About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

04 Mar 2024 at 01:30
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 04 Mar 2024 at 01:30 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: ( "horizontal gene transfer" OR "lateral gene transfer") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2024-03-01

Fogarty EC, Schechter MS, Lolans K, et al (2024)

A cryptic plasmid is among the most numerous genetic elements in the human gut.

Cell, 187(5):1206-1222.e16.

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.

RevDate: 2024-03-01

Workman RE, Stoltzfus MJ, Keith NC, et al (2024)

Anti-CRISPR proteins trigger a burst of CRISPR-Cas9 expression that enhances phage defense.

Cell reports, 43(3):113849 pii:S2211-1247(24)00177-3 [Epub ahead of print].

CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.

RevDate: 2024-02-29

Wong TKF, Cherryh C, Rodrigo AG, et al (2024)

MAST: Phylogenetic Inference with Mixtures Across Sites and Trees.

Systematic biology pii:7616281 [Epub ahead of print].

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting, introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call MAST. This model extends a prior implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to multiple primate datasets and found that it can recover the signal of incomplete lineage sorting in the Great Apes, as well as the asymmetry in minor trees caused by introgression among several macaque species. When applied to a dataset of four Platyrrhine species for which standard concatenated maximum likelihood and gene tree approaches disagree, we observe that MAST gives the highest weight (i.e. the largest proportion of sites) to the tree also supported by gene tree approaches. These results suggest that the MAST model is able to analyse a concatenated alignment using maximum likelihood, while avoiding some of the biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future.

RevDate: 2024-02-28

Jeong GJ, Khan F, Tabassum N, et al (2024)

Bacterial extracellular vesicles: modulation of biofilm formation and virulence.

Acta biomaterialia pii:S1742-7061(24)00100-4 [Epub ahead of print].

Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.

RevDate: 2024-02-28

Kfoury B, Rodrigues WFC, Kim SJ, et al (2024)

Multiple horizontal gene transfer events have shaped plant glycosyl hydrolase diversity and function.

The New phytologist [Epub ahead of print].

Plant glycosyl hydrolases (GHs) play a crucial role in selectively breaking down carbohydrates and glycoconjugates during various cellular processes, such as reserve mobilization, pathogen defense, and modification/disassembly of the cell wall. In this study, we examined the distribution of GH genes in the Archaeplastida supergroup, which encompasses red algae, glaucophytes, and green plants. We identified that the GH repertoire expanded from a few tens of genes in early archaeplastidians to over 400 genes in modern angiosperms, spanning 40 GH families in land plants. Our findings reveal that major evolutionary transitions were accompanied by significant changes in the GH repertoire. Specifically, we identified at least 23 GH families acquired by green plants through multiple horizontal gene transfer events, primarily from bacteria and fungi. We found a significant shift in the subcellular localization of GH activity during green plant evolution, with a marked increase in extracellular-targeted GH proteins associated with the diversification of plant cell wall polysaccharides and defense mechanisms against pathogens. In conclusion, our study sheds light on the macroevolutionary processes that have shaped the GH repertoire in plants, highlighting the acquisition of GH families through horizontal transfer and the role of GHs in plant adaptation and defense mechanisms.

RevDate: 2024-02-28

Sun L, David KT, Wolters JF, et al (2024)

Functional and evolutionary integration of a fungal gene with a bacterial operon.

Molecular biology and evolution pii:7615510 [Epub ahead of print].

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determines the extant distribution of yeast enterobactin producers and cheaters.

RevDate: 2024-02-27

Wang H, Xia F, Xia Y, et al (2024)

Pangenome analysis of Shewanella xiamenensis revealed important genetic traits concerning genetic diversity, pathogenicity and antibiotic resistance.

BMC genomics, 25(1):216.

BACKGROUND: Shewanella xiamenensis, widely distributed in natural environments, has long been considered as opportunistic pathogen. Recently, significant changes in the resistance spectrum have been observed in S. xiamenensis, due to acquired antibiotic resistance genes. Therefore, a pan-genome analysis was conducted to illuminate the genomic changes in S. xiamenensis.

RESULTS: Phylogenetic analysis revealed three major clusters and three singletons, among which close relationship between several strains was discovered, regardless of their host and niches. The "open" genomes with diversity of accessory and strain-specific genomes took advantage towards diversity environments. The purifying selection pressure was the main force on genome evolution, especially in conservative genes. Only 53 gene families were under positive selection pressure. Phenotypic resistance analysis revealed 21 strains were classified as multi-drug resistance (MDR). Ten types of antibiotic resistance genes and two heavy metal resistance operons were discovered in S. xiamenensis. Mobile genetic elements and horizontal gene transfer increased genome diversity and were closely related to MDR strains. S. xiamenensis carried a variety of virulence genes and macromolecular secretion systems, indicating their important roles in pathogenicity and adaptability. Type IV secretion system was discovered in 15 genomes with various sequence structures, indicating it was originated from different donors through horizontal gene transfer.

CONCLUSIONS: This study provided with a detailed insight into the changes in the pan-genome of S. xiamenensis, highlighting its capability to acquire new mobile genetic elements and resistance genes for its adaptation to environment and pathogenicity to human and animals.

RevDate: 2024-02-27

Dewar AE, Belcher LJ, Scott TW, et al (2024)

Genes for cooperation are not more likely to be carried by plasmids.

Proceedings. Biological sciences, 291(2017):20232549.

Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite-that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria.

RevDate: 2024-02-27

Crippen TL, Sullivan JP, RC Anderson (2024)

Bacterial proximity effects on the transfer of antibiotic resistance genes within the alimentary tract of yellow mealworm larvae.

Journal of economic entomology pii:7615022 [Epub ahead of print].

The arthropod intestinal tract and other anatomical parts naturally carry microorganisms. Some of which are pathogens, secrete toxins, or carry transferable antibiotic-resistance genes. The risks associated with the production and consumption of edible arthropods are dependent on indigenous microbes, as well as microbes introduced during the processes of rearing. This mass arthropod production puts individual arthropods in close proximity, which increases the possibility of their exposure to antibiotic-resistant bacteria carried by bacteria from fellow insects, industry workers, or rearing hardware and substrates. The purpose of this study was to determine if the alimentary tract of the yellow mealworm provided an environment permitting horizontal gene transfer between bacteria. The effect of the concentration of bacterial exposure was also assessed. Antibiotic resistance gene transfer between marker Salmonella Lignières (Enterobacterales: Enterobacteriaceae) and Escherichia coli (Migula) (Enterobacterales: Enterobacteriaceae) introduced into the larval gut demonstrated that the nutrient-rich environment of the yellow mealworm gut provided favorable conditions for the transfer of antibiotic resistance genes. Conjugation frequencies were similar across inoculum concentrations; however, transconjugant production correlated positively to increased exposure concentration. The lowest concentration of bacterial exposure required enrichment to detect and thus may have been approaching a threshold level for the 2 bacteria to colocate within the expanse of the larval gut. While many factors can affect this transfer, the simple factor of the proximity of donor and recipient bacteria, as defined by the concentration of bacteria within the volume of the insect gut, likely primarily contributed to the efficiency of antibiotic gene transfer.

RevDate: 2024-02-27

Kogay R, Wolf YI, EV Koonin (2024)

Defense systems and horizontal gene transfer in bacteria.

bioRxiv : the preprint server for biology pii:2024.02.09.579689.

Horizontal gene transfer (HGT) is a fundamental process in the evolution of prokaryotes, making major contributions to diversification and adaptation. Typically, HGT is facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages that generally impose fitness costs on their hosts. However, a substantial fraction of bacterial genes is involved in defense mechanisms that limit the propagation of MGEs, raising the possibility that they can actively restrict HGT. Here we examine whether defense systems curb HGT by exploring the connections between HGT rate and the presence of 73 defense systems in 12 bacterial species. We found that only 6 defense systems, 3 of which are different CRISPR-Cas subtypes, are associated with the reduced gene gain rate on the scale of species evolution. The hosts of such defense systems tend to have a smaller pangenome size and harbor fewer phage-related genes compared to genomes lacking these systems, suggesting that these defense mechanisms inhibit HGT by limiting the integration of prophages. We hypothesize that restriction of HGT by defense systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and fitness effect of HGT in bacterial populations.

RevDate: 2024-02-25

Rzymski P, Gwenzi W, Poniedziałek B, et al (2024)

Climate warming, environmental degradation and pollution as drivers of antibiotic resistance.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00363-4 [Epub ahead of print].

Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, improved waste recycling, and improved wastewater treatment. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.

RevDate: 2024-02-27

Ishola OA, Kublik S, Durai Raj AC, et al (2024)

Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models.

Microorganisms, 12(2):.

Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.

RevDate: 2024-02-24

Lerner A, Benzvi C, A Vojdani (2024)

The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health.

Microorganisms, 12(2):.

Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.

RevDate: 2024-02-24

Valenzuela JA, Vázquez L, Rodríguez J, et al (2024)

Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing Lactococcus lactis and Streptococcus thermophilus Strains Isolated from Cow's Milk.

International journal of molecular sciences, 25(4): pii:ijms25042328.

Gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) can be used as starters in the development of GABA-enriched functional fermented foods. In this work, four GABA-producing strains each of Lactococcus lactis and Streptococcus thermophilus species were isolated from cow's milk, and their phenotypic, technological, and safety profiles determined. Genome analysis provided genetic support for the majority of the analyzed traits, namely, GABA production, growth in milk, and the absence of genes of concern. The operon harboring the glutamate decarboxylase gene (gadB) was chromosomally encoded in all strains and showed the same gene content and gene order as those reported, respectively, for L. lactis and S. thermophilus. In the latter species, the operon was flanked (as in most strains of this species) by complete or truncated copies of insertion sequences (IS), suggesting recent acquisition through horizontal gene transfer. The genomes of three L. lactis and two S. thermophilus strains showed a gene encoding a caseinolytic proteinase (PrtP in L. lactis and PrtS in S. thermophilus). Of these, all but one grew in milk, forming a coagulum of good appearance and an appealing acidic flavor and taste. They also produced GABA in milk supplemented with monosodium glutamate. Two L. lactis strains were identified as belonging to the biovar. diacetylactis, utilized citrate from milk, and produced significant amounts of acetoin. None of the strains showed any noticeable antibiotic resistance, nor did their genomes harbor transferable antibiotic resistance genes or genes involved in toxicity, virulence, or pathogenicity. Altogether these results suggest that all eight strains may be considered candidates for use as starters or components of mixed LAB cultures for the manufacture of GABA-enriched fermented dairy products.

RevDate: 2024-02-23

Wang H, Wu P, Xiong L, et al (2024)

Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms.

European journal of protistology, 93:126061 pii:S0932-4739(24)00011-7 [Epub ahead of print].

Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.

RevDate: 2024-02-23

Chen T, Mo C, Yuan Y, et al (2024)

Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment.

Journal of hazardous materials, 468:133789 pii:S0304-3894(24)00368-6 [Epub ahead of print].

Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).

RevDate: 2024-02-23

Jiang YN, Tamiya-Ishitsuka H, Aoi R, et al (2024)

MazEF Homologs in Symbiobacterium thermophilum Exhibit Cross-Neutralization with Non-Cognate MazEFs.

Toxins, 16(2): pii:toxins16020081.

Toxin-antitoxin systems are preserved by nearly every prokaryote. The type II toxin MazF acts as a sequence-specific endoribonuclease, cleaving ribonucleotides at specific sequences that vary from three to seven bases, as has been reported in different host organisms to date. The present study characterized the MazEF module (MazEF-sth) conserved in the Symbiobacterium thermophilum IAM14863 strain, a Gram-negative syntrophic bacterium that can be supported by co-culture with multiple bacteria, including Bacillus subtilis. Based on a method combining massive parallel sequencing and the fluorometric assay, MazF-sth was determined to cleave ribonucleotides at the UACAUA motif, which is markedly similar to the motifs recognized by MazF from B. subtilis (MazF-bs), and by several MazFs from Gram-positive bacteria. MazF-sth, with mutations at conserved amino acid residues Arg29 and Thr52, lost most ribonuclease activity, indicating that these residues that are crucial for MazF-bs also play significant roles in MazF-sth catalysis. Further, cross-neutralization between MazF-sth and the non-cognate MazE-bs was discovered, and herein, the neutralization mechanism is discussed based on a protein-structure simulation via AlphaFold2 and multiple sequence alignment. The conflict between the high homology shared by these MazF amino acid sequences and the few genetic correlations among their host organisms may provide evidence of horizontal gene transfer.

RevDate: 2024-02-24

Yaikhan T, Chukamnerd A, Singkhamanan K, et al (2024)

Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand.

Antibiotics (Basel, Switzerland), 13(2):.

This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts.

RevDate: 2024-02-22

Wu Z, C Solís-Lemus (2024)

Ultrafast learning of four-node hybridization cycles in phylogenetic networks using algebraic invariants.

Bioinformatics advances, 4(1):vbae014.

MOTIVATION: The abundance of gene flow in the Tree of Life challenges the notion that evolution can be represented with a fully bifurcating process which cannot capture important biological realities like hybridization, introgression, or horizontal gene transfer. Coalescent-based network methods are increasingly popular, yet not scalable for big data, because they need to perform a heuristic search in the space of networks as well as numerical optimization that can be NP-hard. Here, we introduce a novel method to reconstruct phylogenetic networks based on algebraic invariants. While there is a long tradition of using algebraic invariants in phylogenetics, our work is the first to define phylogenetic invariants on concordance factors (frequencies of four-taxon splits in the input gene trees) to identify level-1 phylogenetic networks under the multispecies coalescent model.

RESULTS: Our novel hybrid detection methodology is optimization-free as it only requires the evaluation of polynomial equations, and as such, it bypasses the traversal of network space, yielding a computational speed at least 10 times faster than the fastest-to-date network methods. We illustrate our method's performance on simulated and real data from the genus Canis.

We present an open-source publicly available Julia package PhyloDiamond.jl available at https://github.com/solislemuslab/PhyloDiamond.jl with broad applicability within the evolutionary community.

RevDate: 2024-02-21

Mori Y, Yamashita E, Nakagawa A, et al (2024)

Determination of the three-dimensional structure of bacteriophage Mu(-) tail fiber and its characterization.

Virology, 593:110017 pii:S0042-6822(24)00038-2 [Epub ahead of print].

Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.

RevDate: 2024-02-21

Aggarwal R, Mahajan P, Pandiya S, et al (2024)

Antibiotic resistance: a global crisis, problems and solutions.

Critical reviews in microbiology [Epub ahead of print].

Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.

RevDate: 2024-02-21

Unitt A, Maiden M, O Harrison (2024)

Characterizing the diversity and commensal origins of penA mosaicism in the genus Neisseria.

Microbial genomics, 10(2):.

Mosaic penA alleles formed through horizontal gene transfer (HGT) have been instrumental to the rising incidence of ceftriaxone-resistant gonococcal infections. Although interspecies HGT of regions of the penA gene between Neisseria gonorrhoeae and commensal Neisseria species has been described, knowledge concerning which species are the most common contributors to mosaic penA alleles is limited, with most studies examining only a small number of alleles. Here, we investigated the origins of recombinant penA alleles through in silico analyses that incorporated 1700 penA alleles from 35 513 Neisseria isolates, comprising 15 different Neisseria species. We identified Neisseria subflava and Neisseria cinerea as the most common source of recombinant sequences in N. gonorrhoeae penA. This contrasted with Neisseria meningitidis penA, for which the primary source of recombinant DNA was other meningococci, followed by Neisseria lactamica. Additionally, we described the distribution of polymorphisms implicated in antimicrobial resistance in penA, and found that these are present across the genus. These results provide insight into resistance-related changes in the penA gene across human-associated Neisseria species, illustrating the importance of genomic surveillance of not only the pathogenic Neisseria, but also of the oral niche-associated commensals from which these pathogens are sourcing key genetic variation.

RevDate: 2024-02-20

Pfeifer E, EPC Rocha (2024)

Phage-plasmids promote recombination and emergence of phages and plasmids.

Nature communications, 15(1):1545.

Phages and plasmids are regarded as distinct types of mobile genetic elements that drive bacterial evolution by horizontal gene transfer. However, the distinction between both types is blurred by the existence of elements known as prophage-plasmids or phage-plasmids, which transfer horizontally between cells as viruses and vertically within cellular lineages as plasmids. Here, we study gene flow between the three types of elements. We show that the gene repertoire of phage-plasmids overlaps with those of phages and plasmids. By tracking recent recombination events, we find that phage-plasmids exchange genes more frequently with plasmids than with phages, and that direct gene exchange between plasmids and phages is less frequent in comparison. The results suggest that phage-plasmids can mediate gene flow between plasmids and phages, including exchange of mobile element core functions, defense systems, and antibiotic resistance. Moreover, a combination of gene transfer and gene inactivation may result in the conversion of elements. For example, gene loss turns P1-like phage-plasmids into integrative prophages or into plasmids (that are no longer phages). Remarkably, some of the latter have acquired conjugation-related functions to became mobilisable by conjugation. Thus, our work indicates that phage-plasmids can play a key role in the transfer of genes across mobile elements within their hosts, and can act as intermediates in the conversion of one type of element into another.

RevDate: 2024-02-20

Saini P, Bandsode V, Singh A, et al (2024)

Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment.

mBio [Epub ahead of print].

Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including blaNDM-5 in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations.IMPORTANCEEvolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.

RevDate: 2024-02-21
CmpDate: 2024-02-21

Fox BW, Helf MJ, Burkhardt RN, et al (2024)

Evolutionarily related host and microbial pathways regulate fat desaturation in C. elegans.

Nature communications, 15(1):1520.

Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in C. elegans. Untargeted metabolomics of a β-oxidation mutant, acdh-11, in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates fat-7 expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., E. coli. Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, which mimics the activity of microbiota-dependent becyp#1 but is derived from a methyltransferase, fcmt-1, that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of fat-7 expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.

RevDate: 2024-02-19

Zhao S, Rogers MJ, Ding C, et al (2024)

Interspecies Mobility of Organohalide Respiration Gene Clusters Enables Genetic Bioaugmentation.

Environmental science & technology [Epub ahead of print].

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.

RevDate: 2024-02-19

Lehnert T, MAM Gijs (2024)

Microfluidic systems for infectious disease diagnostics.

Lab on a chip [Epub ahead of print].

Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.

RevDate: 2024-02-20

Han X, Zhou J, Yu L, et al (2024)

Genome sequencing unveils blaKPC-2-harboring plasmids as drivers of enhanced resistance and virulence in nosocomial Klebsiella pneumoniae.

mSystems, 9(2):e0092423.

The threat posed by Klebsiella pneumoniae in healthcare settings has worsened due to the evolutionary advantages conferred by blaKPC-2-harboring plasmids (pKPC-2). However, the specific evolutionary pathway of nosocomial K. pneumoniae carrying pKPC-2 and its transmission between patients and healthcare environments are not yet well understood. Between 1 August and 31 December 2019, 237 ST11 KPC-2-producing-carbapenem-resistant K. pneumoniae (CRKP) (KPC-2-CRKP) were collected from patient or ward environments in an intensive care unit and subjected to Illumina sequencing, of which 32 strains were additionally selected for Nanopore sequencing to obtain complete plasmid sequences. Bioinformatics analysis, conjugation experiments, antimicrobial susceptibility tests, and virulence assays were performed to identify the evolutionary characteristics of pKPC-2. The pKPC-2 plasmids were divided into three subgroups with distinct evolutionary events, including Tn3-mediated plasmid homologous recombination, IS26-mediated horizontal gene transfer, and dynamic duplications of antibiotic resistance genes (ARGs). Surprisingly, the incidence rates of multicopy blaKPC-2, blaSHV-12, and blaCTX-M-65 were quite high (ranging from 27.43% to 67.01%), and strains negative for extended-spectrum β-lactamase tended to develop multicopy blaKPC-2. Notably, the presence of multicopy blaSHV-12 reduced sensitivity to ceftazidime/avibactam (CZA), and the relative expression level of blaSHV-12 in the CZA-resistant group was 6.12 times higher than that in the sensitive group. Furthermore, a novel hybrid pKPC-2 was identified, presenting enhanced virulence levels and decreased susceptibility to CZA. This study emphasizes the notable prevalence of multicopy ARGs and provides a comprehensive insight into the intricate and diverse evolutionary pathways of resistant plasmids that disseminate among patients and healthcare environments.IMPORTANCEThis study is based on a CRKP screening program between patients and ward environments in an intensive care unit, describing the pKPC-2 (blaKPC-2-harboring plasmids) population structure and evolutionary characteristics in clinical settings. Long-read sequencing was performed in genetically closely related strains, enabling the high-resolution analysis of evolution pathway between or within pKPC-2 subgroups. We revealed the extremely high rates of multicopy antibiotic resistance genes (ARGs) in clinical settings and its effect on resistance profile toward novel β-lactam/β-lactamase inhibitor combinations, which belongs to the last line treatment choices toward CRKP infection. A novel hybrid pKPC-2 carrying CRKP with enhanced resistance and virulence level was captured during its clonal spread between patients and ward environment. These evidences highlight the threat of pKPC-2 to CRKP treatment and control. Thus, surveillance and timely disinfection in clinical settings should be practiced to prevent transmission of CRKP carrying threatful pKPC-2. And rational use of antibiotics should be called for to prevent inducing of pKPC-2 evolution, especially the multicopy ARGs.

RevDate: 2024-02-19

Yuan C, An T, Li X, et al (2023)

Genomic analysis of Ralstonia pickettii reveals the genetic features for potential pathogenicity and adaptive evolution in drinking water.

Frontiers in microbiology, 14:1272636.

Ralstonia pickettii, the most critical clinical pathogen of the genus Ralstonia, has been identified as a causative agent of numerous harmful infections. Additionally, Ralstonia pickettii demonstrates adaptability to extreme environmental conditions, such as those found in drinking water. In this study, we conducted a comprehensive genomic analysis to investigate the genomic characteristics related to potential pathogenicity and adaptive evolution in drinking water environments of Ralstonia pickettii. Through phylogenetic analysis and population genetic analysis, we divided Ralstonia pickettii into five Groups, two of which were associated with drinking water environments. The open pan-genome with a large and flexible gene repertoire indicated a high genetic plasticity. Significant differences in functional enrichment were observed between the core- and pan-genome of different groups. Diverse mobile genetic elements (MGEs), extensive genomic rearrangements, and horizontal gene transfer (HGT) events played a crucial role in generating genetic diversity. In drinking water environments, Ralstonia pickettii exhibited strong adaptability, and the acquisition of specific adaptive genes was potentially facilitated by genomic islands (GIs) and HGT. Furthermore, environmental pressures drove the adaptive evolution of Ralstonia pickettii, leading to the accumulation of unique mutations in key genes. These mutations may have a significant impact on various physiological functions, particularly carbon metabolism and energy metabolism. The presence of virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance indicated the potential pathogenicity of Ralstonia pickettii, making it capable of causing multiple nosocomial infections. This study provides comprehensive insights into the potential pathogenicity and adaptive evolution of Ralstonia pickettii in drinking water environments from a genomic perspective.

RevDate: 2024-02-18

Wang T, Xu Y, Ling W, et al (2024)

Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation.

Environment international, 185:108499 pii:S0160-4120(24)00085-0 [Epub ahead of print].

The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.

RevDate: 2024-02-18

Zheng W, Teng X, Jiang T, et al (2024)

Genome analysis of a novel avian atadenovirus reveals a possible horizontal gene transfer.

Virology, 593:109999 pii:S0042-6822(24)00020-5 [Epub ahead of print].

We report the discovery and characterization of a novel adenovirus, Zoothera dauma adenovirus (ZdAdV), from a wild bird species, Zoothera dauma (Scaly thrush). This new atadenovirus was discovered by metagenomic sequencing without virus cultivation. Analyses of the full genome sequence revealed that this new virus is a distinct member of the genus Atadenovirus and represents a novel species. ZdAdV has a genome of 34,760 bp with 28 predicted genes and 39% GC content. ZdAdV is the first atadenovirus to contain ORF19, a gene previously found only in aviadenoviruses. Phylogenetic analysis of ORF19 suggests that it was acquired by ZdAdV through horizontal gene transfer from an aviadenovirus. By analyzing all orthologous genes of aviadenovirus, mastadenovirus, atadenovirus, and siadenovirus, we also found potential horizontal gene transfer for the E4 gene in Pigeon aviadenovirus B. Our study widens our knowledge concerning the genetic diversity and evolutionary history of atadenoviruses and their potential for cross-species transmission.

RevDate: 2024-02-17

Liu Q, Jia J, Hu H, et al (2024)

Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa.

Journal of hazardous materials, 468:133786 pii:S0304-3894(24)00365-0 [Epub ahead of print].

Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere.

RevDate: 2024-02-17

Ko I, Kranse OP, Senatori B, et al (2024)

A critical appraisal of DNA transfer from plants to parasitic cyst nematodes.

Molecular biology and evolution pii:7608856 [Epub ahead of print].

Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that Horizontal Gene Transfer (HGT) - the natural acquisition of foreign genes in parasitic nematodes - contributes to parasitism. However, an apparent paradox has emerged from HGT analyses: On one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors; while on the other hand, considerably more closely related organism (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here we used comparative genomic approaches to evaluate possible plant-derived HGT events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived HGT cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a four step model for HGT from plant to parasite in order to evaluate why the absence of plant-derived HGT cases is observed. We find that the plant genome is mobilised by the nematode during infection, but that uptake of said "mobilome" is the first major barrier to HGT from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acids exchange in the arms race between plants and plant parasites.

RevDate: 2024-02-17

Zhao D, Zhang S, Chen J, et al (2024)

Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea.

The ISME journal pii:7513321 [Epub ahead of print].

The origin of methanogenesis can be traced to the common ancestor of non-DPANN archaea, whereas haloarchaea (or Halobacteria) are believed to have evolved from a methanogenic ancestor through multiple evolutionary events, including the loss of genes associated with methanogenesis. However, due to the accelerated evolution and compositional bias of proteins adapting to hypersaline habitats, Halobacteria exhibit substantial evolutionary divergence from methanogens, and the identification of the closest methanogen (either Methanonatronarchaeia or other related taxa) to Halobacteria remains a subject of debate. Here, we obtained five metagenome-assembled genomes with high completeness from soda-saline lakes on the Ordos Plateau in Inner Mongolia, China, and we proposed the name Candidatus Ordosarchaeia for this novel class. Phylogenetic analyses revealed that Ca. Ordosarchaeia is firmly positioned near the median position between the Methanonatronarchaeia and Halobacteria-Hikarchaeia lineages. Functional predictions supported the transitional status of Ca. Ordosarchaeia with the metabolic potential of nonmethanogenic and aerobic chemoheterotrophy, as did remnants of the gene sequences of methylamine/dimethylamine/trimethylamine metabolism and coenzyme M biosynthesis. Based on the similarity of the methyl-coenzyme M reductase genes mcrBGADC in Methanonatronarchaeia with the phylogenetically distant methanogens, an alternative evolutionary scenario is proposed, in which Methanonatronarchaeia, Ca. Ordosarchaeia, Ca. Hikarchaeia and Halobacteria share a common ancestor that initially lost mcr genes. However, certain members of Methanonatronarchaeia subsequently acquired mcr genes through horizontal gene transfer from distantly related methanogens. This hypothesis is supported by amalgamated likelihood estimation, phylogenetic analysis, and gene arrangement patterns. Altogether, Ca. Ordosarchaeia genomes clarify the sisterhood of Methanonatronarchaeia with Halobacteria and provide new insights into the evolution from methanogens to haloarchaea.

RevDate: 2024-02-17

Wang X, Zhang H, Yu S, et al (2024)

Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens.

The ISME journal pii:7513094 [Epub ahead of print].

Antimicrobial resistance (AMR) is a major threat for public health. Plasmids play a critical role in the spread of AMR via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occurs mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Multilevel network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multi-drug resistant plasmids.

RevDate: 2024-02-17

Takeuchi N, Fullmer MS, Maddock DJ, et al (2024)

The constructive black queen hypothesis: new functions can evolve under conditions favouring gene loss.

The ISME journal pii:7585950 [Epub ahead of print].

Duplication is a major route for emergence of new gene functions. However, emergence of new gene function via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence. A further pressure contributing to gene loss occurs under Black Queen dynamics, as cheaters that lose the capacity to produce a public good can instead acquire it from neighbouring producers. We propose that Black Queen dynamics can favour the emergence of new function because under an emerging Black Queen dynamic there is high gene redundancy, spread across a community of interacting cells. Using computational modelling, we demonstrate that new gene functions can emerge under Black Queen dynamics. This result holds even if there is deletion bias due to low duplication rates and selection against redundant gene copies resulting from the high cost associated with carrying a locus. However, when the public good production costs are high, Black Queen dynamics impede fixation of new function. Our results expand the mechanisms by which new gene function can emerge in prokaryotic systems.

RevDate: 2024-02-16

Maddamsetti R, Yao Y, Wang T, et al (2024)

Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria.

Nature communications, 15(1):1449.

Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities.

RevDate: 2024-02-16

Holert J, Borker A, Nübel LL, et al (2024)

Bacteria use a catabolic patchwork pathway of apparently recent origin for degradation of the synthetic buffer compound TRIS.

The ISME journal, 18(1):.

The synthetic buffer compound TRIS (2-amino-2-(hydroxymethyl)propane-1,3-diol) is used in countless applications, and no detailed information on its degradation has been published so far. Herein, we describe the discovery of a complete bacterial degradation pathway for TRIS. By serendipity, a Pseudomonas strain was isolated from sewage sludge that was able to grow with TRIS as only carbon and nitrogen source. Genome and transcriptome analyses revealed two adjacent gene clusters embedded in a mobile genetic element on a conjugative plasmid to be involved in TRIS degradation. Heterologous gene expression revealed cluster I to encode a TRIS uptake protein, a TRIS alcohol dehydrogenase, and a TRIS aldehyde dehydrogenase, catalyzing the oxidation of TRIS into 2-hydroxymethylserine. Gene cluster II encodes a methylserine hydroxymethyltransferase (mSHMT) and a d-serine dehydratase that plausibly catalyze the conversion of 2-hydroxymethylserine into pyruvate. Conjugational plasmid transfer into Pseudomonas putida KT2440 enabled this strain to grow with TRIS and with 2-hydromethylserine, demonstrating that the complete TRIS degradation pathway can be transmitted by horizontal gene transfer. Subsequent enrichments from wastewater purification systems led to the isolation of further TRIS-degrading bacteria from the Pseudomonas and Shinella genera carrying highly similar TRIS degradation gene clusters. Our data indicate that TRIS degradation evolved recently via gene recruitment and enzyme adaptation from multiple independent metabolic pathways, and database searches suggest that the TRIS degradation pathway is now globally distributed. Overall, our study illustrates how engineered environments can enhance the emergence of new microbial metabolic pathways in short evolutionary time scales.

RevDate: 2024-02-16

Zheng Y, Wang B, Gao P, et al (2024)

Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments.

The ISME journal, 18(1):.

Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.

RevDate: 2024-02-16

Kolan D, Cattan-Tsaushu E, Enav H, et al (2024)

Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality.

The ISME journal, 18(1):.

Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.

RevDate: 2024-02-17

Zhang S, Yang C, Qiu Y, et al (2024)

Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution.

Virus evolution, 10(1):veae004.

Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.

RevDate: 2024-02-14

Curry KD, Yu FB, Vance SE, et al (2024)

Reference-free Structural Variant Detection in Microbiomes via Long-read Coassembly Graphs.

bioRxiv : the preprint server for biology pii:2024.01.25.577285.

Bacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of clear reference genomes and presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing a single metagenome coassembly graph constructed from all samples in a series. The log fold change in graph coverage between subsequent samples is then calculated to call SVs that are thriving or declining throughout the series. We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, which is particularly noticeable as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between subsequent time and temperature samples, suggesting host advantage. Our innovative approach leverages raw read patterns rather than references or MAGs to include all sequencing reads in analysis, and thus provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial genome dynamics.

RevDate: 2024-02-16
CmpDate: 2024-02-15

Arbulu S, M Kjos (2024)

Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins.

Microbial ecology, 87(1):41.

Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Neil B, Cheney GL, Rosenzweig JA, et al (2024)

Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing.

Applied microbiology and biotechnology, 108(1):205.

Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Bernabeu M, Cabello-Yeves E, Flores E, et al (2024)

Role of vertical and horizontal microbial transmission of antimicrobial resistance genes in early life: insights from maternal-infant dyads.

Current opinion in microbiology, 77:102424.

Early life represents a critical window for metabolic, cognitive and immune system development, which is influenced by the maternal microbiome as well as the infant gut microbiome. Antibiotic exposure, mode of delivery and breastfeeding practices modulate the gut microbiome and the reservoir of antibiotic resistance genes (ARGs). Vertical and horizontal microbial gene transfer during early life and the mechanisms behind these transfers are being uncovered. In this review, we aim to provide an overview of the current knowledge on the transfer of antibiotic resistance in the mother-infant dyad through vertical and horizontal transmission and to highlight the main gaps and challenges in this area.

RevDate: 2024-02-14

Charubin K, Hill JD, ET Papoutsakis (2024)

DNA transfer between two different species mediated by heterologous cell fusion in Clostridium coculture.

mBio, 15(2):e0313323.

Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated C. acetobutylicum cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying C. ljungdahlii strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid C. acetobutylicum/C. ljungdahlii cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of C. acetobutylicum and C. ljungdahlii undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type C. acetobutylicum which acquired the erythromycin resistance (erm) gene from the C. ljungdahlii strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid C. acetobutylicum/C. ljungdahlii cells displaying hybrid DNA-methylation patterns.

RevDate: 2024-02-14

Hofstaedter CE, Chandler CE, Met CM, et al (2024)

Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation.

mBio, 15(2):e0282323.

Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.

RevDate: 2024-02-13

Vargas-Gastélum L, Romer AS, Ghotbi M, et al (2024)

Herptile gut microbiomes: a natural system to study multi-kingdom interactions between filamentous fungi and bacteria.

mSphere [Epub ahead of print].

Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.

RevDate: 2024-02-12

Behling AH, Wilson BC, Ho D, et al (2024)

Horizontal gene transfer after faecal microbiota transplantation in adolescents with obesity.

Microbiome, 12(1):26.

BACKGROUND: Horizontal gene transfer (HGT) describes the transmission of DNA outside of direct ancestral lineages. The process is best characterised within the bacterial kingdom and can enable the acquisition of genetic traits that support bacterial adaptation to novel niches. The adaptation of bacteria to novel niches has particular relevance for faecal microbiota transplantation (FMT), a therapeutic procedure which aims to resolve gut-related health conditions of individuals, through transplanted gut microbiota from healthy donors.

RESULTS: Three hundred eighty-one stool metagenomic samples from a placebo-controlled FMT trial for obese adolescents (the Gut Bugs Trial) were analysed for HGT, using two complementary methodologies. First, all putative HGT events, including historical HGT signatures, were quantified using the bioinformatics application WAAFLE. Second, metagenomic assembly and gene clustering were used to assess and quantify donor-specific genes transferred to recipients following the intervention. Both methodologies found no difference between the level of putative HGT events in the gut microbiomes of FMT and placebo recipients, post-intervention. HGT events facilitated by engrafted donor species in the FMT recipient gut at 6 weeks post-intervention were identified and characterised. Bacterial strains contributing to this subset of HGT events predominantly belonged to the phylum Bacteroidetes. Engraftment-dependent horizontally transferred genes were retained within recipient microbiomes at 12 and 26 weeks post-intervention.

CONCLUSION: Our study suggests that novel microorganisms introduced into the recipient gut following FMT have no impact on the basal rate of HGT within the human gut microbiome. Analyses of further FMT studies are required to assess the generalisability of this conclusion across different FMT study designs and for the treatment of different gut-related conditions. Video Abstract.

RevDate: 2024-02-11

Li Z, Guo X, Liu B, et al (2024)

Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants.

Water research, 253:121289 pii:S0043-1354(24)00191-X [Epub ahead of print].

Antibiotic resistance poses a significant threat to global health, and the microbe-rich activated sludge environment may contribute to the dissemination of antibiotic resistance genes (ARGs). ARGs spread across various bacterial populations via multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages (phages). However, the potential role of phages in spreading ARGs in wastewater treatment systems remains unclear. This study characterized the core resistome, mobile genetic elements (MGEs), and virus-associated ARGs (vir_ARGs) in influents (Inf) and effluents (Eff) samples from nine WWTPs in eastern China. The abundance of ARGs in the Inf samples was higher than that in the Eff samples. A total of 21 core ARGs were identified, accounting for 38.70 %-83.70 % of the different samples. There was an increase in MGEs associated with phage-related processes from influents to effluents (from 12.68 % to 21.10 %). These MGEs showed strong correlations in relative abundance and composition with the core ARGs in the Eff samples. Across the Inf and Eff samples, 58 unique vir_ARGs were detected, with the Eff samples exhibiting higher diversity of vir_ARGs than the Inf samples. Statistical analyses indicated a robust relationship between core ARG profile, MGEs associated with phage-related processes, and vir_ARG composition in the Eff samples. Additionally, the co-occurrence of MGEs and ARGs in viral genomes was observed, ranging from 22.73 % to 68.75 %. This co-occurrence may exacerbate the persistence and spread of ARGs within WWTPs. The findings present new information on the changes in core ARGs, MGEs, and phage-associated ARGs from influents to effluents in WWTPs and provide new insights into the role of phage-associated ARGs in these systems.

RevDate: 2024-02-10

Liu Z, Heng S, Dai Q, et al (2024)

Simultaneous removal of antibiotic resistance genes and improved dewatering ability of waste activated sludge by Fe(II)-activated persulfate oxidation.

Water research, 253:121265 pii:S0043-1354(24)00167-2 [Epub ahead of print].

Waste activated sludge properties vary widely with different regions due to the difference in living standards and geographical distribution, making a big challenge to developing a universally effective sludge dewatering technique. The Fe(II)-activated persulfate (S2O8[2-]) oxidation process shows excellent ability to disrupt sludge cells and extracellular polymeric substances (EPS), and release bound water from sludge flocs. In this study, the discrepancies in the physicochemical characteristics of sludge samples from seven representative cities in China (e.g., dewaterability, EPS composition, surface charge, microbial community, relative abundance of antibiotic resistance genes (ARGs), etc.) were investigated, and the role of Fe(II)-S2O8[2-] oxidation in enhancing removal of antibiotic resistance genes and dewatering ability were explored. The results showed significant differences between the EPS distribution and chemical composition of sludge samples due to different treatment processes, effluent sources, and regions. The Fe(II)-S2O8[2-] oxidation pretreatment had a good enhancement of sludge dewatering capacity (up to 76 %). Microbial analysis showed that the microbial community in each sludge varied significantly depending on the types of wastewater, the wastewater treatment processes, and the regions, but Fe(II)-S2O8[2-] oxidation was able to attack and rupture the sludge zoogloea indiscriminately. Genetic analysis further showed that a considerable number of ARGs were detected in all of these sludge samples and that Fe(II)-S2O8[2-] oxidation was effective in removing ARGs by higher than 90 %. The highly active radicals (e.g., SO4[-]·, ·OH) produced in this process caused drastic damage to sludge microbial cells and DNA stability while liberating the EPS/cell-bound water. Co-occurrence network analysis highlighted a positive correlation between population distribution and ARGs abundance, while variations in microbial communities were linked to regional differences in living standards and level of economic development. Despite these variations, the Fe(II)-S2O8[2-] oxidation consistently achieved excellent performance in both ARGs removal and sludge dewatering. The significant modularity of associations between different microbial communities also confirms its ability to reduce horizontal gene transfer (HGT) by scavenging microbes.

RevDate: 2024-02-12

Zhao Z, Li Y, Zhai JW, et al (2024)

Organelle Genomes of Epipogium roseum Provide Insight into the Evolution of Mycoheterotrophic Orchids.

International journal of molecular sciences, 25(3):.

Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants.

RevDate: 2024-02-10

Zhang J, Wang J, Zhu C, et al (2024)

Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species.

Plants (Basel, Switzerland), 13(3): pii:plants13030429.

Chickpea (Cicer arietinum L.), encompassing the desi and kabuli varieties, is a beloved pulse crop globally. Its cultivation spans over fifty countries, from the Indian subcontinent and southern Europe to the Middle East, North Africa, the Americas, Australia, and China. With a rich composition of carbohydrates and protein, constituting 80% of its dry seed mass, chickpea is also touted for its numerous health benefits, earning it the title of a 'functional food'. In the past two decades, research has extensively explored the rhizobial diversity associated with chickpea and its breeding in various countries across Europe, Asia, and Oceania, aiming to understand its impact on the sustainable yield and quality of chickpea crops. To date, four notable species of Mesorhizobium-M. ciceri, M. mediterraneum, M. muleiense, and M. wenxiniae-have been reported, originally isolated from chickpea root nodules. Other species, such as M. amorphae, M. loti, M. tianshanense, M. oportunistum, M. abyssinicae, and M. shonense, have been identified as potential symbionts of chickpea, possibly acquiring symbiotic genes through lateral gene transfer. While M. ciceri and M. mediterraneum are widely distributed and studied across chickpea-growing regions, they remain absent in China, where M. muleiense and M. wenxiniae are the sole rhizobial species associated with chickpea. The geographic distribution of chickpea rhizobia is believed to be influenced by factors such as genetic characteristics, competitiveness, evolutionary adaptation to local soil conditions, and compatibility with native soil microbes. Inoculating chickpea with suitable rhizobial strains is crucial when introducing the crop to new regions lacking indigenous chickpea rhizobia. The introduction of a novel chickpea variety, coupled with the effective use of rhizobia for inoculation, offers the potential not only to boost the yield and seed quality of chickpeas, but also to enhance crop productivity within rotation and intercropped systems involving chickpea and other crops. Consequently, this advancement holds the promise to drive forward the cause of sustainable agriculture on a global scale.

RevDate: 2024-02-09

Qiu X, Wang B, Ren S, et al (2024)

Regulation of quorum sensing for the manipulation of conjugative transfer of antibiotic resistance genes in wastewater treatment system.

Water research, 253:121222 pii:S0043-1354(24)00122-2 [Epub ahead of print].

The emergence and transmission of antibiotic resistance genes (ARGs) through plasmid-mediated conjugation has become a significant worldwide public health threat. Biofilms are widely recognized as the primary reservoirs for ARGs, providing favorable conditions for horizontal gene transfer. Quorum sensing (QS) plays a critical role in bacterial biofilm formation, which further influences the spread of bacterial resistance. In this study, we examined the effects of vanillin, a QS inhibitor (QSI), at subinhibitory concentrations (sub-MICs) ranging from 0 - 0.1 g/L, on the transfer of ARGs between Escherichia coli and Pseudomonas aeruginosa. Our findings indicated that vanillin at sub-MICs inhibited the conjugative transfer frequency of the RP4 plasmid. This inhibition was supported by the downregulation of plasmid transfer genes. The suppression of conjugation can mainly be attributed to the inhibition of biofilm formation, the synthesis of extracellular polymeric substances (EPS), and the secretion of virulence factors, all of which are regulated by the bacterial QS system. On the other hand, the levels of ROS and cell membrane permeability were not primary explanations for this phenomenon. Furthermore, vanillin also reduced the conjugative transfer frequency of ARGs in wastewater effluent, providing a potential approach to alleviate bacterial resistance in water environments. These findings underscore the regulatory role of QSI in controlling ARGs transfer and have significant implications for manipulating the dissemination of bacterial resistance in the environment.

RevDate: 2024-02-08

Li Q, Chan YB, Galtier N, et al (2024)

The Effect of Copy Number Hemiplasy on Gene Family Evolution.

Systematic biology pii:7603541 [Epub ahead of print].

The evolution of gene families is complex, involving gene-level evolutionary events such as gene duplication, horizontal gene transfer, and gene loss (DTL), and other processes such as incomplete lineage sorting (ILS). Because of this, topological differences often exist between gene trees and species trees. A number of models have been recently developed to explain these discrepancies, the most realistic of which attempt to consider both gene-level events and ILS. When unified in a single model, the interaction between ILS and gene-level events can cause polymorphism in gene copy number, which we refer to as copy number hemiplasy (CNH). In this paper we extend the Wright-Fisher process to include duplications and losses over several species, and show that the probability of CNH for this process can be significant. We study how well two unified models - MLMSC (MultiLocus MultiSpecies Coalescent), which models CNH, and DLCoal (Duplication, Loss, and Coalescence), which does not - approximate the Wright-Fisher process with duplication and loss. We then study the effect of CNH on gene family evolution by comparing MLMSC and DLCoal. We generate comparable gene trees under both models, showing significant differences in various summary statistics; most importantly, CNH reduces the number of gene copies greatly. If this is not taken into account, the traditional method of estimating duplication rates (by counting the number of gene copies) becomes inaccurate. The simulated gene trees are also used for species tree inference with the summary methods ASTRAL and ASTRAL-Pro, demonstrating that their accuracy, based on CNH-unaware simulations calibrated on real data, may have been overestimated.

RevDate: 2024-02-10

Liu Z, BH Good (2024)

Dynamics of bacterial recombination in the human gut microbiome.

PLoS biology, 22(2):e3002472.

Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.

RevDate: 2024-02-08

Ma D, Xu J, Wu M, et al (2024)

Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae.

The New phytologist [Epub ahead of print].

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.

RevDate: 2024-02-07

Sabino YNV, Dias Melo M, da Silva GC, et al (2024)

Unraveling the diversity and dissemination dynamics of antimicrobial resistance genes in Enterobacteriaceae plasmids across diverse ecosystems.

Journal of applied microbiology pii:7602403 [Epub ahead of print].

AIM: The objective of this study was to investigate the antimicrobial resistance genes (ARG) in plasmids of Enterobacteriaceae from soil, sewage, and feces of food-producing animals and humans.

METHODS AND RESULTS: The plasmid sequences were obtained from the NCBI database. For identification of ARG, CARD and RESFINDER were used. Gene conservation and evolution were investigated using DnaSP v.6. The transfer potential of the plasmids was evaluated using oriTfinder and a MOB-based phylogenetic tree was reconstructed using Fastree. We identified a total of 1 064 ARGs in all plasmids analyzed, conferring resistance to 15 groups of antibiotics, mostly aminoglycosides, beta-lactams, and sulfonamides. The greatest number of ARGs per plasmid was found in enterobacteria from chicken feces. Plasmids from Escherichia coli carrying multiple ARGs were found in all ecosystems. Some of the most abundant genes were shared among all ecosystems, including aph(6)-Id, aph(3'')-Ib, tet(A) and sul2. A high level of sequence conservation was found among these genes, and tet(A) and sul2 are under positive selective pressure. Approximately 62% of the plasmids carrying at least one ARG were potentially transferable. Phylogenetic analysis indicated a potential co-evolution of Enterobacteriaceae plasmids in nature.

CONCLUSION: The high abundance of Enterobacteriaceae plasmids from diverse ecosystems carrying ARGs reveals their widespread distribution and importance.

RevDate: 2024-02-06

López Sánchez A, M Lafond (2024)

Predicting horizontal gene transfers with perfect transfer networks.

Algorithms for molecular biology : AMB, 19(1):6.

BACKGROUND: Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity.

OUR CONTRIBUTIONS: We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa under the assumption that characters have unique births, and that once a character is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emergence of organelles, just to name a few. We study the differences between our model and two similar models: perfect phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers required to explain a set of taxa, in the worst case.

RevDate: 2024-02-06

Orel N, Fadeev E, Herndl GJ, et al (2024)

Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii.

BMC genomics, 25(1):146.

BACKGROUND: Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains.

RESULTS: We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen.

CONCLUSIONS: Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.

RevDate: 2024-02-05

Han K, Li J, Yang D, et al (2024)

Detecting horizontal gene transfer with metagenomics co-barcoding sequencing.

Microbiology spectrum [Epub ahead of print].

Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.

RevDate: 2024-02-05

Babajanyan SG, Garushyants SK, Wolf YI, et al (2024)

Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model.

bioRxiv : the preprint server for biology pii:2024.01.17.576128.

Microbiomes are generally characterized by high diversity of coexisting microbial species and strains that remains stable within a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis obtained, namely, pure competition, host-parasite relationship and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environments. These findings show that basic phenomena that are universal in microbial communities, environmental variation and HGT, provide for stabilization of microbial diversity and ecological complexity.

RevDate: 2024-02-03

Stein AM, SJ Biller (2024)

An ocean of diffusible information.

Trends in genetics : TIG pii:S0168-9525(24)00007-6 [Epub ahead of print].

In the ocean, free-living bacteria exist in a dilute world where direct physical interactions between cells are relatively rare. How then do they exchange genetic information via horizontal gene transfer (HGT)? Lücking et al. have explored the world of marine 'protected extracellular DNA' (peDNA), and find that extracellular vesicles (EVs) are likely to play an important role.

RevDate: 2024-02-03

Roisné-Hamelin F, Liu HW, Taschner M, et al (2024)

Structural basis for plasmid restriction by SMC JET nuclease.

Molecular cell pii:S1097-2765(24)00010-8 [Epub ahead of print].

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.

RevDate: 2024-02-03

Banks EJ, TBK Le (2024)

Co-opting bacterial viruses for DNA exchange: structure and regulation of gene transfer agents.

Current opinion in microbiology, 78:102431 pii:S1369-5274(24)00007-9 [Epub ahead of print].

Horizontal gene transfer occurs via a range of mechanisms, including transformation, conjugation and bacteriophage transduction. Gene transfer agents (GTAs) are an alternative, less-studied route for interbacterial DNA exchange. Encoded within bacterial or archaeal genomes, GTAs assemble into phage-like particles that selflessly package and transmit host DNA to recipient bacteria. Several unique features distinguish GTAs from canonical phages such as an inability to self-replicate, thus producing non-infectious particles. GTAs are also deeply integrated into the physiology of the host cell and are maintained under tight host-regulatory control. Recent advances in understanding the structure and regulation of GTAs have provided further insights into a DNA transfer mechanism that is proving increasingly widespread across the bacterial tree of life.

RevDate: 2024-02-02

Yang Z, Guo Z, Gong C, et al (2024)

Two horizontally acquired bacterial genes steer the exceptionally efficient and flexible nitrogenous waste cycling in whiteflies.

Science advances, 10(5):eadi3105.

Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.

RevDate: 2024-02-02

Phillips D, D Noble (2024)

Reply from Daniel Phillips and Denis Noble.

RevDate: 2024-02-02

Chen P, Wang S, Li H, et al (2024)

Comparative genomic analyses of Cutibacterium granulosum provide insights into genomic diversity.

Frontiers in microbiology, 15:1343227.

Cutibacterium granulosum, a commensal bacterium found on human skin, formerly known as Propionibacterium granulosum, rarely causes infections and is generally considered non-pathogenic. Recent research has revealed the transferability of the multidrug-resistant plasmid pTZC1 between C. granulosum and Cutibacterium acnes, the latter being an opportunistic pathogen in surgical site infections. However, there is a noticeable lack of research on the genome of C. granulosum, and the genetic landscape of this species remains largely uncharted. We investigated the genomic features and evolutionary structure of C. granulosum by analyzing a total of 30 Metagenome-Assembled Genomes (MAGs) and isolate genomes retrieved from public databases, as well as those generated in this study. A pan-genome of 6,077 genes was identified for C. granulosum. Remarkably, the 'cloud genes' constituted 62.38% of the pan-genome. Genes associated with mobilome: prophages, transposons [X], defense mechanisms [V] and replication, recombination and repair [L] were enriched in the cloud genome. Phylogenomic analysis revealed two distinct mono-clades, highlighting the genomic diversity of C. granulosum. The genomic diversity was further confirmed by the distribution of Average Nucleotide Identity (ANI) values. The functional profiles analysis of C. granulosum unveiled a wide range of potential Antibiotic Resistance Genes (ARGs) and virulence factors, suggesting its potential tolerance to various environmental challenges. Subtype I-E of the CRISPR-Cas system was the most abundant in these genomes, a feature also detected in C. acnes genomes. Given the widespread distribution of C. granulosum strains within skin microbiome, our findings make a substantial contribution to our broader understanding of the genetic diversity, which may open new avenues for investigating the mechanisms and treatment of conditions such as acne vulgaris.

RevDate: 2024-02-01

Yu S, Ma Q, Huang J, et al (2024)

SMU_1361c regulates the oxidative stress response of Streptococcus mutans.

Applied and environmental microbiology [Epub ahead of print].

Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.

RevDate: 2024-02-02
CmpDate: 2024-02-02

Bálint B, Merényi Z, Hegedüs B, et al (2024)

ContScout: sensitive detection and removal of contamination from annotated genomes.

Nature communications, 15(1):936.

Contamination of genomes is an increasingly recognized problem affecting several downstream applications, from comparative evolutionary genomics to metagenomics. Here we introduce ContScout, a precise tool for eliminating foreign sequences from annotated genomes. It achieves high specificity and sensitivity on synthetic benchmark data even when the contaminant is a closely related species, outperforms competing tools, and can distinguish horizontal gene transfer from contamination. A screen of 844 eukaryotic genomes for contamination identified bacteria as the most common source, followed by fungi and plants. Furthermore, we show that contaminants in ancestral genome reconstructions lead to erroneous early origins of genes and inflate gene loss rates, leading to a false notion of complex ancestral genomes. Taken together, we offer here a tool for sensitive removal of foreign proteins, identify and remove contaminants from diverse eukaryotic genomes and evaluate their impact on phylogenomic analyses.

RevDate: 2024-01-31

Wei J, Luo J, Peng T, et al (2024)

Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology.

Environmental research pii:S0013-9351(24)00240-8 [Epub ahead of print].

Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.

RevDate: 2024-01-31

Anantharajah A, Goormaghtigh F, Nguvuyla Mantu E, et al (2024)

Long-term intensive care unit outbreak of carbapenamase-producing organisms associated with contaminated sink drains.

The Journal of hospital infection, 143:38-47.

BACKGROUND: Between 2018 and 2022, a Belgian tertiary care hospital faced a growing issue with acquiring carbapenemase-producing organisms (CPO), mainly VIM-producing P. aeruginosa (PA-VIM) and NDM-producing Enterobacterales (CPE-NDM) among hospitalized patients in the adult intensive care unit (ICU).

AIM: To investigate this ICU long-term CPO outbreak involving multiple species and a persistent environmental reservoir.

METHODS: Active case finding, environmental sampling, whole-genome sequencing (WGS) analysis of patient and environmental strains, and implemented control strategies were described in this study.

FINDINGS: From 2018 to 2022, 37 patients became colonized or infected with PA-VIM and/or CPE-NDM during their ICU stay. WGS confirmed the epidemiological link between clinical and environmental strains collected from the sink drains with clonal strain dissemination and horizontal gene transfer mediated by plasmid conjugation and/or transposon jumps. Environmental disinfection by quaternary ammonium-based disinfectant and replacement of contaminated equipment failed to eradicate environmental sources. Interestingly, efflux pump genes conferring resistance to quaternary ammonium compounds were widespread in the isolates. As removing sinks was not feasible, a combination of a foaming product degrading the biofilm and foaming disinfectant based on peracetic acid and hydrogen peroxide has been evaluated and has so far prevented recolonization of the proximal sink drain by CPO.

CONCLUSION: The persistence in the hospital environment of antibiotic- and disinfectant-resistant bacteria with the ability to transfer mobile genetic elements poses a serious threat to ICU patients with a risk of shifting towards an endemicity scenario. Innovative strategies are needed to address persistent environmental reservoirs and prevent CPO transmission.

RevDate: 2024-01-30

Wen X, Chen M, Ma B, et al (2024)

Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues.

Waste management (New York, N.Y.), 177:76-85 pii:S0956-053X(24)00059-X [Epub ahead of print].

Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.

RevDate: 2024-01-30

Abdulkadir N, Saraiva JP, Zhang J, et al (2024)

Genome-centric analyses of 165 metagenomes show that mobile genetic elements are crucial for the transmission of antimicrobial resistance genes to pathogens in activated sludge and wastewater.

Microbiology spectrum [Epub ahead of print].

Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens. The potential of these ARGs to be transmitted horizontally or vertically was also determined. A total of 5,916 MAGs (completeness >50%, contamination <10%) were recovered, covering 68 phyla and 279 genera. MAGs were dereplicated into 1,204 genome operational taxonomic units (gOTUs) as a proxy for species (average nucleotide identity >0.95). The dominant ARG classes detected were bacitracin, multi-drug, macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside, and 10.26% of them were located on plasmids. The main hosts of ARGs belonged to Escherichia, Klebsiella, Acinetobacter, Gresbergeria, Mycobacterium, and Thauera. Our data showed that 253 MAGs carried virulence factor genes (VFGs) divided into 44 gOTUs, of which 45 MAGs were carriers of ARGs, indicating that potential human pathogens carried ARGs. Alarmingly, the MAG assigned as Escherichia coli contained 159 VFGs, of which 95 were located on chromosomes and 10 on plasmids. In addition to shedding light on the prevalence of ARGs in individual genomes recovered from activated sludge and wastewater, our study demonstrates a workflow that can identify antimicrobial-resistant pathogens in complex microbial communities.IMPORTANCEAntimicrobial resistance (AMR) threatens the health of humans, animals, and natural ecosystems. In our study, an analysis of 165 metagenomes from wastewater revealed antibiotic-targeted alteration, efflux, and inactivation as the most prevalent AMR mechanisms. We identified several genera correlated with multiple ARGs, including Klebsiella, Escherichia, Acinetobacter, Nitrospira, Ottowia, Pseudomonas, and Thauera, which could have significant implications for AMR transmission. The abundance of bacA, mexL, and aph(3")-I in the genomes calls for their urgent management in wastewater. Our approach could be applied to different ecosystems to assess the risk of potential pathogens containing ARGs. Our findings highlight the importance of managing AMR in wastewater and can help design measures to reduce the transmission and evolution of AMR in these systems.

RevDate: 2024-01-30

Kuo LY, Su HJ, Koubínová D, et al (2023)

Organellar phylogenomics of Ophioglossaceae fern genera.

Frontiers in plant science, 14:1294716.

Previous phylogenies showed conflicting relationships among the subfamilies and genera within the fern family Ophioglossaceae. However, their classification remains unsettled where contrasting classifications recognize four to 15 genera. Since these treatments are mostly based on phylogenetic evidence using limited, plastid-only loci, a phylogenomic understanding is actually necessary to provide conclusive insight into the systematics of the genera. In this study, we have therefore compiled datasets with the broadest sampling of Ophioglossaceae genera to date, including all fifteen currently recognized genera, especially for the first time the South African endemic genus Rhizoglossum. Notably, our comprehensive phylogenomic matrix is based on both plastome and mitogenome genes. Inferred from the coding sequences of 83 plastid and 37 mitochondrial genes, a strongly supported topology for these subfamilies is presented, and is established by analyses using different partitioning approaches and substitution models. At the generic level, most relationships are well resolved except for few within the subfamily Ophioglossoideae. With this new phylogenomic scheme, key morphological and genomic changes were further identified along this backbone. In addition, we confirmed numerous horizontally transferred (HGT) genes in the genera Botrypus, Helminthostachys, Mankyua, Sahashia, and Sceptridium. These HGT genes are most likely located in mitogenomes and are predominately donated from angiosperm Santalales or non-Ophioglossaceae ferns. By our in-depth searches of the organellar genomes, we also provided phylogenetic overviews for the plastid and mitochondrial MORFFO genes found in these Ophioglossaceae ferns.

RevDate: 2024-01-29

Hazra M, Watts JEM, Williams JB, et al (2024)

An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants.

The Science of the total environment pii:S0048-9697(24)00569-2 [Epub ahead of print].

Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.

RevDate: 2024-01-29

Wu Y, L Zhang (2024)

Computing the Bounds of the Number of Reticulations in a Tree-Child Network That Displays a Set of Trees.

Journal of computational biology : a journal of computational molecular cell biology [Epub ahead of print].

Phylogenetic network is an evolutionary model that uses a rooted directed acyclic graph (instead of a tree) to model an evolutionary history of species in which reticulate events (e.g., hybrid speciation or horizontal gene transfer) occurred. Tree-child network is a kind of phylogenetic network with structural constraints. Existing approaches for tree-child network reconstruction can be slow for large data. In this study, we present several computational approaches for bounding from below the number of reticulations in a tree-child network that displays a given set of rooted binary phylogenetic trees. In addition, we also present some theoretical results on bounding from above the number of reticulations. Through simulation, we demonstrate that the new lower bounds on the reticulation number for tree-child networks can practically be computed for large tree data. The bounds can provide estimates of reticulation for relatively large data.

RevDate: 2024-01-28

Kang Y, Wang J, Z Li (2024)

Meta-analysis addressing the characterization of antibiotic resistome in global hospital wastewater.

Journal of hazardous materials, 466:133577 pii:S0304-3894(24)00156-0 [Epub ahead of print].

Hospital wastewater (HWW) is a significant environmental reservoir of antibiotic resistance genes (ARGs). However, currently, no comprehensive understanding exists of the antibiotic resistome in global HWW. In this study, we attempted to address this knowledge gap through an in silico reanalysis of publicly accessible global HWW metagenomic data. We reanalyzed ARGs in 338 HWW samples from 13 countries in Africa, Asia, and Europe. In total, 2420 ARG subtypes belonging to 30 ARG types were detected, dominated by multidrug, beta-lactam, and aminoglycoside resistance genes. ARG composition in Europe differed from that in Asia and Africa. Notably, the ARGs presented co-occurrence with mobile genetic elements (MGEs), metal resistance genes (MRGs), and human bacterial pathogens (HBP), indicating a potential dissemination risk of ARGs in the HWW. Multidrug resistance genes presented co-occurrence with MGEs, MRGs, and HBP, is particularly pronounced. The abundance of contigs that contained ARG, contigs that contained ARG and HBP, contigs that contained ARG and MGE, contigs that contained ARG and MRG were used for health and transmission risk assessment of antibiotic resistome and screened out 40 high risk ARGs in the global HWW. This study first provides a comprehensive characterization and risk of the antibiotic resistome in global HWW.

RevDate: 2024-01-27

Zhu S, Hong J, T Wang (2024)

Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species.

Nature communications, 15(1):800.

Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.

RevDate: 2024-01-27

Kim H, K Yoo (2024)

Marine plastisphere selectively enriches microbial assemblages and antibiotic resistance genes during long-term cultivation periods.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(24)00164-7 [Epub ahead of print].

Several studies have focused on identifying and quantifying suspended plastics in surface and subsurface seawater. Microplastics (MPs) have attracted attention as carriers of antibiotic resistance genes (ARGs) in the marine environment. Plastispheres, specific biofilms on MP, can provide an ideal niche to spread more widely through horizontal gene transfer (HGT), thereby increasing risks to ecosystems and human health. However, the microbial communities formed on different plastic types and ARG abundances during exposure time in natural marine environments remain unclear. Four types of commonly used MPs (polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC)) were periodically cultured (46, 63, and 102 d) in a field-based marine environment to study the co-selection of ARGs and microbial communities in marine plastispheres. After the first 63 d of incubation (p < 0.05), the initial 16S rRNA gene abundance of microorganisms in the plastisphere increased significantly, and the biomass subsequently decreased. These results suggest that MPs can serve as vehicles for various microorganisms to travel to different environments and eventually provide a niche for a variety of microorganisms. Additionally, the qPCR results showed that MPs selectively enriched ARGs. In particular, tetA, tetQ, sul1, and qnrS were selectively enriched in the PVC-MPs. The abundances of intl1, a mobile genetic element, was measured in all MP types for 46 d (5.22 × 10[-5] ± 8.21 × 10[-6] copies/16s rRNA gene copies), 63 d (5.90 × 10[-5] ± 2.49 × 10[-6] copies/16s rRNA gene copies), and 102 d (4.00 × 10[-5] ± 5.11 × 10[-6] copies/16s rRNA gene copies). Network analysis indicated that ARG profiles co-occurred with key biofilm-forming bacteria. This study suggests that the selection of ARGs and their co-occurring bacteria in MPs could potentially accelerate their transmission through HGT in natural marine plastics.

RevDate: 2024-01-26

Goldstein SA, NC Elde (2024)

Recurrent viral capture of cellular phosphodiesterases that antagonize OAS-RNase L.

Proceedings of the National Academy of Sciences of the United States of America, 121(5):e2312691121.

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.

RevDate: 2024-01-26

Lücking D, Alarcón-Schumacher T, S Erdmann (2023)

Distribution and Implications of Haloarchaeal Plasmids Disseminated in Self-Encoded Plasmid Vesicles.

Microorganisms, 12(1): pii:microorganisms12010005.

Even though viruses and plasmids are both drivers of horizontal gene transfer, they differ fundamentally in their mode of transfer. Virus genomes are enclosed in virus capsids and are not dependent on cell-to-cell contacts for their dissemination. In contrast, the transfer of plasmids most often requires physical contact between cells. However, plasmid pR1SE of Halorubrum lacusprofundi is disseminated between cells, independent of cell-cell contacts, in specialized membrane vesicles that contain plasmid proteins. In this study, we searched for pR1SE-like elements in public databases and a metagenomics dataset from Australian salt lakes and identified 40 additional pR1SE-like elements in hypersaline environments worldwide. Herein, these elements are named apHPVs (archaeal plasmids of haloarchaea potentially transferred in plasmid vesicles). They share two sets of closely related proteins with conserved synteny, strongly indicating an organization into different functional clusters. We find that apHPVs, besides transferring themselves, have the potential to transfer large fragments of DNA between host cells, including virus defense systems. Most interestingly, apHPVs likely play an important role in the evolution of viruses and plasmids in haloarchaea, as they appear to recombine with both of them. This further supports the idea that plasmids and viruses are not distinct but closely related mobile genetic elements.

RevDate: 2024-01-26

Gong J, Zeng X, Xu J, et al (2024)

Genomic Characterization of a Plasmid-Free and Highly Drug-Resistant Salmonella enterica Serovar Indiana Isolate in China.

Veterinary sciences, 11(1): pii:vetsci11010046.

The emergence of multi-drug resistant (MDR) Salmonella enterica serovar Indiana (S. Indiana) strains in China is commonly associated with the presence of one or more resistance plasmids harboring integrons pivotal in acquiring antimicrobial resistance (AMR). This study aims to elucidate the genetic makeup of this plasmid-free, highly drug-resistant S. Indiana S1467 strain. Genomic sequencing was performed using Illumina HiSeq 2500 sequencer and PacBio RS II System. Prodigal software predicted putative protein-coding sequences while BLASTP analysis was conducted. The S1467 genome comprises a circular 4,998,300 bp chromosome with an average GC content of 51.81%, encompassing 4709 open reading frames (ORFs). Fifty-four AMR genes were identified, conferring resistance across 16 AMR categories, aligning closely with the strain's antibiotic susceptibility profile. Genomic island prediction unveiled an approximately 51 kb genomic island housing a unique YeeVU toxin-antitoxin system (TAS), a rarity in Salmonella species. This suggests that the AMR gene cluster on the S1467 genomic island may stem from the integration of plasmids originating from other Enterobacteriaceae. This study contributes not only to the understanding of the genomic characteristics of a plasmid-free, highly drug-resistant S. Indiana strain but also sheds light on the intricate mechanisms underlying antimicrobial resistance. The implications of our findings extend to the broader context of horizontal gene transfer between bacterial species, emphasizing the need for continued surveillance and research to address the evolving challenges posed by drug-resistant pathogens.

RevDate: 2024-01-25

Liu D, Zhang Z, Hao Y, et al (2024)

Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae.

BMC genomics, 25(1):114.

BACKGROUND: Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history.

RESULT: We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae.

CONCLUSIONS: We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.

RevDate: 2024-01-25

Harada R, Hirakawa Y, Yabuki A, et al (2024)

Encyclopaedia of family A DNA polymerases localized in organelles: Evolutionary contribution of bacteria including the proto-mitochondrion.

Molecular biology and evolution pii:7589574 [Epub ahead of print].

DNA polymerases (DNAPs) synthesize DNA from deoxyribonucleotides in a semi-conservative manner and serve as the core of DNA replication and repair machineries. In eukaryotic cells, there are two genome-containing organelles, mitochondria and plastids, that were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNAPs that localize and work in them to maintain their genomes. The evolution of organellar DNAPs has yet to be fully understood because of two unsettled issues. First, the diversity of organellar DNAPs has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNAPs that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNAPs known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNAP sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNAPs were further examined experimentally. The results presented here suggest that the diversity of organellar DNAPs has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed two mitochondrial DNAPs, POP and a candidate of the direct descendant of the proto-mitochondrial DNAP, rdxPolA, identified in this study.

RevDate: 2024-01-24

Zhang J, Lu T, Song Y, et al (2024)

Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics.

Environmental science & technology [Epub ahead of print].

Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD.

RevDate: 2024-01-24

Zhang C, You Z, Li S, et al (2024)

NO3[-] as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O2.

Environmental research pii:S0013-9351(24)00181-6 [Epub ahead of print].

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3[-]) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3[-], acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3[-] and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3[-] and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3[-] as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3[-] significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3[-] MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3[-] influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3[-] influence. Thus, NO3[-] as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.

RevDate: 2024-01-23

Keeling PJ (2024)

Horizontal gene transfer in eukaryotes: aligning theory with data.

Nature reviews. Genetics [Epub ahead of print].

Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.

RevDate: 2024-01-23

Sajjad W, Ilahi N, Haq A, et al (2024)

Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes.

Environmental research pii:S0013-9351(24)00192-0 [Epub ahead of print].

Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.

RevDate: 2024-01-23

Teyssonniere EM, Shichino Y, Mito M, et al (2024)

Translation variation across genetic backgrounds reveals a post-transcriptional buffering signature in yeast.

Nucleic acids research pii:7585675 [Epub ahead of print].

Gene expression is known to vary among individuals, and this variability can impact the phenotypic diversity observed in natural populations. While the transcriptome and proteome have been extensively studied, little is known about the translation process itself. Here, we therefore performed ribosome and transcriptomic profiling on a genetically and ecologically diverse set of natural isolates of the Saccharomyces cerevisiae yeast. Interestingly, we found that the Euclidean distances between each profile and the expression fold changes in each pairwise isolate comparison were higher at the transcriptomic level. This observation clearly indicates that the transcriptional variation observed in the different isolates is buffered through a phenomenon known as post-transcriptional buffering at the translation level. Furthermore, this phenomenon seemed to have a specific signature by preferentially affecting essential genes as well as genes involved in complex-forming proteins, and low transcribed genes. We also explored the translation of the S. cerevisiae pangenome and found that the accessory genes related to introgression events displayed similar transcription and translation levels as the core genome. By contrast, genes acquired through horizontal gene transfer events tended to be less efficiently translated. Together, our results highlight both the extent and signature of the post-transcriptional buffering.

RevDate: 2024-01-23

Kaur J, J Kaur (2024)

Comparative genomics of seven genomes of genus Idiomarina reveals important halo adaptations and genes for stress response.

3 Biotech, 14(2):40.

UNLABELLED: The genus Idiomarina consists of halophilic and/or haloalkaliphilic organisms. We compared the complete genomes of seven strains of the genus Idiomarina to investigate its adaptation to saline environment. A total of 1,313 core genes related to salinity tolerance, stress response, antibiotic resistance genes, virulence factors, and drug targets were found. Comparative genomics revealed various genes involved in halo adaptations of these organisms, including transporters and influx or efflux systems for elements such as Fe, Cu, Zn, Pb, and Cd. In agreement with their isolation sources (such as hydrothermal vents and marine sediments) and environments abundant in heavy metals, various resistance proteins and transporters associated with metal tolerance were also identified. These included copper resistance proteins, zinc uptake transcriptional repressor Zur, MerC domain-containing protein, Cd(II)/Pb(II)-responsive transcriptional regulator, Co/Zn/Cd efflux system protein, and mercuric transporter. Interestingly, we observed that the carbohydrate metabolism pathways were incomplete in all the strains and transporters used for absorption of small sugars were also not found in them. Also, the presence of higher proportion of genes involved in protein metabolism than carbohydrate metabolism indicates that proteinaceous substrates act as the major food substrates for these bacterial strains than carbohydrates. Genomic islands were detected in some species, highlighting the role of horizontal gene transfer for acquisition in novel genes. Genomic rearrangements in terms of partially palindromic regions were detected in all strains. To our knowledge, this is the first comprehensive comparative genomics study among the genus Idiomarina revealing unique genomic features within bacterial species inhabiting different ecological niches.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03887-3.

RevDate: 2024-01-23

Ng WL, EH Rego (2024)

A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in M. smegmatis.

bioRxiv : the preprint server for biology pii:2023.06.12.544663.

UNLABELLED: Antibiotic resistance in M. tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that, as in other bacterial species, in M. smegmatis, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2 , DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA.

IMPORTANCE: Unlike many other pathogens, M. tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium M. smegmatis . We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2 , M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.

RevDate: 2024-01-23

Allman ES, Baños H, Garrote-Lopez M, et al (2024)

Identifiability of Level-1 Species Networks from Gene Tree Quartets.

ArXiv pii:2401.06290.

When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors -- the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network.

RevDate: 2024-01-23

Monecke S, Braun SD, Collatz M, et al (2024)

Molecular Characterization of Chimeric Staphylococcus aureus Strains from Waterfowl.

Microorganisms, 12(1): pii:microorganisms12010096.

Staphylococcus aureus is a versatile pathogen that does not only occur in humans but also in various wild and domestic animals, including several avian species. When characterizing S. aureus isolates from waterfowl, isolates were identified as atypical CC133 by DNA microarray analysis. They differed from previously sequenced CC133 strains in the presence of the collagen adhesin gene cna; some also showed a different capsule type and a deviant spa type. Thus, they were subjected to whole-genome sequencing. This revealed multiple insertions of large regions of DNA from other S. aureus lineages into a CC133-derived backbone genome. Three distinct strains were identified based on the size and extent of these inserts. One strain comprised two small inserts of foreign DNA up- and downstream of oriC; one of about 7000 nt or 0.25% originated from CC692 and the other, at ca. 38,000 nt or 1.3% slightly larger one was of CC522 provenance. The second strain carried a larger CC692 insert (nearly 257,000 nt or 10% of the strain's genome), and its CC522-derived insert was also larger, at about 53,500 nt or 2% of the genome). The third strain carried an identical CC692-derived region (in which the same mutations were observed as in the second strain), but it had a considerably larger CC522-like insertion of about 167,000 nt or 5.9% of the genome. Both isolates of the first, and two out of four isolates of the second strain also harbored a hemolysin-beta-integrating prophage carrying "bird-specific" virulence factors, ornithine cyclodeaminase D0K6J8 and a putative protease D0K6J9. Furthermore, isolates had two different variants of SCC elements that lacked mecA/mecC genes. These findings highlight the role of horizontal gene transfer in the evolution of S. aureus facilitated by SCC elements, by phages, and by a yet undescribed mechanism for large-scale exchange of core genomic DNA.

RevDate: 2024-01-22

Musiyiwa K, Simbanegavi TT, Marumure J, et al (2024)

The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum.

Environmental science and pollution research international [Epub ahead of print].

The One World, One Health concept implies that antibiotic resistance (AR) in the soil-microbe-plant resistome is intricately linked to the human resistome. However, the literature is mainly confined to sources and types of AR in soils or microbes, but comprehensive reviews tracking AR in the soil-microbe-plant resistome are limited. The present review applies the source-pathway-receptor concept to understand the sources, behaviour, and health hazards of the soil-microbe-plant resistome. The results showed that the soil-microbe-plant system harbours various antibiotic-resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and mobile genetic elements (MGEs). Anthropogenic sources and drivers include soil application of solid waste, wastewater, biosolids, and industrial waste. Water-, wind-, and human-driven processes and horizontal gene transfer circulate AR in the soil-microbe-plant resistome. The AR in bulk soil, soil components that include soil microorganisms, soil meso- and macro-organisms, and possible mechanisms of AR transfer to soil components and ultimately to plants are discussed. The health risks of the soil-microbe-plant resistome are less studied, but potential impacts include (1) the transfer of AR to previously susceptible organisms and other resistomes, including the human resistome. Overall, the study tracks the behaviour and health risks of AR in the soil-plant system. Future research should focus on (1) ecological risks of AR at different levels of biological organization, (2) partitioning of AR among various phases of the soil-plant system, (3) physico-chemical parameters controlling the fate of AR, and (4) increasing research from low-income regions particularly Africa as most of the available literature is from developed countries.

RevDate: 2024-01-22

Lehmkuhl J, Schneider JS, Werth KLV, et al (2024)

Role of membrane vesicles in the transmission of vancomycin resistance in Enterococcus faecium.

Scientific reports, 14(1):1895.

Clonal transmission and horizontal gene transfer (HGT) contribute to the spread of vancomycin-resistant enterococci (VRE) in global healthcare. Our study investigated vesiduction, a HGT mechanism via membrane vesicles (MVs), for vanA and vanB genes that determine vancomycin resistance. We isolated MVs for VRE of different sequence types (STs) and analysed them by nanoparticle tracking analysis. Selected MV samples were subjected to DNA sequence analysis. In resistance transfer experiments, vancomycin-susceptible enterococci were exposed to MVs and bacterial supernatants of VRE. Compared to bacteria grown in lysogeny broth (MVs/LB), cultivation under vancomycin stress (MVs/VAN) resulted in increased particle concentrations of up to 139-fold (ST80). As a key finding, we could show that VRE isolates of ST80 and ST117 produced remarkably more vesicles at subinhibitory antibiotic concentrations (approx. 9.2 × 10[11] particles/ml for ST80 and 2.4 × 10[11] particles/ml for ST117) than enterococci of other STs (range between 1.8 × 10[10] and 5.3 × 10[10] particles/ml). In those MV samples, the respective resistance genes vanA and vanB were completely verifiable using sequence analysis. Nevertheless, no vancomycin resistance transfer via MVs to vancomycin-susceptible Enterococcus faecium was phenotypically detectable. However, our results outline the potential of future research on ST-specific MV properties, promising new insights into VRE mechanisms.

RevDate: 2024-01-22

Wang Y, Unnikrishnan M, Ramsey B, et al (2024)

In-Cell Association of a Bioorthogonal Tubulin.

Biomacromolecules [Epub ahead of print].

Studies of proteins from one organism in another organism's cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro.

RevDate: 2024-01-22

Vasconcelos PC, Leite EL, Saraiva MMS, et al (2023)

Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis.

Pathogens (Basel, Switzerland), 13(1): pii:pathogens13010023.

This study aimed to investigate the genomic and epidemiological features of a methicillin-resistant Staphylococcus aureus sequence type 1 (MRSA ST1) strain associated with caprine subclinical mastitis. An S. aureus strain was isolated from goat's milk with subclinical mastitis in Paraiba, Northeastern Brazil, by means of aseptic procedures and tested for antimicrobial susceptibility using the disk-diffusion method. Whole genome sequencing was performed using the Illumina MiSeq platform. After genome assembly and annotation, in silico analyses, including multilocus sequence typing (MLST), antimicrobial resistance and stress-response genes, virulence factors, and plasmids detection were performed. A comparative SNP-based phylogenetic analysis was performed using publicly available MRSA genomes. The strain showed phenotypic resistance to cefoxitin, penicillin, and tetracycline and was identified as sequence type 1 (ST1) and spa type 128 (t128). It harbored the SCCmec type IVa (2B), as well as the lukF-PV and lukS-PV genes. The strain was phylogenetically related to six community-acquired MRSA isolates (CA-MRSA) strains associated with human clinical disease in North America, Europe, and Australia. This is the first report of a CA-MRSA strain associated with milk in the Americas. The structural and epidemiologic features reported in the MRSA ST1 carrying a mecA-SCCmec type IVa suggest highly complex mechanisms of horizontal gene transfer in MRSA. The SNP-based phylogenetic analysis suggests a zooanthroponotic transmission, i.e., a strain of human origin.

RevDate: 2024-01-21

Wan Y, Myall AC, Boonyasiri A, et al (2024)

Integrated analysis of patient networks and plasmid genomes reveals a regional, multi-species outbreak of carbapenemase-producing Enterobacterales carrying both blaIMP and mcr-9 genes.

The Journal of infectious diseases pii:7584711 [Epub ahead of print].

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of IMP-encoding CPE amongst diverse Enterobacterales species between 2016 and 2019 across a London regional network.

METHODS: We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE positive patients. Genomes of IMP-encoding CPE isolates were overlayed with patient contacts to imply potential transmission events.

RESULTS: Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, E. coli); 86% (72/84) harboured an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68/72). Phylogenetic analysis of IncHI2 plasmids identified three lineages showing significant association with patient contacts and movements between four hospital sites and across medical specialities, which was missed on initial investigations.

CONCLUSIONS: Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multi-modal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.

RevDate: 2024-01-19

Kogay R, O Zhaxybayeva (2024)

Co-evolution of gene transfer agents and their alphaproteobacterial hosts.

Journal of bacteriology [Epub ahead of print].

Gene transfer agents (GTAs) are enigmatic elements that resemble small viruses and are known to be produced during nutritional stress by some bacteria and archaea. The production of GTAs is regulated by quorum sensing, under which a small fraction of the population acts as GTA producers, while the rest becomes GTA recipients. In contrast to canonical viruses, GTAs cannot propagate themselves because they package pieces of the producing cell's genome. In alphaproteobacteria, GTAs are mostly vertically inherited and reside in their hosts' genomes for hundreds of millions of years. While GTAs' ability to transfer genetic material within a population and their long-term preservation suggest an increased fitness of GTA-producing microbes, the associated benefits and type of selection that maintains GTAs are poorly understood. By comparing rates of evolutionary change in GTA genes to the rates in gene families abundantly present across 293 alphaproteobacterial genomes, we detected 59 gene families that likely co-evolve with GTA genes. These gene families are predominantly involved in stress response, DNA repair, and biofilm formation. We hypothesize that biofilm formation enables the physical proximity of GTA-producing cells, limiting GTA-derived benefits only to a group of closely related cells. We further conjecture that the population structure of biofilm-forming sub-populations ensures that the trait of GTA production is maintained despite the inevitable rise of "cheating" genotypes. Because release of GTA particles kills the producing cell, maintenance of GTAs is an exciting example of social evolution in a microbial population.IMPORTANCEGene transfer agents (GTAs) are viruses domesticated by some archaea and bacteria as vehicles for carrying pieces of the host genome. Produced under certain environmental conditions, GTA particles can deliver DNA to neighboring, closely related cells. The function of GTAs remains uncertain. While making GTAs is suicidal for a cell, GTA-encoding genes are widespread in genomes of alphaproteobacteria. Such GTA persistence implies functional benefits but raises questions about how selection maintains this lethal trait. By showing that GTA genes co-evolve with genes involved in stress response, DNA repair, and biofilm formation, we provide support for the hypothesis that GTAs facilitate DNA exchange during the stress conditions and present a model for how GTAs persist in biofilm-forming bacterial populations despite being lethal.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

Support this website:
Order from Amazon
We will earn a commission.

In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important; we now know that roughly eight percent of the human genome arrived sideways by viral infection—a type of HGT. In The Tangled Tree, “the grandest tale in biology….David Quammen presents the science—and the scientists involved—with patience, candor, and flair” (Nature). We learn about the major players, such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )