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Information Infrastructure 
e original goals of the Human Genome T” Project (HGP) were: (1) construction of 

a high-resolution genetic map of the hu- 
man genome; (2) production of a variety 
of physical maps of all human chromo- 
somes and of the DNA of selected model 
organisms; (3) determination of the com- 
plete sequence of human DNA and of the 
DNA of selected model organisms; (4) 
development of capabilities for collecting, 
storing, distributing, and analyzing the 
data produced; and (5) creation of appro- 
priate technologies necessary to achieve 
these objectives [IS]. Goals 1-3 laid out 
the challenge for bench research, Goal 4 
recognized the essential role of data man- 
agement, and Goal 5 was a frank admis- 
sion that the project was begun before the 
necessary technologies were in hand. In 
the spirit of that candor, it is appropriate 
to ask whether the HGP is meeting its 
goals and, in particular, whether the com- 
putational components will be adequate 
for handling the volume and complexity 
of data generated by this project. 

In this essay, we assert that the most 
pressing information-infrastructure re- 
quirement now facing the HGP is achiev- 
ing better interoperation among electronic 
information resources. Other needs may 
be equally important (better methods to 
support large-scale sequencing and map- 
ping, for example), but none are as press- 
ing. The problem of interoperability 
grows exponentially with the data. Efforts 
to develop distributed information pub- 
lishing systems are now underway in 
many locations. If the needs of the genome 
project are not soon defined and articu- 
lated, they will not be addressed by these 
external projects. De facto standards will 
emerge and if these prove inadequate for 
scientific data publishing, the research 
community will have little choice but to 
tolerate this inadequacy indefinitely. 

The Challenge of Genome Data 
Management 

Figure 1 shows the growth in the 
world’s sequence databases from the first 
release of GenBank to 1994. Although the 
data volume is increasing exponentially, 
doubling in less than two years, merely 
keeping up is no longer a problem. The 
sequence databases were falling far be- 
hind the data flow in the mid 1980s [5], 
but technical and sociological advances 
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now allow the databases easily to absorb 
a far greater amount of new information 
than previously conceivable. In 1986, 13 
months elapsed between the publication 
of a sequence and its appearance in the 
databases. Now, the Genome Sequence 
Data Base processes a typical submission 
within 13 hours. Every two to four weeks, 
more sequence data enter the databases 
than did so in the first five years of their 
existence. 

The map databases are also keeping up 
with the growth in the number of genetic 
markers in humans and selected model 
organisms. The past crisis of data acquisi- 
tion has been resolved, leaving us to face 
a new and inherently more difficult crisis 
of data integration. 

The importance of integrating genome 
information resources has been recog- 
nized in reports from groups of leading 
biologists (e.g., the Genome Science and 
Technology Center directors; [3]) and of 
informatics experts (an invitational meet- 
ing held in Baltimore in April, 1993; re- 
ported in [ 1 11): 

A...major...goal of genome informatics 
should be the integratioa of genome and 
genome-related databases [3]. 

Achieving coordination and interoper- 
ability among genome databases and other 
informatics systems must be of the highest 
prior@. We must begin to think of the com- 
putational infrastructure of genome re- 
search ... as a federated information 
infrastructure of interlocking pieces (1 I ] .  

For historical and operational reasons, 
HGP data are now and will continue to be 
housed in several independent data re- 
sources. Already, the lack of interoper- 
ability among these resources makes 
answering simple questions overly diffi- 
cult, leading the Baltimore report [ 1 I] to 
observe: 

An embarrassment to the Human 
Genome Project is our inability to answer 
simple questions such as, “How many 
genes on the long arm of chromosome 21 
have been sequenced?” 

Removing this embarrassment will re- 
quire several interoperability improve- 
ments: 
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1. Growth in the world’s collection of nucleotide sequence data, shown as the 
number of bases contained in every release of GenBank from 1 through 82. The 
numbers at the tops of the dotted lines show years (which do not necessarily coincide 
with a particular number of releases). The shaded bar in the middle represents the 
period in the mid 1980s when the data volume was, for a time, more than the data- 
bases could handle. (Data supplied by Michael Cinkosky and Dennis Benson.) 

Technical interoperability must be 
achieved so that minimum functional 
connectivity can be assumed among 
participating information resources. 
This would require network connec- 
tivity and database interoperability. 

8 Semantic interoperability must be 
developed so that meaningful asso- 
ciations could be made between data 
objects in different databases. This 
would require enough agreement 
about the meaning of the data so that 
assertions about relationships would 
be at least possible. 
Social interoperability must occur so 
that meaningful associations are 
made among data objects in different 
databases. This would require suffi- 
cient social pressure to motivate the 
creation, entry, and maintenance of 
this information, since each asserted 
link between data objects is an act of 
scientific creativity and must be 
made on the basis of expert knowl- 
edge, not merely through routine 
computations on existing data. 

These advances will likely occur in the 
order given. Without technical interoper- 
ability, the motivation for providing se- 
mantic interoperability is lacking. 
Without semantic interoperability, it is 
difficult to define, much less enter, links 
between objects. 

Another embarrassment is the time that 
genomic databases have been promising, 
but not delivering, connectivity with other 
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information resources. The problem has 
been a simple absence of the technical 
interoperability infrastructure necessary 
to enable and motivate the remaining 
work. However, recent advances now 
promise that solutions may soon be at 
hand. This essay will describe some rele- 
vant trends and advances, and will de- 
scribe a reference architecture to facilitate 
the remaining steps. For reasons of space, 
neither semantic nor social interoperabil- 
ity will be treated. Semantic compatibility 
and other aspects of genome informatics 
have been discussed elsewhere [7-111. 

A Taxonomy of 
Multidatabase Approaches 

Although the development of truly in- 
teroperable federated database systems is 
still considered a research problem in 
computer science (e.g., see the collection 
of papers in [4]), there have been many 
calls for a federated approach to the man- 
agement of information in biology, both 
within and outside the HGP. 

The vocabulary used to describe in- 
teroperating distributed computer systems 
varies among authors. In this essay we 
follow the terminology and taxonomy of 
Sheth and Larson [14]: A multidatabase 
system supports simultaneous operations 
on multiple (perhaps different) compo- 
nent databases. A federated database sys- 
tem (FDBS) has autonomous components, 
whereas the components in non-federated 
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database systems are under a unified man- 
agement. A federated system with no strong 
central federation management is consid- 
ered loosely coupled. A system with strong 
central management and with FDBS admin- 
istrators controlling access to the compo- 
nents is tightly coupled. Tightly coupled 
systems can have one or more centrally 
managed federated schema. 

Tightly coupled FDBSs offer several 
advantages, such as clearly integrated 
views for users and the ability to update 
participating databases. These systems 
are, however, fragile when changes occur 
in the participating databases. They have 
proven difficult to achieve in practice, 
even within single corporations under uni- 
fied management [2]. Loosely coupled 
systems are more easily achieved, but they 
can put much of the data-integration bur- 
den on users (or third-party developers). 
Many authors consider the problem of 
coordinated updates across loosely cou- 
pled FDBSs to be essentially insoluble. 

Biological Information Resources 
as Publishing 

Databases within commercial enter- 
prises are information resources that af- 
fect the behavior of the organization. 
Paychecks are issued, products manufac- 
tured, shipments made, and invoices sent, 
according to the contents of the databases. 
Since acting on the basis of inconsistent 
data would lead to chaos, both within the 
organization and with its external interac- 
tions, commercial database management 
systems have emphasized update methods 
that maintain internal data consistency 
and data integrity. Not unexpectedly, this 
emphasis has carried over into research 
efforts to develop multidatabase systems. 

Scientific community databases, how- 
ever, have more in common with scientific 
publishing than with business database 
management systems. Projects such as the 
Genome Data Base, or GenBank, offer 
communication channels through which 
observations, sometimes inconsistent ob- 
servations, may be shared among re- 
searchers. The role of databases in 
communication has been explicitly recog- 
nized by leading genome researchers [6]: 

Public access databases are an espe- 
cially important feature of the Human 
Genome Project. They are easy to use and 
facilitate rapid communication of new 
findings (well in advance of hard-copy 
publications) and can be updated efj- 
ciently. 
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These biological information re- 
sources, as seen by users, are better con- 
ceived as database publishing systems 
(DBPSs), not as database management 
systems (DBMSs). Although DBMSs are 
used to build some of these information 
resources, when the data are made avail- 
able to users, they are “published” in a 
sense, and it is read-only interoperability 
among all the resulting DBPSs that is 
greatly needed by the broad scientific 
community. (Update interoperability in- 
volving smaller subsets, sometimes just 
pair-wise combinations, of the underlying 
DBMSs is also needed, but that will not 
be discussed here.) 

Achieving read-only interoperability 
among loosely coupled DBPSs is much 
easier than doing so with read-write 
DBMSs. With DBPSs, the notions of 
“loosely coupled” and “tightly coupled” 
are better considered as naming the ends 
of a continuum of relationships, rather 
than designating two mutually exclusive 
states. Figure 2 illustrates some possible 
points along the continuum. 

Stand-alone database management 
systems provide robust local functional- 
ity, but low interoperability across hetero- 
geneous sites. Loosely coupled generic, 
read-only systems, such as gopher and 
World-Wide Web (WWW), provide wide 
interoperability, but with lower local 
functionality. Because the incremental 
cost of mounting gopher and WWW serv- 
ers is small for those already building 
large local databases, many biological in- 
formation resources are now using gopher 
and WWW to supplement, not replace, 
existing services. 

The value of participation in widely 
available generic systems, especially to 

I 

users, can be astoundingly high, since the 
overall value of an interoperable network 
of cross-referencing information systems 
increases non-linearly with the number of 
participants. Thus, for the HGP inparticu- 
lar and for biology in general, attaining 
increasing generic database interoper- 
ability among all relevant information re- 
sources must be a continuing goal. 

Achieving Interoperability 
Many hold that achieving full read- 

and-write interoperability across multiple 
databases requires an integrated data 
model, or schema, spanning the participat- 
ing information resources. A recent re- 
finement is the integration of only 
portions of the local schema, which may 
be specially modified to facilitate integra- 
tion. These modified subschemas are 
known as export schemas [4, 141. 

Export schemas buffer against changes 
in the underlying databases, but only if the 
export schemas themselves are stable. U1- 
timate fragility due to inevitable changes 
in the underlying systems has led Chora- 
fas and Steinmann [2]  to dismiss global 
schema integration as impractical and to 
characterize such attempts as an “ap- 
proach which has been tried and failed 
since 1958.” 

Evolution of Complex, 
Integrated Systems 

Building large, complex software sys- 
tems is best done through the assembly of 
stable, interoperating components. At- 
tempts to build truly large systems as in- 
tegrated monoliths rarely succeed, since 
the inter-related complexity of the result- 
ing behemoth soon exceeds the ability of 
programmers and managers to track and 

Tightly Coupled: 
i 

single organizational entity overseeing information 
resources relevant to genome research 

adoption of common DBMSs at participating sites 

shared data model across participating sites 
I 
I v 

Loosely Coupled: 

common semantics for data publishing 

common syntax for data publishing 

2. The distinction between tightly coupled and loosely coupled systems, seen as desig- 
nating the ends of a continuum of relationships among database publishing systems. 
The tightest level of coupling yields a completely integrated, single management 
structure. The loosest level of coupling involves merely a collection of wholly inde- 
pendent organizations that publish their data in a common syntax. 
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maintain. Ideally, systems should be 
based, at least in part, on a foundation of 
components developed elsewhere, since 
without some cumulative development, 
continued functional advances cannot oc- 
cur. 

In 1982, Frederick Brooks [ l ]  ob- 
served that writing a simple, stand-alone 
program is relatively easy, compared with 
the additional effort required to extend 
that program so that it acquires prod- 
uct-like qualities of robustness and port- 
ability, or so that it can function as a 
component in a complicated system. 
Crossing the complexity boundaries to 
achieve these improvements, Brooks esti- 
mated, increases the level of effort at least 
ten-fold. However, both characteristics 
are required to produce the programming 
systems product, “the truly useful object, 
the intended product of most system pro- 
gramming efforts.” In short, building 
good components is hard work, but essen- 
tial, if large integrated systems are the 
goal. 

If Brooks’ insights are any guide, the 
development of interoperating biological 
databases will require an engineering so- 
lution that maximizes the utility and 
cost-effectiveness of the entire system, not 
the elegance of individual components. 

Historical Trends in Database Manage- 
ment 
Early on, managing data was seen as just 
another computational problem, to be 
solved by local programmers. Custom so- 
lutions were developed to handle all as- 
pects of the system’s behavior, with the 
exception of a few basic services, such as 
file management, provided by the operat- 
ing system. Over time, the realization that 
nearly all data-management problems re- 
quire certain common services led to the 
development of commercially available 
DBMSs. 

DBMSs provide their services tran- 
sparently, so that developers need only 
specify what must be done, while allow- 
ing the underlying DBMS to determine 
how it will be accomplished. Thus, when 
specific applications are produced using a 
particular DBMS, the overall system can 
be seen as operating in two parts: 

w a top layer consisting of the applica- 
tion program itself, and 
a bottom layer, or layers, consisting 
of relatively transparent services pro- 
vided by the DBMS and called by the 
application program as needed. 

The general trend has been to increase 
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the activities delivered as transparent 
services. Early DBMSs added a data 
model (schema) to the application, ab- 
stracted the underlying data structures into 
records, and moved the processing of in- 
put and output into generic tools. The 
relational model further abstracted the 
data structures into tables and pushed ac- 
cess methods into the generic tool layers. 
Object-oriented databases are now mov- 
ing even more into the generic tools layer, 
while abstracting the data structures into 
objects that encompass both data and 
methods--code that manipulates the data. 

This pattern of increasing reliance 
upon generic services continues to spread, 
with some systems, exemplified by 
WWW, merging generic information-re- 
trieval and network tools into a conceptu- 
ally unified, yet physically distributed 
information space. 

Layered Architectures 
in the Networking Model 

Networking has followed a similar evolu- 
tion, with generic functionality being 
pushed increasingly into layers below the 
executing application. Early networking 
solutions were ad hoc, local, and proprie- 
tary, so that application programs had to 
be custom designed for a specific network 
infrastructure. Now, however, generic 
networking protocols allow application 
programs to exchange specific messages 
transparently. 

A layered stack of software protocols 
allows application programs running on 
physically separated computers to interact 
as if they were directly connected. Each 
application program communicates to a 
layer just underneath it, according to 
standard protocols. Bottom layers on the 
sending system prepare the message for 
transmission on some physical medium. 
Those same layers on the receiving system 
retrieve the message from the physical 
medium, then decode and reconstruct it, 
so that the message presented to the appli- 
cation program on system B is exactly 
what was sent by the application program 
on system A (Fig. 3). Because it would be 
impossible to guarantee perfect transmis- 
sion of every packet on the physical me- 
d ium,  appropriate metadata are 
transmitted so that the receiving system 
can determine that packets have been lost 
or damaged, and request retransmission. 

