
Robert I. Robbins
US Deportment of Energy
Johns Hopkins Univeisity

746

Information Infrastructure
e original goals of the Human Genome T” Project (HGP) were: (1) construction of

a high-resolution genetic map of the hu-
man genome; (2) production of a variety
of physical maps of all human chromo-
somes and of the DNA of selected model
organisms; (3) determination of the com-
plete sequence of human DNA and of the
DNA of selected model organisms; (4)
development of capabilities for collecting,
storing, distributing, and analyzing the
data produced; and (5) creation of appro-
priate technologies necessary to achieve
these objectives [IS]. Goals 1-3 laid out
the challenge for bench research, Goal 4
recognized the essential role of data man-
agement, and Goal 5 was a frank admis-
sion that the project was begun before the
necessary technologies were in hand. In
the spirit of that candor, it is appropriate
to ask whether the HGP is meeting its
goals and, in particular, whether the com-
putational components will be adequate
for handling the volume and complexity
of data generated by this project.

In this essay, we assert that the most
pressing information-infrastructure re-
quirement now facing the HGP is achiev-
ing better interoperation among electronic
information resources. Other needs may
be equally important (better methods to
support large-scale sequencing and map-
ping, for example), but none are as press-
ing. The problem of interoperability
grows exponentially with the data. Efforts
to develop distributed information pub-
lishing systems are now underway in
many locations. If the needs of the genome
project are not soon defined and articu-
lated, they will not be addressed by these
external projects. De facto standards will
emerge and if these prove inadequate for
scientific data publishing, the research
community will have little choice but to
tolerate this inadequacy indefinitely.

The Challenge of Genome Data
Management

Figure 1 shows the growth in the
world’s sequence databases from the first
release of GenBank to 1994. Although the
data volume is increasing exponentially,
doubling in less than two years, merely
keeping up is no longer a problem. The
sequence databases were falling far be-
hind the data flow in the mid 1980s [5],
but technical and sociological advances

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

now allow the databases easily to absorb
a far greater amount of new information
than previously conceivable. In 1986, 13
months elapsed between the publication
of a sequence and its appearance in the
databases. Now, the Genome Sequence
Data Base processes a typical submission
within 13 hours. Every two to four weeks,
more sequence data enter the databases
than did so in the first five years of their
existence.

The map databases are also keeping up
with the growth in the number of genetic
markers in humans and selected model
organisms. The past crisis of data acquisi-
tion has been resolved, leaving us to face
a new and inherently more difficult crisis
of data integration.

The importance of integrating genome
information resources has been recog-
nized in reports from groups of leading
biologists (e.g., the Genome Science and
Technology Center directors; [3]) and of
informatics experts (an invitational meet-
ing held in Baltimore in April, 1993; re-
ported in [1 11):

A...major...goal of genome informatics
should be the integratioa of genome and
genome-related databases [3].

Achieving coordination and interoper-
ability among genome databases and other
informatics systems must be of the highest
prior@. We must begin to think of the com-
putational infrastructure of genome re-
search ... as a federated information
infrastructure of interlocking pieces (1 I] .

For historical and operational reasons,
HGP data are now and will continue to be
housed in several independent data re-
sources. Already, the lack of interoper-
ability among these resources makes
answering simple questions overly diffi-
cult, leading the Baltimore report [1 I] to
observe:

An embarrassment to the Human
Genome Project is our inability to answer
simple questions such as, “How many
genes on the long arm of chromosome 21
have been sequenced?”

Removing this embarrassment will re-
quire several interoperability improve-
ments:

0739-51 75/95/$4.0001995 November/December 1995

180000000

160000000

140000000

120000000

100000000

80000000

60000000

40000000

20000000

0

87 88 89 90 91 92 93 94
T

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GenBank Release Numbers

1. Growth in the world’s collection of nucleotide sequence data, shown as the
number of bases contained in every release of GenBank from 1 through 82. The
numbers at the tops of the dotted lines show years (which do not necessarily coincide
with a particular number of releases). The shaded bar in the middle represents the
period in the mid 1980s when the data volume was, for a time, more than the data-
bases could handle. (Data supplied by Michael Cinkosky and Dennis Benson.)

Technical interoperability must be
achieved so that minimum functional
connectivity can be assumed among
participating information resources.
This would require network connec-
tivity and database interoperability.

8 Semantic interoperability must be
developed so that meaningful asso-
ciations could be made between data
objects in different databases. This
would require enough agreement
about the meaning of the data so that
assertions about relationships would
be at least possible.
Social interoperability must occur so
that meaningful associations are
made among data objects in different
databases. This would require suffi-
cient social pressure to motivate the
creation, entry, and maintenance of
this information, since each asserted
link between data objects is an act of
scientific creativity and must be
made on the basis of expert knowl-
edge, not merely through routine
computations on existing data.

These advances will likely occur in the
order given. Without technical interoper-
ability, the motivation for providing se-
mantic interoperability is lacking.
Without semantic interoperability, it is
difficult to define, much less enter, links
between objects.

Another embarrassment is the time that
genomic databases have been promising,
but not delivering, connectivity with other

Novernber/Deternber 1995

information resources. The problem has
been a simple absence of the technical
interoperability infrastructure necessary
to enable and motivate the remaining
work. However, recent advances now
promise that solutions may soon be at
hand. This essay will describe some rele-
vant trends and advances, and will de-
scribe a reference architecture to facilitate
the remaining steps. For reasons of space,
neither semantic nor social interoperabil-
ity will be treated. Semantic compatibility
and other aspects of genome informatics
have been discussed elsewhere [7-111.

A Taxonomy of
Multidatabase Approaches

Although the development of truly in-
teroperable federated database systems is
still considered a research problem in
computer science (e.g., see the collection
of papers in [4]), there have been many
calls for a federated approach to the man-
agement of information in biology, both
within and outside the HGP.

The vocabulary used to describe in-
teroperating distributed computer systems
varies among authors. In this essay we
follow the terminology and taxonomy of
Sheth and Larson [14]: A multidatabase
system supports simultaneous operations
on multiple (perhaps different) compo-
nent databases. A federated database sys-
tem (FDBS) has autonomous components,
whereas the components in non-federated

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

database systems are under a unified man-
agement. A federated system with no strong
central federation management is consid-
ered loosely coupled. A system with strong
central management and with FDBS admin-
istrators controlling access to the compo-
nents is tightly coupled. Tightly coupled
systems can have one or more centrally
managed federated schema.

Tightly coupled FDBSs offer several
advantages, such as clearly integrated
views for users and the ability to update
participating databases. These systems
are, however, fragile when changes occur
in the participating databases. They have
proven difficult to achieve in practice,
even within single corporations under uni-
fied management [2]. Loosely coupled
systems are more easily achieved, but they
can put much of the data-integration bur-
den on users (or third-party developers).
Many authors consider the problem of
coordinated updates across loosely cou-
pled FDBSs to be essentially insoluble.

Biological Information Resources
as Publishing

Databases within commercial enter-
prises are information resources that af-
fect the behavior of the organization.
Paychecks are issued, products manufac-
tured, shipments made, and invoices sent,
according to the contents of the databases.
Since acting on the basis of inconsistent
data would lead to chaos, both within the
organization and with its external interac-
tions, commercial database management
systems have emphasized update methods
that maintain internal data consistency
and data integrity. Not unexpectedly, this
emphasis has carried over into research
efforts to develop multidatabase systems.

Scientific community databases, how-
ever, have more in common with scientific
publishing than with business database
management systems. Projects such as the
Genome Data Base, or GenBank, offer
communication channels through which
observations, sometimes inconsistent ob-
servations, may be shared among re-
searchers. The role of databases in
communication has been explicitly recog-
nized by leading genome researchers [6]:

Public access databases are an espe-
cially important feature of the Human
Genome Project. They are easy to use and
facilitate rapid communication of new
findings (well in advance of hard-copy
publications) and can be updated efj-
ciently.

747

If

These biological information re-
sources, as seen by users, are better con-
ceived as database publishing systems
(DBPSs), not as database management
systems (DBMSs). Although DBMSs are
used to build some of these information
resources, when the data are made avail-
able to users, they are “published” in a
sense, and it is read-only interoperability
among all the resulting DBPSs that is
greatly needed by the broad scientific
community. (Update interoperability in-
volving smaller subsets, sometimes just
pair-wise combinations, of the underlying
DBMSs is also needed, but that will not
be discussed here.)

Achieving read-only interoperability
among loosely coupled DBPSs is much
easier than doing so with read-write
DBMSs. With DBPSs, the notions of
“loosely coupled” and “tightly coupled”
are better considered as naming the ends
of a continuum of relationships, rather
than designating two mutually exclusive
states. Figure 2 illustrates some possible
points along the continuum.

Stand-alone database management
systems provide robust local functional-
ity, but low interoperability across hetero-
geneous sites. Loosely coupled generic,
read-only systems, such as gopher and
World-Wide Web (WWW), provide wide
interoperability, but with lower local
functionality. Because the incremental
cost of mounting gopher and WWW serv-
ers is small for those already building
large local databases, many biological in-
formation resources are now using gopher
and WWW to supplement, not replace,
existing services.

The value of participation in widely
available generic systems, especially to

I

users, can be astoundingly high, since the
overall value of an interoperable network
of cross-referencing information systems
increases non-linearly with the number of
participants. Thus, for the HGP inparticu-
lar and for biology in general, attaining
increasing generic database interoper-
ability among all relevant information re-
sources must be a continuing goal.

Achieving Interoperability
Many hold that achieving full read-

and-write interoperability across multiple
databases requires an integrated data
model, or schema, spanning the participat-
ing information resources. A recent re-
finement is the integration of only
portions of the local schema, which may
be specially modified to facilitate integra-
tion. These modified subschemas are
known as export schemas [4, 141.

Export schemas buffer against changes
in the underlying databases, but only if the
export schemas themselves are stable. U1-
timate fragility due to inevitable changes
in the underlying systems has led Chora-
fas and Steinmann [2] to dismiss global
schema integration as impractical and to
characterize such attempts as an “ap-
proach which has been tried and failed
since 1958.”

Evolution of Complex,
Integrated Systems

Building large, complex software sys-
tems is best done through the assembly of
stable, interoperating components. At-
tempts to build truly large systems as in-
tegrated monoliths rarely succeed, since
the inter-related complexity of the result-
ing behemoth soon exceeds the ability of
programmers and managers to track and

Tightly Coupled:
i

single organizational entity overseeing information
resources relevant to genome research

adoption of common DBMSs at participating sites

shared data model across participating sites
I
I v

Loosely Coupled:

common semantics for data publishing

common syntax for data publishing

2. The distinction between tightly coupled and loosely coupled systems, seen as desig-
nating the ends of a continuum of relationships among database publishing systems.
The tightest level of coupling yields a completely integrated, single management
structure. The loosest level of coupling involves merely a collection of wholly inde-
pendent organizations that publish their data in a common syntax.

748 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

maintain. Ideally, systems should be
based, at least in part, on a foundation of
components developed elsewhere, since
without some cumulative development,
continued functional advances cannot oc-
cur.

In 1982, Frederick Brooks [l] ob-
served that writing a simple, stand-alone
program is relatively easy, compared with
the additional effort required to extend
that program so that it acquires prod-
uct-like qualities of robustness and port-
ability, or so that it can function as a
component in a complicated system.
Crossing the complexity boundaries to
achieve these improvements, Brooks esti-
mated, increases the level of effort at least
ten-fold. However, both characteristics
are required to produce the programming
systems product, “the truly useful object,
the intended product of most system pro-
gramming efforts.” In short, building
good components is hard work, but essen-
tial, if large integrated systems are the
goal.

If Brooks’ insights are any guide, the
development of interoperating biological
databases will require an engineering so-
lution that maximizes the utility and
cost-effectiveness of the entire system, not
the elegance of individual components.

Historical Trends in Database Manage-
ment
Early on, managing data was seen as just
another computational problem, to be
solved by local programmers. Custom so-
lutions were developed to handle all as-
pects of the system’s behavior, with the
exception of a few basic services, such as
file management, provided by the operat-
ing system. Over time, the realization that
nearly all data-management problems re-
quire certain common services led to the
development of commercially available
DBMSs.

DBMSs provide their services tran-
sparently, so that developers need only
specify what must be done, while allow-
ing the underlying DBMS to determine
how it will be accomplished. Thus, when
specific applications are produced using a
particular DBMS, the overall system can
be seen as operating in two parts:

w a top layer consisting of the applica-
tion program itself, and
a bottom layer, or layers, consisting
of relatively transparent services pro-
vided by the DBMS and called by the
application program as needed.

The general trend has been to increase

NovembedDecember 1995

the activities delivered as transparent
services. Early DBMSs added a data
model (schema) to the application, ab-
stracted the underlying data structures into
records, and moved the processing of in-
put and output into generic tools. The
relational model further abstracted the
data structures into tables and pushed ac-
cess methods into the generic tool layers.
Object-oriented databases are now mov-
ing even more into the generic tools layer,
while abstracting the data structures into
objects that encompass both data and
methods--code that manipulates the data.

This pattern of increasing reliance
upon generic services continues to spread,
with some systems, exemplified by
WWW, merging generic information-re-
trieval and network tools into a conceptu-
ally unified, yet physically distributed
information space.

Layered Architectures
in the Networking Model

Networking has followed a similar evolu-
tion, with generic functionality being
pushed increasingly into layers below the
executing application. Early networking
solutions were ad hoc, local, and proprie-
tary, so that application programs had to
be custom designed for a specific network
infrastructure. Now, however, generic
networking protocols allow application
programs to exchange specific messages
transparently.

A layered stack of software protocols
allows application programs running on
physically separated computers to interact
as if they were directly connected. Each
application program communicates to a
layer just underneath it, according to
standard protocols. Bottom layers on the
sending system prepare the message for
transmission on some physical medium.
Those same layers on the receiving system
retrieve the message from the physical
medium, then decode and reconstruct it,
so that the message presented to the appli-
cation program on system B is exactly
what was sent by the application program
on system A (Fig. 3). Because it would be
impossible to guarantee perfect transmis-
sion of every packet on the physical me-
d ium, appropriate metadata are
transmitted so that the receiving system
can determine that packets have been lost
or damaged, and request retransmission.

In this layered architecture, responsi-
bility for determining how various tasks
are to be accomplished resides within in-
dividual layers. Higher layers need only

November/December 1995

A 0 C
n n

Ethernet (802.3), Token Ring, FDDI, ATM, or ... 1
3. The seven layers of the ISO-OSI reference model. Virtual connectivity between
applications on different computers is accomplished via direct communication be-
tween adjacent layers within each system, according to well-defined protocols. For
example, abstract syntax notation (ASN.1) defines the communication protocols be-
tween the application and presentation layers. (ASN.1 is a powerful scheme for rep-
resenting data of arbitrary complexity. This has led some [cf. Ostell, this volume] to
devise very clever, non-networking uses for the protocol.)

be aware of what services are provided by
the lower layers. Although communica-
tion protocols between layers are well de-
fined and stable, the internal details of
how a layer is implemented may be
changed at any time.

The layering of responsibility for how
things are to be done while preserving a
well-defined stack of what services are
needed has given modern networking its
great strength and flexibility. So long as a
layer continues to meet the specifications
for what is to be performed, improvements
may be made in how it carries out its tasks,
without necessitating changes in other
layers. Entire layer modules may be read-
ily snapped out, and others substituted.
For example, an underlying ethernet layer
may be replaced with FDDI, with no
changes whatsoever required in programs
running at the application layer.

The experience of networking illus-
trates an important principle of distrib-
u ted , scalable design: distributed
interoperating systems benefit from layers
of collectively designed but independently
developed components, interacting
through defined, stable, open protocols.

Interoperating Genome
Information Resources

Obtaining interoperability among
genome and genome-related databases
involves two related but distinguishable
goals:

m Increase the homogeneity of partici-

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

pating genome systems (i.e., tighten
the coupling among the data systems
of the genome community). This
would allow genome data to be more
easily obtained from multiple sites in
a common format appropriate for in-
tegrated analyses. This will require
achieving greater semantic and social
interoperability among the systems.
Develop general interoperability
while tolerating loosely coupled het-
erogeneous systems (i.e., participate
in a loosely coupled federation of
general biological information re-
sources). This would allow the fur-
ther integration of genome data with
other relevant data, such as metabolic
information, structural biology data,
comparative findings, etc. These
needs could be met through a more
loosely coupled, read-only ap-
proach.

These requirements are not mutually
exclusive and, in fact, are more likely to
be mutually reinforcing. Efforts to
achieve intra-community homogeneity
can be made at the same time that steps are
taken to permit interoperation with het-
erogeneous systems. Both paths should be
followed simultaneously, since within a
small cooperating community (e.g., a few
collaborating sites), homogeneity may be
attainable, whereas in larger communi-
ties, heterogeneity is inescapable.

Although achieving a moderately
tightly coupled architecture might be a
useful goal for genome databases, simul-

749

taneous participation in a loosely coupled
system is also necessary for several rea-
sons:

It will take time to increase the cou-
pling across all genome databases
and there is a need to improve in-
teroperability before improved cou-
pling becomes widespread.
Although some genome databases
will likely converge upon a few com-
mon data models and database sys-
tems, the probability that the entire
community will converge upon a sin-
gle standard is essentially zero.
Therefore, loosely coupled interac-
tions among different groups of
genome databases are essential.

.The HGP community will receive
real benefits from participating as a
component in other, larger federated
information infrastructure systems,
and these larger systems will surely
be loosely coupled at best.
The use of loosely coupled distribu-
tion systems is actually likely to fa-
cilitate the development of more
tightly coupled approaches. The
ready availability of data from multi-
ple sources will give wide exposure
to arbitrary differences in data mod-
els, resulting in significant commu-
nity pressure for convergence upon
greater semantic consistency.

If networking experience is a guide,
any suggestion that the HGP requires only
highly coupled information resources
must be soundly rejected. Network con-
nectivity is useless unless an entire stream
of data can be moved reliably from one
host to another. But networking technol-
ogy cannot guarantee the delivery of any
given packet. Therefore, reliable
end-to-end transmission of data streams
is implemented on top of an unreliable
packet-transfer system. Protocols in
higher layers detect the inevitable occur’
rence of lost or damaged packets and re-
quest that they be resent, so that ultimately
a reliable duplicate of the data stream from
the sender can be reassembled at the re-
ceiver. If efforts had been made to imple-
ment complete reliability at the packet
transfer layer, effective networking would
still be a far-off dream. This experience
illustrates an important principle of ap-
propriate foundations: sometimes robust
solutions are best built upon seemingly
weak foundations.

Recent Advances
New methods for creating loosely cou-

pled federations of read-only electronic

publications are being rapidly adopted
across the Internet. The implications of
these advances for genome informatics
are best appreciated after first briefly con-
sidering historical patterns in the develop-
ment of bio-informatics systems.

Evolution of Biological
Information Systems

With early computerized biological in-
formation resources, users had to install
the entire system, software and data, on a
local computer before the local value of
the resource could even be tested. As in-
stalling these systems was expensive, both
in effort and in resources, their appeal was
limited.

The next step was the development of
dedicated client-server systems, in which
the data resided on a centrally located
server and only the client software had to
be installed locally. This approach had
several advantages, especially in reducing
the local disk-space requirements and in
providing access to up-to-date data with-
out requiring that the data be distributed
to all users. It suffered from not providing
any interoperability among different in-
formation resources.

The most recent step has been the
emergence of loosely coupled generic cli-
ent-server systems, such as WWW. Here,
a single generic client is capable of access-
ing data on any server that “publishes” its
data according to the generic server pro-
tocol. Incorporated in the protocols are the
ability of one data server to “reference”
information present on another server.
This allows the ready creation of a basic
form of read-only interoperability.

Much of the power of this approach
derives from the way generic components
and standard cross-referencing schemes
allow the user to perceive systems to be
interoperating when in fact the operators
of the systems may not even know that
each other exists. This illustrates an im-
portant principle of anonymous interoper-
ability: scalability is greatly enhanced i f
interoperation can be effected between
anonymous partners.

Power of Generic
Client-Server Computing

Although database research has em-
phasized tightly coupled approaches, re-
cent experience has shown that
appropriate protocols, coupled with mid-
dleware tools, can make some loosely
coupled systems incredibly effective, al-
beit in a read-only manner. The two most

successful recent internet applications
have been gopher and WWW, both of
which are loosely coupled federations
serving read-only multi-media hypertext
and other file-based resources. Users
have voted with their feet, so to speak;
over the past 18 months, usage of these
products has increased nearly 20-thou-
sand-fold, while the internet itself has
grown only &fold.

Distributed Object-Oriented
Programming

In addition to being generic cli-
ent-server systems, gopher, and W W
also exemplify a rudimentary form of dis-
tributed object-oriented programming.
Data objects, along with the names of
methods that may be used with the objects,
are provided by the servers, while generic
clients contain the actual hardwareae-
pendent binaries necessary for executing
the methods. This distribution of data and
methods between server and client offers
a powerful and extensible system for
searching, browsing, and retrieving data
of a variety of types.

Gopher and WWW
Gopher is a loosely coupled federation of
standard file servers, distributed around
the world, accessed with a copy of generic
client software. Any gopher server can be
interrogated from any client. The basic
interface is the simple menu, with every
menu choice either (1) retrieving another
menu, (2) retrieving text, data, graphics,
software, or other files, (3) initiating a
query directed to a specific database, or
(4) initiating a search for more menu
items. The power of gopher lies in the
invisibility of its infrastructure to users,
who feel they are just making choices
from options presented by a single system,
when in fact they can be jumping from
computer to computer, around the world.

At its most basic level, each gopher
transaction is basically a “please send me
a thing named X ’ request directed to a
particular server, followed by the sending
of X. The server has no knowledge, nor
any need for knowledge, about how it
happened that this particular client asked
for that particular object. The elegance is
in the simplicity-at base level, every
transaction is just a request-response ex-
change. Additional functionality is
achieved by layering other logical func-
tions on that fundamental transaction.

Although gopher permits cross refer-
encing between servers, in the sense that

750 IEEE ENGINEERING IN MEDICINE AND BIOLOGY November/Detember 1995

menus on any server can reference files or
other menus on other servers, it does not
support cross referencing at the level of
actual objects being returned. The WWW
approach, however, moved the ability to
cross reference into the data objects them-
selves, thus creating a distributed hy-
pertext information space.

WWW architecture is based on: (1) a
standard (hypertext markup language, or
HTML) for producing formatted text that
may contain embedded cross references to
other such files, (2) a naming scheme
(Uniform Resource Locators, or URLs)
that allows for the unambiguous resolu-
tion of such embedded references, and (3)
a protocol (hypertext transfer protocol, or
HTTP) for the efficient retrieval of docu-
ments in a hypertext environment. The
WWW philosophy includes a commit-
ment to provide access to information via
older protocols (e.g., ftp, WAIS, gopher)
as well as being sufficiently extensible to
accommodate new protocols as they be-
come available. Like gopher,
WWW-conforming systems can spawn
external “viewer” programs to present
new data types to the user.

The National Center for Supercom-
puting Applications (NCSA) developed
and released Mosaic, a graphical browser
into WWW information resources. Mo-
saic added the ability to display graphical
images directly in the browser, so that
HTML source pages could contain em-
bedded references to graphics files, which
would be displayed as images in the basic
browser display. Extensions now allow
the embedding and presentation of sound
and full-motion video, creating a
multi-media hypertext gateway into the
Internet information space. The success of
Mosaic has stimulated other developers,
so now there are many WWW browsers
available, each competing with each other
to add new functionality.

A truly remarkable aspect of the
WWW phenomenon has been its rapid
acceptance. Client usage has increased be-
cause of ease of use, but probably more
importantly because of the rapid prolifera-
tion of WWW information servers. The
value to the user of an integrated set of
information resources increases greatly
with the number of participants. The
number of WWW sites has now reached
the point where a runaway positive feed-
back system has been generated.

Nearly every major biological data-
base now publishes information via
WWW, and more resources are coming

online daily. Anyone with a computer at-
tached to the internet and a copy of WWW
server software (available free) can be-
come a publisher of electronic informa-
tion simply by preparing a few files in
HTML format, making them available
through their server, and then sending out
an announcement of the new resource and
giving its name in URL format. From that
moment on, all of the millions of users
with client software have instant access to
the resource. This illustrates an important
principle of value explosion: once the
number of components in an interoperat-
ing network of information resources
passes a critical size, the overall value of
the network grows explosively.

Networks as Distributed Information
Spaces
The generic client-server system for re-
trieving information from the Internet, ex-
emplified by WWW, has stimulated a new
vision of just what the Internet represents.
Schatz and Hardin [131 note:

Originally intended as a distributed
network of computers, [the Internet] is
increasingly viewed instead as a distrib-
uted space of information. Rather than
transferring files between computers, a
user navigates an information space of
distributed items of information. The US-
ers concentrate on the logical structure of
the interconnection of information and
data items rather than on the underlying
physical stricture of computer and com-
munication systems.

This new concept of the internet raises
many interesting challenges, too numer-
ous to consider here. Some relevant dis-
cussions may be found in [171.

Middleware Extends Functionality
Initially, gopher and WWW systems

were available only for retrieval of text
and file-based information or for
multi-media hypertext. However, clever
extensions, particularly in the develop-
ment of middleware and gateways to other
systems, are allowing these tools to access
more structured data and to provide an
apparently integrated joint interface to
more than one server.

Powerful middleware can be devel-
oped simply by sandwiching custom code
between a generic server and a generic
client. Users accessing the server side see
only an integrated data resource that re-
turns information according to standard

protocols. The server, acting as middle-
man, takes information provided by the
user, manipulates it using whatever cus-
tom routines are needed, dispatches the
results to one or more local or remote
servers, receives, processes, and inte-
grates the results from the various servers,
and finally presents them to the user.

Examples of middleware can be found
that provide general network services,
such as the veronica search engine (which
helps users locate information resources
in Gopherspace), or that meet specific
needs for a target community, such as the
Johns Hopkins University’s GenQuest
server (which provides sequence analysis
services to the molecular biology research
community via a WWW server).

The GenQuest Server
GenQuest (available on the Johns Hop-
kins Computational Biology home page;
URL = http:/ /www .gdb.org/hop-
kins.htm1) uses a WWW forms interface
to offer a variety of analytical algorithms
(e.g., Smith-Waterman, FASTA, Blast)
for analyzing nucleotide or protein se-
quences. The user selects the kind of se-
quence to be analyzed and the algorithm
to be used, sets parameters for the algo-
rithm, pastes the sequence into a receiving
window, and clicks a button to initiate the
analysis. The software at Hopkins refor-
mats the query and sends it to an on-line
analysis server at Oak Ridge, Tennessee.
The output from Oak Ridge is reformatted
into HTML, with hot links added dynami-
cally to all referenced objects available via
WWW. The results are then returned to
the user’s client software as a standard
HTML page, with hot links established to
all external data objects referenced in the
report. The user may then navigate over
the hot links to obtain related information.

Dan Jacobson (danj@gdb.org) was
able to assemble GenQuest very easily,
because a powerful online compute serv-
er, capable of returning analyses quickly
enough to service arealtime interface, was
available at Oak Ridge and because all of
the databases referenced in reports from
the Oak Ridge server publish their data
using standard WWW protocols and serv-
ers. The availability of these resources via
standard on-line protocols allowed Jacob-
son to create an apparently unified infor-
mation resource simply by providing
value-adding integration through pure
third-party middleware. Explicit support
and encouragement for value-adding ac-
tivities by third-party developers must be

November/Detember 1995 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 751

http://www

a guiding principle for genome informat-
ics.
Middleware Allows
Unilateral “Collaborations”
Operators of public databases often fiid
themselves besieged with would-be col-
laborators. No matter how public-spirited
the proprietors of the database, they will
have to turn some (occasionally many)
potential collaborators away, because true
collaborations require effort on the part of
both parties and no public database has
unlimited resources with which to pursue
collaborations.

If, however, databases publish via
widely used generic client-server sys-
tems, third-party developers can effect
apparent “collaborations” simply by de-
veloping appropriate middleware to inter-
act with the databases. For example,
developing a system like GenQuest re-
quires no active collaboration of any in-
formation resource providing data to
which hot links are generated.

Schatz and Hardin [13] describe the
power of such “unilateral collaboration”
in the context of Mosaic and WWW ex-
tensibility:

This is an example of the idea of “Open
Information Systems,” systems that allow
for the easy integration of existing infor-
mation sources and that can be extended
and expanded by users in ways that were
often unanticipated by the original devel-
opers. [emphasis added]

Empowering third-party developers to
expand the functionality of federated in-
formation resources without requiring the
active collaboration of the original devel-
opers promotes incredible functional
growth at very low cost. This illustrates an
important principle of value additivity: in
a well-designed information infrastruc-
ture, most value will ultimately be added
by third-party developers.

Data Publishing in a loosely
Coupled Federation

Although many scientific information
resources now use WWW technology to
share their data with others, additional
extensions are needed before such a sys-
tem can become truly effective for pub-
lishing structured data, not merely textual
information.

Why WWW is Not Enough
WWW is presently inadequate for re-

trieving and integrating some kinds of

152

richly structured scientific data. A few
issues are:

Set-based retrievals are needed,
which WWW does not directly sup-
port.

.Automated data retrieval must be
supported. This requires an automat-
able means for extracting the in-
tended semantics of published data
objects (as can be done with data
dictionaries of structured databases).
WWW homepages have no estab-
lished semantics and WWW pro-
vides no standard way to publish the
metadata necessary to declare se-
mantics.
A project operator, in the relational
sense, is essential. Some data objects
may have thousands of fields, but a
user may only need, say, three of
them. The idea of retrieving them all,
then editing locally, is not efficient,
since the database may contain tens
or even hundreds of thousands of
relevant objects.

.The abil i ty to do automated,
set-based, distributed joins (equiva-
lent to a relational JOIN across dis-
tributed databases) across data in
multiple servers is a crucial require-
ment for scientific data publishing.
This will require a significantly dif-
ferent client and a significantly dif-
ferent server than is presently
available with WWW.

.Identifiers that have much in com-
mon with relational primary and for-
eign keys are needed. URLs and
embedded URLs as presently imple-
mented do not have the necessary
semantic constraints. WWW offers
no support for referential integrity.

Some of the inadequacies in dealing
with structured data stem from the devel-
opmental history of gopher and WWW.
Both projects have intellectual ties with
information retrieval (IR), not database
development, and many differences exist
between the needs of database users and
the services delivered by IR systems:

IR query systems support ambiguous
queries and resolve them using prob-
abilistic retrieval systems, whereas
databases hold structured data and
provide exact answers to
well-formed, structured queries.

rn Hypertext browsers are intended for
human usability, with the assumption
that they will present multiple navi-
gation options to a user. Database
users frequently need a computa-
tional application programming in-
terface with which to interact, so that

they can direct an application pro-
gram to extract and analyze data sets
and then return the analytical results.
Hypertext supports flexible linkages
between objects, but more structured
linkages, with defined semantics
(such as a foreign key to primary key
reference), are required for structured
data.

The list could be extended. But, the
goal here is to offer neither the definitive
characterization of the problem nor the
definitive solution. Instead, we wish to
establish that, in their present form, the
widely available IR tools for easily fetch-
ing text and hypertext do not meet the
needs of those who desire integrated ac-
cess into structured databases.

Protocol Extensions Needed
The limits are not only with WWW,

but also with the networking protocols on
which it is based. At present, the funda-
mentals of internetworking assume that
the ultimate goal is to connect processes
running on different hosts. IP addresses
provide two-part, network:host identifi-
ers. A process can be associated with a
particular port on a given host, extending
the identifier to network:host:process.
U R L s add one more level-net-
work:host:process:object, with the
hard-wired assumption that these are all
related one-to-many, left-to-right.

What is needed instead is something
that identifies databases independently of
their host, and objects independently of
their location. And, more importantly, a
system is needed that would allow one
name to be associated with several differ-
ent instances of the same database or ob-
ject. For example, the Genome Data Base
(GDB) is a scientific database that has a
primary location in Baltimore, Maryland.
However, there are also more than a dozen
read-only, public copies of the database
scattered around the world. A naming
convention is needed that would let users
request objects from GDB without having
to specify which GDB location to use.
However, allowing the user the options of
specifying either a particular host or par-
ticular conditions (e.g., the nearest copy,
the most current copy, the currently
least-loaded server, the copy with the
highest average bandwidth between it and
the user, etc.) would be useful.

In short, rethinking of network archi-
tecture is needed, guided by expertise
from the worlds of networking, informa-
tion retrieval, and database development.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY Novernber/Deternber 1995

Without all three, whatever results will
likely be missing some key functionality.
A good discussion of extended net-
work-protocol functionality needed for
the future can be found in [171.

Reference Architecture for
a Federated Object-Server Model

In a keynote address at the Third Inter-
national Conference on Bioinformatics
and Genome Research, Robbins [12] in-
troduced a reference architecture for a
Federated Object Server Model (FOSM)
as a “robust straw man.” (A reference
architecture summarizes a system’s basic
functional elements and the interfaces be-
tween them. It identifies needed protocols
and suggests groupings of functionality,
but it does not imply a physical implemen-
tation.) FOSM is a straw man in the sense
that it is freely admitted not to be the (or
even necessarily a) solution. But FOSM is
also robust, in that it provides a focus
around which requirements for interop-
erating structured databases may be con-
sidered. An outline of the FOSM concept,
emphasizing some aspects of the data
model, is presented here. A more detailed
description is being prepared and prelimi-
nary drafts are available from the author.

FOSM Overview
Like WWW, the FOSM approach derives
data structures and protocols from a vision
of how a networked information space
might operate. In FOSM, servers provide
access to richly structured data objects
that can contain semantically well-de-
fined cross references to other data ob-
jects, allowing the rough equivalent of
distributed joins in a relational database.
The FOSM concept entails a strong com-
mitment to resource discovery and re-
source filtering. Resource filtering, the
deliberate restriction of queries to
“trusted” sources, is essential if retrieved
data are to be passed directly to other
software for analysis. Support for
third-party, value-adding developers is
central.

The FOSM approach is generally ap-
plicable to any set of information re-
sources involving structured data.
Examples would certainly include scien-
tific data resources and also many types of
commercial information, either to be pub-
lished externally for customers or as an
internal resource within an enterprise.
FOSM Assumptions and Requirements
A complete discussion of FOSM assump-
tions and requirements would require a

November/Detember 1995

book-length presentation. Some exam-
ples are given here.

Basic Assumptions
The FOSM system will follow a generic
client-server design, emphasizing auton-
omy of local sites and enabling structured
queries into structured data.

FOSM sites will publish their data in
a read-only format via a standard
object-server system (although they
will maintain their databases in what-
ever manner they choose).

mGeneric client software will obtain
data from the read-only federation.
With a single query, users will be able
to obtain sets of related data objects
from multiple independent data re-
sources.

General Requirements
The FOSM system:

should be relatively impervious to
changes in data volume or in the
number of participating sites-i.e.,
scalability is essential.
must facilitate value-adding activi-
ties by third-party developers.
must be data driven and self config-
uring. This means that a naive client
should be able to contact a s ,i ver for
the f i s t time and, as a result of trans-
actions with the server, produce a
usable user interface and initiate a
query dialogue.

mshould provide a local (i.e., client
side) API, as well as the networked
API into the server.
should permit “subscription” to
user-constructed queries. That is, us-
ers should be able to capture the steps
necessary to execute a query, then
request the system to execute that
same query on regular timed inter-
vals, returning data to the user via
some specified route (email, ftp,
etc.).

 must retrieve data in both human
readable and computable format.

mmust provide support for multiple
concepts of object identity.

mmust provide support for resource
discovery in a manner at least loosely
equivalent to that offered by the data
dictionary in a stand-alone database.

mmust support the equivalent of for-
eign key to primary connectivity be-
tween objects in different databases.
must be able to provide query opera-
tors more or less equivalent with the

erators of relational databases.
SELECT, PROJECT, and JOIN OP-

must provide some minimal support

for domain and referential integrity
across entries in multiple data re-
sources.

 must support both outer and true
equi-joins across distributed object
servers. Semantically well-defined
cross-referencing (equivalent to for-
eign key to primary key references in
a relational database) must be repre-
sentable in the data structures and
traversable by the system software. It
must be possible to traverse such
links without mandatory human in-
tervention (e.g., without mandatory
mouse clicking).

Server Requirements
FOSM servers will need to provide

actual data to satisfy queries and also
metadata to support building and operat-
ing the client interface and other automat-
able tools. Servers will also need to
provide some server-teserver informa-
tion to help maintain external references.

FOSM servers must:
m provide full-function anonymous

data serving. That is, their services
should be fully available to clients
unknown to the server until the first
query arrives.
support negotiation with clients re-
garding the details of protocols, data,
and formats. For example, a client
might specify the maximum amount
of data it could receive in one trans-
action or negotiate handshaking pro-
tocols. In addition, clients might
inform the server what methods the
client can support or what services it
will request of the server.
support both value-based queries
and identifier-based queries.

mserve several different kinds of ob-
jects: (1) “type objects” that docu-
ment the structure of the data objects
so that the client software can pro-
duce an appropriate query and re-
trieval interface; (2) “data objects”
that contain the actual data of inter-
est; or (3) “help objects” that contain
help messages to be used by the client
to provide context-sensitive help
messages.
support remote domain and referen-
tial integrity in external servers. That
is, if objects in one FOSM server
reference objects in another server,
the second server should provide spe-
cific support to assist in maintaining
the integrity of references towards it.
This might take the form of an EX-
ISTS() function that would allow a
server to verify the existence of an

IEEE ENGINEERING IN MEDICINE AND BIOLOGY 753

externally referenced object in its
collection.

Client Requirements
To support the needs of database users, the
FOSM client will need to be able to main-
tain more customizable functionality than
does a Mosaic or other WWW browser.
FOSM clients:

will need to “negotiate” with FOSM
servers regarding the format and
structure of objects requested and re-
garding the parameters and protocols
of exchange.
must be able to build dynamically
custom forms-based or graphical in-
terfaces to allow the interrogation of
any FOSM server. To do this, clients
will obtain metadata describing the
structure of objects served by a par-
ticular FOSM server.
must allow users to manipulate the
structure of data objects from one
server, or combine structure objects
from different servers, to build sin-
gle, virtual objects against which uni-
fied queries may be dispatched. It is
this functionality that would allow
users to specify queries that are simi-
lar to relational PROJECT or JOIN
operations.
must support “batch” as well as inter-
active, retrieval operation. That is,
users must be able to create and store
queries and the software must be able
to execute stored queries automat-
ically at specified times or intervals,
outputting the retrieved data auto-
matically into local files or into local
analytical software.

m must allow user customization of the
local-software configuration and of
the configuration of interfaces into
particular databases.

Resource-Discovery Requirements
The FOSM approach assumes that users
will need assistance in identifying rele-
vant FOSM objects and servers. It also
assumes that a key part of resource discov-
ery is resource filtering-i.e., the explicit
rejection of data objects from undesirable
sources. Therefore, the FOSM approach
supports the free development of “edito-
rial” activities, so that editorial bodies
may indicate approval for individual
FOSM objects, or for individual FOSM
servers, or for sets of objects or servers.
Editorial annotations could be hierarchi-
cal. That is, an editorial board might wish
to assign its approval to all of those objects
already approved by editorial boards A, B,
C, and D.

754

Resource discovery tools must be easy
to locate and use. Therefore, access to
FOSM resource4iscovery tools should
be a built-in component of the FOSM
client. Whether the discovery information
should be provided by a central, known
source; by distributed search engines (like
veronica); or by some significant exten-
sions to self-propagating name systems
(like DNS) is an open question.

Third-party Development
Requirements
In a manufacturing economy, materials
travel along extensive pathways of
value-adding activities: e.g., ores are
mined, metals extracted. parts fabricated,
objects constructed, etc. A successful “in-
formation economy” must also support
unlimited chains of interlocking
value-adding activities.

Many desktop software packages now
explicitly support value-adding plug-in
modules from third-party developers, and
some of these interfaces have become suf-
ficiently generic that they have been
adopted by competing manufacturers. For
example, the same third-party graphics
manipulation filters can be used to aug-
ment the functionality of either Adobe
Photoshop or Core1 PHOTO-PAINT.

Because FOSM recognizes the impor-
tance of value-adding developers, all as-
pects of the FOSM architecture must be
designed either to provide explicit support
for third-party activities or to avoid hin-
dering third-party activities. For example,
FOSM resource-discovery services
should be designed to allow any
third-party to provide value-adding clas-
sifications of FOSM servers or FOSM
objects. Extended chains of value-adding
activities should also be supported, such
as allowing third parties to classify classi-
fications developed by other thud parties.

Data-Structure Requirements
Just as the HTML data structure is the key
to WWW functionality, so an appropriate
syntactic data structure will be required
for handling structured data. The FOSM
model does not specify or constrain the
semantics of participating databases, just
as HTML does not specify or constrain the
contents of WWW documents. Thus, two
FOSM databases might well choose to
publish similar data objects in semanti-
cally different forms. This is acceptable in
a FOSM environment, provided that both
data servers published their data in the
FOSM syntax.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

FOSM data structures:
(or some consistent representation of
them) must be reasonably easy to
understand. (This would facilitate the
development of virtual objects by us-
ers andlor third-party developers.)
must be able to represent consider-
able (arbitrary?) complexity.

m must be able to offer meaningful rep-
resentations of data objects extracted
from different underlying DBMSs
(e.g.,RDBMS, OODBMS,etc.).
must be readily parsable.
should be closed under basic retrieval
and manipulation operations.
must allow data objects to contain, as
attributes, references to data objects
published elsewhere.

mmust be self-describing, so that al-
most anything can be represented, yet
constrained, so that generic client
tools can be developed.

FOSM data structures could exist at
both a physical (as represented internally
by the system) and a conceptual (as per-
ceived by users) level. In this essay, we
will consider only the conceptual aspects
of the data structure.

FOSM Architecture
FOSM architecture is based on a generic
client-server approach, with explicit
support for middleware and other devel-
opment by third-parties. A registry of
FOSM information would support both
direct queries and resource discovery
activities. Whether the registry should
be a central database, or a system that
supports duplicated information propa-
gation (such as domain name servers) is
an open question. The registry would
hold information about FOSM servers,
FOSM objects (and versions), FOSM
links, FOSM subfederations, FOSM
editorial records, FOSM methods,
FOSM names, FOSM cataloging, etc.
An overview of the FOSM architecture
is given in Fig. 4.

The FOSM client (Fig. 5) is built
around a central kernel, the FOSM
user-interface manager (UIM), which in-
teracts with various local programs and
remote servers. The UIM would probably
be some kind of script interpreter, possibly
a generic script interpreter, so that more
than one scripting language could be used.
The UIM core is surrounded by a variety
of other programs, which are invoked to
call the local execution of “methods” as-
sociated with remote data objects, and
files, which provide appropriate metadata
and caches.

November/Oetember 1995

FOSM Client

~

1 Networklnterface 1
4
/

FOSM database queries

resource-discovery transactions

name-resolution transactions

FOSM Middleware

I

I I I
two-way

dynamic objects instantiated objects

virtual compute
I C

database server database text files

4. FOSM clients interact with FOSM servers and with a FOSM resource registry.
Servers publish holding information to the registry (gray arrows) and respond di-
rectly to client queries (black arrows). Explicit support for nth-party developers is
provided, through the encouragement of middleware development.

FOSM Client

‘““li
Views

f l
Profile

4

Methods Manager

tl
FOSM Client API

Network Interface

5. The FOSM client provides much of its functionality through its component-based
design. All aspects of the FOSM system are intended to facilitate the value-adding
activities of third-part developers. That is, it should be easy for users to install lo-
cally FOSM methods or views or profile components created elsewhere.

FOSM Data Model
A generic tree-shaped data structure pro-
vides a conceptual data representation that
meets FOSM requirements. A tree can

capture the minimum essential subset of
structure from relational, object-oriented,
and other database systems. Each type of
FOSM tree would represent one class of

real-world objects and each individual
FOSM tree would correspond with one
member of that class.

Any data model that can be represented
in an extended entity relationship (EER)
schema can have read-only data objects
extracted from it into tree-shaped con-
figurations. Figure 6 shows how
tree-shaped data objects may be extracted
from a portion of an EER schema. Multi-
ple Occurrences in the tree of the same
entity from the EER diagram indicates
participation in different semantic roles.
For example, the faculty data-object tree
is rooted on the faculty entity and also
includes “faculty” at two sublocations,
one corresponding to the role of “depart-
mental colleagues” and the other of “de-
partmental chair.” Individual FOSM trees
are one-t+many downward, and lower
nodes can be considered as sets of s u h b -
jects, related in some role as attributes of
the next higher node.

Individual tree-shaped data objects
could be “selected” from a data server
either through value-based or key-based
queries. Once obtained, the data objects
could be manipulated using operators
such as “prune” and “graft” (Fig. 7). These
operators are similar to those of the “pro-
ject” and “join” operations in relational
databases. Prune and graft are “closed” in
that they are defined to have well-formed
trees a s inputs and to produce
well-formed trees as outputs.

Prune and graft could be combined to
give a “promote” operation that could
move nodes higher up the tree, eliminat-
ing intermediate nodes (and requiring
some role definition refinements). The
FOSM client would allow the user to cre-
ate custom trees by pruning and grafting
server-provided type trees, then store
them locally to be used to drive queries to
underlying data resources. This would
give the ability to operate within a cus-
tom-tailored environment, while sparing
servers from the need to maintain profile
information on individual users.

FOSM Data Identifiers
To be “federation ready” a FOSM server
would have to provide absolutely stable,
unambiguous identifiers for every rooted
object in its published collection. Simi-
larly, every external reference in a FOSM
server would be in the standard format for
global FOSM names. All rooted FOSM
objects must be unambiguously identifi-
able in a global FOSM name space of
arbitrary identifiers. Although biological

November/December 1995 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 155

Faculty L 2

Depts 0 Students r,
(majors) (members) (chair) (major) (advisor)

I I

(advisor) (advisees)

6. Tree data objects can be easily extracted from EER schemas. Herefaculty, depart.
rnent, and sfudent tree objects are all extracted from the same portion of a university
database schema (represented as a directed graph). Notice that one node in the origi-
nal schema may appear several times in a particular tree.

prune -
0

00

promote

~~

merge

prune
-

3

7. The “prune” operator is similar to the relational “project” operation. The ‘‘gratl’’ op-
erator is similar to the relational “join” operation. The “promote” operator allows the
movement of nodes to higher positions in a tree, through a combination of pruning and
grafting. If promotion results in multiple nodes defined over the same domain being at-
tached at the same point in the tree, the “merge” operator combines them.

756 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

names are too volatile to serve as primary
FOSM identifiers, value-based queries of
FOSM objects must also be supported so
that researchers can interrogate the system
using familiar terms. Indeed, one might
expect that most key-based FOSM que-
ries would be produced by software, not
human users.

In a single copy of a stand-alone data-
base, object identity is a fairly simple con-
cept. However, in a FOSM system, copies
of objects will be distributed from servers
to clients, where they may be stored for
local use. Occasionally, then, clients will
need to compare object copies to deter-
mine their equivalence. This raises subtle
notions of identity.

For example, each FOSM object can
be subdivided into five components: (1) a
database identifier that specifies the infor-
mation resource from which the object
may be obtained, (2) a class identifier that
specifies the class of objects to which the
object belongs, (3) an associated type tree
that specifies what attributes objects of
that class could have (each FOSM class
has one of these trees), (4) an object iden-
tifier that provides a unique identifier for
the individual object, within the informa-
tion resource, and (5) an associated
data-value tree that specifies what attrib-
utes the particular object does have and
gives their values (each FOSM object has
one of these trees). (Note: because new
findings sometimes lead to reclassifica-
tions of real-world objects, FOSM object
identifiers should be unique within FOSM
servers, not merely within FOSM classes,
so that object identity could be preserved
across category reclassification.)

This specification allows for several
different concepts of equivalence, of
which we will discuss four: object equiva-
lence, class equivalence, version equiva-
lence, and value equivalence. In all cases
discussed below, it is assumed that the
objects come from the same information
resource.

8 Two FOSM data objects exhibit class
equivalence if they are from the same
FOSM object class.
Two FOSM data objects exhibit ver-
sion equivalence if they are class
equivalent and share the same type
tree.

.Two FOSM data objects exhibit
value equivalence if they are version
equivalent and have identical
data-value trees.

a Two FOSM data objects exhibit ob-
ject equivalence if they refer to the
same real-world object and they

November/Detember 1995

have the same object identifier. This
is the most fundamental component
of identity and it persists across value
updates to the object attributes and
possibly even across schema updates
to the object type tree.

Combinations of these three equiva-
lences lead to different kinds of identity:

Two copies of FOSM objects are se-
mantically identical if they exhibit
class and object equivalence.

.Two copies of FOSM objects are
computationally identical if they ex-
hibit class, object, and version
equivalence. However, computation-
ally identical objects could have dif-
ferent values stored for the object
attributes.

.Two copies of FOSM objects are
truly identical if they are computa-
tionally identical and they exhibit
value equivalence.

Additional identity concepts could be
derived from these. For example, we
might want to say that two objects are
apparently identical if they are class
equivalent, with identical type and value
trees, but different object identifiers.

To facilitate different kinds of identity
comparisons, a FOSM object could cany
two computed identifiers, a type identifier
(defined over the object type tree) and a
value identifier (defined over its value
tree), in addition to its already assigned
class and object identifiers. These com-
puted identifiers would be calculated on
the fly, whenever an object is provided by
a FOSM server, much as check sums are
calculated anew each time an IP packet is
placed on a physical medium. These cal-
culated FOSM identifiers would also be
useful for detecting corruption in local
copies of FOSM objects.

Type identifiers could also be used to
associate particular computational meth-
ods with FOSM objects. For example, se-
mantically identical DNA sequence
objects could be represented in computa-
tionally different FOSM trees that are
equivalent to flat-file, ASN. 1, BLAST,
etc., formats. Each format would have a
specific type identifier that could be used
automatically by software to determine
the appropriate parser to be used in ana-
lyzing the data.

Schema version changes would also be
reflected in type-identifier changes. To
allow ready detection of specific versions,
perhaps the type identifier should contain
two parts: one specifically giving the ver-
sion number and the other a computed

NovembedDetember 1995

.-

Human
Genes

t
Mammalian
Homologies

t
Mouse
Genes

8. In a FOSM environment, individual data resources would publish their holdings
to the network in a standard tree-structure format, according to standard proto-
cols. Nodes marked with “m” and “h” represent sets of tokens that would corre-
spond to the root nodes for mouse-gene and human-gene objects respectively. The
inclusion of these external references as leaf nodes indicates that the designer of the
local database believes that these external objects are related to the database’s pri-
mary objects in some role (which is defined in the local database). The decision to in-
clude such references, and the populating of them with values, would be the
responsibility of the local FOSM server.

value derived automatically from the con-
tents of the type tree itself.

A major goal of FOSM is providing a
scalable, automatable system for deliver-
ing structured data objects across a federa-
tion of autonomous resources. Achieving
this will require that type identifiers con-
tain a computed component so that soft-
ware can check automatically to
determine if it knows how to read and
process the data. Data resource developers
will differ in their personal notions of
what changes are sufficiently significant
to constitute a change in the designated
version of the database. However, some
third-party software may rely upon the
precise configuration of data from a par-
ticular resource and would break in the
face of even tiny changes in the schema.
The only way to ensure that type identity
is genuinely preserved is through the use
of check-sum-like computed identifiers.

In the short term, care must be given
toward the specification of appropriate
global naming conventions to enable a
global information infrastructure for biol-
ogy. In the longer term, efforts by the
overall networking community to modify
network protocols to support transparent
interactions among networked informa-
tion resources, not just networked hosts,

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

will likely provide a more complete solu-
tion [171. Until such functionality is deliv-
ered, those developing federated
biological systems should take care to
communicate their naming requirements
to the appropriate organizations and de-
velopers.

Data-Level Integration Across
Multiple FOSM Servers

FOSM would support data-level inte-
gration across data objects from multiple
servers. For example, information on
mammalian genes could be published by
several different FOSM servers. Each
server would have the local responsibility
and autonomy for formatting and publish-
ing its own holdings in the form of trees.
Leaves on the trees published by one data
server could contain “tokens” that repre-
sent the roots of specific data trees avail-
able from other servers (Fig. 8).

Although one might expect data struc-
tures describing human and mouse genes
to be semantically very similar, or even
identical, here it is assumed that they are
semantically distinct. Social pressures
might exist on data resources to provide
physically similar trees for semantically
similar objects. However, these pressures
would be external to FOSM itself, which

757

I----

Human
Genes

Mammalian
Homologies

Mouse
Genes

9. Related data objects may be obtained from different FOSM servers, then grafted
together to give new, compound objects. All three of these grafted data objects repre-
sent homologies between human and mouse genes, but each from a different per-
spective: that of the human gene, the mouse gene, and the homology itself. In a
DBMS, such inconsistency might be seen as a problem. In a DBPS, the ability to rep-
resent diverging viewpoints while maintaining syntactic consistency is a feature.

only requires that servers adhere to the
FOSM tree syntax.

As long as all participating data servers
followed these simple guidelines, and pro-
viding that a global naming system of-
fered access into a stable, unambiguous
naming space for FOSM objects, generic
client software could allow users to navi-
gate easily among related data items from
different servers.

If data from different servers are com-
bined using the “graft” operator, new trees
are produced. For example, Fig. 9 shows
human-gene objects extended to include
mouse genes as attributes, and vice versa.
Mammalian-homology data objects
could be extended to include both human
and mouse genes as attributes.

If data about human genes, mouse
genes, and their possible homologous re-
lationships were contained in a single da-
tabase, obtaining the set of asserted
homologous gene pairs would involve a
simple, unambiguous join. In the FOSM
model, however, individual data provid-
ers may offer data objects that reference
objects in other databases. Different data
providers would be free to publish logi-
cally equivalent, but not necessarily con-
tent-identical, linkages among data
objects, as there would be no formal re-
quirement of identity. This freedom to
diverge is necessary to allow the informa-
tion resources to act as scientific literature,
which must be able to support differences
of opinion.

Summary
Biological databases, having survived

758

a crisis of data acquisition, now face a
crisis of data integration. Meeting this
challenge will require the development of
technical and sociological processes that
allow multiple databases to interoperate
functionally, while still maintaining much
of their individual managerial autonomy.
Horizontal partitioning of data, as is the
case across some genome data resources,
makes the challenge of interoperability
especially acute, since achieving good in-
teroperability under these circumstances
will require the development of consider-
able semantic consistency among partici-
pating sites.

Computer solutions that, from initial
design onwards, are aimed at meeting the
specific needs of some particular problem,
rarely evolve into generic interoperable
systems. Solutions that are based on mini-
mal generic components are more likely
to evolve gracefully into specific systems,
especially if the specificity is added as
layers on top of the underlying generic
foundation. Networking architectures
have followed this pattern and the evolu-
tion of database systems from file-based
approaches to cutting edge object-ori-
ented databases show a similar trend.

To be truly useful to the widest range
of potential users, on-line genome infor-
mation systems should be capable of func-
tionally interoperating, at some minimum
basic level, with many different informa-
tion systems (such as nucleotide sequence
databases, clinical phenotype information
systems, metabolic databases, systematics
databases, etc.). Successful interoperation
among a large, diverse, and autonomous

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

set of independent data sites can only oc-
cur if all sites use equivalent generic tools
to publish their holdings according to
common protocols and syntaxes. Gopher
and World-Wide Web offer examples of
the power in this generic client-server
approach to information distribution, but
they do not meet all of the needs of those
interested in publishing structured data.

An extended data-publishing model,
perhaps related to the FOSM concept dis-
cussed here, will be required if these needs
are to be met in a generic fashion. In such
a model, local sites would still be free to
manage their data internally, according to
whatever methods seem best. More im-
portant, collections of sites would be free
to react to scientific needs for conver-
gence upon similar methods for internal
data management, as well as upon com-
mon consensus data models and seman-
tics for external data publication, while at
the same time using generic methods, pro-
tocols, and syntaxes for data publication.
The adoption of generic client-server
methods for data distribution is purely an
enabling technology. By not requiring
common semantics of anyone, it allows
for unrestricted syntactic interoperability.
By permitting the adoption of common
semantics by some, it facilitates unre-
stricted semantic interoperability.

The genome community could attain
the best of both worlds if they achieve
interoperability by sandwiching generic
data-distribution methods between con-
verging internal data-management sys-
tems on one hand and common public
consensus data models and semantics on
the other. This would yield a unified con-
ceptual model for genome data, delivered
in a system capable of generic interopera-
tion with non-genome resources.

Acknowledgments
The ideas in this article are the opin-

ions of the author and do not necessarily
represent the views of the US Department
of Energy or of any other Federal agency.

References
1. Brooks FP, Jr: The Mythical Man-month.
Addison-Wesley Publishing Company, Reading,
MA, 1982.
2. Chorafas DN, and Steinmann H: Solutions
for Networked Databases: How to Move from
Heterogeneous Structures to Federated Concepts.
Academic Press, Inc., New York, 1993.
3. GeSTeC Directors Report: NCHGR GeSTeC
Director’s meeting on genome informatics, 1994.
(Available electronically from Johns Hopkins

Novernber/Oecernber 1995

WWW server, http://www.gdb.orglDan/nchgr/re-
port.htm1.)
4. Hurson AR, Bright MW, and Pakzad SH
(Eds.): Multidutabase Systems: An Advanced So-
lution for Global Information Sharing. IEEE
Computer Society Press Los Alamitos, CA, 1994.
5. Lewin R: DNA databases are swamped. Sci-
ence, 232:1599,1986.
6. Murray JC, Buetow KH, Weber JL, Ludwig-
sen S, Seherpbier-Heddema T, et al: A compre-
hensive human linkage map with centimorgan
density. Science, 265:204%2054, 1994.
7. Robbins RJ: Database and computational chal-
lenges in the human genome project. IEEE Engi-
neering in Medicine and Biology Magazine.,

8. Robbins RJ: Genome informatics: Require-
ments and challenges. In: Lim, HA, Fickett, JW,
Cantor, CR, and Robbins, RJ (eds). Bioinfomat-
ics, Supercomputing and Complex Genome
Analysis. World Scientific Publishing Company,
Singapore, pp 17-30, 1993.
9. Robbins RJ: Biological databases: A new sci-
entific literature. Publishing Research Quarterly,
101-27, 1994.
10. Robbins RJ: Representing genomic maps in
a relational database. In: Suhai, S. (ed). Computa-
tional Methods in Genome Research. New York
Plenum Publishing Company, New York, pp

11. Robbins RJ (Ed.): Genome informatics I:
Community databases. Journal of Computational
Biology, 3:173-190, 1994.
12. Robbins RJ: Genome Informatics: Toward a
Federated Information Infrastructure (keynote ad-
dress). The Third International Conference on

11125-34, 1992.

85-96,1994.

November/Detember 1995

Bioinformatics and Genome Research, Talla-
hassee, Florida, 1-4 June 1994.
13. Sehatz BR, and Hardin JB: NCSA Mosaic
and the World Wide Web Global hypermedia
protocols for the internet. Science, 265:895-901,
1994.
14. Sheth AP, and Larson JA: Federated data-
bases systems for managing distributed, heteroge-
neous, and autonomous databases. ACM
Computing Surveys, 22: 183-236,1990.
15. United States Department of Energy. 1990.
Understanding Our Genetic Inheritance. The U .
S. Human Genome Project: The First Five Years.
16. United States National Academy of Sciences,
National Research Council, Commission on Life
Sciences, Board on Basic Biology, Committee on
Mapping and Sequencing the Human Genome:
Mapping and Sequencing the Human Genome.
National Academy Press, Washington, DC, 1988.
17. United States National Academy of Sciences,
National Research Council, Commission on Physi-
cal Sciences, Mathematics, and Applications, Com-
puter Science and Telecommunications Board,
NRENAISSANCE Committee: Realizing the In-
formation Future: The Internet and Beyond. Na-
tional Academy Press, Washington, DC, 1994.

Robert Robbins is now
Vice President for Infor-
mation Technology at
the Fred Hutchinson
Cancer Research Cen-
ter. Prior to that, he was
Program Director for
Bioinformation Infra-
structure in the Office of

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

Health and Environmental Research of the
U.S. Department of Energy. He is also
Adjunct Associate Professor of Computer
Science and Associate Professor of Medi-
cal Information at Johns Hopkins Univer-
sity, where he served as Director the
Applied Research Laboratory, William H.
Welch Medical Library, and as Director of
Informatics of the Genome Data Base be-
fore going to DOE. Prior to joining the
Hopkins faculty in 1991, he was Program
Director for Database Activities in the
Biological, Behavioral, and Social Sci-
ences at the National Science Foundation.
He currently serves on the advisory boards
for several biological databases and he
was a member of the National Academy
Committee on the Formation of aNational
Biological Survey. Robbins received his
Ph.D. in zoology from Michigan State
University in 1977, where he also served
on the faculty on Biological Science and
Zoology until going to NSF. He also holds
an A.B. in Chinese and Japanese history
from Stanford University. His current re-
search interests include computer applica-
tions in biology, computational genomics,
database theory and design, and the man-
agement of biological knowledge. Dr.
Robbins can be reached at FHCRC, 1124
Columbia Street, LV- 101, Seattle, Wash-
ington, 9 8 104. E-mail: rrob-
bin@ fhcrc .org .

759

I

http://www.gdb.orglDan/nchgr/re

