
Challenges in
Human Genome Project

the

l though the Human Genome
Project is well recognized as the

ogy, it is less well known as a major
project in computer technology and in-
formation management. By the time
this project is completed, many of its
innovative laboratory methods will
have begun to fade from memory. Al-
though a few might be preserved as
exercises for undergraduates, the rest
will soon become footnotes in the his-
tory of molecular techniques. What
will remain, as the project’s enduring
contribution, is a vast body of com-
puterized knowledge. Seen in this
light, the Human Genome Project is
nothing but the creation of the most
amazing database ever attempted- the
database containing instructions for
building people.

The 3.3 billion nucleotides in the
DNA of a human gamete constitute a
single set of these instructions. With
each nucleotide represented as a single
letter, one copy of this sequence, typed
(in standard Dica @Deface) on a con-

A first “big science” project in biol-

Progress hinges
on resolving dutubuse und

compu tutiond factors

Robert J. Robbins
Applied Research laboratory

William H. Welch Medical Library
The Johns Hopkins University

tinuous ribbin of miterial, could be stretched from San Francis-
co to New York and then on to Mexico City. No unaided human
mind could hope to comprehend such a mass of information. Just
assembling, storing, publishing, and distributing (much less
understanding) such a sequence will require automation. Repre-
senting individual variations and managing a fully annotated,
functionally described version of the sequence is probably
beyond current information-handling technology.

Even now, when the Human Genome Project is merely in the
first year of its first five-year plan, computer systems are playing
an essential role in all phases of the work. Laboratory databases
help manage research materials, while computer-controlled
robots perform experimental manipulations. Automated data-ac-
quisition systems log experimental results and analytical
software assists in their interpretation. Local database systems
store the accumulating knowledge of a research team, while
public databases provide a new type of publication for scientists
to share their findings with the world.

Some genomic database and software problems are fairly
straightforward. Others will push the envelope of information-
management theory. The HGP requires a continuum of database
activities, ranging from application development to research.
The research community needs production-quality, rock-solid,

public-access databases right now, but
pure computational research will be
required to develop the new ideas and
technologies necessary for the produc-
tion-quality databases of a decade
hence. The challenges of the Human
Genome Project will drive computa-
tional science, just as earlier challen-
ges f rom genet ics drove the
development of modern statistical
analysis.

In the Human Genome Project,
computers will not merely serve as
tools for cataloging exis t ing
knowledge. Rather, they will serve as
instruments, helping to create new
knowledge by changing the way we
see the biological world. Computers
will allow us to see genomes, just as
radio telescopes let us see quasars and
electron microscopes let us see
viruses.

urpose and Scope
The Human Genome Project P (HGP) is an international under-

taking with the goal of obtaining a
fully connected genetic and physical map of the human
chromosomes and a complete copy of the nucleotide sequence
of human DNA. As such, it has been described as the first “big
science” project in biology [3], [151. Although the computational
challenges associated with the project have been described [121,
[141, some computer scientists have expressed concerns about
its complexity: “Computationally, the project is trivial. The
human genome is nothing but a string of 3.3 billion characters.
Where is the challenge in representing or manipulating this?
Biologists may think that 3.3 gigabytes are a lot of data, but a
database of this size is routine in many application areas.”

Such skeptics are simply wrong. The HGP can be logically
divided into two components, getting the sequence and under-
standing the sequence, but neither involves a simple 3.3
gigabyte database with straightforward computational re-
quirements. A computer metaphor helps establish the scope
of the effort. Consider the 3.3 gigabytes of a human genome
as equivalent to 3.3 gigabytes of files on the mass-storage
device of some computer system of unknown design. Obtain-
ing the sequence is equivalent to obtaining an image of the
contents of that mass-storage device. Understanding the se-
quence is equivalent to reverse engineering that unknown
computer system (both the hardware and the 3.3 gigabytes of

March 1992 0739-51 75/92/S3.0001992 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

. _ _ ~

25

software) all the way back to a full set of design and maintenance
specifications.

Securing the sequence is further complicated because mass-
storage device is of unknown design and cannot simply be read.
At best, experimental methods can be used to obtain tiny frag-
ments of sequence. Because these experimental methods are
expensive ($5-10 per byte) and error prone, new techniques are
constantly being developed and tested. Meanwhile, a database
must be designed to hold the fragments that are obtained, along
with a full description of the procedures used to generate them.
Because the experimental procedures change rapidly and often
radically, this is equivalent to designing and maintaining a
database for an enterprise whose operating procedures and
general business rules change weekly, perhaps daily, with each
change requiring modifications to the database schema.

As the sequence fragments accumulate, efforts will be made to
synthesize the fragments into larger images of contiguous
regions of the mass-storage device, and these synthesized frag-
ments must also be represented in the database. If multiple
inferences are consistent with the present data, all of the consis-
tent possibilities must be represented in the database to serve as
the basis for further reasoning when more data become available.
As even larger regions are synthesized, the entire cascade of
premisses, procedures, and logical dependencies must be stored,
so that a “logical roll-back” can occur if some new observation
renders an earlier premise doubtful. Since all of the data are
obtained experimentally, each observation and deduction will
have some error term associated with it. The deductive proce-
dures must use these errors to assign probabilities to the various
deductive outcomes obtained and stored in the database.
Thousands of researchers from independent laboratories will be
using the system and contributing data. Each researcher will have
a notion of proper error definition and the rules by which errors
should be combined to provide reliability estimates for the
composite sequences. Therefore, the database must be capable
of supporting probabilistic views and returning multiple an-
swers, each with their associated conditional probabilities. The
involvement of many independent researchers, each employing
slightly different experimental procedures and concepts, will
also result in extensive nomenclatural synonymy and
homonymy. The database must take these nomenclatural dif-
ficulties into account and present users with verbiage consistent
with their own.

Reverse engineering the sequence is complicated by the fact
that the resulting image of the mass-storage device will not be a
file-by-file copy, but rather a streaming dump of the bytes in the
order they were entered into the device. Furthermore, the files
are known to be fragmented. In addition, some of the device
contains erased files or other garbage. Once the garbage has been
recognized and discarded and the fragmented files reassembled,
the reverse engineering of the codes can be undertaken with only
a partial, and sometimes incorrect, understanding of the CPU on
which the codes run. In fact, deducing the structure and function
of the CPU is part of the project, since some of the 3.3 billion
gigabytes are the binary specifications for the computer-assisted-
manufacturing process that fabricates the CPU. In addition, one
must also consider that the huge database also contains code
generated from the result of literally millions of maintenance
revisions performed by the worst possible set of kludge-using,
spaghetti-coding, opportunistic hackers who delight in clever
tricks like writing self-modifying code and relying upon undocu-
mented system quirks.

One computer scientist, upon hearing this metaphoric descrip-
tion, opined that, far from being trivial, the HGP was simply
impossible: “Why, that’s like working with both hands tied
behind your back, blindfolded, in a vacuum!” The Human
Genome Project isn’t impossible, but it is complex. The goal of
this paper is to provide an overview of the HGP that emphasizes

its generic problems and computational challenges. Presenta-
tions of actual current database and computational efforts are
available elsewhere [l] , [2], [4], [5] , [6], [IO], [I 11.

asic Biological Concepts
Early on, biochemists established that an individual’s B biological structure and function is controlled by proteins, a

workhorse set of molecules that occur in thousands of forms to
perform thousands of functions. Since the attributes of an or-
ganism are ultimately determined by the types and quantities of
proteins present in its cells, these molecules are clearly the
fundamental building blocks of life. The human body contains
50,000 to 100,000 different kinds of protein.

Although it is their three-dimensional configuration that gives
proteins their functional specificity, chemically, proteins are
linear polymers called polypeptides that contain hundreds of
amino acids, linked by peptide bonds into a continuous sequence.
Proteins assume their three-dimensional shape “automatically”

The Code of Life

second letter

f
i
r
S
t

I
e
t
t
e
r

leu ser

thr
thr

met ~ thr

val ala
val ala
val ala
val ala

A

tyr

STOP
%OP

asn
asn
lYS
lYS

-
U
C
A
G

U
C
A
G

U
C
A
G

U
C
A
G

-

__

-

-

t
h
i
r
d

I
e
t
t
e
r

The universal code by which genetic information in
mRNA is translated into protein. The nucleotides in
an mRNA molecule are read in non-overlapping
groups of three, called codons. The “reading frame”
is established by requiring that each protein always
begin with the codon AUG. As each successive codon
is encountered, the protein-synthesis machinery
incorporates the amino acid given in this table. When
a stop codon (UAA, UAG, or UGA) appears,
synthesis is complete. This code is used by all living
organisms on this planet.
The twenty amino acids commonly found in proteins,
and their three-letter abbreviations are:
ala alanine leu leucine
arg arginine lys lysine
asn asparagine met methionine
asp aspartic acid phe phenylalanine
cys cysteine pro proline
gln glutamine ser serine
glu glutamic acid thr threonine
gly glycine trp tryptophan
his histidine tyr tyrosine
ile isoleucine val valine

26 IEEE ENGINEERING IN MEDICINE AND BIOLOGY Morth 1992

once they are synthesized with a specific sequence of amino-acid
subunits. Although many kinds of amino acids exist, only twenty
different forms are used in proteins. Because proteins are
linear polymers containing just twenty different subunits,
the structure of any given protein molecule can be specified
with a linear string using a twenty-letter alphabet.

In the first half of this century, classical geneticists showed
that the control of biological structure and function is passed
from generation to generation in the form of genes-
hypothetical entities that occur singly in gametes (sperm
and eggs) and doubly in organisms. By 1950, it was apparent
that genes had to act by controlling the synthesis of proteins,
but the means by which this might be accomplished were a
mystery.

With the demonstration that genes are made of deoxyribo-
nucleic acid (DNA) and the discovery of the structure of
DNA, the science of molecular biology was established, and
the first possibility of understanding gene function ap-
peared. DNA is a linear polymer of molecular subunits
called nucleotides, which occur in DNA in four specific
forms: adenine, thymine, cytosine, and guanine (usually
abbreviated as A, T, C , G) . Because DNA is a linear polymer
containing just these four subunits, the structure of any
given DNA molecule can be fully specified with a linear string
using a four-letter alphabet.

Since DNA and proteins can both be specified as linear strings,
researchers quickly hypothesized that genes might control the
synthesis of proteins by simply encoding their amino-acid se-
quences as nucleotide sequences. This proved to be true, with
the proviso that instructions encoded in DNA are first transcribed
into ribonucleic acid (RNA) polymers before being translated
into the amino-acid sequence of proteins. (RNA differs from
DNA by carrying an extra hydroxyl group on each nucleotide,
and by carrying the nucleotide uracil, abbreviated U, wherever
DNA carries thymine.) From this hypothesis, the “fundamental
dogma” of molecular biology was born: DNA directs the syn-
thesis of RNA, which directs the synthesis of protein, often
illustrated as:

RNA

mRNA

DNA + RNA + proteins

The production of RNA from a DNA template is called
transcription, and the production of protein from an RNA
template is known as translation. Complexity was added to the
fundamental dogma with the recognition that (1) DNA redun-
dantly encodes for its own duplication, (2) DNA-directed protein
synthesis involves three different classes of RNA (tRNA,
mRNA, and rRNA), and (3) previously synthesized proteins in
the form of enzymes are also key factors in both DNA replication
and protein synthesis:

transcription

I

post-transcnptional processing

v

translation

v

n
I

t R N A 7
mRNA - proteins
rRNA-

The specific instructions coding the amino-acid sequence for a
particular protein are carried in the nucleotide sequence of a
particular mRNA, which is transcribed from a particular gene in
DNA. The means (see The Code of Life) by which mRNA
sequences determine amino-acid sequences has proven to be the
same for all living things on this planet.

Life is fundamentally digital, not analog; genetic information
is passed from generation to generation in the form of a discrete

DNA-Directed Protein Synthesis

Stall

n

Start and stop signals encoded in the DNA tell enzymes to
begin and end transcription, producing a primary RNA
transcript. Other enzymes modify the transcript by adding
or deleting nucleotides. Most human genes contain large
regions of non-coding sequences (introns) interspersed
with coding sequences (exons). The intron sequences are
removed during post-transcriptional processing, yielding a
final “A. The mRNA is translated into protein, using
the universal code along with start and stop signals

code. The parallel anology with the digital encoding found on
the mass-storage devices of computer systems is almost ines-
capable. Capturing and understanding all of the encoded infor-
mation in human genes is the long-term goal of the human
genome project.

Although the mRNA-to-protein code is straightforward, the
actual process by which information stored in a human gene
becomes transformed into a protein is considerably more com-
plex (see DNA-Directed Protein Syntheses).

If we think of information encoded in genes as equivalent to
programs encoded on a mass-storage device, and the biological
functions performed by proteins as the execution of these
programs, then the steps “post-transcriptional processing” and
“post-translational processing” represent the actions of self-
modifying code, since they involve changes to encoded instruc-
tions performed after the instructions are “loaded” but before
they “execute.” Worse than simple self-modifying code, the
protein enzymes that carry out this post processing are more
similar to software daemons that run constantly, activating only
when a particular program is loaded and then modifying that
program’s code in memory before it starts executing. Reverse
engineering self-modifying code is notoriously difficult.

Because previously synthesized proteins effect, affect, and
control all aspects of the expression of genetic information,
reverse engineering the human genome will be complex, since
these protein daemons interact with control signals carried in
DNA to regulate the expression of genes differently in different
tissues. The human genetic apparatus is not a mere collection of

March I992 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

~

27

recipes for building proteins, for if it were, cells carrying the same
set of genes could not differentiate into a variety of tissues, such
as brain and muscle. Although many control mechanisms arc
known, the majority are not yet well understood. Identifying and
deciphering them is a major goal of genomics.

nderstanding the Sequence
Soon after obtaining a DNA sequence, researchers try to
identify and understand its function through a mixture of

logic and experimentation. Attempting to understand a sequence
of hexadecimal values from the mass-storage device of some
computer system involves similar steps. This section compares
the two processes.

Direct Sequence Interpretation
Understanding an arbitrary sequence is much easier if the system
and context in which the sequence is to be interpreted are
specified. For example. consider the following RNA sequence:

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU

If this sequence initiates a coding region on an mRNA molecule
(this is. in fact. the beginning of the coding region in human
13-hemoglobin mRNA), then interpreting the sequence requires
a trivial look up in the mRNA-to-protein dictionary, yielding:

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU
inet u l his leu thr pro f l u glu lys scr ala val

Determining the actual function of a particular protein (which
depends upon its three-dimension structure) from its sequence,
however. is not straightforward and in fact is impossible with
current technology. Until better algorithms are developed, the
possible outcome space for such an n-body problem is too large
to compute in reasonable time.

Now consider the following hexadecimal sequence:

CD 05 CD 20

If it can be assumed that this sequence is executable code from
an Intel-based, MS-DOS computer system, a knowledge of the
op codes would permit the reverse assembly:

CD05 INT 05
CD20 INT 20

Here. too, determining actual function from an interpretation
is not entirely straightforward. For example, in MS-DOS, intcr-
rupt 5 triggers the “print screen” routine in BIOS, and interrupt
20 is the old “program terminate” (equivalent to the CP/M BDOS
function OOH) op code carried over from the earliest versions of
MS-DOS. A first hypothesis, then, would be that “CD 05 CD 20”
could function as a self-contained executable program that
printed whatever happened to be on the screen. then returned
control to the operating system.

This hypothesis, however, is not necessarily correct. Calling
DOS interrupt 5 passes control to whatever routine is pointed to
by the low-memory vector for INT 5 . Although normally the
“print screen” routine, it could be any routine left in memory by
a previously executed terminate-and-stay resident program (c.t‘.,
[9], p 128). Determining what this four-byte program actually
would do at a given time in a particular machine would involve
some combination of experimentation and further analysis ofthe
interrupt vector table and the code addressed by the INT 5 vector.

Determining the function of a DNA sequence involves similar
steps. After obtaining a context in which to interpret the sequence
(so that the relevant “op codes” are known), analysis begins.
Because the full set of biological op codes is not yet known. and

Directed Mutagenesis

gene name DNA sequence near transcription initiation rites

lac2 _”“

malT
arac
qalPl . . ” . _ .~
deoP2
i t

. gtgta TcGAag tgtgttgcggagtagatgt ITAgAATl.. actaaca’ . .
’ , gatcggci IgtaAgA IggttiCaaCtttCaC. ‘ ’ ’ CATAAT ‘gaaataag’ . ’

araE

consensus:

-35 -10

An excerpt from an alignment performed in an effort to
understand the DNA control region that signals START
OF TRANSCRIPTION for genes of the bacterium
Escherichia coli [8]. The last nucleotide in each sequence
(bracketed with arrowheads) is the point of transcription
initiation, with transcription proceeding to the right.
Analysis shows two regions of similarity upstream from
the start of transcription; one approximately 10 bases
upstream (the -10 consensus sequence) and the other
approximately 35 bases upstream (the -35 consensus
sequence). Averages of base occurrences taken over many
sequences show these two upstream regions to be
characterized by the consensus sequences as given in the
figure. Interestingly, even though the contents of the
variable region between the consensus sequences seems to
have little or no effect upon the efficiency of the signal in
initiating transcription, the length of the variable regions
does seem to have an effect, thereby demonstrating some of
the subtlety involved in biological coding. Directed
mutagenesis studies have shown that changes toward or
away from the consensus sequences increase or decrease,
respectively, the ability of a DNA region to act as a site of
transcription initiation.

because biological subsystems are so interdependent, consider-
able experimentation and comparative work is required for re-
searchers to generate a tentative understanding of the sequence.
Part of the database and computation challenges of the HGP is
building databases for storing evolving hypotheses regarding
these biological op codes, with the ultimate goal of using these
data to write a “biological disassembler” that could recognize
and interpret all functional regions in any arbitrary piece of DNA.

Comparative Sequence Analysis
The previous discussion examined the interpretation of arbitrary
sequences when something is known of the system and the
context of the sequence. But what if the system were unknown
and the context uncertain‘! To illustrate one approach to inter-
preting sequences from an unknown computer system, first
assume that nothing is known of Intel-based computers or of
MS-DOS or of ASCII. Then consider the following examples.

When invoked. a particular MS-DOS program named
WARMBOOT.COM causes the same effect as pressing the
ctrl-alt-delete keys; that is, it causes the system to reboot without
performing any of the system checks associated with a cold boot.
This program, i n its entirety. is found to consist of the sequence:

BA 40 00 SE DA BB 72 00 C7 07 00 00 EA 00 00 FF FF

How might this program work, and the sequence be inter-
preted? If one truly knew nothing about this computer system,

28 IEEE ENGINEERING IN MEDICINE AND BIOLOGY March 1992

http://WARMBOOT.COM

very little could be done with just this sequence. But, suppose
that another program named COLDBOOT.COM (that does what
the name implies) were also known and that the program, in its
entirety, consisted of the sequence:

BA 40 00 8E DA BB 72 00 C7 07 34 12 EA 00 00 FF FF

By aligning the two sequences and associating differences in
their structure with differences in their function, a beginning,
however feeble, reverse engineering MS-DOS machine code
could be generated:

Substituting “34 12” for “00 00” somehow changes the
WARMBOOT program into a COLDBOOT program. These
bytes must be data, and the remainder instructions for invoking
the boot routine. This trivial comparison has allowed us to get a
small purchase on the problem.

Now consider a set of programs known to have similar func-
tions. Program 1 displays “Hello world’’ on the terminal, and
programs 2,3, and 4 display “Hi world,” “Goodbye world,” and
“Hello,” respectively. If these are placed into a multiple align-
ment (which requires inserting gaps to bring the similar regions
into apposition), we have:

1 E0 OD 90 48 65 6C 6C 6F ** ** 20 77 6F 72 6C 64
2 EB OA 90 48 69 ** ** * * .. ** 20 77 6F 72 6C 64
3 E0 OF 90 47 6F 6F 64 62 79 65 20 77 6F 72 6C 64
4 n n EB 07 90 48 65 6C 6C 6F .* ** ** .* * * .. ** * *
u u I I

Even with no prior knowledge of the op codes or the character
codes used by MS-DOS systems, useful insights could be ob-
tained from these alignments and a knowledge of the four
programs’ functions. The code sequences clearly have regions
of identity and regions of variability, and a reasonable first
hypothesis is that the variable regions contain codes for the
characters to be displayed, and the constant regions contain
instructions for displaying these characters.

An analysis of the variable regions could lead to a tentative
deduction of the entire character code, since the variable regions
each seem to contain exactly the same number of codes as of
characters displayed, and adjacent letters in the alphabet appar-
ently have sequential code values. The hypothesized complete
set of character codes could be tested by replacing bytes in the
variable region with other values, then executing the program
and recording what characters are displayed. In fact, substituting
all values from 00 through FF would allow the rapid determina-
tion of the entire character code.

Similar alignments of molecular sequences are commonly
employed in molecular biology. And, making specific substitu-
tions in DNA, called directed mutagenesis, is also an important
experimental technique for studying biological function and for
deciphering the biological op codes in DNA. As an early ex-
ample, Hawley, et al. [8], compared regions in bacterial DNA
known to be the site of transcription initiation. This alignment
did detect regions of similarity (see Directed Mutagenesis).
However, “genomic computers” are inherently probabilistic.
That is, with the exception of the mRNA-to-protein codes, most
biological op codes occur in a variety of forms, with the different
forms variously affecting the probability that a particular event
will occur. Reverse engineering a system with probabilistic
codes will certainly be more challenging than would be the case
for a system employing deterministic codes.

Retuming to our computer example, consider another align-
ment, this time between two programs with identical
functionality; both write “Hello world”:

1 - - - IEB OD 90 48 65 6C 6C 6F 20 77 6F 72 66 64 2 4 [[~ ~ 0 3 ~ ~ ~ [~ ~

5 EB 01 9 O m] O F L-][EBOD 9 0 4 8 656C 6C 64 20 77 6 F 2 2 6&5C 24]@

This “alignment” is more complex, but it also is especially
informative when compared with the analysis of the previous
multiple alignment. Sequences 1 and 5 contain four identical
subregions, but with three of them in a different order. If the order
of blocks is ignored, these two sequences are nearly identical.
Twenty four of the twenty five bytes in string 1 have an exact
match in string 2.

Likewise, proteins and genes may contain permutable func-
tional blocks. Developing string-matching algorithms and writ-
ing software to produce “non-linear alignments” (i.e., the
recognition of variously ordered similar subregions), even when
the sequences involved may contain hundreds of thousands of
characters, is one computational challenge of the HGP. Another
challenge is developing an indexing method for some kind of
n-dimensional “similarity space” so that queries like “Select All
Sequences Where Similar to Sequence X” will execute in
reasonable time, even if run against a database containing mil-
lions of sequences comprising more than a terabyte of data.

At present, whenever a new DNA sequence is added to a DNA
database, a brute-force similarity comparison is made between
that sequence and every other sequence in the database. This is
resource-intensive work, and it has been estimated that within
ten years the databases will have grown and the rate of sequence
acquisition will have increased so that it would require a teraflop
machine running all out, twenty four hours a day, just to access
and catalog incoming sequence data. However, an appropriate
similarity-space index could entirely eliminate this computation-
al burden.

Retuming again to the hexadecimal alignment problem, from
the previous multiple alignment of sequences 1 through 4, it was
possible to hypothesize that the common region of code that
began with “24” and ended with “C3” was an invariant block
that contained instructions for writing a message to the screen.
However, from the alignment of sequences 1 and 5, it now
appears that “24” is more likely associated with the end of the
variable block containing the message, and “C3” more likely
denotes the end of the entire program rather than just the end of
the display-message block. There is also a sequence that is nearly
equivalent to the invariant display-message block, but with “OF’
substituted for “03.” Furthermore, we see that the two large
identical blocks between sequences 1 and 5 that begin with “EB
OD 90” should probably be decomposed into two blocks, as:

1 ” - - EB OD 90148 65 6C 6C 6F 20 77 6F 72 6C 64 2 4 / 1 8 4] 0 3 F q H

5 EB 01 90 (E4 00 84 09 BdOF /01]=1901(4865 6C 6C 64 20 77 6F 72 6C 6C 2 4] m

The blocks of identical or similar code can now be categorized
as data (containing characters to be displayed) or as instructions.
Previous work deciphering the character code should have estab-
lished that “24” represents “$,” and our current analysis has
observed.that all of the variable strings end with this symbol,
even though it is not displayed. Is “$” used as punctuation to
terminate strings? The “C3” code seems to be the terminate-pro-
gram code, and “EB” is always followed by a hexadecimal digit
giving the distance in bytes to the beginning of the next ex-

March 1992 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

__ -~ ~~~

29

http://COLDBOOT.COM

Decading for &hemoglobin

lma: 62205
62221 Cl’CMGAGM
62281 GTGMCCCCT
62341 aetgggcatg
62401 ctattggtct
62461
62521
62581
62641
62701
62761
62821
62881
62941
63001
63061
63121
63181
63241
63301
63361
63421
63481
63541
63601

v tg
agttcatgte at

TcGcuuoMTTcA
TM-XXXClV

nscription and

mRXA: 1 AUG GUG CAC CUC ACU CCU GAG GAG A&6 UCU GCC GUU ACU OCC CUC UGC
49 GGC MO GUG AAC GUG GAU G M G W COU COU GAG GCC Cuc GGC AGG CUG
97 CUC GUG GUC WAC CCU UGQ ACC CAQ ACC W C W U GAG UCC W U Gco GAU
145 CUC UCC ACU CCU GAU GCU GUU AUG CCC M C CCU AAC CUG AAC CCU CAW
193 CCC M G AM GUG CVC OCU ofc UUU AGO CA0 Coc CUG GCU CAC CUG GAC
241 M C CUC A M Coc ACC UUU ofc ACA Cuo AGU GAG CUG CAC UGU GAC M G
289 CUG CAC GUC GAU CCU GAQ M C W C AGG Coc CUG GGC M C GUG CUG GUC
337 UGU GUG CUC GCC CAW CAC UUU GGC AAA O M UUC ACC CCA CCA GUG CA0
385 GCU GCC OAU CAG AM COG GUG GCU GGU GW; GCU M U CCC CUG GCC CAC
433 AAG UAU CAC U M

