@article {pmid39853489, year = {2025}, author = {Aliyu, M and Salman, AA and Ibrahim, MA and Balogun, EO and Shuaibu, MN}, title = {Analysis of Possible Coexistence of Microsporidia, Plasmodium falciparum and Wuchereria bancrofti in Anopheles gambiae s.l within Ahmadu Bello University, Zaria, Nigeria.}, journal = {Acta parasitologica}, volume = {70}, number = {1}, pages = {23}, pmid = {39853489}, issn = {1896-1851}, mesh = {Animals ; *Anopheles/parasitology/microbiology ; Nigeria ; *Plasmodium falciparum ; *Wuchereria bancrofti ; *Microsporidia/isolation & purification/classification ; Mosquito Vectors/parasitology/microbiology ; Coinfection/parasitology/microbiology ; Polymerase Chain Reaction ; Universities ; }, abstract = {PURPOSE: Anopheles gambiae is a vector of Plasmodium falciparum and Wuchereria bancrofti. Endosymbionts are reported to block development of various parasites in mosquitoes. Microsporidia was reported to affect the development of P. falciparum in mosquitoes. Data on such observation is limited in Nigeria.

METHODS: Therefore, the prevalence of Microsporidia and its coinfection with W. bancrofti and P. falciparum in An. gambiae s.l was studied within Ahmadu Bello University, Zaria.

RESULTS: Of the 912 mosquitoes sampled, 124 were An. gambiae s.l The midgut assessment of the Anopheles mosquitoes using light microscopy and polymerase chain reaction (PCR) showed a 12% prevalence of a mono microsporidia infection with no coinfection with either P. falciparum or W. bancrofti. Only 4.03% of the An. gambiae s.l. were found to be coinfected with P. falciparum and W. bancrofti while no mosquito harboured all the microorganisms CONCLUSION: This data further supports the potential of Microsporidia as an antagonist for the development of pathogens in mosquitoes.}, } @article {pmid39849922, year = {2024}, author = {Yun, JH and Park, J and Xi, H and Nam, S and Lee, W and Kim, SK}, title = {Comprehensive Analysis of the Fourteen Complete Genome Sequences of Buchnera aphidicola Isolated from Aphis Species.}, journal = {Journal of microbiology and biotechnology}, volume = {35}, number = {}, pages = {e2409004}, doi = {10.4014/jmb.2409.09004}, pmid = {39849922}, issn = {1738-8872}, mesh = {*Genome, Bacterial ; *Phylogeny ; *Symbiosis ; Animals ; *Aphids/microbiology/genetics ; *Buchnera/genetics/classification/isolation & purification ; Whole Genome Sequencing ; Polymorphism, Single Nucleotide ; Microsatellite Repeats ; Genetic Variation ; DNA, Bacterial/genetics ; Sequence Analysis, DNA ; Base Composition ; }, abstract = {Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and de novo assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of Aphis genius, one of notorious pest species. Fourteen genomes displayed the length between 628,098 bp to 634,931 bp; GC ratio was from 24.2 % to 25.6 % with no structural variation found. The nucleotide diversity distribution across the 14 endosymbiont genomes revealed three distinct regions, each separated by varying levels of nucleotide diversity. Intraspecific variations identified from endosymbiont bacterial genomes of the same host species revealed numbers of SNPs ranging from 31 (0.0049%) to 1,652 (0.26%) and those of INDELs ranging from 7 (21 bp; 0.0033%) to 104 (285 bp; 0.0045%). 250 unique SSRs, 28 different common SSR groups, and one different SSR group in two genomes were identified and used as a potential molecular marker to distinguish intraspecific population. Phylogenetic analysis further showed congruence between the endosymbiont bacterial genomes and the host species phylogeny, except Aphis nasturtii, Aphis helianth, and Aphis auranti, which require additional endosymbiont genomes for clarification. This comparative analysis result could serve as a cornerstone for understanding the relationship between host and endosymbiont species from a genomic perspective.}, } @article {pmid39848650, year = {2025}, author = {Hussain, MD and Farooq, T and Kamran, A and Basit, A and Wang, Y and Smagghe, G and Chen, X}, title = {Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.}, journal = {Critical reviews in biotechnology}, volume = {}, number = {}, pages = {1-23}, doi = {10.1080/07388551.2024.2449403}, pmid = {39848650}, issn = {1549-7801}, abstract = {The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.}, } @article {pmid39835397, year = {2025}, author = {Motta, MCM and Camelo, TM and Cerdeira, CMC and Gonçalves, CS and Borghesan, TC and Villalba-Alemán, E and de Souza, W and Teixeira, MMG and de Camargo, EFP}, title = {Phylogenetic and structural characterization of Kentomonas inusitatus n. sp.: Unique insect trypanosomatid of the Strigomonadinae subfamily naturally lacking bacterial endosymbiont.}, journal = {The Journal of eukaryotic microbiology}, volume = {72}, number = {1}, pages = {e13083}, doi = {10.1111/jeu.13083}, pmid = {39835397}, issn = {1550-7408}, support = {E-26/201.011/2021//Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/ ; 2016/07487-0//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 305299/2022-0//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; }, mesh = {Animals ; *Trypanosomatina/classification/genetics/isolation & purification/ultrastructure ; *Phylogeny ; *Symbiosis ; Brazil ; Uganda ; DNA, Protozoan/genetics ; DNA, Bacterial/genetics ; }, abstract = {All insect trypanosomatids of the subfamily Strigomonadinae harbor a proteobacterial symbiont in their cytoplasm and unique ultrastructural cell organization. Here, we report an unexpected finding within the Strigomonadinae subfamily: the identification of a new species lacking bacterial symbiont, represented by two isolates obtained from Calliphoridae flies in Brazil and Uganda. This species is hereby designated as Kentomonas inusitatus n. sp. Molecular investigations targeting symbiont DNA, cell proliferation, and ultrastructural analyses agreed with the absence of bacterial symbionts in cultured flagellates. PCR-screening specifically targeting symbiont DNA corroborated the absence of symbionts in K. inusitatus present in the intestine of the respective host flies. K. inusitatus exhibited forms varying in size and shape. While displaying overall ultrastructural features of the Strigomonadinae, the novel species showed mitochondrial branches juxtaposed to the plasma membrane in locations both without and notable, with subpellicular microtubules. The discovery of the first Strigomonadinae species naturally lacking a symbiont and closely related to K. sorsogonicus, suggests a unique evolutionary history for the genus Kentomonas. Our findings provide novel insights into the complex relationships between trypanosomatids and their symbionts.}, } @article {pmid39825256, year = {2025}, author = {Köppen, K and Rydzewski, K and Zajac, J and Al-Senwi, M and Evcimen, S and Schulze, D and Jacob, D and Heuner, K}, title = {Detection of Francisellaceae and the differentiation of main European F. tularensis ssp. holarctica strains (Clades) by new designed qPCR assays.}, journal = {BMC microbiology}, volume = {25}, number = {1}, pages = {28}, pmid = {39825256}, issn = {1471-2180}, support = {2522PAT006//Bundesministerium für Gesundheit/ ; 2522PAT006//Bundesministerium für Gesundheit/ ; }, mesh = {*Tularemia/microbiology/diagnosis ; *Real-Time Polymerase Chain Reaction/methods ; *Francisella tularensis/genetics/classification/isolation & purification ; Humans ; Animals ; DNA, Bacterial/genetics ; Multiplex Polymerase Chain Reaction/methods ; Europe ; Francisella/genetics/classification/isolation & purification ; }, abstract = {BACKGROUND: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F. novicida, F. philomiragia, F. hispaniensis and others are known to cause tularemia-like infections in immunocompromised humans. In addition to these Francisella species, further genera of the family Francisellaceae have been described, such as Allofrancisella, Parafrancisella and Pseudofrancisella, but less is known about the distribution and putative virulence of these genera. The methods currently available were not made for a fast and easy detection of all these strains and genera of Francisellaceae.

RESULTS: We developed a multiplex quantitative real-time PCR assay that can accurately detect all genera of Francisellaceae, including Francisella, Francisella-like endosymbionts, Allofrancisella, Parafrancisella and Pseudofrancisella. In addition, we developed a qPCR assay to differentiate the major clades (B.4, B.6 and B.12 [B.71 and B.72]) of F. tularensis ssp. holarctica strains. Both primer sets were shown to work on isolated DNA out of human and tick samples.

CONCLUSION: Since the developed qPCRs are able to detect all genera of Francisellaceae tested, an easy and fast identification of opportunistic Francisella strains causing tularemia-like symptoms in humans or animals is possible now. The application of these qPCR assays will thus improve the capability for clinical diagnostics and molecular typing during epidemiological investigations.}, } @article {pmid39823167, year = {2025}, author = {Yu, W and Yang, Q and Gill, A and Chirgwin, E and Gu, X and Joglekar, C and Umina, PA and Hoffmann, AA}, title = {A persistent bacterial Regiella transinfection in the bird cherry-oat aphid Rhopalosiphum padi increasing host fitness and decreasing plant virus transmission.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.8642}, pmid = {39823167}, issn = {1526-4998}, support = {//Hort Innovation/ ; //Grains Research and Development Corporation/ ; }, abstract = {BACKGROUND: The bird cherry-oat aphid, Rhopalosiphum padi, is a major pest of agriculture due to its ability to directly damage crops and transmit plant viruses. As industries move away from chemical pest control, there is interest in exploring new options to suppress the impact of this pest.

RESULTS: We describe the production of a transinfected line of R. padi carrying the bacterial endosymbiont, Regiella insecticola, originating from the green peach aphid, Myzus persicae. We show that Regiella increases the fitness of its novel host despite decreasing fitness in its native host. Regiella also shows a low level of horizontal transmission. Importantly the infection suppresses the ability of R. padi to transmit the barley yellow dwarf virus which damages wheat plants.

CONCLUSION: Our results suggest this Regiella transinfection could be released to suppress virus transmission by aphids with its ability to persist and spread in situations where damage from the virus exceeds that from direct feeding by the aphid. © 2025 Society of Chemical Industry.}, } @article {pmid39812892, year = {2025}, author = {Kerlin, JR and Barnas, DM and Silbiger, NJ}, title = {Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology.}, journal = {Oecologia}, volume = {207}, number = {1}, pages = {21}, pmid = {39812892}, issn = {1432-1939}, support = {1924281//Division of Ocean Sciences/ ; 1637396//Division of Ocean Sciences/ ; }, mesh = {Animals ; *Anthozoa/physiology ; *Symbiosis ; *Groundwater ; Photosynthesis ; Coral Reefs ; Chlorophyll A ; Ecosystem ; }, abstract = {Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert. In a manipulative field experiment, we tested how the natural environmental gradient created by submarine groundwater discharge (SGD) affected holobiont and symbiont metabolic rates and endosymbiont physiology of Porites rus. We further tested how the effect of SGD on the coral was mediated by intra and interspecific interactions. SGD is a natural land-sea connection that delivers nutrients, inorganic carbon, and other solutes to coastal ecosystems worldwide. Our results show that a natural gradient of nutrient enrichment and pH variability as a result of acute SGD exposure generally benefited P. rus, increasing gross photosynthesis, respiration, endosymbiont densities, and chlorophyll a content. Conspecifics in direct contact with the a neighboring coral, however, altered the relationship between coral physiology and SGD, lowering the photosynthetic and respiration rates from expected values when the coral had no neighbor. We show that the response of corals to environmental change is dependent on the types of nearby neighbor corals and how neighbors alter the chemical or physical environment around the coral. Our study underscores the importance of considering biotic interactions when predicting the physiologic responses of corals to the environment.}, } @article {pmid39803511, year = {2024}, author = {Schulz, F and Yan, Y and Weiner, AKM and Ahsan, R and Katz, LA and Woyke, T}, title = {Protists as mediators of complex microbial and viral associations.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.12.29.630703}, pmid = {39803511}, issn = {2692-8205}, abstract = {Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae, and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.}, } @article {pmid39770655, year = {2024}, author = {Li, Y and Ye, Z and Lai, MC and Liu, CS and Paull, CK and Lin, S and Lai, SJ and You, YT and Wu, SY and Hung, CC and Ding, JY and Shih, CJ and Wu, YC and Zhao, J and Xiao, W and Wu, CH and Dong, G and Zhang, H and Qiu, W and Wang, S and Chen, SC}, title = {Microbial Communities in and Around the Siboglinid Tubeworms from the South Yungan East Ridge Cold Seep Offshore Southwestern Taiwan at the Northern South China Sea.}, journal = {Microorganisms}, volume = {12}, number = {12}, pages = {}, doi = {10.3390/microorganisms12122452}, pmid = {39770655}, issn = {2076-2607}, support = {99-5226904000-04-03//Ministry of Education, Taiwan, Republic of China under the ATU plan, the Central Geological Survey/ ; CMU110-N-31 and CMU113-MF-99//China Medical University/ ; MOST103/104/105/106/107-3113-M-005-001//Ministry of Science and Technology, Taiwan, Republic of China/ ; MOST106/107-3113-M-002-004//Ministry of Science and Technology, Taiwan, Republic of China/ ; NSTC 113-2320-B-039-016//National Science and Technology Council, Taiwan, Republic of China/ ; 2021J011119 and 2023J011018//Natural Science Foundation of Fujian Province/ ; JAT200613/B202004 and JAT200646/B202037//the Educational and Scientific Research Program for Young and Middle-aged Instructor of Fujian province/ ; KC180079//New Century Outstanding Talent Support Program/ ; 2022H6035//Provincial University Industry Research Cooperation Project/ ; 19YG18; 20YG04; 20YG09; 22YG13//Fujian Sanming University Introduced High-Level Talents Research Start-Up Funding Project/ ; }, abstract = {To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as Paraescarpia formosa sp. nov. through morphological and phylogenetic analyses. The endosymbionts in the trunk of P. formosa analyzed by a 16S rRNA gene clone library represented only one phylotype, which belonged to the family Sedimenticolaceae in Gammaproteobacteria. In addition, the archaeal and bacterial communities in the habitat of tubeworm P. formosa were investigated by using high-phylogenetic-resolution full-length 16S rRNA gene amplicon sequencing. The results showed that anerobic methane-oxidizing archaea (ANME)-1b was most abundant and ANME-2ab was minor in a consortia of the anerobic oxidation of methane (AOM). The known sulfate-reducing bacteria (SRB) partners in AOM consortia, such as SEEP-SRB1, -SRB2, and -SRB4, Desulfococcus and Desulfobulbus, occurred in a small population (0-5.7%) at the SYER cold seep, and it was suggested that ANME-1b and ANME-2ab might be coupled with multiple SRB in AOM consortia. Besides AOM consortia, various methanogenic archaea, including Bathyarchaeota (Subgroup-8), Methanocellales, Methanomicrobiales, Methanosarcinales, Methanofastidiosales and Methanomassiliicoccales, were identified, and sulfur-oxidizing bacteria Sulfurovum and Sulfurimonas in phylum Epsilonbacteraeota were dominant. This study revealed the first investigation of microbiota in and around tubeworm P. formosa discovered at the SYER cold seep offshore southwestern Taiwan. We could gain insights into the chemosynthetic communities in the deep sea, especially regarding the cold seep ecosystems at the SCS.}, } @article {pmid39770654, year = {2024}, author = {Maldonado-Ruiz, P}, title = {The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol.}, journal = {Microorganisms}, volume = {12}, number = {12}, pages = {}, doi = {10.3390/microorganisms12122451}, pmid = {39770654}, issn = {2076-2607}, abstract = {Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community. Many bacterial taxa frequently reported in ticks include soil, plant, and animal-associated microbes, suggesting many are environmentally acquired, including members with known entomopathogenic potential, such as Bacillus thuringiensis, Bacillus spp., and Pseudomonas spp. It has been reported that microbial community composition can impact pathogen persistence, dissemination, and fitness in ticks. In the United States, Ixodes scapularis (northeast) and I. pacificus (west) are the predominant vectors of Borrelia burgdorferi, the causal agent of Lyme disease. Amblyomma americanum is another important tick vector in the U.S. and is becoming an increasing concern as it is the leading cause of alpha-gal syndrome (AGS, or red meat allergy). This condition is caused by tick bites containing the galactose alpha 1,3 galactose (alpha-gal) epitope in their saliva. In this paper, we present a summary of the tick microbiome, including the endosymbiotic bacteria and the environmentally acquired (here referred to as the non-endosymbiotic community). We will focus on the non-endosymbiotic bacteria from Ixodes spp. and Amblyomma americanum and discuss their potential for novel biocontrol strategies.}, } @article {pmid39770648, year = {2024}, author = {Chomicz, L and Szaflik, JP and Kuligowska, A and Conn, DB and Baltaza, W and Szostakowska, B and Zawadzki, PJ and Dybicz, M and Machalińska, A and Perkowski, K and Bajer, A and Szaflik, J}, title = {Concomitant Potentially Contagious Factors Detected in Poland and Regarding Acanthamoeba Strains, Etiological Agents of Keratitis in Humans.}, journal = {Microorganisms}, volume = {12}, number = {12}, pages = {}, doi = {10.3390/microorganisms12122445}, pmid = {39770648}, issn = {2076-2607}, abstract = {BACKGROUND: Diseases in humans caused by amphizoic amoebae that can result in visual impairment and even blindness, have recently been identified more frequently worldwide. Etiologically complex incidents of keratitis, including those connected with Acanthamoeba strains detected in Poland, were evaluated in this study.

METHODS: Corneal samples from cases resistant to antimicrobial therapy assessed for epidemiological, microbiological and parasitological aspects were investigated by phase-contrast microscope, slit lamp and by confocal microscopy. In vitro techniques were applied for detection of bacteria and fungi, and corneal isolates cultured under axenic condition using BSC medium-for detection of Acanthamoeba spp.; molecular techniques were applied for amoeba species identification.

RESULTS: Most etiologically complicated keratitis cases, detected in ~84% of incidents, was due to exposure of contact lenses to tap water or pool water; trophozoites and cysts of Acanthamoeba, concomitant bacteriae, e.g., Pseudomonas aeruginosa, fungi and microfilariae were identified in contact lens users.

CONCLUSIONS: In samples from contact lens wearers where microbial keratitis is identified along with some connection with the patient's exposure to contaminated water environments, a risk of Acanthamoeba spp. infections should be considered. Understanding the complicated relationship between Acanthamoeba spp., co-occurring pathogens including associated endosymbionts is needed. In vivo confocal microscopy and in vitro cultivation were necessary to identify potentially contagious concomitant factors affecting the complex course of the keratitis.}, } @article {pmid39769582, year = {2024}, author = {Lan, Y and Li, J and Zhang, S and Qin, Q and Liu, D and Luo, C and Han, S and Wang, D and He, Y}, title = {Potential Involvement of Buchnera aphidicola (Enterobacteriales, Enterobacteriaceae) in Biotype Differentiation of Sitobion avenae (Hemiptera: Aphididae).}, journal = {Insects}, volume = {15}, number = {12}, pages = {}, doi = {10.3390/insects15120980}, pmid = {39769582}, issn = {2075-4450}, support = {32102194//National Natural Science Foundation of China/ ; C2022204003//Hebei Natural Science Foundation for Young Scholars/ ; QN2024136//Science Research Project of Hebei Education Department/ ; KY2022045//Research Project of Basic Scientific Research Funding for Provincial Colleges and Universities in Hebei Province/ ; YJ2020051//Starting Scientific Research Foundation for the Introduced Talents of Hebei Agricultural University/ ; }, abstract = {Buchnera aphidicola, an obligate endosymbiont of most aphid species, can influence aphids' host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of Sitobion avenae remains unclear. To address this issue, six S. avenae biotypes were tested in this study. Buchnera abundance varied among biotypes fed on different wheat/barley varieties (i.e., Zhong 4 wumang, 186-TM12-34; Dulihuang, Zaoshu No.3, Xiyin No.2). The reduction in Buchnera abundance through antibiotic (rifampicin) treatment altered the virulence of five S. avenae biotypes. Based on transcriptome analysis, the differential expression of three genes (i.e., LeuB, TrpE, and IlvD) related to leucine, tryptophan, isoleucine, and valine metabolism was detected between different biotypes. Principal component analysis showed that leucine and tryptophan deficiencies most significantly impacted nymph development duration and aphid fecundity. Additionally, a neighbor-joining phylogenetic tree indicated the genetic differentiation of Buchnera among different biotypes. These results suggest Buchnera-mediated amino acid metabolism is correlated with biotype differentiation in S. avenae, although the precise mechanisms by which Buchnera influences this differentiation require further investigation. This study can offer a theoretical basis for the development of resistant crops, leading to the sustainable control of this aphid and reduced reliance on chemical insecticides.}, } @article {pmid39749009, year = {2023}, author = {Figueroa, LL and Sadd, BM and Tripodi, AD and Strange, JP and Colla, SR and Adams, LD and Duennes, MA and Evans, EC and Lehmann, DM and Moylett, H and Richardson, L and Smith, JW and Smith, TA and Spevak, EM and Inouye, DW}, title = {Endosymbionts that threaten commercially raised and wild bumble bees (Bombus spp.).}, journal = {Journal of pollination ecology}, volume = {33}, number = {}, pages = {14-36}, pmid = {39749009}, issn = {1920-7603}, abstract = {Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite- conscious programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.}, } @article {pmid39745522, year = {2025}, author = {Sabaneyeva, E and Kursacheva, E and Vizichkanich, G and Lebedev, D and Lebedeva, N}, title = {Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria.}, journal = {Protoplasma}, volume = {}, number = {}, pages = {}, pmid = {39745522}, issn = {1615-6102}, support = {103972122//Saint Petersburg State University/ ; }, abstract = {Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn. Rhodotorula rubra) isolated from a natural population. This symbiotic system demonstrates certain similarities with the symbiotic system formed by P. bursaria and its conventional endosymbionts, the zoochlorellae. Experimental infections of the endosymbiont-free P. tritobursaria and Paramecium deuterobursaria cell lines with R. mucilaginosa demonstrated that the yeast infectivity is concentration-dependent, with ciliates digesting part of the yeast cells. The endosymbiotic yeast may serve as a food reserve, providing starvation stress tolerance to the host. Since R. mucilaginosa is currently regarded as a pathogen causing opportunistic infections in immunocompromised humans, our finding gives further support to the vision that ciliates can harbor potential human pathogens and can be a vector for their dissemination.}, } @article {pmid39738989, year = {2024}, author = {Bassini-Silva, R and Calchi, AC and Castro-Santiago, AC and Marocco, JC and Dorigoni, L and de Quadros, RM and André, MR and Barros-Battesti, DM and Dowling, APG and Labruna, MB and Jacinavicius, FC}, title = {Molecular evidence of Wolbachia in bat-associated mite Periglischrus Iheringi Oudemans, 1902 (Mesostigmata: Spinturnicidae) from Brazil.}, journal = {Veterinary research communications}, volume = {49}, number = {1}, pages = {60}, pmid = {39738989}, issn = {1573-7446}, support = {2020/11755-6//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 2020/07826-5//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 2021/06758-9//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 2022/05615-2//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 2019/19853-0, 2024/01231-0//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; #303701/2021-8//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; #303802/2021-9//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; 402575/2021-0//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; }, mesh = {Animals ; *Wolbachia/genetics/isolation & purification/classification ; Brazil ; *Mites/microbiology ; *Phylogeny ; *Chiroptera/microbiology/parasitology ; *RNA, Ribosomal, 16S/genetics ; }, abstract = {Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia. Phylogenetic analysis based on the 16 S rRNA gene revealed that the detected Wolbachia strain belongs to Supergroup F, which has also been detected in other ectoparasitic arthropods, such as Columbicola columbae (slender pigeon lice) and Cimex lectularius (bed bug). This study presents the first molecular detection of Wolbachia in P. iheringi.}, } @article {pmid39736992, year = {2024}, author = {Holkar, SK and Bhanbhane, VC and Ghotgalkar, PS and Markad, HN and Lodha, TD and Saha, S and Banerjee, K}, title = {Characterization and bioefficacy of grapevine bacterial endophytes against Colletotrichum gloeosporioides causing anthracnose disease.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1502788}, pmid = {39736992}, issn = {1664-302X}, abstract = {INTRODUCTION: Grapevine (Vitis vinifera L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose (Colletotrichum gloeosporioides) (Penz.) is one of the major constraints in quality grape production and therefore its management is a major concern among the grape growers.

MATERIALS AND METHODS: Among the 50 EBs isolated from healthy leaf segments from the eight grapevine genotypes, biologically potential 20 EBs were purified and identified based on morphological, and biological characteristics and sequence analysis of 16S rRNA region. The antagonistic activities of EBs against Colletotrichum gloeosporioides were studied in vitro conditions.

RESULTS: The colony morphologies of EBs are white and yellow-coloured colonies, circular to irregular in shape, and entire, and flat margins. Among the 20 purified EBs, 19 isolates were found to be Gram-positive except one i.e., MS2 isolate. The 12 isolates reduced nitrate and 14 isolates produced urease enzyme. The in vitro assay revealed that two isolates, SB4 and RF1, inhibited 56.1% and 55.6% mycelial growth of C. gloeosporioides, respectively. Further, the identity of EBs was confirmed through PCR amplification of the 16S rRNA region resulting in ~1400 bp size amplicons. The sequence analysis of representative 15 isolates revealed that 5 EB isolates viz., SB5, CS2, RG1, RF1, C1 were identified as Bacillus subtilis with >99% sequence identity, two EBs viz., SB3, and CS1 were identified as B. subtilis subsp. subtilis, two EBs viz., SB1, and CS4 were identified as B. licheniformis. The SB2 isolate was identified as Bacillus sp., whereas SB4 as Brevibacillus borstelensis, TH1 as B. velezensis, TH2 as B. tequilensis, CS3 as B. pumilus and MS1 as Micrococcus luteus were identified.

CONCLUSION: The phylogenetic analysis of 16S rRNA sequence revealed eight distinct clades and showed the close clustering of identified species with the reference species retrieved from NCBI GenBank. The current investigation provides the scope for further field evaluations of these endophytic microbes for managing anthracnose disease.}, } @article {pmid39735838, year = {2024}, author = {Mohammadi, A and Dalimi, A and Ghafarifar, F and Pirestani, M and Akbari, M}, title = {Molecular Diagnosis of Helicobacter pylori Endosymbiont in Acanthamoeba-Positive Samples in Laboratory Conditions and in the Hospital Environments.}, journal = {Iranian journal of parasitology}, volume = {19}, number = {4}, pages = {397-407}, pmid = {39735838}, issn = {1735-7020}, abstract = {BACKGROUND: We aimed to identity Helicobacter pylori endosymbiont in Acanthamoeba-positive samples in natural and laboratory conditions.

METHODS: Overall, 134 samples were collected from hospital environments. Microscopic and PCR test were used for detection of Acanthamoeba and H. pylori. The real-time PCR method was used to check the active presence of H. pylori within Acanthamoeba under natural conditions from hospital samples and in co-culture laboratory conditions.

RESULTS: The rate of contamination of hospital samples with Acanthamoeba was 44.7%. Out of 42 Acanthamoeba PCR-positive samples, 13 isolates (31%) were positive in terms of H. pylori endosymbiont according to sampling location. H. pylori is able to penetrate and enter the Acanthamoeba parasite.

CONCLUSION: H. pylori is able to contaminate Acanthamoeba in natural and laboratory conditions. The presence of pathogenic Acanthamoeba in various hospital environments and the hiding of Helicobacter as an endosymbiont inside it can pose a serious threat to the health of hospitalized patients.}, } @article {pmid39733938, year = {2024}, author = {Angelella, GM and Foutz, JJ and Galindo-Schuller, J}, title = {Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host.}, journal = {Journal of insect physiology}, volume = {}, number = {}, pages = {104746}, doi = {10.1016/j.jinsphys.2024.104746}, pmid = {39733938}, issn = {1879-1611}, abstract = {Wolbachia-infected and uninfected subpopulations of beet leafhoppers, Circulifer tenellus (Baker) (Hemiptera: Cicadellidae), co-occur in the Columbia Basin region of Washington and Oregon. While facultative endosymbionts such as Hamiltonella defensa have demonstrably altered feeding/probing behavior in hemipteran hosts, the behavioral phenotypes conferred by Wolbachia to its insect hosts, including feeding/probing, are largely understudied. We studied the feeding/probing behavior of beet leafhoppers with and without Wolbachia using electropenetrography, along with corresponding inoculation rates of beet curly top virus, a phloem-limited plant pathogen vectored by beet leafhoppers. Insects carrying the virus with and without Wolbachia were individually recorded for four hours while interacting with a potato plant, and wavelengths annotated following established conventions. Virus inoculation rates and the duration of phloem salivation events did not vary. Wolbachia-infected insects more than tripled the duration of phloem ingestion, but despite this, Wolbachia infection was linked with marginally lower, not enhanced, acquisition. Regardless, results suggest potential for Wolbachia to increase the acquisition rate of other phloem-limited plant pathogens.}, } @article {pmid39731680, year = {2024}, author = {Romero, LE and Alvarenga, F and Binder, LC and Serpa, MCA and Muñoz-Leal, S and Labruna, MB}, title = {New records of ticks (Acari: Ixodida) and Rickettsia species in El Salvador.}, journal = {Experimental & applied acarology}, volume = {94}, number = {1}, pages = {19}, pmid = {39731680}, issn = {1572-9702}, support = {11220177//Fondo Nacional de Desarrollo Científico y Tecnológico/ ; }, mesh = {Animals ; *Rickettsia/isolation & purification ; *Ixodidae/microbiology/growth & development ; El Salvador ; *Nymph/growth & development/microbiology/physiology ; Female ; Male ; Animal Distribution ; Larva/microbiology/growth & development/physiology ; }, abstract = {The tick fauna of El Salvador is currently represented by 10 species of hard ticks (family Ixodidae) and 2 species of soft ticks (family Argasidae). This study aimed to report new and additional records of ticks and rickettsiae in El Salvador. During 2019-2021, a total of 216 specimens of ticks were collected from eight host species (domestic and wild animals) and in the environment among 15 geographic localities of El Salvador. Combining morphological and molecular analyses, tick specimens were identified into the following 11 tick species: Amblyomma dissimile, Amblyomma longirostre, Amblyomma mixtum, Amblyomma ovale, Amblyomma cf. parvum, Amblyomma sabanerae, Amblyomma scutatum, Dermacentor panamensis, Ixodes boliviensis, Ornithodoros puertoricensis, and Otobius megnini. In addition, one free-living nymph was morphologically and molecularly identified as Ixodes sp., although closely related to Ixodes brunneus and Ixodes silvanus. Three rickettsial agents of the spotted fever group were identified: Rickettsia rhipicephali in D. panamensis; a Rickettsia endosymbiont in Ixodes boliviensis; and Rickettsia amblyommatis in A. cf. parvum. This study reports the first records of A. longirostre, D. panamensis, I. boliviensis, O. puertoricensis and O. megnini in El Salvador. In addition, the agents R. rhipicephali and Rickettsia sp. endosymbiont of I. boliviensis are also reported for the first time in the country. With the present study, the current tick fauna of El Salvador increases to 17 species, being 13 Ixodidae and 4 Argasidae, including the addition of one genus to each of these two families (Ixodes and Otobius, respectively).}, } @article {pmid39729906, year = {2024}, author = {Abdelghany, S and Simancas-Giraldo, SM and Zayed, A and Farag, MA}, title = {How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms.}, journal = {Marine environmental research}, volume = {204}, number = {}, pages = {106920}, doi = {10.1016/j.marenvres.2024.106920}, pmid = {39729906}, issn = {1879-0291}, abstract = {Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.}, } @article {pmid39718247, year = {2024}, author = {Santos, PKF and de Souza Araujo, N and Françoso, E and Werren, JH and Kapheim, KM and Arias, MC}, title = {The genome of the solitary bee Tetrapedia diversipes (Hymenoptera, Apidae).}, journal = {G3 (Bethesda, Md.)}, volume = {}, number = {}, pages = {}, doi = {10.1093/g3journal/jkae264}, pmid = {39718247}, issn = {2160-1836}, support = {001//Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/ ; 306932/2016-4//CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; 2013/12530-4//Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)/ ; DEB1257053//USNSF/ ; }, abstract = {Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes. Repetitive elements constitute 38.68% of the genome, notably Class II transposable elements. An investigation into lateral gene transfers identified a low frequency (0.037%) of nuclear copies of mitochondrial DNA and 18 candidate regions from bacterial origins. Furthermore, the annotation of 3 scaffolds reveals the presence of the Wolbachia endosymbiont genome, confirming the infection by 2 strains in T. diversipes populations. This genome contributes valuable insights into Neotropical bee genomics, offering a resource for comparative studies and enhancing our understanding of the molecular basis of solitary bee adaptations and interactions.}, } @article {pmid39717715, year = {2024}, author = {Lai, CT and Hsiao, YT and Wu, LH}, title = {Evidence of horizontal transmission of Wolbachia wCcep in rice moths parasitized by Trichogramma chilonis and its persistence across generations.}, journal = {Frontiers in insect science}, volume = {4}, number = {}, pages = {1519986}, pmid = {39717715}, issn = {2673-8600}, abstract = {The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of Wolbachia (wCcep) from the rice moth, Corcyra cephalonica, to its parasitoid, Trichogramma chilonis. Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical wCcep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission. To investigate thoroughly, Wolbachia-free colonies were acquired through tetracycline treatment, and the initial density of wCcep in host eggs significantly influences transmission efficiency. High-density wCcep infections led to rapid transmission, with F1 parasitoid titers increasing by as much as 100-fold, while low-density infections exhibited more gradual increases. Additionally, without continuous exposure to infected hosts, wCcep density in T. chilonis diminished over generations. These findings enhance our understanding of Wolbachia's transfer dynamics and have important implications for developing effective and sustainable biological control strategies using parasitoid wasps, particularly in managing Wolbachia-related pest populations in agricultural systems.}, } @article {pmid39714143, year = {2024}, author = {Mizutani, M and Koga, R and Fukatsu, T and Kakizawa, S}, title = {Complete genome of the mutualistic symbiont Buchnera aphidicola AIST from a Japanese strain of the pea aphid Acyrthosiphon pisum.}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0097324}, doi = {10.1128/mra.00973-24}, pmid = {39714143}, issn = {2576-098X}, abstract = {The genome of Buchnera aphidicola National Institute of Advanced Industrial Science and Technology (AIST), an obligate bacterial endosymbiont from a Japanese strain of the pea aphid Acyrthosiphon pisum, was determined. The genome sequence provides valuable information for comparative and evolutionary aspects of the intimate insect-microbe mutualism.}, } @article {pmid39713442, year = {2024}, author = {Njogu, AK and Logozzo, F and Conner, WR and Shropshire, JD}, title = {Counting rare Wolbachia endosymbionts using digital droplet PCR.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.12.10.627731}, pmid = {39713442}, issn = {2692-8205}, abstract = {Wolbachia is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, Wolbachia is at the vanguard of public health initiatives to control mosquito-borne diseases. Wolbachia's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues. The most common method for counting Wolbachia is quantitative polymerase chain reaction (qPCR), yet qPCR can be insufficient to count rare Wolbachia, necessitating tissue pooling and consequently compromising individual-level resolution of Wolbachia dynamics. Digital droplet PCR (ddPCR) offers superior sensitivity, enabling the detection of rare targets and eliminating the need for sample pooling. Here, we report three ddPCR assays to measure total Wolbachia abundance, Wolbachia abundance adjusted for DNA extraction efficiency, and Wolbachia density relative to host genome copies. Using Drosophila melanogaster with wMel Wolbachia as a model, we show these ddPCR assays can reliably detect as few as 7 to 12 Wolbachia gene copies in a 20 μL reaction. The designed oligos are homologous to sequences from at least 106 Wolbachia strains across Supergroup A and 53 host species from the Drosophila, Scaptomyza, and Zaprionus genera, suggesting broad utility. These highly sensitive ddPCR assays are expected to significantly advance Wolbachia-host interactions research by enabling the collection of molecular data from individual insect tissues. Their ability to detect rare Wolbachia will be especially valuable in applied and natural field settings where pooling samples could obscure important variation.}, } @article {pmid39709001, year = {2024}, author = {Mao, B and Wang, YY and Li, SY and Fu, Y and Xiao, YL and Wang, YF}, title = {A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis.}, journal = {Journal of insect physiology}, volume = {}, number = {}, pages = {104743}, doi = {10.1016/j.jinsphys.2024.104743}, pmid = {39709001}, issn = {1879-1611}, abstract = {Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated. We report here that Wolbachia infection induced a significant upregulation of betaTub85D in the testis of Drosophila melanogaster. Knockdown of betaTub85D in fly testes resulted in significant decrease of expression of Wolbachia surface protein gene (wsp), indicating a notable reduction of Wolbachia density. Pull-down analyses revealed that WSP interacted with the betaTub85D of D. melanogaster. Wolbachia infection altered the interactome between betaTub85D and other proteins in the testes, and may thus change the protein synthesis and metabolic pathways. Wolbachia infection induced not only an interaction of betaTub85D with Mst77F but also increase in phosphorylated Mst77F. These results suggest that Wolbachia WSP protein might play important roles in anchoring the endosymbiont to the host's cytoskeleton and consequently interfere the interactions among key proteins involved in spermatogenesis in the insect host testes, resulting in modified sperm.}, } @article {pmid39704701, year = {2024}, author = {Shippy, TD and Hosmani, PS and Flores-Gonzalez, M and Mann, M and Miller, S and Weirauch, MT and Vosberg, C and Massimino, C and Tank, W and de Oliveira, L and Chen, C and Hoyt, S and Adams, R and Adkins, S and Bailey, ST and Chen, X and Davis, N and DeLaFlor, Y and Espino, M and Gervais, K and Grace, R and Harper, D and Hasan, DL and Hoang, M and Holcomb, R and Jernigan, MR and Kemp, M and Kennedy, B and Kercher, K and Klaessan, S and Kruse, A and Licata, S and Lu, A and Masse, R and Mathew, A and Michels, S and Michels, E and Neiman, A and Norman, S and Norus, J and Ortiz, Y and Panitz, N and Paris, T and Perentesis, KMR and Perry, M and Reynolds, M and Sena, MM and Tamayo, B and Thate, A and Vandervoort, S and Ventura, J and Weis, N and Wise, T and Shatters, RG and Heck, M and Benoit, JB and Hunter, WB and Mueller, LA and Brown, SJ and D'Elia, T and Saha, S}, title = {Diaci v3.0: chromosome-level assembly, de novo transcriptome, and manual annotation of Diaphorina citri, insect vector of Huanglongbing.}, journal = {GigaScience}, volume = {13}, number = {}, pages = {}, doi = {10.1093/gigascience/giae109}, pmid = {39704701}, issn = {2047-217X}, support = {//U.S. Department of Agriculture/ ; 2015-70016-23028//National Institute of Food and Agriculture/ ; P20GM103418/NH/NIH HHS/United States ; }, mesh = {Animals ; *Molecular Sequence Annotation ; *Hemiptera/genetics/microbiology ; *Insect Vectors/genetics/microbiology ; *Transcriptome ; *Plant Diseases/microbiology/genetics ; Citrus/microbiology/genetics ; }, abstract = {BACKGROUND: Diaphorina citri is an insect vector of "Candidatus Liberibacter asiaticus" (CLas), the gram-negative bacterial pathogen associated with citrus greening disease. Control measures rely on pesticides with negative impacts on the environment, natural ecosystems, and human and animal health. In contrast, gene-targeting methods have the potential to specifically target the vector species and/or reduce pathogen transmission.

RESULTS: To improve the genomic resources needed for targeted pest control, we assembled a D. citri genome based on PacBio long reads followed by proximity ligation-based scaffolding. The 474-Mb genome has 13 chromosomal-length scaffolds. In total, 1,036 genes were manually curated as part of a community annotation project, composed primarily of undergraduate students. We also computationally identified a total of 1,015 putative transcription factors (TFs) and were able to infer motifs for 337 TFs (33%). In addition, we produced a genome-independent transcriptome and genomes for D. citri endosymbionts.

CONCLUSIONS: Manual annotation provided more accurate gene models for use by researchers and provided an excellent training opportunity for students from multiple institutions. All resources are available on CitrusGreening.org and NCBI. The chromosomal-length D. citri genome assembly serves as a blueprint for the development of collaborative genomics projects for other medically and agriculturally significant insect vectors.}, } @article {pmid39689471, year = {2024}, author = {Li, M and Chen, H and Wang, M and Zhong, Z and Lian, C and Zhou, L and Zhang, H and Wang, H and Cao, L and Li, C}, title = {Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate.}, journal = {The Science of the total environment}, volume = {958}, number = {}, pages = {178048}, doi = {10.1016/j.scitotenv.2024.178048}, pmid = {39689471}, issn = {1879-1026}, abstract = {Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate. However, knowledge on the long-term responses of deep-sea mussels to environmental stresses induced by methane reduction and deprivation, is still lacking. Here, we set up a laboratory system and cultivated methanotrophic deep-sea mussel Gigantidas platifrons without methane supply to survey the phenotypic changes after methane deprivation. While the mussels managed to survive for >10 months after the methane deprivation, drastic changes in the metabolism, function, and development of gill tissue, and in the association with methanotrophic symbionts were observed. In detail, the mussel digested all methanotrophic endosymbionts shortly after methane deprivation for nutrition and remodeled the global metabolism of gill to conserve energy. As the methane deprivation continued, the mussel replaced its bacteriocytes with ciliated cells to support filter-feeding, which is an atavistic trait in non-symbiotic mussels. During the long-term methane deprivation assay, the mussel also retained the generation of new cells to support the phenotypic changes of gill and even promoted the activity after being transplanted back to deep-sea, showing the potential resilience after long-term methane deprivation. Evidences further highlighted the participation of symbiont sterol metabolism in regulating these processes. These results collectively show the phenotypic plasticity of deep-sea mussels and their dynamic responses to methane deprivation, providing essential information in assessing the long-term influence of methane hydrate extinction.}, } @article {pmid39681734, year = {2024}, author = {Rajendran, D and Vinayagam, S and Sekar, K and Bhowmick, IP and Sattu, K}, title = {Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies.}, journal = {Microbial ecology}, volume = {87}, number = {1}, pages = {154}, pmid = {39681734}, issn = {1432-184X}, mesh = {*Wolbachia/physiology ; Animals ; *Symbiosis ; *Gastrointestinal Microbiome ; *Mosquito Vectors/microbiology ; Culicidae/microbiology ; Mosquito Control/methods ; }, abstract = {Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.}, } @article {pmid39656697, year = {2024}, author = {Rasool, B and Younis, T and Zafar, S and Parvaiz, A and Javed, Z and Rasool, I and Shakeel, M}, title = {Incidence of endosymbiont bacteria Wolbachia in cowpea weevil Callosobruchus maculatus Fabricius (Coleoptera, Chrysomelidae).}, journal = {PloS one}, volume = {19}, number = {12}, pages = {e0313449}, doi = {10.1371/journal.pone.0313449}, pmid = {39656697}, issn = {1932-6203}, mesh = {*Wolbachia/genetics/isolation & purification/classification ; Animals ; *Phylogeny ; *Weevils/microbiology ; *Symbiosis ; RNA, Ribosomal/genetics ; Coleoptera/microbiology ; Electron Transport Complex IV/genetics ; }, abstract = {This study focuses on the cowpea weevil, Callosobruchus maculatus, a globally distributed grain pest that affects cereals and pulses. Using chemicals to store grains can harm pest control and pose risks to consumers and the environment. The facultative intracellular symbiont bacteria Wolbachia can affect host's reproductive capacities in a variety of ways, which makes it useful in the management of pests such as C. maculatus. The main goal of the study was to identify Wolbachia diversity in the C. maculatus population. Phylogenetic analysis utilized mitochondrial COI and 12S rRNA genes to identify the host C. maculatus, while screening for Wolbachia was conducted using genes (wsp, coxA, and ftsZ) genes. Molecular phylogenetic analysis of the Wolbachia genes resulted in one new Wolbachia strain (wCmac1) in C. maculatus populations and contrasting already published data of other Callosobruchus strains. The study discussed the detection of Wolbachia and its phylogenetic comparison with other C. maculatus and Coleopteran populations. It is important to take these findings into account when considering host-pathogen interactions.}, } @article {pmid39673486, year = {2024}, author = {Krause-Sakate, R and Gomes Ruschel, R and Ochoa-Corona, F and Andreason, SA and de Marchi, BR and Ribeiro-Junior, MR and Nascimento, DM and Trujillo, R and Smith, HA and Hutton, SF and Wallace, S}, title = {First detection of Bemisia tabaci (Hemiptera: Aleyrodidae) MED in Oklahoma and development of a high-resolution melting assay for MEAM1 and MED discrimination.}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toae228}, pmid = {39673486}, issn = {1938-291X}, support = {//Sarkeys Foundation/ ; }, abstract = {The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a polyphagous pest recognized as composed of several cryptic or sibling species. The Middle East-Asia Minor 1 (MEAM1) and the Mediterranean (MED) putative species are invasive and destructive worldwide. The MEAM1 is established throughout the United States, while MED is documented in 27 states. This study determines the status of MED in Oklahoma and develops and validates a high-resolution melting (HRM) assay for discrimination of MEAM1 and MED. In August-October 2022, whiteflies were collected from different host plants in Stillwater, Oklahoma, and identified as species based on analysis of a diagnostic fragment of the mitochondrial cytochrome oxidase I (mtCOI) gene. MED was found in mixed infestations with MEAM1 on both sweetpotato in a greenhouse and cucumber in the field. Other cryptic species were not detected. Sequencing followed by phylogenetic analysis indicated that the MED specimens belonged to the Q2 mitotype. Additionally, the secondary endosymbionts in captured and progeny whiteflies were identified. For rapid discrimination of MEAM1 and MED species, an HRM assay using a single set of primer pairs targeting the mtCOI gene was developed. Species discrimination was tested in 2 laboratories using MEAM1 and MED Q2 mitotype genomic DNA, and a synthetic plasmid containing the MED Q1 mitotype mtCOI fragment. The HRM assay was validated to discriminate MEAM1 from MED Q1 and Q2 mitotypes. This is the first report of B. tabaci MED in Oklahoma and reinforces the need for continued monitoring of this insect species complex.}, } @article {pmid39661825, year = {2024}, author = {Santos, JFBD and Bombaça, ACS and Vitório, BDS and Dias-Lopes, G and Garcia-Gomes, ADS and Menna-Barreto, RSF and d'Avila, CM and Ennes-Vidal, V}, title = {Differential expression of peptidases in Strigomonas culicis wild-type and aposymbiotic strains: from proteomic data to proteolytic activity.}, journal = {Memorias do Instituto Oswaldo Cruz}, volume = {119}, number = {}, pages = {e240110}, doi = {10.1590/0074-02760240110}, pmid = {39661825}, issn = {1678-8060}, mesh = {*Proteomics ; *Peptide Hydrolases/metabolism/genetics ; Trypanosomatina/enzymology/genetics ; Symbiosis ; Proteolysis ; Proteome ; }, abstract = {BACKGROUND: Strigomonas culicis is a monoxenic trypanosomatid parasite of insects that naturally contains an endosymbiotic bacterium. The aposymbiotic strain can be obtained, making this strain a model for evolutive research about organelle origins. In addition, S. culicis contains homologues of virulence factors of pathogenic trypanosomatids, which functions are waiting for further analysis. In this sense, the publication of S. culicis proteome makes feasible additional investigations regarding the differential expression of peptidases from the wild-type (WT) and the aposymbiotic (APO) strains.

OBJECTIVES: Here, we analysed two proteomic data from S. culicis WT and APO strains screening for peptidases differentially expressed and assessed the differential expression of cysteine and metallopeptidases.

METHODS: A comparative proteomic screening between WT and APO identified 43 modulated peptidases.

FINDINGS: Cysteine and metallopeptidases, such as calpains and GP63, were the major classes, highlighting their significance. GP63 exhibited an increased proteolysis in a specific metallopeptidase substrate, an up-modulation gene expression in RT-PCR, and a higher protein identification by flow cytometry in the aposymbiotic strain. Notwithstanding, the wild-type strain showed enhanced cysteine peptidase activity.

MAIN CONCLUSION: Our study highlighted the endosymbiont influence in S. culicis peptidase expression, with GP63 expression and activity raised in the aposymbiotic strain, whereas cysteine peptidase levels were reduced.}, } @article {pmid39659293, year = {2024}, author = {Gasser, MT and Liu, A and Altamia, MA and Brensinger, BR and Brewer, SL and Flatau, R and Hancock, ER and Preheim, SP and Filone, CM and Distel, DL}, title = {Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms.}, journal = {Microbial biotechnology}, volume = {17}, number = {12}, pages = {e70064}, doi = {10.1111/1751-7915.70064}, pmid = {39659293}, issn = {1751-7915}, support = {//Johns Hopkins University Applied Physics Laboratory/ ; NA19OAR0110303//National Oceanic and Atmospheric Administration/ ; 1R01AI162943-01A1:10062083-NE/NH/NIH HHS/United States ; GBMF9339//Gordon and Betty Moore Foundation/ ; DBI1722553//National Science Foundation/ ; }, mesh = {Animals ; *Symbiosis ; *Cellulose/metabolism ; *Bivalvia/microbiology ; Gammaproteobacteria/metabolism/genetics ; Chromatography, Liquid ; Tandem Mass Spectrometry ; Bacterial Proteins/metabolism/genetics ; Polysaccharides/metabolism ; Carboxymethylcellulose Sodium/metabolism ; }, abstract = {Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography-mass spectrometry (LC-MS/MS) as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.}, } @article {pmid39658562, year = {2024}, author = {De, BC and Cournoyer, JE and Gao, YL and Wallace, CL and Bram, S and Mehta, AP}, title = {Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {10622}, pmid = {39658562}, issn = {2041-1723}, support = {R01GM139949//U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)/ ; }, mesh = {*Symbiosis/genetics ; *Photosynthesis/genetics/physiology ; *Chloroplasts/metabolism/genetics ; *Adenosine Triphosphate/metabolism ; *Energy Metabolism/genetics ; *Biological Evolution ; Rhodophyta/metabolism/genetics ; Cyanobacteria/metabolism/genetics ; Embryophyta/metabolism/genetics ; Glaucophyta/metabolism/genetics ; Plastids/metabolism/genetics ; Phylogeny ; Mitochondrial ADP, ATP Translocases/metabolism/genetics ; }, abstract = {Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP. Here, we investigate the preferences of plastidic ADP/ATP carrier translocases from key lineages of photosynthetic eukaryotes including red algae, glaucophytes, and land plants. Particularly, we observe that the cyanobacterial endosymbionts expressing plastidic ADP/ATP carrier translocases from red algae and glaucophyte are able to export ATP and support ATP dependent endosymbiosis, whereas those expressing ADP/ATP carrier translocases from land plants preferentially import ATP and are unable to support ATP dependent endosymbiosis. These data are consistent with a scenario where the ancestral plastids may have exported ATP to support the bioenergetic functions of the host cell.}, } @article {pmid39658314, year = {2024}, author = {Sørensen, MES and Stiller, ML and Kröninger, L and Nowack, ECM}, title = {Protein import into bacterial endosymbionts and evolving organelles.}, journal = {The FEBS journal}, volume = {}, number = {}, pages = {}, doi = {10.1111/febs.17356}, pmid = {39658314}, issn = {1742-4658}, support = {101061817//H2020 European Research Council/ ; //Deutsche Forschungsgemeinschaft/ ; }, abstract = {Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.}, } @article {pmid39656210, year = {2024}, author = {Ling, X and Guo, H and Di, J and Xie, L and Zhu-Salzman, K and Ge, F and Zhao, Z and Sun, Y}, title = {A complete DNA repair system assembled by two endosymbionts restores heat tolerance of the insect host.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {121}, number = {51}, pages = {e2415651121}, doi = {10.1073/pnas.2415651121}, pmid = {39656210}, issn = {1091-6490}, support = {2023YFD1400800//National Key R&D Program of China/ ; no. 32250002//National Natural Science Foundation of China/ ; no. 2023IOZ0307//Initiative Scientific Research of Program, Institute of Zoology, Chinese Academy of Sciences/ ; }, mesh = {Animals ; *Symbiosis ; *Bacterial Proteins/metabolism/genetics ; *DNA Repair ; Buchnera/genetics/metabolism ; Aphids/microbiology/genetics ; Serratia/genetics/metabolism/physiology ; Thermotolerance/genetics ; Promoter Regions, Genetic ; Heat-Shock Response ; }, abstract = {DNA repair systems are essential to maintain genome integrity and stability. Some obligate endosymbionts that experience long-term symbiosis with the insect hosts, however, have lost their key components for DNA repair. It is largely unexplored how the bacterial endosymbionts cope with the increased demand for mismatch repairs under heat stresses. Here, we showed that ibpA, a small heat shock protein encoded by Buchnera aphidicola, directly interacted with the cytoskeletal actin to prevent its aggregation in bacteriocytes, thus reinforcing the stability of bacteriocytes. However, the succession of 11 adenines in the promoter of ibpA is extremely prone to mismatching error, e.g., a single adenine deletion, which impairs the induction of ibpA under heat stress. Coinfection with a facultative endosymbiont Serratia symbiotica remarkably reduced the mutagenesis rate in the Buchnera genome and potentially prevented a single adenine deletion in ibpA promoter, thereby alleviating the heat vulnerability of aphid bacteriocytes. Furthermore, Serratia encoded mutH, a conserved core protein of prokaryotic DNA mismatch repair (MMR), accessed to Buchnera cells, which complemented Buchnera mutL and mutS in constituting an active MMR. Our findings imply that a full complement of a prokaryotic MMR system assembled by two bacterial endosymbionts contributes significantly to the thermostability of aphid bacteriocytes in an ibpA-dependent manner, furnishing a distinct molecular link among tripartite symbioses in shaping resilience and adaptation of their insect hosts to occupy other ecological niches.}, } @article {pmid39655922, year = {2024}, author = {Gasser, MT and Liu, A and Flatau, R and Altamia, MA and Filone, CM and Distel, DL}, title = {Closing the genome of Teredinibacter turnerae T7902 by long-read nanopore sequencing.}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0048424}, doi = {10.1128/mra.00484-24}, pmid = {39655922}, issn = {2576-098X}, abstract = {We present the complete closed circular genome sequence derived from the Oxford Nanopore sequencing of the shipworm endosymbiont, Teredinibacter turnerae T7902 (DSM 15152, ATCC 39867), originally isolated from the shipworm, Lyrodus pedicellatus (1). This sequence will aid in the comparative genomics of shipworm endosymbionts and the understanding of the host-symbiont evolution.}, } @article {pmid39647222, year = {2024}, author = {Kloc, A and Wójcik-Fatla, A and Paprzycki, P and Panasiuk, L}, title = {Transovarial transmission of Rickettsia spp., Francisella-like endosymbionts, and Spiroplasma spp. in Dermacentor reticulatus ticks.}, journal = {Ticks and tick-borne diseases}, volume = {15}, number = {6}, pages = {102421}, doi = {10.1016/j.ttbdis.2024.102421}, pmid = {39647222}, issn = {1877-9603}, abstract = {Research on the transovarial transmission of pathogens whose reservoirs and vectors are ticks has led to an understanding of the mechanisms related to the circulation and persistence of selected microorganisms in natural foci. The primary aim of this study was to investigate the possibility of transovarial transmission of Rickettsia spp. in Dermacentor reticulatus ticks, and the influence of Francisella-like endosymbionts (FLEs) and Spiroplasma spp. on the efficiency of the egg-laying process and transmission of selected pathogens. In total, 16,600 eggs were obtained under laboratory conditions from 55 females, with an average of 346 eggs per female. Adults, eggs, and hatched larvae were tested using polymerase chain reaction (PCR) for the presence of Rickettsia and endosymbionts. DNA fragments of Rickettsia spp. were found in females (56.4 %) and in pools of eggs (72.9 %) and larvae (62.4 %). FLEs and Spiroplasma endosymbionts were confirmed in females (80 % and 14.5 %, respectively), pools of eggs (81.6 % and 26.1 %, respectively), and larvae (82.7 % and 46.2 %, respectively). Transovarial transmission was confirmed in Rickettsia raoultii, FLEs, and Spiroplasma ixodetis. No correlation was observed between the occurrence of individual endosymbionts and the efficiency of egg laying and transovarial transmission in Rickettsia spp. In conclusion, transovarial transmission of Rickettsia spp., FLEs and Spiroplasma spp. in D. reticulatus plays an important role in their persistence and circulation in the environment. However, further research is required on this topic.}, } @article {pmid39646835, year = {2024}, author = {Terrana, L and Rouzé, H and Opresko, DM and Consortium, UTP and Eeckhaut, I and Dubois, P and Hédouin, L and Godefroid, M}, title = {Whip black corals (Antipatharia: Antipathidae: Stichopathes) of the Mesophotic Coral Ecosystem of Mo'orea (French Polynesia), with the description of a new species.}, journal = {Zootaxa}, volume = {5486}, number = {2}, pages = {182-212}, doi = {10.11646/zootaxa.5486.2.2}, pmid = {39646835}, issn = {1175-5334}, mesh = {Animals ; *Anthozoa ; Polynesia ; *Ecosystem ; *Animal Distribution ; Phylogeny ; Body Size ; Animal Structures/anatomy & histology/growth & development ; Organ Size ; }, abstract = {Black corals are key species of marine ecosystems. They can be found in dense aggregations worldwide, but some parts of the world remain totally unexplored. This is the case of the Mesophotic Coral Ecosystem of Mo'orea where the Under the Pole scientific expedition explored mesophotic ecosystems between 60 and 120 m depth and focused on whip black corals. A total of 64 specimens were analyzed morphologically and genetically, and all belonged to the genus Stichopathes. Among them, we describe the new species Stichopathes desaturata sp. nov. It is characterized by an unbranched corallum, irregularly sinuous, with a basal diameter not exceeding 1 mm, reaching a dozen of cm in height. The polyps measure 0.50-1.0 mm in transverse diameter, the interpolypar space is well defined and up to 0.50 mm, with 6-8 polyps per cm. The polypar spines are taller than abpolypar spines, reaching 0.13 mm, perpendicular to the corallum, and conical with a pointed tip, with round and/or elongated papillae on two thirds of the spine. The abpolypar spines are conical to triangular, inclined upwards, with the same ornamentation as the polypar spines. We also identified specimens assigned as Stichopathes cf. contorta and four other putative species. Genetic analyses showed that Mo'orea specimens grouped in three different clades. Analyses of endosymbionts showed that the association with Symbiodiniaceae was likely not involved in the process of host species delineation.}, } @article {pmid39640918, year = {2024}, author = {Baede, VO and Jlassi, O and Lesiczka, PM and Younsi, H and Jansen, HJ and Dachraoui, K and Segobola, J and Ben Said, M and Veneman, WJ and Dirks, RP and Sprong, H and Zhioua, E}, title = {Similarities between Ixodes ricinus and Ixodes inopinatus genomes and horizontal gene transfer from their endosymbionts.}, journal = {Current research in parasitology & vector-borne diseases}, volume = {6}, number = {}, pages = {100229}, pmid = {39640918}, issn = {2667-114X}, abstract = {The taxa Ixodes ricinus and Ixodes inopinatus are sympatric in Tunisia. The genetics underlying their morphological differences are unresolved. In this study, ticks collected in Jouza-Amdoun, Tunisia, were morphologically identified and sequenced using Oxford Nanopore Technologies. Three complete genome assemblies of I. inopinatus and three of I. ricinus with BUSCO scores of ∼98% were generated, including the reconstruction of mitochondrial genomes and separation of both alleles of the TRPA1, TROSPA and calreticulin genes. Deep sequencing allowed the first descriptions of complete bacterial genomes for "Candidatus Midichloria mitochondrii", Rickettsia helvetica and R. monacensis from North Africa, and the discovery of extensive integration of parts of the Spiroplasma ixodetis and "Ca. M. mitochondrii" into the nuclear genome of these ticks. Phylogenetic analyses of the mitochondrial genome, the nuclear genes, and symbionts showed differentiation between Tunisian and Dutch ticks, but high genetic similarities between Tunisian I. ricinus and I. inopinatus. Subtraction of the genome assemblies identified the presence of some unique sequences, which could not be confirmed when screening a larger batch of I. ricinus and I. inopinatus ticks using PCR. Our findings yield compelling evidence that I. inopinatus is genetically highly similar, if not identical, to sympatric I. ricinus. Defined morphological differences might be caused by extrinsic factors such as micro-climatic conditions or bloodmeal composition. Our findings support the existence of different lineages of I. ricinus as well of its symbionts/pathogens from geographically dispersed locations.}, } @article {pmid39629170, year = {2024}, author = {Wajnberg, E and Cônsoli, FL}, title = {Dynamics of Insects and Their Facultative Defensive Endosymbiotic Bacteria: A Simulation Model.}, journal = {Ecology and evolution}, volume = {14}, number = {12}, pages = {e70676}, pmid = {39629170}, issn = {2045-7758}, abstract = {Most insects harbour endosymbionts that modify their physiology, reproductive mode, and ecology. One fascinating case is in aphids, which host endosymbionts that protect them against attacks from parasitoids. These symbionts are transmitted maternally with high fidelity but can also be transmitted horizontally from infected to uninfected hosts. Since symbionts can confer resistance to their host against parasitoids, levels of symbiont infection should rapidly spread to fixation. This is not the case in most aphid populations that have been studied. Furthermore, the defensive effect of symbionts has been thought to reduce the efficacy of biological control against crop pests, although this has never been properly quantified. We developed a Monte Carlo simulation model to examine changes in levels of endosymbiont infection in an insect population in the presence of parasitoids attacking them over several generations. We also used the model to quantify potential reductions in the efficacy of parasitoids in controlling host populations in biological control. Results suggest that longevity of parasitoids and the spatial aggregation of hosts likely play a major role in the dynamics of symbiont infection. This is the first evidence that these ecological parameters are potentially important for explaining levels of symbiont infection in insect populations.}, } @article {pmid39627879, year = {2024}, author = {Kostygov, AY and Skýpalová, K and Kraeva, N and Kalita, E and McLeod, C and Yurchenko, V and Field, MC and Lukeš, J and Butenko, A}, title = {Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote.}, journal = {BMC biology}, volume = {22}, number = {1}, pages = {281}, pmid = {39627879}, issn = {1741-7007}, abstract = {BACKGROUND: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites.

RESULTS: We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns.

CONCLUSIONS: All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.}, } @article {pmid39624265, year = {2024}, author = {Karim, S and Zenzal, TJ and Beati, L and Sen, R and Adegoke, A and Kumar, D and Downs, LP and Keko, M and Nussbaum, A and Becker, DJ and Moore, FR}, title = {Ticks without borders: microbiome of immature neotropical tick species parasitizing migratory songbirds along northern Gulf of Mexico.}, journal = {Frontiers in cellular and infection microbiology}, volume = {14}, number = {}, pages = {1472598}, pmid = {39624265}, issn = {2235-2988}, mesh = {Animals ; *Microbiota ; Gulf of Mexico ; *Songbirds/parasitology/microbiology ; *Animal Migration ; *RNA, Ribosomal, 16S/genetics ; Rickettsia/genetics/isolation & purification/classification ; Tick Infestations/veterinary/parasitology ; Ticks/microbiology ; Francisella/genetics/isolation & purification/classification ; Spiroplasma/genetics/isolation & purification/classification/physiology ; Phylogeny ; }, abstract = {INTRODUCTION: The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can cause the emergence of novel tick-borne pathogens. This study examined the prevalence of exotic tick species parasitizing migratory songbirds at stopover sites along the northern Gulf of Mexico using the mitochondrial 12S rRNA gene.

METHODS: Overall, 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre were the most abundant tick genera and species, respectively. A high throughput 16S ribosomal RNA sequencing approach characterized the microbial communities and identified pathogenic microbes in all tick samples.

RESULTS AND DISCUSSION: Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant pathogens were Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also noted a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing mean dispersal distances from 421-5003 kilometers. These findings spotlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.}, } @article {pmid39616490, year = {2024}, author = {Govender, R and Mabaso, N and Abbai, NS}, title = {Investigating links between Trichomonas vaginalis, T. vaginalis virus, Mycoplasma hominis, and metronidazole resistance.}, journal = {Journal of infection in developing countries}, volume = {18}, number = {10}, pages = {1590-1600}, doi = {10.3855/jidc.17592}, pmid = {39616490}, issn = {1972-2680}, mesh = {*Trichomonas vaginalis/drug effects/isolation & purification ; *Mycoplasma hominis/drug effects/isolation & purification/genetics ; *Metronidazole/pharmacology ; Humans ; Female ; *Mycoplasma Infections/microbiology ; Prevalence ; Microbial Sensitivity Tests ; Trichomonas Vaginitis/microbiology/parasitology ; Totiviridae/genetics/drug effects/isolation & purification ; RNA, Ribosomal, 16S/genetics ; Symbiosis ; Drug Resistance ; Antiprotozoal Agents/pharmacology ; Polymerase Chain Reaction ; Coinfection/microbiology ; }, abstract = {INTRODUCTION: Trichomonas vaginalis (TV) is the etiological agent of the common non-viral sexually transmitted infection (STI), trichomoniasis. TV can inherently harbour Mycoplasma hominis and Trichomonas vaginalis virus (TVV) species. Endosymbiosis of TV with M. hominis and TVV may contribute to metronidazole resistance in this pathogen. This study determined the prevalence of TVVs across clinical isolates of TV, as well as the symbiosis between TV, TVV, and M. hominis in relation to metronidazole resistance.

METHODOLOGY: Twenty-one clinical isolates of TV were analysed in this study. The isolates were subjected to drug susceptibility assays using varying concentrations of metronidazole. Nucleic acids (RNA and DNA) were extracted from the isolates for molecular assays. The presence of intracellular M. hominis was determined by 16S rRNA polymerase chain reaction (PCR) with specific primers. The presence of the individual TVVs was determined by PCR using gene specific primers with template cDNA.

RESULTS: The prevalence of TVV and M. hominis were 76% (16/21) and 86% (18/21), respectively. No significant associations were observed between the presence of TVV and clinical symptoms. A significant association was noted between the coinfection of TVV4 and M. hominis (p = 0.014). The presence of any TVV was significantly associated with metronidazole susceptibility patterns (p = 0.012). No significant associations were noted between the coinfection of endosymbionts and metronidazole resistance.

CONCLUSIONS: The information obtained displays the ability of TV to form an endosymbiotic relationship with several microorganisms, simultaneously. Based on these findings, both endosymbionts pose no significant influence on metronidazole resistance.}, } @article {pmid39615475, year = {2024}, author = {Řezáč, M and Řezáčová, V and Heneberg, P}, title = {Differences in the abundance and diversity of endosymbiotic bacteria drive host resistance of Philodromus cespitum, a dominant spider of central European orchards, to selected insecticides.}, journal = {Journal of environmental management}, volume = {373}, number = {}, pages = {123486}, doi = {10.1016/j.jenvman.2024.123486}, pmid = {39615475}, issn = {1095-8630}, abstract = {The ability of tissue endosymbionts to degrade and detoxify agrochemicals is increasingly recognized as a mechanism supporting the survival of arthropods in agroecosystems. Therefore, tissue endosymbionts have the potential to drive insecticide resistance in agrobiont spiders, i.e., in major generalist predators and pest control agents within agroecosystems. We hypothesized that the abundance and diversity of the endosymbiotic bacteria of Philodromus cespitum, a philodromid spider dominating central European apple orchards, vary with regard to differences in predation capacity and drive host insecticide resistance. We provisioned P. cespitum with diets of varying protein and lipid content and topically exposed them to field-relevant doses of commonly used insecticides, namely Mospilan (acetamiprid), Movento (spirotetramat), Gondola (sulfoxaflor), Decis (deltamethrin), Coragen (chlorantraniliprole), and Benevia (cyantraniliprole). The analyses were based on 16S rDNA profiles from lysates of the cephalothorax and legs of the tested spiders. The application of Benevia, Mospilan, and Movento was partially lethal. The spiders that were resistant to the treatments with Benevia, Mospilan, or Movento were associated with the increased relative abundance of Mycoplasmatota by more than one order of magnitude. Additionally, the abundance of other bacteria differed in Mospilan-resistant and Mospilan-sensitive individuals. In contrast, the diet regimens were not associated with any major differences in the microbiome diversity nor the diversity of endosymbionts. Philodromus cespitum hosts assemblages with unexpectedly high beta diversity of endosymbionts. The OTU identified as the alpha proteobacterium endosymbiont of Coelostomidia zealandica was an obligate endosymbiont of the analyzed P. cespitum population. Wolbachia, Rickettsia, and Spiroplasma endosymbionts were also highly prevalent and differed in their responses to the applied treatments. In conclusion, differences in the abundance and diversity of endosymbiotic bacteria drove the resistance of the spider host to selected insecticides.}, } @article {pmid39614636, year = {2024}, author = {Jiménez-Florido, P and Aquilino, M and Buckley, D and Bella, JL and Planelló, R}, title = {Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection.}, journal = {Insect science}, volume = {}, number = {}, pages = {}, doi = {10.1111/1744-7917.13481}, pmid = {39614636}, issn = {1744-7917}, support = {PID2019-104952GBI00//Ministerio de Economía y Competitividad/ ; FPU contract 22/02220//Ministerioa de Ciencia, Innovación y Universidades/ ; PEJD-2019-POST/AMB-16425//Comunidada de Madrid/European Social Fund/ ; María Zambrano contract//Ministerio de Universidades/Europeana Union-NextGeneration Programme/ ; }, abstract = {Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.}, } @article {pmid39607975, year = {2024}, author = {Abbasi, AM and Nasir, S and Bajwa, AA and Akbar, H and Ali, MM and Rashid, MI}, title = {A comparative study of the microbiomes of the ticks Rhipicephalus microplus and Hyalomma anatolicum.}, journal = {Parasite (Paris, France)}, volume = {31}, number = {}, pages = {74}, doi = {10.1051/parasite/2024074}, pmid = {39607975}, issn = {1776-1042}, support = {HEC-GCF-273//Higher Education Commission, Pakistan/ ; }, mesh = {Animals ; *Rhipicephalus/microbiology ; *RNA, Ribosomal, 16S/genetics ; *Ixodidae/microbiology ; *Microbiota ; Pakistan ; Phylogeny ; Symbiosis ; Female ; Gastrointestinal Microbiome ; Coxiella/genetics/isolation & purification/classification ; Bacteria/classification/genetics/isolation & purification ; }, abstract = {Hyalomma anatolicum and Rhipicephalus microplus are tick species that are important vectors of numerous pathogens affecting both humans and livestock. Endosymbionts, such as Coxiella-like endosymbionts (CLE), Francisella-like endosymbionts (FLE), and Candidatus Midichloria, play a crucial role in the physiology and vector competence of these ticks. In this study, we investigated the microbial composition of H. anatolicum and R. microplus from four geographically distinct regions of Pakistan to assess whether environmental differences influence their microbiomes. We analyzed the ticks' gut microbiome targeting the V3-V4 hypervariable region of 16S rRNA for Illumina 16S metagenome NGS sequencing and processed overall 144 ticks. Analysis of gut bacterial composition resulted in observation of 1200 R. microplus and 968 H. anatolicum unique amplicon sequencing variants (ASVs). Relative abundance, Alpha diversity (Shannon, Faith's phylogenetic distance) and beta diversity metrics (Bray-Curtis, Jaccard and UniFrac) were analyzed and revealed that H. anatolicum ticks have significantly unique and diverse microbial communities with Acinetobacter indicus and Francisella-like endosymbionts dominating as opposed to Candidatus Midichloria. Rhipicephalus microplus exhibited results consistent with the previous studies with no major changes in microbiome including Coxiella-like endosymbionts as the major contributor. These findings suggest that geographical and environmental factors play a significant role in shaping the tick microbiome, with potential consequences for disease transmission and tick survivability. Further research is needed to elucidate the functional roles of these microbial shifts and their impact on public health and livestock in affected regions.}, } @article {pmid39604530, year = {2024}, author = {Shokoohi, E and Masoko, P}, title = {Microbiome of Xiphinema elongatum (Nematoda, Longidoridae), isolated from water berry.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {29494}, pmid = {39604530}, issn = {2045-2322}, mesh = {Animals ; *Microbiota ; *Soil Microbiology ; South Africa ; Nematoda/microbiology ; Bacteria/classification/isolation & purification/genetics ; Soil/parasitology ; Fruit/microbiology/parasitology ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; }, abstract = {The soil microbiome is crucial for the environment and significantly impacts the ecosystem. Understanding the microbiome and its interaction with soil microorganisms is essential for improving ecological and environmental strategies. In this study, Xiphinema elongatum nematodes were collected from water berry in Sovenga Hills, Limpopo Province, South Africa, and were analyzed their associated bacterial communities using metabarcoding analysis. The findings revealed that X. elongatum forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Sphingomonas sp., a bacterial species commonly found in various habitats and primarily beneficial to plants, and Candidatus Xiphinematobacter, a bacterial species commonly found in nematode species of Xiphinema as an endosymbiont. The analysis using principal component analysis (PCA) revealed that the abundance of X. elongatum in the soil is inversely correlated with clay content (r = -0.52) and soil pH levels (r = -0.98), and directly correlated with soil sand content (r = 0.88). This study provides valuable insights into the bacterial species associated with plant-parasitic nematodes in trees in South Africa. It underscores the presence of various potentially detrimental and beneficial nematode-associated bacteria. The results could potentially influence the overall quality of the soil, leading to implications for the productivity and yield of fruit crops. Additionally, the results help us understand the interaction between bacteria and X. elongatum.}, } @article {pmid39597681, year = {2024}, author = {Scharf, SA and Friedrichs, L and Bock, R and Borrelli, M and MacKenzie, C and Pfeffer, K and Henrich, B}, title = {Oxford Nanopore Technology-Based Identification of an Acanthamoeba castellanii Endosymbiosis in Microbial Keratitis.}, journal = {Microorganisms}, volume = {12}, number = {11}, pages = {}, doi = {10.3390/microorganisms12112292}, pmid = {39597681}, issn = {2076-2607}, abstract = {(1) Background: Microbial keratitis is a serious eye infection that carries a significant risk of vision loss. Acanthamoeba spp. are known to cause keratitis and their bacterial endosymbionts can increase virulence and/or treatment resistance and thus significantly worsen the course of the disease. (2) Methods and Results: In a suspected case of Acanthamoeba keratitis, in addition to Acanthamoeba spp., an endosymbiont of acanthamoebae belonging to the taxonomic order of Holosporales was detected by chance in a bacterial 16S rDNA-based pan-PCR and subsequently classified as Candidatus Paracaedibacter symbiosus through an analysis of an enlarged 16S rDNA region. We used Oxford Nanopore Technology to evaluate the usefulness of whole-genome sequencing (WGS) as a one-step diagnostics method. Here, Acanthamoeba castellanii and the endosymbiont Candidatus Paracaedibacter symbiosus could be directly detected at the species level. No other microbes were identified in the specimen. (3) Conclusions: We recommend the introduction of WGS as a diagnostic approach for keratitis to replace the need for multiple species-specific qPCRs in future routine diagnostics and to enable an all-encompassing characterisation of the polymicrobial community in one step.}, } @article {pmid39590429, year = {2024}, author = {Enciso, JS and Corretto, E and Borruso, L and Schuler, H}, title = {Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages.}, journal = {Insects}, volume = {15}, number = {11}, pages = {}, doi = {10.3390/insects15110830}, pmid = {39590429}, issn = {2075-4450}, abstract = {The Nearctic leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae) is the primary vector of 'Candidatus Phytoplasma vitis', the causative agent of Flavescence doreé in Europe. Although microorganisms play an important role in the ecology and behavior of insects, knowledge about the interaction between S. titanus and microbes is limited. In this study, we employed an amplicon metabarcoding approach for profiling the V4 region of the 16S rRNA gene to characterize the bacterial communities of S. titanus across several populations from four European localities. Additionally, we investigated changes in bacterial communities between nymphal and adult stages. In total, we identified 7,472 amplicon sequence variants (ASVs) in adults from the European populations. At the genus level, 'Candidatus Karelsulcia' and 'Candidatus Cardinium' were the most abundant genera, with both being present in every individual. While we found significant changes in the microbial composition of S. titanus across different European populations, no significant differences were observed between nymphal and adult stages. Our study reveals new insights into the microbial composition of S. titanus and highlights the role of geography in influencing its bacterial community.}, } @article {pmid39584499, year = {2024}, author = {Checchia, I and Andreolli, M and Lanza, F and Santoiemma, G and Mori, N and Pasini, M and Lampis, S and Felis, GE}, title = {Testing low-risk bioactive compounds on Halyomorpha halys: an improved pipeline of analyses to investigate their effects on the bacterial endosymbiont Candidatus Pantoea carbekii.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.8564}, pmid = {39584499}, issn = {1526-4998}, support = {//I.C. Ph.D. scholarship is supported by REACT-EU FSE fund in the frame of PON "Dottorati su tematiche green" (Action IV.5), 2014-2020 (DM 1061/2021). Code BIO04, DOT1340225, Borsa 1 CUP B39J21026610001/ ; }, abstract = {BACKGROUND: The brown marmorated stink bug Halyomorpha halys has become an invasive insect pest of many crops. A promising control strategy to manage the proliferation of H. halys is based on the suppression of its obligate and vertically transmitted uncultivated symbiotic bacterium Candidatus Pantoea carbekii through surface-sterilization of H. halys eggs. Indeed, the application of antimicrobial formulations on the eggs of H. halys could cause mortality of endosymbiont and consequently of newly emerged nymphs. In this study, a microbial live/dead assay was applied directly on H. halys eggs to evaluate Ca. P. carbekii loss of viability after treatments with seven commercial formulations including fungicides (copper hydroxide, sulphur, sweet orange essential oil) and plant biostimulants (flavonoids and chestnut tannin extract) compared with two disinfectants for civil and industrial use (sodium hypochlorite/hydrated sodium/tetraborate decahydrate and peracetic acid/hydrogen peroxide). Impact of mode of application was also evaluated, as surface treatment of egg masses was performed through spraying and dipping in laboratory conditions. Antimicrobial activity data were finally complemented with observations of egg hatching and vitality of the nymphs.

RESULTS: The optimization of live/dead staining is useful for evaluating Ca. P. carbekii mortality directly on eggs, providing a rapid and reliable culture-independent approach. Sodium hypochlorite, copper, sulphur, tannins and sweet orange essential oil showed an antimicrobial effect against Ca. P. carbekii and a H. halys egg hatching reduction and nymph's vitality.