In this layered architecture, responsi- 
bility for determining how various tasks 
are to be accomplished resides within in- 
dividual layers. Higher layers need only 
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Ethernet (802.3), Token Ring, FDDI, ATM, or ... 1 
3. The seven layers of the ISO-OSI reference model. Virtual connectivity between 
applications on different computers is accomplished via direct communication be- 
tween adjacent layers within each system, according to well-defined protocols. For 
example, abstract syntax notation (ASN.1) defines the communication protocols be- 
tween the application and presentation layers. (ASN.1 is a powerful scheme for rep- 
resenting data of arbitrary complexity. This has led some [cf. Ostell, this volume] to 
devise very clever, non-networking uses for the protocol.) 

be aware of what services are provided by 
the lower layers. Although communica- 
tion protocols between layers are well de- 
fined and stable, the internal details of 
how a layer is implemented may be 
changed at any time. 

The layering of responsibility for how 
things are to be done while preserving a 
well-defined stack of what services are 
needed has given modern networking its 
great strength and flexibility. So long as a 
layer continues to meet the specifications 
for what is to be performed, improvements 
may be made in how it carries out its tasks, 
without necessitating changes in other 
layers. Entire layer modules may be read- 
ily snapped out, and others substituted. 
For example, an underlying ethernet layer 
may be replaced with FDDI, with no 
changes whatsoever required in programs 
running at the application layer. 

The experience of networking illus- 
trates an important principle of distrib- 
u ted ,  scalable  design:  distributed 
interoperating systems benefit from layers 
of collectively designed but independently 
developed components, interacting 
through defined, stable, open protocols. 

Interoperating Genome 
Information Resources 

Obtaining interoperability among 
genome and genome-related databases 
involves two related but distinguishable 
goals: 

m Increase the homogeneity of partici- 
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pating genome systems (i.e., tighten 
the coupling among the data systems 
of the genome community). This 
would allow genome data to be more 
easily obtained from multiple sites in 
a common format appropriate for in- 
tegrated analyses. This will require 
achieving greater semantic and social 
interoperability among the systems. 
Develop general interoperability 
while tolerating loosely coupled het- 
erogeneous systems (i.e., participate 
in a loosely coupled federation of 
general biological information re- 
sources). This would allow the fur- 
ther integration of genome data with 
other relevant data, such as metabolic 
information, structural biology data, 
comparative findings, etc. These 
needs could be met through a more 
loosely coupled, read-only ap- 
proach. 

These requirements are not mutually 
exclusive and, in fact, are more likely to 
be mutually reinforcing. Efforts to 
achieve intra-community homogeneity 
can be made at the same time that steps are 
taken to permit interoperation with het- 
erogeneous systems. Both paths should be 
followed simultaneously, since within a 
small cooperating community (e.g., a few 
collaborating sites), homogeneity may be 
attainable, whereas in larger communi- 
ties, heterogeneity is inescapable. 

Although achieving a moderately 
tightly coupled architecture might be a 
useful goal for genome databases, simul- 
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taneous participation in a loosely coupled 
system is also necessary for several rea- 
sons: 

It will take time to increase the cou- 
pling across all genome databases 
and there is a need to improve in- 
teroperability before improved cou- 
pling becomes widespread. 
Although some genome databases 
will likely converge upon a few com- 
mon data models and database sys- 
tems, the probability that the entire 
community will converge upon a sin- 
gle standard is essentially zero. 
Therefore, loosely coupled interac- 
tions among different groups of 
genome databases are essential. 

.The HGP community will receive 
real benefits from participating as a 
component in other, larger federated 
information infrastructure systems, 
and these larger systems will surely 
be loosely coupled at best. 
The use of loosely coupled distribu- 
tion systems is actually likely to fa- 
cilitate the development of more 
tightly coupled approaches. The 
ready availability of data from multi- 
ple sources will give wide exposure 
to arbitrary differences in data mod- 
els, resulting in significant commu- 
nity pressure for convergence upon 
greater semantic consistency. 

If networking experience is a guide, 
any suggestion that the HGP requires only 
highly coupled information resources 
must be soundly rejected. Network con- 
nectivity is useless unless an entire stream 
of data can be moved reliably from one 
host to another. But networking technol- 
ogy cannot guarantee the delivery of any 
given packet. Therefore,  reliable 
end-to-end transmission of data streams 
is implemented on top of an unreliable 
packet-transfer system. Protocols in 
higher layers detect the inevitable occur’ 
rence of lost or damaged packets and re- 
quest that they be resent, so that ultimately 
a reliable duplicate of the data stream from 
the sender can be reassembled at the re- 
ceiver. If efforts had been made to imple- 
ment complete reliability at the packet 
transfer layer, effective networking would 
still be a far-off dream. This experience 
illustrates an important principle of ap- 
propriate foundations: sometimes robust 
solutions are best built upon seemingly 
weak foundations. 

Recent Advances 
New methods for creating loosely cou- 

pled federations of read-only electronic 

publications are being rapidly adopted 
across the Internet. The implications of 
these advances for genome informatics 
are best appreciated after first briefly con- 
sidering historical patterns in the develop- 
ment of bio-informatics systems. 

Evolution of Biological 
Information Systems 

With early computerized biological in- 
formation resources, users had to install 
the entire system, software and data, on a 
local computer before the local value of 
the resource could even be tested. As in- 
stalling these systems was expensive, both 
in effort and in resources, their appeal was 
limited. 

The next step was the development of 
dedicated client-server systems, in which 
the data resided on a centrally located 
server and only the client software had to 
be installed locally. This approach had 
several advantages, especially in reducing 
the local disk-space requirements and in 
providing access to up-to-date data with- 
out requiring that the data be distributed 
to all users. It suffered from not providing 
any interoperability among different in- 
formation resources. 

The most recent step has been the 
emergence of loosely coupled generic cli- 
ent-server systems, such as WWW. Here, 
a single generic client is capable of access- 
ing data on any server that “publishes” its 
data according to the generic server pro- 
tocol. Incorporated in the protocols are the 
ability of one data server to “reference” 
information present on another server. 
This allows the ready creation of a basic 
form of read-only interoperability. 

Much of the power of this approach 
derives from the way generic components 
and standard cross-referencing schemes 
allow the user to perceive systems to be 
interoperating when in fact the operators 
of the systems may not even know that 
each other exists. This illustrates an im- 
portant principle of anonymous interoper- 
ability: scalability is greatly enhanced i f  
interoperation can be effected between 
anonymous partners. 

Power of Generic 
Client-Server Computing 

Although database research has em- 
phasized tightly coupled approaches, re- 
cent experience has shown that 
appropriate protocols, coupled with mid- 
dleware tools, can make some loosely 
coupled systems incredibly effective, al- 
beit in a read-only manner. The two most 

successful recent internet applications 
have been gopher and WWW, both of 
which are loosely coupled federations 
serving read-only multi-media hypertext 
and other file-based resources. Users 
have voted with their feet, so to speak; 
over the past 18 months, usage of these 
products has increased nearly 20-thou- 
sand-fold, while the internet itself has 
grown only &fold. 

Distributed Object-Oriented 
Programming 

In addition to being generic cli- 
ent-server systems, gopher, and W W  
also exemplify a rudimentary form of dis- 
tributed object-oriented programming. 
Data objects, along with the names of 
methods that may be used with the objects, 
are provided by the servers, while generic 
clients contain the actual hardwareae- 
pendent binaries necessary for executing 
the methods. This distribution of data and 
methods between server and client offers 
a powerful and extensible system for 
searching, browsing, and retrieving data 
of a variety of types. 

Gopher and WWW 
Gopher is a loosely coupled federation of 
standard file servers, distributed around 
the world, accessed with a copy of generic 
client software. Any gopher server can be 
interrogated from any client. The basic 
interface is the simple menu, with every 
menu choice either (1) retrieving another 
menu, (2) retrieving text, data, graphics, 
software, or other files, (3) initiating a 
query directed to a specific database, or 
(4) initiating a search for more menu 
items. The power of gopher lies in the 
invisibility of its infrastructure to users, 
who feel they are just making choices 
from options presented by a single system, 
when in fact they can be jumping from 
computer to computer, around the world. 

At its most basic level, each gopher 
transaction is basically a “please send me 
a thing named X ’  request directed to a 
particular server, followed by the sending 
of X. The server has no knowledge, nor 
any need for knowledge, about how it 
happened that this particular client asked 
for that particular object. The elegance is 
in the simplicity-at base level, every 
transaction is just a request-response ex- 
change. Additional functionality is 
achieved by layering other logical func- 
tions on that fundamental transaction. 

Although gopher permits cross refer- 
encing between servers, in the sense that 
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menus on any server can reference files or 
other menus on other servers, it does not 
support cross referencing at the level of 
actual objects being returned. The WWW 
approach, however, moved the ability to 
cross reference into the data objects them- 
selves, thus creating a distributed hy- 
pertext information space. 

WWW architecture is based on: (1) a 
standard (hypertext markup language, or 
HTML) for producing formatted text that 
may contain embedded cross references to 
other such files, (2) a naming scheme 
(Uniform Resource Locators, or URLs) 
that allows for the unambiguous resolu- 
tion of such embedded references, and (3) 
a protocol (hypertext transfer protocol, or 
HTTP) for the efficient retrieval of docu- 
ments in a hypertext environment. The 
WWW philosophy includes a commit- 
ment to provide access to information via 
older protocols (e.g., ftp, WAIS, gopher) 
as well as being sufficiently extensible to 
accommodate new protocols as they be- 
come available.  Like gopher,  
WWW-conforming systems can spawn 
external “viewer” programs to present 
new data types to the user. 

The National Center for Supercom- 
puting Applications (NCSA) developed 
and released Mosaic, a graphical browser 
into WWW information resources. Mo- 
saic added the ability to display graphical 
images directly in the browser, so that 
HTML source pages could contain em- 
bedded references to graphics files, which 
would be displayed as images in the basic 
browser display. Extensions now allow 
the embedding and presentation of sound 
and full-motion video, creating a 
multi-media hypertext gateway into the 
Internet information space. The success of 
Mosaic has stimulated other developers, 
so now there are many WWW browsers 
available, each competing with each other 
to add new functionality. 

A truly remarkable aspect of the 
WWW phenomenon has been its rapid 
acceptance. Client usage has increased be- 
cause of ease of use, but probably more 
importantly because of the rapid prolifera- 
tion of WWW information servers. The 
value to the user of an integrated set of 
information resources increases greatly 
with the number of participants. The 
number of WWW sites has now reached 
the point where a runaway positive feed- 
back system has been generated. 

Nearly every major biological data- 
base now publishes information via 
WWW, and more resources are coming 

online daily. Anyone with a computer at- 
tached to the internet and a copy of WWW 
server software (available free) can be- 
come a publisher of electronic informa- 
tion simply by preparing a few files in 
HTML format, making them available 
through their server, and then sending out 
an announcement of the new resource and 
giving its name in URL format. From that 
moment on, all of the millions of users 
with client software have instant access to 
the resource. This illustrates an important 
principle of value explosion: once the 
number of components in an interoperat- 
ing network of information resources 
passes a critical size, the overall value of 
the network grows explosively. 

Networks as Distributed Information 
Spaces 
The generic client-server system for re- 
trieving information from the Internet, ex- 
emplified by WWW, has stimulated a new 
vision of just what the Internet represents. 
Schatz and Hardin [ 131 note: 

Originally intended as a distributed 
network of computers, [the Internet] is 
increasingly viewed instead as a distrib- 
uted space of information. Rather than 
transferring files between computers, a 
user navigates an information space of 
distributed items of information. The US- 
ers concentrate on the logical structure of 
the interconnection of information and 
data items rather than on the underlying 
physical stricture of computer and com- 
munication systems. 

This new concept of the internet raises 
many interesting challenges, too numer- 
ous to consider here. Some relevant dis- 
cussions may be found in [ 171. 

Middleware Extends Functionality 
Initially, gopher and WWW systems 

were available only for retrieval of text 
and file-based information or for 
multi-media hypertext. However, clever 
extensions, particularly in the develop- 
ment of middleware and gateways to other 
systems, are allowing these tools to access 
more structured data and to provide an 
apparently integrated joint interface to 
more than one server. 

Powerful middleware can be devel- 
oped simply by sandwiching custom code 
between a generic server and a generic 
client. Users accessing the server side see 
only an integrated data resource that re- 
turns information according to standard 

protocols. The server, acting as middle- 
man, takes information provided by the 
user, manipulates it using whatever cus- 
tom routines are needed, dispatches the 
results to one or more local or remote 
servers, receives, processes, and inte- 
grates the results from the various servers, 
and finally presents them to the user. 

Examples of middleware can be found 
that provide general network services, 
such as the veronica search engine (which 
helps users locate information resources 
in Gopherspace), or that meet specific 
needs for a target community, such as the 
Johns Hopkins University’s GenQuest 
server (which provides sequence analysis 
services to the molecular biology research 
community via a WWW server). 

The GenQuest Server 
GenQuest (available on the Johns Hop- 
kins Computational Biology home page; 
URL = http:/ /www .gdb.org/hop- 
kins.htm1) uses a WWW forms interface 
to offer a variety of analytical algorithms 
(e.g., Smith-Waterman, FASTA, Blast) 
for analyzing nucleotide or protein se- 
quences. The user selects the kind of se- 
quence to be analyzed and the algorithm 
to be used, sets parameters for the algo- 
rithm, pastes the sequence into a receiving 
window, and clicks a button to initiate the 
analysis. The software at Hopkins refor- 
mats the query and sends it to an on-line 
analysis server at Oak Ridge, Tennessee. 
The output from Oak Ridge is reformatted 
into HTML, with hot links added dynami- 
cally to all referenced objects available via 
WWW. The results are then returned to 
the user’s client software as a standard 
HTML page, with hot links established to 
all external data objects referenced in the 
report. The user may then navigate over 
the hot links to obtain related information. 

Dan Jacobson (danj@gdb.org) was 
able to assemble GenQuest very easily, 
because a powerful online compute serv- 
er, capable of returning analyses quickly 
enough to service arealtime interface, was 
available at Oak Ridge and because all of 
the databases referenced in reports from 
the Oak Ridge server publish their data 
using standard WWW protocols and serv- 
ers. The availability of these resources via 
standard on-line protocols allowed Jacob- 
son to create an apparently unified infor- 
mation resource simply by providing 
value-adding integration through pure 
third-party middleware. Explicit support 
and encouragement for value-adding ac- 
tivities by third-party developers must be 
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a guiding principle for genome informat- 
ics. 
Middleware Allows 
Unilateral “Collaborations” 
Operators of public databases often fiid 
themselves besieged with would-be col- 
laborators. No matter how public-spirited 
the proprietors of the database, they will 
have to turn some (occasionally many) 
potential collaborators away, because true 
collaborations require effort on the part of 
both parties and no public database has 
unlimited resources with which to pursue 
collaborations. 

If, however, databases publish via 
widely used generic client-server sys- 
tems, third-party developers can effect 
apparent “collaborations” simply by de- 
veloping appropriate middleware to inter- 
act with the databases. For example, 
developing a system like GenQuest re- 
quires no active collaboration of any in- 
formation resource providing data to 
which hot links are generated. 

Schatz and Hardin [13] describe the 
power of such “unilateral collaboration” 
in the context of Mosaic and WWW ex- 
tensibility: 

This is an example of the idea of “Open 
Information Systems,” systems that allow 
for the easy integration of existing infor- 
mation sources and that can be extended 
and expanded by users in ways that were 
often unanticipated by the original devel- 
opers. [emphasis added] 

Empowering third-party developers to 
expand the functionality of federated in- 
formation resources without requiring the 
active collaboration of the original devel- 
opers promotes incredible functional 
growth at very low cost. This illustrates an 
important principle of value additivity: in 
a well-designed information infrastruc- 
ture, most value will ultimately be added 
by third-party developers. 

Data Publishing in a loosely 
Coupled Federation 

Although many scientific information 
resources now use WWW technology to 
share their data with others, additional 
extensions are needed before such a sys- 
tem can become truly effective for pub- 
lishing structured data, not merely textual 
information. 

Why WWW is Not Enough 
WWW is presently inadequate for re- 

trieving and integrating some kinds of 

152 

richly structured scientific data. A few 
issues are: 

Set-based retrievals are needed, 
which WWW does not directly sup- 
port. 

.Automated data retrieval must be 
supported. This requires an automat- 
able means for extracting the in- 
tended semantics of published data 
objects (as can be done with data 
dictionaries of structured databases). 
WWW homepages have no estab- 
lished semantics and WWW pro- 
vides no standard way to publish the 
metadata necessary to declare se- 
mantics. 
A project operator, in the relational 
sense, is essential. Some data objects 
may have thousands of fields, but a 
user may only need, say, three of 
them. The idea of retrieving them all, 
then editing locally, is not efficient, 
since the database may contain tens 
or even hundreds of thousands of 
relevant objects. 

.The abil i ty to  do  automated, 
set-based, distributed joins (equiva- 
lent to a relational JOIN across dis- 
tributed databases) across data in 
multiple servers is a crucial require- 
ment for scientific data publishing. 
This will require a significantly dif- 
ferent client and a significantly dif- 
ferent server than is presently 
available with WWW. 

.Identifiers that have much in com- 
mon with relational primary and for- 
eign keys are needed. URLs and 
embedded URLs as presently imple- 
mented do not have the necessary 
semantic constraints. WWW offers 
no support for referential integrity. 

Some of the inadequacies in dealing 
with structured data stem from the devel- 
opmental history of gopher and WWW. 
Both projects have intellectual ties with 
information retrieval (IR), not database 
development, and many differences exist 
between the needs of database users and 
the services delivered by IR systems: 

IR query systems support ambiguous 
queries and resolve them using prob- 
abilistic retrieval systems, whereas 
databases hold structured data and 
provide exact answers to  
well-formed, structured queries. 

rn Hypertext browsers are intended for 
human usability, with the assumption 
that they will present multiple navi- 
gation options to a user. Database 
users frequently need a computa- 
tional application programming in- 
terface with which to interact, so that 

they can direct an application pro- 
gram to extract and analyze data sets 
and then return the analytical results. 
Hypertext supports flexible linkages 
between objects, but more structured 
linkages, with defined semantics 
(such as a foreign key to primary key 
reference), are required for structured 
data. 

The list could be extended. But, the 
goal here is to offer neither the definitive 
characterization of the problem nor the 
definitive solution. Instead, we wish to 
establish that, in their present form, the 
widely available IR tools for easily fetch- 
ing text and hypertext do not meet the 
needs of those who desire integrated ac- 
cess into structured databases. 

Protocol Extensions Needed 
The limits are not only with WWW, 

but also with the networking protocols on 
which it is based. At present, the funda- 
mentals of internetworking assume that 
the ultimate goal is to connect processes 
running on different hosts. IP addresses 
provide two-part, network:host identifi- 
ers. A process can be associated with a 
particular port on a given host, extending 
the identifier to network:host:process. 
U R L s  add one  more level-net- 
work:host:process:object, with the  
hard-wired assumption that these are all 
related one-to-many, left-to-right. 

What is needed instead is something 
that identifies databases independently of 
their host, and objects independently of 
their location. And, more importantly, a 
system is needed that would allow one 
name to be associated with several differ- 
ent instances of the same database or ob- 
ject. For example, the Genome Data Base 
(GDB) is a scientific database that has a 
primary location in Baltimore, Maryland. 
However, there are also more than a dozen 
read-only, public copies of the database 
scattered around the world. A naming 
convention is needed that would let users 
request objects from GDB without having 
to specify which GDB location to use. 
However, allowing the user the options of 
specifying either a particular host or par- 
ticular conditions (e.g., the nearest copy, 
the most current copy, the currently 
least-loaded server, the copy with the 
highest average bandwidth between it and 
the user, etc.) would be useful. 

In short, rethinking of network archi- 
tecture is needed, guided by expertise 
from the worlds of networking, informa- 
tion retrieval, and database development. 
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Without all three, whatever results will 
likely be missing some key functionality. 
A good discussion of extended net- 
work-protocol functionality needed for 
the future can be found in [ 171. 

Reference Architecture for 
a Federated Object-Server Model 

In a keynote address at the Third Inter- 
national Conference on Bioinformatics 
and Genome Research, Robbins [12] in- 
troduced a reference architecture for a 
Federated Object Server Model (FOSM) 
as a “robust straw man.” (A reference 
architecture summarizes a system’s basic 
functional elements and the interfaces be- 
tween them. It identifies needed protocols 
and suggests groupings of functionality, 
but it does not imply a physical implemen- 
tation.) FOSM is a straw man in the sense 
that it is freely admitted not to be the (or 
even necessarily a)  solution. But FOSM is 
also robust, in that it provides a focus 
around which requirements for interop- 
erating structured databases may be con- 
sidered. An outline of the FOSM concept, 
emphasizing some aspects of the data 
model, is presented here. A more detailed 
description is being prepared and prelimi- 
nary drafts are available from the author. 

FOSM Overview 
Like WWW, the FOSM approach derives 
data structures and protocols from a vision 
of how a networked information space 
might operate. In FOSM, servers provide 
access to richly structured data objects 
that can contain semantically well-de- 
fined cross references to other data ob- 
jects, allowing the rough equivalent of 
distributed joins in a relational database. 
The FOSM concept entails a strong com- 
mitment to resource discovery and re- 
source filtering. Resource filtering, the 
deliberate restriction of queries to 
“trusted” sources, is essential if retrieved 
data are to be passed directly to other 
software for analysis. Support for 
third-party, value-adding developers is 
central. 

The FOSM approach is generally ap- 
plicable to any set of information re- 
sources involving structured data. 
Examples would certainly include scien- 
tific data resources and also many types of 
commercial information, either to be pub- 
lished externally for customers or as an 
internal resource within an enterprise. 
FOSM Assumptions and Requirements 
A complete discussion of FOSM assump- 
tions and requirements would require a 
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book-length presentation. Some exam- 
ples are given here. 

Basic Assumptions 
The FOSM system will follow a generic 
client-server design, emphasizing auton- 
omy of local sites and enabling structured 
queries into structured data. 

FOSM sites will publish their data in 
a read-only format via a standard 
object-server system (although they 
will maintain their databases in what- 
ever manner they choose). 

mGeneric client software will obtain 
data from the read-only federation. 
With a single query, users will be able 
to obtain sets of related data objects 
from multiple independent data re- 
sources. 

General Requirements 
The FOSM system: 

should be relatively impervious to 
changes in data volume or in the 
number of participating sites-i.e., 
scalability is essential. 
must facilitate value-adding activi- 
ties by third-party developers. 
must be data driven and self config- 
uring. This means that a naive client 
should be able to contact a s ,i ver for 
the f i s t  time and, as a result of trans- 
actions with the server, produce a 
usable user interface and initiate a 
query dialogue. 

mshould provide a local (i.e., client 
side) API, as well as the networked 
API into the server. 
should permit “subscription” to 
user-constructed queries. That is, us- 
ers should be able to capture the steps 
necessary to execute a query, then 
request the system to execute that 
same query on regular timed inter- 
vals, returning data to the user via 
some specified route (email, ftp, 
etc.). 

 must retrieve data in both human 
readable and computable format. 

mmust provide support for multiple 
concepts of object identity. 

mmust provide support for resource 
discovery in a manner at least loosely 
equivalent to that offered by the data 
dictionary in a stand-alone database. 

mmust support the equivalent of for- 
eign key to primary connectivity be- 
tween objects in different databases. 
must be able to provide query opera- 
tors more or less equivalent with the 

erators of relational databases. 
SELECT, PROJECT, and JOIN OP- 

must provide some minimal support 

for domain and referential integrity 
across entries in multiple data re- 
sources. 

 must support both outer and true 
equi-joins across distributed object 
servers. Semantically well-defined 
cross-referencing (equivalent to for- 
eign key to primary key references in 
a relational database) must be repre- 
sentable in the data structures and 
traversable by the system software. It 
must be possible to traverse such 
links without mandatory human in- 
tervention (e.g., without mandatory 
mouse clicking). 

Server Requirements 
FOSM servers will need to provide 

actual data to satisfy queries and also 
metadata to support building and operat- 
ing the client interface and other automat- 
able tools. Servers will also need to 
provide some server-teserver informa- 
tion to help maintain external references. 

FOSM servers must: 
m provide full-function anonymous 

data serving. That is, their services 
should be fully available to clients 
unknown to the server until the first 
query arrives. 
support negotiation with clients re- 
garding the details of protocols, data, 
and formats. For example, a client 
might specify the maximum amount 
of data it could receive in one trans- 
action or negotiate handshaking pro- 
tocols. In addition, clients might 
inform the server what methods the 
client can support or what services it 
will request of the server. 
support both value-based queries 
and identifier-based queries. 

mserve several different kinds of ob- 
jects: (1) “type objects” that docu- 
ment the structure of the data objects 
so that the client software can pro- 
duce an appropriate query and re- 
trieval interface; (2) “data objects” 
that contain the actual data of inter- 
est; or (3) “help objects” that contain 
help messages to be used by the client 
to provide context-sensitive help 
messages. 
support remote domain and referen- 
tial integrity in external servers. That 
is, if objects in one FOSM server 
reference objects in another server, 
the second server should provide spe- 
cific support to assist in maintaining 
the integrity of references towards it. 
This might take the form of an EX- 
ISTS() function that would allow a 
server to verify the existence of an 
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externally referenced object in its 
collection. 

Client Requirements 
To support the needs of database users, the 
FOSM client will need to be able to main- 
tain more customizable functionality than 
does a Mosaic or other WWW browser. 
FOSM clients: 

will need to “negotiate” with FOSM 
servers regarding the format and 
structure of objects requested and re- 
garding the parameters and protocols 
of exchange. 
must be able to build dynamically 
custom forms-based or graphical in- 
terfaces to allow the interrogation of 
any FOSM server. To do this, clients 
will obtain metadata describing the 
structure of objects served by a par- 
ticular FOSM server. 
must allow users to manipulate the 
structure of data objects from one 
server, or combine structure objects 
from different servers, to build sin- 
gle, virtual objects against which uni- 
fied queries may be dispatched. It is 
this functionality that would allow 
users to specify queries that are simi- 
lar to relational PROJECT or JOIN 
operations. 
must support “batch” as well as inter- 
active, retrieval operation. That is, 
users must be able to create and store 
queries and the software must be able 
to execute stored queries automat- 
ically at specified times or intervals, 
outputting the retrieved data auto- 
matically into local files or into local 
analytical software. 

m must allow user customization of the 
local-software configuration and of 
the configuration of interfaces into 
particular databases. 

Resource-Discovery Requirements 
The FOSM approach assumes that users 
will need assistance in identifying rele- 
vant FOSM objects and servers. It also 
assumes that a key part of resource discov- 
ery is resource filtering-i.e., the explicit 
rejection of data objects from undesirable 
sources. Therefore, the FOSM approach 
supports the free development of “edito- 
rial” activities, so that editorial bodies 
may indicate approval for individual 
FOSM objects, or for individual FOSM 
servers, or for sets of objects or servers. 
Editorial annotations could be hierarchi- 
cal. That is, an editorial board might wish 
to assign its approval to all of those objects 
already approved by editorial boards A, B, 
C,  and D. 
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Resource discovery tools must be easy 
to locate and use. Therefore, access to 
FOSM resource4iscovery tools should 
be a built-in component of the FOSM 
client. Whether the discovery information 
should be provided by a central, known 
source; by distributed search engines (like 
veronica); or by some significant exten- 
sions to self-propagating name systems 
(like DNS) is an open question. 

Third-party Development 
Requirements 
In a manufacturing economy, materials 
travel along extensive pathways of 
value-adding activities: e.g., ores are 
mined, metals extracted. parts fabricated, 
objects constructed, etc. A successful “in- 
formation economy” must also support 
unlimited chains of interlocking 
value-adding activities. 

Many desktop software packages now 
explicitly support value-adding plug-in 
modules from third-party developers, and 
some of these interfaces have become suf- 
ficiently generic that they have been 
adopted by competing manufacturers. For 
example, the same third-party graphics 
manipulation filters can be used to aug- 
ment the functionality of either Adobe 
Photoshop or Core1 PHOTO-PAINT. 

Because FOSM recognizes the impor- 
tance of value-adding developers, all as- 
pects of the FOSM architecture must be 
designed either to provide explicit support 
for third-party activities or to avoid hin- 
dering third-party activities. For example, 
FOSM resource-discovery services 
should be  designed to allow any 
third-party to provide value-adding clas- 
sifications of FOSM servers or FOSM 
objects. Extended chains of value-adding 
activities should also be supported, such 
as allowing third parties to classify classi- 
fications developed by other thud parties. 

Data-Structure Requirements 
Just as the HTML data structure is the key 
to WWW functionality, so an appropriate 
syntactic data structure will be required 
for handling structured data. The FOSM 
model does not specify or constrain the 
semantics of participating databases, just 
as HTML does not specify or constrain the 
contents of WWW documents. Thus, two 
FOSM databases might well choose to 
publish similar data objects in semanti- 
cally different forms. This is acceptable in 
a FOSM environment, provided that both 
data servers published their data in the 
FOSM syntax. 

IEEE ENGINEERING IN MEDICINE AND BIOLOGY 

FOSM data structures: 
(or some consistent representation of 
them) must be reasonably easy to 
understand. (This would facilitate the 
development of virtual objects by us- 
ers andlor third-party developers.) 
must be able to represent consider- 
able (arbitrary?) complexity. 

m must be able to offer meaningful rep- 
resentations of data objects extracted 
from different underlying DBMSs 
(e.g.,RDBMS, OODBMS,etc.). 
must be readily parsable. 
should be closed under basic retrieval 
and manipulation operations. 
must allow data objects to contain, as 
attributes, references to data objects 
published elsewhere. 

mmust be self-describing, so that al- 
most anything can be represented, yet 
constrained, so that generic client 
tools can be developed. 

FOSM data structures could exist at 
both a physical (as represented internally 
by the system) and a conceptual (as per- 
ceived by users) level. In this essay, we 
will consider only the conceptual aspects 
of the data structure. 

FOSM Architecture 
FOSM architecture is based on a generic 
client-server approach, with explicit 
support for middleware and other devel- 
opment by third-parties. A registry of 
FOSM information would support both 
direct queries and resource discovery 
activities. Whether the registry should 
be a central database, or a system that 
supports duplicated information propa- 
gation (such as domain name servers) is 
an open question. The registry would 
hold information about FOSM servers, 
FOSM objects (and versions), FOSM 
links, FOSM subfederations, FOSM 
editorial records, FOSM methods, 
FOSM names, FOSM cataloging, etc. 
An overview of the FOSM architecture 
is given in Fig. 4. 

The FOSM client (Fig. 5) is built 
around a central kernel, the FOSM 
user-interface manager (UIM), which in- 
teracts with various local programs and 
remote servers. The UIM would probably 
be some kind of script interpreter, possibly 
a generic script interpreter, so that more 
than one scripting language could be used. 
The UIM core is surrounded by a variety 
of other programs, which are invoked to 
call the local execution of “methods” as- 
sociated with remote data objects, and 
files, which provide appropriate metadata 
and caches. 
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4. FOSM clients interact with FOSM servers and with a FOSM resource registry. 
Servers publish holding information to the registry (gray arrows) and respond di- 
rectly to client queries (black arrows). Explicit support for nth-party developers is 
provided, through the encouragement of middleware development. 
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5. The FOSM client provides much of its functionality through its component-based 
design. All aspects of the FOSM system are intended to facilitate the value-adding 
activities of third-part developers. That is, it should be easy for users to install lo- 
cally FOSM methods or views or profile components created elsewhere. 

FOSM Data Model 
A generic tree-shaped data structure pro- 
vides a conceptual data representation that 
meets FOSM requirements. A tree can 

capture the minimum essential subset of 
structure from relational, object-oriented, 
and other database systems. Each type of 
FOSM tree would represent one class of 

real-world objects and each individual 
FOSM tree would correspond with one 
member of that class. 

Any data model that can be represented 
in an extended entity relationship (EER) 
schema can have read-only data objects 
extracted from it into tree-shaped con- 
figurations.  Figure 6 shows how 
tree-shaped data objects may be extracted 
from a portion of an EER schema. Multi- 
ple Occurrences in the tree of the same 
entity from the EER diagram indicates 
participation in different semantic roles. 
For example, the faculty data-object tree 
is rooted on the faculty entity and also 
includes “faculty” at two sublocations, 
one corresponding to the role of “depart- 
mental colleagues” and the other of “de- 
partmental chair.” Individual FOSM trees 
are one-t+many downward, and lower 
nodes can be considered as sets of s u h b -  
jects, related in some role as attributes of 
the next higher node. 

Individual tree-shaped data objects 
could be “selected” from a data server 
either through value-based or key-based 
queries. Once obtained, the data objects 
could be manipulated using operators 
such as “prune” and “graft” (Fig. 7). These 
operators are similar to those of the “pro- 
ject” and “join” operations in relational 
databases. Prune and graft are “closed” in 
that they are defined to have well-formed 
trees a s  inputs and to produce 
well-formed trees as outputs. 

Prune and graft could be combined to 
give a “promote” operation that could 
move nodes higher up the tree, eliminat- 
ing intermediate nodes (and requiring 
some role definition refinements). The 
FOSM client would allow the user to cre- 
ate custom trees by pruning and grafting 
server-provided type trees, then store 
them locally to be used to drive queries to 
underlying data resources. This would 
give the ability to operate within a cus- 
tom-tailored environment, while sparing 
servers from the need to maintain profile 
information on individual users. 

FOSM Data Identifiers 
To be “federation ready” a FOSM server 
would have to provide absolutely stable, 
unambiguous identifiers for every rooted 
object in its published collection. Simi- 
larly, every external reference in a FOSM 
server would be in the standard format for 
global FOSM names. All rooted FOSM 
objects must be unambiguously identifi- 
able in a global FOSM name space of 
arbitrary identifiers. Although biological 
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7. The “prune” operator is similar to the relational “project” operation. The ‘‘gratl’’ op- 
erator is similar to the relational “join” operation. The “promote” operator allows the 
movement of nodes to higher positions in a tree, through a combination of pruning and 
grafting. If promotion results in multiple nodes defined over the same domain being at- 
tached at the same point in the tree, the “merge” operator combines them. 
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names are too volatile to serve as primary 
FOSM identifiers, value-based queries of 
FOSM objects must also be supported so 
that researchers can interrogate the system 
using familiar terms. Indeed, one might 
expect that most key-based FOSM que- 
ries would be produced by software, not 
human users. 

In a single copy of a stand-alone data- 
base, object identity is a fairly simple con- 
cept. However, in a FOSM system, copies 
of objects will be distributed from servers 
to clients, where they may be stored for 
local use. Occasionally, then, clients will 
need to compare object copies to deter- 
mine their equivalence. This raises subtle 
notions of identity. 

For example, each FOSM object can 
be subdivided into five components: (1) a 
database identifier that specifies the infor- 
mation resource from which the object 
may be obtained, (2)  a class identifier that 
specifies the class of objects to which the 
object belongs, (3) an associated type tree 
that specifies what attributes objects of 
that class could have (each FOSM class 
has one of these trees), (4) an object iden- 
tifier that provides a unique identifier for 
the individual object, within the informa- 
tion resource, and (5) an associated 
data-value tree that specifies what attrib- 
utes the particular object does have and 
gives their values (each FOSM object has 
one of these trees). (Note: because new 
findings sometimes lead to reclassifica- 
tions of real-world objects, FOSM object 
identifiers should be unique within FOSM 
servers, not merely within FOSM classes, 
so that object identity could be preserved 
across category reclassification.) 

This specification allows for several 
different concepts of equivalence, of 
which we will discuss four: object equiva- 
lence, class equivalence, version equiva- 
lence, and value equivalence. In all cases 
discussed below, it is assumed that the 
objects come from the same information 
resource. 

8 Two FOSM data objects exhibit class 
equivalence if they are from the same 
FOSM object class. 
Two FOSM data objects exhibit ver- 
sion equivalence if they are class 
equivalent and share the same type 
tree. 

.Two FOSM data objects exhibit 
value equivalence if they are version 
equivalent and have identical 
data-value trees. 

a Two FOSM data objects exhibit ob- 
ject equivalence if they refer to the 
same real-world object and they 
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have the same object identifier. This 
is the most fundamental component 
of identity and it persists across value 
updates to the object attributes and 
possibly even across schema updates 
to the object type tree. 

Combinations of these three equiva- 
lences lead to different kinds of identity: 

Two copies of FOSM objects are se- 
mantically identical if they exhibit 
class and object equivalence. 

.Two copies of FOSM objects are 
computationally identical if they ex- 
hibit class, object, and version 
equivalence. However, computation- 
ally identical objects could have dif- 
ferent values stored for the object 
attributes. 

.Two copies of FOSM objects are 
truly identical if they are computa- 
tionally identical and they exhibit 
value equivalence. 

Additional identity concepts could be 
derived from these. For example, we 
might want to say that two objects are 
apparently identical if they are class 
equivalent, with identical type and value 
trees, but different object identifiers. 

To facilitate different kinds of identity 
comparisons, a FOSM object could cany 
two computed identifiers, a type identifier 
(defined over the object type tree) and a 
value identifier (defined over its value 
tree), in addition to its already assigned 
class and object identifiers. These com- 
puted identifiers would be calculated on 
the fly, whenever an object is provided by 
a FOSM server, much as check sums are 
calculated anew each time an IP packet is 
placed on a physical medium. These cal- 
culated FOSM identifiers would also be 
useful for detecting corruption in local 
copies of FOSM objects. 

Type identifiers could also be used to 
associate particular computational meth- 
ods with FOSM objects. For example, se- 
mantically identical DNA sequence 
objects could be represented in computa- 
tionally different FOSM trees that are 
equivalent to flat-file, ASN. 1, BLAST, 
etc., formats. Each format would have a 
specific type identifier that could be used 
automatically by software to determine 
the appropriate parser to be used in ana- 
lyzing the data. 

Schema version changes would also be 
reflected in type-identifier changes. To 
allow ready detection of specific versions, 
perhaps the type identifier should contain 
two parts: one specifically giving the ver- 
sion number and the other a computed 
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8. In a FOSM environment, individual data resources would publish their holdings 
to the network in a standard tree-structure format, according to standard proto- 
cols. Nodes marked with “m” and “h” represent sets of tokens that would corre- 
spond to the root nodes for mouse-gene and human-gene objects respectively. The 
inclusion of these external references as leaf nodes indicates that the designer of the 
local database believes that these external objects are related to the database’s pri- 
mary objects in some role (which is defined in the local database). The decision to in- 
clude such references, and the populating of them with values, would be the 
responsibility of the local FOSM server. 

value derived automatically from the con- 
tents of the type tree itself. 

A major goal of FOSM is providing a 
scalable, automatable system for deliver- 
ing structured data objects across a federa- 
tion of autonomous resources. Achieving 
this will require that type identifiers con- 
tain a computed component so that soft- 
ware can check automatically to 
determine if it knows how to read and 
process the data. Data resource developers 
will differ in their personal notions of 
what changes are sufficiently significant 
to constitute a change in the designated 
version of the database. However, some 
third-party software may rely upon the 
precise configuration of data from a par- 
ticular resource and would break in the 
face of even tiny changes in the schema. 
The only way to ensure that type identity 
is genuinely preserved is through the use 
of check-sum-like computed identifiers. 

In the short term, care must be given 
toward the specification of appropriate 
global naming conventions to enable a 
global information infrastructure for biol- 
ogy. In the longer term, efforts by the 
overall networking community to modify 
network protocols to support transparent 
interactions among networked informa- 
tion resources, not just networked hosts, 
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will likely provide a more complete solu- 
tion [ 171. Until such functionality is deliv- 
ered,  those developing federated 
biological systems should take care to 
communicate their naming requirements 
to the appropriate organizations and de- 
velopers. 

Data-Level Integration Across 
Multiple FOSM Servers 

FOSM would support data-level inte- 
gration across data objects from multiple 
servers. For example, information on 
mammalian genes could be published by 
several different FOSM servers. Each 
server would have the local responsibility 
and autonomy for formatting and publish- 
ing its own holdings in the form of trees. 
Leaves on the trees published by one data 
server could contain “tokens” that repre- 
sent the roots of specific data trees avail- 
able from other servers (Fig. 8). 

Although one might expect data struc- 
tures describing human and mouse genes 
to be semantically very similar, or even 
identical, here it is assumed that they are 
semantically distinct. Social pressures 
might exist on data resources to provide 
physically similar trees for semantically 
similar objects. However, these pressures 
would be external to FOSM itself, which 
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9. Related data objects may be obtained from different FOSM servers, then grafted 
together to give new, compound objects. All three of these grafted data objects repre- 
sent homologies between human and mouse genes, but each from a different per- 
spective: that of the human gene, the mouse gene, and the homology itself. In a 
DBMS, such inconsistency might be seen as a problem. In a DBPS, the ability to rep- 
resent diverging viewpoints while maintaining syntactic consistency is a feature. 

only requires that servers adhere to the 
FOSM tree syntax. 

As long as all participating data servers 
followed these simple guidelines, and pro- 
viding that a global naming system of- 
fered access into a stable, unambiguous 
naming space for FOSM objects, generic 
client software could allow users to navi- 
gate easily among related data items from 
different servers. 

If data from different servers are com- 
bined using the “graft” operator, new trees 
are produced. For example, Fig. 9 shows 
human-gene objects extended to include 
mouse genes as attributes, and vice versa. 
Mammalian-homology data objects 
could be extended to include both human 
and mouse genes as attributes. 

If data about human genes, mouse 
genes, and their possible homologous re- 
lationships were contained in a single da- 
tabase, obtaining the set of asserted 
homologous gene pairs would involve a 
simple, unambiguous join. In the FOSM 
model, however, individual data provid- 
ers may offer data objects that reference 
objects in other databases. Different data 
providers would be free to publish logi- 
cally equivalent, but not necessarily con- 
tent-identical, linkages among data 
objects, as there would be no formal re- 
quirement of identity. This freedom to 
diverge is necessary to allow the informa- 
tion resources to act as scientific literature, 
which must be able to support differences 
of opinion. 

Summary 
Biological databases, having survived 
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a crisis of data acquisition, now face a 
crisis of data integration. Meeting this 
challenge will require the development of 
technical and sociological processes that 
allow multiple databases to interoperate 
functionally, while still maintaining much 
of their individual managerial autonomy. 
Horizontal partitioning of data, as is the 
case across some genome data resources, 
makes the challenge of interoperability 
especially acute, since achieving good in- 
teroperability under these circumstances 
will require the development of consider- 
able semantic consistency among partici- 
pating sites. 

Computer solutions that, from initial 
design onwards, are aimed at meeting the 
specific needs of some particular problem, 
rarely evolve into generic interoperable 
systems. Solutions that are based on mini- 
mal generic components are more likely 
to evolve gracefully into specific systems, 
especially if the specificity is added as 
layers on top of the underlying generic 
foundation. Networking architectures 
have followed this pattern and the evolu- 
tion of database systems from file-based 
approaches to cutting edge object-ori- 
ented databases show a similar trend. 

To be truly useful to the widest range 
of potential users, on-line genome infor- 
mation systems should be capable of func- 
tionally interoperating, at some minimum 
basic level, with many different informa- 
tion systems (such as nucleotide sequence 
databases, clinical phenotype information 
systems, metabolic databases, systematics 
databases, etc.). Successful interoperation 
among a large, diverse, and autonomous 
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set of independent data sites can only oc- 
cur if all sites use equivalent generic tools 
to publish their holdings according to 
common protocols and syntaxes. Gopher 
and World-Wide Web offer examples of 
the power in this generic client-server 
approach to information distribution, but 
they do not meet all of the needs of those 
interested in publishing structured data. 

An extended data-publishing model, 
perhaps related to the FOSM concept dis- 
cussed here, will be required if these needs 
are to be met in a generic fashion. In such 
a model, local sites would still be free to 
manage their data internally, according to 
whatever methods seem best. More im- 
portant, collections of sites would be free 
to react to scientific needs for conver- 
gence upon similar methods for internal 
data management, as well as upon com- 
mon consensus data models and seman- 
tics for external data publication, while at 
the same time using generic methods, pro- 
tocols, and syntaxes for data publication. 
The adoption of generic client-server 
methods for data distribution is purely an 
enabling technology. By not requiring 
common semantics of anyone, it allows 
for unrestricted syntactic interoperability. 
By permitting the adoption of common 
semantics by some, it facilitates unre- 
stricted semantic interoperability. 

The genome community could attain 
the best of both worlds if they achieve 
interoperability by sandwiching generic 
data-distribution methods between con- 
verging internal data-management sys- 
tems on one hand and common public 
consensus data models and semantics on 
the other. This would yield a unified con- 
ceptual model for genome data, delivered 
in a system capable of generic interopera- 
tion with non-genome resources. 
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