translation and
post-tranalational processing I

Prot.int 1 val his leu thr pro glu glu lys ser ala val thr ala leu trp
16 gly lys val asn Val asp glu val ply ply glu ala l e u ply arg leu
32 leu val val tyr pro trp thr gln arg pho phe glu ser phe gly asp
48 leu w r thr pro asp ala val met gly asn pro lys val lys ala his
64 gly lys lys val leu gly ala phe ser nap gly leu a l a his leu asp
80 ann leu lys gly thr phe ala thr leu aer glu leu his cys asp lys
96 leu his val asp pro glu ann phe arg leu leu gly a m val leu val
111 cys val leu ala his his phe gly lys glu phe thr pro pro val gln
128 ala ala tyr gln lys val val ala ply val ala ann ala leu ala his
144 lya tyr his

Decoding involved in the synthesis of human &hemoglobin from information
encoded in the DNA of human chromosome number 11. The tag “DNA” labels an
excerpt containing the c a d i i region of the gene for &hemoglobin, taken from a
73,326-base sequence (GenBank) spanning a region on the short arm of chromosome
11. To produce the actual protein, all of the DNA is first copied into RNA (in which
all of the T’s are replaced with U’s). Next, the RNA is subjected to
post-transcriptional processing that removes all of the bases transcribed from those
shown in lower case. The resulting functional mRNA is then translated into protein
according to the universal code shown in Fig. 1. Finally, the first amino-acid
(methionine) is removed during post-translational processing, yielding a molecule of
normal human &hemoglobin containing 146 amino acids arranged in a specifk
sequence.

able character block, perhaps it
represents an address for the
character block.

Using such techniques, it
would be possible, in theory, to
reverse engineer first the entire
set of Intel op codes and then
all application codes that run
on such machines. The data-
and hypothesis-management
requirements for such an effort
would be daunting. We would
somehow have to record, say,
not only that our current
hypothesis is that “C3” is the
program-terminate code, but
we would also be required to
track all of the evidence and
reasoning to support this
hypothesis. At present, we
would need to record that “03”
and “OF’ seem to involve ad-
dressing, and we would need
some way to modify this
hypothesis when additional in-
formation is obtained. We
would have to store all known
program sequences in a
database, linked to the analyses
that had been done upon them.
We would need to retrieve se-
quences according to their
similarity. Of the five screen-
wri t ing sequences j u s t
analyzed, numbers 1 and 5 are
functionally the most similar.
However, no simple indexing
scheme based upon their linear
contents would ever place
them next to each other func-
tionally. Although we could
“eyeball” the alignment of
short sequences, software
would need to be developed to
help u s perform optimum
alignments for large sequen-
ces.

If we were to reverse engineer
a full 3.3 gigabytes of files,
while at the same time deduc-
ing the op codes and architec-
ture of the CPU, the database
requirements for recording all
of our experimental observa-
tions and tentative hypotheses
would be enormously com-
plex. If the 3.3 gigabytes of
files were written by undis-
ciplined hackers prone to
clever tricks, our work would
be rendered much more dif-

ficult. So it is with the reverse engineering of genomes.
Gigabytes of sequence, once obtained, are just the beginning.
The database requirements are horrendously complex, because
even the concepts and definitions of the objects to be stored can
change with each new observation.

Improved methods need to be developed for automatically
aligning, interpreting, and decoding biological sequences. De-

ecutable block. Perhaps “EB” is the jump instruction. The
“90” code seems to be doing nothing. Could it be a NO
OP? Comparing the invariant instruction block of the first
multiple alignment with the equivalent blocks in this last
analysis, we see that something changes in the middle of
the coding block. Since this something” seems to be as-
sociated with a change in the relative position of the vari-

30 IEEE ENGINEERING IN MEDICINE AND BIOLOGY March 1992

http://Prot.int

spite the universality of the “A-to-protein dictionary, the
presence of complex, not fully understood control sequences
within coding regions makes even automatic decoding still an
unsolved problem. Consider an actual DNA sequence (see
Decoding for P-hemoglobin), which addresses a component of
the functional hemoglobin that carries oxygen in the blood.

Notice that there are non-coding regions (called introns) inter-
spersed within the coding regions. Even individual codons may
be divided. Before the RNA transcript from this gene becomes
functional “A, the introns must be removed, or “spliced out.”
Although researchers have empirically determined the point of
splicing (“splice junctions”) for this gene, the algorithmic detec-
tion of all splice junctions in all genes cannot be done. We have
not yet determined precisely how splice junctions are encoded
in DNA, despite the fact that alignment analysis has detected
some apparent consensus sequences. Thus, to allow the useful
deduction of protein sequences from DNA sequences in a
genome database, the DNA sequences must be accompanied
with a significant amount of annotation, much of which must be
determined empirically and entered by hand.

Because human-genome researchers are interested in the
biological and medical effects of human genes, descriptions and
commentaries regarding them must also be collected and stored
in databases. The human 5-hemoglobin gene spans a mere 2000
nucleotides, yet current commentaries in various databases (e.g.,
GenBank, for annotated DNA sequences; PIR, for annotated
protein sequences; and OMIM, for medical commentary on
human genes) already collectively contain more than 500,000
bytes of information. If such an information amplification oc-
curred over the entire genome, the HGP would ultimately in-
volve terabytes of processed information and commentary.

Although this amplification ratio is not likely to apply evenly
to all portions of the genome, it might well apply to all genes.
The 5-hemoglobin gene just happens to be one of the best studied
human genes to date. As the Human Genome Project and related
research continue, the data- and information-handling problems
associated with the understanding-the-sequence component of
the project will certainly challenge, in complexity and in volume,
the capabilities of database technology.

btaining the Sequence
DNA in cells is organized into structures called chro- 0 mosomes, each of which consists of one long DNA

molecule accompanied by numerous protein molecules. Normal
human cells carry 46 chromosomes; 23 are contributed by each
parent. Although human cells are not visible to the naked eye,
they contain DNA molecules which, if straightened out and layed
end to end, would be more than three feet long. Human chromo-
somes occur in a variety of sizes over approximately a 5: 1 ratio
(Fig. 1).

Because chromosomes are molecules only a few atoms wide
but several inches long, they are fragile and break easily if
manipulated. In the course of their work, molecular biologists
break them into random fragments. These fragements are then
picked up individually by thousands of “vector” micro-or-
ganisms, each of which carries a human fragment and replicates
the human DNA along with its own DNA. When a large popula-
tion is later grown from a single individual micro-organism that
is carrying just one fragment from human DNA, that population
provides a ready source of multiple copies a particular small
region of human DNA. Complete sets of such clones, each
carrying different fragments from the entire genome, are known
as “libraries.”

Although cloning techniques provide ready sources of human
DNA, they provide no immediate way to determine the precise
location in the human chromosomes from which the DNA
originated. Determining this location requires further ex-
perimentation. Because the fragments are generated at random,

chromosome

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
X
Y

pct of
genome

8.10%
7.71 ‘/o
6.48%
6.00%
5.81 Yo
5.62%
5.14%
4.67%
4.57%
4.38%
4.38%
4.38%
3.62%
3.43%
3.24%
3.1 4%
3.05%
2.76%
2.57%
2.38%
1 .81 Yo
1 .go%
4.86%
2.10%

number of
base pairs

267,142,857
254,571,429
21 3,714,286
198,000,000
191,714,286
185,428,571
169,714,286
154,000,000
150,857,143
144,571,429
144,571,429
144,571,429
11 9,428,571
113,142,857
106,857,143
103,714,286
100,571,429
91,142,857
84,857,143
78,571,429
59,714,286
62,857,143

160,285,714
69,142,857

Total in Genome:

Average per chromosome:

3,300,000,000

143,478,261

1. The relative sizes and estimated nucleotide content of the
human autosomes and the X and Y sex chromosomes.

a library set of fragments spanning a total length far in excess of
one human genome is required in order to ensure a resonable
probability that any particular piece of human DNA will be
carried in at least one clone. The ratio of excess DNA that must
be cloned in order to ensure reasonable coverage of the genome
is, of course, a function of the size of the fragments generated
and of the degree of certainty required. With modem clone-
manipulation technology, about a five-fold set of DNA must be
cloned to generate adequate coverage of the genome. This means
that a good human genome clone library would contain between
15 and 20 billion base pairs of human DNA.

If each of these clonal fragments could be readily sequenced
(i.e., nucleotide sequence determined), assembling the final
human genome would be straightforward. The clonal sequences
would be compared with each other, regions of overlap detected,
and the final sequence assembled. However, at present, se-
quencing DNA is expensive (about $5-10 per base) and time
consuming. To avoid the waste that completely sequencing a
five-fold redundant set of DNA would entail, one of the prelimi-
nary goals is to study the clones in an effort to determine the
minimum spanning set of DNA fragments required to cover the
entire genome. Then, when sequencing techniques have been
improved to a cost of less that $0.50 per base (another HGP goal),
an all-out effort to sequence the minimal spanning set will
commence.

There are many techniques for building minimal spanning sets,
and improvements are constantly being developed. Basically,

March 1991 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 31

HIGH-RESOLUTION PHYSICAL
(CONTIG) MAPPING

Restriction cleavage
and/or

Gel reading
I

J
I

Fragment sizing

andlor

andlor
Consensus map assembly

COMPUTATIONAL COMPONENT

Inventory Control
Robotics

Sample Tracking
Laboratory Notebook

Robotics

Robotics

Image Analysis

Cuwe Fining

Automatic Map Generation

Contig Assembly Software

Map Assembly Software

Data-exchange FormatsIProtocols
Database Design

Database Access Tools
Miscellaneous Analysis Software

2. The experimental steps involved in high-resolution physical
mapping of chromosomes. The column on the right gives the
computational activities associated with each step. (Figure
adapted from [121.)

LARGE-SCALE
DNA SEQUENCING

I Preliminaly analysis
I

I Database submission I
I

1 Fulther analysis

COMPUTATIONAL COMPONENT

Inventory Control
Robotics

Sample Trackin
Laboratory NoteLok

Sample Tracking

Robotics

Robotics

Image Analysis

Image Analysis

Gel Assembly Software

Laboratory Notebook

Sequence Analysis: Similarity Search,
ORFIcoding-region Detection
Data-exchange Formats/Protocols
Database Design
Database Access Tools
Miscellaneous Analysis Software

3. The experimental steps involved in large-scale DNA
sequencing. The column on the right gives the computational
activities associated with each step. (Figure adapted from
[121.)

each technique involves performing some partial charac-
terization on each fragment, and then comparing the partial
characterization scores for each pair of fragments to determine
the probability of overlap between the two fragments. The result-
ing NxN probability matrix is used to deduce sets of overlapping
fragments. Each set of contiguous, overlapping fragments is
known as a contig. Once the entire sequence is spanned by one
large contig, the resulting minimal set of spanning fragments can
be sequenced, and the final, overall sequence assembled.

The process of fragment characterization and contig assembly
is complicated by the occurrence of both random and systematic
error. Some of the partial characterization measurements may be
in error, some clones may actually carry fragments from two or
more locations in the genome, some different regions of the
genome may carry identical sequences, some specific human
sequences may be systematically resistant to being incorporated
in micro-organism clones, and finally, some additional sources
of error are undoubtedly as yet unknown.

The information-handling requirements for this work are: build
a database that can (1) hold all of the different, inconsistent, and
rapidly changing data and metadata describing the sequence
fragments and their partial characterizations as they are obtained;
(2) track the assembly of fragments into provisional contigs; (3)
represent error and uncertainly associated with nearly every
measurement and inference; (4) rapidly adapt to recording data
for experimental procedures that may change almost daily; and
(5) allow the comparison and merger of contigs prepared with
different experimental and computation techniques.

It is hoped that ultimately the various efforts of multiple
researchers will converge upon a single, correct set of contigs
that span the entire sequence. However, while the work is ongo-
ing, it will be necessary to maintain in the database all of the
different, inconsistent, and overlapping versions for subparts of
the problem.

Every stage in contig assembly and in bulk sequencing benefits
from computer assistance. Since actual experimental manipula-
tions involve handling tens of thousands of tiny samples, robotics
are required to keep errors at a minimum. Raw data from these
experiments come in the form of images, whose manual transla-
tion into numerical form is prohibitively time consuming. Be-
cause valid biological experiments must be capable of
replication, computerized inventory control is required to track
the literally tens of thousands of components involved in com-
plex experimental designs. As data are analyzed, determining the
optimum next experiment may involve complex combinatorics,
so laboratory-assistant software is needed to plan and manage
experimentation. Figures 2 and 3 show some of the experimental
steps, and their computational counterparts, for both contig
assembly and large-scale DNA sequencing.

Ullman [131 has commented on current database systems: “The
modification of the database scheme is very infrequent, com-
pared to the rate at which queries and other data manipulations
are performed, ... the classical form of database system ... was
designed to handle an important, but limited class of applica-
tions. (For example), files of employees or corporate data in
general, airline reservations, and financial records. The common
characteristic of such applications is that they have large amounts
of data, but the operations to be performed on the data are simple.
In such database systems, insertion, deletion, and retrieval of
specified records predominates, and the navigation among a
small number of relations or files ... is one of the more complex
things the system is expected to do.”

With genome laboratory-support databases, schema-change
requests can occur almost daily, and queries and updates that
involve joins across fifteen or twenty tables would not be un-
usual. If Ullman’s characterization of database technology is
considered accurate, the HGP offers a real computational chal-
lenge to database theoreticians.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

-~ ___

March 1992

om uter and Biological
C olfa bo r at i on s c The success of the HGP will depend upon advances in both

biology and computer science. This duality will necessitate
effective collaborations, since there are few individuals with true
knowledge of both areas. (Developing programs to train scien-
tists for this area is yet another challenge.) Although such col-
laborations can be both productive and fulfilling, there are many
pitfalls awaiting those who try. This section touches upon two
problem areas.

Cultural Gaps
Differences in training create a cultural gap that can make
communication between biologists and computer scientists espe-
cially difficult. To deal with diversity, biologists learn to extract
signal from noise and to suppress their attention to occasional
variants and problem cases. In contrast, software engineers learn
to emphasize atypical cases, since these are the most likely places
for software designs to fail. As a result, whenever computer
scientists attempt to assess the requirements of a particular
biological information system, they can be misled if biologists
underestimate the complexity of their requirements by orders of
magnitude. Systems analysts should recognize that when a
biologist says, “All A’s are B,” what may be meant is “Some A’s
are B, and the rest are not well understood.” As a more specific
example, a biologist may claim, “Of course we have to keep track
of the organism from which the DNA was obtained, but that’s
straightforward,” neglecting to mention that “keeping track of
the organism” involves dealing with several million species
names, synonyms, and homonyms, all of which are logically
connected as a directed acyclic graph that individual researchers
will most likely prefer to view as consistent spanning trees of
their choosing.

The peril of being misled by biologists’ inclination to simplify
is real. One prominent database researcher, after meeting with
an equally prominent geneticist, concluded that the information-
handling requirements of the genome project were trivial. “He
told me that representing the genome merely involved descrip-
tive attributes for a set of at most 100,000 objects that must be
arranged in a linear order. I told him that that could be handled
by any competent undergraduate.” After further discussions, that
same database worker has now come to believe that unsolved
database problems exist in the HGP. He will likely begin direct-
ing some of his own research toward addressing these challenges.

Nomenclature Problems
Scientific nomenclature presents a special problem for database
designers, since the meaning of scientific terms varies between
specialties and over time. Because the databases associated with
the HGP cannot be merely a snapshot of the current consensus,
but rather must remain valid indefinitely, the databases must be
designed to track changes in meaning. Even the most basic
genetic concepts, such as “gene” and “locus,” mean different
things to different biologists. At a recent conference, a group of
bacterial geneticists were asked, “Suppose that a translocation
has occurred so that all of the DNA for a given gene has been
moved to a different chromosome. Do we say that the gene has
a new locus, or do we say that the gene’s locus is at a new
position?” All of the biologists claimed the question was trivial,
but when pressed they split evenly in choosing an answer. If a
requirements analyst had interviewed only one biologist on these
definitions, the resulting system would have been perceived as
inadequate by the fifty percent of biologists with adifferent view.
Seeking the common semantic denominator introduces com-
plexity, so that it is probably true that in order to meet the needs
of many biologists, the logical atoms in a biological database
should be defined at a level of detail and complexity greater than
that needed by any biologist.

Variations in concept definitions do not seem to impede the
practice of biology, since biologists constantly refine their
beliefs through the reality-check of experimentation. In addition,
most scientists rarely read old literature and thus are unaware of
the full extent of concept drift in their fields. Therefore, biologists
often assert that terminological fluidity is not an issue in biologi-
cal database design. This is a mistake. Many biologists don’t
appreciate that, in a database built with five percent error in the
definition of individual concepts, a query that joins across 15
concepts has less than a 5050 chance of retuming an adequate
answer. If genomic databases are going to tolerate fuzzy concepts
while providing good answers to complex queries, systems much
more sophisticated than textbook business databases will have
to be built.

Previous thinking about formalizing a science can provide
insights to the developers of scientific databases. Because every
tuple in a relational database may be regarded as a formal
assertion in predicate calculus about the subject domain of the
database, building a genetic database bears much in common
with developing a formal, axiomatic structure for genetics. Al-
though several efforts have been made to formalize genetics,
none has met with recognized success. Forty years ago, J. H.
Woodger [I61 made an heroic attempt to develop a formal
genetic calculus, yet today no practicing geneticist is familiar
with his work. Nonetheless, his observations are relevant to those
building genetic databases. For example, Woodger noted that the
language of geneticists is usually not as complex as their
thoughts:

“Geneticists, like all good scientists, proceed in the first in-
stance intuitively and ... their intuition has vastly outstripped the
possibilities of expression in the ordinary usages of natural
languages. They know what they mean, but the current linguistic
apparatus makes it very difficult for them to say what they mean.
This apparatus conceals the complexity of the intuitions. It is part
of the business of genetical methodology first to discover what
geneticists mean and then to devise the simplest method of
saying what they mean. If the result proves to be more complex
than one would expect from the current expositions, that is
because these devices are succeeding in making apparent a real
complexity in the subject matter which the natural language
conceals.”

This paragraph was written in 1952, before the discovery of
DNA structure and the advent of molecular biology. Woodger’s
observations are even more applicable today.

The analysis and design efforts required to build genomic
information systems will be a continuing computational chal-
lenge of the HGP. Building genomic databases without striving
to ferret out, understand, decompose, and represent the underly-
ing conceptual complexity is inviting failure. Yet, most
biologists consider worrying about nomenclatural details to be
definitive tedium. Getting past these difficulties, to build truly
useful information resources for the HGP, will tax the skills (and
the patience) of computer scientists and biologists alike.

Database and computational activities are an essential part c of the Human Genome Project. If these aspects are not
handled well, the HGP could consume billions of dollars, and
researchers might still find it easier to obtain data by repeating
experiments rather than by querying a database. Should this
occur, the HGP project could reasonably be called a failure.

Some genomic database and software problems are fairly
straightforward. Others will push the envelope of information-
management theory. The HGP needs a continuum of database
activities, ranging from pure application development to pure
research. The research community needs production-quality,

onclusion

March 1992 IEEE ENGINEERING IN MEDICINE AND BIOLOGY

-_ -__

33

rock-solid, public-access databases right now. But research will
be required to develop the new ideas and technologies necessary
for the production-quality databases of a decade hence. The
challenges of the Human Genome Project will drive computa-
tional science, just as earlier challenges from genetics drove the
development of modem statistical analysis. (Regression analysis
and analysis of variance were both initially devised by Galton,
and Fisher, respectively, to deal with genetic problems.)

In the Human Genome Project, computers will not merely serve
as tools for cataloging existing knowledge. Rather, they will
serve as instruments, helping to create new knowledge by chang-
ing the way we see the biological world. Computers will allow
us to see genomes, just as radio telescopes did for quasars, and
electron microscopes for viruses.

Robert J . Robbins received the B.S., M.S., and
Ph.D. degrees in zoology and biological
science in 1973, 1974, and 1977, respectively.
He also holds an A.B. degree in history.

He is currently a Visiting Associate Professor
of Medical Information in the School of
Medicine, Johns Hopkins University. At Hop-
kins, he is also Director of the Welch
Laboratory for Applied Research in Academic

Information, which is the home of the Genome Data Base
(GDB)- the central repository for the gene-mapping data col-
lected by the Human Genome Project. From 1987-91, Dr. Rob-
bins was on the staff of the National Science Foundation, where
he was charged with facilitating the computerization of biology,
and where he served most recently as Program Director for
Database Activities in the Biological, Behavioral, and Social
Sciences. Prior to that, he was a member of the faculty in
biological science and zoology at Michigan State University. His
research interests are centered around the development of sys-
tems to manage scientific data, information, and knowledge.

Dr. Robbins is a member of the IEEE Computer Society, the
ACM, and several biological societies. He also serves on many
advisory and policy boards for biological databases, including
the Joint Informatics Task Force for the Human Genome Project,
the Database Subcommittee for the Plant Genome Project, and

News Briefs
(continued from page 23)

in good standing. Terms of office for the SecretaryTreasurer,
Vice-presidents, and at-large members of the BOD from the COF
and Councils are for two years. Further information on the roles
and responsibilities of the BOD, EC, Officers, Councils, Com-
missions and Committees and the procedures for elections and
appointments are provided in the bylaws.

Potential sources of revenue for AIMBE include dues from
Fellows, membership fees from societies, industries and institu-
tions, grants and contracts, income from publications, and un-
restricted gifts. Public service contracts will provide the
necessary flexibility to pursue the mission of AIMBE consistent
with the public and national interest.

Spacelabs Awards Five Scholarships
Spacelabs, Inc. has awarded five biomedical technology students
$1000 scholarships to be used for tuition and books. The

the Department of Energy’s Human Genome Coordinating Com-
mittee.

References
1. Barron S, Witten M, Harkness R, Driver J: A bibliography on computa-
tional algorithms in molecular biology and genetics, CABZOS, vol7, no. 2,
p. 269, 1991.
2. Barron S, Witten M, Harkness R, Driver J: A bibliography on computa-
tional algorithms in molecular biology and genetics, Advances in Mathe-
matics and Computers in Medicine, vol. 6, in press, 1991.
3. Cantor C R Orchestrating the human genome project, Science, vol. 248,
pp. 49-5 I , 1990.
4. Cinkosky MJ, Fickett JW, Gilna P, Burks C: Electronic data publishing
and GenBank, Science, vol. 252, pp. 1273-1277, 1991.
5. Colwell RR (Ed.), Biomolecular Data: A Resource in Transition. New
York: Oxford University Press, 1989.
6. Culliton BJ: Mapping terra incognita (humani corporis), Science, vol250,
pp. 210-212, 1990.
7. Gilbert W: Towards a paradigm shift in biology, Nature, vol. 349, p. 99,
1991.
8. Hawley DK,McClure WR: Compilation and analysis of Escherichia coli
promoter DNA sequences, Nucleic Acids Research, vol. 1 I , pp. 2237-2255,
1983.
9. Jourdain R: Programmer’s Problem Solver for the IBM PC, XT, & AT.
New York: Brady Communications Company, Inc, 1986.
IO. Pearson ML, SOLI D: The human genome project: A paradigm for
information management in the life sciences, The FASEB Journal, vol5, pp.
35-39, 1991.
1 1. Stephens JC, Cavanaugh ML, Gradie MI, Mador ML, Kidd KK:
Mapping the human genome: Current status, Science, vol250, pp. 237-244,
1990.
12. United States Department of Health and Human Services, Public Health
Service, National Institutes of Health, National Center for Human Genome
Research, Annual Report I- FY 1990. Washington, DC: Government Print-
ing Office, 1991.
13. Ullman JD: Principles of Database and Knowledge-Base Systems,
Volume I . Rockville, Maryland: Computer Science Press, 1988.
14. United States National Academy of Sciences, National Research Council,
Commission on Life Sciences, Board on Basic Biology, Committee on
Mapping and Sequencing the Human Genome, Mapping andsequencing the
Human Genome. Washington, DC: National Academy Press, 1988.
15. Watson JD: The human genome project: Past, Present, and Future,
Science, vol248, pp. 44-48, 1990.
16. Woodger JH: Biology and Language. Cambridge University Press,
1952.

Spacelabs Scholarships, established earlier in 1991, will be given
annually to students enrolled full-time in college biomedical
technology programs.

The 1991 Spacelabs scholarship recipients are: Cary Foshee,
Texas State Technical Institute, Waco, Texas; James Craft,
Madisonville Community College, Madisonville, Kentucky; Jes-
sica Furnier, Colorado Tech College, Colorado Springs,
Colorado; Lawrence Pakowski, Jr., Stanly Community College,
Albemarle, North Carolina; and Frank Opice, Penn State Univer-
sity, New Kensington, Pennsylvania.

The intent of the scholarship program is to identify, recognize
and encourage outstanding achievement by students of biomed-
ical technology. Scholarship applications are judged on the basis
of a written autobiographical sketch, letters of recommendation,
and educational transcripts.

34 IEEE ENGINEERING IN MEDICINE AND BIOLOGY March 1992