CONCLUSIONS: The antimicrobial and insecticidal effects of these commercial products should be further studied to assess their in-field efficiency as well as the impact of these substances on non-target organisms. The approach followed in this study could be considered a robust pipeline of analyses to evaluate the effectiveness of antimicrobial eco-friendly compounds in symbiotic control of H. halys. © 2024 Society of Chemical Industry.}, } @article {pmid39579072, year = {2024}, author = {Prakash, A and Wang, Y}, title = {De Novo Long-Read Genome Assembly and Annotation of the Mosquito Gut-dwelling Fungus, Smittium minutisporum.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evae259}, pmid = {39579072}, issn = {1759-6653}, abstract = {Mosquito guts host a variety of microbes, yet fungi are often overlooked. Smittium (Harpellales, Zoopagomycota) comprises numerous species that are obligate symbionts residing in the hindgut of mosquito larvae. Despite their association with pathogen-bearing vectors, these fungal symbionts remain understudied, largely due to the lack of high-quality genome resources. This limitation has impeded a deeper understanding of their genome biology and adaptive strategies in relation to their mosquito hosts, which may hold significant epidemiological implications. To address this gap, we generated the first reference-quality genome assembly for this group of fungi, using PacBio HiFi long-reads for an axenic culture of Smittium minutisporum, originally isolated from the eastern treehole mosquito, Aedes Triseriatus. The genome assembly consists of 53 contigs, spanning a total length of 32.5 Mb, and is predicted to encode 8,254 protein-coding genes, with repetitive regions constituting 25.22% of the genome. Notably, despite being highly contiguous and gap-free, the BUSCO analysis suggests a completeness score of 71.8%, implying unusual genome features, possibly shaped by adaptation and specialization within the mosquito gut. This high-quality genome resource will be invaluable for advancing our understanding of mosquito gut-dwelling fungi, their natural history, and their cryptic symbiosis with insect hosts.}, } @article {pmid39571577, year = {2024}, author = {Lewis, WH and Paris, G and Beedessee, G and Kořený, L and Flores, V and Dendooven, T and Gallet, B and Yee, DP and Lam, S and Decelle, J and Luisi, BF and Waller, RF}, title = {Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2024.10.034}, pmid = {39571577}, issn = {1879-0445}, abstract = {The plastids of photosynthetic organisms on land are predominantly "primary plastids," derived from an ancient endosymbiosis of a cyanobacterium. Conversely, the plastids of marine photosynthetic organisms were mostly gained through subsequent endosymbioses of photosynthetic eukaryotes generating so-called "complex plastids." The plastids of the major eukaryotic lineages-cryptophytes, haptophytes, ochrophytes, dinoflagellates, and apicomplexans-were posited to derive from a single secondary endosymbiosis of a red alga in the "chromalveloate" hypothesis. Subsequent phylogenetic resolution of eukaryotes has shown that separate events of plastid acquisition must have occurred to account for this distribution of plastids. However, the number of such events and the donor organisms for the new plastid endosymbioses are still not resolved. A perceived bottleneck of endosymbiotic plastid gain is the development of protein targeting from the hosts into the new plastids, and this supposition has often driven hypotheses toward minimizing the number of plastid-gain events to explain plastid distribution in eukaryotes. But how plastid-protein-targeting is established for new endosymbionts is often unclear, which makes it difficult to assess the likelihood of plastid transfers between lineages. Here, we show that Kareniaceae dinoflagellates, which possess complex plastids known to be derived from haptophytes, acquired all the necessary protein import machinery from these haptophytes. Furthermore, cryo-electron tomography revealed that no additional membranes were added to the Kareniaceae complex plastid during serial endosymbiosis, suggesting that the haptophyte-derived import processes were sufficient. Our analyses suggest that complex red plastids are preadapted for horizontal transmission, potentially explaining their widespread distribution in algal diversity.}, } @article {pmid39562544, year = {2024}, author = {Levy, N and Marques, JA and Simon-Blecher, N and Bourne, DG and Doniger, T and Benichou, JIC and Lim, JY and Tarazi, E and Levy, O}, title = {Ecosystem transplant from a healthy reef boosts coral health at a degraded reef.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {10033}, pmid = {39562544}, issn = {2041-1723}, mesh = {Animals ; *Coral Reefs ; *Anthozoa/physiology ; *Symbiosis ; *RNA, Ribosomal, 16S/genetics ; Indian Ocean ; Ecosystem ; Bacteria/genetics/classification/metabolism ; Invertebrates/physiology ; Biodiversity ; }, abstract = {Organismal communities associated with coral reefs, particularly invertebrates and microbes, play crucial roles in ecosystem maintenance and coral health. Here, we characterized the organismal composition of a healthy, non-urbanized reef (Site A) and a degraded, urbanized reef (Site B) in the Gulf of Eilat/Aqaba, Red Sea to assess its impact on coral health and physiology. Biomimetically designed terracotta tiles were conditioned for 6 months at both sites, then reciprocally transplanted, and scleractinian coral species, Acropora eurystoma and Stylophora pistillata, were attached for an additional 6 months. After 12 months, tiles from Site A transplanted to Site B exhibited greater invertebrate richness and diversity than Site B's original tiles (via Cytochrome c. Oxidase subunit I metabarcoding). Key bacteria from the healthy reef were more prevalent on Site A tiles and on the tiles transplanted to Site B (via 16S rRNA gene sequencing). Corals originally from Site B attached to transplanted healthy tiles (Site A) showed higher photochemical capacity, increased endosymbionts, and reduced physiological stress, measured by total antioxidant capacity and an integrated biomarker response. Our findings demonstrate the successful transfer of organismal communities between reefs, highlighting the potential benefits of healthy reef-associated invertebrates and microbes on coral physiology and their implications for reef restoration strategies.}, } @article {pmid39561350, year = {2024}, author = {Fajardo, J and Harrison, B and Hervet, VAD and Bakker, MG}, title = {Microbiome profiling suggests novel endosymbiont associations of insect pests of stored grain.}, journal = {Canadian journal of microbiology}, volume = {}, number = {}, pages = {}, doi = {10.1139/cjm-2024-0095}, pmid = {39561350}, issn = {1480-3275}, abstract = {Many arthropods, including economically important pests of stored grains, host intracellular bacterial symbionts. These symbionts can have diverse impacts on host morphology, stress tolerance, and reproductive success. The ability to rapidly determine the infection status of host insects and the identity of intracellular symbionts, if present, is vital to understanding the biology and ecology of these organisms. We used a microbiome profiling method based on amplicon sequencing to rapidly screen 35 captive insect colonies. This method effectively revealed single and mixed infections by intracellular bacterial symbionts, as well as the presence or absence of a dominant symbiont, when that was the case. Because no a priori decisions are required about probable host-symbiont pairing, this method is able to quickly identify novel associations. This work highlights the frequency of endosymbionts, indicates some unexpected pairings that should be investigated further, such as dominant bacterial taxa that are not among the canonical genera of endosymbionts, and reveals different colonies of the same host insect species that differ in the presence and identity of endosymbiotic bacteria.}, } @article {pmid39561190, year = {2024}, author = {Ward, CM and Onetto, CA and Borneman, AR}, title = {Adaptation during the shift from entomopathogen to endosymbiont is accompanied by gene loss and intensified selection.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evae251}, pmid = {39561190}, issn = {1759-6653}, abstract = {Fungi have been found to be associated with many insect species, with some species transitioning to reside within insects as symbionts. However, the evolutionary pressures and genomic consequences associated with this transition are not well understood. Pathogenic fungi of the genus Ophiocordyceps have undergone multiple, independent transitions from pathogen to endosymbiont lifestyles, where they reside within the fatty tissues of infected soft-scale insects trans-generationally without killing their hosts. To gain an understanding of the genomic adaptations underlying this life history shift, long-read sequencing was utilized to assemble the genomes of both the soft scale insect Parthenolecanium corni and its Ophiocordyceps endosymbiont from a single insect. Assembly and metagenomic-based binning produced a highly contiguous genome for Part. corni and a chromosome-level assembly for the Ophiocordyceps endosymbiont. The endosymbiont genome was characterized by 524 gene loss events compared to free-living pathogenic Ophiocordyceps relatives, with predicted roles in hyphal growth, cell wall integrity, metabolism, gene regulation and toxin production. Contrasting patterns of selection were observed between the nuclear and mitochondrial genomes specific to the endosymbiont lineage. Intensified selection was most frequently observed across orthologs in the nuclear genome, whereas selection on most mitochondrial genes was found to be relaxed. Scans for positive selection were enriched within the fatty acid metabolism pathway with associate specific selection within three adjacent enzymes catalyzing the conversion of acetoacetate to acetyl-COA, suggesting that the endosymbiont lineage is under selective pressure to effectively exploit the lipid rich environment of the insect fat bodies in which it is found.}, } @article {pmid39560405, year = {2024}, author = {Deutsch, JM and Demko, AM and Jaiyesimi, OA and Foster, G and Kindler, A and Pitts, KA and Vekich, T and Williams, GJ and Walker, BK and Paul, VJ and Garg, N}, title = {Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation.}, journal = {mSystems}, volume = {}, number = {}, pages = {e0085624}, doi = {10.1128/msystems.00856-24}, pmid = {39560405}, issn = {2379-5077}, abstract = {UNLABELLED: Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia natans, and Montastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes of Meandrina meandrites displayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways.

IMPORTANCE: Previous research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.}, } @article {pmid39551154, year = {2024}, author = {Horn, CJ and Yuli, S and Berry, JA and Luong, LT}, title = {A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep.}, journal = {Journal of insect physiology}, volume = {}, number = {}, pages = {104723}, doi = {10.1016/j.jinsphys.2024.104723}, pmid = {39551154}, issn = {1879-1611}, abstract = {Endosymbiotic bacteria have a wide range of impacts on host physiology, behaviour, metabolism, endurance, and mobility. Recent work found some endosymbionts also impact host sleep duration and quality. These effects may increase as flies age and endosymbiont titers increase. We tested the hypothesis that Spiroplasma poulsonni MSRO negatively impacts sleep in Drosophila melanogaster, and this in turn impairs fly endurance. In geotaxis climbing assays (a proxy for endurance), we found that MSRO impacted climbing endurance but in an age-dependent manner. Among younger flies, MSRO+ flies slept significantly less during dark periods (measured by a Drosophila Activity Monitoring System) compared to uninfected flies, but older MSRO+ flies did not show significant differences in amount of sleep compared to uninfected flies in the same cohort. While MSRO status impacted both sleep and endurance of hosts, endosymbiont-mediated sleep deprivation did not directly explain decreases in fly endurance. We discuss these results in the context of endosymbiont comparative biology.}, } @article {pmid39549700, year = {2024}, author = {Siozios, S and Nadal-Jimenez, P and Azagi, T and Sprong, H and Frost, CL and Parratt, SR and Taylor, G and Brettell, L and Liew, KC and Croft, L and King, KC and Brockhurst, MA and Hypša, V and Novakova, E and Darby, AC and Hurst, GDD}, title = {Genome dynamics across the evolutionary transition to endosymbiosis.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2024.10.044}, pmid = {39549700}, issn = {1879-0445}, abstract = {Endosymbiosis-where a microbe lives and replicates within a host-is an important contributor to organismal function that has accelerated evolutionary innovations and catalyzed the evolution of complex life. The evolutionary processes associated with transitions to endosymbiosis, however, are poorly understood. Here, we leverage the wide diversity of host-associated lifestyles of the genus Arsenophonus to reveal the complex evolutionary processes that occur during the transition to a vertically transmitted endosymbiotic lifestyle from strains maintained solely by horizontal (infectious) transmission. We compared the genomes of 38 strains spanning diverse lifestyles from horizontally transmitted pathogens to obligate interdependent endosymbionts. Among culturable strains, we observed those with vertical transmission had larger genome sizes than closely related horizontally transmitting counterparts, consistent with evolutionary innovation and the rapid gain of new functions. Increased genome size was a consequence of prophage and plasmid acquisition, including a cargo of type III effectors, alongside the concomitant loss of CRISPR-Cas genome defense systems, enabling mobile genetic element expansion. Persistent endosymbiosis was also associated with loss of type VI secretion, which we hypothesize to be a consequence of reduced microbe-microbe competition. Thereafter, the transition to endosymbiosis with strict vertical inheritance was associated with the expected relaxation of purifying selection, gene pseudogenization, metabolic degradation, and genome reduction. We argue that reduced phage predation in endosymbiotic niches drives the loss of genome defense systems driving rapid genome expansion upon the adoption of endosymbiosis and vertical transmission. This remodeling enables rapid horizontal gene transfer-mediated evolutionary innovation and precedes the reductive evolution traditionally associated with adaptation to endosymbiosis.}, } @article {pmid39548114, year = {2024}, author = {Thompson, NS and Krum, D and Chen, YR and Torres, MC and Trauger, MA and Strike, D and Weston, Z and Polston, JE and Curtis, WR}, title = {Enabling biocontained plant virus transmission studies through establishment of an axenic whitefly (Bemisia tabaci) colony on plant tissue culture.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {28169}, pmid = {39548114}, issn = {2045-2322}, support = {HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; HR0011-17-2-0055//Defense Advanced Research Projects Agency/ ; 1543929//National Science Foundation/ ; 1543929//National Science Foundation/ ; 1543929//National Science Foundation/ ; 1543929//National Science Foundation/ ; 1543929//National Science Foundation/ ; 1659497//National Science Foundation/ ; 1543929//National Science Foundation/ ; 1543929//National Science Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; OPP51589//Bill and Melinda Gates Foundation/ ; }, mesh = {Animals ; *Hemiptera/virology ; *Plant Diseases/virology/parasitology ; Insect Vectors/virology ; Begomovirus/physiology/pathogenicity ; Plant Viruses/physiology/pathogenicity ; Axenic Culture ; Tissue Culture Techniques/methods ; }, abstract = {Whiteflies (Bemisia tabaci) and the diseases they transmit are a major detriment to crop yields and a significant contributor to world hunger. The highly evolved interactions of host plant, phloem-feeding insect vector with endosymbionts and persistently transmitted virus represent a tremendous challenge for interdisciplinary study. Presented here is the establishment of a colony of axenic whiteflies on tissue-cultured plants. Efficient colony establishment was achieved by a surface sterilization of eggs laid on axenic phototrophically tissue-cultured plants. The transfer of emerging whiteflies through coupled tissue culture vessels to new axenic plants facilitates robust subculturing and produces hundreds of whitefly adults per month. Whitefly proliferation on more than two dozen plant species is shown as well as in vitro testing of whitefly preference for different plants. This novel multi-organism system provides the high-level of biocontainment required by Federal permitting to conduct virus transmission experiments. Axenic whitefly adults were able to acquire and transmit a begomovirus into tissue-cultured plants, indicating that culturable gut microorganisms are not required for virus transmission. The approach described enables a wide range of hypotheses regarding whitefly phytopathology without the expense, facilities, and contamination ambiguity associated with current approaches.}, } @article {pmid39548000, year = {2024}, author = {Visser, B and Scheifler, M}, title = {Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria.}, journal = {Advances in experimental medicine and biology}, volume = {}, number = {}, pages = {}, pmid = {39548000}, issn = {0065-2598}, abstract = {Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.}, } @article {pmid39541572, year = {2024}, author = {Gladem, KB and Rugman-Jones, PF and Shelton, EK and Hanrahan, KS and Bean, DW and Rector, BG}, title = {Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia.}, journal = {Environmental entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/ee/nvae115}, pmid = {39541572}, issn = {1938-2936}, support = {AP23PPQFO000C398//USDA/ ; 22-DG-11010000-005//US Forest Service/ ; }, abstract = {Many endosymbionts of insects have been shown to manipulate and alter their hosts' reproduction with implications for agriculture, disease transmission, and ecological systems. Less studied are the microbiota of classical biological control agents and the implications of inadvertent endosymbionts in laboratory colonies for field establishment and effects on target pests or nontarget organisms. While native-range field populations of agents may have a low incidence of vertically transmitted endosymbionts, quarantine and laboratory rearing of inbred populations may increase this low prevalence to fixation in relatively few generations. Fixation of detrimental endosymbionts in founding biological control agent populations prior to release may have far-reaching effects. Significant female-biased sex-ratio distortion was found within laboratory populations of the weevil Ceratapion basicorne (Illiger), a classical biological control agent that was recently approved for use against yellow starthistle (Centaurea solstitialis L.). This sex-ratio distortion was observed to be vertically inherited and reversible through antibiotic treatment of the host insect. Molecular diagnostics identified a Rickettsia sp. as the only bacterial endosymbiont present in breeding lines with distorted sex ratios and implicated this as the first reported Rickettsia associated with sex-ratio distortion within the superfamily Curculionoidea.}, } @article {pmid39531470, year = {2024}, author = {Huffmyer, AS and Ashey, J and Strand, E and Chiles, EN and Su, X and Putnam, HM}, title = {Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature.}, journal = {PLoS biology}, volume = {22}, number = {11}, pages = {e3002875}, doi = {10.1371/journal.pbio.3002875}, pmid = {39531470}, issn = {1545-7885}, mesh = {Animals ; *Symbiosis/physiology ; *Anthozoa/metabolism/physiology ; *Larva/metabolism ; *Nitrogen/metabolism ; *Photosynthesis ; Coral Reefs ; Temperature ; Dinoflagellida/metabolism/physiology ; Hot Temperature ; Carbon/metabolism ; Hawaii ; }, abstract = {Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawai'i to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress.}, } @article {pmid39524518, year = {2021}, author = {Wang, Y and Wang, L and Chen, S and Chen, S}, title = {A study of RNA-editing in Populus trichocarpa nuclei revealed acquisition of RNA-editing on the endosymbiont-derived genes, and a preference for intracellular remodeling genes in adaptation to endosymbiosis.}, journal = {Forestry research}, volume = {1}, number = {}, pages = {20}, doi = {10.48130/FR-2021-0020}, pmid = {39524518}, issn = {2767-3812}, abstract = {RNA-editing is a post-transcriptional modification that can diversify genome-encoded information by modifying individual RNA bases. In contrast to the well-studied RNA-editing in organelles, little is known about nuclear RNA-editing in higher plants. We performed a genome-wide study of RNA-editing in Populus trichocarpa nuclei using the RNA-seq data generated from the sequenced poplar genotype, 'Nisqually-1'. A total of 24,653 nuclear RNA-editing sites present in 8,603 transcripts were identified. Notably, RNA-editing in P. trichocarpa nuclei tended to occur on endosymbiont-derived genes. We then scrutinized RNA-editing in a cyanobacterial strain closely related to chloroplast. No RNA-editing sites were identified therein, implying that RNA-editing of these endosymbiont-derived genes was acquired after endosymbiosis. Gene ontology enrichment analysis of all the edited genes in P. trichocarpa nuclei demonstrated that nuclear RNA-editing was primarily focused on genes involved in intracellular remodeling processes, which suggests that RNA-editing plays contributing roles in organellar establishment during endosymbiosis. We built a coexpression network using all C-to-U edited genes and then decomposed it to obtain 18 clusters, six of which contained a conserved core motif, A/G-C-A/G. Such a short core motif not only attracted the RNA-editing machinery but also enabled large numbers of sites to be targeted though further study is necessary to verify this finding.}, } @article {pmid39516195, year = {2024}, author = {Speth, DR and Zeller, LM and Graf, JS and Overholt, WA and Küsel, K and Milucka, J}, title = {Genetic potential for aerobic respiration and denitrification in globally distributed respiratory endosymbionts.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {9682}, pmid = {39516195}, issn = {2041-1723}, mesh = {*Symbiosis ; *Phylogeny ; *Denitrification ; Metagenome ; Aerobiosis ; Ciliophora/genetics/metabolism ; Groundwater/microbiology ; Gammaproteobacteria/genetics/metabolism ; Germany ; Electron Transport Complex IV/genetics/metabolism ; California ; Genome, Bacterial ; }, abstract = {The endosymbiont Candidatus Azoamicus ciliaticola was proposed to generate ATP for its eukaryotic host, an anaerobic ciliate of the Plagiopylea class, fulfilling a function analogous to mitochondria in other eukaryotic cells. The discovery of this respiratory endosymbiosis has major implications for both evolutionary history and ecology of microbial eukaryotes. However, with only a single species described, knowledge of its environmental distribution and diversity is limited. Here we report four complete, circular metagenome assembled genomes (cMAGs) representing respiratory endosymbionts inhabiting groundwater in California, Ohio, and Germany. These cMAGs form two lineages comprising a monophyletic clade within the uncharacterized gammaproteobacterial order UBA6186, enabling evolutionary analysis of their key protein complexes. Strikingly, all four cMAGs encode a cytochrome cbb3 oxidase, which indicates that these endosymbionts have the capacity for aerobic respiration. Accordingly, we detect these respiratory endosymbionts in diverse habitats worldwide, thus further expanding the ecological scope of this respiratory symbiosis.}, } @article {pmid39510362, year = {2024}, author = {Deng, YP and Yao, C and Fu, YT and Zhuo, Y and Zou, JL and Pan, HY and Peng, YY and Liu, GH}, title = {Analyses of the gut microbial composition of domestic pig louse Haematopinus suis.}, journal = {Microbial pathogenesis}, volume = {197}, number = {}, pages = {107106}, doi = {10.1016/j.micpath.2024.107106}, pmid = {39510362}, issn = {1096-1208}, abstract = {Haematopinus suis is an obligatory ectoparasite of the domestic pig, serving as a vector of several swine pathogens and posing great threats to the pig industry. The gut microbiome of lice is thought of an important mediator of their healthy physiology. However, there is a great paucity of lice-associated microbial communities' structure and function. The current study aimed to profile the gut microbiome and to understand the microbial functions of swine lice by metagenomic sequencing and bioinformatics analyses. In total, 102,358 (77.2 %) nonredundant genes were cataloged, by contrast, only a small proportion of genes were assigned to microbial taxa and functional assemblages. Bacteria of known or potential public health significance such as Anaplasma phagocytophilum, Chlamydia trachomatis, Waddlia chondrophila, Bacillus cereus, and Leptotrichia goodfellowii were observed in all samples. The integrated microbial profile further illustrated the evolutionary relevance of endosymbionts and detailed the functional composition, and findings suggested H. suis may acquire adenosylcobalamin by feeding due to an adenosylcobalamin synthesis defect and a lack of complete synthases of endosymbionts. Sucking lice contained fewer functional genes compared with ticks and fleas probably because of the obligate host specificity of parasitic lice. In addition, the genes from the intestines contained encompassed most of the microbial functional genes in sucking lice. A wide range of unknown taxonomic and functional assemblages were discovered, which improves our understanding related to microbial features and physiological activities of sucking lice. In general, this study increases the characterization of the microbiota of lice and offers clues for preventing and controlling lice infestation in swine production in the future.}, } @article {pmid39506857, year = {2024}, author = {Bernardini, I and Poggi, C and Porretta, D and Máca, J and Perugini, E and Manzi, S and Gabrielli, S and Pichler, V and Latrofa, MS and Fourie, J and Lia, RP and Beugnet, F and Otranto, D and Pombi, M}, title = {Population dynamics of sympatric Phortica spp. and first record of stable presence of Phortica oldenbergi in a Thelazia callipaeda-endemic area of Italy.}, journal = {Parasites & vectors}, volume = {17}, number = {1}, pages = {455}, pmid = {39506857}, issn = {1756-3305}, mesh = {Animals ; *Drosophilidae/parasitology ; *Population Dynamics ; Italy/epidemiology ; *Thelazioidea/isolation & purification/genetics/physiology ; *Insect Vectors/parasitology ; Seasons ; Male ; Female ; Wolbachia/isolation & purification/genetics ; }, abstract = {BACKGROUND: Five species of the Phortica genus (Diptera: Drosophilidae) are known in Europe and the Middle East. Among these, Phortica variegata and Phortica okadai are better known for their role as vectors of the zoonotic eyeworm Thelazia callipaeda. Other species, such as Phortica semivirgo and Phortica oldenbergi, have been studied less. Given the paucity of data about these Phortica spp. vectors, we explored the population dynamics and ecology of Phortica spp. in an area highly endemic for T. callipeada (Manziana, Rome, Central Italy).

METHODS: Phortica spp. flies were collected over a 3-year period (2018-2020) during their active season (April-October) with a sweep net while hovering around fermenting fruits or a human operator acting as baits. Collected flies were morphologically identified and tested for a T. callipeada infection and for the presence of Wolbachia, by polymerase chain reaction (PCR). Population dynamics of species collected was associated to environmental drivers through generalized additive models.

RESULTS: Of the 5564 flies collected, 90.8% were P. variegata, 9.1% were P. oldenbergi, 0.05% were P. semivirgo, and one specimen was P. okadai. Only P. variegata scored molecularly infected with T. callipeada throughout the 3-year sampling period (1.8%). Phortica oldenbergi, observed consistently during the entire sampling period, exhibited a marked preference for fruit traps, contrasting with the lachryphagous activity of P. variegata. Analysis of environmental drivers of P. oldenbergi and P. variegata population dynamics indicated temperature, wind speed, and pressure as significant factors. In addition, Wolbachia pipientis endosymbiont was detected in P. oldenbergi and P. okadai.

CONCLUSIONS: For the first time, this study analysed several ecological aspects of Phortica species coexisting in a T. callipeada endemic area, highlighting different behaviors in the same environment and their vectorial role. Notably, this is also the first report of the presence of P. oldenbergi in Italy and P. okadai in Europe, underscoring the importance of extensive sampling for detecting potential vectors and alien species with direct implications for vector-borne disease epidemiology.}, } @article {pmid39495046, year = {2024}, author = {Yang, SY and Lin, YY and Hao, Z and Li, ZJ and Peng, ZQ and Jin, T}, title = {Bacterial communities in Asecodes hispinarum (Hymenoptera: Eulophidae) and its host Brontispa longissima (Coleoptera: Chrysomelidae), with comparison of Wolbachia dominance.}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toae234}, pmid = {39495046}, issn = {1938-291X}, support = {2021YFD2600405//National Key R&D Program of China/ ; CATASCXTD202311//Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team/ ; }, abstract = {The endoparasitoid Asecodes hispinarum (Bouček) (Hymenoptera: Eulophidae) serves as an effective biological control agent against Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), a notorious palm pest. Endosymbionts found in parasitoids and their hosts have attracted significant attention due to their substantial influence on biocontrol efficacy. In this study, we employed 16S rRNA sequencing, polymerase chain reaction, and fluorescence in situ hybridization to assess the symbiotic bacteria composition, diversity, phylogeny, and localization in A. hispinarum and its host B. longissima. Our findings showed significant differences in the richness, diversity, and composition of symbiotic bacteria among different life stages of B. longissima. Notably, the bacterial richness, diversity, and composition of A. hispinarum was similar to that of B. longissima. Firmicutes and Proteobacteria were the dominant phyla, while Wolbachia was the dominant genera across the parasitoid and host. It was discovered for the first time that Wolbachia was present in A. hispinarum with a high infection rate at ≥ 96.67%. Notably, the Wolbachia strain in A. hispinarum was placed in supergroup A, whereas it was categorized under supergroup B in B. longissima. Furthermore, Wolbachia is concentrated in the abdomen of A. hispinarum, with particularly high levels observed in the ovipositors of female adults. These findings highlight the composition and diversity of symbiotic bacteria in both A. hispinarum and its host B. longissima, providing a foundation for the development of population regulation strategies targeting B. longissima.}, } @article {pmid39493401, year = {2024}, author = {Mulavu, M and Khumalo, CS and Moonga, L and Hayashida, K and Mubemba, B and Changula, K and Simulundu, E and Muleya, W and Chitanga, S}, title = {Defining the bacterial microbiome of ticks in Chongwe and Chisamba Districts of Zambia.}, journal = {Infectious medicine}, volume = {3}, number = {4}, pages = {100131}, pmid = {39493401}, issn = {2772-431X}, abstract = {BACKGROUND: The microbiome composition of an arthropod vector may impede the growth of some pathogens, aid colonisation by pathogens or affect vector behaviour in ways that impact the transmission of pathogens. In Zambia, little is known of the microbial communities hosted by ticks and how pathogens like Rickettsia play a role in the microbiome composition.

OBJECTIVE: This study sought to determine the microbiome of Rickettsia-negative and Rickettsia-positive ticks in selected districts of Zambia.

METHODS: This was a cross-sectional study carried out on 94 ticks collected from cattle in Chongwe and Chisamba districts. The overall prevalence of Rickettsia spp. was detected using PCR amplification of the ompB gene. Thereafter, both Rickettsia-negative and positive ticks underwent 16S rRNA gene amplification and Illumina high-throughput sequencing. Data was analysed using QIIME2 analysis pipeline.

RESULTS: The prevalence of Rickettsia was found to be 47.9% (45/94) with prevalence in Amblyomma at 78.5% (22/28), Hyalomma at 68.9% (20/29) and Rhipicephalus having the lowest at 8.1% (3/37). Proteobacteria, Firmicutes, Actinobacteriota and Euryachaeota were the most common phyla, while endosymbionts were uncommonly detected in the ticks. Further analysis showed significant differences in microbiome composition based on Rickettsia detection status (p=0.001) and location (p=0.001), based on the alpha diversity Shannon index, Bray Curtis beta diversity and PERMANOVA, whilst differences according to life stage, tick species and genus was only shown based on the Bray Curtis beta diversity and PERMANOVA analysis.

CONCLUSION: Ultimately, this study provides valuable insights into the structure of the tick microbiome in parts of Zambia and how it is affected by the presence of Rickettsia.}, } @article {pmid39484388, year = {2024}, author = {Awuoche, E and Smallenberger, G and Bruzzese, D and Orfano, A and Weiss, BL and Aksoy, S}, title = {Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.10.24.620045}, pmid = {39484388}, issn = {2692-8205}, abstract = {UNLABELLED: Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma- mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma , evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like , homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans . We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. Gff Stomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic Gff Stomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro . Reducing Gff Stomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo . Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma -infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, Gff Stomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of Gff Stomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.

AUTHOR SUMMARY: The tsetse fly, Glossina fuscipes fuscipes (Gff) is of high public health relevance. Gff exhibits strong innate resistance to trypanosomes, especially when infected with the endosymbiotic bacterium Spiroplasma . This study investigated how the bacterium Spiroplasma inside Gff enables them to be resistant to trypanosome infection. Our results indicate alterations in host lipid metabolism with reduction in levels of triglycerides, suggesting a potential metabolic barrier that limits the viability to parasite. In addition, we discovered a small peptide, stomoxyn, exclusively in Gff and related Palpalis tsetse species. We have shown that Gff synthetic Stomoxyn has antibacterial and antitrypanosomal properties and lowering Stomoxyn levels in Gff correlates with increased parasite prevalence. We suggest that strategies to increase Spiroplasma prevalence or enhance stomoxyn expression through paratransgenic approaches could be promising avenues for reducing trypanosomiasis transmission.}, } @article {pmid39475326, year = {2024}, author = {Papke, E and Kennedy, GE and Elliott, E and Taylor, A and Tolar, BB and Ushijima, B}, title = {Transmission Electron Microscopy of Coral Tissue.}, journal = {Current protocols}, volume = {4}, number = {11}, pages = {e70033}, doi = {10.1002/cpz1.70033}, pmid = {39475326}, issn = {2691-1299}, mesh = {*Anthozoa/ultrastructure ; Animals ; *Microscopy, Electron, Transmission/methods ; Coral Reefs ; Tissue Fixation/methods ; }, abstract = {Coral reefs are invaluable ecosystems that are under threat from various anthropogenic stressors. There has been a recent increase in the diagnostic tools utilized to understand how these threats impact coral reef health. Unfortunately, the application of diagnostic tools like transmission electron microscopy (TEM) is not as standardized or developed in coral research as in other research fields. Utilizing TEM in conjunction with other diagnostic methods can aid in understanding the impact of these stressors on the cellular level because TEM offers valuable insight into the structures and microsymbionts associated with coral tissue that cannot be obtained with a conventional light microscope. Additionally, a significant amount of coral tissue ultrastructure has not yet been extensively described, causing a considerable gap in our understanding of cellular structures that could relate to the immune response, cellular function, or symbioses. Moreover, additional standardization is needed for TEM in coral research to increase comparability and reproducibility of findings across studies. Here, we present standardized TEM sample fixation, embedding, and sectioning techniques for coral studies that ensure consistent ultrastructural preservation and minimize artifacts, enhancing the reliability and accuracy of TEM observations. We also demonstrate that these TEM protocols allow for the observation and quantification of bacterial and viral-like particles within the coral tissue as well as the endosymbiotic microalgae, potentially providing insight into their interactions within coral cells and how they relate to overall coral health and resilience. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primary fixation Basic Protocol 2: Decalcification Basic Protocol 3: Sample dissection, secondary fixation, dehydration, and embedding Basic Protocol 4: Sectioning and grid staining Basic Protocol 5: Imaging.}, } @article {pmid39474501, year = {2024}, author = {Sawada, Y and Sato, N and Osawa, T and Matsumoto, K and Chiu, MC and Okada, R and Sakura, M and Sato, T}, title = {A potential evolutionary trap for the extended phenotype of a nematomorph parasite.}, journal = {PNAS nexus}, volume = {3}, number = {10}, pages = {pgae464}, pmid = {39474501}, issn = {2752-6542}, abstract = {Human activities introduce new environmental cues to wild organisms, leading to maladaptive behavioral and life history decisions known as the "evolutionary trap." This trap is thought to be a major conservation concern for free-living organisms. However, it has never been studied in endosymbionts, one of the most successful and diverse life forms on Earth. Here, we examine this trap in the extended phenotype of a parasite that exploits the visual system of hosts to alter host behavior for its benefit. Arboreal mantids infected by nematomorph parasites are drawn to horizontally polarized light, thereby inducing them to enter the water. In this study, we found that the degree of linear polarization (DOP) of reflected light served as a reliable environmental cue for identifying perennial waters, where nematomorphs can survive in their aquatic life stage without drying out. Infected mantids exhibit attraction to horizontally polarized light with higher DOP in behavioral assays and jumped into pools reflecting light with higher DOP in field experiments. The asphalt road reflected horizontally polarized light closely resembling the polarization levels observed in perennial waters, likely leading to a higher prevalence of mantids on asphalt roads compared with those found in natural arboreal habitats. In a field experiment, we observed infected mantids walking on asphalt roads more often than on cement roads. These findings imply that evolutionary traps can endanger endosymbionts beyond their hosts that directly perceive environmental cues.}, } @article {pmid39471850, year = {2024}, author = {Tourani, AH and Katlav, A and Cook, JM and Riegler, M}, title = {Mating receptivity mediated by endosymbiont interactions in a haplodiploid thrips species.}, journal = {Proceedings. Biological sciences}, volume = {291}, number = {2033}, pages = {20241564}, doi = {10.1098/rspb.2024.1564}, pmid = {39471850}, issn = {1471-2954}, support = {//University of Western Sydney/ ; }, mesh = {Animals ; *Symbiosis ; *Thysanoptera/physiology ; *Wolbachia/physiology ; Female ; Male ; *Sexual Behavior, Animal ; Bacteroidetes/physiology ; Reproduction ; }, abstract = {Many arthropods carry maternally inherited endosymbionts that cause cytoplasmic incompatibility (CI), manifested as embryonic mortality in matings of infected males with uninfected females. Infected females, however, do not suffer this cost. Therefore, in populations with mixed endosymbiont infections, selection is expected to favour mechanisms that enable hosts to avoid or mitigate CI. This may include changes in mating behaviour, such as reduced female receptivity to mating and/or remating when approached by incompatible males. Here, we investigated mating behavioural traits in haplodiploid thrips naturally associated with two CI-inducing endosymbionts, Cardinium and Wolbachia. Compared with females with both endosymbionts, those with only Cardinium showed reduced receptivity to males carrying both. However, surprisingly, females without endosymbionts were not less receptive to incompatible males. Furthermore, in contrast to females without endosymbionts, females with Cardinium were far less likely to remate with incompatible than compatible males irrespective of the compatibility type of the first mating. Our results suggest that endosymbiont-specific sexual selection processes occur, whereby females carrying only Cardinium recognize Wolbachia in coinfected males to avoid CI. This may hinder a CI-driven Wolbachia spread. Endosymbiont-mediated mating behaviours may be crucial for the dynamics of CI-inducing endosymbionts and their application in pest management strategies.}, } @article {pmid39466691, year = {2024}, author = {Teh, LS and Shalom, SR and James, I and Dolgova, A and Chiel, E and Dale, C}, title = {Sodalis praecaptivus subsp. spalangiae subsp. nov., a nascent bacterial endosymbiont isolated from the parasitoid wasp, Spalangia cameroni.}, journal = {International journal of systematic and evolutionary microbiology}, volume = {74}, number = {10}, pages = {}, doi = {10.1099/ijsem.0.006552}, pmid = {39466691}, issn = {1466-5034}, mesh = {Animals ; *Wasps/microbiology ; *Symbiosis ; *Phylogeny ; *RNA, Ribosomal, 16S/genetics ; *DNA, Bacterial/genetics ; *Sequence Analysis, DNA ; *Bacterial Typing Techniques ; Israel ; Houseflies/microbiology ; Fatty Acids/analysis ; Base Composition ; Genome, Bacterial ; }, abstract = {An endosymbiotic bacterium of the genus Sodalis, designated as strain HZ[T], was cultured from the parasitoid wasp Spalangia cameroni, which develops on the pupae of various host flies. The bacterium was detected in S. cameroni developed on houseflies, Musca domestica, in a poultry facility in Hazon, northern Israel. After culturing, this bacterium displayed no surface motility on Luria-Bertani agar and was rod-shaped and irregular in size, ~10-30 nm in diameter and 5-20 µm in length. Phylogenetic analyses revealed that strain HZ[T] is closely related to Sodalis praecaptivus strain HS[T], a free-living species of the genus Sodalis that includes many insect endosymbionts. Although these bacteria maintain >98% sequence identity in shared genes, genomic characterization revealed that strain HZ[T] has undergone substantial reductive evolution, such that it lacks many gene functions that are maintained in S. praecaptivus strain HS[T]. Based on the results of phylogenetic, genomic and chemotaxonomic analyses, we propose that this endosymbiont should be classified in a new subspecies as S. praecaptivus subsp. spalangiae subsp. nov. The type strain for this new subspecies is HZ[T] (=ATCC TSD-398[T]=NCIMB 15482[T]). The subspecies Sodalis praecaptivus subsp. praecaptivus strain HS[T] is created automatically with the type strain ATCC BAA-2554[T] (=DSMZ 27494[T]).}, } @article {pmid39459905, year = {2024}, author = {Alkhatib, BM and Belteton, S and Creamer, R}, title = {Immunolocalization of Beet Curly Top Virus (BCTV) and GroEL Chaperon Protein of Endosymbionts in Beet Leafhopper (Circulifer tenellus) Vector Tissue.}, journal = {Viruses}, volume = {16}, number = {10}, pages = {}, doi = {10.3390/v16101571}, pmid = {39459905}, issn = {1999-4915}, mesh = {Animals ; *Hemiptera/virology ; *Insect Vectors/virology ; *Geminiviridae/genetics ; *Chaperonin 60/metabolism/genetics ; *Plant Diseases/virology ; *Symbiosis ; Salivary Glands/virology ; Beta vulgaris/virology ; }, abstract = {Beet curly top virus (BCTV, curtovirus, geminiviridae) causes one of the most economically significant viral diseases in crops in the Western United States and is transmitted only by the beet leafhopper (Circulifer tenellus) in a non-propagative circulative manner. A better understanding of how this virus overcomes insect vector cellular barriers is essential to understanding virus-vector interactions. The distribution of BCTV in its beet leafhopper vector was investigated using immunofluorescence confocal laser scanning microscope analysis (iCLSM) on the whole-mount-dissected organs of leafhoppers. BCTV was localized in several lobes of the principal salivary glands, filter chamber, anterior midgut, and mid midgut, suggesting the occurrence of midgut and salivary gland barriers to BCTV transmission in its vector C. tenellus. This study also investigated the distribution of the chaperon GroEL homolog protein produced by primary endosymbiotic bacteria within the beet leafhopper, which is believed to indirectly affect viral transmission by enhancing insect immunity and resistance to viruses. GroEL was identified in leafhopper salivary glands lobes, the stylet, salivary canal, the filter chamber, and the Malpighian tubule. This is the first work to visualize the localization of a curtovirus within its beet leafhopper vector. Together, these results can help understand ssDNA virus-vector relationships, including cellular transmission barriers and other vector protein components.}, } @article {pmid39458303, year = {2024}, author = {Clervil, E and Guidez, A and Talaga, S and Carinci, R and Gaborit, P and Lavergne, A and Tirera, S and Duchemin, JB}, title = {Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping.}, journal = {Microorganisms}, volume = {12}, number = {10}, pages = {}, doi = {10.3390/microorganisms12101994}, pmid = {39458303}, issn = {2076-2607}, abstract = {Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around the world. In South America, Wolbachia have been studied in human pathogen vectors such as sand flies and mosquitoes. In French Guiana, the diversity and distribution of Wolbachia are not well known in mosquitoes. In this study, we screened for Wolbachia natural infection in mosquitoes in French Guiana by using 16S rRNA, Wolbachia surface protein (WSP), and multi-locus sequence typing (MLST) molecular assays. A total of 29 out of 44 (65.9%) mosquito species were positive for natural Wolbachia infection according to the PCR results, and two Wolbachia strains co-infected three specimens of Mansonia titillans. Then, we analyzed the phylogenetic relationships among the Wolbachia detected. All of the tested specimens of Aedes aegypti, the major dengue vector of French Guiana, were negative. These results regarding Wolbachia strain, distribution, and prevalence in mosquitoes from French Guiana highlight Wolbachia-mosquito associations and pave the way for a future Wolbachia-based strategy for vector control in this Amazonian territory.}, } @article {pmid39457880, year = {2024}, author = {Kim, B and Lee, YJ and Kwak, D and Seo, MG}, title = {Nationwide Survey of Vector-Borne Diseases in Rodents and Mites in Korea: Anaplasma, Ehrlichia, and Rickettsia.}, journal = {Animals : an open access journal from MDPI}, volume = {14}, number = {20}, pages = {}, doi = {10.3390/ani14202950}, pmid = {39457880}, issn = {2076-2615}, support = {RS-2022-00165704//National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)/ ; }, abstract = {Rodents are reservoirs for zoonotic pathogens, making it essential to study both rodents and their ectoparasites. In 2022 and 2023, we investigated the spatial distribution of rodents and their mites across Korea, focusing on three vector-borne diseases (VBDs): Anaplasma, Ehrlichia, and Rickettsia. A total of 835 wild rodents were collected from 16 locations, each consisting of five distinct environmental settings (mountains, waterways, reservoirs, fields, and paddy fields), with 20 traps per setting, totaling 100 Sherman live folding traps per site. Each rodent was identified using a taxonomic key, and post-mortem examinations led to the collection of 7971 mites (498 pools), followed by PCR analysis. Among the rodents, Anaplasma phagocytophilum was detected in 10.3%, Ehrlichia muris in 0.5%, Ehrlichia ruminantium in 0.2%, and Rickettsia raoultii in 2.9%. In mites, A. phagocytophilum was found in 8.8%, E. muris in 0.2%, R. raoultii in 0.2%, R. endosymbiont in 1.6%, and R. australis in 1.2%. This study marks the first detection of E. muris and R. raoultii in Korean rodents and the first global discovery of E. ruminantium in rodents. The detection of multiple pathogens in mites worldwide highlights the importance of continuous VBD monitoring to mitigate public health risks.}, } @article {pmid39455905, year = {2024}, author = {Aželytė, J and Maitre, A and Abuin-Denis, L and Wu-Chuang, A and Žiegytė, R and Mateos-Hernandez, L and Obregon, D and Palinauskas, V and Cabezas-Cruz, A}, title = {Nested patterns of commensals and endosymbionts in microbial communities of mosquito vectors.}, journal = {BMC microbiology}, volume = {24}, number = {1}, pages = {434}, pmid = {39455905}, issn = {1471-2180}, support = {SGCE-RAPPORT No. 0300//Collectivité de Corse/ ; S-MIP-22-52//Lietuvos Mokslo Taryba/ ; ANR-10-LABX-62-IBEID//Agence Nationale de la Recherche/ ; }, mesh = {Animals ; *Symbiosis ; *Mosquito Vectors/microbiology/physiology ; *Culex/microbiology ; *Wolbachia/physiology/genetics ; *Microbiota ; Bacteria/classification/genetics/isolation & purification ; }, abstract = {BACKGROUND: Mosquitoes serve as vectors for numerous pathogens, posing significant health risks to humans and animals. Understanding the complex interactions within mosquito microbiota is crucial for deciphering vector-pathogen dynamics and developing effective disease management strategies. Here, we investigated the nested patterns of Wolbachia endosymbionts and Escherichia-Shigella within the microbiota of laboratory-reared Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes. We hypothesized that Wolbachia would exhibit a structured pattern reflective of its co-evolved relationship with both mosquito species, while Escherichia-Shigella would display a more dynamic pattern influenced by environmental factors.

RESULTS: Our analysis revealed different microbial compositions between the two mosquito species, although some microorganisms were common to both. Network analysis revealed distinct community structures and interaction patterns for these bacteria in the microbiota of each mosquito species. Escherichia-Shigella appeared prominently within major network modules in both mosquito species, particularly in module P4 of Cx. pipiens f. molestus, interacting with 93 nodes, and in module Q3 of Cx. quinquefasciatus, interacting with 161 nodes, sharing 55 nodes across both species. On the other hand, Wolbachia appeared in disparate modules: module P3 in Cx. pipiens f. molestus and a distinct module with a single additional taxon in Cx. quinquefasciatus, showing species-specific interactions and no shared taxa. Through computer simulations, we evaluated how the removal of Wolbachia or Escherichia-Shigella affects network robustness. In Cx. pipiens f. molestus, removal of Wolbachia led to a decrease in network connectivity, while Escherichia-Shigella removal had a minimal impact. Conversely, in Cx. quinquefasciatus, removal of Escherichia-Shigella resulted in decreased network stability, whereas Wolbachia removal had minimal effect.

CONCLUSIONS: Contrary to our hypothesis, the findings indicate that Wolbachia displays a more dynamic pattern of associations within the microbiota of Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes, than Escherichia-Shigella. The differential effects on network robustness upon Wolbachia or Escherichia-Shigella removal suggest that these bacteria play distinct roles in maintaining community stability within the microbiota of the two mosquito species.}, } @article {pmid39452360, year = {2024}, author = {Zhu, Y and Wang, X and Wang, S and Song, Z and Du, Y}, title = {No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis.}, journal = {Insects}, volume = {15}, number = {10}, pages = {}, doi = {10.3390/insects15100784}, pmid = {39452360}, issn = {2075-4450}, support = {BK20231330//Natural Science Foundation of Jiangsu Province/ ; }, abstract = {Heritable endosymbiont Wolbachia is prevalent among arthropods, serving multiple functions for their hosts. However, the role of Wolbachia in mediating thermal preference selection remains largely unexplored. In this study, we utilized a custom-built thermal gradient to evaluate the thermal preference (Tp) of 1367 individuals of the invasive leaf-miner Liriomyza huidobrensis with or without Wolbachia wLhui from Yunnan and Xinjiang populations. Under meticulously controlled conditions and with a vast sample size, we found no significant difference in the mean Tp between wLhui-infected and uninfected leaf miners from either population when host age and sex were not considered. Furthermore, generalized linear model (GLM) analysis revealed no significant correlation between average Tp and age, sex, or Wolbachia infection, nor interactions among these factors, except in the Xinjiang population, where Tp was strongly associated with host age. Finally, we discuss the ecological implications of these findings and propose future research directions on Wolbachia-mediated host Tp in the leaf miner. Overall, our findings do not provide evidence that Wolbachia significantly affects the thermal preference of L. huidobrensis. Further studies across different systems are needed to investigate the complex interactions between Wolbachia and insect thermal behavior.}, } @article {pmid39440590, year = {2024}, author = {Li, TP and Xie, JC and Wang, CH and Zhao, LQ and Hao, DJ}, title = {Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host.}, journal = {Plant, cell & environment}, volume = {}, number = {}, pages = {}, doi = {10.1111/pce.15235}, pmid = {39440590}, issn = {1365-3040}, support = {//This study was supported by National Natural Science Foundation of China, Grant/Award Number: Project No. 32301594; Scientific Research Startup Project of Nanjing Forestry University, Grant/Award Numbers: Grant Numbers: 163010320, 163010325, 163010344; Graduate Research and Innovation Program of Jiangsu Province, Grant/Award Number: Project No. KYCX24_1265./ ; }, abstract = {Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.}, } @article {pmid39433918, year = {2024}, author = {Heinen, L and van den Noort, M and King, MS and Kunji, ERS and Poolman, B}, title = {Synthetic syntrophy for adenine nucleotide cross-feeding between metabolically active nanoreactors.}, journal = {Nature nanotechnology}, volume = {}, number = {}, pages = {}, pmid = {39433918}, issn = {1748-3395}, abstract = {Living systems depend on continuous energy input for growth, replication and information processing. Cells use membrane proteins as nanomachines to convert light or chemical energy of nutrients into other forms of energy, such as ion gradients or adenosine triphosphate (ATP). However, engineering sustained fuel supply and metabolic energy conversion in synthetic systems is challenging. Here, inspired by endosymbionts that rely on the host cell for their nutrients, we introduce the concept of cross-feeding to exchange ATP and ADP between lipid-based compartments hundreds of nanometres in size. One population of vesicles enzymatically produces ATP in the mM concentration range and exports it. A second population of vesicles takes up this ATP to fuel internal reactions. The produced ADP feeds back to the first vesicles, and ATP-dependent reactions can be fuelled sustainably for up to at least 24 h. The vesicles are a platform technology to fuel ATP-dependent processes in a sustained fashion, with potential applications in synthetic cells and nanoreactors. Fundamentally, the vesicles enable studying non-equilibrium processes in an energy-controlled environment and promote the development and understanding of constructing life-like metabolic systems on the nanoscale.}, } @article {pmid39432413, year = {2024}, author = {Marasco, R and Michoud, G and Seferji, KA and Gonella, E and Garuglieri, E and Rolli, E and Alma, A and Mapelli, F and Borin, S and Daffonchio, D and Crotti, E}, title = {Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus (Hemiptera: Cicadellidae).}, journal = {International journal of systematic and evolutionary microbiology}, volume = {74}, number = {10}, pages = {}, doi = {10.1099/ijsem.0.006544}, pmid = {39432413}, issn = {1466-5034}, mesh = {Animals ; *Hemiptera/microbiology ; *Phylogeny ; *RNA, Ribosomal, 16S/genetics ; *Fatty Acids/analysis/chemistry ; *DNA, Bacterial/genetics ; *Acetobacteraceae/classification/genetics/isolation & purification ; *Base Composition ; *Bacterial Typing Techniques ; *Sequence Analysis, DNA ; *Multilocus Sequence Typing ; Genome, Bacterial ; Acetic Acid/metabolism ; }, abstract = {Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16P[T] strain was used as a representative of this group of isolates. The genome sequence of EV16P[T] is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16P[T] forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16P[T] is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16P[T] (= KCTC 8296[T], = DSM 117028[T]) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.}, } @article {pmid39428626, year = {2024}, author = {Mirabedini, Z and Niyyati, M and Mohammad Rahimi, H and Soleimani Jevinani, S and Fatemi, M and Tanhaei, M and Mohebbi, SR and Yadegar, A and Abolghasemi, S and Arab Mazar, Z and Mirjalali, H}, title = {The presence of yeasts and bacteria in free-living amoebae isolated from COVID-19 patients: concern for secondary infections.}, journal = {International journal of environmental health research}, volume = {}, number = {}, pages = {1-14}, doi = {10.1080/09603123.2024.2409830}, pmid = {39428626}, issn = {1369-1619}, abstract = {This study aimed to investigate the presence of SARS-CoV-2, yeasts, and bacteria in isolated free-living amoeba (FLA) from COVID-19 patients. Nasopharyngeal swabs (n = 60) were obtained from COVID-19 patients. After cultivation, morphological characterization, and RNA/DNA extraction, the presence of selected microorganisms was investigated. From 60 COVID-19 samples, 18 (30%) were positive for FLA. Acanthamoeba sp. Naegleria australiensis, Tetramitus sp. and Vermamoeba vermiformis were characterized in 12 (80%), 1 (6.66%), 2 (13.33%), and 7 (38.88%) of samples, respectively. SARS-CoV-2 RNA was not detected in FLA. Candida albicans, C. tropicalis, and C. parapsilosis were detected in (11/18; 61.11%), (3/18; 16.67%), and (3/18; 16.67%) of samples, respectively. Geotrichum candidum was detected in 10/18 (55.55%) of samples. Streptococcus spp. and Staphylococcus spp. were identified in 16/18 (88.88%) and 3/18 (16.67%), respectively. The presence of yeasts and bacteria signifies the possible role of FLA in distribution of secondary infections in susceptible patients.}, } @article {pmid39415218, year = {2024}, author = {Lahrach, Z and Legeay, J and Ahmed, B and Hijri, M}, title = {The composition of the arbuscular mycorrhizal fungal bacteriome is species dependent.}, journal = {Environmental microbiome}, volume = {19}, number = {1}, pages = {77}, pmid = {39415218}, issn = {2524-6372}, abstract = {BACKGROUND: In addition to their role as endosymbionts for plant roots, arbuscular mycorrhizal fungi (AMF) engage in complex interactions with various soil microorganisms, the rhizosphere, and the root endosphere of host plants. They also host diverse prokaryotic groups within their mycelia, contributing to what is termed multipartite symbiosis. In this study, we examined the impact of three AMF species-Rhizophagus irregularis, R. clarus, and R. cerebriforme-combined with microbial bioaugmentation on the diversity and composition of bacterial communities in the mycelia and hyphosphere. Using a microcosm design to separate the influence of host plant roots from AMF mycelia and Illumina MiSeq amplicon sequencing to analyze the bacterial communities.

RESULTS: Our results revealed that, while AMF identity and microbial bioaugmentation did not affect the structure of bacterial communities in the hyphosphere soil, they significantly altered the communities associated with their mycelia. Although all three AMF species belong to the same genus, with R. irregularis and R. clarus being closely related compared to R. cerebriforme, we observed variations in the bacterial communities associated with their mycelia. Interestingly, the mycelial bacterial community of R. cerebriforme contained 60 bacteriome core taxa exclusive to it, while R. clarus and R. irregularis had 25 and 9 exclusive taxa, respectively.

CONCLUSION: This study suggests that organismal phylogeny influences the bacterial communities associated with AMF mycelia. These findings provide new insights into AMF and bacterial interactions, which are crucial for the successful deployment of AMF inoculants. The taxonomic diversity of AMF inoculants is important for engineering the plant microbiome and enhancing ecosystem services.}, } @article {pmid39414248, year = {2024}, author = {Hisayama, N and Takeuchi, Y and Furuya, H}, title = {TAXES OF DICYEMIDS (PHYLUM DICYEMIDA).}, journal = {The Journal of parasitology}, volume = {110}, number = {5}, pages = {506-515}, doi = {10.1645/24-39}, pmid = {39414248}, issn = {1937-2345}, mesh = {Animals ; *Chemotaxis ; *Larva ; *Kidney/parasitology ; Phototaxis ; Gills/parasitology ; Urine/parasitology ; }, abstract = {Dicyemids (Phylum Dicyemida) are endosymbionts present in the kidneys of benthic cephalopods. They usually consist of 10 to 40 cells and are characterized by 2 distinct body types: vermiform individuals and infusoriform larvae. Vermiform individuals remain attached to the internal surface of the host's renal appendages, while infusoriform larvae leave the renal sac to search for a new host. To investigate how dicyemids respond to various host and environmental cues, we evaluated phototaxis, chemotaxis, thigmotaxis, and rheotaxis responses of vermiform individuals and infusoriform larvae of 2 dicyemid species in a laboratory setting. Vermiform individuals did not exhibit phototaxis and chemotaxis to the major components of the host: urine, tissue fluids, or extracts of the host gills. However, they showed positive thigmotaxis and positive rheotaxis to slow water flow, probably contributing to enabling attachment to the renal appendages and remaining in the renal sac, respectively. The infusoriform larvae exhibited negative chemotaxis to host blood and negative thigmotaxis, but there was no evidence of phototaxis and rheotaxis. Negative thigmotaxis may facilitate the release of infusoriform embryos from the renal appendages. Negative chemotaxis to the host blood suggests that the infusoriform larvae do not enter through the vascular system to gain access to the renal sac, so the process by which infusoriform larvae enter the cephalopod host is yet to be determined.}, } @article {pmid39402267, year = {2024}, author = {Kaczmarczyk-Ziemba, A and Wagner, GK and Staniec, B and Zagaja, M and Pietrykowska-Tudruj, E and Iorgu, EI and Iorgu, IŞ}, title = {Intraspecific diversity of Myrmecophilus acervorum (Orthoptera: Myrmecophilidae) indicating an ongoing cryptic speciation.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {23984}, pmid = {39402267}, issn = {2045-2322}, mesh = {Animals ; *Wolbachia/genetics/classification/isolation & purification ; *Phylogeny ; *Genetic Variation ; Genetic Speciation ; Male ; Female ; Orthoptera/genetics/classification ; DNA, Mitochondrial/genetics ; Poland ; Symbiosis ; RNA, Ribosomal, 16S/genetics ; Europe ; Gryllidae ; }, abstract = {Myrmecophilus acervorum, previously considered a parthenogenetic species widely-distributed in Europe, has been observed to have both sexes in populations inhabiting the central part of the distribution range. Specimens from those heterosexual populations have been found being infected with Wolbachia. New mitochondrial data (COI and 16S markers) revealed the well-supported differentiation of M. acervorum populations inhabiting western Polesie (Poland) and southern Europe. In turn, analyses of EF1α marker support the hypothesis on the unfinished lineage sorting at the nuclear DNA level. Interestingly, we found that parthenogenetic populations inhabiting western Polesie are infected with Wolbachia belonging to supergroup A, while endosymbionts occurring in sexual populations of M. acervorum observed in Romania belong to supergroup B. Furthermore, new and potentially diagnostic characteristics in the external structures of the eyes of M. acervorum were identified. The surface of ommatidia in specimens occurring in southern Europe was smooth. In contrast, the ommatidia surface of individuals collected in Poland was visibly sculptured. To sum up, the significant genetic variability found in the present case, and the differentiating morphological character, are almost certainly effects of cryptic species being present within M. acervorum. This is indicative of ongoing speciation within the populations of this insect, and of simultaneous unfinished lineage sorting at the nuclear DNA level.}, } @article {pmid39397367, year = {2024}, author = {Mahieu, L and González-González, A and Rubio-Meléndez, ME and Moya-Hernández, M and Francis, F and Ramírez, CC}, title = {An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes.}, journal = {Archives of insect biochemistry and physiology}, volume = {117}, number = {2}, pages = {e22154}, doi = {10.1002/arch.22154}, pmid = {39397367}, issn = {1520-6327}, support = {//This study was supported by Chilean Iniciativa Científica Milenio NC120027; Federation Wallonie-Bruxelles (FAME)./ ; }, mesh = {Animals ; *Aphids/microbiology/physiology ; *Symbiosis ; *Triticum/microbiology ; *Reproduction ; *Hordeum/microbiology ; Proteome/metabolism ; Proteomics ; Insect Proteins/metabolism ; Enterobacteriaceae ; Chile ; }, abstract = {The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola. To determine the role of this bacterium in the reproductive success of this superclone, the presence of R. insecticola was manipulated to assess its impact on (1) the reproductive performance of this clone on two host plant species (wheat and barley), (2) the production of winged morphs, (3) changes in the insects' proteomic profiles, and (4) the root/shoot ratio of plant. It was found that the reproductive performance of this S. avenae superclone varied across host plants, depending on the presence of the facultative bacterial endosymbiont. Aphids infected with R. insecticola showed higher reproductive success on wheat, while the opposite effect was observed on barley. Aphid biomass was greater when infected with R. insecticola, particularly on barley. Additionally, aphids harboring R. insecticola exhibited a higher proportion of winged individuals on both host plants. Protein regulation in aphids on wheat was lower compared to those on barley. A higher root/shoot biomass ratio was observed in wheat plants compared to barley when infested by R. insecticola-infected aphid. Thus, R. insecticola significantly influences the reproductive performance and proteomic profile of a S. avenae superclone, with these effects shaped by the host plant. This suggests that the interaction between the host plant and the facultative endosymbiont contributes to the ecological success of this superclone.}, } @article {pmid39386759, year = {2024}, author = {Kumazawa, M and Ifuku, K}, title = {Unraveling the evolutionary trajectory of LHCI in red-lineage algae: Conservation, diversification, and neolocalization.}, journal = {iScience}, volume = {27}, number = {10}, pages = {110897}, pmid = {39386759}, issn = {2589-0042}, abstract = {Red algae and the secondary symbiotic algae that engulfed a red alga as an endosymbiont are called red-lineage algae. Several photosystem (PS) I-light-harvesting complex I (LHCI) structures have been reported from red-lineage algae-two red algae Cyanidioschyzon merolae (Cyanidiophyceae) and Porphyridium purpureum (Rhodophytina), a diatom, and a Cryptophyte. Here, we clarified the orthologous relation of LHCIs by combining a detailed phylogenetic analysis and the structural information of PSI-LHCI. We found that the seven Lhcr groups in LHCI are conserved in Rhodophytina; furthermore, during both genome reduction in Cyanidioschyzonales and endosymbiosis leading to Cryptophyta, some LHCIs were lost and replaced by existing or differentiated LHCIs. We denominate "neolocalization" to these examples of flexible reorganization of LHCIs. This study provides insights into the evolutionary process of LHCIs in red-lineage algae and clarifies the need for both molecular phylogeny and structural information to elucidate the plausible evolutionary history of LHCI.}, } @article {pmid39386366, year = {2024}, author = {Kaur, T and Brown, AMV}, title = {Discovery of a novel Wolbachia in Heterodera expands nematode host distribution.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1446506}, pmid = {39386366}, issn = {1664-302X}, abstract = {Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.}, } @article {pmid39384161, year = {2024}, author = {Iwai, S}, title = {A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks.}, journal = {Theoretical population biology}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.tpb.2024.09.002}, pmid = {39384161}, issn = {1096-0325}, abstract = {The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.}, } @article {pmid39366749, year = {2024}, author = {Leclerc, L and Mattick, J and Burns, BP and Sassera, D and Hottop, JD and Lo, N}, title = {Metatranscriptomics provide insights into the role of the symbiont midichloria mitochondrii in Ixodes ticks.}, journal = {FEMS microbiology ecology}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsec/fiae133}, pmid = {39366749}, issn = {1574-6941}, abstract = {Ticks are important vectors of bacterial, viral and protozoan pathogens of humans and animals worldwide. Candidatus Midichloria mitochondrii (hereafter M. mitochondrii) is a highly abundant bacterial endosymbiont found in many tick species, including two medically important ticks respectively found in Europe and Australia, Ixodes ricinus and Ixodes holocyclus. The present study aimed to determine the symbiont's biological role by identifying lateral gene transfer (LGT) events, characterising the transcriptome, and performing differential expression analyses. Metatranscriptomic data revealed that M. mitochondrii species in I. ricinus and I. holocyclus were equipped with the metabolic potential and were actively transcribing the genes for several important roles including heme, biotin and folate synthesis, oxidative stress response, osmotic regulation, and ATP production in microaerobic conditions. Differential expression analyses additionally showed an upregulation in stringent response and DNA repair genes in M. mitochondrii of I. holocyclus nymphs compared to adults. Low rates of differential expression suggest the symbiont may lack global gene regulation, as observed in other endosymbionts. Moreover, the identification of an LGT event and the proposed specialisation of the M. mitochondrii strains, mIxholo1 and mIxholo2, for different I. holocyclus life stages highlight the complex interactions between M. mitochondrii and their tick hosts.}, } @article {pmid39358981, year = {2024}, author = {Gu, X and Ross, PA and Yang, Q and Gill, A and Umina, PA and Hoffmann, AA}, title = {Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids.}, journal = {Environmental microbiology}, volume = {26}, number = {10}, pages = {e16704}, doi = {10.1111/1462-2920.16704}, pmid = {39358981}, issn = {1462-2920}, support = {UOM1905-002RTX//Grains Research and Development Corporation/ ; //University of Melbourne/ ; }, mesh = {*Aphids/microbiology/genetics ; Animals ; *Symbiosis ; Bacteria/genetics/classification ; }, abstract = {There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.}, } @article {pmid39353088, year = {2024}, author = {Wang, GH and Hoffmann, A and Champer, J}, title = {Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases.}, journal = {Annual review of entomology}, volume = {}, number = {}, pages = {}, doi = {10.1146/annurev-ento-012424-011039}, pmid = {39353088}, issn = {1545-4487}, abstract = {Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.}, } @article {pmid39352766, year = {2024}, author = {Ling, X and Gu, X and Shen, Y and Fu, C and Zhou, Y and Yin, Y and Gao, Y and Zhu, Y and Lou, Y and Zheng, M}, title = {Comparative genomic analysis of Acanthamoeba from different sources and horizontal transfer events of antimicrobial resistance genes.}, journal = {mSphere}, volume = {}, number = {}, pages = {e0054824}, doi = {10.1128/msphere.00548-24}, pmid = {39352766}, issn = {2379-5042}, abstract = {UNLABELLED: Acanthamoeba species are among the most common free-living amoeba and ubiquitous protozoa, mainly distributed in water and soil, and cause Acanthamoeba keratitis (AK) and severe visual impairment in patients. Although several studies have reported genomic characteristics of Acanthamoeba, limited sample sizes and sources have resulted in an incomplete understanding of the genetic diversity of Acanthamoeba from different sources. While endosymbionts exert a significant influence on the phenotypes of Acanthamoeba, including pathogenicity, virulence, and drug resistance, the species diversity and functional characterization remain largely unexplored. Herein, our study sequenced and analyzed the whole genomes of 19 Acanthamoeba pathogenic strains that cause AK, and by integrating publicly available genomes, we sampled 29 Acanthamoeba strains from ocular, environmental, and other sources. Combined pan-genomic and comparative functional analyses revealed genetic differences and evolutionary relationships among the different sources of Acanthamoeba, as well as classification into multiple functional groups, with ocular isolates in particular showing significant differences that may account for differences in pathogenicity. Phylogenetic and rhizome gene mosaic analyses of ocular Acanthamoeba strains suggested that genomic exchanges between Acanthamoeba and endosymbionts, particularly potential antimicrobial resistance genes trafficking including the adeF, amrA, and amrB genes exchange events, potentially contribute to Acanthamoeba drug resistance. In conclusion, this study elucidated the adaptation of Acanthamoeba to different ecological niches and the influence of gene exchange on the evolution of ocular Acanthamoeba genome, guiding the clinical diagnosis and treatment of AK and laying a theoretical groundwork for developing novel therapeutic approaches.

IMPORTANCE: Acanthamoeba causes a serious blinding keratopathy, Acanthamoeba keratitis, which is currently under-recognized by clinicians. In this study, we analyzed 48 strains of Acanthamoeba using a whole-genome approach, revealing differences in pathogenicity and function between strains of different origins. Horizontal transfer events of antimicrobial resistance genes can help provide guidance as potential biomarkers for the treatment of specific Acanthamoeba keratitis cases.}, } @article {pmid39350697, year = {2024}, author = {Díaz-Hernández, AM and Sepúlveda, DA and González-González, A and Briones, LM and Correa, MCG and Figueroa, CC}, title = {Water deficit and aphid resilience on wheat: examining Sitobion avenae F. and their bacterial symbionts interplay under controlled laboratory conditions.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.8428}, pmid = {39350697}, issn = {1526-4998}, support = {1210713//ANID/FONDECYT Regular/ ; ATE230025//ANID/Anillos/ ; 3240368//ANID/FONDECYT Postdoctoral/ ; 220194//ANID/FOVI/ ; }, abstract = {BACKGROUND: Climate change has far-reaching effects on food security and agriculture, affecting crop yields and food distribution. Agriculture relies heavily on water for irrigation and production, making it vulnerable to water scarcity. Additionally, climate change can affect crop pest insects, leading to increased global crop losses, particularly in cereals, an important component of the human diet. Aphids are major crop pests and have a symbiotic relationship with bacterial endosymbionts that can contribute to their success as pests under a climate change scenario. To test the effect of drought on aphids, we examined varying levels of water deficit and endosymbiont composition on the grain aphid (Sitobion avenae) performance on wheat under controlled laboratory conditions. We measured the intrinsic rate of population increase (rm), the body weight of adult aphids, and the pre-reproductive period for different genotypes of the grain aphid (including Chilean superclones) under different irrigation regimes. We also analyzed the relative abundance of their endosymbionts under the different water treatments.

RESULTS: Our findings revealed that water deficit affects each aphid genotype differently, impacting various traits. For instance, the body weight of adult aphids was notably affected by different water treatments, with aphids grown under intermediate water deficit (IW) being significantly bigger. The relative abundance of endosymbionts also varied among genotypes and water treatments-specifically Regiella insecticola had a noticeably higher abundance under IW (P < 0.05).

CONCLUSION: This study provides valuable insights into the impact of water deficit on aphid performance and the role of endosymbionts in mitigating the effects of water deficit. © 2024 Society of Chemical Industry.}, } @article {pmid39342132, year = {2024}, author = {Mfopit, YM and Bilgo, E and Boma, S and Somda, MB and Gnambani, JE and Konkobo, M and Diabate, A and Dayo, GK and Mamman, M and Kelm, S and Balogun, EO and Shuaibu, MN and Kabir, J}, title = {Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso.}, journal = {BMC microbiology}, volume = {24}, number = {1}, pages = {373}, pmid = {39342132}, issn = {1471-2180}, abstract = {BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso.

RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present.

CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.}, } @article {pmid39336637, year = {2024}, author = {Alvarez, DL and Hayashida, R and Cavallaro, MC and Santos, DM and Santos, LM and Müller, C and Watanabe, LFM and Bello, VH and Krause-Sakate, R and Hoback, WW and Oliveira, RC}, title = {Susceptibility of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Mediterranean Populations Found in São Paulo, Brazil to 11 Insecticides and Characterization of Their Endosymbionts.}, journal = {Insects}, volume = {15}, number = {9}, pages = {}, doi = {10.3390/insects15090670}, pmid = {39336637}, issn = {2075-4450}, support = {processes number 2018/02317-5, 2019/10736-0 and 2018/19782-2//Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP/ ; finance code 001//the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES/ ; 304126/2019-5//Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq/ ; }, abstract = {The silverleaf whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a significant agricultural pest worldwide, impacting a variety of crop yields. Since the introduction of B. tabaci Mediterranean (MED) species in Brazil, limited research has measured the relative efficacy of the primary insecticides used in whitefly management. This study evaluated the susceptibility of three distinct B. tabaci MED populations to 11 insecticide active ingredients and characterized the bacterial endosymbionts within each population. The insecticides tested were acetamiprid, bifenthrin, cyantraniliprole, diafenthiuron, spiromesifen, imidacloprid, pymetrozine, pyriproxyfen, sulfoxaflor, and thiamethoxam. Results showed varying LC50 and LC90 values among tested insecticides and populations. Notably, populations varied in response to imidacloprid and thiamethoxam with some populations having a 6× higher tolerance. Sequencing data of endosymbionts revealed that individuals from the most susceptible B. tabaci population harbored Rickettsia and Arsenophonus, whereas these bacteria were not detected in the resistant populations. These findings highlight the need for frequent insecticide toxicity bioassays of distinct B. tabaci populations and the adoption of integrated pest management strategies to preserve the efficacy of insecticides for B. tabaci control. Additionally, the role of infection by endosymbionts to alter susceptibility should be further explored.}, } @article {pmid39336625, year = {2024}, author = {Kepngop, LRK and Wosula, EN and Amour, M and Ghomsi, PGT and Wakam, LN and Kansci, G and Legg, JP}, title = {Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon.}, journal = {Insects}, volume = {15}, number = {9}, pages = {}, doi = {10.3390/insects15090657}, pmid = {39336625}, issn = {2075-4450}, support = {S/CMR21-10//Arturo Falaschi ICGEB fellowships program/ ; N/A//The CGIAR Trust Fund: https://www.cgiar.org/funders through the CGIAR Initiative on Plant Health and Rapid Response to Protect Food Security and Livelihoods (Plant Health Initiative)./ ; }, abstract = {Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.}, } @article {pmid39336620, year = {2024}, author = {Horgan, FG}, title = {Virulence Adaptation by Rice Planthoppers and Leafhoppers to Resistance Genes and Loci: A Review.}, journal = {Insects}, volume = {15}, number = {9}, pages = {}, doi = {10.3390/insects15090652}, pmid = {39336620}, issn = {2075-4450}, abstract = {In recent decades, research on developing and deploying resistant rice has accelerated due to the availability of modern molecular tools and, in particular, advances in marker-assisted selection. However, progress in understanding virulence adaptation has been relatively slow. This review tracks patterns in virulence adaptation to resistance genes (particularly Bph1, bph2, Bph3, and bph4) and examines the nature of virulence based on selection experiments, responses by virulent populations to differential rice varieties (i.e., varieties with different resistance genes), and breeding experiments that interpret the genetic mechanisms underlying adaptation. The review proposes that varietal resistance is best regarded as a combination of minor and major resistance traits against which planthoppers develop partial or complete virulence through heritable improvements that are reversable or through evolutionary adaptation, respectively. Agronomic practices, deployment patterns, and herbivore population pressures determine the rates of adaptation, and there is growing evidence that pesticide detoxification mechanisms can accelerate virulence adaptation. Research to delay adaptation has mainly focused on gene pyramiding (i.e., including ≥ two major genes in a variety) and multilines (i.e., including ≥ two resistant varieties in a field or landscape); however, these strategies have not been adequately tested and, if not managed properly, could inadvertently accelerate adaptation compared to sequential deployment. Several research gaps remain and considerable improvements in research methods are required to better understand and manage virulence adaptation.}, } @article {pmid39336607, year = {2024}, author = {Lilja, T and Lindström, A and Hernández-Triana, LM and Di Luca, M and Lwande, OW}, title = {European Culex pipiens Populations Carry Different Strains of Wolbachia pipientis.}, journal = {Insects}, volume = {15}, number = {9}, pages = {}, doi = {10.3390/insects15090639}, pmid = {39336607}, issn = {2075-4450}, support = {2020-01056//Formas, Sweden/ ; }, abstract = {The mosquito Culex pipiens occurs in two ecotypes differing in their mating and overwintering behavior: pipiens mate in open environments and diapause, and molestus also mate in small spaces and is active throughout the year. Cx. pipiens carry Wolbachia endosymbionts of the wPip strain, but the frequency of infection differs between studied populations. Wolbachia infection affects the host reproductive success through cytoplasmic incompatibility. wPip Wolbachia is divided into five types, wPip I-V. The type of wPip carried varies among Cx. pipiens populations. In northern European locations different wPip types are found in the two ecotypes, whereas in southern locations, they often carry the same type, indicating differences in hybridization between ecotypes. In this study, Cx. pipiens specimens of both ecotypes were collected from Sweden and compared to specimens from Norway, England, Italy, and the Netherlands, as well as Cx. quinquefasciatus from Mali and Thailand. The abundance varied, but all specimens were infected by Wolbachia, while the tested specimens of other mosquito species were often uninfected. The wPip strains were determined through the sequence analysis of Wolbachia genes ank2 and pk1, showing that Cx. pipiens ecotypes in Scandinavia carry different wPip strains. The observed differences in wPip strains indicate that hybridization is not frequent and may contribute to barriers against hybridization of the ecotypes in Sweden and Norway.}, } @article {pmid39331668, year = {2024}, author = {González, CR and Reyes, C and Castillo, A and Valderrama, L and Llanos, L and Fernández, J and Eastwood, G and Cancino-Faure, B}, title = {Molecular evidence of pathogens and endosymbionts in the black horse fly Osca lata (Diptera: Tabanidae) in Southern Chile.}, journal = {PLoS neglected tropical diseases}, volume = {18}, number = {9}, pages = {e0012525}, doi = {10.1371/journal.pntd.0012525}, pmid = {39331668}, issn = {1935-2735}, abstract = {Little is known about the role of horse flies in potential pathogen transmission in Chile. This study provides evidence of the molecular detection of microorganisms in southern Chile. In the present study, adult Osca lata horse flies were trapped from Punucapa (39°45'06"S/73°16'08"W, Región de Los Ríos) and Puyehue (40°39'10"S/72°10'57"W, Región de Los Lagos), Chile. Among the 95 samples analyzed by PCR using specific primers, microorganisms were detected in 23.2% (n = 22) of the samples. Rickettsia spp. DNA was detected in 15.8% (n = 15) of the samples, Trypanosomatidae DNA in 5.3% (n = 5) of the samples, and filarial DNA in 2.1% (n = 2) of the samples. This study found that horse flies in the region are capable of carrying a variety of both parasites and endosymbionts. Further research is needed to understand the specific impact of horse flies as mechanical or biological vectors and develop effective control measures to prevent the spread of any microorganisms associated with disease.}, } @article {pmid39328926, year = {2024}, author = {Duque-Granda, D and Vivero-Gómez, RJ and Junca, H and Cadavid-Restrepo, G and Moreno-Herrera, CX}, title = {Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae).}, journal = {Biotechnology reports (Amsterdam, Netherlands)}, volume = {44}, number = {}, pages = {e00857}, pmid = {39328926}, issn = {2215-017X}, abstract = {Characterization of the temperature effects on the abundance and richness of the microbiota of Lutzomyia longipalpis, insect vector of Leishmania infantum in America, is an aspect of pivotal importance to understand the interactions between temperature, bacteria, and Leishmania infection. We developed and used a customized device with a temperature gradient (21-34 °C) to assess the temperature preferences of wild females of Lu. longipalpis collected in a rural area (Ricaurte, Cundinamarca, Colombia). Each replicate consisted of 50 females exposed to the gradient for an hour. At the end of the exposure time, insects were collected and separated by the temperature ranges selected varying from 21 °C to 34 °C. They were organized in 17 pools from which total DNA extracts were obtained, and samples were subjected to 16S rRNA amplicon sequencing analyzes. The most abundant phyla across the different temperature ranges were Proteobacteria (17.22-90.73 %), Firmicutes (5.99-77.21 %) and Actinobacteria (1.56-59.85 %). Results also showed an abundance (30 % to 57.36 %) of Pseudomonas (mainly at temperatures of 21-29 °C and 34 °C) that decreased to 6.55 %-13.20 % at temperatures of 31-33 °C, while Bacillus increase its abundance to 67.24 % at 29-33 °C. Serratia also had a greater representation (49.79 %), specifically in sand flies recovered at 25-27 °C. No significant differences were found at α-diversity level when comparing richness using the Shannon-Wiener, Simpson, and Chao1 indices, while β-diversity differences were found using the Bray-Curtis index (F-value of 3.5073, p-value < 0.013, R-squared of 0,4889), especially in the groups of Lu. longipalpis associated at higher temperatures (29-33 °C). It was also possible to detect the presence of endosymbionts such as Spiroplasma and Arsenophonus in the range of 29-33 °C. Rickettsia was only detected in Lu. longipalpis sand flies recovered between 25-27 °C. It was possible to characterize Lu. longipalpis microbiota in response to intraspecific temperature preferences and observe changes in bacterial communities and endosymbionts at different ranges of said environmental variable, which may be important in its vector competence and environmental plasticity to adapt to new climate change scenarios.}, } @article {pmid39313916, year = {2024}, author = {Zhu, YX and Zhang, YY and Wang, XY and Yin, Y and Du, YZ}, title = {Wolbachia modify host cell metabolite profiles in response to short-term temperature stress.}, journal = {Environmental microbiology reports}, volume = {16}, number = {5}, pages = {e70013}, doi = {10.1111/1758-2229.70013}, pmid = {39313916}, issn = {1758-2229}, support = {BK20231330//The Natural Science Foundation of Jiangsu Province/ ; }, mesh = {*Wolbachia/metabolism/physiology/genetics ; Animals ; *Stress, Physiological ; *Temperature ; Cell Line ; *Metabolome ; Drosophila/microbiology ; Symbiosis ; Diptera/microbiology ; Fatty Acids/metabolism ; }, abstract = {Wolbachia are common heritable endosymbionts that influence many aspects of ecology and evolution in various insects, yet Wolbachia-mediated intracellular metabolic responses to temperature stress have been largely overlooked. Here, we introduced the Wolbachia strain wLhui from the invasive Liriomyza huidobrensis (Blanchard) into a Drosophila Schneider 2 cell line (S2) and investigated the metabolite profile of wLhui-infected (S2_wLhui) and uninfected cell lines (S2_wu) under short-term exposure to either high (37°C), moderate (27°C), or low (7 and 17°C) temperatures. We find that Wolbachia infection, temperature stress, and their interactions significantly affect cellular metabolic profiles. Most significantly, when comparing the changes in metabolites between S2_wLhui and S2_wu, glycerophospholipids, amino acids, and fatty acids associated with metabolic pathways, microbial metabolism in diverse environments, and other pathways were significantly accumulated at either low or high temperatures. Our findings suggest Wolbachia-induced cellular physiological responses to short-term temperature stress, which may in turn affect the fitness and adaptive ability of its host as an invasive species.}, } @article {pmid39310793, year = {2024}, author = {Lečić, S and Wolfe, TM and Ghosh, A and Satar, S and Souza Beraldo, C and Smith, E and Dombroskie, JJ and Jernigan, E and Hood, GR and Schuler, H and Stauffer, C}, title = {Spatially Varying Wolbachia Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America.}, journal = {Evolutionary applications}, volume = {17}, number = {9}, pages = {e70016}, pmid = {39310793}, issn = {1752-4571}, abstract = {The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host Wolbachia, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading Wolbachia strain wCer2 to investigate the invasion origin of the European cherry fruit fly, Rhagoletis cerasi. This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of Wolbachia. The introduced populations lack the wCer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from wCer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the wCer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of R. cerasi infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that R. cerasi was unlikely introduced from wCer2-infected populations in Central and Western Europe. We propose wCer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes Wolbachia as an indirect instrument to provide insights into the invasion source of R. cerasi in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.}, } @article {pmid39291985, year = {2024}, author = {Noda, T and Mizutani, M and Harumoto, T and Katsuno, T and Koga, R and Fukatsu, T}, title = {Frequent and asymmetric cell division in endosymbiotic bacteria of cockroaches.}, journal = {Applied and environmental microbiology}, volume = {}, number = {}, pages = {e0146624}, doi = {10.1128/aem.01466-24}, pmid = {39291985}, issn = {1098-5336}, abstract = {Many insects are obligatorily associated with and dependent on specific microbial species as essential mutualistic partners. In the host insects, such microbial mutualists are usually maintained in specialized cells or organs, called bacteriocytes or symbiotic organs. Hence, potentially exponential microbial growth cannot be realized but must be strongly constrained by spatial and resource limitations within the host cells or tissues. How such endosymbiotic bacteria grow, divide, and proliferate is important for understanding the interactions and dynamics underpinning intimate host-microbe symbiotic associations. Here we report that Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits unexpectedly high rates of cell division (20%-58%) and, in addition, the cell division is asymmetric (average asymmetry index >1.5) when isolated from the German cockroach Blattella germanica. The asymmetric division of endosymbiont cells at high frequencies was observed irrespective of host tissues (fat bodies vs ovaries) or developmental stages (adults vs nymphs vs embryos) of B. germanica, and also observed in several different cockroach species. By contrast, such asymmetric and frequent cell division was observed neither in Buchnera, the obligatory bacterial endosymbiont of aphids, nor in Pantoea, the obligatory bacterial gut symbiont of stinkbugs. Comparative genomics of cell division-related genes uncovered that the Blattabacterium genome lacks the Min system genes that determine the cell division plane, which may be relevant to asymmetric cell division. These observations combined with comparative symbiont genomics provide insight into what processes and regulations may underpin the growth, division, and proliferation of such bacterial mutualists continuously constrained under within-host conditions.IMPORTANCEDiverse insects are dependent on specific bacterial mutualists for their survival and reproduction. Due to the long-lasting coevolutionary history, such symbiotic bacteria tend to exhibit degenerative genomes and suffer uncultivability. Because of their microbiological fastidiousness, the cell division patterns of such uncultivable symbiotic bacteria have been poorly described. Here, using fine microscopic and quantitative morphometric approaches, we report that, although bacterial cell division usually proceeds through symmetric binary fission, Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits frequent and asymmetric cell division. Such peculiar cell division patterns were not observed with other uncultivable essential symbiotic bacteria of aphids and stinkbugs. Gene repertoire analysis revealed that the molecular machinery for regulating the bacterial cell division plane are lost in the Blattabacterium genome, suggesting the possibility that the general trend toward the reductive genome evolution of symbiotic bacteria may underpin their bizarre cytological/morphological traits.}, } @article {pmid39283914, year = {2024}, author = {Gifford, I and Suárez, GA and Barrick, JE}, title = {Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators.}, journal = {PLoS genetics}, volume = {20}, number = {9}, pages = {e1011306}, doi = {10.1371/journal.pgen.1011306}, pmid = {39283914}, issn = {1553-7404}, abstract = {Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.}, } @article {pmid39275847, year = {2024}, author = {MacDonald, ZG and Schoville, S and Escalona, M and Marimuthu, MPA and Nguyen, O and Chumchim, N and Fairbairn, CW and Seligmann, W and Toffelmier, E and Gillespie, T and Shaffer, HB}, title = {A genome assembly for the Chryxus Arctic (Oeneis chryxus), the highest butterfly in North America.}, journal = {The Journal of heredity}, volume = {}, number = {}, pages = {}, doi = {10.1093/jhered/esae051}, pmid = {39275847}, issn = {1465-7333}, abstract = {We describe a highly contiguous and complete diploid genome assembly for the Chryxus Arctic, Oeneis chryxus (E. Doubleday, [1849]), a butterfly species complex spanning much of northern and western North America. One subspecies, the Ivallda Arctic (O. c. ivallda), is endemic to California's Sierra Nevada and of particular biogeographic interest and conservation concern. Extreme alpine habitats occupied by this subspecies include the summit of Mt. Whitney, California, representing the highest elevation butterfly population in North America. The assembly presented here consists of two haplotypes, 738.92 and 770.85 Mb in length, with contig N50 values of 10.49 and 10.13 Mb, scaffold N50 values of 25.35 and 25.69 Mb, scaffold L50 values of 13 and 14, and BUSCO completeness scores of 96.5 and 98.3%, respectively. More than 97% of the assembly is organized into 29 scaffolds, which likely represent whole chromosomes. This assembly is the first major genomic resource for Oeneis, providing a foundational reference for future genomic studies on the taxonomy, evolutionary history, and conservation of the genus. As part of the California Conservation Genomics Project, we will use this assembly in conjunction with short-read resequencing to resolve patterns of evolutionary differentiation, adaptive genomic variation, and gene flow among remaining O. c. ivallda populations. These data can and will be used to inform the subspecies' conservation as warming climatic conditions continue to lead to the loss and fragmentation of alpine habitats. We also provide genome assemblies for the O. chryxus mitochondrion and a Wolbachia endosymbiont.}, } @article {pmid39270964, year = {2024}, author = {Giannotta, MM and Smith, I and Michie, M and Blasdell, K and Dunn, M and Nicholls, J and Heath, ACG and Rodriguez, J and Gofton, AW}, title = {Molecular characterisation of Australasian Ixodiphagus (Hymenoptera; Encyrtidae; Encyrtinae) reveals unexpected diversity and a potential novel host switch.}, journal = {International journal for parasitology}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.ijpara.2024.09.001}, pmid = {39270964}, issn = {1879-0135}, abstract = {Ticks are important medical and veterinary parasites that represent a substantial health threat to humans, companion animals, and livestock. Ixodiphagus wasps (Hymenoptera; Encyrtidae) are known endoparasitoids of ixodid (hard) and argasid (soft) ticks, with potential utility as natural biocontrol agents. Two species, Ixodiphagus brunneus and Ixodiphagus mysorensis, are previously recorded from Australia, however, the genus lacks formal revisionary work in Australia, and the validity and host ranges of these species remain uncertain. This work aimed to investigate the diversity of Ixodiphagus in Australasia and provide a molecular data resource for future work on these understudied endoparasitoids. We extracted DNA from archival Ixodiphagus specimens from Australian and New Zealand insect collections and performed high-throughput sequencing which resulted in complete or mostly complete mitochondrial genome sequences from 11 specimens, including I. brunneus, Ixodiphagus taiaroaensis, and a novel Ixodiphagus sp. reared from Rhipicephalus linnaei from Townsville, Australia. In addition, approximately 70% of the genome of the Wolbachia endosymbiont of I. brunneus was recovered. Finally, we screened 178 recently collected pooled tick samples from southern New South Wales, Australia, for Ixodiphagus spp. using 28S rRNA and cytochrome c oxidase subunit 1(COI) gene PCR, and recovered 14 positive samples. Phylogenetic analysis of Australasian Ixodiphagus spp. based on 28S rRNA and complete mitochondrial genome sequences determined that members of the Australasian fauna are distinct from Ixodiphagus hookeri (the only other Ixodiphagus species for which genetic data exists), and that at least two distinct species are present in Australia; I. brunneus identified from Ixodes holocyclus and Haemaphysalis bancrofti ticks, and an uncharacterised Ixodiphagus sp. found in Rhipicephalus linnaei ticks from northern Queensland. Furthermore, there was substantial genetic diversity at the 28S rRNA loci among I. brunneus samples, which may represent normal genetic variability or a secondary cryptic species. The molecular data generated here represents the first known for the genus Ixodiphagus in Australasia, doubling that of the world fauna, and provides the first known complete mitochondrial genomes for these important tick parasitoids.}, } @article {pmid39270602, year = {2024}, author = {González, MA and Ruiz-Arrondo, I and Magallanes, S and Oboňa, J and Ruiz-López, MJ and Figuerola, J}, title = {Molecular and morphological analysis revealed a new Lipoptena species (Diptera: Hippoboscidae) in southern Spain harbouring Coxiella burnetii and bacterial endosymbionts.}, journal = {Veterinary parasitology}, volume = {332}, number = {}, pages = {110300}, doi = {10.1016/j.vetpar.2024.110300}, pmid = {39270602}, issn = {1873-2550}, abstract = {Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp. nov., was found in southern Spain after extensive sampling with carbon-dioxide baited suction traps. A total of 52 females and 32 males were collected at 29 out of 476 sites examined over eight months in 2023. Lipoptena andaluciensis sp. nov. was characterized morphologically and molecularly. The new Lipoptena species can be differentiated from the closely related L. fortisetosa by size, chaetotaxy of the dorsal and ventral thorax, abdominal plates, and genitalia. Based on DNA-barcoding, our specimens showed the highest similarity with Melophagus ovinus (Linnaeus, 1758) (88.4 %) and with L. fortisetosa (86-88 %). Individual screening of Lipoptena specimens (n = 76) for seven important zoonotic pathogens such as bacteria (Anaplasmataceae family: Bartonella spp., Borrelia spp., Coxiella burnetii and Rickettsia spp.) and protozoans (Babesia spp. and Theileria spp.) by conventional PCR and RT-PCR was performed. DNA of C. burnetii was detected in one specimen, while two other specimens harboured Anaplasmataceae (Wolbachia spp., 100 % homology and another endosymbiont probably related to Arsenophonus sp., 95.3 % homology, respectively), all representing the first records of these bacteria in the Lipoptena spp. from Europe. Carbon dioxide traps probed its effectiveness as a reliable passive method for keds surveillance. Our study highlights the existence of a new Lipoptena species, presumably widely distributed in southern Spain. The role of this species in the transmission cycle of pathogens of medical-veterinary relevance needs to be considered in the area.}, } @article {pmid39266798, year = {2024}, author = {Kang, SF and Chen, Y and Chen, J}, title = {Wolbachia of phylogenetic supergroup K identified in oribatid mite Nothrus anauniensis (Acari: Oribatida: Nothridae).}, journal = {Experimental & applied acarology}, volume = {}, number = {}, pages = {}, pmid = {39266798}, issn = {1572-9702}, abstract = {Heritable endosymbionts widely occur in arthropod and nematode hosts. Among these endosymbionts, Wolbachia has been extensively detected in many arthropods, such as insects and crustaceans. Maternal inheritance is the most basic and dominant mode of transmission of Wolbachia, and it might regulate the reproductive system of the host in four ways: feminization, parthenogenesis, male killing, and cytoplasmic incompatibility. There is a relatively high percentage (10%) of thelytokous species in Oribatida, a suborder under the subclass Acari of arthropods, but the study of the endosymbionts in oribatid mites is almost negligible. In this paper, we detected endosymbiotic bacteria in two parthenogenetic oribatid species, Nothrus anauniensis Canestrini and Fanzago, 1877, which has never been tested for endosymbionts, and Oppiella nova, in which Wolbachia and Cardinium have been reported before. The results showed that Wolbachia was first found in N. anauniensis with an infection rate of 100% across three populations. Phylogenetic analysis showed that Wolbachia in N. anauniensis belonged to the supergroup K, marking the second supergroup of Wolbachia found in oribatid mites. Unlike previous studies, our study did not detect Wolbachia in O. nova, leading to the exclusion of Wolbachia's role in mediating thelytoky in this species.}, } @article {pmid39264945, year = {2024}, author = {Zang, C and Wang, X and Liu, Y and Wang, H and Sun, Q and Cheng, P and Zhang, Y and Gong, M and Liu, H}, title = {Wolbachia and mosquitoes: Exploring transmission modes and coevolutionary dynamics in Shandong Province, China.}, journal = {PLoS neglected tropical diseases}, volume = {18}, number = {9}, pages = {e0011944}, doi = {10.1371/journal.pntd.0011944}, pmid = {39264945}, issn = {1935-2735}, abstract = {Vector-borne diseases leave a large footprint on global health. Notable culprits include West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Japanese encephalitis virus (JEV), all transmitted by Culex mosquitoes. Chemical insecticides have been widely used to reduce the spread of mosquito-borne diseases. Still, mosquitoes are becoming more and more resistant to most chemical insecticides which cause particular harm to the ecology. Wolbachia belongs to the family Ehrlichiaceae in the order Rickettsiales and is a matrilineally inherited endosymbiont present in 60% of insects in nature. Wolbachia is capable of inducing a wide range of reproductive abnormalities in its hosts, such as cytoplasmic incompatibility, and can alter mosquito resistance to pathogen infection. Wolbachia has been proposed as a biological alternative to chemical vector control, and specific research progress and effectiveness have been achieved. Despite the importance of Wolbachia, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in Shandong Province, China. Little is known about how the mass release of Wolbachia-infected mosquitoes may impact the genetic structure of Culex pipiens pallens, and how the symbiotic bacterium Wolbachia interacts with mitochondria during host mosquito transmission. Based on the population genetic structure of Culex pipiens pallens in Shandong Province, this study investigated the infection rate and infection type of Wolbachia in Shandong Province and jointly analysed the evolutionary relationship between the host mosquito and the symbiotic bacterium Wolbachia. Our study showed that Wolbachia naturally infected by Culex pipiens pallens in Shandong Province was less homologous to Wolbachia infected by Aedes albopictus released from mosquito factory in Guangzhou. Our results also show that Culex pipiens pallens is undergoing demographic expansion in Shandong Province. The overall Wolbachia infection rate of Culex pipiens pallens was 92.8%, and a total of 15 WSP haplotypes were detected. We found that the genetic diversity of Wolbachia was low in Culex pipiens pallens from Shandong Province, and the mosquitoes were infected only with type B Wolbachia. Visualizing the relationship between Culex pipiens pallens and Wolbachia using a tanglegram revealed patterns of widespread associations. A specific coevolutionary relationship exists between the host mosquito and Wolbachia. Knowledge of this mosquito-Wolbachia relationship will provide essential scientific information required for Wolbachia-based vector control approaches in Shandong Province and will lead to a better understanding of the diversity and evolution of Wolbachia for its utility as a biocontrol agent.}, } @article {pmid39264544, year = {2024}, author = {Wannassi, T and Sayadi, A and Abbes, K and Djebbi, S and Naccache, C and Khemakhem, MM and Chermiti, B}, title = {Prevalence of Wolbachia infection in field natural population of the apricot seed wasp Eurytoma samsonowi (Hymenoptera: Eurytomidae).}, journal = {International microbiology : the official journal of the Spanish Society for Microbiology}, volume = {}, number = {}, pages = {}, pmid = {39264544}, issn = {1618-1905}, abstract = {Obligate endosymbiont bacteria associated with insects are naturally providing their hosts with essential nutrients such as vitamins and amino acids and biological services including protection from pathogens. In this study, we aimed to investigate the presence of Wolbachia infection among males and females of the parasitic apricot seed wasp (ASW) Eurytoma samsonowi Vassiliev (Vassiliev Petrograd 11: 1-15, 1915) (Hymenoptera: Eurytomidae), a very harmful pest of apricot (Prunus armeniaca), in the oasis of Gafsa, Southern-West of Tunisia. The detection of Wolbachia infection was assessed based on the amplification of the Wolbachia surface protein (wsp) gene and a multilocus sequence typing (MLST) as a universal genotyping tool for Wolbachia involving the analyses of genes gatB, coxA, hcpA, fbpA, and ftsz. Confirming the screening results, Wolbachia was detected in the natural apricot wasp for the first time, with a significant difference between males (5%) and females (59%) based on wsp gene. All Wolbachia strains identified in E. samsonowi were clustered among supergroups B of Wolbachia.}, } @article {pmid39263696, year = {2024}, author = {Nag, M and Pallavi, J and Chakraborty, S and Roychoudhury, T and Mondal, S and Ghosh, A and Saha, C and Banerjee, M and Seal, A}, title = {Bacterial endosymbionts of a nitrogen-fixing yeast Rhodotorula mucilaginosa JGTA-S1 - insights into a yet unknown micro-ecosystem.}, journal = {Molecular omics}, volume = {}, number = {}, pages = {}, doi = {10.1039/d3mo00273j}, pmid = {39263696}, issn = {2515-4184}, abstract = {Rhodotorula mucilaginosa JGTA-S1 is a yeast strain capable of fixing nitrogen and improving nitrogen nutrition in rice plants because of its nitrogen-fixing endobacteria, namely Stutzerimonas (Pseudomonas) stutzeri and Bradyrhizobium sp. To gain a deeper understanding of yeast endosymbionts, we conducted a whole-genome shotgun metagenomic analysis of JGTA-S1 cells grown under conditions of nitrogen sufficiency and deficiency. Our results showed that the endosymbiont population varied depending on the nitrogen regime. Upon mechanical disruption of yeast cells, we obtained endosymbionts in culturable form viz. Bacillus velezensis and Staphylococcus sp. under nitrogen-replete conditions and Lysinibacillus telephonicus., Brevibacillus sp., and Niallia circulans under nitrogen-depleted conditions. S. stutzeri and Bradyrhizobium sp. the previously reported endosymbionts remained unculturable. The culturable endosymbionts Staphylococcus sp. and Bacillus velezensis appear to possess genes for dissimilatory nitrate reduction (DNRA), an alternative pathway for ammonia synthesis. However, our findings suggest that these endosymbionts are facultative as they survive outside the host. The fitness of the yeast was not affected by curing of these microbes. Curing the yeast diazotrophic endosymbionts took a toll on its fitness. Our results also showed that the populations of S. stutzeri and B. velezensis increased significantly under nitrogen-depleted conditions compared to nitrogen-sufficient conditions. The importance of DNRA and nitrogen fixation is also reflected in the metagenomic reads of JGTA-S1.}, } @article {pmid38785194, year = {2024}, author = {McKee, CD and Peel, AJ and Hayman, DTS and Suu-Ire, R and Ntiamoa-Baidu, Y and Cunningham, AA and Wood, JLN and Webb, CT and Kosoy, MY}, title = {Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain.}, journal = {Parasitology}, volume = {}, number = {}, pages = {1-14}, doi = {10.1017/S0031182024000660}, pmid = {38785194}, issn = {1469-8161}, support = {//Research England/ ; //Zebra Foundation for Veterinary Zoological Education/ ; //Alborada Trust/ ; //Royal Society Te Apārangi/ ; //Isaac Newton Trust/ ; /WT_/Wellcome Trust/United Kingdom ; }, abstract = {Few studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host–vector–microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria (Bartonella) and bacterial endosymbionts of flies (Enterobacterales) across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and Enterobacterales symbionts compared to that of their hosts. Significant isolation by distance was observed in the dissimilarity of Bartonella communities detected in flies from sampled populations of Eidolon helvum bats. These patterns indicate that, while genetic dispersal of bats between islands is limited, some non-reproductive movements may lead to the dispersal of ectoparasites and associated microbes. This study deepens our knowledge of the phylogeography of African fruit bats, their ectoparasites and associated bacteria. The results presented could inform models of pathogen transmission in these bat populations and increase our theoretical understanding of community ecology in host–microbe systems.}, } @article {pmid39261613, year = {2024}, author = {Vosseberg, J and van Hooff, JJE and Köstlbacher, S and Panagiotou, K and Tamarit, D and Ettema, TJG}, title = {The emerging view on the origin and early evolution of eukaryotic cells.}, journal = {Nature}, volume = {633}, number = {8029}, pages = {295-305}, pmid = {39261613}, issn = {1476-4687}, mesh = {*Eukaryotic Cells/cytology/metabolism ; *Symbiosis ; *Biological Evolution ; Archaea/genetics/classification/cytology ; Mitochondria/genetics/metabolism ; Bacteria/genetics/cytology/classification/metabolism ; Prokaryotic Cells/cytology/metabolism/classification ; Phylogeny ; Animals ; Eukaryota/genetics/classification/cytology ; }, abstract = {The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.}, } @article {pmid39258303, year = {2024}, author = {Silva, NNP and Carvalho, VR and Silva, CB and Bomfim, JPA and Ramos, GS and Oliveira, RC}, title = {First report of the association between Wolbachia and Cotesia flavipes (Hymenoptera: Braconidae): effect on life history parameters of the parasitoid.}, journal = {Bulletin of entomological research}, volume = {}, number = {}, pages = {1-8}, doi = {10.1017/S0007485324000361}, pmid = {39258303}, issn = {1475-2670}, abstract = {The symbiosis between microorganisms and host arthropods can cause biological, physiological, and reproductive changes in the host population. The present study aimed to survey facultative symbionts of the genera Wolbachia, Arsenophonus, Cardinium, Rickettsia, and Nosema in Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) and Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) in the laboratory and evaluate the influence of infection on the fitness of these hosts. For this purpose, 16S rDNA primers were used to detect these facultative symbionts in the host species, and the hosts' biological and morphological features were evaluated for changes resulting from the infection caused by these microorganisms. The bacterial symbionts studied herein were not detected in the D. saccharalis samples analysed, but the endosymbiont Wolbachia was detected in C. flavipes and altered the biological and morphological aspects of this parasitoid insect. The results of this study may help to elucidate the role of Wolbachia in maintaining the quality of populations/lineages of C. flavipes.}, } @article {pmid39257987, year = {2024}, author = {Mfopit, YM and Bilgo, E and Boma, S and Somda, MB and Gnambani, JE and Konkobo, M and Diabate, A and Dayo, GK and Mamman, M and Kelm, S and Balogun, EO and Shuaibu, MN and Kabir, J}, title = {Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso.}, journal = {Research square}, volume = {}, number = {}, pages = {}, doi = {10.21203/rs.3.rs-4756528/v1}, pmid = {39257987}, issn = {2693-5015}, abstract = {Background. Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results. A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius , Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiense and 4 (2.0%) Glossina tachinoides . The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius , Spiroplasma and Wolbachia . Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoides was infected by S. glossinidius and Wolbachia , but they were all infected by Spiroplasma sp . A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense , but not G. tachinoides . Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius , Spiroplasma sp and Wolbachia , respectively. There was no association between Sodalis , Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion : This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp . Modifications of symbiotic interactions may pave way for disease control.}, } @article {pmid39253751, year = {2024}, author = {Proctor, JD and Mackevicius-Dubickaja, V and Gottlieb, Y and White, JA}, title = {Warm temperature inhibits cytoplasmic incompatibility induced by endosymbiotic Rickettsiella in spider hosts.}, journal = {Environmental microbiology}, volume = {26}, number = {9}, pages = {e16697}, doi = {10.1111/1462-2920.16697}, pmid = {39253751}, issn = {1462-2920}, support = {//National Institute of Food and Agriculture/ ; Hatch # 1020740//U.S. Department of Agriculture/ ; 1953223//National Science Foundation/ ; 201697//United States - Israel Binational Science Foundation/ ; }, mesh = {Animals ; *Spiders/microbiology ; Female ; *Symbiosis ; Male ; *Hot Temperature ; Cytoplasm/microbiology ; Coxiellaceae/genetics ; Reproduction ; Temperature ; }, abstract = {Bacterial endosymbionts manipulate reproduction in arthropods to increase their prevalence in the host population. One such manipulation is cytoplasmic incompatibility (CI), wherein the bacteria sabotage sperm in infected males to reduce the hatch rate when mated with uninfected females, but zygotes are 'rescued' when that male mates with an infected female. In the spider Mermessus fradeorum (Linyphiidae), Rickettsiella symbionts cause variable levels of CI. We hypothesised that temperature affects the strength of CI and its rescue in M. fradeorum, potentially mediated by bacterial titre. We reared Rickettsiella-infected spiders in two temperature conditions (26°C vs. 20°C) and tested CI induction in males and rescue in females. In incompatible crosses between infected males and uninfected females, the hatch rate from warm males was doubled (mean ± standard error = 0.687 ± 0.052) relative to cool males (0.348 ± 0.046), indicating that CI induction is weaker in warm males. In rescue crosses between infected females and infected males, female rearing temperature had a marginal effect on CI rescue, but the hatch rate remained high for both warm (0.960 ± 0.023) and cool females (0.994 ± 0.004). Bacterial titre, as measured by quantitative polymerase chain reaction, was lower in warm than cool spiders, particularly in females, suggesting that bacterial titre may play a role in causing the temperature-mediated changes in CI.}, } @article {pmid39253440, year = {2024}, author = {Frail, S and Steele-Ogus, M and Doenier, J and Moulin, SLY and Braukmann, T and Xu, S and Yeh, E}, title = {Genomes of nitrogen-fixing eukaryotes reveal a non-canonical model of organellogenesis.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.08.27.609708}, pmid = {39253440}, issn = {2692-8205}, abstract = {Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. Epithemia diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae. We report genomic analyses of two species, freshwater E.clementina and marine E.pelagica , which are highly divergent but share a common endosymbiotic origin. We found minimal evidence of genetic integration: nonfunctional diazoplast-to-nuclear DNA transfers in the E.clementina genome and 6 host-encoded proteins of unknown function in the E.clementina diazoplast proteome, far fewer than in other recently-acquired organelles. Epithemia diazoplasts are a valuable counterpoint to existing organellogenesis models, demonstrating that endosymbionts can be stably integrated and inherited absent significant genetic integration. The minimal genetic integration makes diazoplasts valuable blueprints for bioengineering endosymbiotic compartments de novo .}, } @article {pmid39252957, year = {2024}, author = {Siehl, R and Vyhnal, K and Goffredi, SK}, title = {Friendly fungi: Tropical insect families form partnerships with intracellular fungi related to pathogens.}, journal = {iScience}, volume = {27}, number = {9}, pages = {110674}, doi = {10.1016/j.isci.2024.110674}, pmid = {39252957}, issn = {2589-0042}, abstract = {Sap-sucking insects fail to obtain vitamins, amino acids, and sterols from their plant diet. To compensate, obligate intracellular bacterial symbionts (usually Sulcia and Vidania) provide these missing nutrients. Notably, some planthoppers within the Fulgoromorpha (suborder Auchenorrhyncha) associate with intracellular fungi, which either accompany or replace the anciently associated bacterial partners. Planthopper-symbiont surveys, however, have only been conducted in limited temperate regions, thus necessitating examination of these relationships in the tropics, where insect and fungal diversity is high. Here, five tropical planthopper families host yeast-like endosymbionts related to the parasitic genus Ophiocordyceps. Fungal endosymbiont identity generally corresponded to host family, suggesting possible coevolution. Vertical transmission to offspring was supported by the occurrence of fungal cells in developing eggs. This serves as the most comprehensive tropical planthopper-symbiont survey to date, doubling the roster of known Fulgoromorpha species that host intracellular fungi and further elucidating the remarkable success of this diverse insect group.}, } @article {pmid39248324, year = {2024}, author = {Cash, EI and Escalona, M and Ward, PS and Sahasrabudhe, R and Miller, C and Toffelmier, E and Fairbairn, C and Seligmann, W and Shaffer, HB and Tsutsui, ND}, title = {"The Reference Genome Of The Kidnapper Ant, Polyergus Mexicanus".}, journal = {The Journal of heredity}, volume = {}, number = {}, pages = {}, doi = {10.1093/jhered/esae047}, pmid = {39248324}, issn = {1465-7333}, abstract = {Polyergus kidnapper ants are widely distributed, but relatively uncommon, throughout the Holarctic, spanning an elevational range from sea level to over 3000 m. These species are well known for their obligate social parasitism with various Formica ant species, which they kidnap in dramatic, highly coordinated raids. Kidnapped Formica larvae and pupae become integrated into the Polyergus colony where they develop into adults and perform nearly all of the necessary colony tasks for the benefit of their captors. In California, Polyergus mexicanus is the most widely distributed Polyergus, but recent evidence has identified substantial genetic polymorphism within this species, including genetically divergent lineages associated with the use of different Formica host species. Given its unique behavior and genetic diversity, Polyergus mexicanus plays a critical role in maintaining ecosystem balance by influencing the population dynamics and genetic diversity of its host ant species, Formica, highlighting its conservation value and importance in the context of biodiversity preservation. Here, we present a high-quality genome assembly of P. mexicanus from a sample collected in Plumas County, CA, USA, in the foothills of the central Sierra Nevada. This genome assembly consists of 364 scaffolds spanning 252.31 Mb, with contig N50 of 481,250 kb, scaffold N50 of 10.36 Mb, and BUSCO completeness of 95.4%. We also assembled the genome of the Wolbachia endosymbiont of P. mexicanus - a single, circular contig spanning 1.23 Mb. These genome sequences provide essential resources for future studies of conservation genetics, population genetics, speciation, and behavioral ecology in this charismatic social insect.}, } @article {pmid39243881, year = {2024}, author = {Depeux, C and Branger, A and Paulhac, H and Pigeault, R and Beltran-Bech, S}, title = {Deleterious effects of Wolbachia on life history and physiological traits of common pill woodlice.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {108187}, doi = {10.1016/j.jip.2024.108187}, pmid = {39243881}, issn = {1096-0805}, abstract = {Most of eukaryotic organisms live in close interaction with micro-organisms called symbionts. Symbiotic interactions underpin the evolution of biological complexity, the health of organisms and, ultimately, the proper functioning of ecosystems. While some symbionts confer adaptive benefits on their host (mutualistic symbionts) and others clearly induce costs (parasitic symbionts), a number of micro-organisms are difficult to classify because they have been described as conferring both benefits and costs on their host. This is particularly true of the most widespread animal endosymbiont, Wolbachia pipientis. In this study, we investigated the influence of Wolbachia infection on a broad spectrum of ecological and physiological parameters of one of its native hosts, Armadillidium vulgare. The aim was to gain as complete a picture as possible of the influence of this endosymbiont on its host. Our results showed that the presence of Wolbachia resulted in a decrease in individual reproductive success and survival. Host immune cells density decreased and β-galactosidase activity (ageing biomarker) increased with the presence of Wolbachia, suggesting a negative impact of this endosymbiont on woodlice health. While previous studies have shown that Wolbachia can have a positive impact on the immunocompetence of A. vulgare, here we shed more light on the costs of infection. Our results illustrate the complex dynamics that exist between Wolbachia and its arthropod host and therefore offer valuable insights into the intricate interplay of symbiotic relationships in ecological systems.}, } @article {pmid39228812, year = {2024}, author = {Arai, H and Herran, B and Sugimoto, TN and Miyata, M and Sasaki, T and Kageyama, D}, title = {Cell-based assays and comparative genomics revealed the conserved and hidden effects of Wolbachia on insect sex determination.}, journal = {PNAS nexus}, volume = {3}, number = {9}, pages = {pgae348}, pmid = {39228812}, issn = {2752-6542}, abstract = {It is advantageous for maternally transmitted endosymbionts to skew the sex ratio of their hosts toward females. Some endosymbiotic bacteria, such as Wolbachia, cause their insect hosts to exclusively produce female offspring through male killing (MK) or feminization. In some lepidopteran insects, MK is achieved by affecting the sex-determining process in males, and a unique mechanism of MK and its functional link with feminization have been implicated. However, comparative analysis of these phenotypes is often difficult because they have been analyzed in different host-symbiont systems, and transinfection of Wolbachia across different hosts is often challenging. In this study, we demonstrated the effects of nine Wolbachia strains on the splicing of sex-determining genes in Lepidoptera by fixing the host genetic background using a cell culture system. Cell transinfection assays confirmed that three MK-inducing Wolbachia strains and one feminization-inducing Wolbachia strain increased the female-type splicing products of the core sex-determining genes doublesex, masculinizer, and zinc finger protein 2. Regarding Wolbachia strains that do not induce MK/feminization, three had no effect on these sex-determining genes, whereas two strains induced female-type splicing of masculinizer and doublesex but not zinc finger protein 2. Comparative genomics confirmed that homologs of oscar, the Wolbachia gene responsible for MK in Ostrinia, were encoded by four MK/feminizing Wolbachia strains, but not by five non-MK/nonfeminizing strains. These results support the conserved effects underlying MK and feminization induced by oscar-bearing Wolbachia and suggested other potential mechanisms that Wolbachia might employ to manipulate host sex.}, } @article {pmid39207104, year = {2024}, author = {A Ghomi, F and Jung, JJ and Langridge, GC and Cain, AK and Boinett, CJ and Abd El Ghany, M and Pickard, DJ and Kingsley, RA and Thomson, NR and Parkhill, J and Gardner, PP and Barquist, L}, title = {High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality.}, journal = {mBio}, volume = {}, number = {}, pages = {e0179824}, doi = {10.1128/mbio.01798-24}, pmid = {39207104}, issn = {2150-7511}, abstract = {The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.}, } @article {pmid39196627, year = {2024}, author = {Shang, F and Ding, BY and Niu, J and Lu, JM and Xie, XC and Li, CZ and Zhang, W and Pan, D and Jiang, RX and Wang, JJ}, title = {microRNA maintains nutrient homeostasis in the symbiont-host interaction.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {121}, number = {36}, pages = {e2406925121}, doi = {10.1073/pnas.2406925121}, pmid = {39196627}, issn = {1091-6490}, support = {32272526//MOST | National Natural Science Foundation of China (NSFC)/ ; 32020103010//MOST | NSFC | Major International Joint Research Programme/ ; }, abstract = {Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed MRP4 gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024). Targeted metabolomics, microbiome analysis, vitamin B6 (VB6) supplements, 3D modeling/molecular docking, in vitro binding assays (voltage clamp recording and microscale thermophoresis), and functional complementation of Escherichia coli were jointly used to show that the miR-3024/MRP4 axis controls endosymbiont (Serratia)-produced VB6 transport to the host. The supplementation of miR-3024 increased the mortality of aphids, but partial rescue was achieved by providing an external source of VB6. The use of miR-3024 as part of a sustainable aphid pest-control strategy was evaluated by safety assessments in nontarget organisms (pollinators, predators, and entomopathogenic fungi) using virus-induced gene silencing assays and the expression of miR-3024 in transgenic tobacco. The supplementation of miR-3024 suppresses MRP4 expression, restricting the number of membrane channels, inhibiting VB6 transport, and ultimately killing the host. Under aphids facing stress conditions, the endosymbiont titer is decreased, and the VB6 production is also down-regulated, while the aphid's autonomous inhibition of miR-3024 enhances the expression of MRP4 and then increases the VB6 transport which finally ensures the VB6 homeostasis. The results confirm that miR-3024 regulates nutrient transport in the endosymbiont-host system and is a suitable target for sustainable pest control.}, } @article {pmid39194189, year = {2024}, author = {Miao, Y-h and Dou, W-h and Liu, J and Huang, D-w and Xiao, J-h}, title = {Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission.}, journal = {mBio}, volume = {}, number = {}, pages = {e0147324}, doi = {10.1128/mbio.01473-24}, pmid = {39194189}, issn = {2150-7511}, abstract = {Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.}, } @article {pmid39189783, year = {2024}, author = {Longley, R and Robinson, AJ and Asher, OA and Middlebrook, E and Bonito, G and Chain, PSG}, title = {Signatures of Mollicutes-related endobacteria in publicly available Mucoromycota genomes.}, journal = {mSphere}, volume = {}, number = {}, pages = {e0030924}, doi = {10.1128/msphere.00309-24}, pmid = {39189783}, issn = {2379-5042}, abstract = {Mucoromycota fungi and their Mollicutes-related endobacteria (MRE) are an ideal system for studying bacterial-fungal interactions and evolution due to the long-term and intimate nature of their interactions. However, methods for detecting MRE face specific challenges due to the poor representation of MRE in sequencing databases coupled with the high sequence divergence of their genomes, making traditional similarity searches unreliable. This has precluded estimations on the diversity of MRE associated with Mucoromycota. To determine the prevalence of previously undetected MRE in fungal genome sequences, we scanned 389 Mucoromycota genome assemblies available from the National Center for Biotechnology Information for the presence of MRE sequences using publicly available tools to map contigs from fungal assemblies to publicly available MRE genomes. We demonstrate a higher diversity of MRE genomes than previously described in Mucoromycota and a lack of cophylogeny between MRE and the majority of their fungal hosts. This supports the late invasion hypothesis regarding MRE acquisition across most of the examined fungal families. In contrast with other Mucoromycota lineages, MRE from the Gigasporaceae displayed some degree of cophylogeny with their hosts, which may indicate that horizontal transmission is restricted between members of this family or that transmission is strictly vertical. These results underscore the need for a refined process to capture sequencing data from potential fungal endosymbionts to discern their evolution and transmission. Screens of fungal genomes for MRE can help improve the quality of fungal genome assemblies while identifying new MRE lineages to further test hypotheses on their origin and evolution.IMPORTANCEMollicutes-related endobacteria (MRE) are obligate intracellular bacteria found within Mucoromycota fungi. Despite their frequent detection, MRE roles in host functioning are still unknown. Comparative genomic investigations can improve our understanding of the impact of MRE on their fungal hosts by identifying similarities and differences in MRE genome evolution. However, MRE genomes have only been assembled from a small fraction of Mucoromycota hosts. Here, we demonstrate that MRE can be present yet undetected in publicly available Mucoromycota genome assemblies. We use these newfound sequences to assess the broader diversity of MRE and their phylogenetic relationships with respect to their hosts. We demonstrate that publicly available tools can be used to extract novel MRE sequences from assembled fungal genomes leading to insights on MRE evolution. This work contributes to a greater understanding of the fungal microbiome, which is crucial to improving knowledge on the dynamics and impacts of fungi in microbial ecosystems.}, } @article {pmid39185227, year = {2024}, author = {Gasser, MT and Flatau, R and Altamia, M and Filone, CM and Distel, D}, title = {Complete genome sequences of two new strains of the shipworm endosymbiont, Teredinibacter turnerae.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.08.13.607755}, pmid = {39185227}, issn = {2692-8205}, abstract = {We present the complete genome sequences of two strains of Teredinibacter turnerae , SR01903 and SR02026, shipworm endosymbionts isolated from the gills of Lyrodus pedicellatus and Teredo bartschi , respectively, and derived from Oxford Nanopore sequencing. These sequences will aid in the comparative genomics of shipworm endosymbionts and understanding of host-symbiont selection.}, } @article {pmid39181959, year = {2024}, author = {Alkathiri, B and Lee, S and Ahn, K and Cho, YS and Youn, SY and Seo, K and Umemiya-Shirafuji, R and Xuan, X and Kwak, D and Shin, S and Lee, SH}, title = {16S rRNA metabarcoding for the identification of tick-borne bacteria in ticks in the Republic of Korea.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {19708}, pmid = {39181959}, issn = {2045-2322}, support = {Z-1543081-2021-22-02//Animal and Plant Quarantine Agency/ ; Z-1543081-2021-22-02//Animal and Plant Quarantine Agency/ ; 2021R1F1A1061795//National Research Foundation of Korea/ ; }, mesh = {Animals ; *RNA, Ribosomal, 16S/genetics ; Republic of Korea ; *DNA Barcoding, Taxonomic/methods ; *Bacteria/genetics/classification/isolation & purification ; *Ticks/microbiology ; DNA, Bacterial/genetics ; Wolbachia/genetics/isolation & purification/classification ; Phylogeny ; Rickettsia/genetics/isolation & purification/classification ; }, abstract = {Ticks are blood-sucking ectoparasites that act as vectors for transmission of various pathogens. The purpose of this study was to assess tick-borne bacteria, whether pathogenic or not, in ticks distributed in Korea using 16S rRNA metabarcoding and to confirm the results by PCR. Questing ticks were collected from four provinces in Korea in 2021 using the flagging method. After pooling the DNAs from the 61 tick pools (including 372 ticks), the bacterial 16S rRNA V3-V4 hypervariable region was amplified and sequenced using the MiSeq platform. Rickettsia, Ehrlichia, and the endosymbiont Wolbachia were confirmed by conventional PCR and molecular analysis. In total, 6907 ticks (534 pools) were collected and identified as belonging to five species (Haemaphysalis spp., H. longicornis, H. flava, I. nipponensis, and A. testudinarium). Through 16S rRNA metabarcoding, 240 amplicon sequence variants were identified. The dominant taxa were Rickettsiella and Coxiella. Additionally, pathogenic bacteria such as Rickettsia and Ehrlichia, endosymbiotic bacteria such as Wolbachia and Spiroplasma were identified. Polymerase chain reaction (PCR) was performed to confirm the presence of Rickettsia, Ehrlichia, Bartonella, and Wolbachia in individual ticks. Overall, 352 (65.92%) of 534 pools tested positive for at least one of the screened tick-borne bacteria. Rickettsia was the most prevalent (61.42%), followed by Wolbachia (5.05%). Ehrlichia was detected in 4.86% of tested samples, whereas Bartonella was not detected. In this study, 16S rRNA metabarcoding revealed the presence of Rickettsia, Wolbachia, and Ehrlichia, in that order of abundance, while showing absence of Bartonella. These results were confirmed to exhibit the same trend as that of the conventional PCR. Therefore, large-scale screening studies based on pooling, as applied in this study, will be useful for examining novel or rare pathogens present in various hosts and vectors.}, } @article {pmid39163261, year = {2024}, author = {Méndez-Sánchez, D and Schrecengost, A and Rotterová, J and Koštířová, K and Beinart, RA and Čepička, I}, title = {Methanogenic symbionts of anaerobic ciliates are host- and habitat-specific.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae164}, pmid = {39163261}, issn = {1751-7370}, abstract = {The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e., endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, though, our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.}, } @article {pmid39159853, year = {2024}, author = {Luo, T and Hu, E and Gan, L and Yang, D and Wu, J and Gao, S and Tuo, X and Bayin, CG and Hu, Z and Guo, Q}, title = {Candidatus Midichloria mitochondrii can be vertically transmitted in Hyalomma anatolicum.}, journal = {Experimental parasitology}, volume = {}, number = {}, pages = {108828}, doi = {10.1016/j.exppara.2024.108828}, pmid = {39159853}, issn = {1090-2449}, abstract = {In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the FabⅠ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.}, } @article {pmid39135725, year = {2024}, author = {Rohlfing, K and Grewoldt, M and Cordellier, M and Dobler, S}, title = {Evidence for feminized genetic males in a flea beetle using newly identified X-linked markers.}, journal = {Ecology and evolution}, volume = {14}, number = {8}, pages = {e70123}, pmid = {39135725}, issn = {2045-7758}, abstract = {The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.}, } @article {pmid39131338, year = {2024}, author = {Gasser, MT and Liu, A and Flatau, R and Altamia, M and Filone, CM and Distel, D}, title = {Closing the genome of Teredinibacter turnerae T7902 by long-read nanopore sequencing.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.07.30.605897}, pmid = {39131338}, issn = {2692-8205}, abstract = {We present the complete closed circular genome sequence derived from Oxford Nanopore sequencing of the shipworm endosymbiont Teredinibacter turnerae T7902 (DSM 15152, ATCC 39867), originally isolated from the shipworm Lyrodus pedicellatus (1). This sequence will aid in the comparative genomics of shipworm endosymbionts and the understanding of host-symbiont evolution.}, } @article {pmid39119885, year = {2024}, author = {Augustijnen, H and Lucek, K}, title = {Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {e17488}, doi = {10.1111/mec.17488}, pmid = {39119885}, issn = {1365-294X}, support = {//Burckhardt-Bürgin foundation/ ; 310030_184934//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; PCEFP3_202869//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; //Freiwillige Akademische Gesellschaft Basel/ ; }, abstract = {Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.}, } @article {pmid39117563, year = {2024}, author = {Park, E and Leander, BS}, title = {Molecular phylogeny of the Lecudinoidea (Apicomplexa): A major group of marine gregarines with diverse shapes, movements and hosts.}, journal = {The Journal of eukaryotic microbiology}, volume = {}, number = {}, pages = {e13053}, doi = {10.1111/jeu.13053}, pmid = {39117563}, issn = {1550-7408}, support = {NSERC 2019-03986//Natural Sciences and Engineering Research Council of Canada/ ; //Hakai Institute/ ; }, abstract = {Gregarine apicomplexans are ubiquitous endosymbionts of invertebrate hosts. Despite their ecological and evolutionary importance, inferences about the phylogenetic relationships of major gregarine groups, such as the Lecudinidae and Urosporidae, have been hindered by vague taxonomic definitions and limited molecular and morphological data. In this study, we investigated five gregarine species collected from four families of polychaete hosts (Nereididae, Oenonidae, Hesionidae, and Phyllodocidae) using light microscopy (LM) and scanning electron microscopy (SEM). We also generated small subunit ribosomal DNA sequences from these species and conducted molecular phylogenetic analyses to elucidate the evolutionary relationships within the Lecudinoidea. Our results include new molecular and morphological data for two previously described species (Lecudina cf. platynereidis and Lecudina cf. arabellae), the discovery of a new species of Lecudina (L. oxydromus n. sp.), and the discovery of two novel species, namely Amplectina cordis n. gen. et. n. sp. and Sphinctocystis inclina n. sp. These two species exhibited unique shapes and movements, resembling those of urosporids but with a phylogenetic affinity to lecudinids, blurring the border between lecudinids and urosporids. Our study emphasizes the need for further investigations into this highly diverse group, which has achieved great success across multiple animal phyla with diverse shapes and movements.}, } @article {pmid39116951, year = {2024}, author = {Khademi, P and Tukmechi, A and Sgroi, G and Ownagh, A and Enferadi, A and Khalili, M and Mardani, K}, title = {Molecular and genotyping techniques in diagnosis of Coxiella burnetii: An overview.}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases}, volume = {}, number = {}, pages = {105655}, doi = {10.1016/j.meegid.2024.105655}, pmid = {39116951}, issn = {1567-7257}, abstract = {Although we live in the genomic era, the accessibility of the complete genome sequence of Coxiella burnetii, the etiological agent of Q fever, has increased knowledge in the field of genomic diversity of this agent However, it is still somewhat of a "question" microorganism. The epidemiology of Q fever is intricate due to its global distribution, repository and vector variety, as well as absence of surveys defining the dynamic interaction among these factors. Moreover, C. burnetii is a microbial agent that can be utilized as a bioterror weapon. Therefore, typing techniques used to recognize the strains can also be used to trace infections back to their source which is of great significance. In this paper, the latest and current typing techniques of C. burnetii spp. are reviewed illustrating their advantages and constraints. Recently developed multi locus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) typing methods are promising in improving diagnostic capacity and enhancing the application of genotyping techniques for molecular epidemiologic surveys of the challenging pathogen. However, most of these studies did not differentiate between C. burnetii and Coxiella-like endosymbionts making it difficult to estimate the potential role that ticks play in the epidemiology of Q fever. Therefore, it is necessary to analyze the vector competence of different tick species to transmit C. burnetii. Knowledge of the vector and reservoir competence of ticks is important for taking adequate preventive measures to limit infection risks. The significant prevalence observed for the IS1111 gene underscores its substantial presence, while other genes display comparatively lower prevalence rates. Methodological variations, particularly between commercial and non-commercial kit-based methods, result in different prevalence outcomes. Variations in sample processing procedures also lead to significant differences in prevalence rates between mechanical and non-mechanical techniques.}, } @article {pmid39114883, year = {2024}, author = {Liu, S and Liu, XB and Zhang, TT and Bai, SX and He, KL and Zhang, YJ and Francis, F and Wang, ZY}, title = {Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer.}, journal = {Insect science}, volume = {}, number = {}, pages = {}, doi = {10.1111/1744-7917.13428}, pmid = {39114883}, issn = {1744-7917}, abstract = {Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.}, } @article {pmid39106844, year = {2024}, author = {Sarasombath, PT and Sitthinamsuwan, P and Wijit, S and Panyasu, K and Roongruanchai, K and Silpa-Archa, S and Suwansirikul, M and Chortrakarnkij, P and Ruenchit, P and Preativatanyou, K and Wongkamchai, S}, title = {Integrated Histological and Molecular Analysis of Filarial Species and Associated Wolbachia Endosymbionts in Human Filariasis Cases Presenting Atypically in Thailand.}, journal = {The American journal of tropical medicine and hygiene}, volume = {}, number = {}, pages = {}, doi = {10.4269/ajtmh.24-0147}, pmid = {39106844}, issn = {1476-1645}, abstract = {Atypical presentations of filariasis have posed diagnostic challenges due to the complexity of identifying the causative species and the difficulties in both diagnosis and treatment. In this study, we present the integrative histological and molecular analysis of seven atypical filariasis cases observed in regions of nonendemicity of Thailand. All filariasis cases were initially diagnosed based on histological findings. To confirm the causative species, molecular characterization based on both filarial mitochondrial (mt 12S rRNA and COI genes) and nuclear ITS1 markers was performed, together with the identification of associated Wolbachia bacterial endosymbionts. Among the cases studied, Brugia pahangi (N = 3), Brugia malayi (N = 1), Dirofilaria sp. "hongkongensis" (N = 2), and a suspected novel filarial species genetically related to Pelecitus copsychi (N = 1) were identified. By targeting the 16S rRNA gene, Wolbachia was also molecularly amplified in two cases of infection with Dirofilaria sp. "hongkongensis." Phylogenetic analysis further revealed that the detected Wolbachia could be classified into supergroups C and F, indicating the high genetic diversity of this endosymbiont in Dirofilaria sp. "hongkongensis." Furthermore, this study demonstrates the consistency between histological findings and species identification based on mitochondrial loci rather than on the nuclear ITS1. This suggests the utility of mitochondrial markers, particularly COI, as a highly sensitive and reliable diagnostic tool for the detection and differentiation of filarial species in clinical specimens. Precise identification of the causative species will facilitate accurate diagnosis and treatment and is also essential for the development of epidemiological and preventive strategies for filariasis.}, } @article {pmid39107546, year = {2024}, author = {Durand, S and Pigeault, R and Giraud, I and Loisier, A and Bech, N and Grandjean, F and Rigaud, T and Peccoud, J and Cordaux, R}, title = {Temporal stability of sex ratio distorter prevalence in natural populations of the isopod Armadillidium vulgare.}, journal = {Heredity}, volume = {}, number = {}, pages = {}, pmid = {39107546}, issn = {1365-2540}, support = {ANR-15-CE32-0006//Agence Nationale de la Recherche (French National Research Agency)/ ; ANR-15-CE32-0006//Agence Nationale de la Recherche (French National Research Agency)/ ; ANR-20-CE02-0004//Agence Nationale de la Recherche (French National Research Agency)/ ; }, abstract = {In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact of SRD on the evolution of host sex determination mechanisms and sex chromosomes.}, } @article {pmid39105583, year = {2024}, author = {Faulstich, NG and Deloach, AR and Ksor, YB and Mesa, GH and Sharma, DS and Sisk, SL and Mitchell, GC}, title = {Evidence for phosphate-dependent control of symbiont cell division in the model anemone Exaiptasia diaphana.}, journal = {mBio}, volume = {}, number = {}, pages = {e0105924}, doi = {10.1128/mbio.01059-24}, pmid = {39105583}, issn = {2150-7511}, abstract = {UNLABELLED: Reef-building corals depend on symbiosis with photosynthetic algae that reside within their cells. As important as this relationship is for maintaining healthy reefs, it is strikingly delicate. When ocean temperatures briefly exceed the average summer maximum, corals can bleach, losing their endosymbionts. Although the mechanisms governing bleaching are unknown, studies implicate uncoupling of coral and algal cell divisions at high temperatures. Still, little is known regarding the coordination of host and algal cell divisions. Control of nutrient exchange is one likely mechanism. Both nitrogen and phosphate are necessary for dividing cells, and although nitrogen enrichment is known to increase symbiont density in the host, the consequences of phosphate enrichment are poorly understood. Here, we examined the effects of phosphate depletion on symbiont growth in culture and compared the physiology of phosphate-starved symbionts in culture to symbionts that were freshly isolated from a host. We found that available phosphate is as low in freshly isolated symbionts as it is in phosphate-starved cultures. Furthermore, RNAseq revealed that phosphate-limited and freshly isolated symbionts have similar patterns of gene expression for phosphate-dependent genes, most notably upregulation of phosphatases, which is consistent with phosphate recycling. Similarly, lipid profiling revealed a substantial decrease in phospholipid abundance in both phosphate-starved cultures and freshly isolated symbionts. These findings are important because they suggest that limited access to phosphate controls algal cell divisions within a host.

IMPORTANCE: The corals responsible for building tropical reefs are disappearing at an alarming rate as elevated sea temperatures cause them to bleach and lose the algal symbionts they rely on. Without these symbionts, corals are unable to harvest energy from sunlight and, therefore, struggle to thrive or even survive in the nutrient-poor waters of the tropics. To devise solutions to address the threat to coral reefs, it is necessary to understand the cellular events underpinning the bleaching process. One model for bleaching proposes that heat stress impairs algal photosynthesis and transfer of sugar to the host. Consequently, the host's demands for nitrogen decrease, increasing nitrogen availability to the symbionts, which leads to an increase in algal proliferation that overwhelms the host. Our work suggests that phosphate may play a similar role to nitrogen in this feedback loop.}, } @article {pmid39102892, year = {2024}, author = {Wang, X and Mathias, DK}, title = {Surveillance of ticks (Acari: Ixodidae) and tick-borne pathogens in Eastern Central Alabama.}, journal = {Journal of medical entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jme/tjae096}, pmid = {39102892}, issn = {1938-2928}, support = {//National Institute of Food and Agriculture/ ; ALA015-1-15007//Alabama Agricultural Experiment Station/ ; }, abstract = {Similar to other states in the southeastern United States, human cases of tick-borne diseases in Alabama have risen steadily over the last 2 decades. Nevertheless, limited data have been published on ticks or tick-borne pathogen (TBP) distributions since the 1990s. To better understand the risk of tick and TBP exposure in eastern central Alabama, ticks were sampled repeatedly across 8 sites associated with recreational use during May and June of 2015 to characterize tick density and diversity. Although habitats were similar across sites, tick density varied among locations. Seven species were collected, but 97.7% of 1,310 samples were the lone star tick, Amblyomma americanum (L.), the primary vector of ehrlichial agents and the tick species most commonly linked to alpha-gal syndrome and southern tick-associated rash illness. To investigate pathogen prevalence among sites, we tested A. americanum by a multiplex qPCR assay for 5 bacterial species, including 3 Ehrlichia spp. and 2 Rickettsia spp. None of the specimens tested positive for Panola Mountain Ehrlichia or Rickettsia parkeri. However, causative agents of human ehrlichiosis, Ehrlichia chaffeensis and Ehrlichia ewingii, occurred at half of the locations with, respectively, 0.27% and 0.45% of A. americanum infected on average. In contrast, Rickettsia amblyommatis, a tick endosymbiont suspected to be nonpathogenic, was found in 54.5% of the 1119 A. americanum tested. Despite low infection rates of Ehrlichia spp. in A. americanum, high encounter rates with this species in recreational deciduous woodlands suggest a moderate risk of tick bite and a low-to-moderate risk of TBP exposure in late spring.}, } @article {pmid39097980, year = {2024}, author = {Bilgo, E and Mancini, MV and Gnambani, JE and Dokpomiwa, HAT and Murdochy, S and Lovett, B and St Leger, R and Sinkins, SP and Diabate, A}, title = {Wolbachia confers protection against the entomopathogenic fungus Metarhizium pingshaense in African Aedes aegypti.}, journal = {Environmental microbiology reports}, volume = {16}, number = {4}, pages = {e13316}, doi = {10.1111/1758-2229.13316}, pmid = {39097980}, issn = {1758-2229}, support = {108508/Z/15/Z/WT_/Wellcome Trust/United Kingdom ; 202888/Z/16/Z/WT_/Wellcome Trust/United Kingdom ; 226166/Z/22/Z/WT_/Wellcome Trust/United Kingdom ; AV/PP0025/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; }, mesh = {*Wolbachia/physiology/genetics ; Animals ; *Metarhizium/physiology ; *Aedes/microbiology ; Symbiosis ; Pest Control, Biological ; Burkina Faso ; Mosquito Control/methods ; Fertility ; Mosquito Vectors/microbiology ; Female ; Longevity ; }, abstract = {Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of Wolbachia, wAlbB and wAu, with the natural entomopathogenic fungi from Burkina Faso Metarhizium pingshaense, known to be lethal against Anopheles mosquitoes. In addition to showing the potential of Metarhizium against African Aedes aegypti wild-type populations, our study shows that the wAlbB and wAu provide a protective advantage against entomopathogenic fungal infections. Compared to controls, fungal-infected wAu and wAlbB-carrying mosquitoes showed higher longevity, without any significant impact on fecundity and fertility phenotypes. This study provides new insights into the complex multipartite interaction among the mosquito host, the Wolbachia endosymbiont and the entomopathogenic fungus that might be employed to control mosquito populations. Future research should investigate the fitness costs of Wolbachia, as well as its spread and prevalence within mosquito populations. Additionally, evaluating the impact of Wolbachia on interventions involving Metarhizium pingshaense through laboratory and semi-field population studies will provide valuable insights into the effectiveness of this combined approach.}, } @article {pmid39097253, year = {2024}, author = {Sadaula, GP and Manandhar, P and Shrestha, BK and Sadaula, A and Hayashi, N and Abdelbaset, AE and Silwal, P and Tsubota, T and Kwak, ML and Nonaka, N and Nakao, R}, title = {Detection and characterization of vector-borne parasites and Wolbachia endosymbionts in greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal.}, journal = {Acta tropica}, volume = {}, number = {}, pages = {107344}, doi = {10.1016/j.actatropica.2024.107344}, pmid = {39097253}, issn = {1873-6254}, abstract = {Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.}, } @article {pmid39091298, year = {2024}, author = {Behrmann, LV and Meier, K and Vollmer, J and Chiedu, CC and Schiefer, A and Hoerauf, A and Pfarr, K}, title = {In vitro extracellular replication of Wolbachia endobacteria.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1405287}, doi = {10.3389/fmicb.2024.1405287}, pmid = {39091298}, issn = {1664-302X}, abstract = {Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.}, } @article {pmid39090271, year = {2024}, author = {Jacobs, J and Nakamoto, A and Mastoras, M and Loucks, H and Mirchandani, C and Karim, L and Penunuri, G and Wanket, C and Russell, SL}, title = {Complete de novo assembly of Wolbachia endosymbiont of Drosophila willistoni using long-read genome sequencing.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {17770}, pmid = {39090271}, issn = {2045-2322}, support = {T32HG012344/NH/NIH HHS/United States ; T32HG012344/NH/NIH HHS/United States ; T32HG012344/NH/NIH HHS/United States ; R00GM135583/NH/NIH HHS/United States ; T32HG012344/NH/NIH HHS/United States ; T32HG012344/NH/NIH HHS/United States ; T32HG012344/NH/NIH HHS/United States ; R00GM135583/NH/NIH HHS/United States ; }, mesh = {*Wolbachia/genetics ; Animals ; *Drosophila/microbiology/genetics ; *Symbiosis/genetics ; *Genome, Bacterial ; Phylogeny ; Whole Genome Sequencing/methods ; Genomics/methods ; }, abstract = {Wolbachia is an obligate intracellular α-proteobacterium, which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in their diverse hosts, including the modulation of host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the somatic cells. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality Nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel and wAu strains from Drosophila melanogaster and Drosophila simulans, respectively.}, } @article {pmid39084221, year = {2024}, author = {Moreira, D and Blaz, J and Kim, E and Eme, L}, title = {A gene-rich mitochondrion with a unique ancestral protein transport system.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2024.07.017}, pmid = {39084221}, issn = {1879-0445}, abstract = {Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.[1][,][2][,][3] Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).[4] This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.[5][,][6][,][7][,][8][,][9][,][10][,][11][,][12][,][13][,][14] At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.[8] Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.[15][,][16] Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.}, } @article {pmid39081362, year = {2024}, author = {Kaneko, M and Omori, T and Igai, K and Mabuchi, T and Sakai-Tazawa, M and Nishihara, A and Kihara, K and Yoshimura, T and Ohkuma, M and Hongoh, Y}, title = {Facultative endosymbiosis between cellulolytic protists and methanogenic archaea in the gut of the Formosan termite Coptotermes formosanus.}, journal = {ISME communications}, volume = {4}, number = {1}, pages = {ycae097}, doi = {10.1093/ismeco/ycae097}, pmid = {39081362}, issn = {2730-6151}, abstract = {Anaerobic protists frequently harbour methanogenic archaea, which apparently contribute to the hosts' fermentative metabolism by consuming excess H2. However, the ecological properties of endosymbiotic methanogens remain elusive in many cases. Here we investigated the ecology and genome of the endosymbiotic methanogen of the Cononympha protists in the hindgut of the termite Coptotermes formosanus. Microscopic and 16S rRNA amplicon sequencing analyses revealed that a single species, designated here "Candidatus Methanobrevibacter cononymphae", is associated with both Cononympha leidyi and Cononympha koidzumii and that its infection rate in Cononympha cells varied from 0.0% to 99.8% among termite colonies. Fine-scale network analysis indicated that multiple 16S rRNA sequence variants coexisted within a single host cell and that identical variants were present in both Cononympha species and also on the gut wall. Thus, "Ca. Methanobrevibacter cononymphae" is a facultative endosymbiont, transmitted vertically with frequent exchanges with the gut environment. Indeed, transmission electron microscopy showed escape or uptake of methanogens from/by a Cononympha cell. The genome of "Ca. Methanobrevibacter cononymphae" showed features consistent with its facultative lifestyle: i.e., the genome size (2.7 Mbp) comparable to those of free-living relatives; the pseudogenization of the formate dehydrogenase gene fdhA, unnecessary within the non-formate-producing host cell; the dependence on abundant acetate in the host cell as an essential carbon source; and the presence of a catalase gene, required for colonization on the microoxic gut wall. Our study revealed a versatile endosymbiosis between the methanogen and protists, which may be a strategy responding to changing conditions in the termite gut.}, } @article {pmid39081075, year = {2024}, author = {Bontemps, Z and Paranjape, K and Guy, L}, title = {Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts.}, journal = {FEMS microbiology reviews}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsre/fuae021}, pmid = {39081075}, issn = {1574-6976}, abstract = {Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by - among others - Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally very lowly abundant, and are mainly identified in aquatic biomes. Most DIGs harbor a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIG as a group from an ecological, molecular and evolutionary perspective.}, } @article {pmid39079670, year = {2024}, author = {Owashi, Y and Arai, H and Adachi-Hagimori, T and Kageyama, D}, title = {Rickettsia induces strong cytoplasmic incompatibility in a predatory insect.}, journal = {Proceedings. Biological sciences}, volume = {291}, number = {2027}, pages = {20240680}, doi = {10.1098/rspb.2024.0680}, pmid = {39079670}, issn = {1471-2954}, mesh = {Animals ; *Rickettsia/physiology ; *Symbiosis ; Female ; *Hemiptera/microbiology/physiology ; *Phylogeny ; Male ; Cytoplasm ; Wolbachia/physiology ; }, abstract = {Rickettsia, a group of intracellular bacteria found in eukaryotes, exhibits diverse lifestyles, with some acting as vertebrate pathogens transmitted by arthropod vectors and others serving as maternally transmitted arthropod endosymbionts, some of which manipulate host reproduction for their own benefit. Two phenotypes, namely male-killing and parthenogenesis induction are known as Rickettsia-induced host reproductive manipulations, but it remains unknown whether Rickettsia can induce other types of host manipulation. In this study, we discovered that Rickettsia induced strong cytoplasmic incompatibility (CI), in which uninfected females produce no offspring when mated with infected males, in the predatory insect Nesidiocoris tenuis (Hemiptera: Miridae). Molecular phylogenetic analysis revealed that the Rickettsia strain was related to Rickettsia bellii, a common insect endosymbiont. Notably, this strain carried plasmid-encoded homologues of the CI-inducing factors (namely cifA-like and cifB-like genes), typically found in Wolbachia, which are well-known CI-inducing endosymbionts. Protein domain prediction revealed that the cifB-like gene encodes PD-(D/E)XK nuclease and deubiquitinase domains, which are responsible for Wolbachia-induced CI, as well as ovarian tumour-like (OTU-like) cysteine protease and ankyrin repeat domains. These findings suggest that Rickettsia and Wolbachia endosymbionts share underlying mechanisms of CI and that CI-inducing ability was acquired by microbes through horizontal plasmid transfer.}, } @article {pmid39075965, year = {2024}, author = {Blasco-Lavilla, N and López-López, A and De la Rúa, P and Barribeau, SM}, title = {Infection by Crithidia bombi increases relative abundance of Lactobacillus spp. in the gut of Bombus terrestris.}, journal = {Molecular ecology}, volume = {}, number = {}, pages = {e17478}, doi = {10.1111/mec.17478}, pmid = {39075965}, issn = {1365-294X}, support = {AV/PP0012/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; FPU14/05189//Ministerio de Ciencia e Innovación/ ; 212450/Z/18/Z/WT_/Wellcome Trust/United Kingdom ; 19908/GERM/2015//Fundación Séneca/ ; 21372/PDGI/19//Fundación Séneca (CARM) & European Social Fund/ ; }, abstract = {Gut microbial communities confer protection against natural pathogens in important pollinators from the genera Bombus and Apis. In commercial species B. terrestris and B. impatiens, the microbiota increases their resistance to the common and virulent trypanosomatid parasite Crithidia bombi. However, the mechanisms by which gut microorganisms protect the host are still unknown. Here, we test two hypotheses: microbiota protect the host (1) through stimulation of its immune response or protection of the gut epithelium and (2) by competing for resources with the parasite inside the gut. To test them, we reduced the microbiota of workers and then rescued the microbial community by feeding them with microbiota supplements. We then exposed them to an infectious dose of C. bombi and characterised gene expression and gut microbiota composition. We examined the expression of three antimicrobial peptide genes and Mucin-5AC, a gene with a putative role in gut epithelium protection, using qPCR. Although a protective effect against C. bombi was observed in bumblebees with supplemented microbiota, we did not observe an effect of the microbiota on gene expression that could explain alone the protective effect observed. On the other hand, we found an increased relative abundance of Lactobacillus bacteria within the gut of infected workers and a negative correlation of this genus with Gilliamella and Snodgrassella genera. Therefore, our results point to a displacement of bumblebee endosymbionts by C. bombi that might be caused by competition for space and nutrients between the parasite and the microbiota within the gut.}, } @article {pmid39074716, year = {2024}, author = {Start, CC and Anderson, CMH and M R Gatehouse, A and Edwards, MG}, title = {Dynamic response of essential amino acid biosynthesis in Buchnera aphidicola to supplement sub-optimal host nutrition.}, journal = {Journal of insect physiology}, volume = {}, number = {}, pages = {104683}, doi = {10.1016/j.jinsphys.2024.104683}, pmid = {39074716}, issn = {1879-1611}, abstract = {The endosymbiotic bacterium Buchnera aphidicola allows its host Acyrthosiphon pisum to utilise a nutritionally limited phloem sap diet without significant mortality by providing essential amino acids (EAAs), which it biosynthesises de novo via complex pathways consisting of multiple enzymes. Previous studies have reported how non-essential amino acids (NEAAs) provided by the host are utilised by B. aphidicola, along with how genes within the biosynthetic pathways respond to amino acid deficiency. Although the effect on B. aphidicola gene expression upon the removal of a single EAA and multiple NEAAs from the A. pisum diet has been reported, little is known about the effects of the complete simultaneous removal of multiple EAAs, especially branched-chain amino acids (BCAAs). To investigate this, A. pisum was provided with amino acid deficient diets ilv- (lacking isoleucine, leucine, valine) or thra- (lacking threonine, methionine, lysine). Due to their involvement in the production of several amino acids, the expression of genes ilvC, ilvD (both involved in isoleucine, leucine and valine biosynthesis) and thrA (involved in threonine, methionine and lysine biosynthesis) was analysed and the expression of trpC (involved in tryptophan biosynthesis) was used as a control. Survival was reduced significantly when A. pisum was reared on ilv- or thra- (P < 0.001 and P = 0.000 respectively) compared to optimal artificial diet and was significantly lower on ilv- (P< 0.001) than thra-. This is likely attributed to the EAAs absent from ilv- being required at higher concentrations for aphid growth, than those EAAs absent from thra-. Expression of ilvC and ilvD were upregulated 2.49- and 2.08-fold (respectively) and thrA expression increased 2.35- and 2.12-fold when A. pisum was reared on ilv- and thra- (respectively). The surprisingly large upregulation of thrA when reared on ilv- is likely due to threonine being an intermediate in isoleucine biosynthesis. Expression of trpC was not affected by rearing on either of the two amino acid deficient diets. To our knowledge this study has shown, for the first time, how genes within the biosynthetic pathways of an endosymbiont respond to the simultaneous complete omission of multiple EAAs as well as all three BCAAs (leucine, isoleucine, valine), from the host diet.}, } @article {pmid39072987, year = {2024}, author = {Yan, G and Wei, T and Lan, Y and Xu, T and Qian, P}, title = {Different parts of the mussel Gigantidas haimaensis holobiont responded differently to deep-sea sampling stress.}, journal = {Integrative zoology}, volume = {}, number = {}, pages = {}, doi = {10.1111/1749-4877.12881}, pmid = {39072987}, issn = {1749-4877}, support = {2019B030302004//Major Project of Basic and Applied Basic Research of Guangdong Province/ ; 2021HJ01//PI project of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)/ ; SMSEGL24SC01//Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)/ ; 16101822//HKSAR government/ ; C2013-22G//HKSAR government/ ; }, abstract = {Acute environmental changes cause stress during conventional deep-sea biological sampling without in situ fixation and affect gene expressions of samples collected. However, the degree of influence and underlying mechanisms are hardly investigated. Here, we conducted comparative transcriptomic analyses between in situ and onboard fixed gills and between in situ and onboard fixed mantles of deep-sea mussel Gigantidas haimaensis to assess the effects of incidental sampling stress. Results showed that transcription, translation, and energy metabolism were upregulated in onboard fixed gills and mantles, thereby mobilizing rapid gene expression to tackle the stress. Autophagy and phagocytosis that related to symbiotic interactions between the host and endosymbiont were downregulated in the onboard fixed gills. These findings demonstrated that symbiotic gill and nonsymbiotic mantle responded differently to sampling stress, and symbiosis in the gill was perturbed. Further comparative metatranscriptomic analysis between in situ and onboard fixed gills revealed that stress response genes, peptidoglycan biosynthesis, and methane fixation were upregulated in the onboard fixed endosymbiotic Gammaproteobacteria inside the gills, implying that energy metabolism of the endosymbiont was increased to cope with sampling stress. Furthermore, comparative analysis between the mussel G. haimaensis and the limpet Bathyacmaea lactea transcriptomes resultedidentified six transcription factor orthologs upregulated in both onboard fixed mussel mantles and limpets, including sharply increased early growth response protein 1 and Kruppel-like factor 5. They potentially play key roles in initiating the response of sampled deep-sea macrobenthos to sampling stress. Our results clearly show that in situ fixed biological samples are vital for studying deep-sea environmental adaptation.}, } @article {pmid39064928, year = {2024}, author = {Santana-Filho, AP and Pereira, AJ and Laibida, LA and Souza-Melo, N and DaRocha, WD and Sassaki, GL}, title = {Lipidomic Analysis Reveals Branched-Chain and Cyclic Fatty Acids from Angomonas deanei Grown under Different Nutritional and Physiological Conditions.}, journal = {Molecules (Basel, Switzerland)}, volume = {29}, number = {14}, pages = {}, doi = {10.3390/molecules29143352}, pmid = {39064928}, issn = {1420-3049}, support = {311177/2021-2//National Council for Scientific and Technological Development/ ; }, abstract = {Angomonas deanei belongs to Trypanosomatidae family, a family of parasites that only infect insects. It hosts a bacterial endosymbiont in a mutualistic relationship, constituting an excellent model for studying organelle origin and cellular evolution. A lipidomic approach, which allows for a comprehensive analysis of all lipids in a biological system (lipidome), is a useful tool for identifying and measuring different expression patterns of lipid classes. The present study applied GC-MS and NMR techniques, coupled with principal component analysis (PCA), in order to perform a comparative lipidomic study of wild and aposymbiotic A. deanei grown in the presence or absence of FBS. Unusual contents of branched-chain iso C17:0 and C19:0-cis-9,10 and-11,12 fatty acids were identified in A. deanei cultures, and it was interesting to note that their content slightly decreased at the log phase culture, indicating that in the latter growth stages the cell must promote the remodeling of lipid synthesis in order to maintain the fluidity of the membrane. The combination of analytical techniques used in this work allowed for the detection and characterization of lipids and relevant contributors in a variety of A. deanei growth conditions.}, } @article {pmid39058005, year = {2024}, author = {Ibañez-Escribano, A and Gomez-Muñoz, MT and Mateo, M and Fonseca-Berzal, C and Gomez-Lucia, E and Perez, RG and Alunda, JM and Carrion, J}, title = {Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae).}, journal = {Veterinary sciences}, volume = {11}, number = {7}, pages = {}, doi = {10.3390/vetsci11070321}, pmid = {39058005}, issn = {2306-7381}, abstract = {Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.}, } @article {pmid39057829, year = {2024}, author = {Collado-Cuadrado, M and Alarcón-Torrecillas, C and Rodríguez-Escolar, I and Balmori-de la Puente, A and Infante González-Mohino, E and Pericacho, M and Morchón, R}, title = {Wolbachia Promotes an Anti-Angiogenic Response Using an In Vitro Model of Vascular Endothelial Cells in Relation to Heartworm Disease.}, journal = {Pathogens (Basel, Switzerland)}, volume = {13}, number = {7}, pages = {}, doi = {10.3390/pathogens13070603}, pmid = {39057829}, issn = {2076-0817}, support = {//General Foundation of University of Salamanca/ ; //Margarita-Salas as postdoctoral scholarship/ ; //University of Salamanca-Banco Santander/ ; }, abstract = {Heartworm disease caused by Dirofilaria immitis is a vector-borne zoonotic disease responsible for the infection of mainly domestic dogs and cats, or these are those for which the most data are known. Humans are an accidental host where a benign, asymptomatic pulmonary nodule may originate. Dirofilaria immitis also harbours the endosymbiont bacteria of the genus Wolbachia, which play a role in moulting, embryogenesis, inflammatory pathology, and immune response. When Wolbachia sp. is released into the bloodstream, endothelial and pulmonary damage is exacerbated, further encouraging thrombus formation and pulmonary hypertension, facilitating congestive heart failure and death of the animal. Previous studies have shown that parasite excretory/secretory products are able to activate the pro-angiogenic pathway (formation of new vessels) to facilitate parasite survival. The aim of this study was to analyse the role of Wolbachia sp. and its relationship with the cellular processes and the angiogenic pathway in a model of human endothelial cells in vitro. The use of recombinant Wolbachia Surface Protein (rWSP) showed that its stimulation exerted an anti-angiogenic effect by detecting an increase in the production of VEGFR-1/sFlt1 and sEndoglin and did not affect the production of VEGFR-2 and mEndoglin (pro-angiogenic molecules). Furthermore, it did not stimulate cell proliferation or migration, although it did negatively stimulate the formation of pseudocapillaries, slowing down this process. These cellular processes are directly related to the angiogenic pathway so, with these results, we can conclude that Wolbachia sp. is related to the stimulation of the anti-angiogenic pathway, not facilitating the survival of D. immitis in vascular endothelium.}, } @article {pmid39054929, year = {2024}, author = {Singh, R and Suresh, S and Fewell, JH and Harrison, JF and Linksvayer, TA}, title = {Wolbachia-infected pharaoh ant colonies have higher egg production, metabolic rate, and worker survival.}, journal = {The Journal of experimental biology}, volume = {}, number = {}, pages = {}, doi = {10.1242/jeb.247168}, pmid = {39054929}, issn = {1477-9145}, support = {IOS-1452520//National Science Foundation/ ; }, abstract = {Wolbachia is a widespread maternally-transmitted endosymbiotic bacteria with diverse phenotypic effects on its insect hosts, ranging from parasitic to mutualistic. Wolbachia commonly infects social insects, where it faces unique challenges associated with its hosts' caste-based reproductive division of labor and colony living. Here we dissect the benefits and costs of Wolbachia infection on life-history traits of the invasive pharaoh ant, Monomorium pharaonis, which are relatively short-lived and show natural variation in Wolbachia infection status between colonies. We quantified effects of Wolbachia infection on the lifespan of queen and worker castes, the egg-laying rate of queens across queen lifespan, and the metabolic rates of whole colonies and colony members. Infected queens laid more eggs than uninfected queens but had similar metabolic rates and lifespans. Interestingly, infected workers outlived uninfected workers. At the colony level, infected colonies were more productive due to increased queen egg-laying rates and worker longevity, and infected colonies had higher metabolic rates during peak colony productivity. While some effects of infection, such as elevated colony-level metabolic rates may be detrimental in more stressful natural conditions, we did not find any costs of infection under relatively benign laboratory conditions. Overall, our study emphasizes that Wolbachia infection can have beneficial effects on ant colony growth and worker survival in at least some environments.}, } @article {pmid39054868, year = {2024}, author = {Sorwar, E and Oliveira, JIN and Malar C, M and Krüger, M and Corradi, N}, title = {Assembly and comparative analyses of the Geosiphon pyriformis metagenome.}, journal = {Environmental microbiology}, volume = {26}, number = {7}, pages = {e16681}, doi = {10.1111/1462-2920.16681}, pmid = {39054868}, issn = {1462-2920}, support = {RGPIN2020-05643//Natural Sciences and Engineering Research Council/ ; RGPAS-2020-00033//Discovery Accelerator Supplements Program/ ; IT16902//Mitacs Accelerate Program/ ; }, mesh = {*Symbiosis ; *Metagenome ; Phylogeny ; Cyanobacteria/genetics/classification/metabolism ; Nostoc/genetics/metabolism ; Metagenomics ; Genome, Fungal ; Genome, Bacterial ; }, abstract = {Geosiphon pyriformis, a representative of the fungal sub-phylum Glomeromycotina, is unique in its endosymbiosis with cyanobacteria within a fungal cell. This symbiotic relationship occurs in bladders containing nuclei of G. pyriformis, Mollicutes-like bacterial endosymbionts (MRE), and photosynthetically active and dividing cells of Nostoc punctiforme. Recent genome analyses have shed light on the biology of G. pyriformis, but the genome content and biology of its endosymbionts remain unexplored. To fill this gap, we gathered and examined metagenomic data from the bladders of G. pyriformis, where N. punctiforme and MRE are located. This ensures that our analyses are focused on the organs directly involved in the symbiosis. By comparing this data with the genetic information of related cyanobacteria and MREs from other species of Arbuscular Mycorrhizal Fungi, we aimed to reveal the genetic content of these organisms and understand how they interact at a genetic level to establish a symbiotic relationship. Our analyses uncovered significant gene expansions in the Nostoc endosymbiont, particularly in mobile elements and genes potentially involved in xenobiotic degradation. We also confirmed that the MRE of Glomeromycotina are monophyletic and possess a highly streamlined genome. These genomes show dramatic differences in both structure and content, including the presence of enzymes involved in environmental sensing and stress response.}, } @article {pmid39052691, year = {2024}, author = {Mirchandani, C and Wang, P and Jacobs, J and Genetti, M and Pepper-Tunick, E and Sullivan, WT and Corbett-Detig, R and Russell, SL}, title = {Mixed Wolbachia infections resolve rapidly during in vitro evolution.}, journal = {PLoS pathogens}, volume = {20}, number = {7}, pages = {e1012149}, doi = {10.1371/journal.ppat.1012149}, pmid = {39052691}, issn = {1553-7374}, abstract = {The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful wMel strain from Drosophila melanogaster and the promiscuous wRi strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wMel's native D. melanogaster cell background, as wMel also outgrew wRi in D. simulans cells. Overall, wRi is less adept at in vitro growth and survival than wMel and its in vivo state, revealing differences between the two strains in cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species, and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.}, } @article {pmid39047091, year = {2024}, author = {Wang, H and Xiao, H and Feng, B and Lan, Y and Fung, CW and Zhang, H and Yan, G and Lian, C and Zhong, Z and Li, J and Wang, M and Wu, AR and Li, C and Qian, PY}, title = {Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm.}, journal = {Science advances}, volume = {10}, number = {30}, pages = {eadn3053}, doi = {10.1126/sciadv.adn3053}, pmid = {39047091}, issn = {2375-2548}, mesh = {Animals ; *Symbiosis ; *Single-Cell Analysis/methods ; *Polychaeta/metabolism/microbiology/genetics ; *RNA-Seq/methods ; Gammaproteobacteria/metabolism/genetics ; Single-Cell Gene Expression Analysis ; }, abstract = {Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.}, } @article {pmid39042246, year = {2024}, author = {Favoreto, AL and Domingues, MM and de Carvalho, VR and Ribeiro, MF and Zanuncio, JC and Wilcken, CF}, title = {Detection of Arsenophonus in Glycaspis brimblecombei (Hemiptera: Aphalaridae) populations in Brazil.}, journal = {Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]}, volume = {}, number = {}, pages = {}, pmid = {39042246}, issn = {1678-4405}, support = {Conselho Nacional de Desenvolvimento Científico e Tecnológico//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; CAPES-Finance Code 001//Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/ ; Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)//Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)/ ; Programa Cooperativo sobre Proteção Florestal (PROTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF)//Programa Cooperativo sobre Proteção Florestal (PROTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF)/ ; }, abstract = {Eucalyptus is the most intensively managed tree genus in the world. Different factors, including damage by insect pests, affect its growth and productivity. Among these pests is Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), an exotic insect of Australian origin. The evolutionary success of this insect depends on symbiotic associations with microorganisms. The influence of these microorganisms on insect pests and their natural enemies is important for integrated management tactics. Within this context, this work aimed to detect Arsenophonus in populations of G. brimblecombei in Brazil. Eucalyptus branches infested with G. brimblecombei nymphs were collected in commercial eucalyptus plantations in six Brazilian states. Specimens of this pest were sampled soon after emergence and frozen for molecular analysis. The genomic DNA of G. brimblecombei adults from each population was extracted and used to detect the endosymbiont Arsenophonus by polymerase chain reaction (PCR) employing specific primers that target its 23 S rRNA gene. This endosymbiont was identified in all of the studied G. brimblecombei populations. This is the first report on the association between Arsenophonus and G. brimblecombei in Brazil.}, } @article {pmid39031957, year = {2024}, author = {Thia, JA and Zhan, D and Robinson, K and Umina, PA and Hoffmann, AA and Yang, Q}, title = {'Drifting' Buchnera genomes track the microevolutionary trajectories of their aphid hosts.}, journal = {Insect molecular biology}, volume = {}, number = {}, pages = {}, doi = {10.1111/imb.12946}, pmid = {39031957}, issn = {1365-2583}, support = {//Grains Research Development Corporation (Australia) as part of the 'Australian Grains Pest Innovation Program'/ ; //University of Melbourne/ ; //University of Melbourne's Research Computing Services/ ; //Petascale Campus Initiative/ ; }, abstract = {Evolution of Buchnera-aphid host symbioses is often studied among species at macroevolutionary scales. Investigations within species offer a different perspective about how eco-evolutionary processes shape patterns of genetic variation at microevolutionary scales. Our study leverages new and publicly available whole-genome sequencing data to study Buchnera-aphid host evolution in Myzus persicae, the peach potato aphid, a globally invasive and polyphagous pest. Across 43 different asexual, clonally reproducing isofemale strains, we examined patterns of genomic covariation between Buchnera and their aphid host and considered the distribution of mutations in protein-coding regions of the Buchnera genome. We found Buchnera polymorphisms within aphid strains, suggesting the presence of genetically different Buchnera strains within the same clonal lineage. Genetic distance between pairs of Buchnera samples was positively correlated to genetic distance between their aphid hosts, indicating shared evolutionary histories. However, there was no segregation of genetic variation for both M. persicae and Buchnera with plant host (Brassicaceae and non-tobacco Solanaceae) and no associations between genetic and geographic distance at global or regional spatial scales. Abundance patterns of non-synonymous mutations were similar to synonymous mutations in the Buchnera genome, and both mutation classes had similar site frequency spectra. We hypothesize that a predominance of neutral processes results in the Buchnera of M. persicae to simply 'drift' with the evolutionary trajectory of their aphid hosts. Our study presents a unique microevolutionary characterization of Buchnera-aphid host genomic covariation across multiple aphid clones. This provides a new perspective on the eco-evolutionary processes generating and maintaining polymorphisms in a major pest aphid species and its obligate primary endosymbiont.}, } @article {pmid39029846, year = {2024}, author = {Mathimaran, A and Nagarajan, H and Mathimaran, A and Huang, YC and Chen, CJ and Vetrivel, U and Jeyaraman, J}, title = {Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches.}, journal = {International journal of biological macromolecules}, volume = {}, number = {}, pages = {133977}, doi = {10.1016/j.ijbiomac.2024.133977}, pmid = {39029846}, issn = {1879-0003}, abstract = {The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP[+] induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP[+] does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.}, } @article {pmid39028812, year = {2024}, author = {Dougan, KE and Bellantuono, AJ and Kahlke, T and Abbriano, RM and Chen, Y and Shah, S and Granados-Cifuentes, C and van Oppen, MJH and Bhattacharya, D and Suggett, DJ and Rodriguez-Lanetty, M and Chan, CX}, title = {Whole-genome duplication in an algal symbiont bolsters coral heat tolerance.}, journal = {Science advances}, volume = {10}, number = {29}, pages = {eadn2218}, doi = {10.1126/sciadv.adn2218}, pmid = {39028812}, issn = {2375-2548}, mesh = {*Symbiosis/genetics ; *Anthozoa/genetics/physiology/microbiology ; Animals ; *Gene Duplication ; *Thermotolerance/genetics ; *Genome ; Coral Reefs ; Phylogeny ; }, abstract = {The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.}, } @article {pmid39028184, year = {2024}, author = {Feng, H and Wilson, ACC}, title = {Experimental uncoupling of hosts and endosymbionts.}, journal = {mBio}, volume = {}, number = {}, pages = {e0111624}, doi = {10.1128/mbio.01116-24}, pmid = {39028184}, issn = {2150-7511}, abstract = {Many organisms harbor heritable bacterial symbionts that offer context-specific benefits to their hosts. In some of these symbioses, symbionts live inside host cells as endosymbionts. Studying the biology of endosymbiosis is challenging because it is hard to independently cultivate hosts and endosymbionts. A recent study, using a simple defined growth medium at ambient temperature, established an axenic culture of the pea aphid's heritable bacterial endosymbiont, Candidatus Fukatsuia symbiotica (G. P. Maeda, M. K. Kelly, A. Sundar, and N. A. Moran, mBio 15:e03253-23, 2024, https://doi.org/10.1128/mbio.03253-23). Notably, the monoculture was capable of host recolonization, was stably transmitted, and returned similar host phenotypes to those observed in native infections. This advance in uncoupling the cultivation of an endosymbiont and its host opens avenues for genetic manipulation of the endosymbiont that will facilitate hypothesis-driven work to explore the mechanisms of host-endosymbiont biology and potentially facilitate the development of symbiont-mediated practical-application biotechnologies.}, } @article {pmid39025984, year = {2024}, author = {Sikorskaya, TV and Ermolenko, EV and Ginanova, TT and Boroda, AV and Efimova, KV and Bogdanov, M}, title = {Membrane vectorial lipidomic features of coral host cells' plasma membrane and lipid profiles of their endosymbionts Cladocopium.}, journal = {Communications biology}, volume = {7}, number = {1}, pages = {878}, pmid = {39025984}, issn = {2399-3642}, support = {R01GM121493-6//U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)/ ; }, mesh = {Animals ; *Anthozoa/metabolism/physiology/microbiology ; *Symbiosis ; *Cell Membrane/metabolism ; *Lipidomics ; *Dinoflagellida/metabolism/physiology ; Membrane Lipids/metabolism ; }, abstract = {The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.}, } @article {pmid39014485, year = {2024}, author = {Harmsen, N and Vesga, P and Glauser, G and Klötzli, F and Heiman, CM and Altenried, A and Vacheron, J and Muller, D and Moënne-Loccoz, Y and Steinger, T and Keel, C and Garrido-Sanz, D}, title = {Natural plant disease suppressiveness in soils extends to insect pest control.}, journal = {Microbiome}, volume = {12}, number = {1}, pages = {127}, pmid = {39014485}, issn = {2049-2618}, support = {BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; BiodivERsA3 ERA-Net COFUND//Biodiversa+/ ; 31BD30_186540//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; 31BD30_186540//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; 31BD30_186540//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; 31BD30_186540//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; 31BD30_186540//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung/ ; 51NF40_180575//National Centre of Competence in Research Microbiomes, Switzerland/ ; 51NF40_180575//National Centre of Competence in Research Microbiomes, Switzerland/ ; 51NF40_180575//National Centre of Competence in Research Microbiomes, Switzerland/ ; 51NF40_180575//National Centre of Competence in Research Microbiomes, Switzerland/ ; ANR19-EBI3-0007//Agence Nationale de la Recherche/ ; ANR19-EBI3-0007//Agence Nationale de la Recherche/ ; }, abstract = {BACKGROUND: Since the 1980s, soils in a 22-km[2] area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied.

RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts.

CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.}, } @article {pmid39013857, year = {2024}, author = {Gao, YL and Cournoyer, JE and De, BC and Wallace, CL and Ulanov, AV and La Frano, MR and Mehta, AP}, title = {Introducing carbon assimilation in yeasts using photosynthetic directed endosymbiosis.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {5947}, pmid = {39013857}, issn = {2041-1723}, support = {R01GM139949//U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)/ ; }, mesh = {*Symbiosis/physiology ; *Photosynthesis ; *Carbon/metabolism ; *Saccharomyces cerevisiae/metabolism/genetics ; *Metabolic Engineering/methods ; Carbon Dioxide/metabolism ; Glucose/metabolism ; Cyanobacteria/metabolism/genetics ; }, abstract = {Conversion of heterotrophic organisms into partially or completely autotrophic organisms is primarily accomplished by extensive metabolic engineering and laboratory evolution efforts that channel CO2 into central carbon metabolism. Here, we develop a directed endosymbiosis approach to introduce carbon assimilation in budding yeasts. Particularly, we engineer carbon assimilating and sugar-secreting photosynthetic cyanobacterial endosymbionts within the yeast cells, which results in the generation of yeast/cyanobacteria chimeras that propagate under photosynthetic conditions in the presence of CO2 and in the absence of feedstock carbon sources like glucose or glycerol. We demonstrate that the yeast/cyanobacteria chimera can be engineered to biosynthesize natural products under the photosynthetic conditions. Additionally, we expand our directed endosymbiosis approach to standard laboratory strains of yeasts, which transforms them into photosynthetic yeast/cyanobacteria chimeras. We anticipate that our studies will have significant implications for sustainable biotechnology, synthetic biology, and experimentally studying the evolutionary adaptation of an additional organelle in yeast.}, } @article {pmid39010998, year = {2024}, author = {Dagar, J and Maurya, S and Antil, S and Abraham, JS and Somasundaram, S and Lal, R and Makhija, S and Toteja, R}, title = {Symbionts of Ciliates and Ciliates as Symbionts.}, journal = {Indian journal of microbiology}, volume = {64}, number = {2}, pages = {304-317}, pmid = {39010998}, issn = {0046-8991}, abstract = {Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.}, } @article {pmid39009178, year = {2024}, author = {Power, RI and Doyle, SR and Šlapeta, J}, title = {Whole genome amplification and sequencing of individual Dirofilaria immitis microfilariae.}, journal = {Experimental parasitology}, volume = {}, number = {}, pages = {108806}, doi = {10.1016/j.exppara.2024.108806}, pmid = {39009178}, issn = {1090-2449}, abstract = {Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.}, } @article {pmid39008129, year = {2024}, author = {Pereira, IS and da Cunha, M and Leal, IP and Luís, MP and Gonçalves, P and Gonçalves, C and Mota, LJ}, title = {Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells.}, journal = {Medical microbiology and immunology}, volume = {213}, number = {1}, pages = {15}, pmid = {39008129}, issn = {1432-1831}, mesh = {Humans ; *Chlamydia trachomatis/genetics/metabolism ; *Bacterial Proteins/metabolism/genetics ; *Phylogeny ; *Type III Secretion Systems/metabolism/genetics ; Virulence Factors/metabolism/genetics ; HeLa Cells ; Yersinia/genetics/metabolism ; Protein Transport ; Host-Pathogen Interactions ; Evolution, Molecular ; Chlamydiaceae/genetics/metabolism/classification ; }, abstract = {Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.}, } @article {pmid39004284, year = {2024}, author = {Obanda, V and Akinyi, M and King'ori, E and Nyakundi, R and Ochola, G and Oreng, P and Mugambi, K and Waiguchu, GM and Chege, M and Rosenbaum, W and Ylitalo, EB and Bäck, AT and Pettersson, L and Mukunzi, OS and Agwanda, B and Stenberg-Lewerin, S and Lwande, OW}, title = {Epidemiology and Ecology of the Sylvatic Cycle of African Swine Fever Virus in Kenya.}, journal = {Virus research}, volume = {}, number = {}, pages = {199434}, doi = {10.1016/j.virusres.2024.199434}, pmid = {39004284}, issn = {1872-7492}, abstract = {African Swine Fever (ASF) is caused by a DNA virus (AFSV) maintained and transmitted by the Argasid ticks. The re-emergence of the disease in Africa coupled with its rapid spread globally is a threat to the pig industry, food security and livelihoods. The ecology and epidemiology of the ASFV sylvatic cycle, especially in the face of changing land use and land cover, further compounds the menace and impacts of this disease in Kenya. The study aimed to determine the occurrence and distribution of ASFV seroprevalence in warthog populations, the tick vectors and extent of tick infestation of warthog burrows, and the genotypes of ASFV in soft ticks in Kenya. Warthogs from different parts of Kenya were captured and venous blood was centrifuged to harvest sera. Warthog burrows were examined for their conditions and to extract ticks. Sera were analyzed for antibodies against ASFV using a commercial ELISA kit coated with p32 ASFV recombinant protein. Ticks were pooled, DNA extracted and the p72 gene of the ASFV was amplified by qPCR and conventional PCR. The overall seroprevalence of ASFV in warthogs was 87.5%. A total of 228 warthog burrows were examined and 2154 argasid ticks were extracted from the burrows. Tick pools from Kigio Farm and Lewa Wildlife Conservancies were ASFV-positive by qPCR and conventional PCR. ASFV was further confirmed by the Twist Comprehensive Viral Research Panel (TCVRP), which also identified the argasid ticks as Ornithodoros porcinus. The ticks were infected with virus genotype IX, and their occurrence overlaps with regions of previous ASF outbreaks in domestic pigs. Further, Viruses that could be tick endosymbionts/commensals or due to bloodmeal were detected in ticks by TCVRP; Porcine type-C oncovirus; Pandoravirus neocaledonia; Choristoneura fumiferana granulovirus; Enterobacteria phage p7; Leporid herpesvirus 4 isolate; 5; Human Lymphotropic virus; Human herpesvirus 5. In conclusion, our results suggest that infected Ornithodoros spp. seems to have a rich virome, which has not been explored but could be exploited to inform ASF control in Kenya. Further, the ecology of Ornithodoros spp. and burrow-use dynamics are complex and more studies are needed to understand these dynamics, specifically in the spread of ASFV at the interface of wild and domestic pigs. Further, our results provide evidence of genotype IX ASFV sylvatic cycle which through O. porcinus tick transmission has resulted in high exposure of adult common warthogs. Finally, the co-circulation of ASFV genotype IX in the same location with past ASF outbreaks in domestic pigs and presently in ticks brings to focus the role of the interface and ticks on virus transmission to pigs and warthogs.}, } @article {pmid38997520, year = {2024}, author = {Samaddar, S and Rolandelli, A and O'Neal, AJ and Laukaitis-Yousey, HJ and Marnin, L and Singh, N and Wang, X and Butler, LR and Rangghran, P and Kitsou, C and Cabrera Paz, FE and Valencia, L and R Ferraz, C and Munderloh, UG and Khoo, B and Cull, B and Rosche, KL and Shaw, DK and Oliver, J and Narasimhan, S and Fikrig, E and Pal, U and Fiskum, GM and Polster, BM and Pedra, JHF}, title = {Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection.}, journal = {Nature microbiology}, volume = {}, number = {}, pages = {}, pmid = {38997520}, issn = {2058-5276}, support = {R01AI134696, R01AI116523, R01AI049424, P01AI138949//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; F31AI152215//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; F31AI167471//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; T32AI162579//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; R01AI162819//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; P01AI138949//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; P01AI138949, R01AI080615//U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)/ ; }, abstract = {Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite β-aminoisobutyric acid. We manipulated the expression of genes associated with β-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.}, } @article {pmid38987492, year = {2024}, author = {Ng, MS and Soon, N and Afiq-Rosli, L and Kunning, I and Mana, RR and Chang, Y and Wainwright, BJ}, title = {Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity.}, journal = {Microbial ecology}, volume = {87}, number = {1}, pages = {92}, pmid = {38987492}, issn = {1432-184X}, mesh = {*Anthozoa/microbiology ; Animals ; *Biodiversity ; *Dinoflagellida/genetics/classification/physiology ; *Symbiosis ; *Coral Reefs ; Papua New Guinea ; Phylogeny ; High-Throughput Nucleotide Sequencing ; }, abstract = {Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.}, } @article {pmid38982749, year = {2024}, author = {Schrecengost, A and Rotterová, J and Poláková, K and Čepička, I and Beinart, RA}, title = {Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae125}, pmid = {38982749}, issn = {1751-7370}, abstract = {Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont ITS region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.}, } @article {pmid38981407, year = {2024}, author = {Howe, CJ and Barbrook, AC}, title = {Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention.}, journal = {Protist}, volume = {175}, number = {4}, pages = {126048}, doi = {10.1016/j.protis.2024.126048}, pmid = {38981407}, issn = {1618-0941}, abstract = {The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).}, } @article {pmid38975782, year = {2024}, author = {Price, CTD and Hanford, HE and Al-Quadan, T and Santic, M and Shin, CJ and Da'as, MSJ and Abu Kwaik, Y}, title = {Amoebae as training grounds for microbial pathogens.}, journal = {mBio}, volume = {}, number = {}, pages = {e0082724}, doi = {10.1128/mbio.00827-24}, pmid = {38975782}, issn = {2150-7511}, abstract = {Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.}, } @article {pmid38975267, year = {2024}, author = {Hoffmann, AA and Cooper, BS}, title = {Describing endosymbiont-host interactions within the parasitism-mutualism continuum.}, journal = {Ecology and evolution}, volume = {14}, number = {7}, pages = {e11705}, pmid = {38975267}, issn = {2045-7758}, abstract = {Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.}, } @article {pmid38974189, year = {2024}, author = {Cham, AK and Adams, AK and Wadl, PA and Ojeda-Zacarías, MDC and Rutter, WB and Jackson, DM and Shoemaker, DD and Yencho, GC and Olukolu, BA}, title = {Metagenome-enabled models improve genomic predictive ability and identification of herbivory-limiting genes in sweetpotato.}, journal = {Horticulture research}, volume = {11}, number = {7}, pages = {uhae135}, pmid = {38974189}, issn = {2662-6810}, abstract = {Plant-insect interactions are often influenced by host- or insect-associated metagenomic community members. The relative abundance of insects and the microbes that modulate their interactions were obtained from sweetpotato (Ipomoea batatas) leaf-associated metagenomes using quantitative reduced representation sequencing and strain/species-level profiling with the Qmatey software. Positive correlations were found between whitefly (Bemisia tabaci) and its endosymbionts (Candidatus Hamiltonella defensa, Candidatus Portiera aleyrodidarum, and Rickettsia spp.) and negative correlations with nitrogen-fixing bacteria that implicate nitric oxide in sweetpotato-whitefly interaction. Genome-wide associations using 252 975 dosage-based markers, and metagenomes as a covariate to reduce false positive rates, implicated ethylene and cell wall modification in sweetpotato-whitefly interaction. The predictive abilities (PA) for whitefly and Ocypus olens abundance were high in both populations (68%-69% and 33.3%-35.8%, respectively) and 69.9% for Frankliniella occidentalis. The metagBLUP (gBLUP) prediction model, which fits the background metagenome-based Cao dissimilarity matrix instead of the marker-based relationship matrix (G-matrix), revealed moderate PA (35.3%-49.1%) except for O. olens (3%-10.1%). A significant gain in PA after modeling the metagenome as a covariate (gGBLUP, ≤11%) confirms quantification accuracy and that the metagenome modulates phenotypic expression and might account for the missing heritability problem. Significant gains in PA were also revealed after fitting allele dosage (≤17.4%) and dominance effects (≤4.6%). Pseudo-diploidized genotype data underperformed for dominance models. Including segregation-distorted loci (SDL) increased PA by 6%-17.1%, suggesting that traits associated with fitness cost might benefit from the inclusion of SDL. Our findings confirm the holobiont theory of host-metagenome co-evolution and underscore its potential for breeding within the context of G × G × E interactions.}, } @article {pmid38971960, year = {2024}, author = {Therhaag, E and Ulrich, R and Gross, J and Schneider, B}, title = {Onion (Allium cepa L.) as a new host for 'Candidatus Arsenophonus phytopathogenicus' in Germany.}, journal = {Plant disease}, volume = {}, number = {}, pages = {}, doi = {10.1094/PDIS-03-24-0526-PDN}, pmid = {38971960}, issn = {0191-2917}, abstract = {Onion (Allium cepa L.) is the most produced vegetable after tomato worldwide and is grown on about 15,000 ha in Germany. In Lampertheim, Hesse in southwest Germany (49°40'02.3"N, 8°26'00.0"E) bulbs of the cultivar 'Red Baron F1' were harvested in September 2023 in an apparently healthy state. Four months later some of the onions showed rotting symptoms, which could not be assigned to a known storage disease. At first, the bulbs became glassy, later they showed soft rot. They originated from a field located in a growing region severely affected by "Syndrome Basses Richesses" (SBR). 'Candidatus Arsenophonus phytopathogenicus' as well as 'Candidatus Phytoplasma solani' are associated with this disease in sugar beet (Gatineau et al. 2002). Moreover, 'Ca. A. phytopathogenicus' was recently reported in association of bacterial wilt and yellowing in potato (Behrmann et al. 2023). Both phloem-restricted bacteria are vectored by the polyphagous planthopper Pentastiridius leporinus (Therhaag et al. 2024), which is highly abundant in this region. To examine, if the unknown symptoms in onion might be related to the presence of these pathogens, DNA of 69 bulbs showing a different degree of softening were analyzed. The samples were tested for the presence of 'Ca. Phytoplasma solani' in a TaqMan assay (Behrmann et al. 2022). All showed negative results. To demonstrate the presence of 'Ca. A. phytopathogenicus', universal and genus-specific primers for the amplification of 16S rDNA and a real-time qPCR assay amplifying an hsp20 fragment were employed (Christensen et al. 2004, Zübert and Kube 2021). Two bulbs of the five positive samples were in an apparently healthy state, the other three showed light to moderate softening symptoms. The 16S rDNA fragments from two samples were sequenced on both strands and aligned. Both fragments were homologous. One fragment of 1474 bp fragment showing 100% homology to the 16S rDNA from SBR (accession no. AY057392) was submitted to GenBank (accession no. PP400342). Other taxa of 'Ca. Arsenophonus' showed 16S rDNA homologies of less than 99.3 %. To corroborate the finding onion samples were subjected to PCR reactions employing genus-specific primers for the conserved tufB, secY and manA gene, which had been derived from multiple alignments of 'Ca. A. spp' sequence submissions (Sela et al. 1989, Lee et al. 2010). The tufB, secY and manA primers amplified fragments of about 980 bp, 640 bp and 930 bp, respectively, from all previously positive samples. Samples which had been tested negative for 'Ca. P. phytopathogenicus' remained negative. Fragments from two accessions were sequenced and the sequences from both isolates were 100 % identical. A BLAST search of the partial tufB gene (acc. no. PP950434) showed 98.57 % sequence identity to a yet unnamed Arsenophonus endosymbiont (acc. no. OZ026540) and 91.85 to 91.83 % to 'Ca. A. nasoniae' and 'Ca. A. apicola', respectively. A similar result was obtained for the partial secY sequence (acc. no. PP950433). The manA sequence (acc. no. PP942231) was identical to a partial sequence of 'Ca. A. phytopathogenicus' strain HN (acc. no. OK335757) and 97.42 % to 'Ca. A. nasoniae and about 87 % to related Arsenophonus species. The finding of 'Ca. A. phytopathogenicus' in onion is novel and might indicate an expanding host range of vector and pathogen in the regional crop rotation. As a correlation between the pathogen and the soft rot symptom is unclear at present, further investigations are needed.}, } @article {pmid38958415, year = {2024}, author = {Doğan, S and Farzali, S and Karimova, B and Sağlam, N}, title = {Evaluation of Methylene Blue as An Effective Antiseptic for Medicinal Leeches (Hirudo verbana).}, journal = {Turkiye parazitolojii dergisi}, volume = {48}, number = {2}, pages = {96-104}, doi = {10.4274/tpd.galenos.2024.85047}, pmid = {38958415}, issn = {2146-3077}, mesh = {Animals ; *Methylene Blue ; *Anti-Infective Agents, Local/pharmacology ; *Leeches ; Leeching ; Aeromonas/drug effects ; Lethal Dose 50 ; Hirudo medicinalis ; Animals, Poisonous ; }, abstract = {OBJECTIVE: Medicinal leeches (Hirudo spp.) have been used for therapeutic purposes in humans since ancient times. Because of their growth conditions, leeches carry certain bacteria and endosymbionts (e.g., Aeromonas spp). In both leech farms and hirudotherapy clinics, there are no reliable antiseptics that can be used with leeches. This study aimed to determine whether methylene blue (MB) is a safe antiseptic for medicinal leeches and assess its safe usage.

METHODS: This study evaluated the efficacy of MB by determining lethal concentrations (LC), effective concentrations (EC), and lethal times (LT) for the medicinal leech Hirudo verbena Carena, 1820. A total of 570 H. verbana specimens obtained from a local farm were used in this study. Eighteen different concentrations of MB (between 1 ppm and 512 ppm) were tested.

RESULTS: The LC50 and EC50 values for H. verbana were determined to be 60.381 (53.674-66.636) ppm and 2.013 (1.789-2.221) ppm, respectively. The LT50 durations for MB concentrations of 32 and 512 ppm were calculated as 212.92 h (138.43 h-1485.78 h) and 17.82 h (8.08 h-23.90 h), respectively.

CONCLUSION: The results show that MB concentrations between 2 and 19 ppm can be safely used as antiseptics in hirudotherapy clinics and leech farms to address bacterial concerns caused by medicinal leeches.}, } @article {pmid38957696, year = {2024}, author = {Ross, PA and Hoffmann, AA}, title = {Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects.}, journal = {Ecology and evolution}, volume = {14}, number = {7}, pages = {e11670}, pmid = {38957696}, issn = {2045-7758}, abstract = {Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.}, } @article {pmid38953331, year = {2024}, author = {Cibichakravarthy, B and Shaked, N and Kapri, E and Gottlieb, Y}, title = {Endosymbiont-derived metabolites are essential for tick host reproductive fitness.}, journal = {mSphere}, volume = {}, number = {}, pages = {e0069323}, doi = {10.1128/msphere.00693-23}, pmid = {38953331}, issn = {2379-5042}, abstract = {UNLABELLED: Ticks, like other obligatory blood-feeding arthropods, rely on endosymbiotic bacteria to supplement their diet with B vitamins lacking in blood. It has been suggested that additional metabolites such as L-proline may be involved in this nutritional symbiosis, but this has yet to be tested. Here, we studied the metabolite-based interaction between the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) and its Coxiella-like endosymbionts (CLE). We measured amino acid titers and tested the effect of B vitamins and L-proline supplementation on the fitness of CLE-suppressed female ticks, displaying low titers of CLE. We found higher titers of L-proline in the symbiont-hosting organs of unfed ticks and in engorged blood-fed whole ticks. Supplementation of B vitamins increased the hatching rate of CLE-suppressed ticks; this effect appears to be stronger when L-proline is added. Our results indicate that L-proline is produced by CLE, and we suggest that CLE is essential in states of high metabolic demand that affects tick reproductive fitness, such as oogenesis and embryonic development. These findings demonstrate the broader effect of nutritional symbionts on their hosts and may potentially contribute to the control of ticks and tick-borne diseases.

IMPORTANCE: Coxiella-like endosymbionts (CLE) are essential to the brown dog tick Rhipicephalus sanguineus for feeding and reproduction. This symbiosis is based on the supplementation of B vitamins lacking in the blood diet. The involvement of additional metabolites has been suggested, but no experimental evidence is available as yet to confirm a metabolic interaction. Here, we show that B vitamins and L-proline, both of which contribute to tick reproductive fitness, are produced by CLE. These findings demonstrate the importance of symbiont-derived metabolites for the host's persistence and shed light on the complex bacteria-host metabolic interaction, which can be channeled to manipulate and control tick populations.}, } @article {pmid38946980, year = {2024}, author = {Jacobs, J and Nakamoto, A and Mastoras, M and Loucks, H and Mirchandani, C and Karim, L and Penunuri, G and Wanket, C and Russell, SL}, title = {Complete de novo assembly of Wolbachia endosymbiont of Drosophila willistoni using long-read genome sequencing.}, journal = {Research square}, volume = {}, number = {}, pages = {}, doi = {10.21203/rs.3.rs-4510571/v1}, pmid = {38946980}, abstract = {Wolbachia is an obligate intracellular 𝛼-proteobacterium which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in many hosts and modulate host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The w Wil strain from the neotropical fruit fly, Drosophila willistoni , exhibits a remarkably high affinity for host germline-derived cells relative to the soma. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the w Wil strain isolated from host cell culture cells. Here, we present the first high quality nanopore assembly of w Wil, the Wolbachia endosymbiont of D. willistoni . Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel strain from Drosophila melanogaster .}, } @article {pmid38940615, year = {2024}, author = {Hrdina, A and Serra Canales, M and Arias-Rojas, A and Frahm, D and Iatsenko, I}, title = {The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization.}, journal = {mBio}, volume = {}, number = {}, pages = {e0093624}, doi = {10.1128/mbio.00936-24}, pmid = {38940615}, issn = {2150-7511}, abstract = {UNLABELLED: Facultative endosymbiotic bacteria, such as Wolbachia and Spiroplasma species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized. Here, we utilized the fruit fly Drosophila melanogaster and its facultative endosymbiont Spiroplasma poulsonii to characterize the mechanisms underlying symbiont-mediated host protection against bacterial and fungal pathogens. Our results indicate a variable effect of S. poulsonii on infection outcome, with endosymbiont-harboring flies being more resistant to Rhyzopus oryzae, Staphylococcus aureus, and Providencia alcalifaciens but more sensitive or as sensitive as endosymbiont-free flies to the infections with Pseudomonas species. Further focusing on the protective effect, we identified Transferrin-mediated iron sequestration induced by Spiroplasma as being crucial for the defense against R. oryzae and P. alcalifaciens. In the case of S. aureus, enhanced melanization in Spiroplasma-harboring flies plays a major role in protection. Both iron sequestration and melanization induced by Spiroplasma require the host immune sensor protease Persephone, suggesting a role of proteases secreted by the symbiont in the activation of host defense reactions. Hence, our work reveals a broader defensive range of Spiroplasma than previously appreciated and adds nutritional immunity and melanization to the defensive arsenal of symbionts.

IMPORTANCE: Defensive endosymbiotic bacteria conferring protection to their hosts against parasites and pathogens are widespread in insect populations. However, the mechanisms by which most symbionts confer protection are not fully understood. Here, we studied the mechanisms of protection against bacterial and fungal pathogens mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. We demonstrate that besides the previously described protection against wasps and nematodes, Spiroplasma also confers increased resistance to pathogenic bacteria and fungi. We identified Spiroplasma-induced iron sequestration and melanization as key defense mechanisms. Our work broadens the known defense spectrum of Spiroplasma and reveals a previously unappreciated role of melanization and iron sequestration in endosymbiont-mediated host protection. We propose that the mechanisms we have identified here may be of broader significance and could apply to other endosymbionts, particularly to Wolbachia, and potentially explain their protective properties.}, } @article {pmid38936473, year = {2024}, author = {Malinski, KH and Elizabeth Moore, M and Kingsolver, JG}, title = {Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate.}, journal = {Current opinion in insect science}, volume = {}, number = {}, pages = {101225}, doi = {10.1016/j.cois.2024.101225}, pmid = {38936473}, issn = {2214-5753}, abstract = {Ongoing climate change is increasing the frequency and magnitude of high temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases these effects can result in reduced parasitoid success and increased host herbivory, and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.}, } @article {pmid38935037, year = {2024}, author = {Dorai, APS and Umina, PA and Chirgwin, E and Yang, Q and Gu, X and Thia, J and Hoffmann, A}, title = {Novel transinfections of Rickettsiella do not affect insecticide tolerance in Myzus persicae, Rhopalosiphum padi, or Diuraphis noxia (Hemiptera: Aphididae).}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toae136}, pmid = {38935037}, issn = {1938-291X}, support = {UOM1905-002RTX//Grains Research and Development Corporation/ ; //The University of Melbourne/ ; }, abstract = {Aphids (Hemiptera: Aphidoidea) are economically important crop pests worldwide. Because of growing issues with insecticide resistance and environmental contamination by insecticides, alternate methods are being explored to provide aphid control. Aphids contain endosymbiotic bacteria that affect host fitness and could be targeted as potential biocontrol agents, but such novel strategies should not impact the effectiveness of traditional chemical control. In this work, we used a novel endosymbiont transinfection to examine the impact of the endosymbiont Rickettsiella viridis on chemical tolerance in 3 important agricultural pest species of aphid: Myzus persicae (Sulzer) (Hemiptera: Aphididae), Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), and Diuraphis noxia (Mordvilko ex Kurdjumov) (Hemiptera: Aphididae). We tested tolerance to the commonly used insecticides alpha-cypermethrin, bifenthrin, and pirimicarb using a leaf-dip bioassay. We found no observed effect of this novel endosymbiont transinfection on chemical tolerance, suggesting that the strain of Rickettsiella tested here could be used as a biocontrol agent without affecting sensitivity to insecticides. This may allow Rickettsiella transinfections to be used in combination with chemical applications for pest control. The impacts of other endosymbionts on insecticide tolerance should be considered, along with tests on multiple aphid clones with different inherent levels of chemical tolerance.}, } @article {pmid38934538, year = {2024}, author = {Michalik, A and C Franco, D and Szklarzewicz, T and Stroiński, A and Łukasik, P}, title = {Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission.}, journal = {mSystems}, volume = {}, number = {}, pages = {e0063424}, doi = {10.1128/msystems.00634-24}, pmid = {38934538}, issn = {2379-5077}, abstract = {Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.}, } @article {pmid38924387, year = {2024}, author = {Devereux, G and Bula, M and Tripp, K and Fitzgerald, R and Eraut, N and Alam, MS and Moriyama, T and Shinkyo, R and Walker, L and Wang, D and Gusovsky, F and van der Velde, J and Turner, JD and Hong, WD and O'Neill, PM and Taylor, MJ and Ward, SA}, title = {A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Trial of AWZ1066S, an Anti-Wolbachia Candidate Macrofilaricide.}, journal = {Clinical pharmacology in drug development}, volume = {}, number = {}, pages = {}, doi = {10.1002/cpdd.1441}, pmid = {38924387}, issn = {2160-7648}, abstract = {AWZ1066S has been developed as a potential treatment for the neglected tropical diseases lymphatic filariasis and onchocerciasis. AWZ1066S targets the Wolbachia bacterial endosymbiont present in the causative nematode parasites. This phase 1, first-in-human study aimed to assess the safety and pharmacokinetics of AWZ1066S in healthy human participants. In a randomized double-blind, placebo-controlled, single ascending dose study, healthy adults received a single oral dose of AWZ1066S (or placebo) and were followed up for 10 days. The planned single doses of AWZ1066S ranged from 100 to 1600 mg, and each dose was administered to a cohort of 8 participants (6 AWZ1066S and 2 placebo). In total 30 people participated, 18 (60%) female, median age 30.0 years (minimum 20, maximum 61). The cohorts administered 100, 200, 300, and 400 mg of AWZ1066S progressed unremarkably. After single 700-mg doses all 4 participants developed symptoms of acute gastritis and transient increases in liver enzymes. The severity of these adverse events ranged from mild to severe, with 1 participant needing hospital admission. Pharmacokinetic analysis indicated that AWZ1066S is rapidly absorbed with predictable pharmacokinetics. In conclusion, safety concerns prevented this study from reaching the human exposures needed for AWZ1066S to be clinically effective against lymphatic filariasis and onchocerciasis.}, } @article {pmid38924211, year = {2024}, author = {Gilkes, JM and Frampton, RA and Board, AJ and Hudson, AO and Price, TG and Morris, VK and Crittenden, DL and Muscroft-Taylor, AC and Sheen, CR and Smith, GR and Dobson, RCJ}, title = {A new lysine biosynthetic enzyme from a bacterial endosymbiont shaped by genetic drift and genome reduction.}, journal = {Protein science : a publication of the Protein Society}, volume = {33}, number = {7}, pages = {e5083}, doi = {10.1002/pro.5083}, pmid = {38924211}, issn = {1469-896X}, mesh = {*Lysine/biosynthesis/metabolism/genetics ; *Genome, Bacterial ; *Symbiosis ; *Genetic Drift ; Hydro-Lyases/genetics/chemistry/metabolism ; Bacterial Proteins/genetics/metabolism/chemistry ; Animals ; }, abstract = {The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.}, } @article {pmid38923306, year = {2024}, author = {Gabr, A and Stephens, TG and Reinfelder, JR and Liau, P and Calatrava, V and Grossman, AR and Bhattacharya, D}, title = {Evidence of a putative CO2 delivery system to the chromatophore in the photosynthetic amoeba Paulinella.}, journal = {Environmental microbiology reports}, volume = {16}, number = {3}, pages = {e13304}, doi = {10.1111/1758-2229.13304}, pmid = {38923306}, issn = {1758-2229}, support = {NJ01180//National Institute of Food and Agriculture/ ; NJ07125//National Institute of Food and Agriculture/ ; 80NSSC19K0462/NASA/NASA/United States ; //Carnegie Institution for Science/ ; OCE-1634154//US National Science Foundation/ ; }, mesh = {*Carbon Dioxide/metabolism ; *Photosynthesis/genetics ; *Chromatophores/metabolism ; *Symbiosis ; Amoeba/genetics ; Cyanobacteria/genetics/metabolism ; Phylogeny ; }, abstract = {The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.}, } @article {pmid38916437, year = {2024}, author = {Song, Q and Zhao, F and Hou, L and Miao, M}, title = {Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae117}, pmid = {38916437}, issn = {1751-7370}, abstract = {As unicellular predators, ciliates engage in close associations with diverse microbes, laying the foundation for the establishment of endosymbiosis. Originally heterotrophic, ciliates demonstrate the ability to acquire phototrophy by phagocytizing unicellular algae or by sequestering algal plastids. This adaptation enables them to gain photosynthate and develop resistance to unfavorable environmental conditions. The integration of acquired phototrophy with intrinsic phagotrophy results in a trophic mode known as mixotrophy. Additionally, ciliates can harbor thousands of bacteria in various intracellular regions, including the cytoplasm and nucleus, exhibiting species specificity. Under prolonged and specific selective pressure within hosts, bacterial endosymbionts evolve unique lifestyles and undergo particular reductions in metabolic activities. Investigating the research advancements in various endosymbiotic cases within ciliates will contribute to elucidate patterns in cellular interaction and unravel the evolutionary origins of complex traits.}, } @article {pmid38915450, year = {2024}, author = {Trouche, B and Schrieke, H and Duron, O and Eren, AM and Reveillaud, J}, title = {Wolbachia populations across organs of individual Culex pipiens: highly conserved intra-individual core pangenome with inter-individual polymorphisms.}, journal = {ISME communications}, volume = {4}, number = {1}, pages = {ycae078}, pmid = {38915450}, issn = {2730-6151}, abstract = {Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.}, } @article {pmid38912811, year = {2024}, author = {Yue, H and Ma, X and Sun, S and Hu, H and Wu, J and Xu, T and Huang, D and Luo, Y and Wu, J and Huang, T}, title = {Diversity and saline-alkali resistance of Coleoptera endosymbiont bacteria in arid and semi-arid climate.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0023224}, doi = {10.1128/spectrum.00232-24}, pmid = {38912811}, issn = {2165-0497}, abstract = {UNLABELLED: Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes.

IMPORTANCE: Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).}, } @article {pmid38909040, year = {2024}, author = {Lu, C and Zou, T and Liu, Q and Huang, X}, title = {Twenty-nine newly sequenced genomes and a comprehensive genome dataset for the insect endosymbiont Buchnera.}, journal = {Scientific data}, volume = {11}, number = {1}, pages = {673}, pmid = {38909040}, issn = {2052-4463}, support = {31970446//National Natural Science Foundation of China (National Science Foundation of China)/ ; 31970446//National Natural Science Foundation of China (National Science Foundation of China)/ ; 31970446//National Natural Science Foundation of China (National Science Foundation of China)/ ; 31970446//National Natural Science Foundation of China (National Science Foundation of China)/ ; }, mesh = {*Buchnera/genetics ; Animals ; *Symbiosis ; *Aphids/microbiology/genetics ; *Genome, Bacterial ; Phylogeny ; Genome Size ; }, abstract = {Most phloem-feeding insects face nutritional deficiency and rely on their intracellular symbionts to provide nutrients, and most of endosymbiont genomes have undergone reduction. However, the study of genome reduction processes of endosymbionts has been constrained by the limited availability of genome data from different insect lineages. The obligate relationship between aphids and Buchnera aphidicola (hereafter Buchnera) makes them a classic model for studying insect-endosymbiont interaction. Here, we report 29 newly sequenced Buchnera genomes from 11 aphid subfamilies, and a comprehensive dataset based on 90 Buchnera genomes from 14 aphid subfamilies. The dataset shows a significant genomic difference of Buchnera among different aphid lineages. The dataset exhibits a more balanced distribution of Buchnera (from 14 aphid subfamilies) genome sizes, ranging from 400 kb to 600 kb, which can illustrate the genome reduction process of Buchnera. The new genome data provide valuable insights into the microevolutionary processes leading to genomic reduction of insect endosymbionts.}, } @article {pmid38903791, year = {2024}, author = {Tafesh-Edwards, G and Kyza Karavioti, M and Markollari, K and Bunnell, D and Chtarbanova, S and Eleftherianos, I}, title = {Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1380647}, doi = {10.3389/fmicb.2024.1380647}, pmid = {38903791}, issn = {1664-302X}, abstract = {Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.}, } @article {pmid38903055, year = {2024}, author = {Shama, SM and Elissawy, AM and Salem, MA and Youssef, FS and Elnaggar, MS and El-Seedi, HR and Khalifa, SAM and Briki, K and Hamdan, DI and Singab, ANB}, title = {Comparative metabolomics study on the secondary metabolites of the red alga, Corallina officinalis and its associated endosymbiotic fungi.}, journal = {RSC advances}, volume = {14}, number = {26}, pages = {18553-18566}, pmid = {38903055}, issn = {2046-2069}, abstract = {Marine endosymbionts have gained remarkable interest in the last three decades in terms of natural products (NPs) isolated thereof, emphasizing the chemical correlations with those isolated from the host marine organism. The current study aimed to conduct comparative metabolic profiling of the marine red algae Corallina officinalis, and three fungal endosymbionts isolated from its inner tissues namely, Aspergillus nidulans, A. flavipes and A. flavus. The ethyl acetate (EtOAc) extracts of the host organism as well as the isolated endosymbionts were analyzed using ultra-high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-MS/MS)in both positive and negative ion modes, applying both full scan (FS) and all ion fragmentation (AIF) modes. Extensive interpretation of the LC-MS/MS spectra had led to the identification of 76 metabolites belonging to different phytochemical classes including alkaloids, polyketides, sesquiterpenes, butyrolactones, peptides, fatty acids, isocoumarins, quinones, among others. Metabolites were tentatively identified by comparing the accurate mass and fragmentation pattern with metabolites previously reported in the literature, as well as bioinformatics analysis using GNPS. A relationship between the host C. officinalis and its endophytes (A. flavus, A. nidulans, and A. flavipes) was discovered. C. officinalis shares common metabolites with at least one of the three endosymbiotic fungi. Some metabolites have been identified in endophytes and do not exist in their host. Multivariate analysis (MVA) revealed discrimination of A. flavipes from Corallina officinalis and other associated endophytic Aspergillus fungi (A. flavus and A. nidulans).}, } @article {pmid38902723, year = {2024}, author = {Liang, Y and Dikow, RB and Su, X and Wen, J and Ren, Z}, title = {Comparative genomics of the primary endosymbiont Buchnera aphidicola in aphid hosts and their coevolutionary relationships.}, journal = {BMC biology}, volume = {22}, number = {1}, pages = {137}, pmid = {38902723}, issn = {1741-7007}, support = {31870366//National Natural Science Foundation of China/ ; 31170359//National Natural Science Foundation of China/ ; 201803D421051//International Science and Technology Cooperation Program of Shanxi Province/ ; 2020-018//Shanxi Scholarship Council of China/ ; 2014AA021802//National High-tech Research and Development Program/ ; }, mesh = {*Aphids/microbiology/genetics ; Animals ; *Buchnera/genetics/physiology ; *Symbiosis/genetics ; *Genome, Bacterial ; *Genomics ; *Phylogeny ; Biological Coevolution ; }, abstract = {BACKGROUND: Coevolution between modern aphids and their primary obligate, bacterial endosymbiont, Buchnera aphidicola, has been previously reported at different classification levels based on molecular phylogenetic analyses. However, the Buchnera genome remains poorly understood within the Rhus gall aphids.

RESULTS: We assembled the complete genome of the endosymbiont Buchnera in 16 aphid samples, representing 13 species in all six genera of Rhus gall aphids by shotgun genome skimming method. We compared the newly assembled genomes with those from GenBank to comprehensively investigate patterns of coevolution between the bacteria Buchnera and their aphid hosts. Buchnera genomes were mostly collinear, and the pan-genome contained 684 genes, in which the core genome contained 256 genes with some lineages having large numbers of tandem gene duplications. There has been substantial gene-loss in each Buchnera lineage. We also reconstructed the phylogeny for Buchnera and their host aphids, respectively, using 72 complete genomes of Buchnera, along with the complete mitochondrial genomes and three nuclear genes of 31 corresponding host aphid accessions. The cophylogenetic test demonstrated significant coevolution between these two partner groups at individual, species, generic, and tribal levels.

CONCLUSIONS: Buchnera exhibits very high levels of genomic sequence divergence but relative stability in gene order. The relationship between the symbionts Buchnera and its aphid hosts shows a significant coevolutionary pattern and supports complexity of the obligate symbiotic relationship.}, } @article {pmid38900924, year = {2024}, author = {Johnston, IG}, title = {The nitroplast and its relatives support a universal model of features predicting gene retention in endosymbiont and organelle genomes.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evae132}, pmid = {38900924}, issn = {1759-6653}, abstract = {Endosymbiotic relationships have shaped eukaryotic life. As endosymbionts coevolve with their host, towards full integration as organelles, their genomes tend to shrink, with genes being completely lost or transferred to the host nucleus. Modern endosymbionts and organelles show diverse patterns of gene retention, and why some genes and not others are retained in these genomes is not fully understood. Recent bioinformatic study has explored hypothesized influences on these evolutionary processes, finding that hydrophobicity and amino acid chemistry predict patterns of gene retention, both in organelles across eukaryotes and in less mature endosymbiotic relationships. The exciting ongoing elucidation of endosymbiotic relationships affords an independent set of instances to test this theory. Here we compare the properties of retained genes in the nitroplast, recently reported to be an integrated organelle, two related cyanobacterial endosymbionts which form "spheroid bodies" in their host cells, and a range of other endosymbionts, with free-living relatives of each. We find that in each case, the symbiont's genome encodes proteins with higher hydrophobicity and lower amino pKa than their free-living relative, supporting the data-derived model predicting the retention propensity of genes across endosymbiont and organelle genomes.}, } @article {pmid38895386, year = {2024}, author = {Marinov, GK and Ramalingam, V and Greenleaf, WJ and Kundaje, A}, title = {An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.06.04.597442}, pmid = {38895386}, abstract = {In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.}, } @article {pmid38885278, year = {2024}, author = {She, L and Shi, M and Cao, T and Yuan, H and Wang, R and Wang, W and She, Y and Wang, C and Zeng, Q and Mao, W and Zhang, Y and Wang, Y and Xi, Z and Pan, X}, title = {Wolbachia mediates crosstalk between miRNA and Toll pathways to enhance resistance to dengue virus in Aedes aegypti.}, journal = {PLoS pathogens}, volume = {20}, number = {6}, pages = {e1012296}, doi = {10.1371/journal.ppat.1012296}, pmid = {38885278}, issn = {1553-7374}, abstract = {The obligate endosymbiont Wolbachia induces pathogen interference in the primary disease vector Aedes aegypti, facilitating the utilization of Wolbachia-based mosquito control for arbovirus prevention, particularly against dengue virus (DENV). However, the mechanisms underlying Wolbachia-mediated virus blockade have not been fully elucidated. Here, we report that Wolbachia activates the host cytoplasmic miRNA biogenesis pathway to suppress DENV infection. Through the suppression of the long noncoding RNA aae-lnc-2268 by Wolbachia wAlbB, aae-miR-34-3p, a miRNA upregulated by the Wolbachia strains wAlbB and wMelPop, promoted the expression of the antiviral effector defensin and cecropin genes through the Toll pathway regulator MyD88. Notably, anti-DENV resistance induced by Wolbachia can be further enhanced, with the potential to achieve complete virus blockade by increasing the expression of aae-miR-34-3p in Ae. aegypti. Furthermore, the downregulation of aae-miR-34-3p compromised Wolbachia-mediated virus blockade. These findings reveal a novel mechanism by which Wolbachia establishes crosstalk between the cytoplasmic miRNA pathway and the Toll pathway via aae-miR-34-3p to strengthen antiviral immune responses against DENV. Our results will aid in the advancement of Wolbachia for arbovirus control by enhancing its virus-blocking efficiency.}, } @article {pmid38877196, year = {2024}, author = {Hague, MTJ and Wheeler, TB and Cooper, BS}, title = {Comparative analysis of Wolbachia maternal transmission and localization in host ovaries.}, journal = {Communications biology}, volume = {7}, number = {1}, pages = {727}, pmid = {38877196}, issn = {2399-3642}, support = {2145195//National Science Foundation (NSF)/ ; R35GM124701//U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)/ ; }, mesh = {*Wolbachia/physiology/genetics ; Animals ; Female ; *Ovary/microbiology ; *Drosophila melanogaster/microbiology ; *Aedes/microbiology ; Symbiosis ; Temperature ; Oocytes/microbiology ; }, abstract = {Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.}, } @article {pmid38874391, year = {2024}, author = {Lin, S and Li, L and Zhou, Z and Yuan, H and Saad, OS and Tang, J and Cai, W and Yu, K and Lin, S}, title = {Higher genotypic diversity and distinct assembly mechanism of free-living Symbiodiniaceae assemblages than sympatric coral-endosymbiotic assemblages in a tropical coral reef.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0051424}, doi = {10.1128/spectrum.00514-24}, pmid = {38874391}, issn = {2165-0497}, abstract = {While in hospite Symbiodiniaceae dinoflagellates are essential for coral health, ambient free-living counterparts are crucial for coral recruitment and resilience. Comparing free-living and in hospite Symbiodiniaceae communities can potentially provide insights into endosymbiont acquisition and recurrent recruitment in bleaching recovery. In this study, we studied coral-endosymbiotic and ambient free-living Symbiodiniaceae communities in the South China Sea. We collected samples from 183 coral and ambient plankton samples and conducted metabarcoding to investigate the diversity distribution, driving factors, and assembly mechanisms of the two groups of Symbiodiniaceae. Results revealed Cladocopium C1 and Durusdinium D1 as dominant genotypes. We detected a higher genotypic diversity in free-living than in hospite symbiodiniacean communities, but with shared dominant genotypes. This indicates a genetically diverse pool of Symbiodiniaceae available for recruitment by corals. Strikingly, we found that the cooler area had more Symbiodiniaceae thermosensitive genotypes, whereas the warmer area had more Symbiodiniaceae thermotolerant genotypes. Furthermore, in hospite and free-living Symbiodiniaceae communities were similarly affected by environmental factors, but shaped by different assembly mechanisms. The in hospite communities were controlled mainly by deterministic processes, whereas the ambient communities by stochastic processes. This study sheds light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms influencing Symbiodiniaceae inside and outside corals.IMPORTANCESymbiodiniaceae dinoflagellates play a pivotal role as key primary producers within coral reef ecosystems. Coral-endosymbiotic Symbiodiniaceae communities have been extensively studied, but relatively little work has been reported on the free-living Symbiodiniaceae community. Conducting a comparative analysis between sympatric coral-endosymbiotic and free-living Symbiodiniaceae communities can potentially enhance the understanding of how endosymbiont communities change in response to changing environments and the mechanisms driving these changes. Our findings shed light on the genetic diversity of source environmental Symbiodiniaceae and differential assembly mechanisms shaping free-living and in hospite Symbiodiniaceae communities, with implications in evaluating the adaptive and resilient capacity of corals in response to future climate change.}, } @article {pmid38874172, year = {2024}, author = {Wierz, JC and Dirksen, P and Kirsch, R and Krüsemer, R and Weiss, B and Pauchet, Y and Engl, T and Kaltenpoth, M}, title = {Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae099}, pmid = {38874172}, issn = {1751-7370}, abstract = {Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species S. clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.}, } @article {pmid38869236, year = {2024}, author = {Taprogge, M and Grath, S}, title = {Modelling suggests Wolbachia-induced cytoplasmic incompatibility in oak gall wasps with cyclical parthenogenesis.}, journal = {Journal of evolutionary biology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jeb/voae077}, pmid = {38869236}, issn = {1420-9101}, abstract = {Oak gall wasps typically exhibit a life cycle with one sexual and one asexual generation each year. These wasps can carry various endosymbionts, one of which is the maternally inherited bacterium Wolbachia that can induce several reproductive manipulations on its host. Cytoplasmic incompatibility (CI) has been described as the most prominent of these manipulations. CI leads to embryonic mortality in the hosts' offspring when infected males mate with either uninfected females or with females that harbour different Wolbachia strains. It has been hypothesized that Wolbachia can induce CI in oak gall wasps. To address this hypothesis, we derived a mathematical model to investigate the spread of a bacterial infection in naive populations and to determine the plausibility of CI occurrence. To validate our model, we used published data from Wolbachia-infected Belonocnema treatae populations in two approaches. Our first approach uses measurements of infection frequencies and maternal transmission in the sexual generation. For the second approach, we extended the model to compare predictions to estimates of mtDNA-haplotypes, which, like Wolbachia, are maternally inherited, and can therefore be associated with the infection. Both approaches indicate that CI is present in these populations. Our model can be generalized to investigate the occurrence of CI not only for oak gall wasps but also for other species.}, } @article {pmid38867757, year = {2024}, author = {Schvarcz, CR and Stancheva, R and Turk-Kubo, KA and Wilson, ST and Zehr, JP and Edwards, KF and Steward, GF and Archibald, JM and Oatley, G and Sinclair, E and Santos, C and Paulini, M and Aunin, E and Gettle, N and Niu, H and McKenna, V and O'Brien, R and , and , and , and , and , }, title = {The genome sequences of the marine diatom Epithemia pelagica strain UHM3201 (Schvarcz, Stancheva & Steward, 2022) and its nitrogen-fixing, endosymbiotic cyanobacterium.}, journal = {Wellcome open research}, volume = {9}, number = {}, pages = {232}, pmid = {38867757}, issn = {2398-502X}, abstract = {We present the genome assembly of the pennate diatom Epithemia pelagica strain UHM3201 (Ochrophyta; Bacillariophyceae; Rhopalodiales; Rhopalodiaceae) and that of its cyanobacterial endosymbiont (Chroococcales: Aphanothecaceae). The genome sequence of the diatom is 60.3 megabases in span, and the cyanobacterial genome has a length of 2.48 megabases. Most of the diatom nuclear genome assembly is scaffolded into 15 chromosomal pseudomolecules. The organelle genomes have also been assembled, with the mitochondrial genome 40.08 kilobases and the plastid genome 130.75 kilobases in length. A number of other prokaryote MAGs were also assembled.}, } @article {pmid38864644, year = {2024}, author = {Nag, M and Seal, A}, title = {Draft genome announcement of Bacillus velezensis TSB6.1 isolated as a culturable endosymbiont of a nitrogen-fixing endophytic yeast Rhodotorula mucilaginosa JGTA-S1.}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0120223}, doi = {10.1128/mra.01202-23}, pmid = {38864644}, issn = {2576-098X}, abstract = {We here report the genome of Bacillus velezensis TSB6.1 isolated as a culturable endosymbiont of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1. TSB6.1 has a genome size of approximately 4.50 Mb, with 4,597 genes, 45.54% GC content, 3 rRNAs, and 73 tRNAs.}, } @article {pmid38863830, year = {2024}, author = {Fan, W and Li, P and Wei, Q and Liu, X and Cai, Y and Li, B and Lu, Y}, title = {Metagenomic next-generation sequencing-assisted diagnosis of a rare case of primary cutaneous acanthamoebiasis in an HIV patient: a case report.}, journal = {Frontiers in cellular and infection microbiology}, volume = {14}, number = {}, pages = {1356095}, pmid = {38863830}, issn = {2235-2988}, mesh = {Humans ; Female ; *High-Throughput Nucleotide Sequencing ; *Amebiasis/diagnosis/parasitology/drug therapy ; *Metagenomics/methods ; Middle Aged ; *Acanthamoeba/genetics/isolation & purification ; *HIV Infections/complications ; Skin/pathology/parasitology ; Treatment Outcome ; }, abstract = {Pathogenic and free-living Acanthamoeba are widely distributed in the environment and have been reported to cause keratitis and universally fatal encephalitis. Primary cutaneous acanthamoebiasis caused by Acanthamoeba is exceedingly rare and presents as isolated necrotic cutaneous lesions without involvement of the cornea or central nervous system. Cutaneous acanthamoebiasis often occurs in immunocompromised patients and is likely overlooked or even misdiagnosed only by cutaneous biopsy tissue histopathological analysis. Here, we report a HIV-infected 63-year-old female with oral leukoplakia for 4 months and scattered large skin ulcers all over the body for 2 months. The cause of the cutaneous lesions was unclear through cutaneous specimens histopathological analysis, and subsequently Acanthamoeba were detected by metagenomic next-generation sequencing (mNGS), which may be the cause of cutaneous lesions. Based on the mNGS results, a pathologist subsequently reviewed the previous pathological slides and found trophozoites of Acanthamoeba so that the cause was identified, and the skin ulcers improved significantly after treatment with multi-drug combination therapy. Acanthamoeba is also a host of pathogenic microorganisms. The presence of endosymbionts enhances the pathogenicity of Acanthamoeba, and no other pathogens were reported in this case. mNGS is helpful for rapidly diagnosing the etiology of rare skin diseases and can indicate the presence or absence of commensal microorganisms.}, } @article {pmid38863001, year = {2024}, author = {Huang, Z and Wang, D and Zhou, J and He, H and Wei, C}, title = {Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects.}, journal = {Frontiers in zoology}, volume = {21}, number = {1}, pages = {15}, pmid = {38863001}, issn = {1742-9994}, support = {32270496//National Natural Science Foundation of China/ ; 32070476//National Natural Science Foundation of China/ ; }, abstract = {The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.}, } @article {pmid38861456, year = {2024}, author = {Wierz, JC and Gimmel, ML and Huthmacher, S and Engl, T and Kaltenpoth, M}, title = {Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae080}, pmid = {38861456}, issn = {1751-7370}, abstract = {Many insects feeding on nutritionally challenging diets like plant sap, leaves, or wood engage in ancient associations with bacterial symbionts that supplement limiting nutrients or produce digestive or detoxifying enzymes. However, the distribution, function, and evolutionary dynamics of microbial symbionts in insects exploiting other plant tissues or relying on a predacious diet remain poorly understood. Here, we investigated the evolutionary history and function of the intracellular gamma-proteobacterial symbiont "Candidatus Dasytiphilus stammeri" in soft-winged flower beetles (Melyridae, Dasytinae) that transition from saprophagy or carnivory to palinivory (pollen-feeding) between larval and adult stage. Reconstructing the distribution of the symbiont within the Dasytinae phylogeny unraveled a long-term coevolution, originating from a single acquisition event with subsequent host-symbiont codiversification, but also several independent symbiont losses. The analysis of 20 different symbiont genomes revealed that their genomes are severely eroded. However, the universally retained shikimate pathway indicates that the core metabolic contribution to their hosts is the provisioning of tyrosine for cuticle sclerotization and melanization. Despite the high degree of similarity in gene content and order across symbiont strains, the capacity to synthesize additional essential amino acids and vitamins and to recycle urea is retained in some but not all symbionts, suggesting ecological differences among host lineages. This report of tyrosine-provisioning symbionts in insects with saprophagous or carnivorous larvae and pollen-feeding adults expands our understanding of tyrosine supplementation as an important symbiont-provided benefit across a broad range of insects with diverse feeding ecologies.}, } @article {pmid38857958, year = {2024}, author = {Li, D and Li, Y and Yu, Y and Ouyang, X and Xiong, X and Jin, S and Jiao, J}, title = {[Investigation of tick - borne Rickettsia in selected areas of Liupanshui City, Guizhou Province in 2023].}, journal = {Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control}, volume = {36}, number = {2}, pages = {154-158}, doi = {10.16250/j.32.1374.2023167}, pmid = {38857958}, issn = {1005-6661}, support = {32000139//National Natural Science Foundation of China/ ; SKLPBS2217//Open Research Project of State Key Laboratory of Pathogenic Microorganism Biosafety/ ; }, mesh = {Animals ; *Rickettsia/isolation & purification/genetics ; China/epidemiology ; Sheep ; Cattle ; Rickettsia Infections/epidemiology/microbiology/veterinary ; Ticks/microbiology ; Tick-Borne Diseases/microbiology/epidemiology ; }, abstract = {OBJECTIVE: To investigate the prevalence of tick-borne rickettsial infections in selected areas of Liupanshui City, Guizhou Province, 2023, so as to provide insights into the management of tick-borne rickettsioses in the city.

METHODS: Ticks were captured from the body surface of bovines and sheep in Gaoxing Village, Dashan Township, Liupanshui City, Guizhou Province during the period between April and June, 2023, and tick species were identified using morphological and molecular biological techniques. In addition, tick-borne Rickettsia was identified using a nested PCR assay, including spotted fever group rickettsiae (SFGR), Coxiella spp., Anaplasma spp., Ehrlichia spp., and Orientia spp., and positive amplified fragments were sequenced and aligned with known sequences accessed in the GenBank database.

RESULTS: A total of 200 ticks were collected and all tick species were identified as Rhipicephalus microplus. Nestle PCR assay combined with sequencing identified ticks carrying Candidatus Rickettsia jingxinensis (40.50%), Coxiella burnetii (1.50%), and Coxiella-like endosymbionts (27.00%), and Anaplasma spp., Ehrlichia spp. or Orientsia spp. was not detected.

CONCLUSIONS: R. microplus carried Candidatus R. jingxinensis, C. burnetii, and Coxiella-like endosymbionts in selected areas of Liupanshui City, Guizhou Province. Intensified monitoring of tickborne rickettsial infections is needed in livestock and humans to reduce the damages caused by rickettsioses.}, } @article {pmid38857239, year = {2024}, author = {Martinez-Villegas, L and Lado, P and Klompen, H and Wang, S and Cummings, C and Pesapane, R and Short, SM}, title = {The microbiota of Amblyomma americanum reflects known westward expansion.}, journal = {PloS one}, volume = {19}, number = {6}, pages = {e0304959}, doi = {10.1371/journal.pone.0304959}, pmid = {38857239}, issn = {1932-6203}, mesh = {Animals ; *Microbiota ; Female ; Male ; *Amblyomma/microbiology ; United States ; Ixodidae/microbiology ; }, abstract = {Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.}, } @article {pmid38855918, year = {2024}, author = {Mulio, SÅ and Zwolińska, A and Klejdysz, T and Prus-Frankowska, M and Michalik, A and Kolasa, M and Łukasik, P}, title = {Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae).}, journal = {Environmental microbiology reports}, volume = {16}, number = {3}, pages = {e13279}, doi = {10.1111/1758-2229.13279}, pmid = {38855918}, issn = {1758-2229}, support = {PPN/PPO/2018/1/00015//Narodowa Agencja Wymiany Akademickiej/ ; RGP 0024/2015//Human Frontier Science Program/ ; 2018/30/E/NZ8/00880//Narodowe Centrum Nauki/ ; 2021/41/B/NZ8/04526//Narodowe Centrum Nauki/ ; }, mesh = {Animals ; *Hemiptera/microbiology ; *Symbiosis ; *Microbiota ; *RNA, Ribosomal, 16S/genetics ; *Bacteria/classification/genetics/isolation & purification ; Phylogeny ; Electron Transport Complex IV/genetics ; }, abstract = {Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.}, } @article {pmid38851009, year = {2024}, author = {Abuin-Denis, L and Piloto-Sardiñas, E and Maitre, A and Wu-Chuang, A and Mateos-Hernández, L and Paulino, PG and Bello, Y and Bravo, FL and Gutierrez, AA and Fernández, RR and Castillo, AF and Mellor, LM and Foucault-Simonin, A and Obregon, D and Estrada-García, MP and Rodríguez-Mallon, A and Cabezas-Cruz, A}, title = {Differential nested patterns of Anaplasma marginale and Coxiella-like endosymbiont across Rhipicephalus microplus ontogeny.}, journal = {Microbiological research}, volume = {286}, number = {}, pages = {127790}, doi = {10.1016/j.micres.2024.127790}, pmid = {38851009}, issn = {1618-0623}, abstract = {Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.}, } @article {pmid38842327, year = {2024}, author = {Sosa-Jiménez, VM and Kvist, S and Manzano-Marín, A and Oceguera-Figueroa, A}, title = {Discovery of a novel symbiotic lineage associated with a hematophagous leech from the genus Haementeria.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0428623}, doi = {10.1128/spectrum.04286-23}, pmid = {38842327}, issn = {2165-0497}, abstract = {UNLABELLED: Similarly to other strict blood feeders, leeches from the Haementeria genus (Hirudinida: Glossiphoniidae) have established a symbiotic association with bacteria harbored intracellularly in esophageal bacteriomes. Previous genome sequence analyses of these endosymbionts revealed co-divergence with their hosts, a strong genome reduction, and a simplified metabolism largely dedicated to the production of B vitamins, which are nutrients lacking from a blood diet. 'Candidatus Providencia siddallii' has been identified as the obligate nutritional endosymbiont of a monophyletic clade of Mexican and South American Haementeria spp. However, the Haementeria genus includes a sister clade of congeners from Central and South America, where the presence or absence of the aforementioned symbiont taxon remains unknown. In this work, we report on a novel bacterial endosymbiont found in a representative from this Haementeria clade. We found that this symbiont lineage has evolved from within the Pluralibacter genus, known mainly from clinical but also environmental strains. Similarly to Ca. Providencia siddallii, the Haementeria-associated Pluralibacter symbiont displays clear signs of genome reduction, accompanied by an A+T-biased sequence composition. Genomic analysis of its metabolic potential revealed a retention of pathways related to B vitamin biosynthesis, supporting its role as a nutritional endosymbiont. Finally, comparative genomics of both Haementeria symbiont lineages suggests that an ancient Providencia symbiont was likely replaced by the novel Pluralibacter one, thus constituting the first reported case of nutritional symbiont replacement in a leech without morphological changes in the bacteriome.

IMPORTANCE: Obligate symbiotic associations with a nutritional base have likely evolved more than once in strict blood-feeding leeches. Unlike those symbioses found in hematophagous arthropods, the nature, identity, and evolutionary history of these remains poorly studied. In this work, we further explored obligate nutritional associations between Haementeria leeches and their microbial symbionts, which led to the unexpected discovery of a novel symbiosis with a member of the Pluralibacter genus. When compared to Providencia siddallii, an obligate nutritional symbiont of other Haementeria leeches, this novel bacterial symbiont shows convergent retention of the metabolic pathways involved in B vitamin biosynthesis. Moreover, the genomic characteristics of this Pluralibacter symbiont suggest a more recent association than that of Pr. siddallii and Haementeria. We conclude that the once-thought stable associations between blood-feeding Glossiphoniidae and their symbionts (i.e., one bacteriome structure, one symbiont lineage) can break down, mirroring symbiont turnover observed in various arthropod lineages.}, } @article {pmid38839975, year = {2024}, author = {Mitchell, JH and Freedman, AH and Delaney, JA and Girguis, PR}, title = {Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts.}, journal = {Nature microbiology}, volume = {9}, number = {6}, pages = {1526-1539}, pmid = {38839975}, issn = {2058-5276}, support = {9208//Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)/ ; 1940100//National Science Foundation (NSF)/ ; 80NSSC19K1427//NASA | NASA Astrobiology Institute (NAI)/ ; }, mesh = {*Hydrothermal Vents/microbiology ; *Carbon Cycle ; Animals ; *Symbiosis ; *Polychaeta/metabolism ; Oxidation-Reduction ; Citric Acid Cycle ; Sulfides/metabolism ; Gene Expression Regulation, Bacterial ; Hydrogenase/metabolism/genetics ; Chemoautotrophic Growth ; Gene Expression Profiling ; Nitrates/metabolism ; Photosynthesis ; Bacteria/metabolism/genetics ; }, abstract = {Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.}, } @article {pmid38837987, year = {2024}, author = {Senbill, H and Karawia, D and Zeb, J and Alyami, NM and Almeer, R and Rahman, S and Sparagano, O and Baruah, A}, title = {Molecular screening and genetic diversity of tick-borne pathogens associated with dogs and livestock ticks in Egypt.}, journal = {PLoS neglected tropical diseases}, volume = {18}, number = {6}, pages = {e0012185}, doi = {10.1371/journal.pntd.0012185}, pmid = {38837987}, issn = {1935-2735}, mesh = {Animals ; Egypt/epidemiology ; Dogs ; *Tick-Borne Diseases/microbiology/epidemiology/veterinary/parasitology ; *Dog Diseases/parasitology/microbiology/epidemiology ; *Genetic Variation ; *Ixodidae/microbiology/parasitology ; *Camelus/parasitology/microbiology ; Sheep ; Tick Infestations/veterinary/epidemiology/parasitology ; Ticks/microbiology/parasitology ; Livestock/parasitology/microbiology ; Bacteria/classification/isolation & purification/genetics ; Female ; Anaplasma/isolation & purification/genetics/classification ; Male ; Prevalence ; }, abstract = {BACKGROUND: The Middle East and North Africa (MENA) offer optimal climatic conditions for tick reproduction and dispersal. Research on tick-borne pathogens in this region is scarce. Despite recent advances in the characterization and taxonomic explanation of various tick-borne illnesses affecting animals in Egypt, no comprehensive examination of TBP (tick-borne pathogen) statuses has been performed. Therefore, the present study aims to detect the prevalence of pathogens harbored by ticks in Egypt.

A four-year PCR-based study was conducted to detect a wide range of tick-borne pathogens (TBPs) harbored by three economically important tick species in Egypt. Approximately 86.7% (902/1,040) of the investigated Hyalomma dromedarii ticks from camels were found positive with Candidatus Anaplasma camelii (18.8%), Ehrlichia ruminantium (16.5%), Rickettsia africae (12.6%), Theileria annulata (11.9%), Mycoplasma arginini (9.9%), Borrelia burgdorferi (7.7%), Spiroplasma-like endosymbiont (4.0%), Hepatozoon canis (2.4%), Coxiella burnetii (1.6%) and Leishmania infantum (1.3%). Double co-infections were recorded in 3.0% (27/902) of Hy. dromedarii ticks, triple co-infections (simultaneous infection of the tick by three pathogen species) were found in 9.6% (87/902) of Hy. dromedarii ticks, whereas multiple co-infections (simultaneous infection of the tick by ≥ four pathogen species) comprised 12% (108/902). Out of 1,435 investigated Rhipicephalus rutilus ticks collected from dogs and sheep, 816 (56.9%) ticks harbored Babesia canis vogeli (17.1%), Rickettsia conorii (16.2%), Ehrlichia canis (15.4%), H. canis (13.6%), Bo. burgdorferi (9.7%), L. infantum (8.4%), C. burnetii (7.3%) and Trypanosoma evansi (6.6%) in dogs, and 242 (16.9%) ticks harbored Theileria lestoquardi (21.6%), Theileria ovis (20.0%) and Eh. ruminantium (0.3%) in sheep. Double, triple, and multiple co-infections represented 11% (90/816), 7.6% (62/816), and 10.3% (84/816), respectively in Rh. rutilus from dogs, whereas double and triple co-infections represented 30.2% (73/242) and 2.1% (5/242), respectively in Rh. rutilus from sheep. Approximately 92.5% (1,355/1,465) of Rhipicephalus annulatus ticks of cattle carried a burden of Anaplasma marginale (21.3%), Babesia bigemina (18.2%), Babesia bovis (14.0%), Borrelia theleri (12.8%), R. africae (12.4%), Th. annulata (8.7%), Bo. burgdorferi (2.7%), and Eh. ruminantium (2.5%). Double, triple, and multiple co-infections represented 1.8% (25/1,355), 11.5% (156/1,355), and 12.9% (175/1,355), respectively. The detected pathogens' sequences had 98.76-100% similarity to the available database with genetic divergence ranged between 0.0001 to 0.0009% to closest sequences from other African, Asian, and European countries. Phylogenetic analysis revealed close similarities between the detected pathogens and other isolates mostly from African and Asian countries.

CONCLUSIONS/SIGNIFICANCE: Continuous PCR-detection of pathogens transmitted by ticks is necessary to overcome the consequences of these infection to the hosts. More restrictions should be applied from the Egyptian authorities on animal importations to limit the emergence and re-emergence of tick-borne pathogens in the country. This is the first in-depth investigation of TBPs in Egypt.}, } @article {pmid38835259, year = {2024}, author = {Choi, A and Seong, JW and Kim, JH and Lee, JY and Cho, HJ and Kang, SA and Park, MK and Jeong, MJ and Choi, SY and Jeong, YJ and Yu, HS}, title = {Presence and diversity of free-living amoebae and their potential application as water quality indicators.}, journal = {Parasites, hosts and diseases}, volume = {62}, number = {2}, pages = {180-192}, doi = {10.3347/PHD.24020}, pmid = {38835259}, issn = {2982-6799}, mesh = {*Amoeba/genetics/isolation & purification/classification ; *Water Quality ; Phylogeny ; Rivers/parasitology ; DNA, Protozoan/genetics ; Acanthamoeba/genetics/isolation & purification/classification ; RNA, Ribosomal, 18S/genetics ; DNA, Ribosomal/genetics ; Biodiversity ; Sequence Analysis, DNA/methods ; RNA, Ribosomal, 16S/genetics ; }, abstract = {Free-living amoebae (FLA) are found in diverse environments, such as soils, rivers, and seas. Hence, they can be used as bioindicators to assess the water quality based solely on their presence. In this study, we determined the presence of FLA in river water by filtering water samples collected from various sites and culturing the resulting filtrates. FLA were detected in all the water samples with varying quality grades (Grades Ι-V). The significant increase in the size of the amoebae population with the deterioration in the water quality. Monoxenic cultures of the amoebae were performed, and genomic DNAs were isolated, among which 18S rDNAs were sequenced to identify the amoeba species. Of the 12 species identified, 10 belonged to the Acanthamoeba genus; of the remaining 2 species, one was identified as Vannella croatica and the other as a species of Vermamoeba. Acanthamoeba was detected in samples with Grades Ι to VI quality, whereas the Vermamoeba species was present only in Grade Ι water. V. croatica was found exclusively in water with Grade ΙΙ quality. Following morphological observations, genomic DNA was sequenced using 16S rDNA to determine whether the species of Acanthamoeba harbored endosymbionts. Most of the isolated Acanthamoeba contained endosymbionts, among which 4 species of endogenous bacteria were identified and examined using transmission electron microscopy. This study provides evidence that the distribution of amoebae other than Acanthamoeba may be associated with water quality. However, further confirmation will be required based on accurate water quality ratings and assessments using a more diverse range of FLA.}, } @article {pmid38832800, year = {2024}, author = {Takasu, R and Izu, T and Nakabachi, A}, title = {A limited concentration range of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, promotes the in vitro gene expression with bacterial ribosomes.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0017024}, doi = {10.1128/spectrum.00170-24}, pmid = {38832800}, issn = {2165-0497}, abstract = {Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.}, } @article {pmid38832111, year = {2024}, author = {Cantin, LJ and Gregory, V and Blum, LN and Foster, JM}, title = {Dual RNA-seq in filarial nematodes and Wolbachia endosymbionts using RNase H based ribosomal RNA depletion.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1418032}, pmid = {38832111}, issn = {1664-302X}, abstract = {Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.}, } @article {pmid38827308, year = {2024}, author = {Miller, TC and Bentlage, B}, title = {Seasonal dynamics and environmental drivers of tissue and mucus microbiomes in the staghorn coral Acropora pulchra.}, journal = {PeerJ}, volume = {12}, number = {}, pages = {e17421}, pmid = {38827308}, issn = {2167-8359}, mesh = {Animals ; *Anthozoa/microbiology ; *Microbiota/physiology/genetics ; *Seasons ; *Coral Reefs ; Mucus/microbiology ; Seawater/microbiology ; Bacteria/classification/genetics/isolation & purification ; }, abstract = {BACKGROUND: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia.

METHODS: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition.

RESULTS: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.}, } @article {pmid38821141, year = {2024}, author = {Hudson, CM and Stalder, D and Vorburger, C}, title = {Clines of resistance to parasitoids: The multifarious effects of temperature on defensive symbioses in insects.}, journal = {Current opinion in insect science}, volume = {}, number = {}, pages = {101208}, doi = {10.1016/j.cois.2024.101208}, pmid = {38821141}, issn = {2214-5753}, abstract = {Insects are frequently infected with heritable bacterial endosymbionts. Some of them confer resistance to parasitoids. Such defensive symbionts are sensitive to variation in temperature. Drawing predominantly from the literature on aphids and flies, we show that temperature can affect the reliability of maternal transmission and the strength of protection provided by defensive symbionts. Costs of infection with defensive symbionts can also be temperature-dependent and may even turn into benefits under extreme temperatures, e.g. when defensive symbionts increase heat tolerance. Alone or in combination, these mechanisms can drive temperature-associated (latitudinal) clines of infection prevalence with defensive symbionts. This has important consequences for host-parasitoid coevolution, as the relative importance of host-encoded vs. symbiont-provided defenses will shift along such clines.}, } @article {pmid38813885, year = {2024}, author = {Bennett, GM and Kwak, Y and Maynard, R}, title = {Endosymbioses have shaped the evolution of biological diversity and complexity time and time again.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evae112}, pmid = {38813885}, issn = {1759-6653}, abstract = {Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution (MBE) and Genome Biology and Evolution (GBE) have provided an essential window into how endosymbioses have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in MBE and GBE, and insights from the field at large. The accumulated work clearly illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to the nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g., mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other, but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.}, } @article {pmid38804043, year = {2024}, author = {Owens, LA and Thurber, MI and Goldberg, TL}, title = {CRISPR-Cas9-mediated host signal reduction for 18S metabarcoding of host-associated eukaryotes.}, journal = {Molecular ecology resources}, volume = {}, number = {}, pages = {e13980}, doi = {10.1111/1755-0998.13980}, pmid = {38804043}, issn = {1755-0998}, support = {1R01AG049395-01/HI/NHLBI NIH HHS/United States ; 1R21AI163592-01/HI/NHLBI NIH HHS/United States ; T32AI007414/HI/NHLBI NIH HHS/United States ; }, abstract = {Metabarcoding-based methods for identification of host-associated eukaryotes have the potential to revolutionize parasitology and microbial ecology, yet significant technical challenges remain. In particular, highly abundant host reads can mask the presence of less-abundant target organisms, especially for sample types rich in host DNA (e.g., blood and tissues). Here, we present a new CRISPR-Cas9-mediated approach designed to reduce host signal by selective amplicon digestion, thus enriching clinical samples for eukaryotic endosymbiont sequences during metabarcoding. Our method achieves a nearly 76% increased efficiency in host signal reduction compared with no treatment and a nearly 60% increased efficiency in host signal reduction compared with the most commonly used published method. Furthermore, the application of our method to clinical samples allows for the detection of parasite infections that would otherwise have been missed.}, } @article {pmid38797544, year = {2024}, author = {Ichegiri, A and Kodolikar, K and Bagade, V and Selukar, M and Dey, T}, title = {Mitochondria: A source of potential biomarkers for non-communicable diseases.}, journal = {Advances in clinical chemistry}, volume = {121}, number = {}, pages = {334-365}, doi = {10.1016/bs.acc.2024.04.007}, pmid = {38797544}, issn = {2162-9471}, mesh = {Humans ; *Biomarkers/metabolism/analysis ; *Mitochondria/metabolism ; *Noncommunicable Diseases ; Neoplasms/metabolism/diagnosis ; Animals ; Cardiovascular Diseases/metabolism/diagnosis ; }, abstract = {Mitochondria, as an endosymbiont of eukaryotic cells, controls multiple cellular activities, including respiration, reactive oxygen species production, fatty acid synthesis, and death. Though the majority of functional mitochondrial proteins are translated through a nucleus-controlled process, very few of them (∼10%) are translated within mitochondria through their own machinery. Germline and somatic mutations in mitochondrial and nuclear DNA significantly impact mitochondrial homeostasis and function. Such modifications disturbing mitochondrial biogenesis, metabolism, or mitophagy eventually resulted in cellular pathophysiology. In this chapter, we discussed the impact of mitochondria and its dysfunction on several non-communicable diseases like cancer, diabetes, neurodegenerative, and cardiovascular problems. Mitochondrial dysfunction and its outcome could be screened by currently available omics-based techniques, flow cytometry, and high-resolution imaging. Such characterization could be evaluated as potential biomarkers to assess the disease burden and prognosis.}, } @article {pmid38796552, year = {2024}, author = {Wijegunawardana, NDAD and Gunawardene, YINS and Abeyewickreme, W and Chandrasena, TGAN and Thayanukul, P and Kittayapong, P}, title = {Diversity of Wolbachia infections in Sri Lankan mosquitoes with a new record of Wolbachia Supergroup B infecting Aedes aegypti vector populations.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {11966}, pmid = {38796552}, issn = {2045-2322}, mesh = {Animals ; *Wolbachia/genetics/isolation & purification ; *Aedes/microbiology/virology ; Sri Lanka ; *Mosquito Vectors/microbiology ; *Phylogeny ; Female ; Male ; RNA, Ribosomal, 16S/genetics ; Multilocus Sequence Typing/methods ; }, abstract = {Wolbachia bacteria are common endosymbionts of insects and have recently been applied for controlling arboviral vectors, especially Aedes aegypti mosquito populations. However, several medically important mosquito species in Sri Lanka were present with limited information for the Wolbachia infection status. Therefore, the screening of Wolbachia in indigenous mosquitoes is required prior to a successful application of Wolbachia-based vector control strategy. In this study, screening of 78 mosquito species collected from various parts of the country revealed that 13 species were positive for Wolbachia infection, giving ~ 17% infection frequency of Wolbachia among the Sri Lankan mosquitoes. Twelve Wolbachia-positive mosquito species were selected for downstream Wolbachia strain genotyping using Multi Locus Sequencing Type (MLST), wsp gene, and 16S rRNA gene-based approaches. Results showed that these Wolbachia strains clustered together with the present Wolbachia phylogeny of world mosquito populations with some variations. Almost 90% of the mosquito populations were infected with supergroup B while the remaining were infected with supergroup A. A new record of Wolbachia supergroup B infection in Ae. aegypti, the main vectors of dengue, was highlighted. This finding was further confirmed by real-time qPCR, revealing Wolbachia density variations between Ae. aegypti and Ae. albopictus (p = 0.001), and between males and females (p < 0.05). The evidence of natural Wolbachia infections in Ae. aegypti populations in Sri Lanka is an extremely rare incident that has the potential to be used for arboviral vector control.}, } @article {pmid38792834, year = {2024}, author = {Moerbeck, L and Parreira, R and Szczotko, M and Seixas, G and Velez, R and Dmitryjuk, M and Santos, AS and Domingos, A and Antunes, S}, title = {Ticks and Tick-Borne Pathogens Circulating in Peri-Domestic Areas in Mainland Portugal.}, journal = {Microorganisms}, volume = {12}, number = {5}, pages = {}, doi = {10.3390/microorganisms12051006}, pmid = {38792834}, issn = {2076-2607}, support = {2022.14376.BD//Fundação para a Ciência e Tecnologia/ ; }, abstract = {Over the years, tick-borne pathogens (TBPs) have garnered significant interest due to their medical, veterinary and economic importance. Additionally, TBPs have drawn attention to how these microorganisms interact with their own vectors, increasing the risk to human and animal infection of emerging and reemerging zoonoses. In this sense, ticks, which are obligate hematophagous ectoparasites, have a key role in maintaining and transmitting TBPs among humans and animals. The aim of this study was to assess the prevalence of neglected TBPs in mainland Portugal, namely Anaplasma spp., Babesia spp., Ehrlichia spp. and Neoehrlichia mikurensis. DNA fragments were detected in questing ticks collected from five different ecological areas under investigation. To the best of the authors' knowledge, this study reports new worldwide findings, including B. bigemina infecting Ixodes frontalis, Ixodes ricinus and Rhipicephalus sanguineus sensu lato. Additionally, it presents new findings in Portugal of N. mikurensis infecting I. ricinus and of presumably Wolbachia endosymbionts being detected in I. ricinus. Overall, there were 208 tick samples that were negative for all screened TBPs. The results herein obtained raise concerns about the circulation of neglected TBPs in mainland Portugal, especially in anthropophilic ticks, highlighting the importance of adopting a One Health perspective.}, } @article {pmid38786870, year = {2024}, author = {Shi, Z and Luo, M and Yuan, J and Gao, B and Yang, M and Wang, G}, title = {CRISPR/Cas9-Based Functional Characterization of SfUGT50A15 Reveals Its Roles in the Resistance of Spodoptera frugiperda to Chlorantraniliprole, Emamectin Benzoate, and Benzoxazinoids.}, journal = {Insects}, volume = {15}, number = {5}, pages = {}, doi = {10.3390/insects15050314}, pmid = {38786870}, issn = {2075-4450}, support = {No. KQTD20180411143628272//Shenzhen Science and Technology Program/ ; No. PT202101-02//science technology innovation and industrial development of Shenzhen Dapeng New Distric/ ; 32202305//the Youth Program of National Natural Science Foundation of China/ ; 2022M723451//China Postdoctoral Science Foundation/ ; }, abstract = {UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs).}, } @article {pmid38786149, year = {2024}, author = {Löckener, I and Behrmann, LV and Reuter, J and Schiefer, A and Klöckner, A and Krannich, S and Otten, C and Mölleken, K and Ichikawa, S and Hoerauf, A and Schneider, T and Pfarr, KM and Henrichfreise, B}, title = {The MraY Inhibitor Muraymycin D2 and Its Derivatives Induce Enlarged Cells in Obligate Intracellular Chlamydia and Wolbachia and Break the Persistence Phenotype in Chlamydia.}, journal = {Antibiotics (Basel, Switzerland)}, volume = {13}, number = {5}, pages = {}, doi = {10.3390/antibiotics13050421}, pmid = {38786149}, issn = {2079-6382}, support = {398967434 - TRR261//Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)/ ; N.a.//BONFOR intramural funding program, Medical Faculty of Bonn University/ ; N.a.//Jürgen Manchot foundation/ ; N.a.//FEMHABIL, Medical Faculty, University of Bonn/ ; JP22H02738//JSPS KAKENHI Grant-in-Aid for Scientific Research (B)/ ; JP22ama121039//AMED/ ; N.a.//Studienstiftung des deutschen Volkes/ ; }, abstract = {Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.}, } @article {pmid38784393, year = {2024}, author = {Scott, TJ and Stephenson, CJ and Rao, S and Queller, DC and Strassmann, JE}, title = {Unpredictable soil conditions can affect the prevalence of a microbial symbiosis.}, journal = {PeerJ}, volume = {12}, number = {}, pages = {e17445}, doi = {10.7717/peerj.17445}, pmid = {38784393}, issn = {2167-8359}, mesh = {*Symbiosis ; *Soil Microbiology ; *Dictyostelium/microbiology ; Burkholderiaceae/isolation & purification ; Soil/chemistry ; United States/epidemiology ; Chlamydia/isolation & purification ; }, abstract = {The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.}, } @article {pmid38778070, year = {2024}, author = {Liu, HQ and Li, HJ and Pan, Q and Xiang, YZ}, title = {Endosymbionts of citrus leafminer Phyllocnistis citrella Stainton among different citrus orchards in China.}, journal = {Scientific data}, volume = {11}, number = {1}, pages = {519}, pmid = {38778070}, issn = {2052-4463}, mesh = {*Citrus/microbiology ; China ; Animals ; *Symbiosis ; *RNA, Ribosomal, 16S/genetics ; Moths/microbiology ; Bacteria/classification/genetics ; Larva/microbiology ; }, abstract = {Endosymbionts regulate the behavior of pest species, which could provide insights into their control. The citrus leafminer (Phyllocnistis citrella Stainton) is a widely distributed pest associated with diseases of citrus, especially of young trees. Here, we determined the endosymbiont composition of P. citrella in citrus orchards across China. The resulting dataset comprised average 50,430 high-quality reads for bacterial 16S rRNA V3-V4 regions of endosymbionts from 36 P. citrella larvae sampled from 12 citrus orchards across China. The sequencing depth and sampling size of this dataset were sufficient to reveal most of the endosymbionts of P. citrella. In total, 2,875 bacterial amplicon sequence variants were obtained; taxonomic analysis revealed a total of 372 bacterial genera, most of which were Proteobacteria phylum with Undibacterium being the most abundant genus. This dataset provides the first evidence of P. citrella endosymbionts that could support the development of pest management approaches in citrus orchards.}, } @article {pmid38776328, year = {2024}, author = {Khosravi, G and Akbarzadeh, K and Karimian, F and Koosha, M and Saeedi, S and Oshaghi, MA}, title = {A survey of Wolbachia infection in brachyceran flies from Iran.}, journal = {PloS one}, volume = {19}, number = {5}, pages = {e0301274}, doi = {10.1371/journal.pone.0301274}, pmid = {38776328}, issn = {1932-6203}, mesh = {*Wolbachia/genetics/isolation & purification ; Animals ; Iran ; *Diptera/microbiology ; *Phylogeny ; RNA, Ribosomal, 16S/genetics ; }, abstract = {Wolbachia is a maternally inherited intracellular bacterium that is considered to be the most plentiful endosymbiont found in arthropods. It reproductively manipulates its host to increase the chances of being transmitted to the insect progeny; and it is currently used as a means of suppressing disease vector populations or controlling vector-borne diseases. Studies of the dissemination and prevalence of Wolbachia among its arthropod hosts are important for its possible use as a biological control agent. The molecular identification of Wolbachia relies on different primers sets due to Wolbachia strain variation. Here, we screened for the presence of Wolbachia in a broad range of Brachycera fly species (Diptera), collected from different regions of Iran, using nine genetic markers (wsp, ftsZ, fbpA, gatB, CoxA, gltA, GroEL dnaA, and 16s rRNA), for detecting, assessing the sensitivity of primers for detection, and phylogeny of this bacterium. The overall incidence of Wolbachia among 22 species from six families was 27.3%. The most commonly positive fly species were Pollenia sp. and Hydrotaea armipes. However, the bacterium was not found in the most medically important flies or in potential human disease vectors, including Musca domestica, Sarcophaga spp., Calliphora vicinia, Lucilia sericata, and Chrysomya albiceps. The primer sets of 16s rRNA with 53.0% and gatB with 52.0% were the most sensitive primers for detecting Wolbachia. Blast search, phylogenetic, and MLST analysis of the different locus sequences of Wolbachia show that all the six distantly related fly species likely belonging to supergroup A. Our study showed some primer sets generated false negatives in many of the samples, emphasizing the importance of using different loci in detecting Wolbachia. The study provides the groundwork for future studies of a Wolbachia-based program for control of flies.}, } @article {pmid38775916, year = {2024}, author = {Yamazaki, T and Sawai, K and Takahashi, Y and Matsuo, J}, title = {Characterization of Actin-based Genotypes and Mycoplasma Endosymbionts of Trichomonas vaginalis Isolated in Sapporo, Japan.}, journal = {Acta parasitologica}, volume = {}, number = {}, pages = {}, pmid = {38775916}, issn = {1896-1851}, abstract = {PURPOSE: Trichomonas vaginalis is a causative agent of common non-viral sexually transmitted infections worldwide. However, the biological features, such as genotypes and endosymbionts, of T. vaginalis isolated in Japan remain unclear. The aim of this study was to characterize the actin-based genotypes and the endosymbionts of T. vaginalis isolated in Sapporo, Japan.

METHODS: Three T. vaginalis clinical strains were isolated in Sapporo, Japan between 2019 and 2022. Actin-based genotyping was conducted by sequencing and phylogenetic analyses. The endosymbionts, such as Mycoplasma sp. and Trichomonasvirus, were detected using PCR and RT-PCR, respectively. Furthermore, the detected Mycoplasma spp. were identified using 16S rRNA gene sequencing.

RESULTS: Of the three T. vaginalis strains, two belonged to genotype E, whereas one was genotype G as determined by actin-based genotyping. Two of the T. vaginalis strains harbored Mycoplasma spp. Using nearly full-length 16S rRNA gene sequencing, both were identified as Candidatus Mycoplasma girerdii. In contrast, the Trichomonasvirus was not found in the T. vaginalis strains.

CONCLUSION: To our knowledge, this is the first report on the characterization of actin-based genotypes and the presence of endosymbiotic Ca. M. girerdii in T. vaginalis strains in Japan. Thus, this study will provide an important impetus for future research.}, } @article {pmid38774968, year = {2024}, author = {Leybourne, DJ and Whitehead, MA and Will, T}, title = {Genetic diversity in vector populations influences the transmission efficiency of an important plant virus.}, journal = {Biology letters}, volume = {20}, number = {5}, pages = {20240095}, doi = {10.1098/rsbl.2024.0095}, pmid = {38774968}, issn = {1744-957X}, mesh = {*Aphids/virology/genetics ; Animals ; *Genetic Variation ; *Insect Vectors/virology/genetics ; *Plant Diseases/virology ; *Luteovirus/genetics/physiology ; Symbiosis ; }, abstract = {The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.}, } @article {pmid38774956, year = {2024}, author = {Strand, EL and Wong, KH and Farraj, A and Gray, S and McMenamin, A and Putnam, HM}, title = {Coral species-specific loss and physiological legacy effects are elicited by extended marine heatwave.}, journal = {The Journal of experimental biology}, volume = {}, number = {}, pages = {}, doi = {10.1242/jeb.246812}, pmid = {38774956}, issn = {1477-9145}, support = {1017848//National Institute of Food and Agriculture/ ; 1756623//National Science Foundation/ ; }, abstract = {Marine heatwaves are increasing in frequency and intensity, with potentially catastrophic consequences for marine ecosystems like coral reefs. An extended heatwave and recovery time-series that incorporates multiple stressors and is environmentally realistic can provide enhanced predictive capacity for performance under climate change conditions. We exposed common reef-building corals in Hawai'i, Montipora capitata and Pocillopora acuta, to a two-month period of high temperature and high pCO2 conditions or ambient conditions in a factorial design, followed by two months of ambient conditions. High temperature, rather than high pCO2, drove multivariate physiology shifts through time in both species, including decreases in respiration rates and endosymbiont densities. Pocillopora acuta exhibited more significantly negatively altered physiology, substantially higher bleaching, and mortality than M. capitata. The sensitivity of P. acuta appears to be driven by higher baseline rates of photosynthesis paired with lower host antioxidant capacity, creating an increased sensitivity to oxidative stress. Thermal tolerance of M. capitata may be partly due to harboring a mixture of Cladocopium and Durusdinium spp., while P. acuta was dominated by other distinct Cladocopium spp. Only M. capitata survived the experiment, but physiological state in heatwave-exposed M. capitata remained significantly diverged at the end of recovery relative to individuals that experienced ambient conditions. In future climate scenarios, particularly marine heatwaves, our results indicate a species-specific loss of corals that is driven by baseline host and symbiont physiological differences as well as Symbiodiniaceae community compositions with the surviving species experiencing physiological legacies that are likely to influence future stress responses.}, } @article {pmid38772333, year = {2024}, author = {Miyata, M and Nomura, M and Kageyama, D}, title = {Rapid spread of a vertically transmitted symbiont induces drastic shifts in butterfly sex ratio.}, journal = {Current biology : CB}, volume = {34}, number = {10}, pages = {R490-R492}, doi = {10.1016/j.cub.2024.04.027}, pmid = {38772333}, issn = {1879-0445}, mesh = {Animals ; *Sex Ratio ; *Wolbachia/physiology/genetics ; *Symbiosis ; *Butterflies/microbiology/physiology/genetics ; Female ; Male ; }, abstract = {The causes and consequences of sex-ratio dynamics constitutes a pivotal subject in evolutionary biology[1]. Under conditions of evolutionary equilibrium, the male-to-female ratio tends to be approximately 1:1; however, this equilibrium is susceptible to distortion by selfish genetic elements exemplified by driving sex chromosomes and cytoplasmic elements[2][,][3]. Although previous studies have documented instances of these genetic elements distorting the sex ratio, studies specifically tracking the process with which these distorters spread within populations, leading to a transition from balanced parity to a skewed, female-biased state, are notably lacking. Herein, we present compelling evidence documenting the rapid spread of the cytoplasmic endosymbiont Wolbachia within a localized population of the pierid butterfly Eurema hecabe (Figure 1A). This spread resulted in a shift in the sex ratio from near parity to an exceedingly skewed state overwhelmingly biased toward females, reaching 93.1% within a remarkably brief period of 4 years.}, } @article {pmid38754618, year = {2024}, author = {Soleymani, E and Fakhar, M and Davoodi, L and Motavallihaghi, S and Sharifpour, A and Maghsood, AH}, title = {Isolation, characterization, and pathogenicity assay of Acanthamoeba and its endosymbionts in respiratory disorders and COVID-19 hospitalized patients, northern Iran.}, journal = {Experimental parasitology}, volume = {}, number = {}, pages = {108774}, doi = {10.1016/j.exppara.2024.108774}, pmid = {38754618}, issn = {1090-2449}, abstract = {Acanthamoeba spp., are common free-living amoebae found in nature that can serve as reservoirs for certain microorganisms. The SARS-CoV-2 virus is a newly emerged respiratory infection, and the investigation of parasitic infections remains an area of limited research. Given that Acanthamoeba can act as a host for various endosymbiotic microbial pathogens and its pathogenicity assay is not fully understood, this study aimed to identify Acanthamoeba and its bacterial and fungal endosymbionts in patients with chronic respiratory disorders and hospitalized COVID-19 patients in northern Iran. Additionally, a pathogenicity assay was conducted on Acanthamoeba isolates. Urine, nasopharyngeal swab, and respiratory specimens were collected from two groups, and each sample was cultured on 1.5% non-nutrient agar medium. The cultures were then incubated at room temperature and monitored daily for a period of two weeks. Eight Acanthamoeba isolates were identified, and PCR was performed to confirm the presence of amoebae and identify their endosymbionts. Four isolates were found to have bacterial endosymbionts, including Stenotrophomonas maltophilia and Achromobacter sp., while two isolates harbored fungal endosymbionts, including an uncultured fungus and Gloeotinia sp. In the pathogenicity assay, five isolates exhibited a higher degree of pathogenicity compared to the other three. This study provides significant insights into the comorbidity of acanthamoebiasis and COVID-19 on a global scale, and presents the first evidence of Gloeotinia sp. as a fungal endosymbiont. Nevertheless, further research is required to fully comprehend the symbiotic patterns and establish effective treatment protocols.}, } @article {pmid38754321, year = {2024}, author = {Varasteh, T and Lima, MS and Silva, TA and da Cruz, MLR and Ahmadi, RA and Atella, GC and Attias, M and Swings, J and de Souza, W and Thompson, FL and Thompson, CC}, title = {The dispersant Corexit 9500 and (dispersed) oil are lethal to coral endosymbionts.}, journal = {Marine pollution bulletin}, volume = {203}, number = {}, pages = {116491}, doi = {10.1016/j.marpolbul.2024.116491}, pmid = {38754321}, issn = {1879-3363}, abstract = {Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 μg/l; Total Petroleum Hydrocarbons, 595 μg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.}, } @article {pmid38745070, year = {2024}, author = {Gimmi, E and Wallisch, J and Vorburger, C}, title = {Ecological divergence despite common mating sites: Genotypes and symbiotypes shed light on cryptic diversity in the black bean aphid species complex.}, journal = {Heredity}, volume = {}, number = {}, pages = {}, pmid = {38745070}, issn = {1365-2540}, support = {31003A_181969//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)/ ; 31003A_181969//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)/ ; 31003A_181969//Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)/ ; }, abstract = {Different host plants represent ecologically dissimilar environments for phytophagous insects. The resulting divergent selection can promote the evolution of specialized host races, provided that gene flow is reduced between populations feeding on different plants. In black bean aphids belonging to the Aphis fabae complex, several morphologically cryptic taxa have been described based on their distinct host plant preferences. However, host choice and mate choice are largely decoupled in these insects: they are host-alternating and migrate between specific summer host plants and shared winter hosts, with mating occurring on the shared hosts. This provides a yearly opportunity for gene flow among aphids using different summer hosts, and raises the question if and to what extent the ecologically defined taxa are reproductively isolated. Here, we analyzed a geographically and temporally structured dataset of microsatellite genotypes from A. fabae that were mostly collected from their main winter host Euonymus europaeus, and additionally from another winter host and fourteen summer hosts. The data reveals multiple, strongly differentiated genetic clusters, which differ in their association with different summer and winter hosts. The clusters also differ in the frequency of infection with two heritable, facultative endosymbionts, separately hinting at reproductive isolation and divergent ecological selection. Furthermore, we found evidence for occasional hybridization among genetic clusters, with putative hybrids collected more frequently in spring than in autumn. This suggests that similar to host races in other phytophagous insects, both prezygotic and postzygotic barriers including selection against hybrids maintain genetic differentiation among A. fabae taxa, despite a common mating habitat.}, } @article {pmid38743668, year = {2024}, author = {Felipin, KP and Paloschi, MV and Silva, MDS and Ikenohuchi, YJ and Santana, HM and Setúbal, SDS and Rego, CMA and Lopes, JA and Boeno, CN and Serrath, SN and De Medeiros, EHRT and Pimentel, IF and Oliveira, AER and Cupolillo, E and Cantanhêde, LM and Ferreira, RGM and Zuliani, JP}, title = {Transcriptomics analysis highlights potential ways in human pathogenesis in Leishmania braziliensis infected with the viral endosymbiont LRV1.}, journal = {PLoS neglected tropical diseases}, volume = {18}, number = {5}, pages = {e0012126}, doi = {10.1371/journal.pntd.0012126}, pmid = {38743668}, issn = {1935-2735}, mesh = {Humans ; *Leishmania braziliensis/genetics/immunology ; *Macrophages/immunology/virology ; *Leishmaniavirus/genetics ; Gene Expression Profiling ; Leishmaniasis, Cutaneous/immunology ; Brazil ; Symbiosis ; Cytokines/metabolism/genetics ; Transcriptome ; Leishmaniasis, Mucocutaneous/immunology/parasitology ; }, abstract = {The parasite Leishmania (Viannia) braziliensis is widely distributed in Brazil and is one of the main species associated with human cases of different forms of tegumentary leishmaniasis (TL) such as cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). The mechanisms underlying the pathogenesis of TL are still not fully understood, but it is known that factors related to the host and the parasite act in a synergistic and relevant way to direct the response to the infection. In the host, macrophages have a central connection with the parasite and play a fundamental role in the defense of the organism due to their ability to destroy intracellular parasites and present antigens. In the parasite, some intrinsic factors related to the species or even the strain analyzed are fundamental for the outcome of the disease. One of them is the presence of Leishmania RNA Virus 1 (LRV1), an endosymbiont virus that parasitizes some species of Leishmania that triggers a cascade of signals leading to a more severe TL phenotype, such as ML. One of the strategies for understanding factors associated with the immune response generated after Leishmania/host interaction is through the analysis of molecular patterns after infection. Thus, the gene expression profile in human monocyte-derived macrophages obtained from healthy donors infected in vitro with L. braziliensis positive (LbLRV1+) and negative (LbLRV1-) for LRV1 was evaluated. For this, the microarray assay was used and 162 differentially expressed genes were identified in the comparison LbLRV1+ vs. LbLRV1-, 126 upregulated genes for the type I and II interferons (IFN) signaling pathway, oligoadenylate synthase OAS/RNAse L, non-genomic actions of vitamin D3 and RIG-I type receptors, and 36 down-regulated. The top 10 downregulated genes along with the top 10 upregulated genes were considered for analysis. Type I interferon (IFNI)- and OAS-related pathways results were validated by RT-qPCR and Th1/Th2/Th17 cytokines were analyzed by Cytometric Bead Array (CBA) and enzyme-linked immunosorbent assay (ELISA). The microarray results validated by RT-qPCR showed differential expression of genes related to IFNI-mediated pathways with overexpression of different genes in cells infected with LbLRV1+ compared to LbLRV1- and to the control. No significant differences were found in cytokine levels between LbLRV1+ vs. LbLRV1- and control. The data suggest the activation of gene signaling pathways associated with the presence of LRV1 has not yet been reported so far. This study demonstrates, for the first time, the activation of the OAS/RNase L signaling pathway and the non-genomic actions of vitamin D3 when comparing infections with LbLRV1+ versus LbLRV1- and the control. This finding emphasizes the role of LRV1 in directing the host's immune response after infection, underlining the importance of identifying LRV1 in patients with TL to assess disease progression.}, } @article {pmid38742892, year = {2024}, author = {Martyn, C and Hayes, BM and Lauko, D and Midthun, E and Castaneda, G and Bosco-Lauth, A and Salkeld, DJ and Kistler, A and Pollard, KS and Chou, S}, title = {Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements.}, journal = {mSystems}, volume = {}, number = {}, pages = {e0032124}, doi = {10.1128/msystems.00321-24}, pmid = {38742892}, issn = {2379-5077}, abstract = {UNLABELLED: Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks.

IMPORTANCE: Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.}, } @article {pmid38742878, year = {2024}, author = {Mies, US and Hervé, V and Kropp, T and Platt, K and Sillam-Dussès, D and Šobotník, J and Brune, A}, title = {Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates.}, journal = {mBio}, volume = {}, number = {}, pages = {e0082624}, doi = {10.1128/mbio.00826-24}, pmid = {38742878}, issn = {2150-7511}, abstract = {Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.}, } @article {pmid38732070, year = {2024}, author = {Zhang, J and Liu, Q and Dai, L and Zhang, Z and Wang, Y}, title = {Pan-Genome Analysis of Wolbachia, Endosymbiont of Diaphorina citri, Reveals Independent Origin in Asia and North America.}, journal = {International journal of molecular sciences}, volume = {25}, number = {9}, pages = {}, doi = {10.3390/ijms25094851}, pmid = {38732070}, issn = {1422-0067}, support = {2021YFD1400805//Nation Key R & D Program of China/ ; 31672031//National Natural Science Foundation of China/ ; 32272537//National Natural Science Foundation of China/ ; }, mesh = {*Wolbachia/genetics/classification ; *Symbiosis/genetics ; *Genome, Bacterial ; Animals ; *Phylogeny ; Asia ; North America ; Hemiptera/microbiology/genetics ; Diptera/microbiology/genetics ; Polymorphism, Single Nucleotide ; }, abstract = {Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).}, } @article {pmid38725798, year = {2024}, author = {Setegn, A and Amare, GA and Mihret, Y}, title = {Wolbachia and Lymphatic Filarial Nematodes and Their Implications in the Pathogenesis of the Disease.}, journal = {Journal of parasitology research}, volume = {2024}, number = {}, pages = {3476951}, doi = {10.1155/2024/3476951}, pmid = {38725798}, issn = {2090-0023}, abstract = {Lymphatic filariasis (LF) is an infection of three closely related filarial worms such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. These worms can cause a devastating disease that involves acute and chronic lymphoedema of the extremities, which can cause elephantiasis in both sexes and hydroceles in males. These important public health nematodes were found to have a mutualistic relationship with intracellular bacteria of the genus Wolbachia, which is essential for the development and survival of the nematode. The host's inflammatory response to parasites and possibly also to the Wolbachia endosymbiont is the cause of lymphatic damage and disease pathogenesis. This review tried to describe and highlight the mutualistic associations between Wolbachia and lymphatic filarial nematodes and the role of bacteria in the pathogenesis of lymphatic filariasis. Articles for this review were searched from PubMed, Google Scholar, and other databases. Article searching was not restricted by publication year; however, only English version full-text articles were included.}, } @article {pmid38721335, year = {2024}, author = {Nahusenay, G and Wolde, G and Tena, W and Tamiru, T}, title = {Chickpea (Cicer arietinum L.) growth, nodulation, and yield as affected by varieties, Mesorhizobium strains, and NPSB fertilizer in Southern Ethiopia.}, journal = {Frontiers in plant science}, volume = {15}, number = {}, pages = {1372082}, pmid = {38721335}, issn = {1664-462X}, abstract = {A significant legume crop in Ethiopia, chickpeas (Cicer arietinum L.) have several advantages, including high nutritional value and the capacity to improve soils deficient in nitrogen through biological nitrogen fixation using several endosymbiotic Mesorhizobium spp. strains. However, the host variety, the soil's capacity to hold nutrients, and the endosymbiont's innate physiological traits all affect how efficient the strains are. The primary obstacles to its cultivation in the research area are inadequate agronomic methods and low soil fertility [low nitrogen (N), low soil organic matter (OM), low accessible phosphorous (P), sulfur (S), and boron (B)], which results in ineffective nodulation. To evaluate the effects of NPSB fertilization and inoculation, a field experiment was carried out in Buchach Kebele's Cheha area during the primary cropping season of 2021/22. The trial included two chickpea kinds (Local and Arerti), two NPSB levels (zero and 121 kg NPSB ha[-1]), and four levels of Mesorhizobium strains (CP-M41, CP-EAL 029, CP-M20b, and un-inoculated control). A randomized complete block design (RCBD) was used to organize the treatments in a factorial form with three replications. In comparison to the single application and the control, the interaction impact of strains, NPSB fertilizer, and variety greatly increased nodulation parameters, growth parameters, yield, and yield components. The Arerti variety combined with the CP-M41 Mesorhizobium strain and NPSB fertilizer had the maximum grain production (3177.16 kg ha[-1]). It yielded 15.96%, 24.06%, and 37.93% more than the Arerti with CP-M41 strain, Arerti with NPSB, and the control treatments, respectively. The partial budget analysis of the study treatments showed that the Arerti variety with the combined application of 121 kg NPSB ha-1 and Mesorhizobium strain CP-M41 inoculation produced the highest net return (102,092.6 ETB ha[-1]) with an acceptable marginal rate of return (618%). It has been found that the CP-M41 strain and the Arerti variety, when combined with 121 kg NPSB ha[-1] application, is a suitable treatment combination to achieve increased chickpea crop yield and profit in the studied area. However, the results need further validation in the farmer's field before recommending to farmers.}, } @article {pmid38719945, year = {2024}, author = {Zhang, Y and Chen, H and Lian, C and Cao, L and Guo, Y and Wang, M and Zhong, Z and Li, M and Zhang, H and Li, C}, title = {Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {10540}, pmid = {38719945}, issn = {2045-2322}, support = {42030407//National Natural Science Foundation of China/ ; 2022QNLM030004//Laoshan Laboratory/ ; ZDBS-LY-DQC032//the Key Research Program of Frontier Sciences/ ; XDA22050303//the Strategic Priority Research Program of the Chinese Academy of Sciences/ ; }, mesh = {Animals ; *Metagenomics/methods ; *Bacteriophages/genetics/isolation & purification ; *Gills/microbiology/virology/metabolism ; *Bivalvia/microbiology/virology/genetics ; Gene Expression Profiling ; Transcriptome ; Virome/genetics ; Bacteria/genetics/classification ; Symbiosis/genetics ; Metagenome ; }, abstract = {Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.}, } @article {pmid38715450, year = {2024}, author = {Ali, M and Rice, CA and Byrne, AW and Paré, PE and Beauvais, W}, title = {Modelling dynamics between free-living amoebae and bacteria.}, journal = {Environmental microbiology}, volume = {26}, number = {5}, pages = {e16623}, doi = {10.1111/1462-2920.16623}, pmid = {38715450}, issn = {1462-2920}, support = {NSF-ECCS #2238388//National Science Foundation/ ; }, mesh = {*Amoeba/microbiology ; *Bacteria ; *Symbiosis ; Models, Biological ; Bacterial Physiological Phenomena ; Models, Theoretical ; Animals ; }, abstract = {Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.}, } @article {pmid38712948, year = {2024}, author = {Maeda, GP and Kelly, MK and Sundar, A and Moran, NA}, title = {Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission.}, journal = {mBio}, volume = {}, number = {}, pages = {e0325323}, doi = {10.1128/mbio.03253-23}, pmid = {38712948}, issn = {2150-7511}, abstract = {UNLABELLED: Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long-term vertical transmission has repeatedly resulted in genome reduction and gene loss, rendering many such bacteria incapable of establishment in axenic culture. Among aphids, heritable endosymbionts often provide context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum. Whole-genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting that the cultivation techniques used here may be applicable to Ca. F. symbiotica strains from distantly related aphids. Microinjection of cultured Ca. F. symbiotica into uninfected aphids revealed that it can reinfect developing embryos and that infections are maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit phenotypic and life history traits similar to those observed for native infections. Our results show that Ca. F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying host-symbiont interactions in a heritable symbiosis.

IMPORTANCE: Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true for the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections, making this host-symbiont pair a useful experimental system.}, } @article {pmid38707843, year = {2024}, author = {Moulin, SLY and Frail, S and Braukmann, T and Doenier, J and Steele-Ogus, M and Marks, JC and Mills, MM and Yeh, E}, title = {The endosymbiont of Epithemia clementina is specialized for nitrogen fixation within a photosynthetic eukaryote.}, journal = {ISME communications}, volume = {4}, number = {1}, pages = {ycae055}, pmid = {38707843}, issn = {2730-6151}, abstract = {Epithemia spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or diazoplasts, derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity. Here, we report a newly-isolated species, E. clementina, as a model to investigate endosymbiotic acquisition of nitrogen fixation. We demonstrate that the diazoplast, which has lost photosynthesis, provides fixed nitrogen to the diatom host in exchange for fixed carbon. To identify the metabolic changes associated with this endosymbiotic specialization, we compared the Epithemia diazoplast with its close, free-living cyanobacterial relative, Crocosphaera subtropica. Unlike C. subtropica, in which nitrogenase activity is temporally separated from photosynthesis, we show that nitrogenase activity in the diazoplast is continuous through the day (concurrent with host photosynthesis) and night. Host and diazoplast metabolism are tightly coupled to support nitrogenase activity: Inhibition of photosynthesis abolishes daytime nitrogenase activity, while nighttime nitrogenase activity no longer requires cyanobacterial glycogen storage pathways. Instead, import of host-derived carbohydrates supports nitrogenase activity throughout the day-night cycle. Carbohydrate metabolism is streamlined in the diazoplast compared to C. subtropica with retention of the oxidative pentose phosphate pathway and oxidative phosphorylation. Similar to heterocysts, these pathways may be optimized to support nitrogenase activity, providing reducing equivalents and ATP and consuming oxygen. Our results demonstrate that the diazoplast is specialized for endosymbiotic nitrogen fixation. Altogether, we establish a new model for studying endosymbiosis, perform a functional characterization of this diazotroph endosymbiosis, and identify metabolic adaptations for endosymbiotic acquisition of a critical biological function.}, } @article {pmid38706926, year = {2024}, author = {Katoch, M and Singh, G and Bijarnia, E and Gupta, AP and Azeem, M and Rani, P and Kumar, J}, title = {Biodiversity of endosymbiont fungi associated with a marine sponge Lamellodysidea herbacea and their potential as antioxidant producers.}, journal = {3 Biotech}, volume = {14}, number = {5}, pages = {146}, pmid = {38706926}, issn = {2190-572X}, abstract = {UNLABELLED: This study aims to isolate endosymbiontic fungi from the marine sponge Lamellodysidea herbacea and to explore their antioxidant potential. Marine-derived fungi, with their vast biodiversity, are considered a promising source of novel antioxidants which can replace synthetic ones. Marine sponges have previously reported bioactive properties that could ameliorate oxidative stress, particularly their associated fungi, producing high-frequency bioactive molecules (adaptogenic molecules) in response to stressors. 19 endosymbiont fungi associated with marine sponges were isolated, and their extracts were evaluated for their antioxidant capacities. Extract of an endosymbiont fungus, isolate SPG6, identified as Alternaria destruens, through surface electron microscopy (SEM) and ITS gene sequencing, showed broad range antioxidant activities (EC50 values) (free radical scavenging 32.54 mg L[-1], Hydroxyl radical scavenging activity < 0.078 g L[-1], total reducing power 0.114 g L[-1], Chelating power 0.262 g L[-1], H2O2 scavenging activity < 0.078 g L[-1], and Superoxide radical scavenging activity > 5.0 g L[-1]). The extract of isolate SPG6 was fractioned and analyzed through GC-MS. Marine sponge-associated endosymbiont fungi are a rich source of antioxidant molecules.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03972-1.}, } @article {pmid38705185, year = {2024}, author = {Łukasik, P and Kolasa, MR}, title = {With a little help from my friends: the roles of microbial symbionts in insect populations and communities.}, journal = {Philosophical transactions of the Royal Society of London. Series B, Biological sciences}, volume = {379}, number = {1904}, pages = {20230122}, doi = {10.1098/rstb.2023.0122}, pmid = {38705185}, issn = {1471-2970}, mesh = {Animals ; *Insecta/microbiology/physiology ; *Symbiosis ; *Microbiota/physiology ; Biodiversity ; }, abstract = {To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.}, } @article {pmid38704391, year = {2024}, author = {Renoz, F and Parisot, N and Baa-Puyoulet, P and Gerlin, L and Fakhour, S and Charles, H and Hance, T and Calevro, F}, title = {PacBio Hi-Fi genome assembly of Sipha maydis, a model for the study of multipartite mutualism in insects.}, journal = {Scientific data}, volume = {11}, number = {1}, pages = {450}, pmid = {38704391}, issn = {2052-4463}, support = {J.0082.23//Fonds De La Recherche Scientifique - FNRS (Belgian National Fund for Scientific Research)/ ; }, mesh = {Animals ; *Symbiosis ; *Aphids/genetics ; *Genome, Bacterial ; }, abstract = {Dependence on multiple nutritional endosymbionts has evolved repeatedly in insects feeding on unbalanced diets. However, reference genomes for species hosting multi-symbiotic nutritional systems are lacking, even though they are essential for deciphering the processes governing cooperative life between insects and anatomically integrated symbionts. The cereal aphid Sipha maydis is a promising model for addressing these issues, as it has evolved a nutritional dependence on two bacterial endosymbionts that complement each other. In this study, we used PacBio High fidelity (HiFi) long-read sequencing to generate a highly contiguous genome assembly of S. maydis with a length of 410 Mb, 3,570 contigs with a contig N50 length of 187 kb, and BUSCO completeness of 95.5%. We identified 117 Mb of repetitive sequences, accounting for 29% of the genome assembly, and predicted 24,453 protein-coding genes, of which 2,541 were predicted enzymes included in an integrated metabolic network with the two aphid-associated endosymbionts. These resources provide valuable genetic and metabolic information for understanding the evolution and functioning of multi-symbiotic systems in insects.}, } @article {pmid38701242, year = {2024}, author = {Roldán, EL and Stelinski, LL and Pelz-Stelinski, KS}, title = {Reduction of Wolbachia in Diaphorina citri (Hemiptera: Liviidae) increases phytopathogen acquisition and decreases fitness.}, journal = {Journal of economic entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jee/toae089}, pmid = {38701242}, issn = {1938-291X}, support = {2021-70029-36053//United States Department of Agriculture National Institute of Food and Agriculture/ ; }, abstract = {Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.}, } @article {pmid38693183, year = {2024}, author = {Moustafa, MAM and Mohamed, WMA and Chatanga, E and Nagib, D and Matsuno, K and Gofton, AW and Barker, SC and Nonaka, N and Nakao, R}, title = {Unraveling the phylogenetics of genetically closely related species, Haemaphysalis japonica and Haemaphysalis megaspinosa, using entire tick mitogenomes and microbiomes.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {9961}, pmid = {38693183}, issn = {2045-2322}, support = {16H06431//Japan Society for the Promotion of Science/ ; 19H03118//Japan Society for the Promotion of Science/ ; 19F19097//Japan Society for the Promotion of Science/ ; 20K21358//Japan Society for the Promotion of Science/ ; 20KK0151//Japan Society for the Promotion of Science/ ; }, mesh = {Animals ; *Phylogeny ; *Ixodidae/microbiology/genetics ; *Microbiota/genetics ; *RNA, Ribosomal, 16S/genetics ; Genome, Mitochondrial ; Genetic Variation ; }, abstract = {Ticks have a profound impact on public health. Haemaphysalis is one of the most widespread genera in Asia, including Japan. The taxonomy and genetic differentiation of Haemaphysalis spp. is challenging. For instance, previous studies struggled to distinguish Haemaphysalis japonica and Haemaphysalis megaspinosa due to the dearth of nucleotide sequence polymorphisms in widely used barcoding genes. The classification of H. japonica japonica and its related sub-species Haemaphysalis japonica douglasi or Haemaphysalis jezoensis is also confused due to their high morphological similarity and a lack of molecular data that support the current classification. We used mitogenomes and microbiomes of H. japonica and H. megaspinosa to gain deeper insights into the phylogenetic relationships and genetic divergence between two species. Phylogenetic analyses of concatenated nucleotide sequences of protein-coding genes and ribosomal DNA genes distinguished H. japonica and H. megaspinosa as monophyletic clades, with further subdivision within the H. japonica clade. The 16S rRNA and NAD5 genes were valuable markers for distinguishing H. japonica and H. megaspinosa. Population genetic structure analyses indicated that genetic variation within populations accounted for a large proportion of the total variation compared to variation between populations. Microbiome analyses revealed differences in alpha and beta diversity between H. japonica and H. megaspinosa: H. japonica had the higher diversity. Coxiella sp., a likely endosymbiont, was found in both Haemaphysalis species. The abundance profiles of likely endosymbionts, pathogens, and commensals differed between H. japonica and H. megaspinosa: H. megaspinosa was more diverse.}, } @article {pmid38691425, year = {2024}, author = {Richter, I and Hasan, M and Kramer, JW and Wein, P and Krabbe, J and Woitas, KP and Stinear, TP and Pidot, SJ and Kloss, F and Hertweck, C and Lackner, G}, title = {Deazaflavin metabolite produced by endosymbiotic bacteria controls fungal host reproduction.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae074}, pmid = {38691425}, issn = {1751-7370}, abstract = {The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.}, } @article {pmid38690786, year = {2024}, author = {Knights, HE and Ramachandran, VK and Jorrin, B and Ledermann, R and Parsons, JD and Aroney, STN and Poole, PS}, title = {Rhizobium determinants of rhizosphere persistence and root colonisation.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae072}, pmid = {38690786}, issn = {1751-7370}, abstract = {Bacterial persistence in the rhizosphere and colonisation of root niches are critical for the establishment of many beneficial plant-bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing (RB-TnSeq) to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonisation of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonisation (rhizosphere progressive), and a further 119 genes necessary for colonisation. Common determinants reveal a need to synthesise essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonisation. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonisation in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.}, } @article {pmid38677361, year = {2024}, author = {Tuñon, A and García, J and Carrera, LC and Chaves, LF and Lenhart, AE and Loaiza, JR}, title = {Chemical control of medically important arthropods in Panama: A systematic literature review of historical efforts.}, journal = {Acta tropica}, volume = {}, number = {}, pages = {107217}, doi = {10.1016/j.actatropica.2024.107217}, pmid = {38677361}, issn = {1873-6254}, abstract = {Vector-borne diseases are a major source of morbidity in Panama. Herein, we describe historical usage patterns of synthetic insecticides to control arthropod disease vectors in this country. We examine the influence of interventions by vector control programs on the emergence of insecticide resistance. Chemical control has traditionally focused on two mosquito species: Anopheles albimanus, a major regional malaria vector, and Aedes aegypti, a historical vector of yellow fever, and current vector of dengue, chikungunya, and Zika. Countrywide populations of An. albimanus depict hyperirritability to organochlorine insecticides administered by indoor residual spraying, although they appear susceptible to these insecticides in bioassays settings, as well as to organophosphate and carbamate insecticides in field tests. Populations of Ae. aegypti show resistance to pyrethroids, particularly in areas near Panama City, but the spread of resistance remains unknown in Ae. aegypti and Aedes albopictus. A One Health approach is needed in Panama to pinpoint the insecticide resistance mechanisms including the frequency of knockdown mutations and behavioral plasticity in populations of Anopheles and Aedes mosquitoes. This information is necessary to guide the sustainable implementation of chemical control strategies and the use of modern vector control technologies such as genetically modified mosquitoes, and endosymbiont Wolbachia-based biological control.}, } @article {pmid38673813, year = {2024}, author = {Silva, FJ and Domínguez-Santos, R and Latorre, A and García-Ferris, C}, title = {Comparative Transcriptomics of Fat Bodies between Symbiotic and Quasi-Aposymbiotic Adult Females of Blattella germanica with Emphasis on the Metabolic Integration with Its Endosymbiont Blattabacterium and Its Immune System.}, journal = {International journal of molecular sciences}, volume = {25}, number = {8}, pages = {}, doi = {10.3390/ijms25084228}, pmid = {38673813}, issn = {1422-0067}, support = {Prometeo/2018/A/133//Conselleria d'Educació, Generalitat Valenciana (Spain)/ ; CIPROM/2021/042//Conselleria d'Educació, Generalitat Valenciana (Spain)/ ; PGC2018-099344-B-I00//MCIN/AEI/10.13039/501100011033 (Spain) and "ERDF A way of making Europe"/ ; PID2021-128201NB-I00//MCIN/AEI/10.13039/501100011033 (Spain) and "ERDF A way of making Europe"/ ; }, mesh = {*Symbiosis/genetics ; Animals ; *Fat Body/metabolism ; Female ; *Transcriptome ; Gene Expression Profiling ; Immune System/metabolism ; Bacteroidetes/genetics/metabolism ; Antimicrobial Peptides/metabolism/genetics ; }, abstract = {We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.}, } @article {pmid38668783, year = {2024}, author = {Shamjana, U and Vasu, DA and Hembrom, PS and Nayak, K and Grace, T}, title = {The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation.}, journal = {Antonie van Leeuwenhoek}, volume = {117}, number = {1}, pages = {71}, pmid = {38668783}, issn = {1572-9699}, mesh = {Animals ; *Gastrointestinal Microbiome/physiology ; *Insecta/microbiology ; *Symbiosis ; Nutrients/metabolism ; Metagenomics ; Host Microbial Interactions ; Inactivation, Metabolic ; Bacteria/classification/genetics/metabolism ; }, abstract = {Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.}, } @article {pmid38661136, year = {2024}, author = {Work, TM and Singhakarn, C and Weatherby, TM}, title = {Cytology in cnidaria using Exaiptasia as a model.}, journal = {Diseases of aquatic organisms}, volume = {158}, number = {}, pages = {37-53}, doi = {10.3354/dao03781}, pmid = {38661136}, issn = {0177-5103}, mesh = {Animals ; *Cnidaria ; Cytology ; }, abstract = {A need exists for additional methods to examine cnidaria at the cellular level to aid our understanding of health, anatomy, and physiology of this important group of organisms. This need is particularly acute given that disease is emerging as a major factor in declines of ecologically important functional groups such as corals. Here we describe a simple method to process cnidarian cells for microscopic examination using the model organism Exaiptasia. We show that this organism has at least 18 cell types or structures that can be readily distinguished based on defined morphological features. Some of these cells can be related back to anatomic features of the animal both at the light microscope and ultrastructural level. The cnidome of Exaiptasia may be more complex than what is currently understood. Moreover, cnidarian cells, including some types of cnidocytes, phagocytize cells other than endosymbionts. Finally, our findings shed light on morphologic complexity of cell-associated microbial aggregates and their intimate intracellular associations. The tools described here could be useful for other cnidaria.}, } @article {pmid38650243, year = {2021}, author = {Zhang, J and Liu, G and Carvajal, AI and Wilson, RH and Cai, Z and Li, Y}, title = {Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO2 capture.}, journal = {Bioresources and bioprocessing}, volume = {8}, number = {1}, pages = {86}, pmid = {38650243}, issn = {2197-4365}, support = {2150060111//the National Natural Science Foundation of China/ ; }, abstract = {Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key CO2-fixing enzyme in photosynthesis, is notorious for its low carboxylation. We report a highly active and assembly-competent Form II Rubisco from the endosymbiont of a deep-sea tubeworm Riftia pachyptila (RPE Rubisco), which shows a 50.5% higher carboxylation efficiency than that of a high functioning Rubisco from Synechococcus sp. PCC7002 (7002 Rubisco). It is a simpler hexamer with three pairs of large subunit homodimers around a central threefold symmetry axis. Compared with 7002 Rubisco, it showed a 3.6-fold higher carbon capture efficiency in vivo using a designed CO2 capture model. The simple structure, high carboxylation efficiency, easy heterologous soluble expression/assembly make RPE Rubisco a ready-to-deploy enzyme for CO2 capture that does not require complex co-expression of chaperones. The chemosynthetic CO2 fixation machinery of chemolithoautotrophs, CO2-fixing endosymbionts, may be more efficient than previously realized with great potential for next-generation microbial CO2 sequestration platforms.}, } @article {pmid38643165, year = {2024}, author = {Bukhari, T and Gichuhi, J and Mbare, O and Ochwal, VA and Fillinger, U and Herren, JK}, title = {Willingness to accept and participate in a Microsporidia MB-based mosquito release strategy: a community-based rapid assessment in western Kenya.}, journal = {Malaria journal}, volume = {23}, number = {1}, pages = {113}, pmid = {38643165}, issn = {1475-2875}, support = {DA Malaria Control Research Project, Grant no. 2110-07102//Children Investment Fund Foundation/ ; }, abstract = {BACKGROUND: Microsporidia MB, an endosymbiont naturally found in Anopheles mosquitoes inhibits transmission of Plasmodium and is a promising candidate for a transmission-blocking strategy that may involve mosquito release. A rapid assessment was carried out to develop insight into sociodemographic factors, public health concerns, and malaria awareness, management, and prevention practices with the willingness to accept and participate in Microsporidia MB-based transmission-blocking strategy to develop an informed stakeholder engagement process.

METHODS: The assessment consisted of a survey conducted in two communities in western Kenya that involved administering a questionnaire consisting of structured, semi-structured, and open questions to 8108 household heads.

RESULTS: There was an overall high level of willingness to accept (81%) and participate in the implementation of the strategy (96%). Although the willingness to accept was similar in both communities, Ombeyi community was more willing to participate (OR 22, 95% CI 13-36). Women were less willing to accept (OR 0.8, 95% CI 0.7-0.9) compared to men due to fear of increased mosquito bites near homes. Household heads with incomplete primary education were more willing to accept (OR 1.6, 95% CI 01.2-2.2) compared to those educated to primary level or higher. Perceiving malaria as a moderate or low public health issue was also associated with a lower willingness to accept and participate. Experience of > 3 malaria cases in the family over the last six months and knowledge that malaria is transmitted by only mosquito bites, increased the willingness to accept but reduced the willingness to participate. Awareness of malaria control methods based on mosquitoes that cannot transmit malaria increases the willingness to participate.

CONCLUSION: The study showed a high level of willingness to accept and participate in a Microsporidia MB-based strategy in the community, which is influenced by several factors such as community, disease risk perception, gender, education level, knowledge, and experience of malaria. Further research will need to focus on understanding the concerns of women, educated, and employed community members, and factors that contribute to the lower disease risk perception. This improved understanding will lead to the development of an effective communication strategy.}, } @article {pmid38636949, year = {2024}, author = {Deore, P and Tsang Min Ching, SJ and Nitschke, MR and Rudd, D and Brumley, DR and Hinde, E and Blackall, LL and van Oppen, MJH}, title = {Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress.}, journal = {Journal of experimental botany}, volume = {}, number = {}, pages = {}, doi = {10.1093/jxb/erae170}, pmid = {38636949}, issn = {1460-2431}, abstract = {The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model, Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40°C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms which include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimising oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.}, } @article {pmid38637300, year = {2024}, author = {Abresch, H and Bell, T and Miller, SR}, title = {Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae064}, pmid = {38637300}, issn = {1751-7370}, abstract = {Many organisms have formed symbiotic relationships with nitrogen (N)-fixing bacteria to overcome N limitation. Diatoms in the family Rhopalodiaceae host unicellular, N-fixing cyanobacterial endosymbionts called spheroid bodies (SBs). Although this relationship is relatively young, SBs share many key features with older endosymbionts, including coordinated cell division and genome reduction. Unlike free-living relatives that fix N exclusively at night, SBs fix N largely during the day; however, how SB metabolism is regulated and coordinated with the host is not yet understood. We compared four SB genomes, including those from two new host species (Rhopalodia gibba and Epithemia adnata), to build a genome-wide phylogeny which provides a better understanding of SB evolutionary origins. Contrary to models of endosymbiotic genome reduction, the SB chromosome is unusually stable for an endosymbiont genome, likely due to the early loss of all mobile elements. Transcriptomic data for the R. gibba SB and host organelles addressed whether and how the allocation of transcriptional resources depends on light and nitrogen availability. Whereas allocation to the SB was high under all conditions, relative expression of chloroplast photosynthesis genes increased in the absence of nitrate, but this pattern was suppressed by nitrate addition. SB expression of catabolism genes was generally greater during daytime rather than at night, although the magnitude of diurnal changes in expression was modest compared to free-living cyanobacteria. We conclude that SB daytime catabolism likely supports N-fixation by linking the process to host photosynthetic carbon fixation.}, } @article {pmid38632506, year = {2024}, author = {Alkathiry, HA and Alghamdi, SQ and Sinha, A and Margos, G and Stekolnikov, AA and Alagaili, AN and Darby, AC and Makepeace, BL and Khoo, JJ}, title = {Microbiome and mitogenomics of the chigger mite Pentidionis agamae: potential role as an Orientia vector and associations with divergent clades of Wolbachia and Borrelia.}, journal = {BMC genomics}, volume = {25}, number = {1}, pages = {380}, pmid = {38632506}, issn = {1471-2164}, abstract = {BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear.

RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin.

CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.}, } @article {pmid38632047, year = {2024}, author = {Arai, H and Legeai, F and Kageyama, D and Sugio, A and Simon, JC}, title = {Genomic insights into Spiroplasma endosymbionts that induce male-killing and protective phenotypes in the pea aphid.}, journal = {FEMS microbiology letters}, volume = {}, number = {}, pages = {}, doi = {10.1093/femsle/fnae027}, pmid = {38632047}, issn = {1574-6968}, abstract = {The endosymbiotic bacteria Spiroplasma (Mollicutes) infect diverse plants and arthropods, and some of which induce male killing, where male hosts are killed during development. Male-killing Spiroplasma strains belong to either the phylogenetically distant Citri-Poulsonii or Ixodetis groups. In Drosophila flies, Spiroplasma poulsonii induces male killing via the Spaid toxin. While Spiroplasma ixodetis infects a wide range of insects and arachnids, little is known about the genetic basis of S. ixodetis-induced male killing. Here, we analyzed the genome of S. ixodetis strains in the pea aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genome sequencing constructed a complete genome of a male-killing strain, sAp269, consisting of a 1.5 Mb circular chromosome and an 80 Kb plasmid. sAp269 encoded putative virulence factors containing either ankyrin repeat, ovarian tumor-like deubiquitinase, or ribosome inactivating protein domains, but lacked the Spaid toxin. Further comparative genomics of Spiroplasma strains in A. pisum biotypes adapted to different host plants revealed their phylogenetic associations and the diversity of putative virulence factors. Although the mechanisms of S. ixodetis-induced male killing in pea aphids remain elusive, this study underlines the dynamic genome evolution of S. ixodetis and proposes independent acquisition events of male-killing mechanisms in insects.}, } @article {pmid38630610, year = {2024}, author = {Pilgrim, J}, title = {Comparative genomics of a novel Erwinia species associated with the Highland midge (Culicoides impunctatus).}, journal = {Microbial genomics}, volume = {10}, number = {4}, pages = {}, doi = {10.1099/mgen.0.001242}, pmid = {38630610}, issn = {2057-5858}, abstract = {Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.}, } @article {pmid38629270, year = {2024}, author = {Nakajima, H and Fukui, A and Suzuki, K and Tirta, RYK and Furuya, H}, title = {HOST SWITCHING IN DICYEMIDS (PHYLUM DICYEMIDA).}, journal = {The Journal of parasitology}, volume = {110}, number = {2}, pages = {159-169}, doi = {10.1645/23-52}, pmid = {38629270}, issn = {1937-2345}, abstract = {Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.}, } @article {pmid38629189, year = {2024}, author = {Bard, NW and Cronk, QCB and Davies, TJ}, title = {Fungal endophytes can modulate plant invasion.}, journal = {Biological reviews of the Cambridge Philosophical Society}, volume = {}, number = {}, pages = {}, doi = {10.1111/brv.13085}, pmid = {38629189}, issn = {1469-185X}, support = {RGPIN-2019-04041//Natural Sciences and Engineering Research Council of Canada/ ; RGPIN-2020-04439//Natural Sciences and Engineering Research Council of Canada/ ; 6456//University of British Columbia Graduate School/ ; }, abstract = {Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.}, } @article {pmid38627945, year = {2024}, author = {Rooney, T and Fèvre, EM and Villinger, J and Brenn-White, M and Cummings, CO and Chai, D and Kamau, J and Kiyong'a, A and Getange, D and Ochieng, DO and Kivali, V and Zimmerman, D and Rosenbaum, M and Nutter, FB and Deem, SL}, title = {Coxiella burnetii serostatus in dromedary camels (Camelus dromedarius) is associated with the presence of C. burnetii DNA in attached ticks in Laikipia County, Kenya.}, journal = {Zoonoses and public health}, volume = {}, number = {}, pages = {}, doi = {10.1111/zph.13127}, pmid = {38627945}, issn = {1863-2378}, support = {//Saint Louis Zoo Institution for Conservation Medicine/ ; //National Institute of Health's Summer Training Grant/ ; //European Union's Horizon 2020 research and innovation programme/ ; //icipe institutional funding from the Swedish International Development Cooperation Agency (SIDA)/ ; //The Swiss Agency for Development and Cooperation (SDC)/ ; //The Federal Democratic Republic of Ethiopia/ ; //The Government of the Republic of Kenya/ ; //CGIAR One Health initiative "Protecting Human Health Through a One Health Approach"/ ; }, abstract = {AIMS: Q fever is a globally distributed, neglected zoonotic disease of conservation and public health importance, caused by the bacterium Coxiella burnetii. Coxiella burnetii normally causes subclinical infections in livestock, but may also cause reproductive pathology and spontaneous abortions in artiodactyl species. One such artiodactyl, the dromedary camel (Camelus dromedarius), is an increasingly important livestock species in semi-arid landscapes. Ticks are naturally infected with C. burnetii worldwide and are frequently found on camels in Kenya. In this study, we assessed the relationship between dromedary camels' C. burnetii serostatus and whether the camels were carrying C. burnetii PCR-positive ticks in Kenya. We hypothesized that there would be a positive association between camel seropositivity and carrying C. burnetii PCR-positive ticks.

METHODS AND RESULTS: Blood was collected from camels (N = 233) from three herds, and serum was analysed using commercial ELISA antibody test kits. Ticks were collected (N = 4354), divided into pools of the same species from the same camel (N = 397) and tested for C. burnetii and Coxiella-like endosymbionts. Descriptive statistics were used to summarize seroprevalence by camel demographic and clinical variables. Univariate logistic regression analyses were used to assess relationships between serostatus (outcome) and tick PCR status, camel demographic variables, and camel clinical variables (predictors). Camel C. burnetii seroprevalence was 52%. Across tick pools, the prevalence of C. burnetii was 15% and Coxiella-like endosymbionts was 27%. Camel seropositivity was significantly associated with the presence of a C. burnetii PCR-positive tick pool (OR: 2.58; 95% CI: 1.4-5.1; p = 0.0045), increasing age class, and increasing total solids.

CONCLUSIONS: The role of ticks and camels in the epidemiology of Q fever warrants further research to better understand this zoonotic disease that has potential to cause illness and reproductive losses in humans, livestock, and wildlife.}, } @article {pmid38626194, year = {2024}, author = {McCutcheon, JP and Garber, AI and Spencer, N and Warren, JM}, title = {How do bacterial endosymbionts work with so few genes?.}, journal = {PLoS biology}, volume = {22}, number = {4}, pages = {e3002577}, doi = {10.1371/journal.pbio.3002577}, pmid = {38626194}, issn = {1545-7885}, abstract = {The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.}, } @article {pmid38623496, year = {2024}, author = {Marulanda-Moreno, SM and Saldamando-Benjumea, CI and Vivero Gomez, R and Cadavid-Restrepo, G and Moreno-Herrera, CX}, title = {Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association.}, journal = {PeerJ}, volume = {12}, number = {}, pages = {e17087}, doi = {10.7717/peerj.17087}, pmid = {38623496}, issn = {2167-8359}, abstract = {BACKGROUND: Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages.

METHODS: The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification.

RESULTS: Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.}, } @article {pmid38617467, year = {2024}, author = {Vancaester, E and Blaxter, ML}, title = {MarkerScan: Separation and assembly of cobionts sequenced alongside target species in biodiversity genomics projects.}, journal = {Wellcome open research}, volume = {9}, number = {}, pages = {33}, pmid = {38617467}, issn = {2398-502X}, abstract = {Contamination of public databases by mislabelled sequences has been highlighted for many years and the avalanche of novel sequencing data now being deposited has the potential to make databases difficult to use effectively. It is therefore crucial that sequencing projects and database curators perform pre-submission checks to remove obvious contamination and avoid propagating erroneous taxonomic relationships. However, it is important also to recognise that biological contamination of a target sample with unexpected species' DNA can also lead to the discovery of fascinating biological phenomena through the identification of environmental organisms or endosymbionts. Here, we present a novel, integrated method for detection and generation of high-quality genomes of all non-target genomes co-sequenced in eukaryotic genome sequencing projects. After performing taxonomic profiling of an assembly from the raw data, and leveraging the identity of small rRNA sequences discovered therein as markers, a targeted classification approach retrieves and assembles high-quality genomes. The genomes of these cobionts are then not only removed from the target species' genome but also available for further interrogation. Source code is available from https://github.com/CobiontID/MarkerScan. MarkerScan is written in Python and is deployed as a Docker container.}, } @article {pmid38617242, year = {2024}, author = {Mallikaarachchi, KS and Huang, JL and Madras, S and Cuellar, RA and Huang, Z and Gega, A and Rathnayaka-Mudiyanselage, IW and Al-Husini, N and Saldaña-Rivera, N and Ma, LH and Ng, E and Chen, JC and Schrader, JM}, title = {Sinorhizobium meliloti BR-bodies promote fitness during host colonization.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.04.05.588320}, pmid = {38617242}, abstract = {UNLABELLED: Biomolecular condensates, such as the nucleoli or P-bodies, are non-membrane-bound assemblies of proteins and nucleic acids that facilitate specific cellular processes. Like eukaryotic P-bodies, the recently discovered bacterial ribonucleoprotein bodies (BR-bodies) organize the mRNA decay machinery, yet the similarities in molecular and cellular functions across species have been poorly explored. Here, we examine the functions of BR-bodies in the nitrogen-fixing endosymbiont Sinorhizobium meliloti , which colonizes the roots of compatible legume plants. Assembly of BR-bodies into visible foci in S. meliloti cells requires the C-terminal intrinsically disordered region (IDR) of RNase E, and foci fusion is readily observed in vivo , suggesting they are liquid-like condensates that form via mRNA sequestration. Using Rif-seq to measure mRNA lifetimes, we found a global slowdown in mRNA decay in a mutant deficient in BR-bodies, indicating that compartmentalization of the degradation machinery promotes efficient mRNA turnover. While BR-bodies are constitutively present during exponential growth, the abundance of BR-bodies increases upon cell stress, whereby they promote stress resistance. Finally, using Medicago truncatula as host, we show that BR-bodies enhance competitiveness during colonization and appear to be required for effective symbiosis, as mutants without BR-bodies failed to stimulate plant growth. These results suggest that BR-bodies provide a fitness advantage for bacteria during infection, perhaps by enabling better resistance against the host immune response.

SIGNIFICANCE: While eukaryotes often organize their biochemical pathways in membrane-bound organelles, bacteria generally lack such subcellular structures. Instead, membraneless compartments called biomolecular condensates have recently been found in bacteria to enhance biochemical activities. Bacterial ribonucleoprotein bodies (BR-bodies), as one of the most widespread biomolecular condensates identified to date, assemble the mRNA decay machinery via the intrinsically disordered regions (IDRs) of proteins. However, the implications of such assemblies are unclear. Using a plant-associated symbiont, we show that the IDR of its mRNA degradation protein is necessary for condensate formation. Absence of BR-bodies results in slower mRNA decay and ineffective symbiosis, suggesting that BR-bodies play critical roles in regulating biochemical pathways and promoting fitness during host colonization.}, } @article {pmid38609398, year = {2024}, author = {Mowery, MA and Rosenwald, LC and Chapman, E and Lubin, Y and Segoli, M and Khoza, T and Lyle, R and White, JA}, title = {Endosymbiont diversity across native and invasive brown widow spider populations.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {8556}, pmid = {38609398}, issn = {2045-2322}, support = {1953223//National Science Foundation/ ; 1020740//National Institute of Food and Agriculture/ ; }, abstract = {The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread in multiple locations around the world and, along with it, brought associated organisms such as endosymbionts. We investigated endosymbiont diversity and prevalence across putative native and invasive populations of this spider, predicting lower endosymbiont diversity across the invasive range compared to the native range. First, we characterized the microbial community in the putative native (South Africa) and invasive (Israel and the United States) ranges via high throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs, indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at lower overall prevalence (14%) and was represented in all countries, but not all populations. In addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and Wolbachia was geographically clustered in both Israel and South Africa. Characterizing endosymbiont prevalence and diversity is a first step in understanding their function inside the host and may shed light on the process of spread and population variability in cosmopolitan invasive species.}, } @article {pmid38608678, year = {2024}, author = {Trznadel, M and Holt, CC and Livingston, SJ and Kwong, WK and Keeling, PJ}, title = {Coral-infecting parasites in cold marine ecosystems.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2024.03.026}, pmid = {38608678}, issn = {1879-0445}, abstract = {Coral reefs are a biodiversity hotspot,[1][,][2] and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.[3][,][4] Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.[5] Apicomplexans are a diverse lineage of obligate intracellular parasites[6] that include human pathogens such as the malaria parasite, Plasmodium.[7] Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,[5][,][8][,][9] where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.[10] All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.}, } @article {pmid38607980, year = {2024}, author = {Partida-Martínez, LP}, title = {Fungal holobionts as blueprints for synthetic endosymbiotic systems.}, journal = {PLoS biology}, volume = {22}, number = {4}, pages = {e3002587}, doi = {10.1371/journal.pbio.3002587}, pmid = {38607980}, issn = {1545-7885}, abstract = {Rhizopus microsporus is an example of a fungal holobiont. Strains of this species can harbor bacterial and viral endosymbionts inherited by the next generation. These microbial allies increase pathogenicity and defense and control asexual and sexual reproduction.}, } @article {pmid38603513, year = {2024}, author = {Massana, R}, title = {The nitroplast: A nitrogen-fixing organelle.}, journal = {Science (New York, N.Y.)}, volume = {384}, number = {6692}, pages = {160-161}, doi = {10.1126/science.ado8571}, pmid = {38603513}, issn = {1095-9203}, abstract = {A bacterial endosymbiont of marine algae evolved to an organelle.}, } @article {pmid38603509, year = {2024}, author = {Coale, TH and Loconte, V and Turk-Kubo, KA and Vanslembrouck, B and Mak, WKE and Cheung, S and Ekman, A and Chen, JH and Hagino, K and Takano, Y and Nishimura, T and Adachi, M and Le Gros, M and Larabell, C and Zehr, JP}, title = {Nitrogen-fixing organelle in a marine alga.}, journal = {Science (New York, N.Y.)}, volume = {384}, number = {6692}, pages = {217-222}, doi = {10.1126/science.adk1075}, pmid = {38603509}, issn = {1095-9203}, abstract = {Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."}, } @article {pmid38601947, year = {2023}, author = {Zytynska, SE and Sturm, S and Hawes, C and Weisser, WW and Karley, A}, title = {Floral presence and flower identity alter cereal aphid endosymbiont communities on adjacent crops.}, journal = {The Journal of applied ecology}, volume = {60}, number = {7}, pages = {1409-1423}, pmid = {38601947}, issn = {0021-8901}, abstract = {Floral plantings adjacent to crops fields can recruit populations of natural enemies by providing flower nectar and non-crop prey to increase natural pest regulation. Observed variation in success rates might be due to changes in the unseen community of endosymbionts hosted by many herbivorous insects, of which some can confer resistance to natural enemies, for example, parasitoid wasps. Reduced insect control may occur if highly protective symbiont combinations increase in frequency via selection effects, and this is expected to be stronger in lower diversity systems.We used a large-scale field trial to analyse the bacterial endosymbiont communities hosted by cereal aphids Sitobion avenae collected along transects into strip plots of barley plants managed by either conventional or integrated (including floral field margins and reduced inputs) methods. In addition, we conducted an outdoor pot experiment to analyse endosymbionts in S. avenae aphids collected on barley plants that were either grown alone or alongside one of three flowering plants, across three time points.In the field, aphids hosted up to four symbionts. The abundance of aphids and parasitoid wasps was reduced towards the middle of all fields while aphid symbiont species richness and diversity decreased into the field in conventional, but not integrated, field-strips. The proportion of aphids hosting different symbiont combinations varied across cropping systems, with distances into the fields, and were correlated with parasitoid wasp abundances.In the pot experiment, aphids hosted up to six symbionts. Flower presence increased natural enemy abundance and diversity, and decreased aphid abundance. The proportion of aphids hosting different symbiont combinations varied across the flower treatment and time, and were correlated with varying abundances of the different specialist parasitoid wasp species recruited by different flowers. Synthesis and applications. Floral plantings and flower identity had community-wide impacts on the combinations of bacterial endosymbionts hosted by herbivorous insects, which correlated with natural enemy diversity and abundance. We recommend that integrated management practices incorporate floral resources within field areas to support a more functionally diverse and resilient natural enemy community to mitigate selection for symbiont-mediated pest resistance throughout the cropping area.}, } @article {pmid38598600, year = {2024}, author = {Wang, H and Marucci, G and Munke, A and Hassan, MM and Lalle, M and Okamoto, K}, title = {High-resolution comparative atomic structures of two Giardiavirus prototypes infecting G. duodenalis parasite.}, journal = {PLoS pathogens}, volume = {20}, number = {4}, pages = {e1012140}, doi = {10.1371/journal.ppat.1012140}, pmid = {38598600}, issn = {1553-7374}, abstract = {The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.}, } @article {pmid38597256, year = {2024}, author = {Fox, T and Sguassero, Y and Chaplin, M and Rose, W and Doum, D and Arevalo-Rodriguez, I and Villanueva, G}, title = {Wolbachia-carrying Aedes mosquitoes for preventing dengue infection.}, journal = {The Cochrane database of systematic reviews}, volume = {4}, number = {}, pages = {CD015636}, doi = {10.1002/14651858.CD015636.pub2}, pmid = {38597256}, issn = {1469-493X}, abstract = {BACKGROUND: Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated.

OBJECTIVES: To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection.

SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024.

SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy.

DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE.

MAIN RESULTS: One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events.

AUTHORS' CONCLUSIONS: The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.}, } @article {pmid38585949, year = {2024}, author = {Mirchandani, C and Wang, P and Jacobs, J and Genetti, M and Pepper-Tunick, E and Sullivan, WT and Corbett-Detig, R and Russell, SL}, title = {Mixed Wolbachia infections resolve rapidly during in vitro evolution.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.03.27.586911}, pmid = {38585949}, abstract = {UNLABELLED: The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful w Mel strain from Drosophila melanogaster and the promiscuous w Ri strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with w Mel and w Ri revealed that wMel outcompetes w Ri quickly and reproducibly. Furthermore, w Mel was able to competitively exclude w Ri even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wM el's native D. melanogaster cell background, as w Mel also outgrew w Ri in D. simulans cells. Overall, w Ri is less adept at i n vitro growth and survival than w Mel and its in vivo state, revealing differences between cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species, tissues, and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.

AUTHOR SUMMARY: Wolbachia pipientis is one of the most common bacterial endosymbionts due to its ability to manipulate host reproduction, and it has become a useful biological control tool for mosquito populations. Wolbachia is passed from mother to offspring, however the bacterium can also "jump" to new hosts via horizontal transmission. When a Wolbachia strain successfully infects a new host, it often encounters a resident strain that it must either replace or co-exist with as a superinfection. Here, we use a Drosophila melanogaster cell culture system to study the dynamics of mixed Wolbachia infections consisting of the high-fidelity w Mel and promiscuous w Ri strains. The w Mel strain consistently outcompetes the w Ri strain, regardless of w Mel's initial frequency in D. melanogaster cells. This competitive advantage is independent of host species. While both strains significantly impede host cell division, only the w Mel strain is able to rapidly expand into uninfected cells. Our results suggest that the w Ri strain is pathogenic in nature and a poor cellular symbiont, and it is retained in natural infections because cell lineages are not expendable or replaceable in development. These findings provide insights into mixed infection outcomes, which are crucial for the use of the bacteria in biological control.}, } @article {pmid38585906, year = {2024}, author = {Gasser, MT and Liu, A and Altamia, M and Brensinger, BR and Brewer, SL and Flatau, R and Hancock, ER and Preheim, SP and Filone, CM and Distel, DL}, title = {Outer membrane vesicles can contribute to cellulose degradation in Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.03.27.587001}, pmid = {38585906}, abstract = {Teredinibacter turnerae is a cultivable cellulolytic Gammaproeteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to lignocellulose digestion in the shipworm gut. However, the mechanism by which symbiont-made enzymes are secreted by T. turnerae and subsequently transported to the site of lignocellulose digestion in the shipworm gut is incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce outer membrane vesicles (OMVs) that contain a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these OMVs retain cellulolytic activity, as evidenced by hydrolysis of CMC. Additionally, these OMVs were enriched with TonB -dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations suggest potential roles for OMVs in lignocellulose utilization by T. turnerae in the free-living state, in enzyme transport and host interaction during symbiotic association, and in commercial applications such as lignocellulosic biomass conversion.}, } @article {pmid38577764, year = {2024}, author = {Garber, AI and Garcia de la Filia Molina, A and Vea, I and Mongue, AJ and Ross, L and McCutcheon, JP}, title = {Retention of an endosymbiont for the production of a single molecule.}, journal = {Genome biology and evolution}, volume = {}, number = {}, pages = {}, doi = {10.1093/gbe/evae075}, pmid = {38577764}, issn = {1759-6653}, abstract = {Sap-feeding insects often maintain two or more nutritional endosymbionts which act in concert to produce compounds essential for insect survival. Many mealybugs have endosymbionts in a nested configuration: one or two bacterial species reside within the cytoplasm of another bacterium, and together these bacteria have genomes which encode interdependent sets of genes needed to produce key nutritional molecules. Here we show that the mealybug Pseudococcus viburni has three endosymbionts, one of which contributes only two unique genes that produce the host nutrition-related molecule chorismate. All three bacterial endosymbionts have tiny genomes, suggesting that they have been co-evolving inside their insect host for millions of years.}, } @article {pmid38465385, year = {2024}, author = {Park, E and Leander, B}, title = {Coinfection of slime feather duster worms (Annelida, Myxicola) by different gregarine apicomplexans (Selenidium) and astome ciliates reflects spatial niche partitioning and host specificity.}, journal = {Parasitology}, volume = {}, number = {}, pages = {1-12}, doi = {10.1017/S0031182024000209}, pmid = {38465385}, issn = {1469-8161}, support = {//Tula Foundation/ ; 2019-03986//Natural Sciences and Engineering Research Council of Canada/ ; }, abstract = {Individual organisms can host multiple species of parasites (or symbionts), and one species of parasite can infect different host species, creating complex interactions among multiple hosts and parasites. When multiple parasite species coexist in a host, they may compete or use strategies, such as spatial niche partitioning, to reduce competition. Here, we present a host–symbiont system with two species of Selenidium (Apicomplexa, Gregarinida) and one species of astome ciliate co-infecting two different species of slime feather duster worms (Annelida, Sabellidae, Myxicola) living in neighbouring habitats. We examined the morphology of the endosymbionts with light and scanning electron microscopy (SEM) and inferred their phylogenetic interrelationships using small subunit (SSU) rDNA sequences. In the host ‘Myxicola sp. Quadra’, we found two distinct species of Selenidium; S. cf. mesnili exclusively inhabited the foregut, and S. elongatum n. sp. inhabited the mid to hindgut, reflecting spatial niche partitioning. Selenidium elongatum n. sp. was also present in the host M. aesthetica, which harboured the astome ciliate Pennarella elegantia n. gen. et sp. Selenidium cf. mesnili and P. elegantia n. gen. et sp. were absent in the other host species, indicating host specificity. This system offers an intriguing opportunity to explore diverse aspects of host–endosymbiont interactions and competition among endosymbionts.}, } @article {pmid38569988, year = {2024}, author = {Amala, M and Nagarajan, H and Ahila, M and Nachiappan, M and Veerapandiyan, M and Vetrivel, U and Jeyakanthan, J}, title = {Unveiling the intricacies of allosteric regulation in aspartate kinase from the Wolbachia endosymbiont of Brugia Malayi: Mechanistic and therapeutic insights.}, journal = {International journal of biological macromolecules}, volume = {}, number = {}, pages = {131326}, doi = {10.1016/j.ijbiomac.2024.131326}, pmid = {38569988}, issn = {1879-0003}, abstract = {Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.}, } @article {pmid38564675, year = {2024}, author = {Lehman, SS and Verhoeve, VI and Driscoll, TP and Beckmann, JF and Gillespie, JJ}, title = {Metagenome diversity illuminates the origins of pathogen effectors.}, journal = {mBio}, volume = {}, number = {}, pages = {e0075923}, doi = {10.1128/mbio.00759-23}, pmid = {38564675}, issn = {2150-7511}, abstract = {Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.}, } @article {pmid38558489, year = {2024}, author = {Ferguson, LF and Ross, PA and van Heerwaarden, B}, title = {Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner.}, journal = {Environmental microbiology}, volume = {26}, number = {4}, pages = {e16609}, doi = {10.1111/1462-2920.16609}, pmid = {38558489}, issn = {1462-2920}, support = {DE230100067//Australian Research Council/ ; FT200100025//Australian Research Council/ ; }, abstract = {The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.}, } @article {pmid38557755, year = {2024}, author = {Cho, A and Lax, G and Livingston, SJ and Masukagami, Y and Naumova, M and Millar, O and Husnik, F and Keeling, PJ}, title = {Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses.}, journal = {PLoS genetics}, volume = {20}, number = {4}, pages = {e1011218}, doi = {10.1371/journal.pgen.1011218}, pmid = {38557755}, issn = {1553-7404}, abstract = {Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC247, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.}, } @article {pmid38553514, year = {2024}, author = {Konecka, E and Szymkowiak, P}, title = {Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {7486}, pmid = {38553514}, issn = {2045-2322}, abstract = {Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.}, } @article {pmid38535401, year = {2024}, author = {Cholvi, M and Trelis, M and Bueno-Marí, R and Khoubbane, M and Gil, R and Marcilla, A and Moretti, R}, title = {Wolbachia Infection through Hybridization to Enhance an Incompatible Insect Technique-Based Suppression of Aedes albopictus in Eastern Spain.}, journal = {Insects}, volume = {15}, number = {3}, pages = {}, doi = {10.3390/insects15030206}, pmid = {38535401}, issn = {2075-4450}, abstract = {The emergence of insecticide resistance in arbovirus vectors is putting the focus on the development of new strategies for control. In this regard, the exploitation of Wolbachia endosymbionts is receiving increasing attention due to its demonstrated effectiveness in reducing the vectorial capacity of Aedes mosquitoes. Here, we describe the establishment of a naïve Wolbachia infection in a wild Aedes albopictus population of eastern Spain through a hybridization approach to obtain males capable of sterilizing wild females. The obtained lines were compared with the Wolbachia donor, Ae. albopictus ARwP, previously artificially infected with Wolbachia wPip, regarding immature and adult survival, female fecundity, egg fertility, and level of induced sterility. Our results did not show significant differences between lines in any of the biological parameters analyzed, indicating the full suitability of the hybrids to be used as a control tool against Ae. albopictus. In particular, hybrid males induced 99.9% sterility in the eggs of wild females without the need for any preliminary treatment. Being harmless to non-target organisms and the environment, the use of this bacterium for the control of Ae. albopictus deserves further exploration. This is especially relevant in areas such as eastern Spain, where this mosquito species has recently spread and may represent a serious threat due to its competence as a vector for dengue, chikungunya, and Zika viruses.}, } @article {pmid38534421, year = {2024}, author = {Hyder, M and Lodhi, AM and Wang, Z and Bukero, A and Gao, J and Mao, R}, title = {Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies.}, journal = {Biology}, volume = {13}, number = {3}, pages = {}, doi = {10.3390/biology13030151}, pmid = {38534421}, issn = {2079-7737}, support = {32202276//National Science Foundation of China/ ; 2022GDASZH-2022010106, 2022GDASZH-2022030501-08//GDAS Special Project of Science and Technology Development/ ; KTP20210352//Guangdong Province Rural Science and Technology Commissioner Project/ ; 2023SDZG06//Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province/ ; }, abstract = {Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.}, } @article {pmid38532645, year = {2024}, author = {Berrabah, F and Benaceur, F and Yin, C and Xin, D and Magne, K and Garmier, M and Gruber, V and Ratet, P}, title = {Defense and senescence interplay in legume nodules.}, journal = {Plant communications}, volume = {}, number = {}, pages = {100888}, doi = {10.1016/j.xplc.2024.100888}, pmid = {38532645}, issn = {2590-3462}, abstract = {Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence is highly studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discussed recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.}, } @article {pmid38525276, year = {2024}, author = {Guse, K and Pietri, JE}, title = {Endosymbiont and gut bacterial communities of the brown-banded cockroach, Supella longipalpa.}, journal = {PeerJ}, volume = {12}, number = {}, pages = {e17095}, pmid = {38525276}, issn = {2167-8359}, abstract = {The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.}, } @article {pmid38519099, year = {2024}, author = {Bai, J and Zuo, Z and DuanMu, H and Li, M and Tong, H and Mei, Y and Xiao, Y and He, K and Jiang, M and Wang, S and Li, F}, title = {Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mTOR pathway.}, journal = {The ISME journal}, volume = {}, number = {}, pages = {}, doi = {10.1093/ismejo/wrae052}, pmid = {38519099}, issn = {1751-7370}, abstract = {The intricate evolutionary dynamics of endosymbiotic relationships result in unique characteristics among the genomes of symbionts, which profoundly influence host insect phenotypes. Here, we investigated an endosymbiotic system in Phenacoccus solenopsis, a notorious pest of the subfamily Phenacoccinae. The endosymbiont, "Candidatus Tremblaya phenacola" (T. phenacola PSOL), persisted throughout the complete life cycle of female hosts and was more active during oviposition, whereas there was a significant decline in abundance after pupation in males. Genome sequencing yielded an endosymbiont genome of 221.1 kb in size, comprising seven contigs and originating from a chimeric arrangement between betaproteobacteria and gammaproteobacteria. A comprehensive analysis of amino acid metabolic pathways demonstrated complementarity between the host and endosymbiont metabolism. Elimination of T. phenacola PSOL through antibiotic treatment significantly decreased P. solenopsis fecundity. Weighted gene co-expression network analysis (WGCNA) demonstrated a correlation between genes associated with essential amino acid synthesis and those associated with host meiosis and oocyte maturation. Moreover, altering endosymbiont abundance activated the host mTOR pathway, suggesting that changes in amino acid abundance affected host reproductive capabilities via this signal pathway. Taken together, these findings demonstrate a mechanism by which the endosymbiont T. phenacola PSOL contributed to high fecundity in P. solenopsis and provide new insights into nutritional compensation and coevolution of the endosymbiotic system.}, } @article {pmid38509052, year = {2024}, author = {Ang'ang'o, LM and Waweru, JW and Makhulu, EE and Wairimu, A and Otieno, FG and Onchuru, T and Tastan Bishop, Ö and Herren, JK}, title = {Draft genome of Microsporidia sp. MB-a malaria-blocking microsporidian symbiont of the Anopheles arabiensis.}, journal = {Microbiology resource announcements}, volume = {}, number = {}, pages = {e0090323}, doi = {10.1128/MRA.00903-23}, pmid = {38509052}, issn = {2576-098X}, abstract = {We report the draft whole-genome assembly of Microsporidia sp. MB, a symbiotic malaria-transmission-blocking microsporidian isolated from Anopheles arabiensis in Kenya. The whole-genome sequence of Microsporidia sp. MB has a length of 5,908,979 bp, 2,335 contigs, and an average GC content of 31.12%.}, } @article {pmid38505947, year = {2024}, author = {Torp, MK and Stensløkken, KO and Vaage, J}, title = {When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness.}, journal = {Journal of intensive care medicine}, volume = {}, number = {}, pages = {8850666241237715}, doi = {10.1177/08850666241237715}, pmid = {38505947}, issn = {1525-1489}, abstract = {Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.}, } @article {pmid38502496, year = {2024}, author = {Füssy, Z and Oborník, M}, title = {Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2776}, number = {}, pages = {21-41}, pmid = {38502496}, issn = {1940-6029}, abstract = {A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.}, } @article {pmid38502456, year = {2024}, author = {Singh, AS and Pathak, D and Devi, MS and Anifowoshe, AT and Nongthomba, U}, title = {Antibiotic alters host's gut microbiota, fertility, and antimicrobial peptide gene expression vis-à-vis ampicillin treatment on model organism Drosophila melanogaster.}, journal = {International microbiology : the official journal of the Spanish Society for Microbiology}, volume = {}, number = {}, pages = {}, pmid = {38502456}, issn = {1618-1905}, support = {DBT-RA/2022/January NE/994//Department of Biotechnology, Government of India./ ; DBT-RA/2022/January NE/994//Department of Biotechnology, Government of India./ ; }, abstract = {Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.}, } @article {pmid38499810, year = {2024}, author = {Novák Vanclová, AM and Nef, C and Füssy, Z and Vancl, A and Liu, F and Bowler, C and Dorrell, RG}, title = {New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates.}, journal = {EMBO reports}, volume = {}, number = {}, pages = {}, pmid = {38499810}, issn = {1469-3178}, support = {ANR-21-CE02-0014//Agence Nationale de la Recherche (ANR)/ ; ANR-20-CE13-0007//Agence Nationale de la Recherche (ANR)/ ; ANR-19-CE20-0020//Agence Nationale de la Recherche (ANR)/ ; 101039760//EC | European Research Council (ERC)/ ; 835067//EC | European Research Council (ERC)/ ; Momentum Fellowship 2019-2021//Centre National de la Recherche Scientifique (CNRS)/ ; 835067//EC | ERC | HORIZON EUROPE European Research Council (ERC)/ ; ANR-10-LABX-54//Agence Nationale de la Recherche (ANR)/ ; ANR-1253 11-IDEX-0001-02//Université de Recherche Paris Sciences et Lettres (PSL)/ ; 90254//e-INFRA CZ/ ; }, abstract = {Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited (~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.}, } @article {pmid38497713, year = {2024}, author = {Tang, X-F and Sun, Y-F and Liang, Y-S and Yang, K-Y and Chen, P-T and Li, H-S and Huang, Y-H and Pang, H}, title = {Metabolism, digestion, and horizontal transfer: potential roles and interaction of symbiotic bacteria in the ladybird beetle Novius pumilus and their prey Icerya aegyptiaca.}, journal = {Microbiology spectrum}, volume = {}, number = {}, pages = {e0295523}, doi = {10.1128/spectrum.02955-23}, pmid = {38497713}, issn = {2165-0497}, abstract = {In this study, we first time sequenced and analyzed the 16S rRNA gene data of predator ladybird beetles Novius pumilus and globally distributed invasive pest Icerya aegyptiaca at different stages, and combined data with bacterial genome sequences in N. pumilus to explored the taxonomic distribution, alpha and beta diversity, differentially abundant bacteria, co-occurrence network, and putative functions of their microbial community. Our finding revealed that Candidatus Walczuchella, which exhibited a higher abundance in I. aegyptiaca, possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host, similar to other obligate symbionts in scale insects. Lactococcus, Serratia, and Pseudomonas, more abundant in N. pumilus, were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects. Notably, our result showed that Lactococcus had relatively higher abundances in adults and eggs compared to other stages in N. pumilus, indicating potential vertical transmission. Additionally, we found that Arsenophonus, known to influence sex ratios in whitefly and wasp, may also function in I. aegyptiaca, probably by influencing nutrient metabolism as it similarly had many genes corresponding to vitamin B and essential amino acid biosynthesis. Also, we observed a potential horizontal transfer of Arsenophonus between the scale insect and its predator, with a relatively high abundance in the ladybirds compared to other bacteria from the scale insects.IMPORTANCEThe composition and dynamic changes of microbiome in different developmental stages of ladybird beetles Novius pumilus with its prey Icerya aegyptiaca were detected. We found that Candidatus Walczuchella, abundant in I. aegyptiaca, probably provide nutrients to their host based on their amino acid biosynthesis-related genes. Abundant symbionts in N. pumilus, including Lactococcus, Serratia, and Pseudophonus, may help the host digest the scale insects with their hydrocarbon, fatty acid, and chitin degrading-related genes. A key endosymbiont Arsenophonus may play potential roles in the nutrient metabolisms and sex determination in I. aegyptiaca, and is possibly transferred from the scale insect to the predator.}, } @article {pmid38497254, year = {2024}, author = {Galambos, N and Vincent-Monegat, C and Vallier, A and Parisot, N and Heddi, A and Zaidman-Rémy, A}, title = {Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response.}, journal = {Philosophical transactions of the Royal Society of London. Series B, Biological sciences}, volume = {379}, number = {1901}, pages = {20230062}, doi = {10.1098/rstb.2023.0062}, pmid = {38497254}, issn = {1471-2970}, abstract = {Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.}, } @article {pmid38496649, year = {2024}, author = {Hague, MTJ and Wheeler, TB and Cooper, BS}, title = {Comparative analysis of Wolbachia maternal transmission and localization in host ovaries.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2024.03.03.583170}, pmid = {38496649}, abstract = {Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of w Mel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti , where w Mel is used to block pathogens that cause human disease. In D. melanogaster , w Mel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to w Mel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related w Mel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia -based biocontrol efforts as they expand into globally diverse environments.}, } @article {pmid38493166, year = {2024}, author = {Zhao, LS and Wang, N and Li, K and Li, CY and Guo, JP and He, FY and Liu, GM and Chen, XL and Gao, J and Liu, LN and Zhang, YZ}, title = {Architecture of symbiotic dinoflagellate photosystem I-light-harvesting supercomplex in Symbiodinium.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {2392}, pmid = {38493166}, issn = {2041-1723}, support = {BB/V009729/1//RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)/ ; BB/R003890/1//RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)/ ; URF\R\180030//Royal Society/ ; }, abstract = {Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.}, } @article {pmid38487180, year = {2024}, author = {Duan, L and Zhang, L and Hou, X and Bao, Z and Zeng, Y and He, L and Liu, Z and Zhou, H and Hao, Q and Dong, A}, title = {Surveillance of tick-borne bacteria infection in ticks and forestry populations in Inner Mongolia, China.}, journal = {Frontiers in public health}, volume = {12}, number = {}, pages = {1302133}, doi = {10.3389/fpubh.2024.1302133}, pmid = {38487180}, issn = {2296-2565}, abstract = {Ticks are one of the most important vectors that can transmit pathogens to animals and human beings. This study investigated the dominant tick-borne bacteria carried by ticks and tick-borne infections in forestry populations in Arxan, Inner Mongolia, China. Ticks were collected by flagging from May 2020 to May 2021, and blood samples were collected from individuals at high risk of acquiring tick-borne diseases from March 2022 to August 2023. The pooled DNA samples of ticks were analyzed to reveal the presence of tick-borne bacteria using high-throughput sequencing of the 16S rDNA V3-V4 region, and species-specific polymerase chain reaction (PCR) related to sequencing was performed to confirm the presence of pathogenic bacteria in individual ticks and human blood samples. All sera samples were examined for anti-SFGR using ELISA and anti-B. burgdorferi using IFA and WB. A total of 295 ticks (282 Ixodes persulcatus and 13 Dermacentor silvarum) and 245 human blood samples were collected. Rickettsia, Anaplasma, Borrelia miyamotoi, and Coxiella endosymbiont were identified in I. persulcatus by high-throughput sequencing, while Candidatus R. tarasevichiae (89.00%, 89/100), B. garinii (17.00%, 17/100), B. afzelii (7.00%, 7/100), and B. miyamotoi (7.00%, 7/100) were detected in I. persulcatus, as well the dual co-infection with Candidatus R. tarasevichiae and B. garinii were detected in 13.00% (13/100) of I. persulcatus. Of the 245 individuals, B. garinii (4.90%, 12/245), R. slovaca (0.82%, 2/245), and C. burnetii (0.41%, 1/245) were detected by PCR, and the sequences of the target genes of B. garinii detected in humans were identical to those detected in I. persulcatus. The seroprevalence of anti-SFGR and anti-B. burgdorferi was 5.71% and 13.47%, respectively. This study demonstrated that Candidatus R. tarasevichiae and B. garinii were the dominant tick-borne bacteria in I. persulcatus from Arxan, and that dual co-infection with Candidatus R. tarasevichiae and B. garinii was frequent. This is the first time that B. miyamotoi has been identified in ticks from Arxan and R. solvaca has been detected in humans from Inner Mongolia. More importantly, this study demonstrated the transmission of B. garinii from ticks to humans in Arxan, suggesting that long-term monitoring of tick-borne pathogens in ticks and humans is important for the prevention and control of tick-borne diseases.}, } @article {pmid38486702, year = {2024}, author = {Liu, XL and Zhao, H and Wang, YX and Liu, XY and Jiang, Y and Tao, MF and Liu, XY}, title = {Detecting and characterizing new endofungal bacteria in new hosts: Pandoraea sputorum and Mycetohabitans endofungorum in Rhizopus arrhizus.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1346252}, doi = {10.3389/fmicb.2024.1346252}, pmid = {38486702}, issn = {1664-302X}, abstract = {The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.}, } @article {pmid38479454, year = {2024}, author = {Del Carmen Guarneros Martínez, T and Cáceres-Martínez, J and Cruz-Flores, R and López-Carvallo, A and Ángel Del Río-Portilla, M and Guerrero Rentería, Y}, title = {Prevalence and intensity of a rickettsiales-like organism in cultured pleasure oyster, crassostrea corteziensis, from nayarit, mexico.}, journal = {Journal of invertebrate pathology}, volume = {}, number = {}, pages = {108093}, doi = {10.1016/j.jip.2024.108093}, pmid = {38479454}, issn = {1096-0805}, abstract = {Fastidious endosymbiotic Rickettsiales-like organisms (RLO) have been observed in the digestive diverticula of the cultured pleasure oyster (Crassostrea corteziensis) from Nayarit, Mexico since 2007. In a few mollusk species, these bacteria have been associated with mortality events and production losses. The type of relationship between the RLO and the pleasure oyster is largely unknown and further investigations are needed to determine if these bacteria warrant management concern in C. corteziensis. In this study, the morphological characteristics of the RLO were studied by histology and SEM, and the taxonomic affiliations of the bacteria were evaluated by 16S rRNA amplicon sequencing. In addition, the prevalence and intensity of the RLO was recorded from 2007 to 2017 by histology. The RLO was observed inside circular basophilic cytoplasmic membrane bound vacuoles (MBV) that had an average length and width of 15.70 ± 15.24 µm and 15.42 ± 14.95 µm respectively. Apart from cellular hypertrophy, no tissue alterations were observed in the areas adjacent to the RLO. Individual bacteria within the MBV were coccoid in shape with an average length of 0.65 ± 0.12 µm and an average width of 0.38 ± 0.09 µm. The bacterial microbiota of a selected number of samples (one sample without RLOs and two samples with RLOs) showed the presence of intracellular parasite OTUs corresponding to the families Rickettsiaceae and Anaplasmataceae, suggesting that the RLO from the pleasure oyster is associated with the order Rickettsiales. A mean prevalence of 5 % was observed throughout the study period and the majority of the organisms (89 %) presented low intensity of Grade 1 (30-61 RLO) of the MBV. A higher prevalence of the RLO was observed during warmer months. The lack of tissue alterations, the low prevalence and the low intensity of the MBV suggest that the RLO from C. corteziensis is a commensal endosymbiont that presents little risk for oyster production in Nayarit, México. However, regular monitoring is needed to detect if any variation in this relationship occurs, mainly in a scenario where extreme environmental fluctuations may occur.}, } @article {pmid38479324, year = {2024}, author = {Walters, LJ and Busch, SJ and Vermeulen, S and Craig, CA}, title = {Entanglement and ingestion of microfibers by the oyster pea crab Zaops ostreum, an endosymbiont of the eastern oyster Crassostrea virginica.}, journal = {Marine pollution bulletin}, volume = {201}, number = {}, pages = {116251}, doi = {10.1016/j.marpolbul.2024.116251}, pmid = {38479324}, issn = {1879-3363}, abstract = {The kleptoparasitic pea crab Zaops ostreum lives within the gills of bivalves, including the economically important eastern oyster Crassostrea virginica. Previous research along the east coast of central Florida has found an average of 2.3 pieces of plastic per oyster. The goals of our research were to determine if filter-feeding oysters transfer microfibers to Z. ostreum via the crab: 1) actively consuming plastic particles, or 2) passively becoming entangled in microfibers. Our results show that both occur. While only 11.6 % of Z. ostreum (total n = 122) consumed microfibers, those that did had up to 14 pieces in their soft tissues. Similarly, only 7.4 % of Z. ostreum had microfibers entangled around their appendages. Mean lengths of consumed and entangled fibers were similar, 1.9 and 2.7 mm, respectively. Additional research is needed to understand the positive and negative impacts of microfibers associated with pea crabs on both species.}, } @article {pmid38472683, year = {2024}, author = {Ezhova, OV and Lukinykh, AI and Malakhov, VV}, title = {Nemertodermatida-Endosymbionts of Deep-Sea Acorn Worms (Hemichordata, Torquaratoridae).}, journal = {Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections}, volume = {}, number = {}, pages = {}, pmid = {38472683}, issn = {1608-3105}, abstract = {Worm-like endosymbionts were found in the hepatic region of the digestive tract of the deep-sea acorn worm Quatuoralisia malakhovi Ezhova et Lukinykh, 2022 (family Torquaratoridae) from the Bering Sea. The symbionts were assigned to the taxon Nemertodermatida on the basis of histological examination. Torquaratoridae are similar in feeding type to holothuroids, which have also been found to have Xenacoelomorpha endosymbionts.}, } @article {pmid38471501, year = {2024}, author = {Cornejo-Castillo, FM and Inomura, K and Zehr, JP and Follows, MJ}, title = {Metabolic trade-offs constrain the cell size ratio in a nitrogen-fixing symbiosis.}, journal = {Cell}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cell.2024.02.016}, pmid = {38471501}, issn = {1097-4172}, abstract = {Biological dinitrogen (N2) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N2-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species. Metabolic modeling showed that this size relationship maximizes the coordinated growth rate based on trade-offs between resource acquisition and exchange. Our findings show that the size relationships of N2-fixing endosymbionts and organelles in unicellular eukaryotes are constrained by predictable metabolic underpinnings and that UCYN-A is, in many regards, functioning like a hypothetical N2-fixing organelle (or nitroplast).}, } @article {pmid38469952, year = {2024}, author = {Arinanto, LS and Hoffmann, AA and Ross, PA and Gu, X}, title = {Hormetic effect induced by Beauveria bassiana in Myzus persicae.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.8075}, pmid = {38469952}, issn = {1526-4998}, abstract = {BACKGROUND: Myzus persicae, a serious sap-sucking pest of a large variety of host plants in agriculture, is traditionally controlled using chemical insecticides but there is interest in using biopesticides as restrictions are increasingly placed on the use of broad-spectrum pesticides.

RESULTS: Here we show that in petri dish experiments high concentrations of the fungal entomopathogen Beauveria bassiana lead to rapid mortality of M. persicae but at a low concentration (1 × 10[4] conidia mL[-1]) there is a hormetic effect where survival and fecundity are enhanced. Hormetic effects persisted across a generation with reduced development times and increased fecundity in the offspring of M. persicae exposed to B. bassiana. Whole plant experiments point to a hormetic effect being detected in two out of three tested lines. The impact of these effects might also depend on whether M. persicae was transinfected with the endosymbiont Rickettsiella viridis, which decreases fecundity and survival compared to aphids lacking this endosymbiont. This fecundity cost was ameliorated in the generation following exposure to the entomopathogen.

CONCLUSION: While B. bassiana is effective in controlling M. persicae especially at higher spore concentrations, utilization of this entomopathogen requires careful consideration of hormetic effects at lower spore concentrations, and further research to optimize its application for sustainable agriculture is recommended. This article is protected by copyright. All rights reserved.}, } @article {pmid38468292, year = {2024}, author = {Ahouandjinou, MJ and Sovi, A and Sidick, A and Sewadé, W and Koukpo, CZ and Chitou, S and Towakinou, L and Adjottin, B and Hougbe, S and Tokponnon, F and Padonou, GG and Akogbéto, M and Messenger, LA and Ossè, RA}, title = {First report of natural infection of Anopheles gambiae s.s. and Anopheles coluzzii by Wolbachia and Microsporidia in Benin: a cross-sectional study.}, journal = {Malaria journal}, volume = {23}, number = {1}, pages = {72}, pmid = {38468292}, issn = {1475-2875}, abstract = {BACKGROUND: Recently, bacterial endosymbiont, including Wolbachia and Microsporidia were found to limit the infection of Anopheles mosquitoes with Plasmodium falciparum. This study aimed to investigate the natural presence of key transmission-blocking endosymbionts in Anopheles gambiae and Anopheles coluzzii in Southern Benin.

METHODS: The present study was conducted in seven communes (Cotonou, Porto-Novo, Aguégués, Ifangni, Pobè Athiémé, and Grand-Popo) of Southern Benin. Anopheles were collected using indoor/outdoor Human Landing Catches (HLCs) and Pyrethrum Spray Catches (PSCs). Following morphological identification, PCR was used to identify An. gambiae sensu lato (s.l.) to species level and to screen for the presence of both Wolbachia and Microsporidia. Plasmodium falciparum sporozoite infection was also assessed using ELISA.

RESULTS: Overall, species composition in An. gambiae s.l. was 53.7% An. coluzzii, while the remainder was An. gambiae sensu stricto (s.s.). Combined data of the two sampling techniques revealed a mean infection prevalence with Wolbachia of 5.1% (95% CI 0.90-18.6) and 1.3% (95% CI 0.07-7.8) in An. gambiae s.s. and An. coluzzii, respectively. The mean infection prevalence with Microsporidia was 41.0% (95% CI 25.9-57.8) for An. gambiae s.s. and 57.0% (95% CI 45.4-67.9) for An. coluzzii. Wolbachia was only observed in Ifangni, Pobè, and Cotonou, while Microsporidia was detected in all study communes. Aggregated data for HLCs and PSCs showed a sporozoite rate (SR) of 0.80% (95% CI 0.09-2.87) and 0.69% (95% CI 0.09-2.87) for An. gambiae and An. coluzzii, respectively, with a mean of 0.74% (95% CI 0.20-1.90). Of the four individual mosquitoes which harboured P. falciparum, none were also infected with Wolbachia and one contained Microsporidia.

CONCLUSIONS: The present study is the first report of natural infections of field-collected An. gambiae s.l. populations from Benin with Wolbachia and Microsporidia. Sustained efforts should be made to widen the spectrum of bacteria identified in mosquitoes, with the potential to develop endosymbiont-based control tools; such interventions could be the game-changer in the control of malaria and arboviral disease transmission.}, } @article {pmid38468766, year = {2022}, author = {Fernández, MB and Bleidorn, C and Calcaterra, LA}, title = {Wolbachia Infection in Native Populations of the Invasive Tawny Crazy Ant Nylanderia fulva.}, journal = {Frontiers in insect science}, volume = {2}, number = {}, pages = {905803}, pmid = {38468766}, issn = {2673-8600}, abstract = {Antagonistic interactions can affect population growth and dispersal of an invasive species. Wolbachia are intracellular endosymbiont bacteria that infect arthropod and nematode hosts and are able to manipulate reproduction, which in some cases leads to cocladogenesis. Moreover, the presence of the strictly maternally transferred Wolbachia in a population can indirectly induce selective sweeps on the hosts' mitochondria. Ants have a Wolbachia infection rate of about 34%, which makes phylogenetic studies using mitochondrial markers vulnerable of being confounded by the effect of the endosymbiont. Nylanderia fulva is an invasive ant native to South America, considered a pest in the United States. Its distribution and biology are poorly known in its native range, and the taxonomic identity of this and its closely related species, Nylanderia pubens, has only recently been understood with the aid of molecular phylogenies. Aiming at estimating robust phylogenetic relationships of N. fulva in its native range, we investigated the presence and pattern of Wolbachia infection in populations of N. fulva from Argentina, part of its native range, to account for its possible effect on the host population structure. Using the ftsZ gene, 30 nests of N. fulva and four from sympatric Nylanderia species were screened for the presence of Wolbachia. We sequenced the MLST genes, the highly variable gene wsp, as well as glyQ, a novel target gene for which new primers were designed. Phylogeny of the ants was estimated using mtDNA (COI). We found supergroup A Wolbachia strains infecting 73% of N. fulva nests and two nests of Nylanderia sp. 1. Wolbachia phylogenetic tree inferred with MLST genes is partially congruent with the host phylogeny topology, with the exception of a lineage of strains shared by ants from different N. fulva clades. Furthermore, by comparing with Wolbachia sequences infecting other ants, we found that the strains infecting different N. fulva clades are not monophyletic. Our findings suggest there are three recent independent horizontally transmitted Wolbachia infections in N. fulva, and we found no evidence of influence of Wolbachia in the host mtDNA based phylogeny.}, } @article {pmid38462506, year = {2024}, author = {Beasley-Hall, PG and Kinjo, Y and Rose, HA and Walker, J and Foster, CSP and Kovacs, TGL and Bourguignon, T and Ho, SYW and Lo, N}, title = {Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life.}, journal = {Insect science}, volume = {}, number = {}, pages = {}, doi = {10.1111/1744-7917.13339}, pmid = {38462506}, issn = {1744-7917}, support = {FT160100463//Australian Research Council/ ; }, abstract = {Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.}, } @article {pmid38459641, year = {2024}, author = {Donner, SH and Slingerland, M and Beekman, MM and Comte, A and Dicke, M and Zwaan, BJ and Pannebakker, BA and Verhulst, EC}, title = {Aphid populations are frequently infected with facultative endosymbionts.}, journal = {Environmental microbiology}, volume = {26}, number = {3}, pages = {e16599}, doi = {10.1111/1462-2920.16599}, pmid = {38459641}, issn = {1462-2920}, support = {//Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ ; KNAWWF/807/19002//Koninklijke Nederlandse Akademie van Wetenschappen/ ; //Koppert Biological Systems/ ; //Top Sector Horticulture & Starting Materials (TKI T&U)/ ; }, abstract = {The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.}, } @article {pmid38457881, year = {2024}, author = {Lintner, M and Schagerl, M and Lintner, B and Wanek, W and Goleń, J and Tyszka, J and Heinz, P}, title = {Impact of pesticides on marine coral reef foraminifera.}, journal = {Marine pollution bulletin}, volume = {201}, number = {}, pages = {116237}, doi = {10.1016/j.marpolbul.2024.116237}, pmid = {38457881}, issn = {1879-3363}, abstract = {Our laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.0001 %); we included the insecticide Confidor© (active substance: imidacloprid), the fungicide Pronto©Plus (tebuconazole), and the herbicide Roundup© (glyphosate). Our evaluation focused on the symbiont's photosynthetically active area (PA), and the uptake of dissolved inorganic carbon (DIC) and nitrogen (nitrate) to determine the vitality of the foraminifera. Our findings showed that even the lowest doses of the fungicide and herbicide caused irreparable damage to the foraminifera and their symbionts. While the insecticide only deactivated the symbionts (PA = 0) at the highest concentration (1 %), the fungicide, and herbicide caused complete deactivation even at the lowest levels provided (0.0001 %). The fungicide had the strongest toxic effect on the foraminiferal host regarding reduced isotope uptake. In conclusion, all pesticides had a negative impact on the holosymbiont, with the host showing varying degrees of sensitivity towards different types of pesticides.}, } @article {pmid38456555, year = {2024}, author = {Malandrakis, AA and Varikou, K and Kavroulakis, Ν and Nikolakakis, A and Dervisi, I and Reppa, CΙ and Papadakis, S and Holeva, MC and Chrysikopoulos, CV}, title = {Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae).}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.8068}, pmid = {38456555}, issn = {1526-4998}, abstract = {BACKGROUND: The potential of copper nanoparticles (NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper [Cu(OH)2 ] on the insect's reproductive and endosymbiotic parameters were investigated.

RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or CuO-NPs with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae.

CONCLUSION: Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest.}, } @article {pmid38456084, year = {2024}, author = {Kumar, V and Subramanian, J and Marimuthu, M and Subbarayalu, M and Ramasamy, V and Gandhi, K and Ariyan, M}, title = {Diversity and functional characteristics of culturable bacterial endosymbionts from cassava whitefly biotype Asia II-5, Bemisia tabaci.}, journal = {3 Biotech}, volume = {14}, number = {4}, pages = {100}, doi = {10.1007/s13205-024-03949-0}, pmid = {38456084}, issn = {2190-572X}, abstract = {UNLABELLED: Whitefly Bemisia tabaci, a carrier of cassava mosaic disease (CMD), poses a significant threat to cassava crops. Investigating culturable bacteria and their impact on whiteflies is crucial due to their vital role in whitefly fitness and survival. The whitefly biotype associated with cassava and transmitting CMD in India has been identified as Asia II 5 through partial mitochondrial cytochrome oxidase I gene sequencing. In this study, bacteria associated with adult B. tabaci feeding on cassava were extracted using seven different media. Nutrient Agar (NA), Soyabean Casein Digest Medium (SCDM), Luria Bertani agar (LBA), and Reasoner's 2A agar (R2A) media resulted in 19, 6, 4, and 4 isolates, respectively, producing a total of 33 distinct bacterial isolates. Species identification through 16SrRNA gene sequencing revealed that all isolates belonged to the Bacillota and Pseudomonadota phyla, encompassing 11 genera: Bacillus, Cytobacillus, Exiguobacterium, Terribacillus, Brevibacillus, Enterococcus, Staphylococcus, Brucella, Novosphingobium, Lysobacter, and Pseudomonas. All bacterial isolates were tested for chitinase, protease, siderophore activity, and antibiotic sensitivity. Nine isolates exhibited chitinase activity, 28 showed protease activity, and 23 displayed siderophore activity. Most isolates were sensitive to antibiotics such as Vancomycin, Streptomycin, Erythromycin, Kanamycin, Doxycycline, Tetracycline, and Ciprofloxacin, while they demonstrated resistance to Bacitracin and Colistin. Understanding the culturable bacteria associated with cassava whitefly and their functional significance could contribute to developing effective cassava whitefly and CMD control in agriculture.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03949-0.}, } @article {pmid38455147, year = {2024}, author = {Hafer-Hahmann, N and Vorburger, C}, title = {Parasitoid species diversity has no effect on protective symbiont diversity in experimental host-parasitoid populations.}, journal = {Ecology and evolution}, volume = {14}, number = {3}, pages = {e11090}, doi = {10.1002/ece3.11090}, pmid = {38455147}, issn = {2045-7758}, abstract = {How does diversity in nature come about? One factor contributing to this diversity are species interactions; diversity on one trophic level can shape diversity on lower or higher trophic levels. For example, parasite diversity enhances host immune diversity. Insect protective symbionts mediate host resistance and are, therefore, also engaged in reciprocal selection with their host's parasites. Here, we applied experimental evolution in a well-known symbiont-aphid-parasitoid system to study whether parasitoid diversity contributes to maintaining symbiont genetic diversity. We used caged populations of black bean aphids (Aphis fabae), containing uninfected individuals and individuals infected with different strains of the bacterial endosymbiont Hamiltonella defensa, which protects aphids against parasitoids. Over multiple generations, these populations were exposed to three different species of parasitoid wasps (Aphidius colemani, Binodoxys acalephae or Lysiphlebus fabarum), simultaneous or sequential mixtures of these species or no wasps. Surprisingly, we observed little selection for H. defensa in most treatments, even when it clearly provided protection against a fatal parasitoid infection. This seemed to be caused by high induced costs of resistance: aphids surviving parasitoid attacks suffered an extreme reduction in fitness. In marked contrast to previous studies looking at the effect of different genotypes of a single parasitoid species, we found little evidence for a diversifying effect of multiple parasitoid species on symbiont diversity in hosts.}, } @article {pmid38452081, year = {2024}, author = {Kaur, R and McGarry, A and Shropshire, JD and Leigh, BA and Bordenstein, SR}, title = {Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality.}, journal = {Science (New York, N.Y.)}, volume = {383}, number = {6687}, pages = {1111-1117}, doi = {10.1126/science.adk9469}, pmid = {38452081}, issn = {1095-9203}, abstract = {The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.}, } @article {pmid38444236, year = {2024}, author = {Manentzos, AN and Pahl, AMC and Melloh, P and Martin, EA and Leybourne, DJ}, title = {Low prevalence of secondary endosymbionts in aphids sampled from rapeseed crops in Germany.}, journal = {Bulletin of entomological research}, volume = {}, number = {}, pages = {1-6}, doi = {10.1017/S0007485324000063}, pmid = {38444236}, issn = {1475-2670}, support = {RF-2022-100004//Royal Commission for the Exhibition of 1851/ ; }, abstract = {Peach-potato aphids, Myzus persicae Sulzer (Hemiptera:Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts. In recent years greater emphasis has been placed on developing alternative pest management strategies, including the increased use of natural enemies such as parasitoids wasps. For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can potentially disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA where endosymbiont infection frequencies range form 0-2%, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities (endosymbionts present in over 50% of aphid populations).}, } @article {pmid38443775, year = {2024}, author = {Molina-Garza, ZJ and Cuesy-León, M and Baylón-Pacheco, L and Rosales-Encina, JL and Galaviz-Silva, L}, title = {Diversity of midgut microbiota in ticks collected from white-tailed deer (Odocoileus virginianus) from northern Mexico.}, journal = {Parasites, hosts and diseases}, volume = {62}, number = {1}, pages = {117-130}, doi = {10.3347/PHD.23006}, pmid = {38443775}, issn = {2982-6799}, support = {#3157//FOINS PN-CONACyT/ ; //PAICyT-UANL/ ; //CONACyT/ ; }, abstract = {Ticks host different pathogens as endosymbiont and nonpathogenic microorganisms and play an important role in reproductive fitness and nutrient provision. However, the bacterial microbiomes of white-tailed deer ticks have received minimal attention. This study aimed to examine the bacterial microbiome of ticks collected from Odocoileus virginianus on the Mexico-United States border to assess differences in microbiome diversity in ticks of different species, sexes, and localities. Five different tick species were collected: Rhipicephalus microplus, Dermacentor nitens, Otobius megnini, Amblyomma cajennense, and A. maculatum. The tick microbiomes were analyzed using next-generation sequencing. Among all tick species, the most predominant phylum was Proteobacteria, followed by Actinobacteria and Firmicutes. The ticks from Tamaulipas and Nuevo León presented the highest bacterial species diversity. Acinetobacter johnsonii and A. lwoffii were the common bacterial species in the microbiome of all ticks, Coxiella were present in R. microplus, and Dermacentor nitens also exhibited a Francisella-like endosymbiont. The microbiome of most females in D. nitens was less diverse than that of males, whereas R. microplus occurs in females, suggesting that microbiome diversity is influenced by sex. In the bacterial communities of A. maculatum and O. megnini, Candidatus Midichloria massiliensis, and Candidatus Endoecteinascidia fumentensis were the most predominant endosymbionts. These results constitute the initial report on these bacteria, and this is also the first study to characterize the microbiome of O. megnini.}, } @article {pmid38439943, year = {2024}, author = {González Porras, MÁ and Pons, I and García-Lozano, M and Jagdale, S and Emmerich, C and Weiss, B and Salem, H}, title = {Extracellular symbiont colonizes insect during embryo development.}, journal = {ISME communications}, volume = {4}, number = {1}, pages = {ycae005}, pmid = {38439943}, issn = {2730-6151}, abstract = {Insects typically acquire their beneficial microbes early in development. Endosymbionts housed intracellularly are commonly integrated during oogenesis or embryogenesis, whereas extracellular microbes are only known to be acquired after hatching by immature instars such as larvae or nymphs. Here, however, we report on an extracellular symbiont that colonizes its host during embryo development. Tortoise beetles (Chrysomelidae: Cassidinae) host their digestive bacterial symbiont Stammera extracellularly within foregut symbiotic organs and in ovary-associated glands to ensure its vertical transmission. We outline the initial stages of symbiont colonization and observe that although the foregut symbiotic organs develop 3 days prior to larval emergence, they remain empty until the final 24 h of embryo development. Infection by Stammera occurs during that timeframe and prior to hatching. By experimentally manipulating symbiont availability to embryos in the egg, we describe a 12-h developmental window governing colonization by Stammera. Symbiotic organs form normally in aposymbiotic larvae, demonstrating that these Stammera-bearing structures develop autonomously. In adults, the foregut symbiotic organs are already colonized following metamorphosis and host a stable Stammera population to facilitate folivory. The ovary-associated glands, however, initially lack Stammera. Symbiont abundance subsequently increases within these transmission organs, thereby ensuring sufficient titers at the onset of oviposition ~29 days following metamorphosis. Collectively, our findings reveal that Stammera colonization precedes larval emergence, where its proliferation is eventually decoupled in adult beetles to match the nutritional and reproductive requirements of its host.}, } @article {pmid38438424, year = {2024}, author = {Tan, KXY and Shigenobu, S}, title = {In vivo interference of pea aphid endosymbiont Buchnera groEL gene by synthetic peptide nucleic acids.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {5378}, pmid = {38438424}, issn = {2045-2322}, support = {Scholarship//Ministry of Education, Culture, Sports, Science and Technology/ ; JP20H00478//Japan Society for the Promotion of Science/ ; }, abstract = {The unculturable nature of intracellular obligate symbionts presents a significant challenge for elucidating gene functionality, necessitating the development of gene manipulation techniques. One of the best-studied obligate symbioses is that between aphids and the bacterial endosymbiont Buchnera aphidicola. Given the extensive genome reduction observed in Buchnera, the remaining genes are crucial for understanding the host-symbiont relationship, but a lack of tools for manipulating gene function in the endosymbiont has significantly impeded the exploration of the molecular mechanisms underlying this mutualism. In this study, we introduced a novel gene manipulation technique employing synthetic single-stranded peptide nucleic acids (PNAs). We targeted the critical Buchnera groEL using specially designed antisense PNAs conjugated to an arginine-rich cell-penetrating peptide (CPP). Within 24 h of PNA administration via microinjection, we observed a significant reduction in groEL expression and Buchnera cell count. Notably, the interference of groEL led to profound morphological malformations in Buchnera, indicative of impaired cellular integrity. The gene knockdown technique developed in this study, involving the microinjection of CPP-conjugated antisense PNAs, provides a potent approach for in vivo gene manipulation of unculturable intracellular symbionts, offering valuable insights into their biology and interactions with hosts.}, } @article {pmid38437189, year = {2024}, author = {Dye, D and Cain, JW}, title = {Efficacy of Wolbachia-based mosquito control: Predictions of a spatially discrete mathematical model.}, journal = {PloS one}, volume = {19}, number = {3}, pages = {e0297964}, doi = {10.1371/journal.pone.0297964}, pmid = {38437189}, issn = {1932-6203}, abstract = {Wolbachia is an endosymbiont bacterium present in many insect species. When Wolbachia-carrying male Aedes aegypti mosquitoes mate with non-carrier females, their embryos are not viable due to cytoplasmic incompatibility. This phenomenon has been exploited successfully for the purpose of controlling mosquito populations and the spread of mosquito-borne illnesses: Wolbachia carriers are bred and released into the environment. Because Wolbachia is not harmful to humans, this method of mosquito control is regarded as a safer alternative to pesticide spraying. In this article, we introduce a mathematical framework for exploring (i) whether a one-time release of Wolbachia carriers can elicit a sustained presence of carriers near the release site, and (ii) the extent to which spatial propagation of carriers may allow them to establish fixation in other territories. While some prior studies have formulated mosquito dispersal models using advection-reaction-diffusion PDEs, the predictive power of such models requires careful ecological mapping: advection and diffusion coefficients exhibit significant spatial dependence due to heterogeneity of resources and topography. Here, we adopt a courser-grained view, regarding the environment as a network of discrete, diffusively-coupled "habitats"-distinct zones of high mosquito density such as stagnant ponds. We extend two previously published single-habitat mosquito models to multiple habitats, and calculate rates of migration between pairs of habitats using dispersal kernels. Our primary results are quantitative estimates regarding how the success of carrier fixation in one or more habitats is determined by: the number of carriers released, sizes of habitats, distances between habitats, and the rate of migration between habitats. Besides yielding sensible and potentially useful predictions regarding the success of Wolbachia-based control, our framework applies to other approaches (e.g., gene drives) and contexts beyond the realm of insect pest control.}, } @article {pmid38431055, year = {2024}, author = {Walt, HK and King, JG and Sheele, JM and Meyer, F and Pietri, JE and Hoffmann, FG}, title = {Do bed bugs transmit human viruses, or do humans spread bed bugs and their viruses? A worldwide survey of the bed bug RNA virosphere.}, journal = {Virus research}, volume = {}, number = {}, pages = {199349}, doi = {10.1016/j.virusres.2024.199349}, pmid = {38431055}, issn = {1872-7492}, abstract = {BED BUGS (HEMIPTERA: : Cimicidae) are a globally distributed hematophagous pest that routinely feed on humans. Unlike many blood-sucking arthropods, they have never been linked to pathogen transmission in a natural setting, and despite increasing interest in their role as disease vectors, little is known about the viruses that bed bugs naturally harbor. Here, we present a global-scale survey of the bed bug RNA virosphere. We sequenced the metatranscriptomes of 22 individual bed bugs (Cimex lectularius and Cimex hemipterus) from 8 locations around the world. We detected sequences from two known bed bug viruses (Shuangao bedbug virus 1 and Shuangao bedbug virus 2) which extends their geographical range. We identified three novel bed bug virus sequences from a tenui-like virus (Bunyavirales), a toti-like virus (Ghabrivirales), and a luteo-like virus (Tolivirales). Interestingly, some of the bed bug viruses branch near to insect-transmitted plant-infecting viruses, opening questions regarding the evolution of plant virus infection. When we analyzed the viral sequences by their host's collection location, we found unexpected patterns of geographical diversity that may reflect humans' role in bed bug dispersal. Additionally, we investigated the effect that Wolbachia, the primary bed bug endosymbiont, may have on viral abundance and found that Wolbachia infection neither promotes nor inhibits viral infection. Finally, our results provide no evidence that bed bugs transmit any known human pathogenic viruses.}, } @article {pmid38426058, year = {2024}, author = {Cantin, LJ and Dunning Hotopp, JC and Foster, JM}, title = {Improved metagenome assemblies through selective enrichment of bacterial genomic DNA from eukaryotic host genomic DNA using ATAC-seq.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1352378}, pmid = {38426058}, issn = {1664-302X}, abstract = {Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.}, } @article {pmid38414566, year = {2024}, author = {Ffrench-Constant, RH and Bennie, J and Gordon, IJ and Depew, L and Smith, DAS}, title = {Penetrance interactions of colour pattern loci in the African Monarch and their implications for the evolution of dominance.}, journal = {Ecology and evolution}, volume = {14}, number = {2}, pages = {e11024}, pmid = {38414566}, issn = {2045-7758}, abstract = {Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.}, } @article {pmid38408183, year = {2024}, author = {Paddock, CD and Zambrano, ML and Clover, JR and Ladd-Wilson, S and Dykstra, EA and Salamone, A and Kangiser, D and Ayres, BN and Shooter, SL and Karpathy, SE and Kjemtrup, AM and Beati, L and Levin, ML and Lane, RS and Zazueta, OE}, title = {Rickettsia species identified in adult, host-seeking Dermacentor occidentalis (Acari: Ixodidae) from Baja California, Mexico, and Oregon and Washington, United States.}, journal = {Journal of medical entomology}, volume = {}, number = {}, pages = {}, doi = {10.1093/jme/tjae023}, pmid = {38408183}, issn = {1938-2928}, abstract = {The Pacific Coast tick (Dermacentor occidentalis Marx, 1892) is a frequently encountered and commonly reported human-biting tick species that has been recorded from most of California and parts of southwestern Oregon, southcentral Washington, and northwestern Mexico. Although previous investigators have surveyed populations of D. occidentalis for the presence of Rickettsia species across several regions of California, populations of this tick have not been surveyed heretofore for rickettsiae from Baja California, Oregon, or Washington. We evaluated 1,367 host-seeking, D. occidentalis adults collected from 2015 to 2022 by flagging vegetation at multiple sites in Baja California, Mexico, and Oregon and Washington, United States, using genus- and species-specific assays for spotted fever group rickettsiae. DNA of Rickettsia 364D, R. bellii, and R. tillamookensis was not detected in specimens from these regions. DNA of R. rhipicephali was detected in D. occidentalis specimens obtained from Ensenada Municipality in Baja California and southwestern Oregon, but not from Washington. All ompA sequences of R. rhipichephali that were amplified from individual ticks in southwestern Oregon were represented by a single genotype. DNA of the Ixodes pacificus rickettsial endosymbiont was amplified from specimens collected in southwestern Oregon and Klickitat County, Washington; to the best of our knowledge, this Rickettsia species has never been identified in D. occidentalis. Collectively, these data are consistent with a relatively recent introduction of Pacific Coast ticks in the northernmost extension of its recognized range.}, } @article {pmid38403930, year = {2024}, author = {Lastovetsky, OA and Caruso, T and Brennan, FP and Wall, D and Pylni, S and Doyle, E}, title = {Spores of arbuscular mycorrhizal fungi host surprisingly diverse communities of endobacteria.}, journal = {The New phytologist}, volume = {}, number = {}, pages = {}, doi = {10.1111/nph.19605}, pmid = {38403930}, issn = {1469-8137}, support = {GOIPD/2017/879//Irish Research Council/ ; }, abstract = {Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant root symbionts, which can house two endobacteria: Ca. Moeniiplasma glomeromycotorum (CaMg) and Ca. Glomeribacter gigasporarum (CaGg). However, little is known about their distribution and population structure in natural AMF populations and whether AMF can harbour other endobacteria. We isolated AMF from two environments and conducted detailed analyses of endobacterial communities associated with surface-sterilised AMF spores. Consistent with the previous reports, we found that CaMg were extremely abundant (80%) and CaGg were extremely rare (2%) in both environments. Unexpectedly, we discovered an additional and previously unknown level of bacterial diversity within AMF spores, which extended beyond the known endosymbionts, with bacteria belonging to 10 other phyla detected across our spore data set. Detailed analysis revealed that: CaGg were not limited in distribution to the Gigasporaceae family of AMF, as previously thought; CaMg population structure was driven by AMF host genotype; and a significant inverse correlation existed between the diversity of CaMg and diversity of all other endobacteria. Based on these data, we generate novel testable hypotheses regarding the function of CaMg in AMF biology by proposing that they might act as conditional mutualists of AMF.}, } @article {pmid38399702, year = {2024}, author = {Cameirão, C and Costa, D and Rufino, J and Pereira, JA and Lino-Neto, T and Baptista, P}, title = {Diversity, Composition, and Specificity of the Philaenus spumarius Bacteriome.}, journal = {Microorganisms}, volume = {12}, number = {2}, pages = {}, pmid = {38399702}, issn = {2076-2607}, support = {UIDB/00690/2020; UIDP/00690/2020; LA/P/0007/2020; UIDB/04050/2020; UIDB/05757/2020 and UIDP/05757/2020//Fundação para a Ciência e Tecnologia/ ; PRR-C05-i03-I-000083//Agriculture and Fisheries Financing Institute/ ; 727987//Horizon2020/ ; }, abstract = {Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae) was recently classified as a pest due to its ability to act as a vector of the phytopathogen Xylella fastidiosa. This insect has been reported to harbour several symbiotic bacteria that play essential roles in P. spumarius health and fitness. However, the factors driving bacterial assemblages remain largely unexplored. Here, the bacteriome associated with different organs (head, abdomen, and genitalia) of males and females of P. spumarius was characterized using culturally dependent and independent methods and compared in terms of diversity and composition. The bacteriome of P. spumarius is enriched in Proteobacteria, Bacteroidota, and Actinobacteria phyla, as well as in Candidatus Sulcia and Cutibacterium genera. The most frequent isolates were Curtobacterium, Pseudomonas, and Rhizobiaceae sp.1. Males display a more diverse bacterial community than females, but no differences in diversity were found in distinct organs. However, the organ shapes the bacteriome structure more than sex, with the Microbacteriaceae family revealing a high level of organ specificity and the Blattabacteriaceae family showing a high level of sex specificity. Several symbiotic bacterial genera were identified in P. spumarius for the first time, including Rhodococcus, Citrobacter, Halomonas, Streptomyces, and Providencia. Differences in the bacterial composition within P. spumarius organs and sexes suggest an adaptation of bacteria to particular insect tissues, potentially shaped by their significance in the life and overall fitness of P. spumarius. Although more research on the bacteria of P. spumarius interactions is needed, such knowledge could help to develop specific bacterial-based insect management strategies.}, } @article {pmid38392507, year = {2024}, author = {Cheng, Y and Yang, J and Li, T and Li, J and Ye, M and Wang, J and Chen, R and Zhu, L and Du, B and He, G}, title = {Endosymbiotic Fungal Diversity and Dynamics of the Brown Planthopper across Developmental Stages, Tissues, and Sexes Revealed Using Circular Consensus Sequencing.}, journal = {Insects}, volume = {15}, number = {2}, pages = {}, pmid = {38392507}, issn = {2075-4450}, support = {2022ABA001//The Science and Technology Major Program of Hubei Province/ ; }, abstract = {Endosymbiotic fungi play an important role in the growth and development of insects. Understanding the endosymbiont communities hosted by the brown planthopper (BPH; Nilaparvata lugens Stål), the most destructive pest in rice, is a prerequisite for controlling BPH rice infestations. However, the endosymbiont diversity and dynamics of the BPH remain poorly studied. Here, we used circular consensus sequencing (CCS) to obtain 87,131 OTUs (operational taxonomic units), which annotated 730 species of endosymbiotic fungi in the various developmental stages and tissues. We found that three yeast-like symbionts (YLSs), Polycephalomyces prolificus, Ophiocordyceps heteropoda, and Hirsutella proturicola, were dominant in almost all samples, which was especially pronounced in instar nymphs 4-5, female adults, and the fat bodies of female and male adult BPH. Interestingly, honeydew as the only in vitro sample had a unique community structure. Various diversity indices might indicate the different activity of endosymbionts in these stages and tissues. The biomarkers analyzed using LEfSe suggested some special functions of samples at different developmental stages of growth and the active functions of specific tissues in different sexes. Finally, we found that the incidence of occurrence of three species of Malassezia and Fusarium sp. was higher in males than in females in all comparison groups. In summary, our study provides a comprehensive survey of symbiotic fungi in the BPH, which complements the previous research on YLSs. These results offer new theoretical insights and practical implications for novel pest management strategies to understand the BPH-microbe symbiosis and devise effective pest control strategies.}, } @article {pmid38392506, year = {2024}, author = {Budrys, E and Orlovskytė, S and Budrienė, A}, title = {Ecological Speciation without Morphological Differentiation? A New Cryptic Species of Diodontus Curtis (Hymenoptera, Pemphredonidae) from the Centre of Europe.}, journal = {Insects}, volume = {15}, number = {2}, pages = {}, pmid = {38392506}, issn = {2075-4450}, support = {Contract No S-MIP-20-23//Lietuvos Mokslo Taryba/ ; }, abstract = {Upon exploring the mitotype diversity of the aphid-hunting wasp, Diodontus tristis, we revealed specimens with highly divergent mitotypes from two localities in Lithuania and nesting in clayey substrate, while the specimens with typical mitotypes were found nesting in sandy sites. The comparison of inter- and intra-specific distances and application of delimitation algorithms supported the species status of the clay-nesting populations. Using a set of DNA markers that included complete or partial sequences of six mitochondrial genes, three markers of ribosomal operon, two homeobox genes, and four other nuclear genes, we clarified the phylogenetic relationships of the new cryptic species. The endosymbiotic bacteria infestation was checked, considering the option that the divergent populations may represent clades isolated by Wolbachia infection; however, it did not demonstrate any specificity. We found only subtle morphological differences in the new clay-nesting species, D. argillicola sp. nov.; the discriminant analysis of morphometric measurements did not reliably segregate it as well. Thus, we provide the molecular characters of the cryptic species, which allow confident identification, its phylogenetic position within the genus, and an updated identification key for the D. tristis species group.}, } @article {pmid38392339, year = {2024}, author = {Reese, C and Graber, LC and Ramalho, MO and Moreau, CS}, title = {The Diversity of Wolbachia across the Turtle Ants (Formicidae: Cephalotes spp.).}, journal = {Biology}, volume = {13}, number = {2}, pages = {}, pmid = {38392339}, issn = {2079-7737}, support = {DGE-1650441; NSF DEB 1900357//National Science Foundation/ ; }, abstract = {Wolbachia is a widespread and well-known bacterium that can induce a wide range of changes within its host. Ants specifically harbor a great deal of Wolbachia diversity and are useful systems to study endosymbiosis. The turtle ants (Cephalotes) are a widespread group of tropical ants that rely on gut microbes to support their herbivorous diet for their survival, yet little is known of the extent of this diversity. Therefore, studying their endosymbionts and categorizing the diversity of bacteria within Cephalotes hosts could help to delimit species and identify new strains and can help lead to a further understanding of how the microbiome leads to survival and speciation in the wild. In our study, 116 individual samples were initially tested for positive infection with the wsp gene. Of the initial 116 samples, 9 samples were infected with only one strain of Wolbachia, and 7 were able to be used successfully for multilocus sequence typing (MLST). We used the new MLST data to infer a phylogeny with other Formicidae samples from the MLST online database to identify new Wolbachia strains and related genes, of which only one came back as an exact match. The 18 Wolbachia-positive samples ranged across 15 different species and 7 different countries, which we further test for species identity and geographic correlation. This study is the first comprehensive look into the diversity of Wolbachia in the turtle ants, providing insight into how endosymbionts are oriented in widespread species and providing a strong foundation for further research in host-microbe interactions.}, } @article {pmid38390299, year = {2024}, author = {Baruah, N and Haajanen, R and Rahman, MT and Pirttilä, AM and Koskimäki, JJ}, title = {Biosynthesis of polyhydroxybutyrate by Methylorubrum extorquens DSM13060 is essential for intracellular colonization in plant endosymbiosis.}, journal = {Frontiers in plant science}, volume = {15}, number = {}, pages = {1302705}, pmid = {38390299}, issn = {1664-462X}, abstract = {Methylorubrum extorquens DSM13060 is an endosymbiont that lives in the cells of shoot tip meristems. The bacterium is methylotrophic and consumes plant-derived methanol for the production of polyhydroxybutyrate (PHB). The PHB provides protection against oxidative stress for both host and endosymbiont cells through its fragments, methyl-esterified 3-hydroxybutyrate (ME-3HB) oligomers. We evaluated the role of the genes involved in the production of ME-3HB oligomers in the host colonization by the endosymbiont M. extorquens DSM13060 through targeted genetic mutations. The strains with deletions in PHB synthase (phaC), PHB depolymerase (phaZ1), and a transcription factor (phaR) showed altered PHB granule characteristics, as ΔphaC had a significantly low number of granules, ΔphaR had a significantly increased number of granules, and ΔphaZ1 had significantly large PHB granules in the bacterial cells. When the deletion strains were exposed to oxidative stress, the ΔphaC strain was sensitive to 10 mM HO· and 20 mM H2O2. The colonization of the host, Scots pine (Pinus sylvestris L.), by the deletion strains varied greatly. The deletion strain ΔphaR colonized the host mainly intercellularly, whereas the ΔphaZ1 strain was a slightly poorer colonizer than the control. The deletion strain ΔphaC lacked the colonization potential, living mainly on the surfaces of the epidermis of pine roots and shoots in contrast to the control, which intracellularly colonized all pine tissues within the study period. In earlier studies, deletions within the PHB metabolic pathway have had a minor effect on plant colonization by rhizobia. We have previously shown the association between ME-3HB oligomers, produced by PhaC and PhaZ1, and the ability to alleviate host-generated oxidative stress during plant infection by the endosymbiont M. extorquens DSM13060. Our current results show that the low capacity for PHB synthesis leads to poor tolerance of oxidative stress and loss of colonization potential by the endosymbiont. Altogether, our findings demonstrate that the metabolism of PHB in M. extorquens DSM13060 is an important trait in the non-rhizobial endosymbiosis.}, } @article {pmid38381797, year = {2024}, author = {Mendoza-Roldan, JA and Perles, L and Filippi, E and Szafranski, N and Montinaro, G and Carbonara, M and Scalera, R and de Abreu Teles, PP and Walochnik, J and Otranto, D}, title = {Parasites and microorganisms associated with the snakes collected for the "festa Dei serpari" in Cocullo, Italy.}, journal = {PLoS neglected tropical diseases}, volume = {18}, number = {2}, pages = {e0011973}, doi = {10.1371/journal.pntd.0011973}, pmid = {38381797}, issn = {1935-2735}, abstract = {While in much of the Western world snakes are feared, in the small, rural, mountainous town of Cocullo, in the middle of central Italy, snakes are annually collected and celebrated in a sacro-profane ritual. Every 1st of May, Serpari (snake catchers) capture and showcase dozens of non-venomous snakes to celebrate the ritual of San Domenico. In order to detect potential zoonotic pathogens within this unique epidemiological context, parasites and microorganisms of snakes harvested for the "festa dei serpari" ritual was investigated. Snakes (n = 112) were examined and ectoparasites collected, as well as blood and feces sampled. Ectoparasites were identified morpho-molecularly, and coprological examination conducted through direct smear and flotation. Molecular screenings were performed to identify parasites and microorganisms in collected samples (i.e., Mesostigmata mites, Anaplasma/Ehrlichia spp., Rickettsia spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Babesia/Theileria spp., Cryptosporidium spp., Giardia spp., Leishmania spp. and helminths). Overall, 28.5% (32/112) of snakes were molecularly positive for at least one parasite and/or microorganism. Endosymbiont Wolbachia bacteria were identified from Macronyssidae mites and zoonotic vector-borne bacteria (e.g., Rickettsia, Leishmania), as well as orally transmitted pathogens (i.e., Cryptosporidium, Giardia, Proteus vulgaris, Pseudomonas), were detected from blood and feces. Thus, given the central role of the snakes in the tradition of Cocullo, surveys of their parasitic fauna and associated zoonotic pathogens may aid to generate conservation policies to benefit the human-snake interactions, whilst preserving the cultural patrimony of this event.}, } @article {pmid38376262, year = {2024}, author = {Šibanc, N and Clark, DR and Helgason, T and Dumbrell, AJ and Maček, I}, title = {Extreme environments simplify reassembly of communities of arbuscular mycorrhizal fungi.}, journal = {mSystems}, volume = {}, number = {}, pages = {e0133123}, doi = {10.1128/msystems.01331-23}, pmid = {38376262}, issn = {2379-5077}, abstract = {The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.}, } @article {pmid38374896, year = {2024}, author = {Mazel, F and Pitteloud, C and Guisan, A and Pellissier, L}, title = {Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets.}, journal = {ISME communications}, volume = {4}, number = {1}, pages = {ycad013}, pmid = {38374896}, issn = {2730-6151}, abstract = {Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales.}, } @article {pmid38371935, year = {2024}, author = {Thimmappa, BC and Salhi, LN and Forget, L and Sarrasin, M and Bustamante Villalobos, P and Henrissat, B and Lang, BF and Burger, G}, title = {A biofertilizing fungal endophyte of cranberry plants suppresses the plant pathogen Diaporthe.}, journal = {Frontiers in microbiology}, volume = {15}, number = {}, pages = {1327392}, pmid = {38371935}, issn = {1664-302X}, abstract = {Fungi colonizing plants are gaining attention because of their ability to promote plant growth and suppress pathogens. While most studies focus on endosymbionts from grasses and legumes, the large and diverse group of ericaceous plants has been much neglected. We recently described one of the very few fungal endophytes promoting the growth of the Ericaceae Vaccinium macrocarpon (American cranberry), notably the Codinaeella isolate EC4. Here, we show that EC4 also suppresses fungal pathogens, which makes it a promising endophyte for sustainable cranberry cultivation. By dual-culture assays on agar plates, we tested the potential growth suppression (or biocontrol) of EC4 on other microbes, notably 12 pathogenic fungi and one oomycete reported to infect not only cranberry but also blueberry, strawberry, tomato plants, rose bushes and olive trees. Under greenhouse conditions, EC4 protects cranberry plantlets infected with one of the most notorious cranberry-plant pathogens, Diaporthe vaccinii, known to cause upright dieback and berry rot. The nuclear genome sequence of EC4 revealed a large arsenal of genes potentially involved in biocontrol. About ∼60 distinct clusters of genes are homologs of secondary metabolite gene clusters, some of which were shown in other fungi to synthesize nonribosomal peptides and polyketides, but in most cases, the exact compounds these clusters may produce are unknown. The EC4 genome also encodes numerous homologs of hydrolytic enzymes known to degrade fungal cell walls. About half of the nearly 250 distinct glucanases and chitinases are likely involved in biocontrol because they are predicted to be secreted outside the cell. Transcriptome analysis shows that the expression of about a quarter of the predicted secondary-metabolite gene clusters and glucan and chitin-degrading genes of EC4 is stimulated when it is co-cultured with D. vaccinii. Some of the differentially expressed EC4 genes are alternatively spliced exclusively in the presence of the pathogen, altering the proteins' domain content and subcellular localization signal, thus adding a second level of proteome adaptation in response to habitat competition. To our knowledge, this is the first report of Diaporthe-induced alternative splicing of biocontrol genes.}, } @article {pmid38366251, year = {2024}, author = {Gimmi, E and Vorburger, C}, title = {High specificity of symbiont-conferred resistance in an aphid-parasitoid field community.}, journal = {Journal of evolutionary biology}, volume = {37}, number = {2}, pages = {162-170}, doi = {10.1093/jeb/voad013}, pmid = {38366251}, issn = {1420-9101}, support = {31003A_181969/SNSF_/Swiss National Science Foundation/Switzerland ; }, mesh = {Animals ; *Aphids/genetics/microbiology ; *Wasps/genetics ; Host-Parasite Interactions/genetics ; Symbiosis ; Enterobacteriaceae ; }, abstract = {Host-parasite coevolution is mediated by genetic interactions between the antagonists and may lead to reciprocal adaptation. In the black bean aphid, Aphis fabae fabae, resistance to parasitoids can be conferred by the heritable bacterial endosymbiont Hamiltonella defensa. H. defensa has been shown to be variably protective against different parasitoid species, and different genotypes of the black bean aphid's main parasitoid Lysiphlebus fabarum. However, these results were obtained using haphazard combinations of laboratory-reared insect lines with different origins, making it unclear how representative they are of natural, locally (co)adapted communities. We therefore comprehensively sampled the parasitoids of a natural A. f. fabae population and measured the ability of the five most abundant species to parasitize aphids carrying the locally prevalent H. defensa haplotypes. H. defensa provided resistance only against the dominant parasitoid L. fabarum (70% of all parasitoids), but not against less abundant parasitoids, and resistance to L. fabarum acted in a genotype-specific manner (G × G interactions between H. defensa and L. fabarum). These results confirm that strong species- and genotype-specificity of symbiont-conferred resistance is indeed a hallmark of wild A. f. fabae populations, and they are consistent with symbiont-mediated adaptation of aphids to the parasitoids posing the highest risk.}, } @article {pmid38365237, year = {2024}, author = {Zhang, H and Hellweger, FL and Luo, H}, title = {Genome reduction occurred in early Prochlorococcus with an unusually low effective population size.}, journal = {The ISME journal}, volume = {18}, number = {1}, pages = {}, pmid = {38365237}, issn = {1751-7370}, support = {14110820//Hong Kong Research Grants Council General Research Fund/ ; MCEF21101//Marine Conservation Enhancement Fund/ ; AoE/M-403/16//Hong Kong Research Grants Council Area of Excellence Scheme/ ; 4053605//Chinese University of Hong Kong/ ; 2022A1515010844//Guangdong Basic and Applied Basic Research Foundation/ ; 2021M702296//China Postdoctoral Science Foundation/ ; }, mesh = {Phylogeny ; *Prochlorococcus/genetics ; Population Density ; Genome ; Plankton ; Genome, Bacterial ; }, abstract = {In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.}, } @article {pmid38351312, year = {2024}, author = {Goodbody-Gringley, G and Martinez, S and Bellworthy, J and Chequer, A and Nativ, H and Mass, T}, title = {Irradiance driven trophic plasticity in the coral Madracis pharensis from the Eastern Mediterranean.}, journal = {Scientific reports}, volume = {14}, number = {1}, pages = {3646}, pmid = {38351312}, issn = {2045-2322}, support = {1937770//National Science Foundation (NSF)/ ; 2019653//United States - Israel Binational Science Foundation (BSF)/ ; }, mesh = {Animals ; *Anthozoa/physiology ; Photosynthesis ; Heterotrophic Processes ; Symbiosis/physiology ; Israel ; Coral Reefs ; }, abstract = {The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel. We found significant differences in symbiont species consortia, photophysiology, and stable isotopes, suggesting that these corals can adjust multiple aspects of host and symbiont physiology in response to light availability. These results highlight the potential of corals to switch to a predominantly heterotrophic diet when light availability and/or symbiont densities are too low to sustain sufficient photosynthesis, which may provide resilience for corals in the face of climate change.}, } @article {pmid38349547, year = {2024}, author = {Kumar, MPS and Keerthana, A and Priya, and Singh, SK and Rai, D and Jaiswal, A and Reddy, MSS}, title = {Exploration of culturable bacterial associates of aphids and their interactions with entomopathogens.}, journal = {Archives of microbiology}, volume = {206}, number = {3}, pages = {96}, pmid = {38349547}, issn = {1432-072X}, mesh = {Animals ; *Aphids ; Bacteria/genetics ; *Bacillaceae ; Firmicutes ; *Bacillus ; }, abstract = {Aphids shelter several bacteria that benefit them in various ways. The associates having an obligatory relationship are non-culturable, while a few of facultative associates are culturable in insect cell lines, axenic media or standard microbiology media. In the present investigation, isolation, and characterization of the culturable bacterial associates of various aphid species, viz., Rhopalosiphum maidis, Rhopalosiphum padi, Sitobion avenae, Schizaphis graminum, and Lipaphis erysimi pseudobrassicae were carried out. A total of 42 isolates were isolated using different growth media, followed by their morphological, biochemical, and molecular characterization. The isolated culturable bacterial associates were found to belong to the genera Acinetobacter, Bacillus, Brevundimonas, Cytobacillus, Fictibacillus, Planococcus, Priestia, Pseudomonas, Staphylococcus, Sutcliffiella, and Tumebacillus which were grouped under seven families of four different orders of phyla Bacillota (Firmicutes) and Pseudomonata (Proteobacteria). Symbiont-entomopathogen interaction study was also conducted, in which the quantification of colony forming units of culturable bacterial associates of entomopathogenic fungal-treated aphids led us to the assumption that the bacterial load in aphid body can be altered by the application of entomopathogens. Whereas, the mycelial growth of entomopathogens Akanthomyces lecanii and Metarhizium anisopliae was found uninhibited by the bacterial associates obtained from Sitobion avenae and Rhopalosiphum padi. Analyzing persistent aphid microflora and their interactions with entomopathogens enhances our understanding of aphid resistance. It also fosters the development of innovative solutions for agricultural pest management, highlighting the intricate dynamics of symbiotic relationships in pest management strategies.}, } @article {pmid38346575, year = {2024}, author = {Garrido-Bautista, J and Norte, AC and Moreno-Rueda, G and Nadal-Jiménez, P}, title = {Ecological determinants of prevalence of the male-killing bacterium Arsenophonus nasoniae.}, journal = {Journal of invertebrate pathology}, volume = {203}, number = {}, pages = {108073}, doi = {10.1016/j.jip.2024.108073}, pmid = {38346575}, issn = {1096-0805}, abstract = {Male-killing bacteria are found in a broad range of arthropods. Arsenophonus nasoniae is a male-killing bacterium, causing a 80% reduction of the male progeny in infected Nasonia vitripennis wasps. Although the discovery of A. nasoniae dates from the early 80's, knowledge about the biology and ecology of this endosymbiont is still scarce. One of these poorly studied features is the ecological factors underlying A. nasoniae incidence on its Nasonia spp. hosts in different geographical locations. Here, we studied the prevalence of A. nasoniae in Iberian wild populations of its host N. vitripennis. This wasp species is a common parasitoid of the blowfly Protocalliphora azurea pupae, which in turn is a parasite of hole-nesting birds, such as the blue tit (Cyanistes caeruleus). We also examined the effects of bird rearing conditions on the prevalence of A. nasoniae through a brood size manipulation experiment (creating enlarged, control and reduced broods). Both the wasp and bacterium presence were tested through PCR assays in blowfly pupae. We found A. nasoniae in almost half (47%) of nests containing blowflies parasitized by N. vitripennis. The prevalence of A. nasoniae was similar in the two geographical areas examined (central Portugal and southeastern Spain) and the probability of infection by A. nasoniae was independent of the number of blowfly pupae in the nest. Experimental manipulation of brood size did not affect the prevalence of A. nasoniae nor the prevalence of its host, N. vitripennis. These results suggest that the incidence of A. nasoniae in natural populations of N. vitripennis is high in the Iberian Peninsula, and the infestation frequency of nests by N. vitripennis carrying A. nasoniae is spatially stable in this geographical region independently of bird rearing conditions.}, } @article {pmid38334408, year = {2024}, author = {Wang, R and Meng, Q and Wang, X and Xiao, Y and Sun, R and Zhang, Z and Fu, Y and Di Giuseppe, G and Liang, A}, title = {Comparative genomic analysis of symbiotic and free-living Fluviibacter phosphoraccumulans strains provides insights into the evolutionary origins of obligate Euplotes-bacterial endosymbioses.}, journal = {Applied and environmental microbiology}, volume = {}, number = {}, pages = {e0190023}, doi = {10.1128/aem.01900-23}, pmid = {38334408}, issn = {1098-5336}, abstract = {Endosymbiosis is a widespread and important phenomenon requiring diverse model systems. Ciliates are a widespread group of protists that often form symbioses with diverse microorganisms. Endosymbioses between the ciliate Euplotes and heritable bacterial symbionts are common in nature, and four essential symbionts were described: Polynucleobacter necessarius, "Candidatus Protistobacter heckmanni," "Ca. Devosia symbiotica," and "Ca. Devosia euplotis." Among them, only the genus Polynucleobacter comprises very close free-living and symbiotic representatives, which makes it an excellent model for investigating symbiont replacements and recent symbioses. In this article, we characterized a novel endosymbiont inhabiting the cytoplasm of Euplotes octocarinatus and found that it is a close relative of the free-living bacterium Fluviibacter phosphoraccumulans (Betaproteobacteria and Rhodocyclales). We present the complete genome sequence and annotation of the symbiotic Fluviibacter. Comparative analyses indicate that the genome of symbiotic Fluviibacter is small in size and rich in pseudogenes when compared with free-living strains, which seems to fit the prediction for recently established endosymbionts undergoing genome erosion. Further comparative analysis revealed reduced metabolic capacities in symbiotic Fluviibacter, which implies that the symbiont relies on the host Euplotes for carbon sources, organic nitrogen and sulfur, and some cofactors. We also estimated substitution rates between symbiotic and free-living Fluviibacter pairs for 233 genes; the results showed that symbiotic Fluviibacter displays higher dN/dS mean value than free-living relatives, which suggested that genetic drift is the main driving force behind molecular evolution in endosymbionts.IMPORTANCEIn the long history of symbiosis research, most studies focused mainly on organelles or bacteria within multicellular hosts. The single-celled protists receive little attention despite harboring an immense diversity of symbiotic associations with bacteria and archaea. One subgroup of the ciliate Euplotes species is strictly dependent on essential symbionts for survival and has emerged as a valuable model for understanding symbiont replacements and recent symbioses. However, almost all of our knowledge about the evolution and functions of Euplotes symbioses comes from the Euplotes-Polynucleobacter system. In this article, we report a novel essential symbiont, which also has very close free-living relatives. Genome analysis indicated that it is a recently established endosymbiont undergoing genome erosion and relies on the Euplotes host for many essential molecules. Our results provide support for the notion that essential symbionts of the ciliate Euplotes evolve from free-living progenitors in the natural water environment.}, } @article {pmid38326788, year = {2024}, author = {Burger, NFV and Nicolis, VF and Botha, AM}, title = {Host-specific co-evolution likely driven by diet in Buchnera aphidicola.}, journal = {BMC genomics}, volume = {25}, number = {1}, pages = {153}, pmid = {38326788}, issn = {1471-2164}, support = {CSRU180414320893//National Research Foundation, South Africa/ ; WCT/W/2001/02//South African Winter Cereal Industry Trust/ ; }, mesh = {Animals ; *Buchnera/genetics/metabolism ; Escherichia coli ; *Aphids/genetics/metabolism ; Gene Expression Regulation ; Diet ; Symbiosis/genetics ; }, abstract = {BACKGROUND: Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species.

RESULTS: The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids.

CONCLUSIONS: Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.}, } @article {pmid38325049, year = {2024}, author = {Hollender, M and Sałek, M and Karlicki, M and Karnkowska, A}, title = {Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae).}, journal = {Protist}, volume = {175}, number = {2}, pages = {126018}, doi = {10.1016/j.protis.2024.126018}, pmid = {38325049}, issn = {1618-0941}, abstract = {Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.}, } @article {pmid38322002, year = {2024}, author = {Zhai, X and Zhang, Y and Zhou, J and Li, H and Wang, A and Liu, L}, title = {Physiological and microbiome adaptation of coral Turbinaria peltata in response to marine heatwaves.}, journal = {Ecology and evolution}, volume = {14}, number = {2}, pages = {e10869}, pmid = {38322002}, issn = {2045-7758}, abstract = {Against the backdrop of global warming, marine heatwaves are projected to become increasingly intense and frequent. This trend poses a potential threat to the survival of corals and the maintenance of entire coral reef ecosystems. Despite extensive evidence for the resilience of corals to heat stress, their ability to withstand repeated heatwave events has not been determined. In this study, we examined the responses and resilience of Turbinaria peltata to repeated exposure to marine heatwaves, with a focus on physiological parameters and symbiotic microorganisms. In the first heatwave, from a physiological perspective, T. peltata showed decreases in the Chl a content and endosymbiont density and significant increases in GST, caspase-3, CAT, and SOD levels (p < .05), while the effects of repeated exposure on heatwaves were weaker than those of the initial exposure. In terms of bacteria, the abundance of Leptospira, with the potential for pathogenicity and intracellular parasitism, increased significantly during the initial exposure. Beneficial bacteria, such as Achromobacter arsenitoxydans and Halomonas desiderata increased significantly during re-exposure to the heatwave. Overall, these results indicate that T. peltata might adapt to marine heatwaves through physiological regulation and microbial community alterations.}, } @article {pmid38318130, year = {2023}, author = {Koga, R and Moriyama, M and Nozaki, T and Fukatsu, T}, title = {Genome analysis of "Candidatus Aschnera chinzeii," the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae).}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1336919}, pmid = {38318130}, issn = {1664-302X}, abstract = {Insect-microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont "Candidatus Aschnera chinzeii," although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4-6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.}, } @article {pmid38315036, year = {2024}, author = {Shi, P-Q and Wang, L and Chen, X-Y and Wang, K and Wu, Q-J and Turlings, TCJ and Zhang, P-J and Qiu, B-L}, title = {Rickettsia transmission from whitefly to plants benefits herbivore insects but is detrimental to fungal and viral pathogens.}, journal = {mBio}, volume = {}, number = {}, pages = {e0244823}, doi = {10.1128/mbio.02448-23}, pmid = {38315036}, issn = {2150-7511}, abstract = {Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy.IMPORTANCEMost insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.}, } @article {pmid38309271, year = {2024}, author = {Bastide, H and Legout, H and Dogbo, N and Ogereau, D and Prediger, C and Carcaud, J and Filée, J and Garnery, L and Gilbert, C and Marion-Poll, F and Requier, F and Sandoz, JC and Yassin, A}, title = {The genome of the blind bee louse fly reveals deep convergences with its social host and illuminates Drosophila origins.}, journal = {Current biology : CB}, volume = {}, number = {}, pages = {}, doi = {10.1016/j.cub.2024.01.034}, pmid = {38309271}, issn = {1879-0445}, abstract = {Social insects' nests harbor intruders known as inquilines,[1] which are usually related to their hosts.[2][,][3] However, distant non-social inquilines may also show convergences with their hosts,[4][,][5] although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.[6][,][7] Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid[8][,][9] and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.}, } @article {pmid38309038, year = {2024}, author = {Manigandan, V and Muthukumar, C and Shah, C and Logesh, N and Sivadas, SK and Ramu, K and Ramana Murthy, MV}, title = {Phylogenetic affiliation of Pedinomonas noctilucae and green Noctiluca scintillans nutritional dynamics in the Gulf of Mannar, Southeastern Arabian Sea.}, journal = {Protist}, volume = {175}, number = {2}, pages = {126019}, doi = {10.1016/j.protis.2024.126019}, pmid = {38309038}, issn = {1618-0941}, abstract = {The present investigation focused on studying the phylogenetic position of the green Noctiluca endosymbiont, Pedinomonas noctilucae, collected from the Gulf of Mannar, India. In this study, we re-examined the evolutionary position of this endosymbiotic algae using rbcL sequences. The phylogenetic analysis revealed that P. noctilucae is distantly related to the Pedinomonas species, and formed a monophyletic clade with Marsupiomandaceae. Based on the phylogenetic association of endosymbiont with Maruspiomonadales it was concluded that the endosymbiont belongs to an independent genus within the family Marsupiomonadaceae. At the site of the bloom, Noctiluca scintillans was found to exhibit a dense monospecific proliferation, with an average cell density of 27.l88 × 10[3] cells L[-1]. The investigation revealed that the green Noctiluca during its senescent phase primarily relied on autotrophic nutrition, which was confirmed by the presence of a high number of trophonts, vegetatively reproducing cells (1.45 × 10[3] cells L[-1]) and the absence of food vacuoles.}, } @article {pmid38294503, year = {2024}, author = {Pistán, ME and Cook, D and Gutiérrez, SA and Schnittger, L and Gardner, DR and Cholich, LA and Gonzalez, AM}, title = {Identification and distribution of a fungal endosymbiotic Alternaria species (Alternaria section Undifilum sp.) in Astragalus garbancillo tissues.}, journal = {Mycologia}, volume = {}, number = {}, pages = {1-8}, doi = {10.1080/00275514.2023.2299191}, pmid = {38294503}, issn = {1557-2536}, abstract = {Plants belonging to the genera Astragalus, Oxytropis, Ipomoea, Sida, and Swainsona often contain the toxin swainsonine (SW) produced by an associated fungal symbiont. Consumption of SW-containing plants causes a serious neurological disorder in livestock, which can be fatal. In this study, a fungal endophyte, Alternaria section Undifilum, was identified in Astragalus garbancillo seeds, using polymerase chain reaction (PCR) followed by direct sequencing. In seeds, the SW concentrations were about 4 times higher than in other parts of the plant. Furthermore, microscopic examination demonstrated that the fungus mycelium grows inside the petioles and stems, on the outer surface and inside the mesocarp of the fruit, in the mesotesta and endotesta layers of the seed coat, and inside the endosperm of the seeds. Our results support the notion that the SW-producing fungus is vertically transmitted in the host plant A. garbancillo.}, } @article {pmid38276282, year = {2024}, author = {Domínguez-Santos, R and Baixeras, J and Moya, A and Latorre, A and Gil, R and García-Ferris, C}, title = {Gut Microbiota Is Not Essential for Survival and Development in Blattella germanica, but Affects Uric Acid Storage.}, journal = {Life (Basel, Switzerland)}, volume = {14}, number = {1}, pages = {}, pmid = {38276282}, issn = {2075-1729}, support = {PGC2018-099344-B-I00//MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe"/ ; PID2021-128201NB-I00//MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe"/ ; PROMETEO/2018/133//Conselleria d'Educació, Generalitat Valenciana (Spain)/ ; CIPROM/2021/042//Conselleria d'Educació, Generalitat Valenciana (Spain)/ ; }, abstract = {Cockroaches harbor two coexisting symbiotic systems: the obligate endosymbiont Blattabacterium cuenotii, and a complex gut microbiota. Blattabacterium is the only bacterium present in the eggs, as the gut microbiota is acquired by horizontal transmission after hatching, mostly through coprophagy. Blattella germanica, a cosmopolitan omnivorous cockroach living in intimate association with humans, is an appropriate model system for studying whether the gut microbiota is essential for the cockroach's survival, development, or welfare. We obtained a germ-free cockroach population (i.e., containing normal amounts of the endosymbiont, but free of microbes on the insects' surface and digestive tract). Non-significant differences with the controls were detected in most fitness parameters analyzed, except for a slight shortening in the hatching time of the second generation and a reduction in female weight at 10 days after adult ecdysis. The latter is accompanied by a decrease in uric acid reserves. This starvation-like phenotype of germ-free B. germanica suggests that the microbiota is not essential in this species for survival and development throughout its complete life cycle, but it could participate in complementation of host nutrition by helping with food digestion and nutrient absorption.}, } @article {pmid38276179, year = {2023}, author = {Chirgwin, E and Yang, Q and Umina, PA and Thia, JA and Gill, A and Song, W and Gu, X and Ross, PA and Wei, SJ and Hoffmann, AA}, title = {Barley Yellow Dwarf Virus Influences Its Vector's Endosymbionts but Not Its Thermotolerance.}, journal = {Microorganisms}, volume = {12}, number = {1}, pages = {}, pmid = {38276179}, issn = {2076-2607}, support = {AGPIP//Grains Research and Development Corporation/ ; }, abstract = {The barley yellow dwarf virus (BYDV) of cereals is thought to substantially increase the high-temperature tolerance of its aphid vector, Rhopalosiphum padi, which may enhance its transmission efficiency. This is based on experiments with North American strains of BYDV and R. padi. Here, we independently test these by measuring the temperature tolerance, via Critical Thermal Maximum (CTmax) and knockdown time, of Australian R. padi infected with a local BYDV isolate. We further consider the interaction between BYDV transmission, the primary endosymbiont of R. padi (Buchnera aphidicola), and a transinfected secondary endosymbiont (Rickettsiella viridis) which reduces the thermotolerance of other aphid species. We failed to find an increase in tolerance to high temperatures in BYDV-infected aphids or an impact of Rickettsiella on thermotolerance. However, BYDV interacted with R. padi endosymbionts in unexpected ways, suppressing the density of Buchnera and Rickettsiella. BYDV density was also fourfold higher in Rickettsiella-infected aphids. Our findings indicate that BYDV does not necessarily increase the temperature tolerance of the aphid transmission vector to increase its transmission potential, at least for the genotype combinations tested here. The interactions between BYDV and Rickettsiella suggest new ways in which aphid endosymbionts may influence how BYDV spreads, which needs further testing in a field context.}, } @article {pmid38273274, year = {2024}, author = {Butenko, A and Lukeš, J and Speijer, D and Wideman, JG}, title = {Mitochondrial genomes revisited: why do different lineages retain different genes?.}, journal = {BMC biology}, volume = {22}, number = {1}, pages = {15}, pmid = {38273274}, issn = {1741-7007}, support = {DBI-2119963//Division of Biological Infrastructure/ ; 23-07695S//Grantová Agentura České Republiky/ ; 23-06479X//Grantová Agentura České Republiky/ ; }, mesh = {*Genome, Mitochondrial ; Evolution, Molecular ; Eukaryota/genetics ; Mitochondria/genetics ; Base Sequence ; Phylogeny ; }, abstract = {The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.}, } @article {pmid38271524, year = {2024}, author = {Ivanov, S and Harrison, MJ}, title = {Receptor-associated kinases control the lipid provisioning program in plant-fungal symbiosis.}, journal = {Science (New York, N.Y.)}, volume = {383}, number = {6681}, pages = {443-448}, doi = {10.1126/science.ade1124}, pmid = {38271524}, issn = {1095-9203}, mesh = {Gene Expression Regulation, Plant ; *Medicago truncatula/metabolism/microbiology ; *Membrane Proteins/metabolism ; *Mycorrhizae/physiology ; *Plant Proteins/genetics/metabolism ; Plant Roots/metabolism/microbiology ; *Symbiosis ; *Lipid Metabolism/genetics ; *Cyclin-Dependent Kinases/genetics/metabolism ; }, abstract = {The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.}, } @article {pmid38265715, year = {2024}, author = {Tomás-Gallardo, L and Cabrera, JJ and Mesa, S}, title = {Surface Plasmon Resonance as a Tool to Elucidate the Molecular Determinants of Key Transcriptional Regulators Controlling Rhizobial Lifestyles.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2751}, number = {}, pages = {145-163}, pmid = {38265715}, issn = {1940-6029}, mesh = {Humans ; *Rhizobium ; Surface Plasmon Resonance ; Oxygen ; DNA ; Transcription Factors ; }, abstract = {Bacteria must be provided with a battery of tools integrated into regulatory networks, in order to respond and, consequently, adapt their physiology to changing environments. Within these networks, transcription factors finely orchestrate the expression of genes in response to a variety of signals, by recognizing specific DNA sequences at their promoter regions. Rhizobia are host-interacting soil bacteria that face severe changes to adapt their physiology from free-living conditions to the nitrogen-fixing endosymbiotic state inside root nodules associated with leguminous plants. One of these cues is the low partial pressure of oxygen within root nodules.Surface plasmon resonance (SPR) constitutes a technique that allows to measure molecular interactions dynamics at real time by detecting changes in the refractive index of a surface. Here, we implemented the SPR methodology to analyze the discriminatory determinants of transcription factors for specific interaction with their target genes. We focused on FixK2, a CRP/FNR-type protein with a central role in the complex oxygen-responsive regulatory network in the soybean endosymbiont Bradyrhizobium diazoefficiens. Our study unveiled relevant residues for protein-DNA interaction as well as allowed us to monitor kinetics and stability protein-DNA complex. We believe that this approach can be employed for the characterization of other relevant transcription factors which can assist to the better understanding of the adaptation of bacteria with agronomic or human interest to their different modes of life.}, } @article {pmid38259912, year = {2023}, author = {Chen, J}, title = {Editorial: Aphids as plant pests: from biology to green control technology.}, journal = {Frontiers in plant science}, volume = {14}, number = {}, pages = {1337558}, pmid = {38259912}, issn = {1664-462X}, } @article {pmid38257926, year = {2024}, author = {Jia, J and Lu, SE}, title = {Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia.}, journal = {Microorganisms}, volume = {12}, number = {1}, pages = {}, pmid = {38257926}, issn = {2076-2607}, support = {MIS-401260//United States Department of Agriculture/ ; }, abstract = {Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.}, } @article {pmid38249471, year = {2023}, author = {Chang, X and Xue, S and Li, R and Zhang, Y}, title = {Episyrphus balteatus symbiont variation across developmental stages, living states, two sexes, and potential horizontal transmission from prey or environment.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1308393}, pmid = {38249471}, issn = {1664-302X}, abstract = {INTRODUCTION: Episyrphus balteatus is one representative Syrphidae insect which can provide extensive pollination and pest control services. To date, the symbiont composition and potential acquisition approaches in Syrphidae remain unclear.

METHODS: Herein, we investigated microbiota dynamics across developmental stages, different living states, and two sexes in E. balteatus via full-length 16S rRNA genes sequencing, followed by an attempt to explore the possibility of symbiont transmission from prey Megoura crassicauda to the hoverfly.

RESULTS: Overall, Proteobacteria and Firmicutes were the dominant bacteria phyla with fluctuating relative abundances across the life stage. Cosenzaea myxofaciens is dominant in adulthood, while Enterococcus silesiacus and Morganella morganii dominate in larvae and pupae of E. balteatus, respectively. Unexpectedly, Serratia symbiotica, one facultative endosymbiont commonly harbored in aphids, was one of the predominant bacteria in larvae of E. balteatus, just behind Enterococcus silesiacus. In addition, S. symbiotica was also surprisingly most dominated in M. crassicauda aphids (92.1% relative abundance), which are significantly higher than Buchnera aphidicola (4.7% relative abundance), the primary obligate symbiont of most aphid species. Approximately 25% mortality was observed among newly emerged adults, of which microbiota was also disordered, similar to normally dying individuals. Sexually biased symbionts and 41 bacteria species with pairwise co-occurrence in E. balteatus and 23 biomarker species for each group were identified eventually. Functional prediction showed symbionts of hoverflies and aphids, both mainly focusing on metabolic pathways. In brief, we comprehensively explored the microbiome in one Syrphidae hoverfly using E. balteatus reared indoors on M. morganii as the model, revealed its dominated symbiont species, identified sexually biased symbionts, and found an aphid facultative endosymbiont inhabited in the hoverfly. We also found that the dominated symbiotic bacteria in M. crassicauda are S. symbiotica other than Buchnera aphidicola.

DISCUSSION: Taken together, this study provides new valuable resources about symbionts in hoverflies and prey aphids jointly, which will benefit further exploring the potential roles of microbiota in E. balteatus.}, } @article {pmid38249041, year = {2024}, author = {Huang, Y and Feng, ZF and Li, F and Hou, YM}, title = {Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil.}, journal = {Insects}, volume = {15}, number = {1}, pages = {}, pmid = {38249041}, issn = {2075-4450}, support = {32001972//National Natural Science Foundation of China/ ; 2022J05032//Natural Science Foundation of Fujian Province/ ; }, abstract = {Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.}, } @article {pmid38232706, year = {2024}, author = {Schott, D and Ribeiro, FL and Santos, FN and Carvalho, RW}, title = {Fleas (Siphonaptera, Latreille, 1825) from Rio Grande do Sul State, Brazil: Species Diversity, Hosts, and One Health Approach.}, journal = {Vector borne and zoonotic diseases (Larchmont, N.Y.)}, volume = {}, number = {}, pages = {}, doi = {10.1089/vbz.2023.0065}, pmid = {38232706}, issn = {1557-7759}, abstract = {Background: Fleas are ectoparasitic insects with holometabolous development. It has a hematophagous habit with mouthparts adapted to sting and suck its hosts. There are about 3000 species in the world, ∼61 in Brazil, and 19 in Rio Grande do Sul state. The objective of the research is to catalog the diversity of fleas recorded in the state, their respective hosts, and endosymbionts. Materials and Methods: To this end, a search was carried out in the scientific literature, from articles, books, to abstracts submitted to congresses. Results: The 19 species of fleas occurring in Rio Grande do Sul are divided into 7 families and 10 genera. These ectoparasites, in addition to being found in the environment, were associated with 10 different families of hosts in Rio Grande do Sul, and on the endosymbiont, agents found associated with fleas, there were 7 different species. The main agents researched in the state are Rickettsia spp. and Bartonella spp. The relationships between parasites, hosts, environment, and etiological agents present different scenarios, whether anthropized or conserved, but unknown. Sometimes, this overlap, a factor that aggravates the possibility of spillovers, either from cosmopolitan fleas in these conserved areas, or from their endosymbionts. Conclusion: Thus, it is important to characterize the environment so that the complexities of each location are known for the adoption of environmental and public health policies in each case. The challenges are extensive, but necessary in view of the One Health perspective.}, } @article {pmid38206026, year = {2024}, author = {Spencer, N and Santee, M and Wetherhold, A and Rio, RVM}, title = {Draft genome sequence of Wigglesworthia glossinidia "palpalis gambiensis" isolate.}, journal = {Microbiology resource announcements}, volume = {13}, number = {2}, pages = {e0091223}, pmid = {38206026}, issn = {2576-098X}, support = {NA//WV HEPC, Division of Science and Research/ ; }, abstract = {The 0.719 Mb genome of the tsetse endosymbiont, Wigglesworthia glossinidia, from Glossina palpalis gambiensis is presented. This Wigglesworthia genome retains 611 protein-coding sequences and a 25.3% GC content. A cryptic plasmid is conserved, between Wigglesworthia isolates, suggesting functional significance. This genome adds a further dimension to characterize Wigglesworthia lineage-based differences.}, } @article {pmid38204789, year = {2024}, author = {Arai, H and Watada, M and Kageyama, D}, title = {Two male-killing Wolbachia from Drosophila birauraia that are closely related but distinct in genome structure.}, journal = {Royal Society open science}, volume = {11}, number = {1}, pages = {231502}, pmid = {38204789}, issn = {2054-5703}, abstract = {Insects harbour diverse maternally inherited bacteria and viruses, some of which have evolved to kill the male progeny of their hosts (male killing: MK). The fly species Drosophila biauraria carries a maternally transmitted MK-inducing partiti-like virus, but it was unknown if it carries other MK-inducing endosymbionts. Here, we identified two male-killing Wolbachia strains (wBiau1 and wBiau2) from D. biauraria and compared their genomes to elucidate their evolutionary processes. The two strains were genetically closely related but had exceptionally different genome structures with considerable rearrangements compared with combinations of other Wolbachia strains. Despite substantial changes in the genome structure, the two Wolbachia strains did not experience gene losses that would disrupt the male-killing expression or persistence in the host population. The two Wolbachia-infected matrilines carried distinct mitochondrial haplotypes, suggesting that wBiau1 and wBiau2 have invaded D. biauraria independently and undergone considerable genome changes owing to unknown selective pressures in evolutionary history. This study demonstrated the presence of three male-killers from two distinct origins in one fly species and highlighted the diverse and rapid genome evolution of MK Wolbachia in the host.}, } @article {pmid38196174, year = {2024}, author = {Wang, ZW and Zhao, J and Li, GY and Hu, D and Wang, ZG and Ye, C and Wang, JJ}, title = {The endosymbiont Serratia symbiotica improves aphid fitness by disrupting the predation strategy of ladybeetle larvae.}, journal = {Insect science}, volume = {}, number = {}, pages = {}, doi = {10.1111/1744-7917.13315}, pmid = {38196174}, issn = {1744-7917}, support = {32102195//National Natural Science Foundation of China/ ; 32020103010//National Natural Science Foundation of China - Major International (Regional) Joint Research Project/ ; CSTB2022NSCQ-MSX0748//Natural Science Foundation of Chongqing, China/ ; SWU-KQ22020//Fundamental Research Funds for the Central Universities of China/ ; }, abstract = {Aphids, the important global agricultural pests, harbor abundant resources of symbionts that can improve the host adaptability to environmental conditions, also control the interactions between host aphid and natural enemy, resulting in a significant decrease in efficiency of biological control. The facultative symbiont Serratia symbiotica has a strong symbiotic association with its aphid hosts, a relationship that is known to interfere with host-parasitoid interactions. We hypothesized that Serratia may also influence other trophic interactions by interfering with the physiology and behavior of major predators to provide host aphid defense. To test this hypothesis, we investigated the effects of Serratia on the host aphid Acyrthosiphon pisum and its predator, the ladybeetle Propylaea japonica. First, the prevalence of Serratia in different A. pisum colonies was confirmed by amplicon sequencing. We then showed that harboring Serratia improved host aphid growth and fecundity but reduced longevity. Finally, our research demonstrated that Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior. Our findings reveal that facultative symbiont Serratia improves aphid fitness by disrupting the predation strategy of ladybeetle larvae, offering new insight into the interactions between aphids and their predators, and providing the basis of a new biological control strategy for aphid pests involving the targeting of endosymbionts.}, } @article {pmid38195557, year = {2024}, author = {Owens, LA and Friant, S and Martorelli Di Genova, B and Knoll, LJ and Contreras, M and Noya-Alarcon, O and Dominguez-Bello, MG and Goldberg, TL}, title = {VESPA: an optimized protocol for accurate metabarcoding-based characterization of vertebrate eukaryotic endosymbiont and parasite assemblages.}, journal = {Nature communications}, volume = {15}, number = {1}, pages = {402}, pmid = {38195557}, issn = {2041-1723}, support = {R01 AG049395/AG/NIA NIH HHS/United States ; R21 AI163592/AI/NIAID NIH HHS/United States ; R37 AG049395/AG/NIA NIH HHS/United States ; T32 AI007414/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; *Parasites/genetics ; *Wasps ; Archaea/genetics ; *Microbiota/genetics ; Vertebrates/genetics ; }, abstract = {Protocols for characterizing taxonomic assemblages by deep sequencing of short DNA barcode regions (metabarcoding) have revolutionized our understanding of microbial communities and are standardized for bacteria, archaea, and fungi. Unfortunately, comparable methods for host-associated eukaryotes have lagged due to technical challenges. Despite 54 published studies, issues remain with primer complementarity, off-target amplification, and lack of external validation. Here, we present VESPA (Vertebrate Eukaryotic endoSymbiont and Parasite Analysis) primers and optimized metabarcoding protocol for host-associated eukaryotic community analysis. Using in silico prediction, panel PCR, engineered mock community standards, and clinical samples, we demonstrate VESPA to be more effective at resolving host-associated eukaryotic assemblages than previously published methods and to minimize off-target amplification. When applied to human and non-human primate samples, VESPA enables reconstruction of host-associated eukaryotic endosymbiont communities more accurately and at finer taxonomic resolution than microscopy. VESPA has the potential to advance basic and translational science on vertebrate eukaryotic endosymbiont communities, similar to achievements made for bacterial, archaeal, and fungal microbiomes.}, } @article {pmid38194362, year = {2024}, author = {Fernandez, HN and Kretsch, AM and Kunakom, S and Kadjo, AE and Mitchell, DA and Eustáquio, AS}, title = {High-Yield Lasso Peptide Production in a Burkholderia Bacterial Host by Plasmid Copy Number Engineering.}, journal = {ACS synthetic biology}, volume = {13}, number = {1}, pages = {337-350}, doi = {10.1021/acssynbio.3c00597}, pmid = {38194362}, issn = {2161-5063}, support = {R01 GM129344/GM/NIGMS NIH HHS/United States ; }, mesh = {*Burkholderia/genetics ; Escherichia coli/genetics ; DNA Copy Number Variations ; Peptides/genetics ; Plasmids/genetics ; }, abstract = {The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.}, } @article {pmid38193019, year = {2024}, author = {Mat Udin, AS and Uni, S and Rodrigues, J and Martin, C and Junker, K and Agatsuma, T and Low, VL and Saijuntha, W and Omar, H and Zainuri, NA and Fukuda, M and Matsubayashi, M and Kimura, D and Takaoka, H and Ramli, R}, title = {Redescription, molecular characterisation and Wolbachia endosymbionts of Mansonella (Tupainema) dunni (Mullin & Orihel, 1972) (Spirurida: Onchocercidae) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia.}, journal = {Current research in parasitology & vector-borne diseases}, volume = {5}, number = {}, pages = {100154}, pmid = {38193019}, issn = {2667-114X}, abstract = {The genus Mansonella Faust, 1929 includes 29 species, mainly parasites of platyrrhine monkeys in South America and anthropoid apes in Africa. In Malaysia, Mansonella (Tupainema) dunni (Mullin & Orihel, 1972) was described from the common treeshrew Tupaia glis Diard & Duvaucel (Scandentia). In a recent classification of the genus Mansonella, seven subgenera were proposed, with M. (Tup.) dunni as a monotypic species in the subgenus Tupainema. In this study, we collected new material of M. (Tup.) dunni from common treeshrews in Peninsular Malaysia and redescribed the morphological features of this species. We found that M. (Tup.) dunni differs from M. (Cutifilaria) perforata Uni et al., 2004 from sika deer Cervus nippon (Cetartiodactyla) in Japan, with regards to morphological features and predilection sites in their respective hosts. Based on multi-locus sequence analyses, we examined the molecular phylogeny of M. (Tup.) dunni and its Wolbachia genotype. Species of the genus Mansonella grouped monophyletically in clade ONC5 and M. (Tup.) dunni was placed in the most derived position within this genus. Mansonella (Tup.) dunni was closely related to M. (M.) ozzardi (Manson, 1897) from humans in Central and South America, and most distant from M. (C.) perforata. The calculated p-distances between the cox1 gene sequences for M. (Tup.) dunni and its congeners were 13.09% for M. (M.) ozzardi and 15.6-16.15% for M. (C.) perforata. The molecular phylogeny of Mansonella spp. thus corroborates their morphological differences. We determined that M. (Tup.) dunni harbours Wolbachia endosymbionts of the supergroup F genotype, in keeping with all other Mansonella species screened to date.}, } @article {pmid38176202, year = {2024}, author = {Segura, JA and Dibernardo, A and Manguiat, K and Waitt, B and Rueda, ZV and Keynan, Y and Wood, H and Gutiérrez, LA}, title = {Molecular surveillance of microbial agents from cattle-attached and questing ticks from livestock agroecosystems of Antioquia, Colombia.}, journal = {Comparative immunology, microbiology and infectious diseases}, volume = {105}, number = {}, pages = {102113}, doi = {10.1016/j.cimid.2023.102113}, pmid = {38176202}, issn = {1878-1667}, mesh = {Animals ; Cattle ; *Ticks/microbiology ; Livestock/parasitology ; Colombia/epidemiology ; *Babesia/genetics ; *Rickettsia/genetics ; *Cattle Diseases/microbiology ; DNA ; *Tick-Borne Diseases/epidemiology/veterinary/microbiology ; }, abstract = {Ticks are obligate ectoparasites and vectors of pathogens affecting health, agriculture, and animal welfare. This study collected ticks from the cattle and questing ticks of 24 Magdalena Medio Antioquia region cattle farms. Genomic DNA was extracted from the specimens (individual or pools) of the 2088 adult ticks collected from cattle and 4667 immature questing ticks collected from pastures. The molecular detection of Babesia, Anaplasma, Coxiella and Rickettsia genera was performed by polymerase chain reaction amplification and subsequent DNA sequencing. In a total of 6755 Rhipicephalus microplus DNA samples, Anaplasma marginale was the most detected with a frequency of 2% (Confidence Interval- CI 1.68-2.36), followed by Babesia bigemina with 0.28% (CI 0.16-0.44), Coxiella spp. with 0.15% (CI 0.07-0.27), and Rickettsia spp. with 0.13% (CI 0.06-0.25). Molecular analysis of the DNA sequences obtained from the tick samples revealed the presence of Coxiella-like endosymbiont and R. felis. These results demonstrated the diversity of microorganisms present in R. microplus ticks predominantly associated with cattle and questing ticks from livestock agroecosystems, suggesting their role as reservoirs and potential biological vectors of these microorganisms on the studied sites. Also, it emphasizes the need to combine acarological surveillance with clinical diagnoses and control strategies on regional and national levels.}, } @article {pmid38163636, year = {2024}, author = {Sharkey, TD}, title = {The end game(s) of photosynthetic carbon metabolism.}, journal = {Plant physiology}, volume = {}, number = {}, pages = {}, doi = {10.1093/plphys/kiad601}, pmid = {38163636}, issn = {1532-2548}, support = {//Division of Chemical Sciences/ ; //Geosciences, and Biosciences/ ; //Office of Basic Energy Sciences/ ; DE-FG02-91ER20021//United States Department of Energy/ ; IOS-2022495//U.S. National Science Foundation/ ; //Michigan AgBioResearch/ ; }, abstract = {The year 2024 marks 70 years since the general outline of the carbon pathway in photosynthesis was published. Although several alternative pathways are now known, it is remarkable how many organisms use the reaction sequence described 70 yrs ago, which is now known as the Calvin-Benson cycle or variants such as the Calvin-Benson-Bassham cycle or Benson-Calvin cycle. However, once the carbon has entered the Calvin-Benson cycle and is converted to a 3-carbon sugar, it has many potential fates. This review will examine the last stages of photosynthetic metabolism in leaves. In land plants, this process mostly involves the production of sucrose provided by an endosymbiont (the chloroplast) to its host for use and transport to the rest of the plant. Photosynthetic metabolism also usually involves the synthesis of starch, which helps maintain respiration in the dark and enables the symbiont to supply sugars during both the day and night. Other end products made in the chloroplast are closely tied to photosynthetic CO2 assimilation. These include serine from photorespiration and various amino acids, fatty acids, isoprenoids, and shikimate pathway products. I also describe 2 pathways that can short circuit parts of the Calvin-Benson cycle. These final processes of photosynthetic metabolism play many important roles in plants.}, } @article {pmid38150911, year = {2024}, author = {Polsomboon Nelson, S and Ergunay, K and Bourke, BP and Reinbold-Wasson, DD and Caicedo-Quiroga, L and Kirkitadze, G and Chunashvili, T and Tucker, CL and Linton, YM}, title = {Nanopore-based metagenomics reveal a new Rickettsia in Europe.}, journal = {Ticks and tick-borne diseases}, volume = {15}, number = {2}, pages = {102305}, doi = {10.1016/j.ttbdis.2023.102305}, pmid = {38150911}, issn = {1877-9603}, mesh = {Animals ; *Nanopores ; *Rickettsia/genetics ; *Ixodes/microbiology ; *Rickettsia Infections/epidemiology/microbiology ; Europe ; }, abstract = {Accurate identification of tick-borne bacteria, including those associated with rickettsioses, pose significant challenges due to the polymicrobial and polyvectoral nature of the infections. We aimed to carry out a comparative evaluation of a non-targeted metagenomic approach by nanopore sequencing (NS) and commonly used PCR assays amplifying Rickettsia genes in field-collected ticks. The study included a total of 310 ticks, originating from Poland (44.2 %) and Bulgaria (55.8 %). Samples comprised 7 species, the majority of which were Ixodes ricinus (62.9 %), followed by Dermacentor reticulatus (21.2 %). Screening was carried out in 55 pools, using total nucleic acid extractions from individual ticks. NS and ompA/gltA PCRs identified Rickettsia species in 47.3 % and 54.5 % of the pools, respectively. The most frequently detected species were Rickettsia asiatica (27.2 %) and Rickettsia raoultii (21.8 %), followed by Rickettsia monacensis (3.6 %), Rickettsia helvetica (1.8 %), Rickettsia massiliae (1.8 %) and Rickettsia tillamookensis (1.8 %). Phylogeny construction on mutS, uvrD, argS and virB4 sequences and a follow-up deep sequencing further supported R. asiatica identification, documented in Europe for the first time. NS further enabled detection of Anaplasma phagocytophilum (9.1 %), Coxiella burnetii (5.4 %) and Neoehrlichia mikurensis (1.8 %), as well as various endosymbionts of Rickettsia and Coxiella. Co-detection of multiple rickettsial and non-rickettsial bacteria were observed in 16.4 % of the pools with chromosome and plasmid-based contigs. In conclusion, non-targeted metagenomic sequencing was documented as a robust strategy capable of providing a broader view of the tick-borne bacterial pathogen spectrum.}, } @article {pmid38148222, year = {2023}, author = {Kundu, A}, title = {Antimicrobial to anti-herbivore: Sakuranetin in rice efficiently inhibits brown planthopper by targeting their beneficial endosymbionts.}, journal = {Physiologia plantarum}, volume = {175}, number = {6}, pages = {e14110}, doi = {10.1111/ppl.14110}, pmid = {38148222}, issn = {1399-3054}, support = {RGCB/2023/00661//Rajiv gandhi centre for biotechnology/ ; }, mesh = {Animals ; Herbivory ; *Oryza ; *Anti-Infective Agents/pharmacology ; *Hemiptera ; }, abstract = {In rice, biosynthesis of specialized metabolites active against insect herbivores is elusive. The major known defense metabolites in rice against the destructive phloem-sucking herbivore brown planthoppers (BPH) (Nilaparvata lugens) are proteinase inhibitors, phenolamides and some terpenes (Xiao et al., 2012), which are induced during the invasion. Specifically, phenolamides were found to be induced upon herbivory with different feeding guild, including chewing and phloem-sucking, but could only provide defense against phloem-sucking BPH, though the clear mode of action of phenolamides has not been explored yet. Moreover, the jasmonic acid-mediated modulation of biosynthesis of these specialized metabolites in rice is not elucidated yet. However, a recent study by Liu et al. (2023) demonstrated that sakuranetin, a phytoalexin in rice, was induced upon BPH invasion and showed significant detrimental effect on herbivore's performance by targeting their beneficial endosymbionts. This is the first report on a strong bioactive anti-herbivore molecule observed in rice with an unusual mode of action. In this article, a view has been presented on this work, its impact and exceptionality.}, } @article {pmid38143905, year = {2023}, author = {Mouillaud, T and Berger, A and Buysse, M and Rahola, N and Daron, J and Agbor, JP and Sango, SN and Neafsey, DE and Duron, O and Ayala, D}, title = {Limited association between Wolbachia and Plasmodium falciparum infections in natural populations of the major malaria mosquito Anopheles moucheti.}, journal = {Evolutionary applications}, volume = {16}, number = {12}, pages = {1999-2006}, pmid = {38143905}, issn = {1752-4571}, support = {U19 AI110818/AI/NIAID NIH HHS/United States ; }, abstract = {Since the discovery of natural malaria vector populations infected by the endosymbiont bacterium Wolbachia, a renewed interest has arisen for using this bacterium as an alternative for malaria control. Among naturally infected mosquitoes, Anopheles moucheti, a major malaria mosquito in Central Africa, exhibits one of the highest prevalences of Wolbachia infection. To better understand whether this maternally inherited bacterium could be used for malaria control, we investigated Wolbachia influence in An. moucheti populations naturally infected by the malaria parasite Plasmodium falciparum. To this end, we collected mosquitoes in a village from Cameroon, Central Africa, where this mosquito is the main malaria vector. We found that the prevalence of Wolbachia bacterium was almost fixed in the studied mosquito population, and was higher than previously recorded. We also quantified Wolbachia in whole mosquitoes and dissected abdomens, confirming that the bacterium is also elsewhere than in the abdomen, but at lower density. Finally, we analyzed the association of Wolbachia presence and density on P. falciparum infection. Wolbachia density was slightly higher in mosquitoes infected with the malaria parasite than in uninfected mosquitoes. However, we observed no correlation between the P. falciparum and Wolbachia densities. In conclusion, our study indicates that naturally occurring Wolbachia infection is not associated to P. falciparum development within An. moucheti mosquitoes.}, } @article {pmid38143870, year = {2023}, author = {Martins, M and César, CS and Cogni, R}, title = {The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1321341}, pmid = {38143870}, issn = {1664-302X}, abstract = {Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.}, } @article {pmid38107563, year = {2023}, author = {Fu, J and Zhou, J and Zhou, J and Zhang, Y and Liu, L}, title = {Competitive effects of the macroalga Caulerpa taxifolia on key physiological processes in the scleractinian coral Turbinaria peltata under thermal stress.}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e16646}, pmid = {38107563}, issn = {2167-8359}, mesh = {Animals ; *Anthozoa ; Chlorophyll A ; *Caulerpa ; Antioxidants ; *Seaweed/physiology ; *Physiological Phenomena ; Water ; }, abstract = {An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 10[6] cells cm[-2] in control group to 0.95 × 10[6] cells cm[-2] in the co-occurrence group and to 0.89 × 10[6] cells cm[-2] in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.}, } @article {pmid38106215, year = {2023}, author = {Maeda, GP and Kelly, MK and Sundar, A and Moran, NA}, title = {Intracellular defensive symbiont is culturable and capable of transovarial, vertical transmission.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, doi = {10.1101/2023.12.05.570145}, pmid = {38106215}, abstract = {UNLABELLED: Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long term vertical transmission has repeatedly resulted in genome reduction and gene loss rendering many such bacteria incapable of independent culture. Among aphids, heritable endosymbionts often provide a wide range of context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to independently cultivate these microbes. Here, we report the axenic culture of Candidatus Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, Acyrthosiphon pisum . Whole genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting the cultivation techniques used here may be applicable to Ca . F. symbiotica strains from distantly related aphids. Microinjection of the isolated strain into uninfected aphids revealed that it can reinfect developing embryos, and is maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit similar phenotypic and life history traits compared to native infections, including protective effects against an entomopathogenic Fusarium species. Overall, our results show that Ca . F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying heritable symbioses and antifungal defense in the pea aphid system.

IMPORTANCE: Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally, because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true of the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Candidatus Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques, and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections making this host-symbiont pair a useful experimental system. Using this system, we demonstrate that Ca . F. symbiotica infection reduces host fitness under benign conditions, but protects against a previously unreported fungal pathogen.}, } @article {pmid38105949, year = {2023}, author = {Shropshire, JD and Conner, WR and Vanderpool, D and Hoffmann, AA and Turelli, M and Cooper, BS}, title = {Rapid turnover of pathogen-blocking Wolbachia and their incompatibility loci.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, pmid = {38105949}, support = {R35 GM124701/GM/NIGMS NIH HHS/United States ; }, abstract = {At least half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts in nature. Wolbachia spread to high frequencies is often due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification that kills embryos without Wolbachia. Several CI-causing Wolbachia variants, including wMel from Drosophila melanogaster, also block viruses. Establishing pathogen-blocking wMel in natural Aedes aegypti mosquito populations has reduced dengue disease incidence, with one study reporting about 85% reduction when wMel frequency is high. However, wMel transinfection establishment is challenging in many environments, highlighting the importance of identifying CI-causing Wolbachia variants that stably persist in diverse hosts and habitats. We demonstrate that wMel-like variants have naturally established in widely distributed holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago, with wMel variants spreading rapidly among these hosts over only the last 100,000 years. Wolbachia genomes contain prophages that encode CI-causing operons (cifs). These cifs move among Wolbachia genomes - with and without prophages - even more rapidly than Wolbachia move among insect hosts. Our results shed light on how rapid host switching and horizontal gene transfer contribute to Wolbachia and cif diversity in nature. The diverse wMel variants we report here from hosts present in different climates offer many new options for broadening Wolbachia-based biocontrol of diseases and pests.}, } @article {pmid38104431, year = {2024}, author = {Lau, DC and Power, RI and Šlapeta, J}, title = {Exploring multiplex qPCR as a diagnostic tool for detecting microfilarial DNA in dogs infected with Dirofilaria immitis: A comparative analysis with the modified Knott's test.}, journal = {Veterinary parasitology}, volume = {325}, number = {}, pages = {110097}, doi = {10.1016/j.vetpar.2023.110097}, pmid = {38104431}, issn = {1873-2550}, mesh = {Animals ; Dogs ; *Dirofilaria immitis/genetics ; Microfilariae/genetics ; Australia ; *Dog Diseases/diagnosis ; *Dirofilariasis/diagnosis ; DNA ; Lactones ; }, abstract = {Current recommendations to diagnose cardiopulmonary dirofilariosis in dogs caused by Dirofilaria immitis involves tandem antigen and circulating microfilariae tests. The modified Knott's test is an important tool in heartworm diagnosis, allowing identification of circulating microfilariae. However, the subjective nature of the modified Knott's test affects its accuracy and diagnostic laboratories usually do not provide a quantitative outcome. Quantitative enumeration of microfilariae enables clinicians to track treatment progress and acts as a proxy for detecting emerging macrocyclic lactone resistance. There is a need for better diagnostic tools suitable for routine use to efficiently and accurately quantify the presence of D. immitis microfilaremia. The aim of this study was to determine whether the quantitative modified Knott's test can be substituted by multiplex quantitative polymerase chain reaction (qPCR) targeting D. immitis and associated Wolbachia endosymbiont DNA in canine blood samples. To do this, genomic DNA samples (n = 161) from Australian dogs, collected as part of a previous 2021 study, were assessed in a TaqMan qPCR targeting DNA of D. immitis, Wolbachia sp. and Canis lupus familiaris. Of the 161 genomic DNA samples, eight were considered positive for D. immitis microfilariae. The qPCR assay demonstrated good efficiency (E = 90 to 110%, R[2] > 0.94). Considering the performance and efficient use of bench time, this TaqMan qPCR assay is a suitable alternative to the modified Knott's test for quantitative enumeration of microfilariae (Cohen's kappa coefficient [κ]: κ = 1 using D. immitis qPCR marker, κ = 0.93 using Wolbachia qPCR marker). The qPCR data demonstrated a comparable result to that of the quantitative modified Knott's test in a 2022 survey of D. immitis in Australian dogs (n = 23) before and after macrocyclic lactone (ML) administration. Improving the detection and diagnosis of canine heartworm infections will assist veterinarians in better managing and controlling disease outcomes and will be valuable for tracking the spread of ML resistance in Australia.}, } @article {pmid38097942, year = {2023}, author = {Mirabedini, Z and Mirjalali, H and Kazemirad, E and Khamesipour, A and Samimirad, K and Koosha, M and Saberi, R and Rahimi, HM and Mohebali, M and Hajjaran, H}, title = {The effects of Leishmania RNA virus 2 (LRV2) on the virulence factors of L. major and pro-inflammatory biomarkers: an in vitro study on human monocyte cell line (THP-1).}, journal = {BMC microbiology}, volume = {23}, number = {1}, pages = {398}, pmid = {38097942}, issn = {1471-2180}, support = {IR.TUMS.SPH.REC.1400.251//Tehran University of Medical Science/ ; }, mesh = {Humans ; NLR Family, Pyrin Domain-Containing 3 Protein ; Monocytes ; Interleukin-18 ; *Leishmania ; *Leishmaniavirus/genetics ; *Leishmaniasis, Cutaneous ; *RNA Viruses/genetics ; Biomarkers ; }, abstract = {BACKGROUND: Cutaneous Leishmaniasis (CL) is a parasitic disease with diverse outcomes. Clinical diversity is influenced by various factors such as Leishmania species and host genetic background. The role of Leishmania RNA virus (LRV), as an endosymbiont, is suggested to not only affect the pathogenesis of Leishmania, but also impact host immune responses. This study aimed to investigate the influence of LRV2 on the expression of a number of virulence factors (VFs) of Leishmania and pro-inflammatory biomarkers.

MATERIALS AND METHODS: Sample were obtained from CL patients from Golestan province. Leishmania species were identified by PCR (LIN 4, 17), and the presence of LRV2 was checked using the semi-nested PCR (RdRp gene). Human monocyte cell line (THP-1) was treated with three isolates of L. major with LRV2 and one isolate of L. major without LRV2. The treatments with four isolates were administered for the time points: zero, 12, 24, 36, and 48 h after co-infection. The expression levels of Leishmania VFs genes including GP63, HSP83, and MPI, as well as pro-inflammatory biomarkers genes including NLRP3, IL18, and IL1β, were measured using quantitative real-time PCR.

RESULTS: The expression of GP63, HSP83, and MPI revealed up-regulation in LRV2 + isolates compared to LRV2- isolates. The expression of the pro-inflammatory biomarkers including NLRP3, IL1β, and IL18 genes in LRV2- were higher than LRV2 + isolates.

CONCLUSION: This finding suggests that LRV2 + may have a probable effect on the Leishmania VFs and pro-inflammatory biomarkers in the human macrophage model.}, } @article {pmid38088471, year = {2023}, author = {Gonzalez-Gonzalez, A and Cabrera, N and Rubio-Meléndez, ME and Sepúlveda, DA and Ceballos, R and Fernández, N and Francis, F and Figueroa, CC and Ramirez, CC}, title = {Facultative endosymbionts modulate the aphid reproductive performance on wheat cultivars differing in contents of benzoxazinoids.}, journal = {Pest management science}, volume = {}, number = {}, pages = {}, doi = {10.1002/ps.7932}, pmid = {38088471}, issn = {1526-4998}, support = {N°170134//Redes-Conicyt/ ; N°1170943//Fondecyt regular/ ; N° 3190544//Fondecyt Postdoctoral/ ; N°100462//Fondecyt Continuity Fund/ ; 21190271//National Agency for Research and Development (ANID) Scholarship Program Becas Doctorado Nacional/ ; }, abstract = {BACKGROUND: Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA.

RESULTS: Our findings reveal that the intrinsic rate of population increase (rm) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts.

CONCLUSION: This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.}, } @article {pmid38087390, year = {2023}, author = {Ferrarini, MG and Vallier, A and Vincent-Monégat, C and Dell'Aglio, E and Gillet, B and Hughes, S and Hurtado, O and Condemine, G and Zaidman-Rémy, A and Rebollo, R and Parisot, N and Heddi, A}, title = {Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp.}, journal = {Microbiome}, volume = {11}, number = {1}, pages = {274}, pmid = {38087390}, issn = {2049-2618}, support = {ANR-17-CE20-0031-01//Agence Nationale de la Recherche/ ; ANR-17-CE20-0015//Agence Nationale de la Recherche/ ; ANR-17-CE20-0015//Agence Nationale de la Recherche/ ; ANR-17-CE20-0031-01//Agence Nationale de la Recherche/ ; }, mesh = {Animals ; *Weevils/microbiology ; Edible Grain ; Enterobacteriaceae/metabolism ; Bacteria/genetics ; Symbiosis ; Gene Expression ; }, abstract = {BACKGROUND: Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development.

RESULTS: We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response.

CONCLUSIONS: The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.}, } @article {pmid38078889, year = {2024}, author = {Schwartz, HT and Tan, CH and Peraza, J and Raymundo, KLT and Sternberg, PW}, title = {Molecular identification of a peroxidase gene controlling body size in the entomopathogenic nematode Steinernema hermaphroditum.}, journal = {Genetics}, volume = {226}, number = {2}, pages = {}, doi = {10.1093/genetics/iyad209}, pmid = {38078889}, issn = {1943-2631}, support = {2128267//NSF-EDGE/ ; //Caltech's Center for Evolutionary Science/ ; //Center for Environmental Microbial Interactions/ ; //Caltech CCE Multiuser Mass Spectrometry Laboratory/ ; }, mesh = {Animals ; Male ; *Rhabditida/genetics ; Insecta ; Caenorhabditis elegans ; Symbiosis ; Body Size ; }, abstract = {The entomopathogenic nematode Steinernema hermaphroditum was recently rediscovered and is being developed as a genetically tractable experimental system for the study of previously unexplored biology, including parasitism of its insect hosts and mutualism with its bacterial endosymbiont Xenorhabdus griffiniae. Through whole-genome re-sequencing and genetic mapping we have for the first time molecularly identified the gene responsible for a mutationally defined phenotypic locus in an entomopathogenic nematode. In the process we observed an unexpected mutational spectrum following ethyl methansulfonate mutagenesis in this species. We find that the ortholog of the essential Caenorhabditis elegans peroxidase gene skpo-2 controls body size and shape in S. hermaphroditum. We confirmed this identification by generating additional loss-of-function mutations in the gene using CRISPR-Cas9. We propose that the identification of skpo-2 will accelerate gene targeting in other Steinernema entomopathogenic nematodes used commercially in pest control, as skpo-2 is X-linked and males hemizygous for loss of its function can mate, making skpo-2 an easily recognized and maintained marker for use in co-CRISPR.}, } @article {pmid38072824, year = {2024}, author = {Valadez-Cano, C and Olivares-Hernández, R and Espino-Vázquez, AN and Partida-Martínez, LP}, title = {Genome-Scale Model of Rhizopus microsporus: Metabolic integration of a fungal holobiont with its bacterial and viral endosymbionts.}, journal = {Environmental microbiology}, volume = {26}, number = {1}, pages = {e16551}, doi = {10.1111/1462-2920.16551}, pmid = {38072824}, issn = {1462-2920}, support = {FOINS-2015-01-006//Consejo Nacional de Ciencia y Tecnología/ ; }, mesh = {*Macrolides/metabolism ; *Rhizopus/genetics/metabolism ; Bacteria/genetics/metabolism ; Nucleotides/metabolism ; Symbiosis/genetics ; }, abstract = {Rhizopus microsporus often lives in association with bacterial and viral symbionts that alter its biology. This fungal model represents an example of the complex interactions established among diverse organisms in functional holobionts. We constructed a Genome-Scale Model (GSM) of the fungal-bacterial-viral holobiont (iHol). We employed a constraint-based method to calculate the metabolic fluxes to decipher the metabolic interactions of the symbionts with their host. Our computational analyses of iHol simulate the holobiont's growth and the production of the toxin rhizoxin. Analyses of the calculated fluxes between R. microsporus in symbiotic (iHol) versus asymbiotic conditions suggest that changes in the lipid and nucleotide metabolism of the host are necessary for the functionality of the holobiont. Glycerol plays a pivotal role in the fungal-bacterial metabolic interaction, as its production does not compromise fungal growth, and Mycetohabitans bacteria can efficiently consume it. Narnavirus RmNV-20S and RmNV-23S affected the nucleotide metabolism without impacting the fungal-bacterial symbiosis. Our analyses highlighted the metabolic stability of Mycetohabitans throughout its co-evolution with the fungal host. We also predicted changes in reactions of the bacterial metabolism required for the active production of rhizoxin. This iHol is the first GSM of a fungal holobiont.}, } @article {pmid38072536, year = {2023}, author = {Zhou, YM and Xie, W and Zhi, JR and Zou, X}, title = {Frankliniella occidentalis pathogenic fungus Lecanicillium interacts with internal microbes and produces sublethal effects.}, journal = {Pesticide biochemistry and physiology}, volume = {197}, number = {}, pages = {105679}, doi = {10.1016/j.pestbp.2023.105679}, pmid = {38072536}, issn = {1095-9939}, mesh = {Animals ; *Thysanoptera ; Insecta ; Reproduction ; Pupa ; Hormones ; }, abstract = {Frankliniella occidentalis (Thysanoptera: Thripidae) is a pest that feeds on various crops worldwide. A prior study identified Lecanicillium attenuatum and L. cauligalbarum as pathogens of F. occidentalis. Unfortunately, the potential of these two entomopathogenic fungi for the biocontrol of F. occidentalis has not been effectively evaluated. The internal microbes (endosymbionts and the gut microbiota) of insects, especially gut bacteria, are crucial in regulating the interactions between the host and intestinal pathogens. The role of thrips internal microbes in the infection of these two entomopathogenic fungi is also unknown. Therefore, biological control of thrips is immediately needed, and to accomplish that, an improved understanding of the internal microbes of thrips against Lecanicillium infection is essential. The virulence of the two pathogenic fungi against F. occidentalis increased with the conidia concentration. Overall, the LC50 of L. cauligalbarum was lower than that of L. attenuatum, and the pathogenicity degree was adult > pupa > nymphs. The activities of protective enzymes include superoxide dismutase (SOD), catalase (CAT), peroxidase (POD); detoxification enzymes include polyphenol oxidase (PPO), glutathione s-transferase (GSTs), and carboxylesterase (CarE); hormones include ecdysone and juvenile hormone; and the composition and proportion of microorganisms (fungi and bacteria) in F. occidentalis infected by L. cauligalbarum and L. attenuatum have changed significantly. According to the network correlation results, there was a considerable correlation among the internal microbes (including bacteria and fungi), enzyme activities, and hormones, which indicates that in addition to bacteria, internal fungi of F. occidentalis are also involved in the L. cauligalbarum and L. attenuatum infection process. In addition, the development time of the surviving F. occidentalis exposed to L. cauligalbarum or L. attenuatum was significantly shorter than that of the control group. Furthermore, the intrinsic rate of increase (rm), finite rate of increase (λ), net reproductive rate (R0), mean generation time (T), and gross reproductive rate (GRR) were significantly lower in the treatment groups than in the control group. L. attenuatum and L. cauligalbarum have biocontrol potential against F. occidentalis. In addition to bacteria, internal fungi of F. occidentalis are also involved in the infection process of insect pathogenic fungi. Disruption of the internal microbial balance results in discernible sublethal effects. Such prevention and control potential should not be ignored. These findings provide an improved understanding of physiological responses in thrips with altered immunity against entomopathogenic fungal infections, which can guide us toward the development of novel biocontrol strategies against thrips.}, } @article {pmid38071646, year = {2024}, author = {Urairi, C and Fujito, S}, title = {Interbiotype hybridization between biotypes A and B of Liriomyza chinensis (Diptera: Agromyzidae).}, journal = {Journal of economic entomology}, volume = {117}, number = {1}, pages = {240-250}, doi = {10.1093/jee/toad223}, pmid = {38071646}, issn = {1938-291X}, mesh = {Female ; Male ; Animals ; *Diptera/genetics ; *Hemiptera ; Reproduction ; Hybridization, Genetic ; Fertility ; }, abstract = {Liriomyza chinensis (Kato) is a formidable pest of Allium species, especially the Japanese bunching onion Allium fistulosum L. Recently, a novel biotype of L. chinensis (biotype B) has emerged, which causes more severe damage than the native biotype A. It has been reported that biotype B has frequently displaced biotype A in the Japanese bunching onion fields in Japan. As interbiotype hybridization is a possible factor that influences such displacement, interbiotype hybridization was conducted between L. chinensis biotypes A and B. Eggs were not laid under one-by-one crossing conditions; however, adult hybrid progeny of both sexes emerged from no-choice mating combinations-when multiple males and females were present. The fertility of F1 hybrid adults was also investigated, and backcrossed adults emerged from F1 females in both mating combinations. F1 males might have exhibited reproductive abnormalities because only a small number of backcross progeny emerged from the mating combinations using F1 males. Additionally, 3 representative endosymbionts (Wolbachia, Spiroplasma, and Cardinium) were investigated, and both biotypes were found to be infected by the same strain of Wolbachia. In addition, the courtship signals (tapping) of male adults differed between biotypes A and B as well as between F1 hybrids; the F1 males exhibited tapping behavior that was intermediate between biotypes A and B. Therefore, mating sounds serve as a form of premating reproductive isolation between biotypes A and B.}, } @article {pmid38070273, year = {2024}, author = {Zhang, B and Wang, X and Aguli Nurland, R and Lu, M and Guan, Y and Liu, M and Gao, F and Li, K}, title = {Investigation of tick-borne bacterial microorganisms in Haemaphysalis ticks from Hebei, Shandong, and Qinghai provinces, China.}, journal = {Ticks and tick-borne diseases}, volume = {15}, number = {2}, pages = {102290}, doi = {10.1016/j.ttbdis.2023.102290}, pmid = {38070273}, issn = {1877-9603}, mesh = {Animals ; Humans ; *Ticks/microbiology ; *Ixodidae/microbiology ; *Rickettsia/genetics ; Anaplasma/genetics ; Ehrlichia/genetics ; *Bartonella/genetics ; *Anaplasmataceae/genetics ; *Borrelia/genetics ; Goats ; China/epidemiology ; *Tick-Borne Diseases/epidemiology/veterinary/microbiology ; }, abstract = {Tick-borne microorganisms in many tick species and many areas of China are still not thoroughly investigated. In this study, 224 ticks including two species (Haemaphysalis longicornis and Haemaphysalis qinghaiensis) were collected from four cities in Hebei, Shandong, and Qinghai provinces, China. Ticks were screened for the presence of tick-borne bacterial microorganisms including Rickettsia, Anaplasmataceae (Anaplasma, Ehrlichia, Neoehrlichia, etc.), Coxiella, Borrelia, and Bartonella. Two Anaplasma species (Anaplasma ovis and Anaplasma capra) were detected in H. longicornis from Xingtai City of Hebei Province, with a positive rate of 3 % and 8 %, respectively. A Coxiella species was detected in H. longicornis ticks from all three locations in Hebei and Shandong provinces, with the positive rate ranging from 30 to 75 %. All the 16S and rpoB sequences were very similar (99.77-100 % identity) to Coxiella endosymbiont of Haemaphysalis ticks. An Ehrlichia species was detected in H. qinghaiensis (6/66, 9 %) from Xining City, Qinghai Province. The 16S and groEL sequences had 100 % and 97.40-97.85 % nucleotide identities to "Candidatus Ehrlichia pampeana" strains, respectively, suggesting that it may be a variant of "Candidatus Ehrlichia pampeana". All the ticks were negative for Rickettsia, Borrelia, and Bartonella. Because all the ticks were removed from goats or humans and were partially or fully engorged, it is possible that the microorganisms were from the blood meal but not vectored by the ticks. Our results may provide some information on the diversity and distribution of tick-borne pathogens in China.}, } @article {pmid38047686, year = {2023}, author = {Zhang, W and Wang, J and Huang, Z and He, X and Wei, C}, title = {Symbionts in Hodgkinia-free cicadas and their implications for co-evolution between endosymbionts and host insects.}, journal = {Applied and environmental microbiology}, volume = {89}, number = {12}, pages = {e0137323}, pmid = {38047686}, issn = {1098-5336}, support = {32270496//MOST | National Natural Science Foundation of China (NSFC)/ ; 32070476//MOST | National Natural Science Foundation of China (NSFC)/ ; }, mesh = {Animals ; *Hemiptera ; Insecta ; Phylogeny ; *Alphaproteobacteria ; Symbiosis/genetics ; }, abstract = {Obligate symbionts in sap-sucking hemipterans are harbored in either the same or different organs, which provide a unique perspective for uncovering complicated insect-microbe symbiosis. Here, we investigated the distribution of symbionts in adults of 10 Hodgkinia-free cicada species of 2 tribes (Sonatini and Polyneurini) and the co-phylogeny between 65 cicada species and related symbionts (Sulcia and YLSs). We revealed that YLSs commonly colonize the bacteriome sheath besides the fat bodies in these two tribes, which is different with that in most other Hodgkinia-free cicadas. Co-phylogeny analyses between cicadas and symbionts suggest that genetic variation of Sulcia occurred in Sonatini and some other cicada lineages and more independent replacement events in the loss of Hodgkinia/acquisition of YLS in Cicadidae. Our results provide new information on the complex relationships between auchenorrhynchans and related symbionts.}, } @article {pmid38038450, year = {2024}, author = {Wang, X-R and Cull, B and Oliver, JD and Kurtti, TJ and Munderloh, UG}, title = {The role of autophagy in tick-endosymbiont interactions: insights from Ixodes scapularis and Rickettsia buchneri.}, journal = {Microbiology spectrum}, volume = {12}, number = {1}, pages = {e0108623}, pmid = {38038450}, issn = {2165-0497}, support = {R01 AI049424/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; *Ixodes/microbiology ; *Rickettsia/genetics ; *Tick-Borne Diseases/microbiology ; }, abstract = {Ticks are second only to mosquitoes in their importance as vectors of disease agents; however, tick-borne diseases (TBDs) account for the majority of all vector-borne disease cases in the United States (approximately 76.5%), according to Centers for Disease Control and Prevention reports. Newly discovered tick species and their associated disease-causing pathogens, and anthropogenic and demographic factors also contribute to the emergence and re-emergence of TBDs. Thus, incorporating different tick control approaches based on a thorough knowledge of tick biology has great potential to prevent and eliminate TBDs in the future. Here we demonstrate that replication of a transovarially transmitted rickettsial endosymbiont depends on the tick's autophagy machinery but not on apoptosis. Our findings improve our understanding of the role of symbionts in tick biology and the potential to discover tick control approaches to prevent or manage TBDs.}, } @article {pmid38021190, year = {2023}, author = {Bawm, S and Khaing, Y and Chel, HM and Hmoon, MM and Win, SY and Bo, M and Naing, T and Htun, LL}, title = {Molecular detection of Dirofilaria immitis and its Wolbachia endosymbionts in dogs from Myanmar.}, journal = {Current research in parasitology & vector-borne diseases}, volume = {4}, number = {}, pages = {100148}, pmid = {38021190}, issn = {2667-114X}, abstract = {Heartworm disease in dogs and cats caused by Dirofilaria immitis continues to be a major clinical issue globally. This study focused on dogs suspicious of having tick-borne diseases (TBD) brought to a clinic and a veterinary teaching hospital in Myanmar. Blood samples were collected and initially screened using SNAP® 4Dx® Plus test kit. All dog blood samples were subjected to conventional PCR to detect both Dirofilaria spp. (cox1 gene) and Wolbachia spp. (16S rDNA) infections. Infection with D. immitis was detected in 14 (28.0%) of 50 examined samples, while the detection rate of TBD causative agents, including Anaplasma phagocytophilum and Ehrlichia canis, was 26.0% (13/50) and 26.0% (13/50), respectively, as determined by ELISA rapid test. In this study, D. immitis infection was moderately but significantly correlated with TBD infections (Pearson's r = 0.397, P = 0.008). Comparative sequence and phylogenetic analyses provided molecular identification of D. immitis in Myanmar and confirmed the identity of its Wolbachia endosymbiont with Wolbachia endosymbionts isolated from D. immitis, Rhipicephalus sanguineus and Aedes aegypti. The present study contributes to our understanding of the coexistence of D. immitis and Wolbachia endosymbiosis in dogs, and the findings may benefit the future prevention and control of dirofilariasis in dogs.}, } @article {pmid38018626, year = {2023}, author = {Sperandio, NDC and Tunholi, VM and Amaral, LS and Vidal, MLB and Cassani, LS and Tunholi-Alves, VM and Couto-Chambarelli, MCMD and Boeloni, JN and Monteiro, C and Martins, IVF}, title = {Influence of exposure Heterorhabditis bacteriophora HP88, (Rhabditida: Heterorhabditidae) on biological and physiological parameters of Pseudosuccinea columella (Basommatophora: Lymnaeidae).}, journal = {Revista brasileira de parasitologia veterinaria = Brazilian journal of veterinary parasitology : Orgao Oficial do Colegio Brasileiro de Parasitologia Veterinaria}, volume = {32}, number = {4}, pages = {e007023}, pmid = {38018626}, issn = {1984-2961}, mesh = {Animals ; *Rhabditida ; Pest Control, Biological/methods ; Snails/parasitology ; *Fascioliasis/veterinary ; }, abstract = {Many studies about fasciolosis control have been carried out, whether acting on the adult parasite or in Pseudosuccinea columella, compromising the development of the larval stages. The present study aimed to evaluate, under laboratory conditions, the susceptibility of P. columella to Heterorhabditis bacteriophora HP88, during for 24 and 48 hours of exposure. The snails were evaluated for 21 days for accumulated mortality; number of eggs laid; hatchability rate; biochemical changes; and histopathological analysis. We found that exposure induced a reduction in glucose and glycogen levels, characterizing a negative energy balance, due to the depletion of energy reserves as a result of the direct competition established by the nematode/endosymbiont bacteria complex in such substrates. A mortality rate of 48.25% and 65.52% was observed in the group exposed for 24 h and 48 h, respectively, along with significant impairment of reproductive biology in both exposed groups in relation to the respective controls. The results presented here show that P. columella is susceptible to the nematode H. bacteriophora, with the potential to be used as an alternative bioagent in the control of this mollusk, especially in areas considered endemic for fascioliasis, in line with the position expressed by the World Health Organization Health.}, } @article {pmid38016137, year = {2023}, author = {Azarm, A and Koosha, M and Dalimi, A and Zahraie-Ramazani, A and Akhavan, AA and Saeidi, Z and Mohebali, M and Azam, K and Vatandoost, H and Oshaghi, MA}, title = {Association Between Wolbachia Infection and Susceptibility to Deltamethrin Insecticide in Phlebotomus papatasi (Diptera: Psychodidae), the Main Vector of Zoonotic Cutaneous Leishmaniasis.}, journal = {Vector borne and zoonotic diseases (Larchmont, N.Y.)}, volume = {}, number = {}, pages = {}, doi = {10.1089/vbz.2023.0085}, pmid = {38016137}, issn = {1557-7759}, abstract = {Background: Phlebotomus papatasi (Diptera: Psychodidae) is the main vector of zoonotic cutaneous leishmaniasis. Wolbachia is a symbiotic alphaproteobacteria of arthropods that can be involved in susceptibility or resistance. This study aimed to investigate the relationship between Wolbachia and Deltamethrin susceptibility/resistance in Ph. papatasi. Deltamethrin filter papers (0.00002%) were used to test sand fly field collected from southern Iran. After the test, PCR amplification of the Wolbachia surface protein gene (wsp) was used to measure Wolbachia infection rate in the killed, surviving, and control groups. Result: The rates of infection by Wolbachia strain (wPap, super group A) differed between killed (susceptible) and surviving (resistant) Ph. papatasi specimens. The rate of Wolbachia infection in susceptible individuals was more than twice (2.3) (39% vs. 17%) in resistant individuals with the same genetic background. This difference was highly significant (p < 0.001), indicating a positive association between Wolbachia infection and susceptibility to Deltamethrin. In addition, the results showed that Deltamethrin can act as a PCR inhibitor during detection of Wolbachia in Ph. papatasi. Conclusion: Results of this study show that Wolbachia is associated with Deltamethrin susceptibility level in Ph. papatasi. Also, as Deltamethrin has been identified as a PCR inhibitor, great care must be taken in interpreting Wolbachia infection status in infected populations. The results of this study may provide information for a better understanding of the host-symbiont relationship, as well as application of host symbiosis in pest management.}, } @article {pmid38010882, year = {2024}, author = {Espada-Hinojosa, S and Karthäuser, C and Srivastava, A and Schuster, L and Winter, T and de Oliveira, AL and Schulz, F and Horn, M and Sievert, S and Bright, M}, title = {Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative.}, journal = {Molecular ecology resources}, volume = {24}, number = {1}, pages = {e13889}, doi = {10.1111/1755-0998.13889}, pmid = {38010882}, issn = {1755-0998}, support = {P 24565//Austrian Science Fund/ ; P 32197//Austrian Science Fund/ ; //WHOI Investment in Science Fund/ ; }, mesh = {Animals ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; *Bacteria ; *Genomics ; Symbiosis ; Sulfur/metabolism ; }, abstract = {Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.}, } @article {pmid38009998, year = {2023}, author = {Naka, H and Haygood, MG}, title = {The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae.}, journal = {Applied and environmental microbiology}, volume = {89}, number = {12}, pages = {e0074423}, pmid = {38009998}, issn = {1098-5336}, support = {U01 TW008163/TW/FIC NIH HHS/United States ; }, mesh = {Animals ; *Bivalvia/microbiology ; Symbiosis ; Bacteria/metabolism ; Iron/metabolism ; Cellulose/metabolism ; Carbohydrates ; Bacterial Proteins/metabolism ; }, abstract = {This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.}, } @article {pmid38006562, year = {2024}, author = {Serbus, LR}, title = {A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2739}, number = {}, pages = {349-373}, pmid = {38006562}, issn = {1940-6029}, mesh = {Animals ; *Wolbachia/genetics ; *Arthropods/microbiology ; *Nematoda ; Symbiosis ; Optical Imaging ; }, abstract = {The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.}, } @article {pmid38006558, year = {2024}, author = {Valerio, F and Twort, VG and Duplouy, A}, title = {A Worked Example of Screening Genomic Material for the Presence of Wolbachia Infection.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2739}, number = {}, pages = {275-299}, doi = {10.1007/978-1-0716-3553-7_17}, pmid = {38006558}, issn = {1940-6029}, mesh = {Genome, Bacterial ; Genomics ; Phylogeny ; Symbiosis/genetics ; *Wolbachia/genetics ; }, abstract = {This chapter gives a brief overview of how to screen existing host genomic data for the presence of endosymbionts, such as Wolbachia. The various programs used provide test examples, and the corresponding manuals and discussion boards provide invaluable information. Please do consult these resources.}, } @article {pmid38006554, year = {2024}, author = {Walker, T}, title = {Detection of Natural Wolbachia Strains in Anopheles Mosquitoes.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2739}, number = {}, pages = {205-218}, pmid = {38006554}, issn = {1940-6029}, mesh = {Animals ; Humans ; *Anopheles/genetics ; *Wolbachia/genetics ; In Situ Hybridization, Fluorescence ; Mosquito Vectors ; *Malaria ; }, abstract = {Wolbachia is an endosymbiotic bacterium that naturally infects many insect species, including mosquitoes that transmit human diseases. Wolbachia strains have been shown to inhibit the transmission of both arboviruses and malaria Plasmodium parasites. The existence of natural strains in wild Anopheles (An.) mosquitoes, the vectors of malaria parasites, in an endosymbiotic relationship is still to be fully determined. Although Wolbachia has been reported to be present in wild populations of the An. gambiae complex, the primary vectors of malaria in Sub-Saharan Africa, Wolbachia DNA sequence density and infection frequencies are low. As most studies have used highly sensitive nested PCR as the only detection method, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Techniques such as fluorescent in situ hybridization, microbiome sequencing, and Wolbachia whole genome sequencing have provided concrete evidence for genuine Wolbachia strains in two mosquito species: An. moucheti and An. demeilloni. In this chapter, the current methodology used to determine if resident strains exist in Anopheles mosquitoes will be reviewed, including both PCR- and non-PCR-based protocols.}, } @article {pmid38006547, year = {2024}, author = {Kakumanu, ML and Hickin, ML and Schal, C}, title = {Detection, Quantification, and Elimination of Wolbachia in Bed Bugs.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2739}, number = {}, pages = {97-114}, pmid = {38006547}, issn = {1940-6029}, mesh = {Animals ; *Bedbugs/genetics ; *Wolbachia/genetics ; Anti-Bacterial Agents ; }, abstract = {Wolbachia is an obligatory nutritional symbiont of the common bed bug, Cimex lectularius, providing B-vitamins to its host. The biological significance of Wolbachia to bed bugs is investigated primarily by eliminating the symbiont with antibiotics, which is followed by confirmation with molecular assays. In this chapter, we describe a protocol for eliminating Wolbachia in bed bugs using the ansamycin antibiotic rifampicin (also known as rifampin) and three molecular methods to accurately detect and quantify the Wolbachia gene copies in bed bug samples. We describe the digital droplet PCR (ddPCR), a highly sensitive technique for absolute quantification of low abundance target genes, which has proven to be a valuable technique for confirmation of the elimination of Wolbachia.}, } @article {pmid38006542, year = {2024}, author = {Fallon, AM}, title = {Wolbachia: Advancing into a Second Century.}, journal = {Methods in molecular biology (Clifton, N.J.)}, volume = {2739}, number = {}, pages = {1-13}, pmid = {38006542}, issn = {1940-6029}, mesh = {Animals ; *Wolbachia/genetics ; *Filarioidea ; *Arthropods ; Symbiosis ; }, abstract = {Wolbachia pipientis had its scientific debut nearly a century ago and has recently emerged as a target for therapeutic treatment of filarial infections and an attractive tool for control of arthropod pests. Wolbachia was known as a biological entity before DNA was recognized as the molecule that carries the genetic information on which life depends, and before arthropods and nematodes were grouped in the Ecdysozoa. Today, some investigators consider Wolbachia the most abundant endosymbiont on earth, given the numbers of its hosts and its diverse mutualistic, commensal, and parasitic roles in their life histories. Recent advances in molecular technologies have revolutionized our understanding of Wolbachia and its associated reproductive phenotypes. New models have emerged for its investigation, and substantial progress has been made towards Wolbachia-based interventions in medicine and agriculture. Here I introduce Wolbachia, with a focus on aspects of its biology that are covered in greater detail in subsequent chapters.}, } @article {pmid37999087, year = {2023}, author = {Lei, T and Luo, N and Song, C and Yu, J and Zhou, Y and Qi, X and Liu, Y}, title = {Comparative Genomics Reveals Three Genetic Groups of the Whitefly Obligate Endosymbiont Candidatus Portiera aleyrodidarum.}, journal = {Insects}, volume = {14}, number = {11}, pages = {}, pmid = {37999087}, issn = {2075-4450}, support = {32070481//National Natural Science Foundation of China/ ; CARS-23-C05//Earmarked Fund for China Agriculture Research System/ ; LY22C040003//Zhejiang Provincial Natural Science Foundation of China/ ; 21hb04//Science & Technology Project of Taizhou/ ; 21nya17//Science & Technology Project of Taizhou/ ; 1902gy23//Science & Technology Project of Taizhou/ ; }, abstract = {Maternally inherited obligate endosymbionts codiverge with their invertebrate hosts and reflect their host's evolutionary history. Whiteflies (Hemiptera: Aleyrodidae) harbor one obligate endosymbiont, Candidatus Portiera aleyrodidarum (hereafter Portiera). Portiera was anciently acquired by whitefly and has been coevolving with its host ever since. Uncovering the divergence of endosymbionts provides a fundamental basis for inspecting the coevolutionary processes between the bacteria and their hosts. To illustrate the divergence of Portiera lineages across different whitefly species, we sequenced the Portiera genome from Aleyrodes shizuokensis and conducted a comparative analysis on the basic features and gene evolution with bacterial genomes from five whitefly genera, namely Aleurodicus, Aleyrodes, Bemisia, Pealius, and Trialeurodes. The results indicated that Portiera from Bemisia possessed significantly larger genomes, fewer coding sequences (CDSs), and a lower coding density. Their gene arrangement differed notably from those of other genera. The phylogeny of the nine Portiera lineages resembled that of their hosts. Moreover, the lineages were classified into three distinct genetic groups based on the genetic distance, one from Aleurodicus (Aleurodicinae), one from Bemisia (Aleyrodinae), and another from Aleyrodes, Pealius, and Trialeurrodes (Aleyrodinae). Synonymous and nonsynonymous rate analyses, parity rule 2 plot analyses, neutrality plot analyses, and effective number of codons analyses supported the distinction of the three genetic groups. Our results indicated that Portiera from distant hosts exhibit distinct genomic contents, implying codivergence between hosts and their endosymbionts. This work will enhance our understanding of coevolution between hosts and their endosymbionts.}, } @article {pmid37995370, year = {2023}, author = {Strunov, A and Kirchner, S and Schindelar, J and Kruckenhauser, L and Haring, E and Kapun, M}, title = {Historic Museum Samples Provide Evidence for a Recent Replacement of Wolbachia Types in European Drosophila melanogaster.}, journal = {Molecular biology and evolution}, volume = {40}, number = {12}, pages = {}, pmid = {37995370}, issn = {1537-1719}, support = {P 32275/FWF_/Austrian Science Fund FWF/Austria ; }, mesh = {Animals ; *Drosophila melanogaster/genetics ; *Wolbachia/genetics ; Museums ; Biological Evolution ; Reproduction ; Symbiosis ; }, abstract = {Wolbachia is one of the most common bacterial endosymbionts, which is frequently found in numerous arthropods and nematode taxa. Wolbachia infections can have a strong influence on the evolutionary dynamics of their hosts since these bacteria are reproductive manipulators that affect the fitness and life history of their host species for their own benefit. Host-symbiont interactions with Wolbachia are perhaps best studied in the model organism Drosophila melanogaster, which is naturally infected with at least 5 different variants among which wMel and wMelCS are the most frequent ones. Comparisons of infection types between natural flies and long-term lab stocks have previously indicated that wMelCS represents the ancestral type, which was only very recently replaced by the nowadays dominant wMel in most natural populations. In this study, we took advantage of recently sequenced museum specimens of D. melanogaster that have been collected 90 to 200 yr ago in Northern Europe to test this hypothesis. Our comparison to contemporary Wolbachia samples provides compelling support for the replacement hypothesis. Our analyses show that sequencing data from historic museum specimens and their bycatch are an emerging and unprecedented resource to address fundamental questions about evolutionary dynamics in host-symbiont interactions. However, we also identified contamination with DNA from crickets that resulted in co-contamination with cricket-specific Wolbachia in several samples. These results underpin the need for rigorous quality assessments of museomic data sets to account for contamination as a source of error that may strongly influence biological interpretations if it remains undetected.}, } @article {pmid37994906, year = {2023}, author = {Meyer, DF and Moumène, A and Rodrigues, V}, title = {Microbe Profile: Ehrlichia ruminantium - stealthy as it goes.}, journal = {Microbiology (Reading, England)}, volume = {169}, number = {11}, pages = {}, pmid = {37994906}, issn = {1465-2080}, mesh = {*Ehrlichia ruminantium ; }, abstract = {Ehrlichia ruminantium is an obligate intracellular pathogenic bacterium that causes heartwater, a fatal disease of ruminants in tropical areas. Some human cases have also been reported. This globally important pathogen is primarily transmitted by ticks of the Amblyomma genus and threatens American mainland. E. ruminantium replicates within eukaryotic mammal or tick cell is a membrane-bound vacuole, where it undergoes a biphasic developmental growth cycle and differentiates from noninfectious replicative form into infectious elementary bodies. The ability of E. ruminantium to hijack host cellular processes and avoid innate immunity is a fundamental, but not yet fully understood, virulence trait of this stealth pathogen in the genomic era.}, } @article {pmid37980433, year = {2023}, author = {Sanches, P and De Moraes, CM and Mescher, MC}, title = {Endosymbionts modulate virus effects on aphid-plant interactions.}, journal = {The ISME journal}, volume = {17}, number = {12}, pages = {2441-2451}, pmid = {37980433}, issn = {1751-7370}, mesh = {Animals ; *Aphids ; *Viruses ; }, abstract = {Vector-borne pathogens frequently modify traits of their primary hosts and vectors in ways that influence disease transmission. Such effects can themselves be altered by the presence of other microbial symbionts, yet we currently have limited understanding of these interactions. Here we show that effects of pea enation mosaic virus (PEMV) on interactions between host plants and aphid vectors are modulated by the presence of different aphid endosymbionts. In a series of laboratory assays, we found strong interactive effects of virus infection and endosymbionts on aphid metabolomic profiles, population growth, behavior, and virus transmission during aphid feeding. Furthermore, the strongest effects-and those predicted to favor virus transmission-were most apparent in aphid lines harboring particular endosymbionts. These findings show that virus effects on host-vector interactions can be strongly influenced by other microbial symbionts and suggest a potentially important role for such interactions in disease ecology and evolution.}, } @article {pmid37978413, year = {2023}, author = {Pascar, J and Middleton, H and Dorus, S}, title = {Aedes aegypti microbiome composition covaries with the density of Wolbachia infection.}, journal = {Microbiome}, volume = {11}, number = {1}, pages = {255}, pmid = {37978413}, issn = {2049-2618}, support = {R21 HD088910/HD/NICHD NIH HHS/United States ; }, mesh = {Humans ; Animals ; Female ; *Dengue Virus ; *Aedes ; *Wolbachia/genetics ; Mosquito Vectors/microbiology ; Drosophila melanogaster/microbiology ; *Microbiota ; }, abstract = {BACKGROUND: Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome.

RESULTS: Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population.

CONCLUSION: Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.}, } @article {pmid37974296, year = {2023}, author = {Sun, Y and Wang, M and Cao, L and Seim, I and Zhou, L and Chen, J and Wang, H and Zhong, Z and Chen, H and Fu, L and Li, M and Li, C and Sun, S}, title = {Mosaic environment-driven evolution of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont.}, journal = {Microbiome}, volume = {11}, number = {1}, pages = {253}, pmid = {37974296}, issn = {2049-2618}, mesh = {Animals ; Phylogeny ; *Mytilidae/genetics/microbiology ; Bacteria ; Ecosystem ; Methane/metabolism ; Symbiosis ; *Hydrothermal Vents ; }, abstract = {BACKGROUND: The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear.

RESULTS: Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes.

CONCLUSIONS: The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.}, } @article {pmid37970093, year = {2023}, author = {Awori, RM and Hendre, P and Amugune, NO}, title = {The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins.}, journal = {Access microbiology}, volume = {5}, number = {10}, pages = {}, pmid = {37970093}, issn = {2516-8290}, abstract = {Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.}, } @article {pmid37963163, year = {2023}, author = {Takasu, R and Yasuda, Y and Izu, T and Nakabachi, A}, title = {Diaphorin, a polyketide produced by a bacterial endosymbiont of the Asian citrus psyllid, adversely affects the in vitro gene expression with ribosomes from Escherichia coli and Bacillus subtilis.}, journal = {PloS one}, volume = {18}, number = {11}, pages = {e0294360}, pmid = {37963163}, issn = {1932-6203}, mesh = {Animals ; Bacillus subtilis/genetics/metabolism ; Escherichia coli/genetics/metabolism ; *Hemiptera/microbiology ; *Polyketides/pharmacology/metabolism ; *Citrus/microbiology ; *Gammaproteobacteria/metabolism ; Gene Expression ; Plant Diseases/microbiology ; *Rhizobiaceae/physiology ; }, abstract = {Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria), an obligate mutualist of an important agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera). Our previous study demonstrated that diaphorin, at physiological concentrations in D. citri, inhibits the growth and cell division of Bacillus subtilis (Firmicutes) but promotes the growth and metabolic activity of Escherichia coli (Gammaproteobacteria). This unique property of diaphorin may aid microbial mutualism in D. citri, potentially affecting the transmission of "Candidatus Liberibacter spp." (Alphaproteobacteria), the pathogens of the most destructive citrus disease Huanglongbing. Moreover, this property may be exploited to promote microbes' efficiency in producing industrial materials. However, the mechanism underlying this activity is unknown. Diaphorin belongs to the family of pederin-type compounds, which inhibit protein synthesis in eukaryotes by binding to eukaryotic ribosomes. Therefore, as a first step to assess diaphorin's direct influence on bacterial gene expression, this study examined the effect of diaphorin on the in vitro translation using ribosomes of B. subtilis and E. coli, quantifying the production of the green fluorescent protein. The results showed that the gene expression involving B. subtilis and E. coli ribosomes along with five millimolar diaphorin was 29.6% and 13.1%, respectively, less active than the control. This suggests that the diaphorin's adverse effects on B. subtilis are attributed to, at least partly, its inhibitory effects on gene expression. Moreover, as ingredients of the translation system were common other than ribosomes, the greater inhibitory effects observed with the B. subtilis ribosome imply that the ribosome is among the potential targets of diaphorin. On the other hand, the results also imply that diaphorin's positive effects on E. coli are due to targets other than the core machinery of transcription and translation. This study demonstrated for the first time that a pederin congener affects bacterial gene expression.}, } @article {pmid37961388, year = {2023}, author = {Karim, S and Zenzal, TJ and Beati, L and Sen, R and Adegoke, A and Kumar, D and Downs, LP and Keko, M and Nussbaum, A and Becker, DJ and Moore, FR}, title = {Ticks without borders: Microbial communities of immature Neotropical tick species parasitizing migratory landbirds along northern Gulf of Mexico.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, pmid = {37961388}, support = {P20 GM103476/GM/NIGMS NIH HHS/United States ; }, abstract = {The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can lead to the emergence of novel tick-borne pathogens or the re-emergence of previously eradicated ones. This study assessed the prevalence of exotic tick species parasitizing resident, short-distance, and long-distance songbirds during spring and autumn at stopover sites in the northern Gulf of Mexico using the mitochondrial 12S rDNA gene. Birds were captured for tick collection from six different sites from late August to early November in both 2018 and 2019. The highest number of ticks were collected in the 2019 season. Most ticks were collected off the Yellow-breasted Chat (Icteria virens) and Common Yellowthroat (Geothlypis trichas), and 54% of the total ticks collected were from Grand Chenier, LA. A high throughput 16S ribosomal RNA sequencing approach was followed to characterize the microbial communities and identify pathogenic microbes in all tick samples. Tick microbial communities, diversity, and community structure were determined using quantitative insight into microbial ecology (QIIME). The sparse correlations for compositional data (SparCC) approach was then used to construct microbial network maps and infer microbial correlations. A total of 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre was the most abundant tick genus and species, respectively. Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant bacteria include the pathogenic Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. BLAST analysis and phylogenetic reconstruction of the Rickettsia sequences revealed the highest similarities to pathogenic spotted and non-spotted fever groups, including R. buchneri, R. conorii, R. prowazekii, R. bellii, R. australis, R. parkeri, R. monacensis, and R. monteiroi. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also observed a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing means dispersal distances from 421-5003 kilometers. These findings strongly highlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.}, } @article {pmid37955420, year = {2023}, author = {Whittle, M and Bonsall, MB and Barreaux, AMG and Ponton, F and English, S}, title = {A theoretical model for host-controlled regulation of symbiont density.}, journal = {Journal of evolutionary biology}, volume = {36}, number = {12}, pages = {1731-1744}, doi = {10.1111/jeb.14246}, pmid = {37955420}, issn = {1420-9101}, mesh = {Animals ; *Biological Evolution ; *Symbiosis/physiology ; Models, Theoretical ; }, abstract = {There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.}, } @article {pmid37953792, year = {2023}, author = {Furtado, DP and Vieira, EA and Nascimento, WF and Inagaki, KY and Bleuel, J and Alves, MAZ and Longo, GO and Oliveira, LS}, title = {#DeOlhoNosCorais: a polygonal annotated dataset to optimize coral monitoring.}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e16219}, pmid = {37953792}, issn = {2167-8359}, mesh = {Humans ; Animals ; *Anthozoa/physiology ; Coral Reefs ; Ecosystem ; Crustacea ; Fishes ; }, abstract = {Corals are colonial animals within the Phylum Cnidaria that form coral reefs, playing a significant role in marine environments by providing habitat for fish, mollusks, crustaceans, sponges, algae, and other organisms. Global climate changes are causing more intense and frequent thermal stress events, leading to corals losing their color due to the disruption of a symbiotic relationship with photosynthetic endosymbionts. Given the importance of corals to the marine environment, monitoring coral reefs is critical to understanding their response to anthropogenic impacts. Most coral monitoring activities involve underwater photographs, which can be costly to generate on large spatial scales and require processing and analysis that may be time-consuming. The Marine Ecology Laboratory (LECOM) at the Federal University of Rio Grande do Norte (UFRN) developed the project "#DeOlhoNosCorais" which encourages users to post photos of coral reefs on their social media (Instagram) using this hashtag, enabling people without previous scientific training to contribute to coral monitoring. The laboratory team identifies the species and gathers information on coral health along the Brazilian coast by analyzing each picture posted on social media. To optimize this process, we conducted baseline experiments for image classification and semantic segmentation. We analyzed the classification results of three different machine learning models using the Local Interpretable Model-agnostic Explanations (LIME) algorithm. The best results were achieved by combining EfficientNet for feature extraction and Logistic Regression for classification. Regarding semantic segmentation, the U-Net Pix2Pix model produced a pixel-level accuracy of 86%. Our results indicate that this tool can enhance image selection for coral monitoring purposes and open several perspectives for improving classification performance. Furthermore, our findings can be expanded by incorporating other datasets to create a tool that streamlines the time and cost associated with analyzing coral reef images across various regions.}, } @article {pmid37952351, year = {2024}, author = {El Hamss, H and Maruthi, MN and Omongo, CA and Wang, HL and van Brunschot, S and Colvin, J and Delatte, H}, title = {Microbiome diversity and composition in Bemisia tabaci SSA1-SG1 whitefly are influenced by their host's life stage.}, journal = {Microbiological research}, volume = {278}, number = {}, pages = {127538}, doi = {10.1016/j.micres.2023.127538}, pmid = {37952351}, issn = {1618-0623}, mesh = {Animals ; *Hemiptera/microbiology ; *Microbiota ; Life Cycle Stages ; }, abstract = {Within the Bemisia tabaci group of cryptic whitefly species, many are damaging agricultural pests and plant-virus vectors, conferring upon this group the status of one of the world's top 100 most invasive and destructive species, affecting farmers' income and threatening their livelihoods. Studies on the microbiome of whitefly life stages are scarce, although their composition and diversity greatly influence whitefly fitness and development. We used high-throughput sequencing to understand microbiome diversity in different developmental stages of the B. tabaci sub-Saharan Africa 1 (SSA1-SG1) species of the whitefly from Uganda. Endosymbionts (Portiera, Arsenophonus, Wolbachia, and Hemipteriphilus were detected but excluded from further statistical analysis as they were not influenced by life stage using Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS, p = 0.925 and Bray, p = 0.903). Our results showed significant differences in the meta microbiome composition in different life stages of SSA1-SG1. The diversity was significantly higher in eggs (Shannon, p = 0.024; Simpson, p = 0.047) than that in nymphs and pupae, while the number of microbial species observed by the amplicon sequence variant (ASV) was not significant (n(ASV), p = 0.094). At the phylum and genus levels, the dominant constituents in the microbiome changed significantly during various developmental stages, with Halomonas being present in eggs, whereas Bacillus and Caldalkalibacillus were consistently found across all life stages. These findings provide the first description of differing meta microbiome diversity in the life stage of whiteflies, suggesting their putative role in whitefly development.}, } @article {pmid37952050, year = {2023}, author = {Miyagishima, SY}, title = {Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems.}, journal = {Communications biology}, volume = {6}, number = {1}, pages = {1150}, pmid = {37952050}, issn = {2399-3642}, mesh = {*Ecosystem ; Photosynthesis/physiology ; Chloroplasts/metabolism ; Plants ; *Cyanobacteria/genetics ; }, abstract = {An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.}, } @article {pmid37949964, year = {2024}, author = {Bickerstaff, JRM and Jordal, BH and Riegler, M}, title = {Two sympatric lineages of Australian Cnestus solidus share Ambrosiella symbionts but not Wolbachia.}, journal = {Heredity}, volume = {132}, number = {1}, pages = {43-53}, pmid = {37949964}, issn = {1365-2540}, mesh = {Animals ; *Weevils/microbiology ; Phylogeny ; *Wolbachia/genetics ; Australia ; *Ascomycota/genetics ; }, abstract = {Sympatric lineages of inbreeding species provide an excellent opportunity to investigate species divergence patterns and processes. Many ambrosia beetle lineages (Curculionidae: Scolytinae) reproduce by predominant inbreeding through sib mating in nests excavated in woody plant parts wherein they cultivate symbiotic ambrosia fungi as their sole source of nutrition. The Xyleborini ambrosia beetle species Cnestus solidus and Cnestus pseudosolidus are sympatrically distributed across eastern Australia and have overlapping morphological variation. Using multilocus sequencing analysis of individuals collected from 19 sites spanning their sympatric distribution, we assessed their phylogenetic relationships, taxonomic status and microbial symbionts. We found no genetic differentiation between individuals morphologically identified as C. solidus and C. pseudosolidus confirming previous suggestions that C. pseudosolidus is synonymous to C. solidus. However, within C. solidus we unexpectedly discovered the sympatric coexistence of two morphologically indistinguishable but genetically distinct lineages with small nuclear yet large mitochondrial divergence. At all sites except one, individuals of both lineages carried the same primary fungal symbiont, a new Ambrosiella species, indicating that fungal symbiont differentiation may not be involved in lineage divergence. One strain of the maternally inherited bacterial endosymbiont Wolbachia was found at high prevalence in individuals of the more common lineage but not in the other, suggesting that it may influence host fitness. Our data suggest that the two Australian Cnestus lineages diverged allopatrically, and one lineage then acquired Wolbachia. Predominant inbreeding and Wolbachia infection may have reinforced reproductive barriers between these two lineages after their secondary contact contributing to their current sympatric distribution.}, } @article {pmid37948354, year = {2024}, author = {Hussain, M and Zhong, Y and Tao, T and Xiu, B and Ye, F and Gao, J and Mao, R}, title = {Effect of tree height and spraying methods on Diaphorina citri kuwayama endosymbionts in the context of Huanglongbing disease management in citrus orchards.}, journal = {Pest management science}, volume = {80}, number = {3}, pages = {1484-1500}, doi = {10.1002/ps.7880}, pmid = {37948354}, issn = {1526-4998}, support = {2021GDASYL-20210103051//The GDAS Special Project of Science and Technology Development/ ; 2022GDASZH-2022030501//The GDAS Special Project of Science and Technology Development/ ; QN2022030005//Foreign Youth Talent Programs/ ; 2023SDZG06//the open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-year plan of Guangdong province/ ; 2022SDZG06//the open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-year plan of Guangdong province/ ; 20220610043//the Research Programs of Guangzhou/ ; 202103000065//the Research Programs of Guangzhou/ ; KTP20210352//Science and Technology Planning Project of Guangdong Province/ ; }, mesh = {Animals ; Trees ; *Citrus ; *Hemiptera ; Disease Management ; Plant Diseases ; *Rhizobiaceae ; *Liberibacter ; }, abstract = {BACKGROUND: Huanglongbing (HLB) (caused by Candidatus Liberibacter asiaticus) is the most damaging disease of citrus around the world. This study investigated the effects of citrus tree height on Diaphorina citri Kuwayama mortality, endosymbiont responses, and HLB distribution.

RESULTS: The results reveal that the age of citrus trees plays a significant role in psyllid mortality. Interestingly, the cumulative mean mortality (%) of psyllids over the seven-day observation period was higher (31.50±0.03) when four-year-old (501A1, 502A2, 501A3) citrus trees were sprayed with a US-SMART mechanical sprayer. In contrast, the psyllids mortality was 0.09±0.23 for the 13-year-old citrus trees (104A2, 104A3, 104C1) sprayed with a US-SMART mechanical sprayer and 9.10±0.05 for 13-year-old (502A2, 502B2, 502D1) citrus trees sprayed with a fixed US-SMART mechanical sprayer. Our findings also revealed that psyllids from both four- and 13-year-old citrus trees carried Candidatus Carsonella ruddii species and Wolbachia, the primary and secondary endosymbionts, respectively. Surprisingly, infection rates of these endosymbionts remained consistent across different age groups, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, our study highlights the significance of tree height as a proxy for tree age in influencing HLB occurrence. Specifically, four-year-old citrus trees subjected to the US-SMART mechanical sprayer for citrus psyllid control demonstrated effective disease management compared to 13-year-old (104A2, 104A3, 104C1) citrus trees sprayed with US-SMART mechanical sprayers. Additionally, the investigation explored the impact of tree height on HLB distribution. In four-year-old trees, no significant correlation between HLB disease and tree height was observed, potentially due to effective spray coverage with US-SMART mechanical sprayer. However, in 13-year-old (104A2, 104A3, 104C1) citrus tree sprayed with US-SMART mechanical sprayer, a positive correlation between tree height and HLB disease was evident.

CONCLUSION: This research provides valuable insights into the complex interaction between citrus tree age, psyllid endosymbionts responses, and HLB distribution. These results emphasize effective HLB management strategies, especially in orchards with diverse tree age populations, ultimately contributing to the long-term sustainability of citrus cultivation. © 2023 Society of Chemical Industry.}, } @article {pmid37944675, year = {2023}, author = {Chaves-Olarte, E and Meza-Torres, J and Herrera-Rodríguez, F and Lizano-González, E and Suárez-Esquivel, M and Baker, KS and Rivas-Solano, O and Ruiz-Villalobos, N and Villalta-Romero, F and Cheng, HP and Walker, GC and Cloeckaert, A and Thomson, NR and Frisan, T and Moreno, E and Guzmán-Verri, C}, title = {A sensor histidine kinase from a plant-endosymbiont bacterium restores the virulence of a mammalian intracellular pathogen.}, journal = {Microbial pathogenesis}, volume = {185}, number = {}, pages = {106442}, pmid = {37944675}, issn = {1096-1208}, support = {R01 GM031030/GM/NIGMS NIH HHS/United States ; }, mesh = {Animals ; Mice ; Humans ; Virulence/genetics ; Histidine Kinase/genetics ; *Brucella abortus ; *Genes, Bacterial ; Bacterial Proteins/genetics/metabolism ; Gene Expression Regulation, Bacterial ; Mammals/genetics/metabolism ; }, abstract = {Alphaproteobacteria include organisms living in close association with plants or animals. This interaction relies partly on orthologous two-component regulatory systems (TCS), with sensor and regulator proteins modulating the expression of conserved genes related to symbiosis/virulence. We assessed the ability of the exoS[+]Sm gene, encoding a sensor protein from the plant endosymbiont Sinorhizobium meliloti to substitute its orthologous bvrS in the related animal/human pathogen Brucella abortus. ExoS phosphorylated the B. abortus regulator BvrR in vitro and in cultured bacteria, showing conserved biological function. Production of ExoS in a B. abortus bvrS mutant reestablished replication in host cells and the capacity to infect mice. Bacterial outer membrane properties, the production of the type IV secretion system VirB, and its transcriptional regulators VjbR and BvrR were restored as compared to parental B. abortus. These results indicate that conserved traits of orthologous TCS from bacteria living in and sensing different environments are sufficient to achieve phenotypic plasticity and support bacterial survival. The knowledge of bacterial genetic networks regulating host interactions allows for an understanding of the subtle differences between symbiosis and parasitism. Rewiring these networks could provide new alternatives to control and prevent bacterial infection.}, } @article {pmid37938758, year = {2022}, author = {Luo, H and Wang, J and Goes, JI and Gomes, HDR and Al-Hashmi, K and Tobias, C and Koerting, C and Lin, S}, title = {A grazing-driven positive nutrient feedback loop and active sexual reproduction underpin widespread Noctiluca green tides.}, journal = {ISME communications}, volume = {2}, number = {1}, pages = {103}, pmid = {37938758}, issn = {2730-6151}, support = {4980.01//Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)/ ; 2019983//Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)/ ; 42276096//National Natural Science Foundation of China (National Science Foundation of China)/ ; NNX17AG66G-ECO4CAST//National Aeronautics and Space Administration (NASA)/ ; CMS-80NSSC20K0014//National Aeronautics and Space Administration (NASA)/ ; }, abstract = {The mixoplankton green Noctiluca scintillans (gNoctiluca) is known to form extensive green tides in tropical coastal ecosystems prone to eutrophication. In the Arabian Sea, their recent appearance and annual recurrence have upended an ecosystem that was once exclusively dominated by diatoms. Despite evidence of strong links to eutrophication, hypoxia and warming, the mechanisms underlying outbreaks of this mixoplanktonic dinoflagellate remain uncertain. Here we have used eco-physiological measurements and transcriptomic profiling to ascribe gNoctiluca's explosive growth during bloom formation to the form of sexual reproduction that produces numerous gametes. Rapid growth of gNoctiluca coincided with active ammonium and phosphate release from gNoctiluca cells, which exhibited high transcriptional activity of phagocytosis and metabolism generating ammonium. This grazing-driven nutrient flow ostensibly promotes the growth of phytoplankton as prey and offers positive support successively for bloom formation and maintenance. We also provide the first evidence that the host gNoctiluca cell could be manipulating growth of its endosymbiont population in order to exploit their photosynthetic products and meet critical energy needs. These findings illuminate gNoctiluca's little known nutritional and reproductive strategies that facilitate its ability to form intense and expansive gNoctiluca blooms to the detriment of regional water, food and the socio-economic security in several tropical countries.}, } @article {pmid37936139, year = {2023}, author = {Hakobyan, A and Velte, S and Sickel, W and Quandt, D and Stoll, A and Knief, C}, title = {Tillandsia landbeckii phyllosphere and laimosphere as refugia for bacterial life in a hyperarid desert environment.}, journal = {Microbiome}, volume = {11}, number = {1}, pages = {246}, pmid = {37936139}, issn = {2049-2618}, mesh = {Humans ; Soil Microbiology ; *Tillandsia ; Refugium ; *Microbiota ; Bacteria/genetics ; Plants/microbiology ; Soil ; Desert Climate ; }, abstract = {BACKGROUND: The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth.

RESULTS: We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R[2] = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R[2] = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R[2] = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R[2] = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R[2] = 0.064, p = 0.001).

CONCLUSIONS: Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.}, } @article {pmid37930120, year = {2023}, author = {Henry, E and Carlson, CR and Kuo, YW}, title = {Candidatus Kirkpatrickella diaphorinae gen. nov., sp. nov., an uncultured endosymbiont identified in a population of Diaphorina citri from Hawaii.}, journal = {International journal of systematic and evolutionary microbiology}, volume = {73}, number = {11}, pages = {}, doi = {10.1099/ijsem.0.006111}, pmid = {37930120}, issn = {1466-5034}, mesh = {Animals ; Symbiosis ; Hawaii ; RNA, Ribosomal, 16S/genetics ; Phylogeny ; DNA, Bacterial/genetics ; Sequence Analysis, DNA ; Bacterial Typing Techniques ; Base Composition ; Fatty Acids/chemistry ; Bacteria/genetics ; *Hemiptera/microbiology ; *Citrus ; }, abstract = {Diaphorina citri is the hemipteran pest and vector of a devastating bacterial pathogen of citrus worldwide. In addition to the two core bacterial endosymbionts of D. citri, Candidatus Carsonella ruddii and Candidatus Profftella armatura, the genome of a novel endosymbiont and as of yet undescribed microbe was discovered in a Hawaiian D. citri population through deep sequencing of multiple D. citri populations. Found to be closely related to the genus Asaia in the family Acetobacteraceae by 16S rRNA gene sequence analysis, it forms a sister clade along with other insect-associated 16S rRNA gene sequences from uncultured bacterium found associated with Aedes koreicus and Sogatella furcifera. Multilocus sequence analysis confirmed the phylogenetic placement sister to the Asaia clade. Despite the culturable Asaia clade being the closest phylogenetic neighbour, attempts to culture this newly identified bacterial endosymbiont were unsuccessful. On the basis of these distinct genetic differences, the novel endosymbiont is proposed to be classified into a candidate genus and species 'Candidatus Kirkpatrickella diaphorinae'. The full genome was deposited in GenBank (accession number CP107052; prokaryotic 16S rRNA OP600170).}, } @article {pmid37921460, year = {2023}, author = {Zhang, Y and Liu, S and Huang, X-y and Zi, H-b and Gao, T and Ji, R-j and Sheng, J and Zhi, D and Zhang, Y-l and Gong, C-m and Yang, Y-q}, title = {Altitude as a key environmental factor shaping microbial communities of tea green leafhoppers (Matsumurasca onukii).}, journal = {Microbiology spectrum}, volume = {11}, number = {6}, pages = {e0100923}, pmid = {37921460}, issn = {2165-0497}, support = {No.2021YFD1601105//MOST | National Key Research and Development Program of China (NKPs)/ ; No.32172635//MOST | National Natural Science Foundation of China (NSFC)/ ; }, mesh = {Animals ; *Hemiptera ; Altitude ; Tea ; }, abstract = {Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including environmental factors and interactions among microbial species, remain largely unknown. The tea green leafhopper has a wide geographical distribution and is highly adaptable, providing a suitable model for studying the effect of ecological drivers on microbiomes. This is the first large-scale culture-independent study investigating the microbial communities of M. onukii sampled from different locations. Altitude as a key environmental factor may have shaped microbial communities of M. onukii by affecting the relative abundance of endosymbionts, especially Wolbachia. The results of this study, therefore, offer not only an in-depth view of the microbial diversity of this species but also an insight into the influence of environmental factors.}, } @article {pmid37914998, year = {2023}, author = {Liu, W and Xia, X and Hoffmann, AA and Ding, Y and Fang, JC and Yu, H}, title = {Evolution of Wolbachia reproductive and nutritional mutualism: insights from the genomes of two novel strains that double infect the pollinator of dioecious Ficus hirta.}, journal = {BMC genomics}, volume = {24}, number = {1}, pages = {657}, pmid = {37914998}, issn = {1471-2164}, support = {2021A1515110981//Guangdong Basic and Applied Basic Research Foundation/ ; 2022ZB773//Jiangsu Funding Program for Excellent Postdoctoral Talent/ ; 2022VBA0002//The Chinese Academy of Sciences PIFI Fellowship for Visiting Scientists/ ; 2023YFE0100540//National Key R & D Program of China/ ; 202206010058//Guangzhou Collaborative Innovation Center on Science-tech of Ecology and Landscape/ ; }, mesh = {*Ficus/genetics ; *Wolbachia/genetics ; Biotin/genetics ; Symbiosis/genetics ; Phylogeny ; DNA Transposable Elements/genetics ; Multilocus Sequence Typing ; Prophages/genetics ; Reproduction ; }, abstract = {Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.}, } @article {pmid37914705, year = {2023}, author = {Rädecker, N and Escrig, S and Spangenberg, JE and Voolstra, CR and Meibom, A}, title = {Coupled carbon and nitrogen cycling regulates the cnidarian-algal symbiosis.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {6948}, pmid = {37914705}, issn = {2041-1723}, mesh = {Animals ; Carbon/metabolism ; Symbiosis ; *Sea Anemones/metabolism ; Nitrogen/metabolism ; Photosynthesis ; *Dinoflagellida/metabolism ; }, abstract = {Efficient nutrient recycling underpins the ecological success of cnidarian-algal symbioses in oligotrophic waters. In these symbioses, nitrogen limitation restricts the growth of algal endosymbionts in hospite and stimulates their release of photosynthates to the cnidarian host. However, the mechanisms controlling nitrogen availability and their role in symbiosis regulation remain poorly understood. Here, we studied the metabolic regulation of symbiotic nitrogen cycling in the sea anemone Aiptasia by experimentally altering labile carbon availability in a series of experiments. Combining [13]C and [15]N stable isotope labeling experiments with physiological analyses and NanoSIMS imaging, we show that the competition for environmental ammonium between the host and its algal symbionts is regulated by labile carbon availability. Light regimes optimal for algal photosynthesis increase carbon availability in the holobiont and stimulate nitrogen assimilation in the host metabolism. Consequently, algal symbiont densities are lowest under optimal environmental conditions and increase toward the lower and upper light tolerance limits of the symbiosis. This metabolic regulation promotes efficient carbon recycling in a stable symbiosis across a wide range of environmental conditions. Yet, the dependence on resource competition may favor parasitic interactions, explaining the instability of the cnidarian-algal symbiosis as environmental conditions in the Anthropocene shift towards its tolerance limits.}, } @article {pmid37914031, year = {2024}, author = {Grossi, AA and Tian, C and Ren, M and Zou, F and Gustafsson, DR}, title = {Co-phylogeny of a hyper-symbiotic system: Endosymbiotic bacteria (Gammaproteobacteria), chewing lice (Insecta: Phthiraptera) and birds (Passeriformes).}, journal = {Molecular phylogenetics and evolution}, volume = {190}, number = {}, pages = {107957}, doi = {10.1016/j.ympev.2023.107957}, pmid = {37914031}, issn = {1095-9513}, mesh = {Animals ; Phylogeny ; *Passeriformes ; *Ischnocera ; *Gammaproteobacteria ; Biological Evolution ; *Phthiraptera/genetics ; *Bird Diseases/parasitology ; }, abstract = {Chewing lice are hosts to endosymbiotic bacteria as well as themselves being permanent parasites. This offers a unique opportunity to examine the cophylogenetic relationships between three ecologically interconnected organismal groups: birds, chewing lice, and bacteria. Here, we examine the cophylogenetic relationships between lice in the genus Guimaraesiella Eichler, 1949, their endosymbiotic Sodalis-allied bacteria, and a range of bird species from across South China. Both event and distance-based cophylogenetic analyses were explored to compare phylogenies of the three organismal groups. Pair-wise comparisons between lice-endosymbionts and bird-endosymbionts indicated that their evolutionary histories are not independent. However, comparisons between lice and birds, showed mixed results; the distance-based method of ParaFit indicated that their evolutionary histories are not independent, while the event-based method of Jane indicated that their phylogenies were no more congruent than expected by chance. Notably, louse host-switching does not seem to have affected bacterial strains, as conspecific lice sampled from distantly related hosts share bacteria belonging to the same clade.}, } @article {pmid37907954, year = {2023}, author = {Pfarr, KM and Krome, AK and Al-Obaidi, I and Batchelor, H and Vaillant, M and Hoerauf, A and Opoku, NO and Kuesel, AC}, title = {The pipeline for drugs for control and elimination of neglected tropical diseases: 2. Oral anti-infective drugs and drug combinations for off-label use.}, journal = {Parasites & vectors}, volume = {16}, number = {1}, pages = {394}, pmid = {37907954}, issn = {1756-3305}, support = {001/WHO_/World Health Organization/International ; }, mesh = {Humans ; *Ivermectin/therapeutic use ; Rifampin ; Doxycycline ; Fluconazole ; Off-Label Use ; *Anti-Infective Agents/therapeutic use ; Drug Combinations ; Neglected Diseases/drug therapy/prevention & control ; }, abstract = {In its 'Road map for neglected tropical diseases 2021-2030', the World Health Organization outlined its targets for control and elimination of neglected tropical diseases (NTDs) and research needed to achieve them. For many NTDs, this includes research for new treatment options for case management and/or preventive chemotherapy. Our review of small-molecule anti-infective drugs recently approved by a stringent regulatory authority (SRA) or in at least Phase 2 clinical development for regulatory approval showed that this pipeline cannot deliver all new treatments needed. WHO guidelines and country policies show that drugs may be recommended for control and elimination for NTDs for which they are not SRA approved (i.e. for 'off-label' use) if efficacy and safety data for the relevant NTD are considered sufficient by WHO and country authorities. Here, we are providing an overview of clinical research in the past 10 years evaluating the anti-infective efficacy of oral small-molecule drugs for NTD(s) for which they are neither SRA approved, nor included in current WHO strategies nor, considering the research sponsors, likely to be registered with a SRA for that NTD, if found to be effective and safe. No such research has been done for yaws, guinea worm, Trypanosoma brucei gambiense human African trypanosomiasis (HAT), rabies, trachoma, visceral leishmaniasis, mycetoma, T. b. rhodesiense HAT, echinococcosis, taeniasis/cysticercosis or scabies. Oral drugs evaluated include sparfloxacin and acedapsone for leprosy; rifampicin, rifapentin and moxifloxacin for onchocerciasis; imatinib and levamisole for loiasis; itraconazole, fluconazole, ketoconazole, posaconazole, ravuconazole and disulfiram for Chagas disease, doxycycline and rifampicin for lymphatic filariasis; arterolane, piperaquine, artesunate, artemether, lumefantrine and mefloquine for schistosomiasis; ivermectin, tribendimidine, pyrantel, oxantel and nitazoxanide for soil-transmitted helminths including strongyloidiasis; chloroquine, ivermectin, balapiravir, ribavirin, celgosivir, UV-4B, ivermectin and doxycycline for dengue; streptomycin, amoxicillin, clavulanate for Buruli ulcer; fluconazole and isavuconazonium for mycoses; clarithromycin and dapsone for cutaneous leishmaniasis; and tribendimidine, albendazole, mebendazole and nitazoxanide for foodborne trematodiasis. Additional paths to identification of new treatment options are needed. One promising path is exploitation of the worldwide experience with 'off-label' treatment of diseases with insufficient treatment options as pursued by the 'CURE ID' initiative.}, } @article {pmid37906220, year = {2023}, author = {He, LS and Qi, Y and Allard, CAH and Valencia-Montoya, WA and Krueger, SP and Weir, K and Seminara, A and Bellono, NW}, title = {Molecular tuning of sea anemone stinging.}, journal = {eLife}, volume = {12}, number = {}, pages = {}, pmid = {37906220}, issn = {2050-084X}, support = {R35 GM142697/GM/NIGMS NIH HHS/United States ; R01 DC018789/DC/NIDCD NIH HHS/United States ; R35GM142697/NH/NIH HHS/United States ; 101002724 RIDING/ERC_/European Research Council/International ; R01DC018789/NH/NIH HHS/United States ; }, mesh = {Animals ; *Sea Anemones/genetics ; Biological Evolution ; Venoms ; }, abstract = {Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here, we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVβ subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.}, } @article {pmid37905582, year = {2024}, author = {Radice, VZ and Martinez, A and Paytan, A and Potts, DC and Barshis, DJ}, title = {Complex dynamics of coral gene expression responses to low pH across species.}, journal = {Molecular ecology}, volume = {33}, number = {1}, pages = {e17186}, doi = {10.1111/mec.17186}, pmid = {37905582}, issn = {1365-294X}, support = {9915-16//The National Geographic Explorer grant/ ; //The National Park Foundation Science Fellowship/ ; }, mesh = {Animals ; *Anthozoa/genetics ; Coral Reefs ; Ecosystem ; Hydrogen-Ion Concentration ; Seawater/chemistry ; Transcriptome/genetics ; }, abstract = {Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges ('Ojo'; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoides, Porites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.}, } @article {pmid37891154, year = {2023}, author = {Matthews, JL and Khalil, A and Siboni, N and Bougoure, J and Guagliardo, P and Kuzhiumparambil, U and DeMaere, M and Le Reun, NM and Seymour, JR and Suggett, DJ and Raina, JB}, title = {Coral endosymbiont growth is enhanced by metabolic interactions with bacteria.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {6864}, pmid = {37891154}, issn = {2041-1723}, mesh = {Animals ; *Anthozoa/microbiology ; *Rhodobacteraceae ; Plant Growth Regulators ; Coral Reefs ; *Dinoflagellida ; Symbiosis ; }, abstract = {Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.}, } @article {pmid37887820, year = {2023}, author = {Giorgini, M and Formisano, G and García-García, R and Bernat-Ponce, S and Beitia, F}, title = {The Susceptibility of Bemisia tabaci Mediterranean (MED) Species to Attack by a Parasitoid Wasp Changes between Two Whitefly Strains with Different Facultative Endosymbiotic Bacteria.}, journal = {Insects}, volume = {14}, number = {10}, pages = {}, pmid = {37887820}, issn = {2075-4450}, support = {Short Term Mobility Fellowship//National Research Council/ ; DBA.AD002.356 Lotta Biologica ed Integrata IPSP SS Portici//National Research Council/ ; KBBE 219262 (SWIPE)//ERA-NET - ARIMNet/ ; }, abstract = {In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness.}, } @article {pmid37882523, year = {2023}, author = {Głowska, E and Gerth, M}, title = {Draft genome sequence of a Wolbachia endosymbiont from Syringophilopsis turdi (Fritsch, 1958) (Acari, Syringophilidae).}, journal = {Microbiology resource announcements}, volume = {12}, number = {11}, pages = {e0060523}, pmid = {37882523}, issn = {2576-098X}, support = {UMO-2015/19/D/NZ8/00191//Narodowe Centrum Nauki (NCN)/ ; GE 2824/1-1//Deutsche Forschungsgemeinschaft (DFG)/ ; }, abstract = {We present the draft genome of a Wolbachia endosymbiont from quill mites. This is the first representative of a recently discovered distinct Wolbachia lineage (supergroup P). We hope the genome will be a useful resource for comparative evolutionary and genomic studies across the globally distributed symbiont Wolbachia.}, } @article {pmid37874788, year = {2023}, author = {Russell, SL and Castillo, JR and Sullivan, WT}, title = {Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host.}, journal = {PLoS biology}, volume = {21}, number = {10}, pages = {e3002335}, pmid = {37874788}, issn = {1545-7885}, support = {K99 GM135583/GM/NIGMS NIH HHS/United States ; R00 GM135583/GM/NIGMS NIH HHS/United States ; R35 GM139595/GM/NIGMS NIH HHS/United States ; }, mesh = {Animals ; *Wolbachia ; Drosophila/metabolism ; Fertility ; Cell Differentiation ; Germ Cells/metabolism ; Stem Cells/metabolism ; RNA, Messenger/metabolism ; Drosophila melanogaster/genetics ; RNA-Binding Proteins/genetics ; *Drosophila Proteins/metabolism ; }, abstract = {The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations.}, } @article {pmid37873081, year = {2023}, author = {Perlmutter, JI and Atadurdyyeva, A and Schedl, ME and Unckless, RL}, title = {Wolbachia enhances the survival of Drosophila infected with fungal pathogens.}, journal = {bioRxiv : the preprint server for biology}, volume = {}, number = {}, pages = {}, pmid = {37873081}, support = {P20 GM103418/GM/NIGMS NIH HHS/United States ; R01 AI139154/AI/NIAID NIH HHS/United States ; }, abstract = {Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These microbes are vertically inherited from mother to offspring via the cytoplasm. They are the most widespread endosymbionts on the planet due to their infamous ability to manipulate the reproduction of their hosts to spread themselves in a population, and to provide a variety of fitness benefits to their hosts. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. Therefore, Wolbachia are the basis of several global vector control initiatives. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature. Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. This study demonstrates Wolbachia's role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. These results enhance our knowledge of the strategies Wolbachia uses that likely contribute to such a high global symbiont prevalence.}, } @article {pmid37871129, year = {2023}, author = {Wenzel, M and Aquadro, CF}, title = {Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants.}, journal = {PLoS genetics}, volume = {19}, number = {10}, pages = {e1011009}, pmid = {37871129}, issn = {1553-7404}, support = {R01 GM095793/GM/NIGMS NIH HHS/United States ; S10 OD018516/OD/NIH HHS/United States ; }, mesh = {Animals ; Female ; Male ; *Drosophila melanogaster/genetics/microbiology ; *Drosophila Proteins/genetics/metabolism ; Fertility/genetics ; Ovary/metabolism ; *Wolbachia/genetics/metabolism ; }, abstract = {The D. melanogaster protein coding gene bag of marbles (bam) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal, bam genetically interacts with the endosymbiont Wolbachia, as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the wMel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam, suggesting wMel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if wMel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that wMel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of wMel interaction with germline stem cells in bam mutants.}, } @article {pmid37871041, year = {2023}, author = {Bustamante, JA and Ceron, JS and Gao, IT and Ramirez, HA and Aviles, MV and Bet Adam, D and Brice, JR and Cuellar, RA and Dockery, E and Jabagat, MK and Karp, DG and Lau, JK and Li, S and Lopez-Magaña, R and Moore, RR and Morin, BKR and Nzongo, J and Rezaeihaghighi, Y and Sapienza-Martinez, J and Tran, TTK and Huang, Z and Duthoy, AJ and Barnett, MJ and Long, SR and Chen, JC}, title = {A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts.}, journal = {PLoS genetics}, volume = {19}, number = {10}, pages = {e1010776}, pmid = {37871041}, issn = {1553-7404}, support = {TL4 GM118986/GM/NIGMS NIH HHS/United States ; T34 GM008574/GM/NIGMS NIH HHS/United States ; R25 GM059298/GM/NIGMS NIH HHS/United States ; R25 GM050078/GM/NIGMS NIH HHS/United States ; T34 GM145400/GM/NIGMS NIH HHS/United States ; UL1 GM118985/GM/NIGMS NIH HHS/United States ; RL5 GM118984/GM/NIGMS NIH HHS/United States ; R25 GM048972/GM/NIGMS NIH HHS/United States ; SC3 GM096943/GM/NIGMS NIH HHS/United States ; }, mesh = {Peptide Hydrolases/genetics/metabolism ; Bacterial Proteins/metabolism ; *Fabaceae/metabolism ; *Sinorhizobium meliloti/genetics/metabolism ; Symbiosis/genetics ; Endopeptidases/genetics ; Signal Transduction/genetics ; Lipoproteins/genetics/metabolism ; Gene Expression Regulation, Bacterial ; Polysaccharides, Bacterial ; }, abstract = {Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.}, } @article {pmid37864609, year = {2023}, author = {Vaurs, M and Dolu, EB and Decottignies, A}, title = {Mitochondria and telomeres: hand in glove.}, journal = {Biogerontology}, volume = {}, number = {}, pages = {}, pmid = {37864609}, issn = {1573-6768}, abstract = {Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.}, } @article {pmid37860089, year = {2023}, author = {Rushidi, MNA and Azhari, MLH and Yaakop, S and Hazmi, IR}, title = {Detection and Characterisation of Endosymbiont Wolbachia (Rickettsiales: Anaplasmataceae) in Elaeidobius kamerunicus (Coleoptera: Curculionoidea), Pollinating Agent of Oil Palm, and Its Relationships between Populations.}, journal = {Tropical life sciences research}, volume = {34}, number = {3}, pages = {95-111}, pmid = {37860089}, issn = {1985-3718}, abstract = {Elaeidobius kamerunicus is the most efficient pollinator of oil palm. Wolbachia is an endosymbiotic bacteria associated with E. kamerunicus that has a potential to affect the fecundity and fitness of the E. kamerunicus. Despite their importance, no studies have been conducted to investigate its prevalence in E. kamerunicus. The objectives of this study were to detect and characterise Wolbachia in E. kamerunicus and determine the phylogenetic relationship of Wolbachia strains that infect E. kamerunicus by using three genetic markers namely Filamenting temperature-sensitive mutant Z (ftsZ), Chaperonin folding protein (groEL), and Citrate Synthase Coding Gene (gltA). DNA was extracted from 210 individuals of E. kamerunicus and the Wolbachia infections were detected using the wsp marker. The infected samples (n = 25, 11.9%) were then sequenced using ftsZ, gltA and groEL markers for strain characterization. In this study, a combination of four markers was used to construct the phylogeny of Wolbachia. Similar topologies were shown in all trees; Neighbour-Joining (NJ), Maximum Parsimony (MP), and Bayesian Inference (BI), which showed the mixing of individuals that harbor Wolbachia between populations. Interestingly, Wolbachia on E. kamerunicus was claded together with the species Drosophila simulans under supergroup B. This is the first report of Wolbachia infecting E. kamerunicus which is very valuable and significant as one of the parameters to evaluate the quality of the E. kamerunicus population for sustaining its function as a great pollinator for oil palm.}, } @article {pmid37860043, year = {2023}, author = {Mannaa, M and Seo, YS}, title = {Improved and simplified method for aseptic isolation of nematodes and nematode-endosymbiotic bacteria from pine seedlings.}, journal = {MethodsX}, volume = {11}, number = {}, pages = {102421}, pmid = {37860043}, issn = {2215-0161}, abstract = {Pine wilt disease (PWD), caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, significantly impacts pine species and poses a broader ecological concern. An understanding of these nematode-associated microbes is essential for formulating sustainable PWD management strategies. We introduce a streamlined method for the aseptic extraction of B. xylophilus from pine seedlings, evolving beyond traditional Baermann funnel approaches. The method ensures optimal nematode extraction under sterile parameters, with seedling cutting discs processed using a unique sterile syringe assembly setup. The efficiency and simplicity of this method promise to significantly reduce the time and resources required. It also incorporates endosymbiotic bacterial isolation from isolated nematodes. The robustness of this method is affirmed by the successful isolation and identification of nematodes and bacterial strains as endosymbionts. Collectively, this protocol paves the way for more effective studies of nematodes and associated microbes, promoting the understanding of PWD and offering practical implications for better PWD management.•A simplified, aseptic method for extracting B. xylophilus from pine seedlings, offering a modern alternative to traditional Baermann funnel method.•Utilization of a specialized sterile syringe assembly setup, ensuring controlled and optimal nematode isolation.•Method validation achieved through the successful isolation and identification of bacterial strains as nematode endosymbionts.}, } @article {pmid37858069, year = {2023}, author = {Bu, XL and Zhao, WS and Li, ZY and Ma, HW and Chen, YS and Li, WX and Zou, H and Li, M and Wang, GT}, title = {The energy metabolism of Balantidium polyvacuolum inhabiting the hindgut of Xenocypris davidi.}, journal = {BMC genomics}, volume = {24}, number = {1}, pages = {624}, pmid = {37858069}, issn = {1471-2164}, support = {No. 32170437//National Natural Science Foundation of China/ ; No. 2019QZKK0304//the Second Tibetan Plateau Scientific Expedition and Research Program/ ; No. CARS-45//the earmarked fund for CARS/ ; }, mesh = {Animals ; *Balantidium ; *Cypriniformes ; Carbohydrates ; Energy Metabolism ; Starch ; }, abstract = {Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.}, } @article {pmid37850668, year = {2023}, author = {Hepler, JR and Cooper, WR and Cullum, JP and Dardick, C and Dardick, L and Nixon, LJ and Pouchnik, DJ and Raupp, MJ and Shrewsbury, P and Leskey, TC}, title = {Do adult Magicicada (Hemiptera: Cicadidae) feed? Historical perspectives and evidence from molecular gut content analysis.}, journal = {Journal of insect science (Online)}, volume = {23}, number = {5}, pages = {}, pmid = {37850668}, issn = {1536-2442}, support = {8080-21000-032-000D//USDA-ARS-CRIS/ ; }, mesh = {Humans ; Animals ; *Hemiptera/genetics ; Ecosystem ; Nymph ; Feeding Behavior ; Reproduction ; }, abstract = {The periodical cicadas in the genus Magicicada are remarkable for their unusual life histories and dramatic synchronized emergences every 13 or 17 years. While aspects of their evolution, mating behaviors, and general biology have been well-characterized, there is surprising uncertainty surrounding the feeding habits of the short-lived adult stage. Despite a tentative scientific consensus to the contrary, the perception that adult Magicicada do not feed has persisted among the general public, and recent studies are lacking. We directly investigated the feeding behavior of Magicicada spp. through high-throughput sequencing (HTS)-based dietary analysis of nymphs, freshly molted (teneral) adults, and fully sclerotized adults collected from orchard and wooded habitats during the 2021 emergence of Brood X. Identifiable plant DNA (trnF, ITS amplicons) was successfully recovered from nymphs and adults. No plant DNA was recovered from teneral adults, suggesting that all DNA recovered from sclerotized adults was ingested during the post-teneral adult stage. Both nymphs and adults were found to have ingested a range of woody and herbaceous plants across 17 genera and 14 families. Significantly more plant genera per individual were recovered from adults than from nymphs, likely reflecting the greater mobility of the adult stage. We hypothesize that the demonstrated ingestion of plant sap by Magicicada adults is driven by a need to replace lost water and support specialized bacteriome-dwelling endosymbionts that cicadas depend upon for growth and development, which constitutes true feeding behavior.}, } @article {pmid37844224, year = {2023}, author = {Duncan, RP and Anderson, CMH and Thwaites, DT and Luetje, CW and Wilson, ACC}, title = {Co-option of a conserved host glutamine transporter facilitates aphid/Buchnera metabolic integration.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {43}, pages = {e2308448120}, pmid = {37844224}, issn = {1091-6490}, support = {DEB-1406631//National Science Foundation (NSF)/ ; IOS-1354154//National Science Foundation (NSF)/ ; N/A//Newcastle University NUAcT fellowship/ ; RGS\R1\221113//Royal Society (The Royal Society)/ ; 47690-FR//The Physiological Society Momentum Fellowship/ ; N/A//Rank Prize new lecturer grant/ ; }, mesh = {Animals ; Glutamine/metabolism ; *Aphids/microbiology ; *Buchnera/genetics/metabolism ; Amino Acids/metabolism ; Membrane Transport Proteins/metabolism ; Arginine/metabolism ; Symbiosis/physiology ; }, abstract = {Organisms across the tree of life colonize novel environments by partnering with bacterial symbionts. These symbioses are characterized by intimate integration of host/endosymbiont biology at multiple levels, including metabolically. Metabolic integration is particularly important for sap-feeding insects and their symbionts, which supplement nutritionally unbalanced host diets. Many studies reveal parallel evolution of host/endosymbiont metabolic complementarity in amino acid biosynthesis, raising questions about how amino acid metabolism is regulated, how regulatory mechanisms evolve, and the extent to which similar mechanisms evolve in different systems. In the aphid/Buchnera symbiosis, the transporter ApGLNT1 (Acyrthosiphon pisum glutamine transporter 1) supplies glutamine, an amino donor in transamination reactions, to bacteriocytes (where Buchnera reside) and is competitively inhibited by Buchnera-supplied arginine-consistent with a role regulating amino acid metabolism given host demand for Buchnera-produced amino acids. We examined how ApGLNT1 evolved a regulatory role by functionally characterizing orthologs in insects with and without endosymbionts. ApGLNT1 orthologs are functionally similar, and orthology searches coupled with homology modeling revealed that GLNT1 is ancient and structurally conserved across insects. Our results indicate that the ApGLNT1 symbiotic regulatory role is derived from its ancestral role and, in aphids, is likely facilitated by loss of arginine biosynthesis through the urea cycle. Given consistent loss of host arginine biosynthesis and retention of endosymbiont arginine supply, we hypothesize that GLNT1 is a general mechanism regulating amino acid metabolism in sap-feeding insects. This work fills a gap, highlighting the broad importance of co-option of ancestral proteins to novel contexts in the evolution of host/symbiont systems.}, } @article {pmid37838705, year = {2023}, author = {Sounart, H and Voronin, D and Masarapu, Y and Chung, M and Saarenpää, S and Ghedin, E and Giacomello, S}, title = {Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale.}, journal = {Nature communications}, volume = {14}, number = {1}, pages = {6500}, pmid = {37838705}, issn = {2041-1723}, mesh = {Animals ; Female ; Humans ; *Parasites/genetics ; Transcriptome ; Anti-Bacterial Agents/metabolism ; Gene Expression Profiling ; *Communicable Diseases ; *Wolbachia/genetics/metabolism ; Symbiosis/genetics ; }, abstract = {Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.}, } @article {pmid37827122, year = {2023}, author = {Butterworth, S and Kordova, K and Chandrasekaran, S and Thomas, KK and Torelli, F and Lockyer, EJ and Edwards, A and Goldstone, R and Koshy, AA and Treeck, M}, title = {High-throughput identification of Toxoplasma gondii effector proteins that target host cell transcription.}, journal = {Cell host & microbe}, volume = {31}, number = {10}, pages = {1748-1762.e8}, doi = {10.1016/j.chom.2023.09.003}, pmid = {37827122}, issn = {1934-6069}, mesh = {*Toxoplasma/genetics ; Gene Expression Profiling ; Transcriptome ; Immune Evasion ; Signal Transduction ; Protozoan Proteins/genetics/metabolism ; }, abstract = {Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.}, } @article {pmid37820843, year = {2023}, author = {Thanchomnang, T and Rodpai, R and Thinnabut, K and Boonroumkaew, P and Sadaow, L and Tangkawanit, U and Sanpool, O and Janwan, P and Intapan, PM and Maleewong, W}, title = {Characterization of the bacterial microbiota of cattle ticks in northeastern Thailand through 16S rRNA amplicon sequencing.}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases}, volume = {115}, number = {}, pages = {105511}, doi = {10.1016/j.meegid.2023.105511}, pmid = {37820843}, issn = {1567-7257}, mesh = {Animals ; Humans ; Female ; Male ; RNA, Ribosomal, 16S/genetics ; Thailand/epidemiology ; Bacteria/genetics ; *Rhipicephalus/genetics ; Ehrlichia/genetics ; *Tick-Borne Diseases/epidemiology ; Anaplasma/genetics ; *Microbiota/genetics ; *Rickettsia/genetics ; }, abstract = {Ticks are vectors of a variety of pathogens that can infect humans and animals. Ticks also harbor non-pathogenic microbiota. This study characterized the microbiota of the ticks infesting beef cattle in Thailand. Two species of ticks; Rhipicephalus microplus (n = 15) and Haemaphysalis bispinosa (n = 5), were collected in seven provinces in northeastern Thailand. Microbial community profile of ticks was examined based on sequences of the V3-V4 region of 16S rRNA gene. Proteobacteria (Pseudomonadota) was the most abundant phylum, followed by Firmicutes (Bacillota), and Actinobacteriota. Coxiella-like endosymbiont was the most abundant bacterial taxon overall (49% of sequence reads), followed by Anaplasma (8.5%), Corynebacterium (5.5%), Ehrlichia (3.9%), and Castellaniella (3.4%). Co-infections of the pathogenic bacteria Ehrlichia and Anaplasma were detected in 19/20 (95%) female ticks. The tick with the lowest number of bacteria had the lowest abundance of the Coxiella-like endosymbiont, and the pathogenic bacteria Anaplasma and Ehrlichia were absent. This study provides baseline information of the microbiota of cattle ticks in northeastern Thailand, suggesting that ticks carry a few dominant bacterial taxa that are primarily non-pathogenic but can co-occur with pathogenic microorganisms. The information obtained is useful for monitoring disease outbreaks in the future and informing prevention and control strategies against cattle tick-borne diseases.}, } @article {pmid37819592, year = {2023}, author = {Haghshenas-Gorgabi, N and Poorjavd, N and Khajehali, J and Wybouw, N}, title = {Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner.}, journal = {Experimental & applied acarology}, volume = {91}, number = {3}, pages = {369-380}, pmid = {37819592}, issn = {1572-9702}, mesh = {Female ; Male ; Animals ; *Wolbachia ; *Tetranychidae/genetics ; Iran ; Seeds ; Reproduction ; Symbiosis ; Bacteroidetes ; }, abstract = {Maternally transmitted symbionts such as Cardinium and Wolbachia are widespread in arthropods. Both Cardinium and Wolbachia can cause cytoplasmic incompatibility, a reproductive phenotype that interferes with the development of uninfected eggs that are fertilized by infected sperm. In haplodiploid hosts, these symbionts can also distort sex allocation to facilitate their spread through host populations. Without other fitness effects, symbionts that induce strong reproductive phenotypes tend to spread to high and stable infection frequencies, whereas variants that induce weak reproductive phenotypes are typically associated with intermediate and variable frequencies. To study the spread of Cardinium in a haplodiploid host, we sampled Iranian populations of the economically important spider mite Panonychus ulmi in apple orchards. Within several field populations, we also studied the Wolbachia infection frequencies. All P. ulmi field populations carried a Cardinium infection and exhibited high infection frequencies. In contrast, Wolbachia frequency ranged between ca. 10% and ca. 70% and was only found in co-infected mites. To test whether Cardinium induce reproductive phenotypes in P. ulmi, a Cardinium-cured derived line was generated by antibiotic treatment from a co-infected field population. Genetic crosses indicated that Cardinium do not induce demonstrable levels of cytoplasmic incompatibility and sex allocation distortion in co-infected P. ulmi. However, Cardinium infection was associated with a longer developmental time and reduced total fecundity for co-infected females. We hypothesize that Cardinium spread through P. ulmi populations via uncharacterized fitness effects and that co-infection with Wolbachia might impact these drive mechanisms.}, } @article {pmid37816433, year = {2023}, author = {Margarita, V and Carboni, G and Diaz, N and Rappelli, P and Fiori, PL}, title = {Patterns of antibiotic resistance of Mycoplasma hominis endosymbiont of Trichomonas vaginalis and the influence of bacterial intracellular location on drug susceptibility.}, journal = {Journal of global antimicrobial resistance}, volume = {35}, number = {}, pages = {210-215}, doi = {10.1016/j.jgar.2023.09.021}, pmid = {37816433}, issn = {2213-7173}, mesh = {Humans ; Female ; *Trichomonas vaginalis ; Metronidazole/pharmacology ; Mycoplasma hominis ; *Trichomonas Infections ; Anti-Bacterial Agents/pharmacology ; Drug Resistance, Microbial ; Bacteria ; Tetracyclines ; }, abstract = {OBJECTIVES: Mycoplasma hominis, an opportunistic pathogen of the human lower urogenital tract, can survive and replicate within the protozoan Trichomonas vaginalis, establishing an endosymbiotic relationship. The intracellular location may provide a means for the bacteria to evade the immune system and protection from antimicrobial activities. Our aim was to investigate the influence of the endosymbiotic association of M. hominis with trichomonad cells on bacterial antibiotic susceptibility.

METHODS: We evaluated antibiotic resistance patterns in a group of M. hominis isolated from T. vaginalis clinical specimens as well as in M. hominis isolated from patients without trichomoniasis. Using an experimental model system, we compared the minimum inhibitory concentration (MIC) and lethal concentration (MLC) of tetracycline on M. hominis endosymbionts of T. vaginalis and extracellular bacteria.

RESULTS: The incidence rate of M. hominis strains resistant to C14 and C15 macrolide antibiotics was higher in intracellular strains associated with T. vaginalis compared with extracellular bacteria isolated from women not affected by trichomoniasis. However, sensitivity to tetracycline and quinolones was similar in both groups. In vitro experiments demonstrated that M. hominis strains, when isolated as endosymbionts from T. vaginalis, exhibited reduced sensitivity to tetracycline when cultured extracellularly for at least eight weeks.

CONCLUSION: The intracellular localization of bacteria within trichomonad cells may affect antibiotic susceptibility.}, } @article {pmid37813003, year = {2024}, author = {Oundo, JW and Kalayou, S and Bosch, QT and Villinger, J and Koenraadt, CJM and Masiga, D}, title = {Ticks (Acari: Ixodidae) infesting cattle in coastal Kenya harbor a diverse array of tick-borne pathogens.}, journal = {Ticks and tick-borne diseases}, volume = {15}, number = {1}, pages = {102266}, doi = {10.1016/j.ttbdis.2023.102266}, pmid = {37813003}, issn = {1877-9603}, mesh = {Animals ; Cattle ; *Ixodidae/microbiology ; Kenya/epidemiology ; *Tick Infestations/epidemiology/veterinary ; *Cattle Diseases/epidemiology/microbiology ; *Rickettsia ; *Rhipicephalus ; Amblyomma ; *Tick-Borne Diseases/epidemiology/veterinary/microbiology ; }, abstract = {Ticks and the microbes they transmit have emerged in sub-Saharan Africa as a major threat to veterinary and public health. Although progress has been made in detecting and identifying tick-borne pathogens (TBPs) across vast agroecologies of Kenya, comprehensive information on tick species infesting cattle and their associated pathogens in coastal Kenya needs to be updated and expanded. Ticks infesting extensively grazed zebu cattle in 14 villages were sampled and identified based on morphology and molecular methods and tested for the presence of bacterial and protozoan TBPs using PCR with high-resolution melting analysis and gene sequencing. In total, 3,213 adult ticks were collected and identified as Rhipicephalus appendiculatus (15.8%), R. evertsi (12.8%), R. microplus (11.3%), R. pulchellus (0.1%), Amblyomma gemma (24.1%), A. variegatum (35.1%), Hyalomma rufipes (0.6%), and H. albiparmatum (0.2%). Ticks were infected with Rickettsia africae, Ehrlichia ruminantium, E. minasensis, Theileria velifera and T. parva. Coxiella sp. endosymbionts were detected in the Rhipicephalus and Amblyomma ticks. Co-infections with two and three different pathogens were identified in 6.9% (n = 95/1382) and 0.1% (n = 2/1382) of single tick samples, respectively, with the most common co-infection being R. africae and E. ruminantium (7.2%, CI: 4.6 - 10.6). All samples were negative for Coxiella burnetii, Anaplasma spp. and Babesia spp. Our study provides an overview of tick and tick-borne microbial diversities in coastal Kenya.}, } @article {pmid37810228, year = {2023}, author = {Kwak, Y and Hansen, AK}, title = {Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis.}, journal = {iScience}, volume = {26}, number = {10}, pages = {107930}, pmid = {37810228}, issn = {2589-0042}, support = {S10 OD010786/OD/NIH HHS/United States ; }, abstract = {Psyllids, a group of insects that feed on plant sap, have a symbiotic relationship with an endosymbiont called Carsonella. Carsonella synthesizes essential amino acids and vitamins for its psyllid host, but lacks certain genes required for this process, suggesting a compensatory role of psyllid host genes. To investigate this, gene expression was compared between two psyllid species, Bactericera cockerelli and Diaphorina citri, in specialized cells where Carsonella resides (bacteriomes). Collaborative psyllid genes, including horizontally transferred genes, showed patterns of conserved gene expression; however, species-specific patterns were also observed, suggesting differences in the nutritional metabolism between psyllid species. Also, the recycling of nitrogen in bacteriomes may primarily rely on glutamate dehydrogenase (GDH). Additionally, lineage-specific gene clusters were differentially expressed in B. cockerelli and D. citri bacteriomes and are highlighted here. These findings shed light on potential host adaptations for the regulation of this symbiosis due to host, microbiome, and environmental differences.}, } @article {pmid37808301, year = {2023}, author = {Cui, X and Liu, Y and Zhang, J and Hu, P and Zheng, Z and Deng, X and Xu, M}, title = {Variation of endosymbiont and citrus tristeza virus (CTV) titers in the Huanglongbing insect vector, Diaphorina citri, on CTV-infected plants.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1236731}, pmid = {37808301}, issn = {1664-302X}, abstract = {"Candidatus Liberibacter asiaticus" (CLas) is a notorious agent that causes Citrus Huanglongbing (HLB), which is transmitted by Diaphorina citri (D. citri). We recently found that the acquisition and transmission of CLas by D. citri was facilitated by Citrus tristeza virus (CTV), a widely distributed virus in the field. In this study, we further studied whether different CTV strains manipulate the host preference of D. citri, and whether endosymbionts variation is related to CTV strains in D. citri. The results showed that the non-viruliferous D. citri preferred to select the shoots infected with CTV, without strain differences was observed in the selection. However, the viruliferous D. citri prefered to select the mixed strain that is similar to the field's. Furthermore, D. citri effectively acquired the CTV within 2-12 h depending on the strains of the virus. The persistence period of CTV in D. citri was longer than 24 days, without reduction of the CTV titers being observed. These results provide a foundation for understanding the transmission mode of D. citri on CTV. During the process of CTV acquisition and persistence, the titers of main endosymbionts in D. citri showed similar variation trend, but their relative titers were different at different time points. The titers of the "Candidatus Profftella armatura" and CTV tended to be positively correlated, and the titers of Wolbachia and "Candidatus Carsonella ruddii" were mostly negatively related with titers of CT31. These results showed the relationship among D. citri, endosymbionts, and CTV and provided useful information for further research on the interactions between D. citri and CLas, which may benefit the development of approaches for the prevention of CLas transmission and control of citrus HLB.}, } @article {pmid37808105, year = {2023}, author = {Pikula, J and Piacek, V and Bandouchova, H and Bartlova, M and Bednarikova, S and Burianova, R and Danek, O and Jedlicka, P and Masova, S and Nemcova, M and Seidlova, V and Zukalova, K and Zukal, J}, title = {Case report: Filarial infection of a parti-coloured bat: Litomosa sp. adult worms in abdominal cavity and microfilariae in bat semen.}, journal = {Frontiers in veterinary science}, volume = {10}, number = {}, pages = {1284025}, pmid = {37808105}, issn = {2297-1769}, abstract = {BACKGROUND: Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure.

METHODS: For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus).

RESULTS: The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 10[6]/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia.

CONCLUSION: While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.}, } @article {pmid37794084, year = {2023}, author = {Hettiarachchi, A and Cnockaert, M and Joossens, M and Gekière, A and Meeus, I and Vereecken, NJ and Michez, D and Smagghe, G and Vandamme, P}, title = {The wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta microbiota are host specific and dominated by endosymbionts and environmental microorganisms.}, journal = {Microbial ecology}, volume = {86}, number = {4}, pages = {3013-3026}, pmid = {37794084}, issn = {1432-184X}, mesh = {Bees ; Animals ; RNA, Ribosomal, 16S/genetics ; *Microbiota ; *Mycobiome ; Bacteria ; *Spiroplasma ; }, abstract = {We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.}, } @article {pmid37778576, year = {2023}, author = {Datki, Z and Darula, Z and Vedelek, V and Hunyadi-Gulyas, E and Dingmann, BJ and Vedelek, B and Kalman, J and Urban, P and Gyenesei, A and Galik-Olah, Z and Galik, B and Sinka, R}, title = {Biofilm formation initiating rotifer-specific biopolymer and its predicted components.}, journal = {International journal of biological macromolecules}, volume = {253}, number = {Pt 5}, pages = {127157}, doi = {10.1016/j.ijbiomac.2023.127157}, pmid = {37778576}, issn = {1879-0003}, mesh = {Animals ; Female ; Male ; *Central Nervous System ; *Vertebrates ; Base Sequence ; }, abstract = {The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca[2+]- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.}, } @article {pmid37768955, year = {2023}, author = {Chebbah, D and Hamarsheh, O and Sereno, D and Elissa, N and Brun, S and Jan, J and Izri, A and Akhoundi, M}, title = {Molecular characterization and genetic diversity of Wolbachia endosymbionts in bed bugs (Hemiptera; Cimicidae) collected in Paris.}, journal = {PloS one}, volume = {18}, number = {9}, pages = {e0292229}, pmid = {37768955}, issn = {1932-6203}, mesh = {Animals ; *Bedbugs/genetics ; *Wolbachia/genetics ; Phylogeny ; Polymerase Chain Reaction ; Nymph ; Genetic Variation ; }, abstract = {PURPOSE: This study aimed to investigate the genetic diversity of Wolbachia in field-caught bed bug species in Paris areas.

METHODS: The bed bug specimens were captured from various infested localities in Paris and surrounding cities. They belonged to diverse life stages, including egg, nymph, and adult. They were then identified using morphological and molecular approaches. Furthermore, Wolbachia was detected, and its genetic diversity was investigated by conventional PCR of 16S-rRNA and Wolbachia surface protein (wsp) genes.

RESULTS: A total of 256 bed bug specimens belonging to various life stages [adult (183 specimens), nymph (48), and egg (25)] were captured from seven private apartments, five social apartments, three houses, two immigrant residences, and one retirement home situated in 10 districts of Paris and 8 surrounding cities. They were identified as Cimex lectularius (237 specimens) and C. hemipterus (19) using morphological and molecular approaches. The presence and diversity of Wolbachia were ascertained by targeting 16S-rRNA and wsp genes. Based on molecular analysis, 182 and 148 out of 256 processed specimens were positive by amplifying 16S-rRNA and wsp fragments, respectively. The inferred phylogenetic analysis with 16S-rRNA and wsp sequences displayed monophyletic Wolbachia strains clustering each one in three populations. The median-joining network, including the Wolbachia 16S-rRNA and wsp sequences of C. lectularius and C. hemipterous specimens, indicated a significant genetic differentiation among these populations in Paris areas which was consent with Neighbor-Joining analyses. A phylogenetic analysis of our heterogenic Wolbachia sequences with those reported from other arthropod species confirmed their belonging to supergroup F. Moreover, no difference between Wolbachia sequences from eggs, nymphs, and adults belonging to the same clade and between Wolbachia sequences of C. lectularius and C. hemipterus were observed after sequence alignment. Furthermore, no significant correlation was found between multiple geographical locations (or accomodation type) where bed bugs were collected and the genetic diversity of Wolbachia.

CONCLUSIONS: We highlight a significant heterogeneity within Wolbachia symbionts detected in C. lectularius and C. hemipterus. No correlation between Wolbachia species and bed bug species (C. lectularius versus C. hemipterus), physiological stages (egg, nymph, and adult), and sampling location was recorded in this study.}, } @article {pmid37768069, year = {2023}, author = {Dittmer, J and Corretto, E and Štarhová Serbina, L and Michalik, A and Nováková, E and Schuler, H}, title = {Division of labor within psyllids: metagenomics reveals an ancient dual endosymbiosis with metabolic complementarity in the genus Cacopsylla.}, journal = {mSystems}, volume = {8}, number = {5}, pages = {e0057823}, pmid = {37768069}, issn = {2379-5077}, support = {I 4639-B//Province Bolzano, Austrian Science Fund FWF/ ; 2017/26/D/NZ8/00799//Polish National Science Center/ ; }, mesh = {Animals ; *Hemiptera/genetics ; Symbiosis/genetics ; Phylogeny ; Bacteria ; Enterobacteriaceae/genetics ; }, abstract = {Heritable beneficial bacterial endosymbionts have been crucial for the evolutionary success of numerous insects by enabling the exploitation of nutritionally limited food sources. Herein, we describe a previously unknown dual endosymbiosis in the psyllid genus Cacopsylla, consisting of the primary endosymbiont "Candidatus Carsonella ruddii" and a co-occurring Enterobacteriaceae bacterium for which we propose the name "Candidatus Psyllophila symbiotica." Its localization within the bacteriome and its small genome size confirm that Psyllophila is a co-primary endosymbiont widespread within the genus Cacopsylla. Despite its highly eroded genome, Psyllophila perfectly complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring Carsonella. Moreover, the genome of Psyllophila is almost as small as Carsonella's, suggesting an ancient dual endosymbiosis that has now reached a precarious stage where any additional gene loss would make the system collapse. Hence, our results shed light on the dynamic interactions of psyllids and their endosymbionts over evolutionary time.}, } @article {pmid37764903, year = {2023}, author = {Yüksel, E and Yıldırım, A and İmren, M and Canhilal, R and Dababat, AA}, title = {Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, pmid = {37764903}, issn = {2076-0817}, abstract = {Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 10[7] cells mL[-1]) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.}, } @article {pmid37764891, year = {2023}, author = {Margarita, V and Congiargiu, A and Diaz, N and Fiori, PL and Rappelli, P}, title = {Mycoplasma hominis and Candidatus Mycoplasma girerdii in Trichomonas vaginalis: Peaceful Cohabitants or Contentious Roommates?.}, journal = {Pathogens (Basel, Switzerland)}, volume = {12}, number = {9}, pages = {}, pmid = {37764891}, issn = {2076-0817}, support = {2017SFBFER_004//Ministero dell'Istruzione, dell' Università e della Ricerca/ ; }, abstract = {Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.}, } @article {pmid37764139, year = {2023}, author = {Santana, MCO and Chourabi, K and Cantanhêde, LM and Cupolillo, E}, title = {Exploring Host-Specificity: Untangling the Relationship between Leishmania (Viannia) Species and Its Endosymbiont Leishmania RNA Virus 1.}, journal = {Microorganisms}, volume = {11}, number = {9}, pages = {}, pmid = {37764139}, issn = {2076-2607}, support = {001//National Council for Scientific and Technological Development/ ; 302622/2017-9//Coordenação de Aperfeicoamento de Pessoal de Nível Superior/ ; (E26-202.569/2019), (E26-210.038/2020), (E-26/205.730/2022 and 205.731/2022)//Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro/ ; Edital 16/2014//Fundação de Amparo ao Desenvolvimento das Ações Científicas e Tecnológicas e à Pesquisa-FAPERO/ ; }, abstract = {A relevant aspect in the epidemiology of Tegumentary Leishmaniasis (TL) are the Leishmania parasites carrying a viral endosymbiont, Leishmania RNA Virus 1 (LRV1), a dsRNA virus. Leishmania parasites carrying LRV1 are prone to causing more severe TL symptoms, increasing the likelihood of unfavorable clinical outcomes. LRV1 has been observed in the cultured strains of five L. (Viannia) species, and host specificity was suggested when studying the LRV1 from L. braziliensis and L. guyanensis strains. The coevolution hypothesis of LRV1 and Leishmania was based on phylogenetic analyses, implying an association between LRV1 genotypes, Leishmania species, and their geographic origins. This study aimed to investigate LRV1 specificity relative to Leishmania (Viannia) species hosts by analyzing LRV1 from L. (Viannia) species. To this end, LRV1 was screened in L. (Viannia) species other than L. braziliensis or L. guyanensis, and it was detected in 11 out of 15 L. naiffi and two out of four L. shawi. Phylogenetic analyses based on partial LRV1 genomic sequencing supported the hypothesis of host specificity, as LRV1 clustered according to their respective Leishmania species' hosts. These findings underscore the importance of investigating Leishmania and LRV1 coevolution and its impact on Leishmania (Viannia) species dispersion and pathogenesis in the American Continent.}, } @article {pmid37758795, year = {2023}, author = {Garcia Guizzo, M and Meneses, C and Amado Cecilio, P and Hessab Alvarenga, P and Sonenshine, D and Ribeiro, JM}, title = {Optimizing tick artificial membrane feeding for Ixodes scapularis.}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {16170}, pmid = {37758795}, issn = {2045-2322}, support = {R21 AI115203/AI/NIAID NIH HHS/United States ; Z01 AI000810/ImNIH/Intramural NIH HHS/United States ; }, mesh = {Humans ; Female ; Animals ; Mice ; *Ixodes/microbiology ; Membranes, Artificial ; Nutritional Support ; Gentamicins ; Adenosine Triphosphate ; }, abstract = {Artificial membrane feeding (AMF) is a powerful and versatile technique with a wide range of applications in the study of disease vectors species. Since its first description, AMF has been under constant optimization and standardization for different tick species and life stages. In the USA, Ixodes scapularis is the main vector of tick-borne zoonoses including the pathogens causing Lyme disease in humans and animals. Seeking to improve the overall fitness of I. scapularis adult females fed artificially, here, we have optimized the AMF technique, considerably enhancing attachment rate, engorgement success, egg laying, and egg hatching compared to those described in previous studies. Parameters such as the membrane thickness and the light/dark cycle to which the ticks were exposed were refined to more closely reflect the tick's natural behavior and life cycle. Additionally, ticks were fed on blood only, blood + ATP or blood + ATP + gentamicin. The artificial feeding of ticks on blood only was successful and generated a progeny capable of feeding naturally on a host, i.e., mice. Adding ATP as a feeding stimulant did not improve tick attachment or engorgement. Notably, the administration of gentamicin, an antibiotic commonly used in tick AMF to prevent microbial contamination, negatively impacted Rickettsia buchneri endosymbiont levels in the progeny of artificially fed ticks. In addition, gentamicin-fed ticks showed a reduction in oviposition success compared to ticks artificially fed on blood only, discouraging the use of antibiotics in AMF. Overall, our data suggest that the AMF of adult females on blood only, in association with the natural feeding of their progeny on mice, might be used as an integrated approach in tick rearing, eliminating the use of protected species under the Animal Welfare Act (AWA). Of note, although optimized for I. scapularis adult ticks, I. scapularis nymphs, other tick species, and sand flies could also be fed using the membrane described in this study, indicating that it might be a suitable alternative for the artificial feeding of a variety of hematophagous species.}, } @article {pmid37754731, year = {2023}, author = {Heidari Latibari, M and Moravvej, G and Rakhshani, E and Karimi, J and Arias-Penna, DC and Butcher, BA}, title = {Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids.}, journal = {Insects}, volume = {14}, number = {9}, pages = {}, pmid = {37754731}, issn = {2075-4450}, support = {No. 3/48846//Ph.D. project, the Ferdowsi University of Mashhad, Iran/ ; IR-UOZ-GR-3949//University of Zabol/ ; N42A650262//National Research Council of Thailand (NRCT) and Chulalongkorn University/ ; }, abstract = {It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids.}, } @article {pmid37752965, year = {2023}, author = {Scharfenstein, HJ and Alvarez-Roa, C and Peplow, LM and Buerger, P and Chan, WY and van Oppen, MJH}, title = {Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs.}, journal = {Evolutionary applications}, volume = {16}, number = {9}, pages = {1549-1567}, pmid = {37752965}, issn = {1752-4571}, abstract = {Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.}, } @article {pmid37752841, year = {2023}, author = {Lyndby, NH and Murthy, S and Bessette, S and Jakobsen, SL and Meibom, A and Kühl, M}, title = {Non-invasive investigation of the morphology and optical properties of the upside-down jellyfish Cassiopea with optical coherence tomography.}, journal = {Proceedings. Biological sciences}, volume = {290}, number = {2007}, pages = {20230127}, pmid = {37752841}, issn = {1471-2954}, mesh = {Animals ; Tomography, Optical Coherence ; *Scyphozoa ; *Cnidaria ; Light ; Carbon ; }, abstract = {The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm[-1], and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm[-1], and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.}, } @article {pmid37751380, year = {2024}, author = {Ward, PS and Cash, EI and Ferger, K and Escalona, M and Sahasrabudhe, R and Miller, C and Toffelmier, E and Fairbairn, C and Seligmann, W and Shaffer, HB and Tsutsui, ND}, title = {Reference genome of the bicolored carpenter ant, Camponotus vicinus.}, journal = {The Journal of heredity}, volume = {115}, number = {1}, pages = {120-129}, pmid = {37751380}, issn = {1465-7333}, support = {S10 OD010786/OD/NIH HHS/United States ; S10 OD018174/OD/NIH HHS/United States ; }, mesh = {Animals ; *Ecosystem ; Symbiosis ; *Ants/genetics ; Phylogeny ; }, abstract = {Carpenter ants in the genus Camponotus are large, conspicuous ants that are abundant and ecologically influential in many terrestrial ecosystems. The bicolored carpenter ant, Camponotus vicinus Mayr, is distributed across a wide range of elevations and latitudes in western North America, where it is a prominent scavenger and predator. Here, we present a high-quality genome assembly of C. vicinus from a sample collected in Sonoma County, California, near the type locality of the species. This genome assembly consists of 38 scaffolds spanning 302.74 Mb, with contig N50 of 15.9 Mb, scaffold N50 of 19.9 Mb, and BUSCO completeness of 99.2%. This genome sequence will be a valuable resource for exploring the evolutionary ecology of C. vicinus and carpenter ants generally. It also provides an important tool for clarifying cryptic diversity within the C. vicinus species complex, a genetically diverse set of populations, some of which are quite localized and of conservation interest.}, } @article {pmid37749181, year = {2023}, author = {Štarhová Serbina, L and Corretto, E and Enciso Garcia, JS and Berta, M and Giovanelli, T and Dittmer, J and Schuler, H}, title = {Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea).}, journal = {Scientific reports}, volume = {13}, number = {1}, pages = {16038}, pmid = {37749181}, issn = {2045-2322}, mesh = {Humans ; Male ; Animals ; *Pyrus ; Seasons ; *Hemiptera/microbiology ; Symbiosis ; Bacteria ; }, abstract = {Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.}, } @article {pmid37748072, year = {2023}, author = {Maegele, I and Rupp, S and Özbek, S and Guse, A and Hambleton, EA and Holstein, TW}, title = {A predatory gastrula leads to symbiosis-independent settlement in Aiptasia.}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {120}, number = {40}, pages = {e2311872120}, pmid = {37748072}, issn = {1091-6490}, mesh = {Animals ; *Sea Anemones ; Symbiosis ; Gastrula ; *Anthozoa ; *Asteraceae ; *Dinoflagellida ; Larva ; }, abstract = {The planula larvae of the sea anemone Aiptasia have so far not been reported to complete their life cycle by undergoing metamorphosis into adult forms. This has been a major obstacle in their use as a model for coral-dinoflagellate endosymbiosis. Here, we show that Aiptasia larvae actively feed on crustacean nauplii, displaying a preference for live prey. This feeding behavior relies on functional stinging cells, indicative of complex neuronal control. Regular feeding leads to significant size increase, morphological changes, and efficient settlement around 14 d postfertilization. Surprisingly, the presence of dinoflagellate endosymbionts does not affect larval growth or settlement dynamics but is crucial for sexual reproduction. Our findings finally close Aiptasia's life cycle and highlight the functional nature of its larvae, as in Haeckel's Gastrea postulate, yet reveal its active carnivory, thus contributing to our understanding of early metazoan evolution.}, } @article {pmid37744901, year = {2023}, author = {Zhao, C and Wang, L and Zhang, K and Zhu, X and Li, D and Ji, J and Luo, J and Cui, J}, title = {Variation of Helicoverpa armigera symbionts across developmental stages and geographic locations.}, journal = {Frontiers in microbiology}, volume = {14}, number = {}, pages = {1251627}, pmid = {37744901}, issn = {1664-302X}, abstract = {Cotton bollworm (Helicoverpa armigera) poses a global problem, causing substantial economic and ecological losses. Endosymbionts in insects play crucial roles in multiple insect biological processes. However, the interactions between H. armigera and its symbionts have not been well characterized to date. We investigated the symbionts of H. armigera in the whole life cycle from different geographical locations. In the whole life cycle of H. armigera, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level, while Enterococcus, Enterobacter, Glutamicibacter, and Bacillus were the four dominant bacteria at the genus level. Furthermore, high similarity in symbiotic bacterial community was observed in different stages of H. armigera, which were dominated by Enterococcus and Enterobacter. In fields, the dominant bacteria were Proteobacteria and Bacteroidetes, whereas, in the laboratory, the dominant bacteria were Proteobacteria. At the genus level, the dominant bacteria in cotton bollworm eggs of wild populations were Enterobacter, Morganella, Lactococcus, Asaia, Apibacter, and Enterococcus, and the subdominant bacteria were Bartonella, Pseudomonas, and Orbus. Moreover, the symbionts varied with geographical locations, and the closer the geographical distance, the more similar the microbial composition. Taken together, our study identifies and compares the symbiont variation along with geographical gradients and host development dynamic and reveals the high flexibility of microbiome communities in H. armigera, which probably benefits for the successful survival in a complicated changing environment.}, } @article {pmid37740026, year = {2023}, author = {Kumar, V and Nautiyal, CS}, title = {Endophytes Modulate Plant Genes: Present Status and Future Perspectives.}, journal = {Current microbiology}, volume = {80}, number = {11}, pages = {353}, pmid = {37740026}, issn = {1432-0991}, mesh = {*Genes, Plant ; Endophytes/genetics ; Genomics ; *Microbiota ; Plant Development ; }, abstract = {Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.}, } @article {pmid37725257, year = {2023}, author = {Wagner, T and Bangoura, B and Wiedmer, S and Daugschies, A and Dunay, IR}, title = {Phytohormones regulate asexual Toxoplasma gondii replication.}, journal = {Parasitology research}, volume = {122}, number = {12}, pages = {2835-2846}, pmid = {37725257}, issn = {1432-1955}, mesh = {Humans ; *Toxoplasma ; Plant Growth Regulators/pharmacology ; *Toxoplasmosis/parasitology ; Abscisic Acid/pharmacology ; DNA ; }, abstract = {The protozoan Toxoplasma gondii (T. gondii) is a zoonotic disease agent causing systemic infection in warm-blooded intermediate hosts including humans. During the acute infection, the parasite infects host cells and multiplies intracellularly in the asexual tachyzoite stage. In this stage of the life cycle, invasion, multiplication, and egress are the most critical events in parasite replication. T. gondii features diverse cell organelles to support these processes, including the apicoplast, an endosymbiont-derived vestigial plastid originating from an alga ancestor. Previous studies have highlighted that phytohormones can modify the calcium-mediated secretion, e.g., of adhesins involved in parasite movement and cell invasion processes. The present study aimed to elucidate the influence of different plant hormones on the replication of asexual tachyzoites in a human foreskin fibroblast (HFF) host cell culture. T. gondii replication was measured by the determination of T. gondii DNA copies via qPCR. Three selected phytohormones, namely abscisic acid (ABA), gibberellic acid (GIBB), and kinetin (KIN) as representatives of different plant hormone groups were tested. Moreover, the influence of typical cell culture media components on the phytohormone effects was assessed. Our results indicate that ABA is able to induce a significant increase of T. gondii DNA copies in a typical supplemented cell culture medium when applied in concentrations of 20 ng/μl or 2 ng/μl, respectively. In contrast, depending on the culture medium composition, GIBB may potentially serve as T. gondii growth inhibitor and may be further investigated as a potential treatment for toxoplasmosis.}, } @article {pmid37723238, year = {2023}, author = {Longley, R and Robinson, A and Liber, JA and Bryson, AE and Morales, DP and LaButti, K and Riley, R and Mondo, SJ and Kuo, A and Yoshinaga, Y and Daum, C and Barry, K and Grigoriev, IV and Desirò, A and Chain, PSG and Bonito, G}, title = {Comparative genomics of Mollicutes-related endobacteria supports a late invasion into Mucoromycota fungi.}, journal = {Communications biology}, volume = {6}, number = {1}, pages = {948}, pmid = {37723238}, issn = {2399-3642}, mesh = {*Tenericutes ; Phylogeny ; Genomics ; *Mycorrhizae/genetics ; Genome Size ; }, abstract = {Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.}, } @article {pmid37722758, year = {2023}, author = {Kolo, AO and Raghavan, R}, title = {Impact of endosymbionts on tick physiology and fitness.}, journal = {Parasitology}, volume = {150}, number = {10}, pages = {859-865}, pmid = {37722758}, issn = {1469-8161}, mesh = {Animals ; *Ticks ; *Rickettsia/genetics ; *Francisella/genetics ; Arachnid Vectors ; Symbiosis ; }, abstract = {Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts’ contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.}, } @article {pmid37719127, year = {2023}, author = {Castañeda-Molina, Y and Marulanda-Moreno, SM and Saldamando-Benjumea, C and Junca, H and Moreno-Herrera, CX and Cadavid-Restrepo, G}, title = {Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins.}, journal = {PeerJ}, volume = {11}, number = {}, pages = {e15916}, pmid = {37719127}, issn = {2167-8359}, mesh = {Animals ; Spodoptera ; Larva ; *Bacillus thuringiensis/genetics ; Endotoxins ; RNA, Ribosomal, 16S/genetics ; *Microbiota/genetics ; Anti-Bacterial Agents ; }, abstract = {BACKGROUND: Spodoptera frugiperda (or fall armyworm, FAW) is a polyphagous pest native to Western Hemisphere and recently discovered in the Eastern Hemisphere. In Colombia, S. frugiperda is recognized as a pest of economic importance in corn. The species has genetically differentiated into two host populations named "corn" and "rice" strains. In 2012, a study made in central Colombia demonstrated that the corn strain is less susceptible to Bacillus thuringiensis (Bt) endotoxins (Cry1Ac and Cry 1Ab) than the rice strain. In this country, Bt transgenic corn has been extensively produced over the last 15 years. Since gut microbiota plays a role in the physiology and immunity of insects, and has been implicated in promoting the insecticidal activity of Bt, in this study an analysis of the interaction between Bt endotoxins and FAW gut microbiota was made. Also, the detection of endosymbionts was performed here, as they might have important implications in the biological control of a pest.

METHODS: The composition and diversity of microbiomes associated with larval specimens of S. frugiperda(corn strain) was investigated in a bioassay based on six treatments in the presence/absence of Bt toxins and antibiotics (Ab) through bacterial isolate analyses and by high throughput sequencing of the bacterial 16S rRNA gene. Additionally, species specific primers were used, to detect endosymbionts from gonads in S. frugiperda corn strain.

RESULTS: Firmicutes, Proteobacteria and Bacteroidota were the most dominant bacterial phyla found in S. frugiperda corn strain. No significant differences in bacteria species diversity and richness among the six treatments were found. Two species of Enterococcus spp., E. mundtii and E. casseliflavus were detected in treatments with Bt and antibiotics, suggesting that they are less susceptible to both of them. Additionally, the endosymbiont Arsenophonus was also identified on treatments in presence of Bt and antibiotics. The results obtained here are important since little knowledge exists about the gut microbiota on this pest and its interaction with Bt endotoxins. Previous studies made in Lepidoptera suggest that alteration of gut microbiota can be used to improve the management of pest populations, demonstrating the relevance of the results obtained in this work.}, } @article {pmid37716961, year = {2023}, author = {Mfopit, YM and Engel, JS and Chechet, GD and Ibrahim, MAM and Signaboubo, D and Achukwi, DM and Mamman, M and Balogun, EO and Shuaibu, MN and Kabir, J and Kelm, S}, title = {Molecular detection of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts in wild population of tsetse flies collected in Cameroon, Chad and Nigeria.}, journal = {BMC microbiology}, volume = {23}, number = {1}, pages = {260}, pmid = {37716961}, issn = {1471-2180}, mesh = {Animals ; *Tsetse Flies ; *Wolbachia/genetics ; Cameroon ; Chad ; Nigeria ; *Glossinidae ; *Trypanosomiasis, African ; *Spiroplasma/genetics ; }, abstract = {BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria.

RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively.

CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.}, } @article {pmid37716699, year = {2023}, author = {Amses, K and Desiró, A and Bryson, A and Grigoriev, I and Mondo, S and Lipzen, A and LaButti, K and Riley, R and Singan, V and Salazar-Hamm, P and King, J and Ballou, E and Pawlowska, T and Adeleke, R and Bonito, G and Uehling, J}, title = {Convergent reductive evolution and host adaptation in Mycoavidus bacterial endosymbionts of Mortierellaceae fungi.}, journal = {Fungal genetics and biology : FG & B}, volume = {169}, number = {}, pages = {103838}, doi = {10.1016/j.fgb.2023.103838}, pmid = {37716699}, issn = {1096-0937}, mesh = {Phylogeny ; *Host Adaptation ; *Burkholderiaceae/genetics ; Fungi/genetics ; Bacteria ; Symbiosis/genetics ; }, abstract = {Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.}, } @article {pmid37716131, year = {2023}, author = {Bharathi, MD and Muthukumar, C and Sathishkumar, RS and Ramu, K and Murthy, MVR}, title = {First report on the occurrence of Gonyaulax polygramma bloom during the onset of Noctiluca scintillans bloom along the Tuticorin coast, southeast coast of India.}, journal = {Marine pollution bulletin}, volume = {195}, number = {}, pages = {115523}, doi = {10.1016/j.marpolbul.2023.115523}, pmid = {37716131}, issn = {1879-3363}, abstract = {Dense and green-coloured patches were encountered on the sea surface waters of the Tuticorin coast on 22[nd] October 2022. Microscopic investigation revealed that the discoloration is caused by plankton, green Noctiluca scintillans. In order to find out the causes that trigger the bloom of N. scintillans, plankton samples were collected for 5 days in fourteen days duration from 22[nd] October to 4[th] November. During the peak bloom period, the abundance and biovolume of N. scintillans reached 1.56 × 10[4] cells/L and 21.8 × 10[10]μm[3]/L, respectively. The highest concentration (73.65 mg/m[3]) of chlorophyll-a was recorded during blooming period that was caused by Gonyaulax polygramma and endosymbiont, Pedinomonas noctilucae in N. scintillans. Formation of G. polygramma bloom is being reported for the first time in Tuticorin, southeast coast of India, with a species abundance of 36.9 × 10[4] cells/L. Present study concluded that besides the optimum hydrological conditions and eutrophic nature of the system, abundant prey (G. polygramma) facilitated the N. scintillans bloom.}, } @article {pmid37715236, year = {2023}, author = {ElKraly, OA and Awad, M and El-Saadany, HM and Hassanein, SE and Elrahman, TA and Elnagdy, SM}, title = {Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation.}, journal = {Animal microbiome}, volume = {5}, number = {1}, pages = {44}, pmid = {37715236}, issn = {2524-4671}, abstract = {Endosymbionts are known to have significant effects on their insect hosts, including nutrition, reproduction, and immunity. Insects gut microbiota is a critical component that affects their physiological and behavioral characteristics. The black cutworm (BCW), Agrotis ipsilon, is an economically important lepidopteran pest that has a diverse gut microbiome composed of nine species belonging to three phyla: Proteobacteria, Actinobacteria, and Firmicutes. This study was conducted to investigate the diversity of gut bacteria isolated from BCW larvae and moths and their effects on metabolism and pesticide degradation. The bacterial isolates were identified using the 16 S rRNA gene. The study showed that the gut microbiome composition significantly affected the metabolism of BCW larvae. Based on the screening results of synthesis of digestive enzymes and pesticide degradation, Brachybacterium conglomeratum and Glutamicibacter sp were selected to perform the remaining experiments as single isolates and consortium. The consortium-fed larvae showed high metabolic indices compared to antibiotic-fed larvae and the control. The gut bacteria were also shown to degrade three pesticide groups. Concerns regarding the health risk of chlorpyrifos have been raised due to its extensive use in agriculture. The isolated B. conglomeratum was more effective in chlorpyrifos degradation than the consortium. Furthermore, the study also examined the presence of sex related endosymbionts (Wolbachia, Spiroplasma, and Rickettsia) in the reproductive tissues of adults. The outcomes demonstrated that none of the examined endosymbionts existed. In conclusion, the study highlights the importance of the gut microbiome in insect physiology and behavior and its potential applications in biotechnology. It provides insights into developing eco-friendly pest control and bioremediation strategies using gut bacteria.}, } @article {pmid37715090, year = {2023}, author = {Nuschke, A and Sobey-Skelton, C and Dawod, B and Kelly, B and Tremblay, ML and Davis, C and Rioux, JA and Brewer, K}, title = {Use of Magnetotactic Bacteria as an MRI Contrast Agent for In Vivo Tracking of Adoptively Transferred Immune Cells.}, journal = {Molecular imaging and biology}, volume = {25}, number = {5}, pages = {844-856}, pmid = {37715090}, issn = {1860-2002}, support = {Discovery Grant//Natural Science and Engineering Council (NSERC)/ ; Project Grant//IWK Health Centre/ ; }, abstract = {PURPOSE: In vivo immune cell tracking using MRI can be a valuable tool for studying the mechanisms underlying successful cancer therapies. Current cell labeling methods using superparamagnetic iron oxide (SPIO) lack the persistence to track the fate and location of transplanted cells long-term. Magnetospirillum magneticum is a commercially available, iron-producing bacterium that can be taken up by and live harmoniously within mammalian cells as magneto-endosymbionts (MEs). MEs have shown promise as labeling agents for in vivo stem and cancer cell tracking but have yet to be evaluated in immune cells. This pilot study examined ME labeling in myeloid-derived suppressor cells (MDSCs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) and its effects on cell purity, function, and MRI contrast.

PROCEDURES: MDSCs, CTLs, and DCs were incubated with MEs at various ME labeling ratios (MLR), and various biological metrics and iron uptake were assessed. For in vivo imaging, MDSCs were labeled overnight with either MEs or SPIO (Molday ION Rhodamine B) and injected into C3 tumor-bearing mice via tail vein injection 24 days post-implant and scanned daily with MRI for 1 week to assess cellular quantification.

RESULTS: Following incubations, MDSCs contained > 0.6 pg Fe/cell. CTLs achieved Fe loading of < 0.5 pg/cell, and DCs achieved Fe loading of ~ 1.4 pg/cell. The suppressive functionality of MDSCs at 1000 MLR was not affected by ME labeling but was affected at 2000 MLR. Markers of CTL dysfunction were not markedly affected by ME labeling nor were DC markers. In vivo data demonstrated that the MDSCs labeled with MEs generated sufficient contrast to be detectable using TurboSPI, similar to SPIO-labeled cells.

CONCLUSIONS: Cells can be labeled with sufficient numbers of MEs to be detectable with MRI without compromising cell viability. Care must be taken at higher concentrations of MEs, which may affect some cell types' functional activity and/or morphology. Immune cells with minimal phagocytic behavior have much lower iron content per cell after incubation with MEs vs SPIO; however, MEs can successfully be used as a contrast agent for phagocytic immune cells.}, } @article {pmid37702423, year = {2023}, author = {Sakamoto, W and Takami, T}, title = {Plastid inheritance revisited: emerging role of organelle DNA degradation in angiosperms.}, journal = {Plant & cell physiology}, volume = {}, number = {}, pages = {}, doi = {10.1093/pcp/pcad104}, pmid = {37702423}, issn = {1471-9053}, support = {21H02508 21K06230 23H04959//Japan Society for the Promotion of Science/ ; }, abstract = {Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (~10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance and focuses on the mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DPD1 influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.}, } @article {pmid37695720, year = {2023}, author = {Kryukova, NA and Kryukov, VY and Polenogova, OV and Chertkova, ЕА and Tyurin, MV and Rotskaya, UN and Alikina, T and Kabilov, МR and Glupov, VV}, title = {The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae).}, journal = {Archives of insect biochemistry and physiology}, volume = {114}, number = {4}, pages = {e22053}, doi = {10.1002/arch.22053}, pmid = {37695720}, issn = {1520-6327}, support = {//Federal Fundamental Scientific Research Program/ ; //Russian Science Foundation/ ; 23-24-00259//The Russian Science Foundation/ ; 1021051703454-5-1.6.12//The Federal Fundamental Scientific Research Program/ ; }, mesh = {Animals ; Larva/metabolism ; *Hymenoptera ; *Wasps/metabolism ; *Wolbachia ; Rickettsiales ; *Moths/metabolism ; }, abstract = {Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia[+] larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia[-] line. Analyses of larval homogenates revealed that Wolbachia[+] larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia[-] larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.}, } @article {pmid37690114, year = {2023}, author = {Manzano-Marín, A and Kvist, S and Oceguera-Figueroa, A}, title = {Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin.}, journal = {Genome biology and evolution}, volume = {15}, number = {9}, pages = {}, pmid = {37690114}, issn = {1759-6653}, mesh = {Animals ; *Providencia/genetics ; Phylogeny ; *Leeches/genetics ; Bacteria/genetics ; Insecta/genetics ; Vitamins ; Genetic Code ; Symbiosis/genetics ; }, abstract = {Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.}, } @article {pmid37686049, year = {2023}, author = {Zhang, Z and Zhang, J and Chen, Q and He, J and Li, X and Wang, Y and Lu, Y}, title = {Complete De Novo Assembly of Wolbachia Endosymbiont of Frankliniella intonsa.}, journal = {International journal of molecular sciences}, volume = {24}, number = {17}, pages = {}, pmid = {37686049}, issn = {1422-0067}, support = {31672031, 32272537//National Natural Science Foundation of China/ ; 2021C02003//Key Research and Development Program of Zhejiang Province, China/ ; 2022YFD1401204, 2022YFC2601405//Key R&D Program of China/ ; }, mesh = {Animals ; *Thysanoptera ; *Wolbachia/genetics ; Flowers ; *Nanopores ; Prophages ; RNA, Ribosomal ; }, abstract = {As an endosymbiont, Wolbachia exerts significant effects on the host, including on reproduction, immunity, and metabolism. However, the study of Wolbachia in Thysanopteran insects, such as flower thrips Frankliniella intonsa, remains limited. Here, we assembled a gap-free looped genome assembly of Wolbachia strain wFI in a length of 1,463,884 bp (GC content 33.80%), using Nanopore long reads and Illumina short reads. The annotation of wFI identified a total of 1838 protein-coding genes (including 85 pseudogenes), 3 ribosomal RNAs (rRNAs), 35 transfer RNAs (tRNAs), and 1 transfer-messenger RNA (tmRNA). Beyond this basic description, we identified mobile genetic elements, such as prophage and insertion sequences (ISs), which make up 17% of the entire wFI genome, as well as genes involved in riboflavin and biotin synthesis and metabolism. This research lays the foundation for understanding the nutritional mutualism between Wolbachia and flower thrips. It also serves as a valuable resource for future studies delving into the intricate interactions between Wolbachia and its host.}, } @article {pmid37673069, year = {2023}, author = {Harumoto, T}, title = {Self-stabilization mechanism encoded by a bacterial toxin facilitates reproductive parasitism.}, journal = {Current biology : CB}, volume = {33}, number = {18}, pages = {4021-4029.e6}, doi = {10.1016/j.cub.2023.08.032}, pmid = {37673069}, issn = {1879-0445}, abstract = {A wide variety of maternally transmitted endosymbionts in insects are associated with reproductive parasitism, whereby they interfere with host reproduction to increase the ratio of infected females and spread within populations.[1][,][2] Recent successes in identifying bacterial factors responsible for reproductive parasitism[3][,][4][,][5][,][6][,][7] as well as further omics approaches[8][,][9][,][10][,][11][,][12] have highlighted the common appearance of deubiquitinase domains, although their biological roles-in particular, how they link to distinct manipulative phenotypes-remain poorly defined. Spiroplasma poulsonii is a helical and motile bacterial endosymbiont of Drosophila,[13][,][14] which selectively kills male progeny with a male-killing toxin Spaid (S. poulsonii androcidin), which encodes an ovarian tumor (OTU) deubiquitinase domain.[6] Artificial expression of Spaid in flies reproduces male-killing-associated pathologies that include abnormal apoptosis and neural defects during embryogenesis[6][,][15][,][16][,][17][,][18][,][19]; moreover, it highly accumulates on the dosage-compensated male X chromosome,[20] congruent with cellular defects such as the DNA damage/chromatin bridge breakage specifically induced upon that chromosome.[6][,][21][,][22][,][23] Here, I show that without the function of OTU, Spaid is polyubiquitinated and degraded through the host ubiquitin-proteasome pathway, leading to the attenuation of male-killing activity as shown previously.[6] Furthermore, I find that Spaid utilizes its OTU domain to deubiquitinate itself in an intermolecular manner. Collectively, the deubiquitinase domain of Spaid serves as a self-stabilization mechanism to facilitate male killing in flies, optimizing a molecular strategy of endosymbionts that enables the efficient manipulation of the host at a low energetic cost.}, } @article {pmid37669272, year = {2023}, author = {Lau, MJ and Dutra, HLC and Jones, MJ and McNulty, BP and Diaz, AM and Ware-Gilmore, F and McGraw, EA}, title = {Jamestown Canyon virus is transmissible by Aedes aegypti and is only moderately blocked by Wolbachia co-infection.}, journal = {PLoS neglected tropical diseases}, volume = {17}, number = {9}, pages = {e0011616}, pmid = {37669272}, issn = {1935-2735}, support = {R01 AI143758/AI/NIAID NIH HHS/United States ; }, mesh = {Animals ; Humans ; *Aedes ; *Encephalitis Virus, California ; *Deer ; *Wolbachia ; *Coinfection ; Mosquito Vectors ; *Zika Virus ; *Zika Virus Infection ; }, abstract = {Jamestown Canyon virus (JCV), a negative-sense arbovirus, is increasingly common in the upper Midwest of the USA. Transmitted by a range of mosquito genera, JCV's primary amplifying host is white-tailed deer. Aedes aegypti is responsible for transmitting various positive-sense viruses globally including dengue (DENV), Zika, chikungunya, and Yellow Fever. Ae. aegypti's distribution, once confined to the tropics, is expanding, in part due to climate change. Wolbachia, an insect endosymbiont, limits the replication of co-infecting viruses inside insects. The release and spread of the symbiont into Ae. aegypti populations have been effective in reducing transmission of DENV to humans, although the mechanism of Wolbachia-mediated viral blocking is still poorly understood. Here we explored JCV infection potential in Ae. aegypti, the nature of the vector's immune response, and interactions with Wolbachia infection. We show that Ae. aegypti is highly competent for JCV, which grows to high loads and rapidly reaches the saliva after an infectious blood meal. The mosquito immune system responds with strong induction of RNAi and JAK/STAT. Neither the direct effect of viral infection nor the energetic investment in immunity appears to affect mosquito longevity. Wolbachia infection blocked JCV only in the early stages of infection. Wolbachia-induced immunity was small compared to that of JCV, suggesting innate immune priming does not likely explain blocking. We propose two models to explain why Wolbachia's blocking of negative-sense viruses like JCV may be less than that of positive-sense viruses, relating to the slowdown of host protein synthesis and the triggering of interferon-like factors like Vago. In conclusion, we highlight the risk for increased human disease with the predicted future overlap of Ae. aegypti and JCV ranges. We suggest that with moderate Wolbachia-mediated blocking and distinct biology, negative-sense viruses represent a fruitful comparator model to other viruses for understanding blocking mechanisms in mosquitoes.}, } @article {pmid37658881, year = {2023}, author = {Owashi, Y and Minami, T and Kikuchi, T and Yoshida, A and Nakano, R and Kageyama, D and Adachi-Hagimori, T}, title = {Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis.}, journal = {Microbial ecology}, volume = {86}, number = {4}, pages = {2923-2933}, pmid = {37658881}, issn = {1432-184X}, mesh = {Humans ; Animals ; Biological Control Agents ; *Hemiptera/genetics ; RNA, Ribosomal, 16S/genetics ; *Rickettsia/genetics ; *Spiroplasma ; *Wolbachia/genetics ; *Microbiota ; Symbiosis ; }, abstract = {Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia, two strains of Wolbachia, Spiroplasma, Providencia, Serratia, Pseudochrobactrum, Lactococcus, and Stenotrophomonas. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia, Wolbachia, and Spiroplasma, was performed on a larger sample size (n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendenc