases according to an established classification scheme and re-evaluated the classification of chitinases in other hemipterans. In addition to chitinases from known groups, we identified a novel class of chitinases present in D. citri and several related hemipterans that appears to be the result of horizontal gene transfer.

RevDate: 2023-02-24

Webb EA, Held NA, Zhao Y, et al (2023)

Importance of mobile genetic element immunity in numerically abundant Trichodesmium clades.

ISME communications, 3(1):15.

The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describe Trichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% complete Trichodesmium metagenome-assembled genomes from hand-picked, Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2 fixing clades of Trichodesmium across the transect, with T. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that all T. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in all T. erythraeum genomes, vertically inherited by T. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limited T. erythraeum is expected to be a 'winner' of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared to T. thiebautii, could put this outcome in question. Thus, the clear demarcation of T. thiebautii maintaining CRISPR-Cas systems, while T. erythraeum does not, identifies Trichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions.

RevDate: 2023-02-24

Baek MG, Kim KW, H Yi (2023)

Subspecies-level genome comparison of Lactobacillus delbrueckii.

Scientific reports, 13(1):3171.

Lactobacillus delbrueckii comprises six subspecies, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. jakobsenii, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. sunkii, and L. delbrueckii subsp. indicus. We investigated the evolution of the six subspecies of L. delbrueckii using comparative genomics. While the defining feature of the species was the gene number increment driven by mobile elements and gene fragmentation, the repertoire of subspecies-specific gene gains and losses differed among the six subspecies. The horizontal gene transfer analyses indicated that frequent gene transfers between different subspecies had occurred when the six subspecies first diverged from the common ancestor, but recent gene exchange was confined to a subspecies implying independent evolution of the six subspecies. The subspecies bulgaricus is a homogeneous group that diverged from the other subspecies a long time ago and underwent convergent evolution. The subspecies lactis, jakobsenii, delbrueckii, and sunkii were more closely related to each other than to other subspecies. The four subspecies commonly show increasing genetic variability with increasing genome size. However, the four subspecies were distinguished by specific gene contents. The subspecies indicus forms a branch distant from the other subspecies and shows an independent evolutionary trend. These results could explain the differences in the habitat and nutritional requirements of the subspecies of L. delbrueckii.

RevDate: 2023-02-23

Sun L, Tang D, Tai X, et al (2023)

Effect of composted pig manure, biochar, and their combination on antibiotic resistome dissipation in swine wastewater-treated soil.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(23)00325-1 [Epub ahead of print].

The prevalence of antibiotic resistance genes (ARGs), owing to irrigation using untreated swine wastewater, in vegetable-cultivated soils around swine farms poses severe threats to human health. Furthermore, at the field scale, the remediation of such soils is still challenging. Therefore, here, we performed field-scale experiments involving the cultivation of Brassica pekinensis in a swine wastewater-treated soil amended with composted pig manure, biochar, or their combination. Specifically, the ARG and mobile genetic element (MGE) profiles of bulk soil (BS), rhizosphere soil (RS), and root endophyte (RE) samples were examined using high-throughput quantitative polymerase chain reaction. In total, 117 ARGs and 22 MGEs were detected. Moreover, we observed that soil amendment using composted pig manure, biochar, or their combination decreased the absolute abundance of ARGs in BS and RE after 90 days of treatment. However, the decrease in the abundance of ARGs in RS was not significant. We also observed that the manure and biochar co-application showed a minimal synergistic effect. To clarify this observation, we performed network and Spearman correlation analyses and used structure equation models to explore the correlations among ARGs, MGEs, bacterial composition, and soil properties. The results revealed that the soil amendments reduced the abundances of MGEs and potential ARG-carrying bacteria. Additionally, weakened horizontal gene transfer was responsible for the dissipation of ARGs. Thus, our results indicate that composted manure application, with or without biochar, is a useful strategy for soil nutrient supplementation and alleviating farmland ARG pollution, providing a justification for using an alternative to the common agricultural practice of treating the soil using only untreated swine wastewater. Additionally, our results are important in the context of soil health for sustainable agriculture.

RevDate: 2023-02-23

Milligan EG, Calarco J, Davis BC, et al (2023)

A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water.

Current environmental health reports [Epub ahead of print].

PURPOSE OF REVIEW: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies.

RECENT FINDINGS: Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.

RevDate: 2023-02-23

Matveeva T, Аndronov E, K Chen (2023)

Editorial: Rhizobiaceae mediated HGT: Facts, mechanisms, and evolutionary consequences.

Frontiers in plant science, 14:1149426.

RevDate: 2023-02-22

Huang Q, Liu Z, Guo Y, et al (2023)

Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism.

The Science of the total environment pii:S0048-9697(23)00946-4 [Epub ahead of print].

A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.

RevDate: 2023-02-22

Li Y, Li D, Liang Y, et al (2023)

Characterization of a Tigecycline-Resistant and blaCTX-M-Bearing Klebsiella pneumoniae Strain from a Peacock in a Chinese Zoo.

Applied and environmental microbiology [Epub ahead of print].

In Chinese zoos, there are usually specially designed bird parks, similar to petting zoos, that allow children and adults to interact with diverse birds. However, such behaviors present a risk for the transmission of zoonotic pathogens. Recently, we isolated eight strains of Klebsiella pneumoniae and identified two blaCTX-M-positive strains from 110 birds, including parrots, peacocks, and ostriches, using anal or nasal swabs in a bird park of a zoo in China. There, K. pneumoniae LYS105A was obtained from a diseased peacock with chronic respiratory diseases by a nasal swab, which harbored the blaCTX-M-3 gene and exhibited resistance to amoxicillin, cefotaxime, gentamicin, oxytetracycline, doxycycline, tigecycline, florfenicol, and enrofloxacin. According to an analysis by whole-genome sequencing, K. pneumoniae LYS105A belongs to serotype ST859 (sequence type 859)-K19 (capsular serotype 19) and contains two plasmids, of which pLYS105A-2 can be transferred by electrotransformation and harbors numerous resistance genes such as blaCTX-M-3, aac(6')-Ib-cr5, and qnrB91. The above-mentioned genes are located in a novel mobile composite transposon, Tn7131, which makes horizontal transfer more flexible. Although no known genes were identified in the chromosome, a significant increase in SoxS upregulated the expression levels of phoPQ, acrEF-tolC, and oqxAB, which contributed to strain LYS105A acquiring resistance to tigecycline (MIC = 4 mg/L) and intermediate resistance to colistin (MIC = 2 mg/L). Altogether, our findings show that bird parks in zoos may act as important vehicles for the spread of multidrug-resistant bacteria from birds to humans and vice versa. IMPORTANCE A multidrug-resistant ST859-K19 K. pneumoniae strain, LYS105A, was obtained from a diseased peacock in a Chinese zoo. In addition, multiple resistance genes such as blaCTX-M-3, aac(6')-Ib-cr5, and qnrB91 were located in a novel composite transposon, Tn7131, of a mobile plasmid, implying that most of the resistance genes in strain LYS105A can be moved easily via horizontal gene transfer. Meanwhile, an increase in SoxS can further positively regulate the expression of phoPQ, acrEF-tolC, and oqxAB, which is the key factor for strain LYS105A to develop resistance to tigecycline and colistin. Taken together, these findings enrich our understanding of the horizontal cross-species spread of drug resistance genes, which will help us curb the development of bacterial resistance.

RevDate: 2023-02-22

Zhu Y, Wang T, Zhu W, et al (2023)

Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

Integron can capture and express antimicrobial resistance gene cassettes and plays important roles in horizontal gene transfer. The establishment of a complete in vitro reaction system will help to reveal integron integrase mediated site-specific recombination process and regulation mechanism. As an enzymatic reaction, the concentration of integrase is assumed to have a great influence on the reaction rate. To determine the influence of different concentrations of integrase on the reaction rate and to find the best range of enzyme concentration were essential to optimizing the in vitro reaction system. In this study, plasmids with gradient transcription levels of class 2 integron integrase gene intI2 under different promoters were constructed. Among plasmids pI2W16, pINTI2N, pI2W, and pI2NW, intI2 transcription levels ranged from about 0.61-fold to 49.65-fold of that in pINTI2N. And the frequencies of gene cassette sat2 integration and excision catalyzed by IntI2 were positively correlated with the transcription levels of intI2 within this range. Western blotting results indicated high expression of IntI2 partly existed in the form of an inclusion body. When compared with Pc of class 1 integron, the spacer sequence of PintI2 can increase the strength of PcW but decrease the strength of PcS. In conclusion, the frequencies of gene cassette integration and excision were positively correlated with the concentration of IntI2. intI2 driving by PcW with PintI2 spacer sequence can obtain the optimum IntI2 concentration required to achieve the maximum recombination efficiency in vivo in this study.

RevDate: 2023-02-22

Huang Y, Sheth RU, Zhao S, et al (2023)

High-throughput microbial culturomics using automation and machine learning.

Nature biotechnology [Epub ahead of print].

Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype-genotype integration. Here we describe an open-source high-throughput robotic strain isolation platform for the rapid generation of isolates on demand. We develop a machine learning approach that leverages colony morphology and genomic data to maximize the diversity of microbes isolated and enable targeted picking of specific genera. Application of this platform on fecal samples from 20 humans yields personalized gut microbiome biobanks totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial analysis on >100,000 visually captured colonies reveals cogrowth patterns between Ruminococcaceae, Bacteroidaceae, Coriobacteriaceae and Bifidobacteriaceae families that suggest important microbial interactions. Comparative analysis of 1,197 high-quality genomes from these biobanks shows interesting intra- and interpersonal strain evolution, selection and horizontal gene transfer. This culturomics framework should empower new research efforts to systematize the collection and quantitative analysis of imaging-based phenotypes with high-resolution genomics data for many emerging microbiome studies.

RevDate: 2023-02-22

Engin AB, Engin ED, A Engin (2023)

Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors.

Environmental toxicology and pharmacology pii:S1382-6689(23)00022-4 [Epub ahead of print].

The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.

RevDate: 2023-02-22

Rius M, Rest JS, Filloramo GV, et al (2023)

Horizontal gene transfer and fusion spread carotenogenesis among diverse heterotrophic protists.

Genome biology and evolution pii:7048456 [Epub ahead of print].

Thraustochytrids (phylum: Labyrinthulomycota) are non-photosynthetic marine protists. Some thraustochytrids have crtIBY, a trifunctional fusion gene encoding a protein capable of β-carotene biosynthesis from geranylgeranyl pyrophosphate. Here we show that crtIBY is essential in, and encodes the sole pathway for, carotenoid biosynthesis in the thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381. We explore the evolutionary origins of CrtIBY and discover that the closest related protein domains are present in a small but diverse group of other heterotrophic protists, including the apusomonad Thecamonas trahens and the dinoflagellates Oxyrrhis marina and Noctiluca scintillans. Each organism within this cluster also contains one or more β-carotene 15-15' oxygenase genes (blh and rpe65), suggesting that acquisition of β-carotene biosynthesis genes may have been related to the production of retinal. Our findings support a novel origin of eukaryotic (apo)carotenoid biosynthesis by horizontal gene transfer from Actinobacteria, Bacteroidetes, and/or Archaea. This reveals a remarkable case of parallel evolution of eukaryotic (apo)carotenogenesis in divergent protistan lineages by repeated gene transfers.

LOAD NEXT 100 CITATIONS

RJR Experience and Expertise

Researcher

Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.

Educator

Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.

Administrator

Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.

Technologist

Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.

Publisher

While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.

Speaker

Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.

Facilitator

Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.

Designer

Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important; we now know that roughly eight percent of the human genome arrived sideways by viral infection—a type of HGT. In The Tangled Tree, “the grandest tale in biology….David Quammen presents the science—and the scientists involved—with patience, candor, and flair” (Nature). We learn about the major players, such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.

963 Red Tail Lane
Bellingham, WA 98226

206-300-3443

E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )