About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot

About | BLOGS | Portfolio | Misc | Recommended | What's New | What's Hot


Bibliography Options Menu

23 Sep 2020 at 01:31
Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer


Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About:  RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE

RJR: Recommended Bibliography 23 Sep 2020 at 01:31 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: "(horizontal OR lateral) "gene transfer"" NOT pmcbook NOT ispreviousversion NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2020-08-26
CmpDate: 2020-08-26

Bárdy P, Füzik T, Hrebík D, et al (2020)

Structure and mechanism of DNA delivery of a gene transfer agent.

Nature communications, 11(1):3034 pii:10.1038/s41467-020-16669-9.

Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.

RevDate: 2020-08-23

Sibbald SJ, Eme L, Archibald JM, et al (2020)

Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes.

Trends in parasitology pii:S1471-4922(20)30197-5 [Epub ahead of print].

Lateral gene transfer (LGT) is well known as an important driver of genome evolution in bacteria and archaea, but its importance in eukaryote evolution has yet to be fully elucidated. There is now abundant evidence indicating that LGT has played a role in the adaptation of eukaryotes to new environments and conditions, including host-parasite interactions. However, the mechanisms and frequency of LGT across the tree of eukaryotes remain poorly understood. Here we review evidence for known and potential mechanisms of LGT into diverse eukaryote lineages with a particular focus on protists, and we discuss trends emerging from recently reported examples. We also explore the potential role of LGT in generating 'pan-genomes' in diverse eukaryotic species.

RevDate: 2020-08-17
CmpDate: 2020-08-17

Medina EM, Walsh E, NE Buchler (2019)

Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain.

Current opinion in genetics & development, 58-59:103-110.

Fungi are found in diverse ecological niches as primary decomposers, mutualists, or parasites of plants and animals. Although animals and fungi share a common ancestor, fungi dramatically diversified their life cycle, cell biology, and metabolism as they evolved and colonized new niches. This review focuses on a family of fungal transcription factors (Swi4/Mbp1, APSES, Xbp1, Bqt4) derived from the lateral gene transfer of a KilA-N domain commonly found in prokaryotic and eukaryotic DNA viruses. These virus-derived fungal regulators play central roles in cell cycle, morphogenesis, sexual differentiation, and quiescence. We consider the possible origins of KilA-N and how this viral DNA binding domain came to be intimately associated with fungal processes.

RevDate: 2020-07-23
CmpDate: 2020-07-23

Vos M, Buckling A, B Kuijper (2019)

Sexual Selection in Bacteria?.

Trends in microbiology, 27(12):972-981.

A main mechanism of lateral gene transfer in bacteria is transformation, where cells take up free DNA from the environment which subsequently can be recombined into the genome. Bacteria are also known to actively release DNA into the environment through secretion or lysis, which could aid uptake via transformation. Various evolutionary benefits of DNA uptake and DNA release have been proposed but these have all been framed in the context of natural selection. Here, we interpret bacterial DNA uptake and release in the context of sexual selection theory, which has been central to our understanding of the bewildering diversity of traits associated with sexual reproduction in the eukaryote world but has never been applied to prokaryotes. Specifically, we explore potential scenarios where bacteria releasing DNA into the environment could compete for successful uptake by other cells, or where bacteria could selectively take up DNA to enhance their fitness. We conclude that there is potential for sexual selection to act in bacteria, and that this might in part explain the considerable diversity in transformation-related behaviours.

RevDate: 2020-06-23

Ren FR, Sun X, Wang TY, et al (2020)

Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits.

The ISME journal pii:10.1038/s41396-020-0704-5 [Epub ahead of print].

Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.

RevDate: 2020-06-10

Phansopa C, Dunning LT, Reid JD, et al (2020)

Lateral gene transfer acts as an evolutionary shortcut to efficient C4 biochemistry.

Molecular biology and evolution pii:5855680 [Epub ahead of print].

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyses one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.

RevDate: 2020-06-09

Emamalipour M, Seidi K, Zununi Vahed S, et al (2020)

Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression.

Frontiers in cell and developmental biology, 8:229.

Flexibility in the exchange of genetic material takes place between different organisms of the same or different species. This phenomenon is known to play a key role in the genetic, physiological, and ecological performance of the host. Exchange of genetic materials can cause both beneficial and/or adverse biological consequences. Horizontal gene transfer (HGT) or lateral gene transfer (LGT) as a general mechanism leads to biodiversity and biological innovations in nature. HGT mediators are one of the genetic engineering tools used for selective introduction of desired changes in the genome for gene/cell therapy purposes. HGT, however, is crucial in development, emergence, and recurrence of various human-related diseases, such as cancer, genetic-, metabolic-, and neurodegenerative disorders and can negatively affect the therapeutic outcome by promoting resistant forms or disrupting the performance of genome editing toolkits. Because of the importance of HGT and its vital physio- and pathological roles, here the variety of HGT mechanisms are reviewed, ranging from extracellular vesicles (EVs) and nanotubes in prokaryotes to cell-free DNA and apoptotic bodies in eukaryotes. Next, we argue that HGT plays a role both in the development of useful features and in pathological states associated with emerging and recurrent forms of the disease. A better understanding of the different HGT mediators and their genome-altering effects/potentials may pave the way for the development of more effective therapeutic and diagnostic regimes.

RevDate: 2020-04-08

Rainey PB, SD Quistad (2020)

Toward a dynamical understanding of microbial communities.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1798):20190248.

The challenge of moving beyond descriptions of microbial community composition to the point where understanding underlying eco-evolutionary dynamics emerges is daunting. While it is tempting to simplify through use of model communities composed of a small number of types, there is a risk that such strategies fail to capture processes that might be specific and intrinsic to complexity of the community itself. Here, we describe approaches that embrace this complexity and show that, in combination with metagenomic strategies, dynamical insight is increasingly possible. Arising from these studies is mounting evidence of rapid eco-evolutionary change among lineages and a sense that processes, particularly those mediated by horizontal gene transfer, not only are integral to system function, but are central to long-term persistence. That such dynamic, systems-level insight is now possible, means that the study and manipulation of microbial communities can move to new levels of inquiry. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Dunning LT, PA Christin (2020)

Reticulate evolution, lateral gene transfer, and innovation in plants.

American journal of botany, 107(4):541-544.

RevDate: 2020-03-19

Bykov A, Glazunova O, Alikina O, et al (2020)

Excessive Promoters as Silencers of Genes Horizontally Acquired by Escherichia coli.

Frontiers in molecular biosciences, 7:28.

Horizontally acquired genes are usually transcriptionally inactive, although most of them are associated with genomic loci enriched with promoter-like sequences forming "promoter islands." We hypothesized that lateral DNA transfer induces local mutagenesis, accumulating AT base pairs and creating promoter-like sequences, whose occupancy with RNA polymerase and a specific silencer H-NS suppresses the transcription of foreign genes. Error-prone mutagenesis was implemented for the "promoter island" of a foreign gene appY and the promoter region of an inherent gene dps. Derivatives with changed transcriptional activity were selected using a reporter plasmid pET28_eGFP. Only one cycle of mutagenesis with negative selection suppressed the activity of the main dps promoter to the background level due to a single substitution in its -10 element, while positive selection gave a sequence with improved -35 element, thus testifying feasibility of the approach. The same suppression for appY was achieved by three cycles, while eightfold transcription activation required nine iterations of mutagenesis. In both cases, the number of potential start points decreased resulting in an ordinary regulatory region with only one dominant promoter in the case of positive selection. Efficiency of H-NS binding remained virtually unchanged in all mutant constructs. Based on these findings we conclude that excessive promoters can adversely affect transcription by providing a platform for interference between several RNA polymerase molecules, which can act as a silencer at promoter-dense regions.

RevDate: 2020-03-13

Anyanwu MU, Jaja IF, OC Nwobi (2020)

Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review.

International journal of environmental research and public health, 17(3):.

The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1-3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.

RevDate: 2020-01-30

Zhang Z, Liu W, Shao S, et al (2020)

Diverse Genomic Backgrounds Vs. Highly Conserved Symbiotic Genes in Sesbania-Nodulating Bacteria: Shaping of the Rhizobial Community by Host and Soil Properties.

Microbial ecology pii:10.1007/s00248-020-01489-7 [Epub ahead of print].

Aiming at investigating the overall diversity, biogeography, and symbiosis gene evolutionary history of the Sesbania cannabina-nodulating rhizobia in China, a total of 874 rhizobial isolates originating from the root nodules of this plant grown at different sites were characterized and compared with those of some reference strains. All of the S. cannabina-nodulating rhizobia were classified into 16 (geno) species, including seven novel genospecies in the genera Ensifer, Rhizobium, Neorhizobium, and Agrobacterium, with Ensifer sesbaniae and Neorhizobium huautlense as the dominant and universal species. Ten of these species were found to nodulate other leguminous hosts or to lack nodulating abilities and were defined as symbiovar sesbania. Biogeographic patterns were observed, for which pH, TN, AK, and AP were the main determinants. The effects of pH were opposite to those of TN and AK, while AP presented effects independently of TN, AK, and pH. Symbiotic genes of these rhizobia showed a common origin, but nodA evolved faster than nifH. Point mutation is the main driving force in the evolution of both nodA and nifH, and lateral transfer of symbiotic genes might play an important role in the formation of diverse S. cannabina-nodulating rhizobial species. S. cannabina only nodulates with Sesbania rhizobia, demonstrating its severe selection on rhizobial symbiosis genes. Soil pH and physiochemical characteristics could affect rhizobial survival and competitive nodulation. This study provides insight into the community shifts and evolution of rhizobia in relation to their host and soil environments.

RevDate: 2020-07-03

Loayza-Villa F, Salinas L, Tijet N, et al (2019)

Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household.

Journal of global antimicrobial resistance, 22:63-67 pii:S2213-7165(19)30316-9 [Epub ahead of print].

OBJECTIVE: The aim of this study was to detect potential animal reservoirs of Escherichia coli carrying the mcr-1 gene in an Ecuadorian household.

METHODS: The mobile colistin-resistance gene, mcr-1, was first detected in Ecuador in a commensal E. coli isolate from a boy. A cross-sectional study was performed to detect the possible source of colistin-resistant E. coli in the boy's household. Faecal swabs and soil faecal samples were collected from companion animals. Samples were plated on selective media to isolate colistin-resistant E. coli and isolates were submitted to PCR detection of mcr-1, pulsed field gel electrophoresis (PFGE), and multi-locus sequences typing (MLST). Moreover, the genomes of all the isolates were sequenced.

RESULTS: Three different colistin-resistant E. coli sequence types (ST3941, 1630 and 2170), corresponding to three PFGE patterns, were obtained from a chicken and two dogs; these isolates were different from the human isolate (ST609). By whole-genome sequencing, the mcr-1.1 gene was found on IncI2 plasmids with very high nucleotide identity.

CONCLUSIONS: Our results indicate a polyclonal dissemination of mcr-1.1 in the environment surrounding the first MCR-producing E. coli strain reported in Ecuador. Our findings support the idea of lateral dissemination of mcr-1.1 gene between unrelated E. coli isolates.

RevDate: 2020-05-21

Hasni I, Chelkha N, Baptiste E, et al (2019)

Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome.

Scientific reports, 9(1):18318.

Willaertia magna c2c maky is a thermophilic amoeba closely related to the genus Naegleria. This free-living amoeba has the ability to eliminate Legionella pneumophila, which is an amoeba-resisting bacterium living in an aquatic environment. To prevent the proliferation of L. pneumophila in cooling towers, the use of W. magna as natural biocide has been proposed. To provide a better understanding of the W. magna genome, whole-genome sequencing was performed through the study of virulence factors and lateral gene transfers. This amoeba harbors a genome of 36.5 megabases with 18,519 predicted genes. BLASTp analyses reported protein homology between 136 W. magna sequences and amoeba-resistant microorganisms. Horizontal gene transfers were observed based on the basis of the phylogenetic reconstruction hypothesis. We detected 15 homologs of N. fowleri genes related to virulence, although these latter were also found in the genome of N. gruberi, which is a non-pathogenic amoeba. Furthermore, the cytotoxicity test performed on human cells supports the hypothesis that the strain c2c maky is a non-pathogenic amoeba. This work explores the genomic repertory for the first draft genome of genus Willaertia and provides genomic data for further comparative studies on virulence of related pathogenic amoeba, N. fowleri.

RevDate: 2020-06-05

Olofsson JK, Dunning LT, Lundgren MR, et al (2019)

Population-Specific Selection on Standing Variation Generated by Lateral Gene Transfers in a Grass.

Current biology : CB, 29(22):3921-3927.e5.

Evidence of eukaryote-to-eukaryote lateral gene transfer (LGT) has accumulated in recent years [1-14], but the selective pressures governing the evolutionary fate of these genes within recipient species remain largely unexplored [15, 16]. Among non-parasitic plants, successful LGT has been reported between different grass species [5, 8, 11, 16-19]. Here, we use the grass Alloteropsis semialata, a species that possesses multigene LGT fragments that were acquired recently from distantly related grass species [5, 11, 16], to test the hypothesis that the successful LGT conferred an advantage and were thus rapidly swept into the recipient species. Combining whole-genome and population-level RAD sequencing, we show that the multigene LGT fragments were rapidly integrated in the recipient genome, likely due to positive selection for genes encoding proteins that added novel functions. These fragments also contained physically linked hitchhiking protein-coding genes, and subsequent genomic erosion has generated gene presence-absence polymorphisms that persist in multiple geographic locations, becoming part of the standing genetic variation. Importantly, one of the hitchhiking genes underwent a secondary rapid spread in some populations. This shows that eukaryotic LGT can have a delayed impact, contributing to local adaptation and intraspecific ecological diversification. Therefore, while short-term LGT integration is mediated by positive selection on some of the transferred genes, physically linked hitchhikers can remain functional and augment the standing genetic variation with delayed adaptive consequences.

RevDate: 2020-03-30
CmpDate: 2020-03-30

Manzano-Marı N A, Coeur d'acier A, Clamens AL, et al (2020)

Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems.

The ISME journal, 14(1):259-273.

Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.

RevDate: 2020-03-27
CmpDate: 2020-03-27

John J, George S, Nori SRC, et al (2019)

Phylogenomic Analysis Reveals the Evolutionary Route of Resistant Genes in Staphylococcus aureus.

Genome biology and evolution, 11(10):2917-2926.

Multidrug-resistant Staphylococcus aureus is a leading concern worldwide. Coagulase-Negative Staphylococci are claimed to be the reservoir and source of important resistant elements in S. aureus. However, the origin and evolutionary route of resistant genes in S. aureus are still remaining unknown. Here, we performed a detailed phylogenomic analysis of 152 completely sequenced S. aureus strains in comparison with 7,529 non-Staphylococcus aureus reference bacterial genomes. Our results reveal that S. aureus has a large open pan-genome where 97 (55%) of its known resistant-related genes belonging to its accessory genome. Among these genes, 47 (27%) were located within the Staphylococcal Cassette Chromosome mec (SCCmec), a transposable element responsible for resistance against major classes of antibiotics including beta-lactams, macrolides, and aminoglycosides. However, the physically linked mec-box genes (MecA-MecR-MecI) that are responsible for the maintenance of SCCmec elements is not unique to S. aureus, instead it is widely distributed within Staphylococcaceae family. The phyletic patterns of SCCmec-encoded resistant genes in Staphylococcus species are significantly different from that of its core genes indicating frequent exchange of these genes between Staphylococcus species. Our in-depth analysis of SCCmec-resistant gene phylogenies reveals that genes such as blaZ, ble, kmA, and tetK that are responsible for beta-lactam, bleomycin, kanamycin, and tetracycline resistance in S. aureus were laterally transferred from non-Staphylococcus sources. In addition, at least 11 non-SCCmec-encoded resistant genes in S. aureus, were laterally acquired from distantly related species. Our study evidently shows that gene transfers played a crucial role in shaping the evolution of antibiotic resistance in S. aureus.

RevDate: 2020-06-17

Novák Vanclová AMG, Zoltner M, Kelly S, et al (2020)

Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid.

The New phytologist, 225(4):1578-1592.

Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.

RevDate: 2020-02-26
CmpDate: 2020-02-26

Mi-Ichi F, H Yoshida (2019)

Unique Features of Entamoeba Sulfur Metabolism; Compartmentalization, Physiological Roles of Terminal Products, Evolution and Pharmaceutical Exploitation.

International journal of molecular sciences, 20(19):.

Sulfur metabolism is essential for all living organisms. Recently, unique features of the Entamoeba metabolic pathway for sulfated biomolecules have been described. Entamoeba is a genus in the phylum Amoebozoa and includes the causative agent for amoebiasis, a global public health problem. This review gives an overview of the general features of the synthesis and degradation of sulfated biomolecules, and then highlights the characteristics that are unique to Entamoeba. Future biological and pharmaceutical perspectives are also discussed.

RevDate: 2020-02-25

Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, et al (2019)

Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition.

Frontiers in microbiology, 10:1965.

Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.

RevDate: 2020-06-05

Yoshida S, Kim S, Wafula EK, et al (2019)

Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism.

Current biology : CB, 29(18):3041-3052.e4.

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.

RevDate: 2020-03-09
CmpDate: 2020-03-09

Kim BJ, Kim GN, Kim BR, et al (2019)

New Mycobacteroides abscessus subsp. massiliense strains with recombinant hsp65 gene laterally transferred from Mycobacteroides abscessus subsp. abscessus: Potential for misidentification of M. abscessus strains with the hsp65-based method.

PloS one, 14(9):e0220312.

It has been reported that lateral gene transfer (LGT) events among Mycobacteroides abscessus strains are prevalent. The hsp65 gene, a chronometer gene for bacterial phylogenetic analysis, is resistant to LGT events, particularly among mycobacterial strains, rendering the hsp65-targeting method the most widely used method for mycobacterial detection. To determine the prevalence of M. abscessus strains that are subject to hsp65 LGT, we applied rpoB typing to 100 clinically isolated Korean strains of M. abscessus that had been identified by hsp65 sequence analysis. The analysis indicated the presence of 2 rough strains, showing a discrepancy between the 2 typing methods. MLST analysis based on the partial sequencing of seven housekeeping genes, erm(41) PCR and further hsp65 PCR-restriction enzyme and polymorphism analysis (PRA) were conducted to identify the two strains. The MLST results showed that the two strains belong to M. abscessus subsp. massiliense and not to M. abscessus subsp. abscessus, as indicated by the rpoB-based analysis, suggesting that their hsp65 genes are subject to LGT from M. abscessus subsp. abscessus. Further analysis of these strains using the hsp65 PRA method indicated that these strains possess a PRA pattern identical to that of M. abscessus subsp. abscessus and distinct from that of M. abscessus subsp. massiliense. In conclusion, we identified two M. abscessus subsp. massiliense rough strains from Korean patients with hsp65 genes that might be laterally transferred from M. abscessus subsp. abscessus. To the best of our knowledge, this is the first demonstration of possible LGT events associated with the hsp65 gene in mycobacteria. Our results also suggest that there is the potential for misidentification when the hsp65-based protocol is used for mycobacterial identification.

RevDate: 2020-03-16
CmpDate: 2020-03-16

Jiménez-González A, Xu F, JO Andersson (2019)

Lateral Acquisitions Repeatedly Remodel the Oxygen Detoxification Pathway in Diplomonads and Relatives.

Genome biology and evolution, 11(9):2542-2556.

Oxygen and reactive oxygen species (ROS) are important stress factors for cells because they can oxidize many large molecules. Fornicata, a group of flagellated protists that includes diplomonads, have anaerobic metabolism but are still able to tolerate fluctuating levels of oxygen. We identified 25 protein families putatively involved in detoxification of oxygen and ROS in this group using a bioinformatics approach and propose how these interact in an oxygen detoxification pathway. These protein families were divided into a central oxygen detoxification pathway and accessory pathways for the synthesis of nonprotein thiols. We then used a phylogenetic approach to investigate the evolutionary origin of the components of this putative pathway in Diplomonadida and other Fornicata species. Our analyses suggested that the diplomonad ancestor was adapted to low-oxygen levels, was able to reduce O2 to H2O in a manner similar to extant diplomonads, and was able to synthesize glutathione and l-cysteine. Several genes involved in the pathway have complex evolutionary histories and have apparently been repeatedly acquired through lateral gene transfer and subsequently lost. At least seven genes were acquired independently in different Fornicata lineages, leading to evolutionary convergences. It is likely that acquiring these oxygen detoxification proteins helped anaerobic organisms (like the parasitic Giardia intestinalis) adapt to low-oxygen environments (such as the digestive tract of aerobic hosts).

RevDate: 2020-03-27
CmpDate: 2020-03-27

Douglas GM, MGI Langille (2019)

Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes.

Genome biology and evolution, 11(10):2750-2766.

High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.

RevDate: 2020-06-09
CmpDate: 2020-06-09

Suchland RJ, Carrell SJ, Wang Y, et al (2019)

Chromosomal Recombination Targets in Chlamydia Interspecies Lateral Gene Transfer.

Journal of bacteriology, 201(23):.

Lateral gene transfer (LGT) among Chlamydia trachomatis strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any Chlamydia spp. from any other species. Interspecies LGT in this system was analyzed using crosses of tetracycline (Tc)-resistant C. trachomatis L2/434 and chloramphenicol (Cam)-resistant C. muridarum VR-123. Parental C. muridarum strains were created using a plasmid-based Himar transposition system, which led to integration of the Camr marker randomly across the chromosome. Fragments encompassing 79% of the C. muridarum chromosome were introduced into a C. trachomatis background, with the total coverage contained on 142 independent recombinant clones. Genome sequence analysis of progeny strains identified candidate recombination hot spots, a property not consistent with in vitroC. trachomatis × C. trachomatis (intraspecies) crosses. In both interspecies and intraspecies crosses, there were examples of duplications, mosaic recombination endpoints, and recombined sequences that were not linked to the selection marker. Quantitative analysis of the distribution and constitution of inserted sequences indicated that there are different constraints on interspecies LGT than on intraspecies crosses. These constraints may help explain why there is so little evidence of interspecies genetic exchange in this system, which is in contrast to very widespread intraspecies exchange in C. trachomatisIMPORTANCE Genome sequence analysis has demonstrated that there is widespread lateral gene transfer among strains within the species C. trachomatis and with other closely related Chlamydia species in laboratory experiments. This is in contrast to the complete absence of foreign DNA in the genomes of sequenced clinical C. trachomatis strains. There is no understanding of any mechanisms of genetic transfer in this important group of pathogens. In this report, we demonstrate that interspecies genetic exchange can occur but that the nature of the fragments exchanged is different than those observed in intraspecies crosses. We also generated a large hybrid strain library that can be exploited to examine important aspects of chlamydial disease.

RevDate: 2020-06-17
CmpDate: 2020-06-17

Breusing C, Johnson SB, Vrijenhoek RC, et al (2019)

Host hybridization as a potential mechanism of lateral symbiont transfer in deep-sea vesicomyid clams.

Molecular ecology, 28(21):4697-4708.

Deep-sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co-occur at deep-sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome-wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep-sea chemosynthetic environments.

RevDate: 2020-02-25

Dunning Hotopp JC, Matsumura J, Bromley RE, et al (2019)

TwinBLAST: When Two Is Better than One.

Microbiology resource announcements, 8(35):.

Analysis of sequence read pairs can be essential for characterizing structural variation, including junction-spanning pairs of reads (JSPRs) suggesting recent lateral/horizontal gene transfer. TwinBLAST can be used to facilitate this analysis of JSPRs by enabling the visualization and curation of two BLAST reports side by side in a single interface.

RevDate: 2020-04-27
CmpDate: 2020-04-27

LaBrie SD, Dimond ZE, Harrison KS, et al (2019)

Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.

mBio, 10(4):.

Transposon mutagenesis is a widely applied and powerful genetic tool for the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a clinically significant, obligate intracellular bacterium for which many conventional genetic tools and capabilities have been developed only recently. This report describes the successful development and application of a Himar transposon mutagenesis system for generating single-insertion mutant clones of C. trachomatis This system was used to generate a pool of 105 transposon mutant clones that included insertions in genes encoding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis148 [ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of Tn mutant clones was evaluated for growth differences under cell culture conditions, revealing that most phenocopied the parental strain; however, some strains displayed subtle and yet significant differences in infectious progeny production and inclusion sizes. Bacterial burden studies in mice also supported the idea that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for these infections. The ct339 gene encodes a hypothetical protein with limited sequence similarity to the DNA-uptake protein ComEC. A transposon insertion in ct339 rendered the mutant incapable of DNA acquisition during recombination experiments. This observation, along with in situ structural analysis, supports the idea that this protein is playing a role in the fundamental process of lateral gene transfer similar to that of ComEC. In all, the development of the Himar transposon system for Chlamydia provides an effective genetic tool for further discovery of genes that are important for basic biology and pathogenesis aspects.IMPORTANCEChlamydia trachomatis infections have an immense impact on public health; however, understanding the basic biology and pathogenesis of this organism has been stalled by the limited repertoire of genetic tools. This report describes the successful adaptation of an important tool that has been lacking in Chlamydia studies: transposon mutagenesis. This advance enabled the generation of 105 insertional mutants, demonstrating that numerous gene products are not essential for in vitro growth. Mammalian infections using these mutants revealed that several gene products are important for infections in vivo Moreover, this tool enabled the investigation and discovery of a gene critical for lateral gene transfer; a process fundamental to the evolution of bacteria and likely for Chlamydia as well. The development of transposon mutagenesis for Chlamydia has broad impact for the field and for the discovery of genes associated with selected phenotypes, providing an additional avenue for the discovery of molecular mechanisms used for pathogenesis and for a more thorough understanding of this important pathogen.

RevDate: 2019-12-03
CmpDate: 2019-12-03

Negri A, Jąkalski M, Szczuka A, et al (2019)

Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor.

Nucleic acids research, 47(18):9542-9556.

Restriction-modification (R-M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R-M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R-M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R-M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.

RevDate: 2020-03-09
CmpDate: 2020-02-21

Kobras CM, D Falush (2019)

Adapting for life in the extreme.

eLife, 8:.

Red algae have adapted to extreme environments by acquiring genes from bacteria and archaea.

RevDate: 2020-02-25

Vigué L, A Eyre-Walker (2019)

The comparative population genetics of Neisseria meningitidis and Neisseria gonorrhoeae.

PeerJ, 7:e7216.

Neisseria meningitidis and N. gonorrhoeae are closely related pathogenic bacteria. To compare their population genetics, we compiled a dataset of 1,145 genes found across 20 N. meningitidis and 15 N. gonorrhoeae genomes. We find that N. meningitidis is seven-times more diverse than N. gonorrhoeae in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however, we find that N. meningitidis has acquired more of its diversity by recombination than N. gonorrhoeae. We find that linkage disequilibrium (LD) declines rapidly across the genomes of both species. Several observations suggest that N. meningitidis has a higher effective population size than N. gonorrhoeae; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and LD declines more rapidly to a lower asymptote in N. meningitidis. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different levels of lateral gene transfer. However, we also find some evidence that the effective population size varies across the genome. We test for adaptive evolution in the core genome using a McDonald-Kreitman test and by considering the diversity around non-synonymous sites that are fixed for different alleles in the two species. We find some evidence for adaptive evolution using both approaches.

RevDate: 2020-01-08
CmpDate: 2020-01-08

Watson AK, Lannes R, Pathmanathan JS, et al (2019)

The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evolution.

Methods in molecular biology (Clifton, N.J.), 1910:271-308.

In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are increasingly used to complement phylogenetic analysis in studies in molecular evolution, including comparative genomics, classification, and ecological studies. Using network methods, the vertical and horizontal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile genetic elements, can be explored in a single expandable graph. In recent years, development of new methods for the construction and analysis of networks has helped to broaden the availability of these approaches from programmers to a diversity of users. This chapter introduces the different kinds of networks based on sequence similarity that are already available to tackle a wide range of biological questions, including sequence similarity networks, gene-sharing networks and bipartite graphs, and a guide for their construction and analyses.

RevDate: 2019-11-04
CmpDate: 2019-11-04

Poey ME, Azpiroz MF, M Laviña (2019)

On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli.

Microbial pathogenesis, 135:103611.

Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1+ conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1+ plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1+ clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Parker BJ, JA Brisson (2019)

A Laterally Transferred Viral Gene Modifies Aphid Wing Plasticity.

Current biology : CB, 29(12):2098-2103.e5.

Organisms often respond to changing environments by altering development of particular traits. These plastic traits exhibit genetic variation; i.e., genotypes respond differently to the same environmental cues. Theoretical studies have demonstrated the importance of this variation, which is targeted by natural selection, in adapting plastic responses to maximize fitness [1, 2]. However, little is known about the underlying genetic mechanisms. We identify two laterally transferred genes that contribute to variation in a classic example of phenotypic plasticity: the pea aphid's ability to produce winged offspring in response to crowding. We discovered that aphid genotypes vary extensively for this trait and that aphid genes of viral origin are upregulated in response to crowding solely in highly inducible genotypes. We knocked down expression of these genes to demonstrate their functional role in wing plasticity. Through phylogenetic analysis, we found that these genes likely originated from a virus that infects rosy apple aphids and causes their hosts to produce winged offspring [3]. The function of these genes has therefore been retained following transfer to pea aphids. Our results uncover a novel role for co-opted viral genes, demonstrating that they are used to modulate ecologically relevant, plastic phenotypes. Our findings also address a critical question about the evolution of environmentally sensitive traits: whether the genes that control the expression of plastic traits also underlie variation in plasticity. The genes we identify originated from outside aphids themselves, and thus, our work shows that genes formerly unrelated to plasticity can fine-tune the strength of plastic responses to the environment.

RevDate: 2020-04-21
CmpDate: 2020-02-24

Rossoni AW, Price DC, Seger M, et al (2019)

The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions.

eLife, 8:.

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.

RevDate: 2020-04-02
CmpDate: 2020-04-02

Khanppnavar B, Chatterjee R, Choudhury GB, et al (2019)

Genome-wide survey and crystallographic analysis suggests a role for both horizontal gene transfer and duplication in pantothenate biosynthesis pathways.

Biochimica et biophysica acta. General subjects, 1863(10):1547-1559.

Pantothenate is the metabolic precursor of Coenzyme A, an indispensable cofactor for many fundamental cellular processes. In this study, we show that many bacterial species have acquired multiple copies of pantothenate biosynthesis pathway genes via horizontal and vertical gene transfer events. Some bacterial species were also found to lack panE and panD genes, and depended on alternative enzymes/metabolic sources for pantothenate production. To shed light on the factors responsible for such dynamic evolutionary selections, the structural and functional characteristics of P. aeruginosa ketopantoate reductase (KPR), an enzyme that catalyzes the rate-limiting step and also the most duplicated, was investigated. A comparative analysis of apo and NADP+ bound crystal structures of P. aeruginosa KPR with orthologs, revealed that the residues involved in the interaction with specific phosphate moiety of NADP+ are relatively less conserved, suggesting dynamic evolutionary trajectories in KPRs for redox cofactor selection. Our structural and biochemical data also show that the specific conformational changes mediated by NADPH binding facilitate the cooperative binding of ketopantoate. From drastically reduced catalytic activity for NADH catalyzed the reaction with significantly higher KM of ketopantoate, it appears that the binding of ketopantoate is allosterically regulated to confer redox cofactor specificity. Altogether, our results, in compliance with earlier studies, not only depict the role of lateral gene transfer events in many bacterial species for enhancing pantothenate production but also highlight the possible role of redox cofactor balance in the regulation of pantothenate biosynthesis pathways.

RevDate: 2020-01-22
CmpDate: 2020-01-22

Jung CM, Carr M, Blakeney GA, et al (2019)

Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9.

Journal of industrial microbiology & biotechnology, 46(9-10):1273-1281.

Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.

RevDate: 2020-03-09
CmpDate: 2020-02-06

Cummins ML, Roy Chowdhury P, Marenda MS, et al (2019)

Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate.

mSphere, 4(3):.

Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3' end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023.IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3' end of trmE For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.

RevDate: 2020-06-29
CmpDate: 2020-06-29

Kang CS, Dunfield PF, JD Semrau (2019)

The origin of aerobic methanotrophy within the Proteobacteria.

FEMS microbiology letters, 366(9):.

Aerobic methanotrophs play critical roles in the global carbon cycle, but despite their environmental ubiquity, they are phylogenetically restricted. Via bioinformatic analyses, it is shown that methanotrophy likely arose from methylotrophy from the lateral gene transfer of either of the two known forms of methane monooxygenase (particulate and soluble methane monooxygenases). Moreover, it appears that both known forms of pyrroloquinoline quinone-dependent methanol dehydrogenase (MeDH) found in methanotrophs-the calcium-containing Mxa-MeDH and the rare earth element-containing Xox-MeDH-were likely encoded in the genomes before the acquisition of the methane monooxygenases (MMOs), but that some methanotrophs subsequently received an additional copy of Xox-MeDH-encoding genes via lateral gene transfer. Further, data are presented that indicate the evolution of methanotrophy from methylotrophy not only required lateral transfer of genes encoding for methane monooxygenases, but also likely the pre-existence of a means of collecting copper. Given the emerging interest in valorizing methane via biological platforms, it is recommended that future strategies for heterologous expression of methane monooxygenase for conversion of methane to methanol also include cloning of genes encoding mechanism(s) of copper uptake, especially for expression of particulate methane monooxygenase.

RevDate: 2019-08-07
CmpDate: 2019-08-07

Aijuka M, EM Buys (2019)

Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health.

Food microbiology, 82:363-370.

Diarrheagenic Escherichia coli (DEC) is a leading cause of foodborne illness associated with intestinal disease. While known over the years that contamination of food sources occurs via the oral faecal-route, the mechanisms underlying its persistence within the open environments including the food chain remains virtually unknown. Therefore, in this mini-review we will shed light on bacterial processes such as initial attachment, biofilm formation, horizontal gene transfer and response to environmental stresses. These factors may enable persistence of DEC as well as the emergence of potentially more virulent strains within the agricultural and food production environment. Mechanistic studies in clinical microbiology and immunology have elucidated infection pathways in the human and other animal bodies leading to diagnostic and treatment solutions. Therefore, understanding DEC behaviour in the agricultural and food production environment is crucial for ensuring food safety and public health by reducing the burden of foodborne illnesses.

RevDate: 2020-03-09
CmpDate: 2019-07-08

Siddavattam D, Yakkala H, D Samantarrai (2019)

Lateral transfer of organophosphate degradation (opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness.

Journal of genetics, 98:.

Genes encoding structurally independent phosphotriesterases (PTEs) are identified in soil bacteria. These pte genes, often identified on mobilizable and self-transmissible plasmids are organized as mobile genetic elements. Their dissemination through lateral gene transfer is evident due to the detection of identical organophosphate degradation genes among soil bacteria with little orno taxonomic relationship. Convergent evolution of PTEs provided selective advantages to the bacterial strain as they convert toxic phosphotriesters (PTs) into a source of phosphate. The residues of organophosphate (OP) compounds that accumulate in a soil are proposed to contribute to the evolution of PTEs through substrate-assisted gain-of-function. This review provides comprehensive information on lateral transfer of pte genes and critically examines proposed hypotheses on their evolution in the light of the short half-life of OPs in the environment. The review also proposes alternate factors that have possibly contributed to the evolution and lateral mobility of PTEs by taking into account their biology and analyses of pte genes in genomic and metagenomic databases.

RevDate: 2020-03-09
CmpDate: 2019-07-30

Panfilio KA, Vargas Jentzsch IM, Benoit JB, et al (2019)

Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.

Genome biology, 20(1):64.

BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.

RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding.

CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.

RevDate: 2020-02-10
CmpDate: 2020-02-10

Rahbar MR, Zarei M, Jahangiri A, et al (2019)

Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 71:116-127.

Trimeric autotransporter (TAA), also known as type Vc secretion system, is expressed by many strains of Acinetobacter baumannii, an opportunistic pathogen, which is responsible for nosocomial infections worldwide. TAAs, are modular homotrimeric virulence factors, containing a signal peptide, complex stalk, and conserved membrane anchoring domain. The evolutionary mechanisms underlying the evolvement of these adhesins are not clear. Here, we showed that TAA genes were laterally acquired and underwent gene duplication and recombination. The heterogeneity of TAA nucleotide sequences, GC content, codon usage, and the probability of recombination and duplication events were assessed by MEGA7. Given the heterogeneity of sequences, we used all-against-all BLAST for clustering the TAAs. The pattern of distribution of TAAs are highly scattered; GC content and codon usage for these genes are variable. Multiple events of lateral gene transfer from the early history of Acinetobacter and the occurrence of gene duplication, gene loss, and recombination after acquiring the alien genes may explain the scattered pattern of distribution of TAAs. Additionally, this gene is not present in many clinical isolates of A. baumannii, thus is not a single virulence factor attributing to the infection. The advantage of harboring such genes might be adopting to different environments by developing the biofilm communities. We suggested that TAA genes were laterally acquired in the environmental context and incidentally provided some benefits at the infection site. Thus, coincidental evolution theory may be better suited for describing the evolution of TAA genes in A. baumannii genomes.

RevDate: 2020-02-25
CmpDate: 2019-07-12

Oppong YEA, Phelan J, Perdigão J, et al (2019)

Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance.

BMC genomics, 20(1):252.

BACKGROUND: Continuing evolution of the Mycobacterium tuberculosis (Mtb) complex genomes associated with resistance to anti-tuberculosis drugs is threatening tuberculosis disease control efforts. Both multi- and extensively drug resistant Mtb (MDR and XDR, respectively) are increasing in prevalence, but the full set of Mtb genes involved are not known. There is a need for increased sensitivity of genome-wide approaches in order to elucidate the genetic basis of anti-microbial drug resistance and gain a more detailed understanding of Mtb genome evolution in a context of widespread antimicrobial therapy. Population structure within the Mtb complex, due to clonal expansion, lack of lateral gene transfer and low levels of recombination between lineages, may be reducing statistical power to detect drug resistance associated variants.

RESULTS: To investigate the effect of lineage-specific effects on the identification of drug resistance associations, we applied genome-wide association study (GWAS) and convergence-based (PhyC) methods to multiple drug resistance phenotypes of a global dataset of Mtb lineages 2 and 4, using both lineage-wise and combined approaches. We identify both well-established drug resistance variants and novel associations; uniquely identifying associations for both lineage-specific and -combined GWAS analyses. We report 17 potential novel associations between antimicrobial resistance phenotypes and Mtb genomic variants.

CONCLUSIONS: For GWAS, both lineage-specific and -combined analyses are useful, whereas PhyC may perform better in contexts of greater diversity. Unique associations with XDR in lineage-specific analyses provide evidence of diverging evolutionary trajectories between lineages 2 and 4 in response to antimicrobial drug therapy.

RevDate: 2020-02-25

Ayala-Ruano S, Santander-Gordón D, Tejera E, et al (2019)

A putative antimicrobial peptide from Hymenoptera in the megaplasmid pSCL4 of Streptomyces clavuligerus ATCC 27064 reveals a singular case of horizontal gene transfer with potential applications.

Ecology and evolution, 9(5):2602-2614.

Streptomyces clavuligerus is a Gram-positive bacterium that is a high producer of secondary metabolites with industrial applications. The production of antibiotics such as clavulanic acid or cephamycin has been extensively studied in this species; nevertheless, other aspects, such as evolution or ecology, have received less attention. Furthermore, genes that arise from ancient events of lateral transfer have been demonstrated to be implicated in important functions of host species. This approximation discovered relevant genes that genomic analyses overlooked. Thus, we studied the impact of horizontal gene transfer in the S. clavuligerus genome. To perform this task, we applied whole-genome analysis to identify a laterally transferred sequence from different domains. The most relevant result was a putative antimicrobial peptide (AMP) with a clear origin in the Hymenoptera order of insects. Next, we determined that two copies of these genes were present in the megaplasmid pSCL4 but absent in the S. clavuligerus ATCC 27064 chromosome. Additionally, we found that these sequences were exclusive to the ATCC 27064 strain (and so were not present in any other bacteria) and we also verified the expression of the genes using RNAseq data. Next, we used several AMP predictors to validate the original annotation extracted from Hymenoptera sequences and explored the possibility that these proteins had post-translational modifications using peptidase cleavage prediction. We suggest that Hymenoptera AMP-like proteins of S. clavuligerus ATCC 27064 may be useful for both species adaptation and as an antimicrobial molecule with industrial applications.

RevDate: 2020-02-25
CmpDate: 2019-05-31

Milner DS, Attah V, Cook E, et al (2019)

Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes.

Proceedings of the National Academy of Sciences of the United States of America, 116(12):5613-5622.

Many microbes acquire metabolites in a "feeding" process where complex polymers are broken down in the environment to their subunits. The subsequent uptake of soluble metabolites by a cell, sometimes called osmotrophy, is facilitated by transporter proteins. As such, the diversification of osmotrophic microorganisms is closely tied to the diversification of transporter functions. Horizontal gene transfer (HGT) has been suggested to produce genetic variation that can lead to adaptation, allowing lineages to acquire traits and expand niche ranges. Transporter genes often encode single-gene phenotypes and tend to have low protein-protein interaction complexity and, as such, are potential candidates for HGT. Here we test the idea that HGT has underpinned the expansion of metabolic potential and substrate utilization via transfer of transporter-encoding genes. Using phylogenomics, we identify seven cases of transporter-gene HGT between fungal phyla, and investigate compatibility, localization, function, and fitness consequences when these genes are expressed in Saccharomyces cerevisiae Using this approach, we demonstrate that the transporters identified can alter how fungi utilize a range of metabolites, including peptides, polyols, and sugars. We then show, for one model gene, that transporter gene acquisition by HGT can significantly alter the fitness landscape of S. cerevisiae We therefore provide evidence that transporter HGT occurs between fungi, alters how fungi can acquire metabolites, and can drive gain in fitness. We propose a "transporter-gene acquisition ratchet," where transporter repertoires are continually augmented by duplication, HGT, and differential loss, collectively acting to overwrite, fine-tune, and diversify the complement of transporters present in a genome.

RevDate: 2019-03-18
CmpDate: 2019-03-18

Forgione I, Bonavita S, TMR Regina (2019)

Mitochondria of Cedrus atlantica and allied species: A new chapter in the horizontal gene transfer history.

Plant science : an international journal of experimental plant biology, 281:93-101.

The extraordinary incidence of Horizontal Gene Transfer (HGT) mostly in mitochondrial genomes of flowering plants is well known. Here, we report another episode of HGT affecting a large mitochondrial gene region in the evergreen conifer Atlas cedar (Cedrus atlantica). Mitochondria of this Pinaceae species possess an rps3 gene that harbours two introns and shares the same genomic context with a downstream overlapping rpl16 gene, like in the major groups of gymnosperms and angiosperms analyzed so far. Interestingly, C. atlantica contains additional copies of the rps3 and rpl16 sequences that are more closely related to angiosperm counterparts than to those from gymnosperms, as also confirmed by phylogenetic analyses. This suggests that a lateral transfer from a flowering plant donor is the most likely mechanism for the origin of the Atlas cedar extra sequences. Quantitative PCR and reverse-transcription (RT)-PCR analyses demonstrate, respectively, mitochondrial location and lack of expression for the rps3 and rpl16 additional sequences in C. atlantica. Furthermore, our study provides evidence that a similar HGT event takes place in two other Cedrus species, which occurr in Cyprus and North Africa. Only the West Himalayan C. deodara lacks the transferred genes. The potential donor and the molecular mechanism underlying this lateral DNA transfer remain still unclear.

RevDate: 2019-07-16
CmpDate: 2019-07-16

Trasviña-Arenas CH, David SS, Delaye L, et al (2019)

Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer.

DNA repair, 76:76-88.

During its life cycle, the protist parasite Entamoeba histolytica encounters reactive oxygen and nitrogen species that alter its genome. Base excision repair (BER) is one of the most important pathways for the repair of DNA base lesions. Analysis of the E. histolytica genome revealed the presence of most of the BER components. Surprisingly, this included a gene encoding an apurinic/apyrimidinic (AP) endonuclease that previous studies had assumed was absent. Indeed, our analysis showed that the genome of E. histolytica harbors the necessary genes needed for both short and long-patch BER sub-pathways. These genes include DNA polymerases with predicted 5'-dRP lyase and strand-displacement activities and a sole DNA ligase. A distinct feature of the E. histolytica genome is the lack of several key damage-specific BER glycosylases, such as OGG1/MutM, MDB4, Mag1, MPG, SMUG, and TDG. Our evolutionary analysis indicates that several E. histolytica DNA glycosylases were acquired by lateral gene transfer (LGT). The genes that encode for MutY, AlkD, and UDG (Family VI) are included among these cases. Endonuclease III and UNG (family I) are the only DNA glycosylases with a eukaryotic origin in E. histolytica. A gene encoding a MutT 8-oxodGTPase was also identified that was acquired by LGT. The mixed composition of BER genes as a DNA metabolic pathway shaped by LGT in E. histolytica indicates that LGT plays a major role in the evolution of this eukaryote. Sequence and structural prediction of E. histolytica DNA glycosylases, as well as MutT, suggest that the E. histolytica DNA repair proteins evolved to harbor structural modifications that may confer unique biochemical features needed for the biology of this parasite.

RevDate: 2020-04-08
CmpDate: 2020-04-06

Dunning LT, Olofsson JK, Parisod C, et al (2019)

Lateral transfers of large DNA fragments spread functional genes among grasses.

Proceedings of the National Academy of Sciences of the United States of America, 116(10):4416-4425.

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.

RevDate: 2020-05-05
CmpDate: 2020-05-04

Liu F, McDonald M, Schwessinger B, et al (2019)

Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity.

Molecular plant pathology, 20(5):656-672.

The rice XA21-mediated immune response is activated on recognition of the RaxX peptide produced by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The 60-residue RaxX precursor is post-translationally modified to form a sulfated tyrosine peptide that shares sequence and functional similarity with the plant sulfated tyrosine (PSY) peptide hormones. The 5-kb raxX-raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosylprotein sulfotransferase, and the RaxA and RaxB components of a predicted type I secretion system. To assess raxX-raxSTAB gene cluster evolution and to determine its phylogenetic distribution, we first identified rax gene homologues in other genomes. We detected the complete raxX-raxSTAB gene cluster only in Xanthomonas spp., in five distinct lineages in addition to X. oryzae. The phylogenetic distribution of the raxX-raxSTAB gene cluster is consistent with the occurrence of multiple lateral (horizontal) gene transfer events during Xanthomonas speciation. RaxX natural variants contain a restricted set of missense substitutions, as expected if selection acts to maintain peptide hormone-like function. Indeed, eight RaxX variants tested all failed to activate the XA21-mediated immune response, yet retained peptide hormone activity. Together, these observations support the hypothesis that the XA21 receptor evolved specifically to recognize Xoo RaxX.

RevDate: 2020-02-25
CmpDate: 2019-05-07

Nedelcu AM (2019)

Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer.

Development genes and evolution, 229(1):25-34.

The evolution of multicellularity is a premier example of phenotypic convergence: simple multicellularity evolved independently many times, and complex multicellular phenotypes are found in several distant groups. Furthermore, both animal and plant lineages have independently reached extreme levels of morphological, functional, and developmental complexity. This study explores the genetic basis for the parallel evolution of complex multicellularity and development in the animal and green plant (i.e., green algae and land plants) lineages. Specifically, the study (i) identifies the SAND domain-a DNA-binding domain with important roles in the regulation of cell proliferation and differentiation, as unique to animals, green algae, and land plants; and (ii) suggests that the parallel deployment of this ancestral domain in similar regulatory roles could have contributed to the independent evolution of complex development in these distant groups. Given the deep animal-green plant divergence, the limited distribution of the SAND domain is best explained by invoking a lateral gene transfer (LGT) event from a green alga to an early metazoan. The presence of a sequence motif specifically shared by a family of SAND-containing transcription factors involved in the evolution of complex multicellularity in volvocine algae and two types of SAND proteins that emerged early in the evolution of animals is consistent with this scenario. Overall, these findings imply that (i) in addition to be involved in the evolution of similar phenotypes, deep homologous sequences can also contribute to shaping parallel evolutionary trajectories in distant lineages, and (ii) LGT could provide an additional source of latent homologous sequences that can be deployed in analogous roles and affect the evolutionary potentials of distantly related groups.

RevDate: 2020-02-25

Oliveira ACP, Ferreira RM, Ferro MIT, et al (2018)

Transposons and pathogenicity in Xanthomonas: acquisition of murein lytic transglycosylases by TnXax1 enhances Xanthomonas citri subsp. citri 306 virulence and fitness.

PeerJ, 6:e6111.

Xanthomonas citri subsp. citri 306 (XccA) is the causal agent of type A citrus canker (CC), one of the most significant citriculture diseases. Murein lytic transglycosylases (LT), potentially involved in XccA pathogenicity, are enzymes responsible for peptidoglycan structure assembly, remodeling and degradation. They directly impact cell wall expansion during bacterial growth, septum division allowing cell separation, cell wall remodeling allowing flagellar assembly, bacterial conjugation, muropeptide recycling, and secretion system assembly, in particular the Type 3 Secretion System involved in bacterial virulence, which play a fundamental role in XccA pathogenicity. Information about the XccA LT arsenal is patchy: little is known about family diversity, their exact role or their connection to virulence in this bacterium. Among the LTs with possible involvement in virulence, two paralogue open reading frames (ORFs) (one on the chromosome and one in plasmid pXAC64) are passenger genes of the Tn3 family transposon TnXax1, known to play a significant role in the evolution and emergence of pathogenicity in Xanthomonadales and to carry a variety of virulence determinants. This study addresses LT diversity in the XccA genome and examines the role of plasmid and chromosomal TnXax1 LT passenger genes using site-directed deletion mutagenesis and functional characterization. We identified 13 XccA LTs: 12 belong to families 1A, 1B, 1C, 1D (two copies), 1F, 1G, 3A, 3B (two copies), 5A, 6A and one which is non-categorized. The non-categorized LT is exclusive to the Xanthomonas genus and related to the 3B family but contains an additional domain linked to carbohydrate metabolism. The categorized LTs are probably involved in cell wall remodeling to allow insertion of type 3, 4 and 6 secretion systems, flagellum assembly, division and recycling of cell wall and degradation and control of peptidoglycan production. The TnXax1 passenger LT genes (3B family) are not essential to XccA or for CC development but are implicated in peptidoglycan metabolism, directly impacting bacterial fitness and CC symptom enhancement in susceptible hosts (e.g., Citrus sinensis). This underlines the role of TnXax1 as a virulence and pathogenicity-propagating agent in XccA and suggests that LT acquisition by horizontal gene transfer mediated by TnXax1 may improve bacterial fitness, conferring adaptive advantages to the plant-pathogen interaction process.

RevDate: 2020-03-09
CmpDate: 2019-03-18

Pang TY, MJ Lercher (2019)

Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment.

Proceedings of the National Academy of Sciences of the United States of America, 116(1):187-192.

Even closely related prokaryotes often show an astounding diversity in their ability to grow in different nutritional environments. It has been hypothesized that complex metabolic adaptations-those requiring the independent acquisition of multiple new genes-can evolve via selectively neutral intermediates. However, it is unclear whether this neutral exploration of phenotype space occurs in nature, or what fraction of metabolic adaptations is indeed complex. Here, we reconstruct metabolic models for the ancestors of a phylogeny of 53 Escherichia coli strains, linking genotypes to phenotypes on a genome-wide, macroevolutionary scale. Based on the ancestral and extant metabolic models, we identify 3,323 phenotypic innovations in the history of the E. coli clade that arose through changes in accessory genome content. Of these innovations, 1,998 allow growth in previously inaccessible environments, while 1,325 increase biomass yield. Strikingly, every observed innovation arose through the horizontal acquisition of a single DNA segment less than 30 kb long. Although we found no evidence for the contribution of selectively neutral processes, 10.6% of metabolic innovations were facilitated by horizontal gene transfers on earlier phylogenetic branches, consistent with a stepwise adaptation to successive environments. Ninety-eight percent of metabolic phenotypes accessible to the combined E. coli pangenome can be bestowed on any individual strain by transferring a single DNA segment from one of the extant strains. These results demonstrate an amazing ability of the E. coli lineage to adapt to novel environments through single horizontal gene transfers (followed by regulatory adaptations), an ability likely mirrored in other clades of generalist bacteria.

RevDate: 2020-03-09
CmpDate: 2019-07-01

Jaffe AL, Castelle CJ, Dupont CL, et al (2019)

Lateral Gene Transfer Shapes the Distribution of RuBisCO among Candidate Phyla Radiation Bacteria and DPANN Archaea.

Molecular biology and evolution, 36(3):435-446.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the most abundant enzyme on Earth. Despite this, its full diversity and distribution across the domains of life remain to be determined. Here, we leverage a large set of bacterial, archaeal, and viral genomes recovered from the environment to expand our understanding of existing RuBisCO diversity and the evolutionary processes responsible for its distribution. Specifically, we report a new type of RuBisCO present in Candidate Phyla Radiation (CPR) bacteria that is related to the archaeal Form III enzyme and contains the amino acid residues necessary for carboxylase activity. Genome-level metabolic analyses supported the inference that these RuBisCO function in a CO2-incorporating pathway that consumes nucleotides. Importantly, some Gottesmanbacteria (CPR) also encode a phosphoribulokinase that may augment carbon metabolism through a partial Calvin-Benson-Bassham cycle. Based on the scattered distribution of RuBisCO and its discordant evolutionary history, we conclude that this enzyme has been extensively laterally transferred across the CPR bacteria and DPANN archaea. We also report RuBisCO-like proteins in phage genomes from diverse environments. These sequences cluster with proteins in the Beckwithbacteria (CPR), implicating phage as a possible mechanism of RuBisCO transfer. Finally, we synthesize our metabolic and evolutionary analyses to suggest that lateral gene transfer of RuBisCO may have facilitated major shifts in carbon metabolism in several important bacterial and archaeal lineages.

RevDate: 2020-03-09
CmpDate: 2019-11-25

Duricki DA, Drndarski S, Bernanos M, et al (2019)

Stroke Recovery in Rats after 24-Hour-Delayed Intramuscular Neurotrophin-3 Infusion.

Annals of neurology, 85(1):32-46.

OBJECTIVE: Neurotrophin-3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke.

METHODS: Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps.

RESULTS: Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri-infarct blood oxygenation level-dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways.

INTERPRETATION: Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke. ANN NEUROL 2019;85:32-46.

RevDate: 2020-02-25
CmpDate: 2019-03-26

Gong L, Yu P, Zheng H, et al (2019)

Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1.

Molecular genetics and genomics : MGG, 294(2):417-430.

Vibriocholerae, which is autochthonous to estuaries worldwide, can cause human cholera that is still pandemic in developing countries. A number of V. cholerae isolates of clinical and environmental origin worldwide have been subjected to genome sequencing to address their phylogenesis and bacterial pathogenesis, however, little genome information is available for V. cholerae isolates derived from estuaries, particularly in China. In this study, we determined the complete genome sequence of V. cholerae CHN108B (non-O1/O139 serogroup) isolated from the Yangtze River Estuary, China and performed comparative genome analysis between CHN108B and other eight representative V. cholerae isolates. The 4,168,545-bp V. cholerae CHN108B genome (47.2% G+C) consists of two circular chromosomes with 3,691 predicted protein-encoding genes. It has 110 strain-specific genes, the highest number among the eight representative V. cholerae whole genomes from serogroup O1: there are seven clinical isolates linked to cholera pandemics (1937-2010) and one environmental isolate from Brazil. Various mobile genetic elements (such as insertion sequences, prophages, integrative and conjugative elements, and super-integrons) were identified in the nine V. cholerae genomes of clinical and environmental origin, indicating that the bacterium undergoes extensive genetic recombination via lateral gene transfer. Comparative genomics also revealed different virulence and antimicrobial resistance gene patterns among the V. cholerae isolates, suggesting some potential virulence factors and the rising development of resistance among pathogenic V. cholerae. Additionally, draft genome sequences of multiple V. cholerae isolates recovered from the Yangtze River Estuary were also determined, and comparative genomics revealed many genes involved in specific metabolism pathways, which are likely shaped by the unique estuary environment. These results provide additional evidence of V. cholerae genome plasticity and will facilitate better understanding of the genome evolution and pathogenesis of this severe water-borne pathogen worldwide.

RevDate: 2020-04-15
CmpDate: 2019-04-11

Dong X, Chaisiri K, Xia D, et al (2018)

Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism.

GigaScience, 7(12):.

Background: Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium.

Results: Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae.

Conclusions: Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.

RevDate: 2019-12-17
CmpDate: 2019-12-10

Cenci U, Qiu H, Pillonel T, et al (2018)

Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida.

Scientific reports, 8(1):15243.

Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.

RevDate: 2019-11-20

Sand KK, S Jelavić (2018)

Mineral Facilitated Horizontal Gene Transfer: A New Principle for Evolution of Life?.

Frontiers in microbiology, 9:2217.

A number of studies have highlighted that adsorption to minerals increases DNA longevity in the environment. Such DNA-mineral associations can essentially serve as pools of genes that can be stored across time. Importantly, this DNA is available for incorporation into alien organisms through the process of horizontal gene transfer (HGT). Here we argue that minerals hold an unrecognized potential for successfully transferring genetic material across environments and timescales to distant organisms and hypothesize that this process has significantly influenced the evolution of life. Our hypothesis is illustrated in the context of the evolution of early microbial life and the oxygenation of the Earth's atmosphere and offers an explanation for observed outbursts of evolutionary events caused by HGT.

RevDate: 2020-06-19
CmpDate: 2020-03-23

Reid CJ, DeMaere MZ, SP Djordjevic (2019)

Australian porcine clonal complex 10 (CC10) Escherichia coli belong to multiple sublineages of a highly diverse global CC10 phylogeny.

Microbial genomics, 5(3):.

We recently identified clonal complex 10 (CC10) Escherichia coli as the predominant clonal group in two populations of healthy Australian food-production pigs. CC10 are highly successful, colonizing humans, food-production animals, fresh produce and environmental niches. Furthermore, E. coli within CC10 are frequently drug resistant and increasingly reported as human and animal extra-intestinal pathogens. In order to develop a high-resolution global phylogeny and determine the repertoire of antimicrobial-resistance genes, virulence-associated genes and plasmid types within this clonal group, we downloaded 228 publicly available CC10 short-read genome sequences for comparison with 20 porcine CC10 we have previously described. Core genome single nucleotide polymorphism phylogeny revealed a highly diverse global phylogeny consisting of multiple lineages that did not cluster by geography or source of the isolates. Australian porcine strains belonged to several of these divergent lineages, indicative that CC10 is present in these animals due to multiple colonization events. Differences in resistance gene and plasmid carriage between porcine strains and the global collection highlighted the role of lateral gene transfer in the evolution of CC10 strains. Virulence profiles typical of extra-intestinal pathogenic E. coli were present in both Australian porcine strains and the broader collection. As both the core phylogeny and accessory gene characteristics appeared unrelated to the geography or source of the isolates, it is likely that the global expansion of CC10 is not a recent event and may be associated with faecal carriage in humans.

RevDate: 2019-11-20

Chelkha N, Levasseur A, Pontarotti P, et al (2018)

A Phylogenomic Study of Acanthamoeba polyphaga Draft Genome Sequences Suggests Genetic Exchanges With Giant Viruses.

Frontiers in microbiology, 9:2098.

Acanthamoeba are ubiquitous phagocytes predominant in soil and water which can ingest many microbes. Giant viruses of amoebae are listed among the Acanthamoeba-resisting microorganisms. Their sympatric lifestyle within amoebae is suspected to promote lateral nucleotide sequence transfers. Some Acanthamoeba species have shown differences in their susceptibility to giant viruses. Until recently, only the genome of a single Acanthamoeba castellanii Neff was available. We analyzed the draft genome sequences of Acanthamoeba polyphaga through several approaches, including comparative genomics, phylogeny, and sequence networks, with the aim of detecting putative nucleotide sequence exchanges with giant viruses. We identified a putative sequence trafficking between this Acanthamoeba species and giant viruses, with 366 genes best matching with viral genes. Among viruses, Pandoraviruses provided the greatest number of best hits with 117 (32%) for A. polyphaga. Then, genes from mimiviruses, Mollivirus sibericum, marseilleviruses, and Pithovirus sibericum were best hits in 67 (18%), 35 (9%), 24 (7%), and 2 (0.5%) cases, respectively. Phylogenetic reconstructions showed in a few cases that the most parsimonious evolutionary scenarios were a transfer of gene sequences from giant viruses to A. polyphaga. Nevertheless, in most cases, phylogenies were inconclusive regarding the sense of the sequence flow. The number and nature of putative nucleotide sequence transfers between A. polyphaga, and A. castellanii ATCC 50370 on the one hand, and pandoraviruses, mimiviruses and marseilleviruses on the other hand were analyzed. The results showed a lower number of differences within the same giant viral family compared to between different giant virus families. The evolution of 10 scaffolds that were identified among the 14 Acanthamoeba sp. draft genome sequences and that harbored ≥ 3 genes best matching with viruses showed a conservation of these scaffolds and their 46 viral genes in A. polyphaga, A. castellanii ATCC 50370 and A. pearcei. In contrast, the number of conserved genes decreased for other Acanthamoeba species, and none of these 46 genes were present in three of them. Overall, this work opens up several potential avenues for future studies on the interactions between Acanthamoeba species and giant viruses.

RevDate: 2019-02-15
CmpDate: 2019-02-07

Sitaraman R (2018)

Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities.

Microbiome, 6(1):163.

The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.

RevDate: 2019-01-09
CmpDate: 2019-01-09

Alizadeh N, Seyyed Mousavi MN, Hajibonabi F, et al (2018)

Microbes involving in carcinogenesis; growing state of the art.

Microbial pathogenesis, 125:1-6.

Lateral gene transfer (LGT) has been demonstrated as a transfer process of novel genes between different species. LGT proceedings are occurring between microbes and plants, as well as between microbes and animals. New evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Due to the important role of genetic changes in the increase of cell proliferation and cancer development, we reviewed the effects of microbial-animal LGT in human oncogenesis. In addition, viral DNA can induce cancer development by random insertion into cancer-related genes or by inducing translocations. In conclusion, growing evidence shows the contribution of the microbial genome in cancer and autoimmune disease.

RevDate: 2019-02-15
CmpDate: 2019-02-04

Liu C, Wright B, Allen-Vercoe E, et al (2018)

Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions.

Genome biology and evolution, 10(9):2255-2265.

Homologous genes in prokaryotes can be described using phylogenetic profiles which summarize their patterns of presence or absence across a set of genomes. Phylogenetic profiles have been used for nearly twenty years to cluster genes based on measures such as the Euclidean distance between profile vectors. However, most approaches do not take into account the phylogenetic relationships amongst the profiled genomes, and overrepresentation of certain taxonomic groups (i.e., pathogenic species with many sequenced representatives) can skew the interpretation of profiles. We propose a new approach that uses a coevolutionary method defined by Pagel to account for the phylogenetic relationships amongst target organisms, and a hierarchical-clustering approach to define sets of genes with common distributions across the organisms. The clusters we obtain using our method show greater evidence of phylogenetic and functional clustering than a recently published approach based on hidden Markov models. Our clustering method identifies sets of amino-acid biosynthesis genes that constitute cohesive pathways, and motility/chemotaxis genes with common histories of descent and lateral gene transfer.

RevDate: 2019-06-03
CmpDate: 2019-06-03

Mansfield MJ, Sugiman-Marangos SN, Melnyk RA, et al (2018)

Identification of a diphtheria toxin-like gene family beyond the Corynebacterium genus.

FEBS letters, 592(16):2693-2705.

Diphtheria toxin (DT), produced by Corynebacterium diphtheria, is the causative agent of diphtheria and one of the most potent protein toxins known; however, it has an unclear evolutionary history. Here, we report the discovery of a DT-like gene family in several bacterial lineages outside of Corynebacterium, including Austwickia and Streptomyces. These DT-like genes form sister lineages in the DT phylogeny and conserve key DT features including catalytic and translocation motifs, but possess divergent receptor-binding domains. DT-like genes are not associated with corynephage, but have undergone lateral transfer through a separate mechanism. The discovery of the first non-Corynebacterium homologs of DT sheds light on its evolutionary origin and highlights novelties that may have resulted in the emergence of DT targeting humans.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Fleshman A, Mullins K, Sahl J, et al (2018)

Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity.

Microbial genomics, 4(9):.

Orientia tsutsugamushi, formerly Rickettsia tsutsugamushi, is an obligate intracellular pathogen that causes scrub typhus, an underdiagnosed acute febrile disease with high morbidity. Scrub typhus is transmitted by the larval stage (chigger) of Leptotrombidium mites and is irregularly distributed across endemic regions of Asia, Australia and islands of the western Pacific Ocean. Previous work to understand population genetics in O. tsutsugamushi has been based on sub-genomic sampling methods and whole-genome characterization of two genomes. In this study, we compared 40 genomes from geographically dispersed areas and confirmed patterns of extensive homologous recombination likely driven by transposons, conjugative elements and repetitive sequences. High rates of lateral gene transfer (LGT) among O. tsutsugamushi genomes appear to have effectively eliminated a detectable clonal frame, but not our ability to infer evolutionary relationships and phylogeographical clustering. Pan-genomic comparisons using 31 082 high-quality bacterial genomes from 253 species suggests that genomic duplication in O. tsutsugamushi is almost unparalleled. Unlike other highly recombinant species where the uptake of exogenous DNA largely drives genomic diversity, the pan-genome of O. tsutsugamushi is driven by duplication and divergence. Extensive gene innovation by duplication is most commonly attributed to plants and animals and, in contrast with LGT, is thought to be only a minor evolutionary mechanism for bacteria. The near unprecedented evolutionary characteristics of O. tsutsugamushi, coupled with extensive intra-specific LGT, expand our present understanding of rapid bacterial evolutionary adaptive mechanisms.

RevDate: 2019-09-16
CmpDate: 2019-09-16

Rands CM, Starikova EV, Brüssow H, et al (2018)

ACI-1 beta-lactamase is widespread across human gut microbiomes in Negativicutes due to transposons harboured by tailed prophages.

Environmental microbiology, 20(6):2288-2300.

Antibiotic resistance is increasing among pathogens, and the human microbiome contains a reservoir of antibiotic resistance genes. Acidaminococcus intestini is the first Negativicute bacterium (Gram-negative Firmicute) shown to be resistant to beta-lactam antibiotics. Resistance is conferred by the aci1 gene, but its evolutionary history and prevalence remain obscure. We discovered that ACI-1 proteins are phylogenetically distinct from beta-lactamases of Gram-positive Firmicutes and that aci1 occurs in bacteria scattered across the Negativicute clade, suggesting lateral gene transfer. In the reference A. intestini RyC-MR95 genome, we found transposons residing within a tailed prophage context are likely vehicles for aci1's mobility. We found aci1 in 56 (4.4%) of 1,267 human gut metagenomes, mostly hosted within A. intestini, and, where could be determined, mostly within a consistent mobile element constellation. These samples are from Europe, China and the USA, showing that aci1 is distributed globally. We found that for most Negativicute assemblies with aci1, the prophage observed in A. instestini is absent, but in all cases aci1 is flanked by varying transposons. The chimeric mobile elements we identify here likely have a complex evolutionary history and potentially provide multiple complementary mechanisms for antibiotic resistance gene transfer both within and between cells.

RevDate: 2019-03-20
CmpDate: 2019-02-19

Santona A, Taviani E, Hoang HM, et al (2018)

Emergence of unusual vanA/vanB2 genotype in a highly mutated vanB2-vancomycin-resistant hospital-associated E. faecium background in Vietnam.

International journal of antimicrobial agents, 52(5):586-592.

Enterococcus faecium has become a globally disseminated nosocomial pathogen mainly because of acquisition and diffusion of virulence factors and multidrug resistance determinants, including glycopeptides, which are some of the last resort antimicrobials used to treat more serious infections common in high-risk patients. In this study we investigated and characterized hospital-associated (HA) E. faecium isolates collected at Hue Central Hospital, Vietnam. Our results highlighted the spread among hospital wards of a surprisingly heterogeneous multidrug-resistant E. faecium population comprising five different CC17-related sequence types (STs), of which 46% VREf carry the vanB gene. Whole genome sequencing of selected E. faecium isolates showed that VREf from different STs carried the same chromosomal integrated Tn1549-like transposon, with a highly mutated vanB2-operon, showing an increased level of vancomycin resistance (VanB phenotype) and able, in one isolate, to confer resistance to teicoplanin (VanA incongruent phenotype). Two unusual vanA/vanB2-type strains were detected within the vanB2-type ST17 population, harbouring a Tn1546-vanA-like transposon in pJEG40-like plasmids. Wg-SNPs-based analysis showed the genetic relatedness of VSEf/VREf of the same STs and indicated lateral exchange of the Tn1549-like element among isolates followed by clonal expansion. Microevolution among ST17 isolates, including the vanA/vanB2-type strains, and inter-wards VREf transmission, were highlighted. The use of teicoplanin is strongly discouraged in the study hospital because of the spreading of Tn1549-vanB2 associated to teicoplanin resistance. A rational use of glycopeptides and effective surveillance measures are required to reduce nosocomial VSEF/VREf spread and to avoid the rise of unusual and misleading VREf genotypes.

RevDate: 2019-11-20

Andrews M, De Meyer S, James EK, et al (2018)

Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance.

Genes, 9(7):.

Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.

RevDate: 2019-10-16
CmpDate: 2019-10-16

Beye M, Hasni I, Seng P, et al (2018)

Genomic analysis of a Raoultella ornithinolytica strain causing prosthetic joint infection in an immunocompetent patient.

Scientific reports, 8(1):9462.

We sequenced the genome of Raoultella ornithinolytica strain Marseille-P1025 that caused a rare case of prosthetic joint infection in a 67-year-old immunocompetent male. The 6.7-Mb genome exhibited a genomic island (RoGI) that was unique among R. ornithinolytica strains. RoGI was likely acquired by lateral gene transfer from a member of the Pectobacterium genus and coded for a type IVa secretion system found in other pathogenic bacteria and that may have conferred strain Marseille-P1025 an increased virulence. Strain Marseille-P1025 was also able to infect, multiply within, and kill Acanthamoaeba castellanii amoebae.

RevDate: 2020-02-25
CmpDate: 2019-11-21

Yair Y, U Gophna (2019)

Repeat modularity as a beneficial property of multiple CRISPR-Cas systems.

RNA biology, 16(4):585-587.

CRISPR-Cas systems are a highly effective immune mechanism for prokaryotes, providing defense against invading foreign DNA. By definition, all CRISPR-Cas systems have short repeats interspersing their spacers. These repeats play a key role in preventing cleavage of self DNA and in the integration of new spacers. Here we focus on the phenomenon of repeat modularity, namely the unexpectedly high degree of repeat conservation across different systems within a genome or between different species. We hypothesize that modularity can be beneficial for CRISPR-Cas containing organisms, because it facilitates horizontal acquisition of 'pre-immunized' CRISPR arrays and allows the utilization of spacers acquired by one system for use by other systems within the same cell.

RevDate: 2019-11-20

Hernandez AM, JF Ryan (2018)

Horizontally transferred genes in the ctenophore Mnemiopsis leidyi.

PeerJ, 6:e5067.

Horizontal gene transfer (HGT) has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that HGT between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are homologous to characterized enzymes, supporting previous observations that genes encoding enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during development, suggesting that they are active and play a role in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.

RevDate: 2019-01-16
CmpDate: 2019-01-16

Dunning Hotopp JC (2018)

Grafting or pruning in the animal tree: lateral gene transfer and gene loss?.

BMC genomics, 19(1):470.

BACKGROUND: Lateral gene transfer (LGT), also known as horizontal gene transfer, into multicellular eukaryotes with differentiated tissues, particularly gonads, continues to be met with skepticism by many prominent evolutionary and genomic biologists. A detailed examination of 26 animal genomes identified putative LGTs in invertebrate and vertebrate genomes, concluding that there are fewer predicted LGTs in vertebrates/chordates than invertebrates, but there is still evidence of LGT into chordates, including humans. More recently, a reanalysis of a subset of these putative LGTs into vertebrates concluded that there is not horizontal gene transfer in the human genome. One of the genes in dispute is an N-acyl-aromatic-L-amino acid amidohydrolase (ENSG00000132744), which encodes ACY3. This gene was initially identified as a putative bacteria-chordate LGT but was later debunked as it has a significant BLAST match to a more recently deposited genome of Saccoglossus kowalevskii, a flatworm, Metazoan, and hemichordate.

RESULTS: Using BLAST searches, HMM searches, and phylogenetics to assess the evidence for LGT, gene loss, and rate variation in ACY3/ASPA homologues, the most parsimonious explanation for the distribution of ACY3/ASPA genes in eukaryotes involves both gene loss and bacteria-animal LGT, albeit LGT that occurred hundreds of millions of years ago prior to the divergence of gnathostomes.

CONCLUSIONS: ACY3/ASPA is most likely a bacteria-animal LGT. LGTs at these time scales in the ancestors of humans are not unexpected given the many known, well-characterized, and adaptive LGTs from bacteria to insects and nematodes.

RevDate: 2019-04-29
CmpDate: 2019-04-29

Ghaly TM, MR Gillings (2018)

Mobile DNAs as Ecologically and Evolutionarily Independent Units of Life.

Trends in microbiology, 26(11):904-912.

Mobile DNAs drive the spread of virulence and antibiotic-resistance determinants across diverse bacterial lineages. However, they have been largely overlooked as therapeutic targets, limiting our ability to prevent the spread of their clinically relevant cargo genes. Mobile DNAs adopt various behavioural, evolutionary, and ecological strategies to enhance their diversification, transmission, and replicative fitness. They can do this even at the expense of their host bacterium. Here, we explore evidence that mobile DNAs are inherently selfish, and resemble endoparasites. Viewing them as such helps us to better understand their dynamics, and ultimately, could identify ways to limit their role in the spread of resistance. Shifting our therapeutic focus towards targeting the transmission of mobile DNAs could help us to manage the resistance crisis.

RevDate: 2018-11-14
CmpDate: 2018-10-30

Méheust R, Watson AK, Lapointe FJ, et al (2018)

Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution.

Genome biology, 19(1):75.

BACKGROUND: Haloarchaea, a major group of archaea, are able to metabolize sugars and to live in oxygenated salty environments. Their physiology and lifestyle strongly contrast with that of their archaeal ancestors. Amino acid optimizations, which lowered the isoelectric point of haloarchaeal proteins, and abundant lateral gene transfers from bacteria have been invoked to explain this deep evolutionary transition. We use network analyses to show that the evolution of novel genes exclusive to Haloarchaea also contributed to the evolution of this group.

RESULTS: We report the creation of 320 novel composite genes, both early in the evolution of Haloarchaea during haloarchaeal genesis and later in diverged haloarchaeal groups. One hundred and twenty-six of these novel composite genes derived from genetic material from bacterial genomes. These latter genes, largely involved in metabolic functions but also in oxygenic lifestyle, constitute a different gene pool from the laterally acquired bacterial genes formerly identified. These novel composite genes were likely advantageous for their hosts, since they show significant residence times in haloarchaeal genomes-consistent with a long phylogenetic history involving vertical descent and lateral gene transfer-and encode proteins with optimized isoelectric points.

CONCLUSIONS: Overall, our work encourages a systematic search for composite genes across all archaeal major groups, in order to better understand the origins of novel prokaryotic genes, and in order to test to what extent archaea might have adjusted their lifestyles by incorporating and recycling laterally acquired bacterial genetic fragments into new archaeal genes.

RevDate: 2020-02-05

Bertelli C, Tilley KE, FSL Brinkman (2019)

Microbial genomic island discovery, visualization and analysis.

Briefings in bioinformatics, 20(5):1685-1698.

Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.

RevDate: 2018-11-14
CmpDate: 2018-07-05

Hendrickson HL, Barbeau D, Ceschin R, et al (2018)

Chromosome architecture constrains horizontal gene transfer in bacteria.

PLoS genetics, 14(5):e1007421.

Despite significant frequencies of lateral gene transfer between species, higher taxonomic groups of bacteria show ecological and phenotypic cohesion. This suggests that barriers prevent panmictic dissemination of genes via lateral gene transfer. We have proposed that most bacterial genomes have a functional architecture imposed by Architecture IMparting Sequences (AIMS). AIMS are defined as 8 base pair sequences preferentially abundant on leading strands, whose abundance and strand-bias are positively correlated with proximity to the replication terminus. We determined that inversions whose endpoints lie within a single chromosome arm, which would reverse the polarity of AIMS in the inverted region, are both shorter and less frequent near the replication terminus. This distribution is consistent with the increased selection on AIMS function in this region, thus constraining DNA rearrangement. To test the hypothesis that AIMS also constrain DNA transfer between genomes, AIMS were identified in genomes while ignoring atypical, potentially laterally-transferred genes. The strand-bias of AIMS within recently acquired genes was negatively correlated with the distance of those genes from their genome's replication terminus. This suggests that selection for AIMS function prevents the acquisition of genes whose AIMS are not found predominantly in the permissive orientation. This constraint has led to the loss of at least 18% of genes acquired by transfer in the terminus-proximal region. We used completely sequenced genomes to produce a predictive road map of paths of expected horizontal gene transfer between species based on AIMS compatibility between donor and recipient genomes. These results support a model whereby organisms retain introgressed genes only if the benefits conferred by their encoded functions outweigh the detriments incurred by the presence of foreign DNA lacking genome-wide architectural information.

RevDate: 2020-02-25
CmpDate: 2019-03-18

Simbaqueba J, Catanzariti AM, González C, et al (2018)

Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.

Molecular plant pathology, 19(10):2302-2318.

RNA sequencing (RNAseq) reads from cape gooseberry plants (Physalis peruviana) infected with Fusarium oxysporumf. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporumf. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1(designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1bwere tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant shows reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3.These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph.Alternatively, cape gooseberry germplasm could be explored for I-3homologues capable of providing resistance to Foph.

RevDate: 2018-10-11
CmpDate: 2018-10-11

Gupta S, Lemenze A, Donnelly RJ, et al (2018)

Keeping it together: absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation.

Research in microbiology, 169(4-5):237-243.

The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.

RevDate: 2018-11-26
CmpDate: 2018-11-26

Gambetta GA, Matthews MA, M Syvanen (2018)

The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges.

BMC genomics, 19(1):329.

BACKGROUND: Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions.

RESULTS: We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species.

CONCLUSIONS: These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element.

RevDate: 2018-11-27
CmpDate: 2018-11-27

Kapust N, Nelson-Sathi S, Schönfeld B, et al (2018)

Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication.

Genome biology and evolution, 10(5):1198-1209.

In prokaryotes, known mechanisms of lateral gene transfer (transformation, transduction, conjugation, and gene transfer agents) generate new combinations of genes among chromosomes during evolution. In eukaryotes, whose host lineage is descended from archaea, lateral gene transfer from organelles to the nucleus occurs at endosymbiotic events. Recent genome analyses studying gene distributions have uncovered evidence for sporadic, discontinuous events of gene transfer from bacteria to archaea during evolution. Other studies have used traditional models designed to investigate gene family size evolution (Count) to support claims that gene transfer to archaea was continuous during evolution, rather than involving occasional periodic mass gene influx events. Here, we show that the methodology used in analyses favoring continuous gene transfers to archaea was misapplied in other studies and does not recover known events of single simultaneous origin for many genes followed by differential loss in real data: plastid genomes. Using the same software and the same settings, we reanalyzed presence/absence pattern data for proteins encoded in plastid genomes and for eukaryotic protein families acquired from plastids. Contrary to expectations under a plastid origin model, we found that the methodology employed inferred that gene acquisitions occurred uniformly across the plant tree. Sometimes as many as nine different acquisitions by plastid DNA were inferred for the same protein family. That is, the methodology that recovered gradual and continuous lateral gene transfer among lineages for archaea obtains the same result for plastids, even though it is known that massive gains followed by gradual differential loss is the true evolutionary process that generated plastid gene distribution data. Our findings caution against the use of models designed to study gene family size evolution for investigating gene transfer processes, especially when transfers involving more than one gene per event are possible.

RevDate: 2019-02-28
CmpDate: 2019-02-28

Knowles LL, Huang H, Sukumaran J, et al (2018)

A matter of phylogenetic scale: Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories.

American journal of botany, 105(3):376-384.

PREMISE OF THE STUDY: Discordant gene trees are commonly encountered when sequences from thousands of loci are applied to estimate phylogenetic relationships. Several processes contribute to this discord. Yet, we have no methods that jointly model different sources of conflict when estimating phylogenies. An alternative to analyzing entire genomes or all the sequenced loci is to identify a subset of loci for phylogenetic analysis. If we can identify data partitions that are most likely to reflect descent from a common ancestor (i.e., discordant loci that indeed reflect incomplete lineage sorting [ILS], as opposed to some other process, such as lateral gene transfer [LGT]), we can analyze this subset using powerful coalescent-based species-tree approaches.

METHODS: Test data sets were simulated where discord among loci could arise from ILS and LGT. Data sets where analyzed using the newly developed program CLASSIPHY (Huang et al.,) to assess whether our ability to distinguish the cause of discord among loci varied when ILS and LGT occurred in the recent versus deep past and whether the accuracy of these inferences were affected by the mutational process.

KEY RESULTS: We show that accuracy of probabilistic classification of individual loci by the cause of discord differed when ILS and LGT events occurred more recently compared with the distant past and that the signal-to-noise ratio arising from the mutational process contributes to difficulties in inferring LGT data partitions.

CONCLUSIONS: We discuss our findings in terms of the promise and limitations of identifying subsets of loci for species-tree inference that will not violate the underlying coalescent model (i.e., data partitions in which ILS, and not LGT, contributes to discord). We also discuss the empirical implications of our work given the many recalcitrant nodes in the tree of life (e.g., origins of angiosperms, amniotes, or Neoaves), and recent arguments for concatenating loci.

RevDate: 2018-09-04
CmpDate: 2018-09-04

Godde JS, Baichoo S, Mungloo-Dilmohamud Z, et al (2018)

Comparison of genomic islands in cyanobacteria: Evidence of bacteriophage-mediated horizontal gene transfer from eukaryotes.

Microbiological research, 211:31-46.

A number of examples of putative eukaryote-to-prokaryote horizontal gene transfer (HGT) have been proposed in the past using phylogenetic analysis in support of these claims but none have attempted to map these gene transfers to the presence of genomic islands (GIs) in the host. Two of these cases have been examined in detail, including an ATP sulfurylase (ATPS) gene and a class I fructose bisphosphate aldolase (FBA I) gene that were putatively transferred to cyanobacteria of the genus Prochlorococcus from either green or red algae, respectively. Unlike previous investigations of HGT, parametric methods were initially used to detect genomic islands, then more traditional phylogenomic and phylogenetic methods were used to confirm or deny the HGT status of these genes. The combination of these three methods of analysis- detection of GIs, the determination of genomic neighborhoods, as well as traditional phylogeny, lends strong support to the claim that trans-domain HGT has occurred in only one of these cases and further suggests a new insight into the method of transmission of FBA I, namely that cyanophage-mediated transfer may have been responsible for the HGT event in question. The described methods were then applied to a range of prochlorococcal genomes in order to characterize a candidate for eukaryote-to-prokaryote HGT that had not been previously studied by others. Application of the same methodology used to confirm or deny HGT for ATPS and FBA I identified a ⊗12 fatty acid desaturase (FAD) gene that was likely transferred to Prochlorococcus from either green or red algae.

RevDate: 2019-05-27
CmpDate: 2019-05-15

Stairs CW, Eme L, Muñoz-Gómez SA, et al (2018)

Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis.

eLife, 7:.

Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rquA, a gene encoding an RQ biosynthetic enzyme. RquA is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rquA from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RquA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.

RevDate: 2018-12-11
CmpDate: 2018-12-11

Vigliotti C, Bicep C, Bapteste E, et al (2018)

Tracking the Rules of Transmission and Introgression with Networks.

Microbiology spectrum, 6(2):.

Understanding how an animal organism and its gut microbes form an integrated biological organization, known as a holobiont, is becoming a central issue in biological studies. Such an organization inevitably involves a complex web of transmission processes that occur on different scales in time and space, across microbes and hosts. Network-based models are introduced in this chapter to tackle aspects of this complexity and to better take into account vertical and horizontal dimensions of transmission. Two types of network-based models are presented, sequence similarity networks and bipartite graphs. One interest of these networks is that they can consider a rich diversity of important players in microbial evolution that are usually excluded from evolutionary studies, like plasmids and viruses. These methods bring forward the notion of "gene externalization," which is defined as the presence of redundant copies of prokaryotic genes on mobile genetic elements (MGEs), and therefore emphasizes a related although distinct process from lateral gene transfer between microbial cells. This chapter introduces guidelines to the construction of these networks, reviews their analysis, and illustrates their possible biological interpretations and uses. The application to human gut microbiomes shows that sequences present in a higher diversity of MGEs have both biased functions and a broader microbial and human host range. These results suggest that an "externalized gut metagenome" is partly common to humans and benefits the gut microbial community. We conclude that testing relationships between microbial genes, microbes, and their animal hosts, using network-based methods, could help to unravel additional mechanisms of transmission in holobionts.

RevDate: 2018-12-11
CmpDate: 2018-12-11

Vanrompay D, Nguyen TLA, Cutler SJ, et al (2018)

Antimicrobial Resistance in Chlamydiales, Rickettsia, Coxiella, and Other Intracellular Pathogens.

Microbiology spectrum, 6(2):.

This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.

RevDate: 2018-12-17
CmpDate: 2018-12-17

Chen Y, Hammer EE, VP Richards (2018)

Phylogenetic signature of lateral exchange of genes for antibiotic production and resistance among bacteria highlights a pattern of global transmission of pathogens between humans and livestock.

Molecular phylogenetics and evolution, 125:255-264.

The exchange of bacterial virulence factors driven by lateral gene transfer (LGT) can help indicate possible bacterial transmission among different hosts. Specifically, overlaying the phylogenetic signal of LGT among bacteria onto the distribution of respective isolation sources (hosts) can indicate patterns of transmission among these hosts. Here, we apply this approach towards a better understanding of patterns of bacterial transmission between humans and livestock. We utilize comparative genomics to trace patterns of LGT for an 11-gene operon responsible for the production of the antibiotic nisin and infer transmission of bacteria among respective host species. A total of 147 bacterial genomes obtained from NCBI were determined to contain the complete operon. Isolated from human, porcine and bovine hosts, these genomes represented six Streptococcus and one Staphylococcus species. Phylogenetic analyses of the operon sequences revealed a signature of frequent and recent lateral gene transfer that indicated extensive bacterial transmission between humans and pigs. For 11 isolates, we detected a Tn916-like transposon inserted into the operon. The transposon contained the tetM gene (tetracycline resistance) and additional phylogenetic analyses indicated transmission among human and animal hosts. The bacteria possessing the nisin operon and transposon were isolated from hosts distributed globally. These findings possibly reflect both the globalization of the food industry and an increasingly mobile and expanding human population. In addition to concerns regarding zoonosis, these findings also highlight the potential threat to livestock worldwide due to reverse zoonosis.

RevDate: 2018-11-14
CmpDate: 2018-06-26

Druzhinina IS, Chenthamara K, Zhang J, et al (2018)

Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts.

PLoS genetics, 14(4):e1007322.

Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass.

RevDate: 2019-11-20

Shen Y, Cai J, Davies MR, et al (2018)

Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China.

Frontiers in microbiology, 9:542.

Streptococcus pyogenes, also known as group A Streptococcus (GAS), is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ) non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ) non-susceptibility in Shanghai, China. GAS (n = 2,258) recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258), with the phenotype more prevalent in GAS isolated from adults (14.3%) than from children (1.2%). Eighty percent (24/30) of FQ-non-susceptible isolates were also resistant to both macrolides (ermB) and tetracycline (tetM) including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs) identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152) of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12) were macrolide and tetracycline resistant. Phylogenetic analysis of the parC QRDR sequences suggested the possibility that FQ resistance may be acquired through inter-species lateral gene transfer. This study reports the emergence of macrolide, tetracycline, and fluoroquinolone multidrug-resistant clones across several GAS emm types including emm1 and emm12, warranting continual surveillance given the extensive use of fluoroquinolones in clinical use.

RevDate: 2019-09-27
CmpDate: 2019-09-27

Westbye AB, Kater L, Wiesmann C, et al (2018)

The Protease ClpXP and the PAS Domain Protein DivL Regulate CtrA and Gene Transfer Agent Production in Rhodobacter capsulatus.

Applied and environmental microbiology, 84(11):.

Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.

RevDate: 2018-11-14
CmpDate: 2018-10-02

Murillo T, Ramírez-Vargas G, Riedel T, et al (2018)

Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms.

Genome biology and evolution, 10(3):982-998.

Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301-8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.

RevDate: 2019-05-21
CmpDate: 2019-05-21

Davín AA, Tannier E, Williams TA, et al (2018)

Gene transfers can date the tree of life.

Nature ecology & evolution, 2(5):904-909.

Biodiversity has always been predominantly microbial, and the scarcity of fossils from bacteria, archaea and microbial eukaryotes has prevented a comprehensive dating of the tree of life. Here, we show that patterns of lateral gene transfer deduced from an analysis of modern genomes encode a novel and abundant source of information about the temporal coexistence of lineages throughout the history of life. We use state-of-the-art species tree-aware phylogenetic methods to reconstruct the history of thousands of gene families and demonstrate that dates implied by gene transfers are consistent with estimates from relaxed molecular clocks in Bacteria, Archaea and Eukarya. We present the order of speciations according to lateral gene transfer data calibrated to geological time for three datasets comprising 40 genomes for Cyanobacteria, 60 genomes for Archaea and 60 genomes for Fungi. An inspection of discrepancies between transfers and clocks and a comparison with mammalian fossils show that gene transfer in microbes is potentially as informative for dating the tree of life as the geological record in macroorganisms.

RevDate: 2019-11-20

Shalev Y, Soucy SM, Papke RT, et al (2018)

Comparative Analysis of Surface Layer Glycoproteins and Genes Involved in Protein Glycosylation in the Genus Haloferax.

Genes, 9(3):.

Within the Haloferax genus, both the surface (S)-layer protein, and the glycans that can decorate it, vary between species, which can potentially result in many different surface types, analogous to bacterial serotypes. This variation may mediate phenotypes, such as sensitivity to different viruses and mating preferences. Here, we describe S-layer glycoproteins found in multiple Haloferax strains and perform comparative genomics analyses of major and alternative glycosylation clusters of isolates from two coastal sites. We analyze the phylogeny of individual glycosylation genes and demonstrate that while the major glycosylation cluster tends to be conserved among closely related strains, the alternative cluster is highly variable. Thus, geographically- and genetically-related strains may exhibit diverse surface structures to such an extent that no two isolates present an identical surface profile.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Nakajima Y, Tsukamoto T, Kumagai Y, et al (2018)

Presence of a Haloarchaeal Halorhodopsin-Like Cl- Pump in Marine Bacteria.

Microbes and environments, 33(1):89-97.

Light-driven ion-pumping rhodopsins are widely distributed among bacteria, archaea, and eukaryotes in the euphotic zone of the aquatic environment. H+-pumping rhodopsin (proteorhodopsin: PR), Na+-pumping rhodopsin (NaR), and Cl--pumping rhodopsin (ClR) have been found in marine bacteria, which suggests that these genes evolved independently in the ocean. Putative microbial rhodopsin genes were identified in the genome sequences of marine Cytophagia. In the present study, one of these genes was heterologously expressed in Escherichia coli cells and the rhodopsin protein named Rubricoccus marinus halorhodopsin (RmHR) was identified as a light-driven inward Cl- pump. Spectroscopic assays showed that the estimated dissociation constant (Kd,int.) of this rhodopsin was similar to that of haloarchaeal halorhodopsin (HR), while the Cl--transporting photoreaction mechanism of this rhodopsin was similar to that of HR, but different to that of the already-known marine bacterial ClR. This amino acid sequence similarity also suggested that this rhodopsin is similar to haloarchaeal HR and cyanobacterial HRs (e.g., SyHR and MrHR). Additionally, a phylogenetic analysis revealed that retinal biosynthesis pathway genes (blh and crtY) belong to a phylogenetic lineage of haloarchaea, indicating that these marine Cytophagia acquired rhodopsin-related genes from haloarchaea by lateral gene transfer. Based on these results, we concluded that inward Cl--pumping rhodopsin is present in genera of the class Cytophagia and may have the same evolutionary origins as haloarchaeal HR.

RevDate: 2019-01-25
CmpDate: 2019-01-25

Leger MM, Eme L, Stairs CW, et al (2018)

Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115).

BioEssays : news and reviews in molecular, cellular and developmental biology, 40(5):e1700242.

In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.

RevDate: 2019-04-15
CmpDate: 2019-04-15

Martin WF (2018)

Eukaryote lateral gene transfer is Lamarckian.

Nature ecology & evolution, 2(5):754.

RevDate: 2019-04-15
CmpDate: 2019-04-15

Roger AJ (2018)

Reply to 'Eukaryote lateral gene transfer is Lamarckian'.

Nature ecology & evolution, 2(5):755.

RevDate: 2019-11-20

Ward LM, Hemp J, Shih PM, et al (2018)

Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer.

Frontiers in microbiology, 9:260.

The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.

RevDate: 2019-12-27
CmpDate: 2018-12-11

Watson BNJ, Staals RHJ, PC Fineran (2018)

CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.

mBio, 9(1):.

A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution.

RevDate: 2018-09-04
CmpDate: 2018-09-04

Poey ME, M Laviña (2018)

Horizontal transfer of class 1 integrons from uropathogenic Escherichia coli to E. coli K12.

Microbial pathogenesis, 117:16-22.

Class 1 integrons are genetic elements that carry a variable set of antibiotic resistance genes, being frequently found in clinical Gram-negative isolates. It is generally assumed that they easily spread horizontally among bacteria, thus contributing to the appearance of multidrug resistant clones. However, there are few experimental studies on the lateral transfer of these elements performed with bacterial collections that had been gathered following an epidemiological design. In this work, a collection with these characteristics, comprising uropathogenic Escherichia coli (UPEC) isolates bearing class 1 integrons, was employed to study the horizontal transfer of the integron to an E. coli K12 strain by means of conjugation and transduction experiments. Donor and resultant strains were characterized for their antibiotic resistances, presence of sul1, sul2 and sul3 genes, integron cassette arrays, plasmid replicons and tra region. Conjugation assays were carried out using 45 UPEC isolates as integron donors and transconjugants were obtained in 18 cases (40%). P1-transduction experiments only added the integron transfer from a single donor isolate. Thus, a collection of E. coli K12 strains carrying the class 1 integron from 19 UPEC isolates was generated. In all cases, the integron was co-transferred with at least one low-copy-number plasmid, generally of the F replicon type. Several variables were searched for that could be related to the ability to horizontally transfer the integron. Although no strict correlation was observed, the phylogenetic background of the donor strain and the presence of the sul2 gene appeared as candidates to influence the process. Therefore, there appears that besides being carried by mobile genetic elements, class 1 integrons may be influenced by other factors to accomplish their horizontal transfer, a topic that requires further studies.


RJR Experience and Expertise


Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.


Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.


Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.


Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.


While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.


Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.


Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.


Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.

963 Red Tail Lane
Bellingham, WA 98226


E-mail: RJR8222@gmail.com

Collection of publications by R J Robbins

Reprints and preprints of publications, slide presentations, instructional materials, and data compilations written or prepared by Robert Robbins. Most papers deal with computational biology, genome informatics, using information technology to support biomedical research, and related matters.

Research Gate page for R J Robbins

ResearchGate is a social networking site for scientists and researchers to share papers, ask and answer questions, and find collaborators. According to a study by Nature and an article in Times Higher Education , it is the largest academic social network in terms of active users.

Curriculum Vitae for R J Robbins

short personal version

Curriculum Vitae for R J Robbins

long standard version

RJR Picks from Around the Web (updated 11 MAY 2018 )