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l though the Human Genome 
Project is well recognized as the 

ogy, it is less well known as a major 
project in computer technology and in- 
formation management. By the time 
this project is completed, many of its 
innovative laboratory methods will 
have begun to fade from memory. Al- 
though a few might be preserved as 
exercises for undergraduates, the rest 
will soon become footnotes in the his- 
tory of molecular techniques. What 
will remain, as the project’s enduring 
contribution, is a vast body of com- 
puterized knowledge. Seen in this 
light, the Human Genome Project is 
nothing but the creation of the most 
amazing database ever attempted- the 
database containing instructions for 
building people. 

The 3.3 billion nucleotides in the 
DNA of a human gamete constitute a 
single set of these instructions. With 
each nucleotide represented as a single 
letter, one copy of this sequence, typed 
(in standard Dica @Deface) on a con- 
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tinuous ribbin of miterial, could be stretched from San Francis- 
co to New York and then on to Mexico City. No unaided human 
mind could hope to comprehend such a mass of information. Just 
assembling, storing, publishing, and distributing (much less 
understanding) such a sequence will require automation. Repre- 
senting individual variations and managing a fully annotated, 
functionally described version of the sequence is probably 
beyond current information-handling technology. 

Even now, when the Human Genome Project is merely in the 
first year of its first five-year plan, computer systems are playing 
an essential role in all phases of the work. Laboratory databases 
help manage research materials, while computer-controlled 
robots perform experimental manipulations. Automated data-ac- 
quisition systems log experimental results and analytical 
software assists in their interpretation. Local database systems 
store the accumulating knowledge of a research team, while 
public databases provide a new type of publication for scientists 
to share their findings with the world. 

Some genomic database and software problems are fairly 
straightforward. Others will push the envelope of information- 
management theory. The HGP requires a continuum of database 
activities, ranging from application development to research. 
The research community needs production-quality, rock-solid, 

public-access databases right now, but 
pure computational research will be 
required to develop the new ideas and 
technologies necessary for the produc- 
tion-quality databases of a decade 
hence. The challenges of the Human 
Genome Project will drive computa- 
tional science, just as earlier challen- 
ges  f rom genet ics  drove the 
development of modern statistical 
analysis. 

In the Human Genome Project, 
computers will not merely serve as 
tools  for  cataloging exis t ing 
knowledge. Rather, they will serve as 
instruments, helping to create new 
knowledge by changing the way we 
see the biological world. Computers 
will allow us to see genomes, just as 
radio telescopes let us see quasars and 
electron microscopes let us see 
viruses. 

urpose and Scope 
The Human Genome Project P (HGP) is an international under- 

taking with the goal of obtaining a 
fully connected genetic and physical map of the human 
chromosomes and a complete copy of the nucleotide sequence 
of human DNA. As such, it has been described as the first “big 
science” project in biology [3], [ 151. Although the computational 
challenges associated with the project have been described [ 121, 
[ 141, some computer scientists have expressed concerns about 
its complexity: “Computationally, the project is trivial. The 
human genome is nothing but a string of 3.3 billion characters. 
Where is the challenge in representing or manipulating this? 
Biologists may think that 3.3 gigabytes are a lot of data, but a 
database of this size is routine in many application areas.” 

Such skeptics are simply wrong. The HGP can be logically 
divided into two components, getting the sequence and under- 
standing the sequence, but neither involves a simple 3.3 
gigabyte database with straightforward computational re- 
quirements. A computer metaphor helps establish the scope 
of the effort. Consider the 3.3 gigabytes of a human genome 
as equivalent to 3.3 gigabytes of files on the mass-storage 
device of some computer system of unknown design. Obtain- 
ing the sequence is equivalent to obtaining an image of the 
contents of that mass-storage device. Understanding the se- 
quence is equivalent to reverse engineering that unknown 
computer system (both the hardware and the 3.3 gigabytes of 
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software) all the way back to a full set of design and maintenance 
specifications. 

Securing the sequence is further complicated because mass- 
storage device is of unknown design and cannot simply be read. 
At best, experimental methods can be used to obtain tiny frag- 
ments of sequence. Because these experimental methods are 
expensive ($5-10 per byte) and error prone, new techniques are 
constantly being developed and tested. Meanwhile, a database 
must be designed to hold the fragments that are obtained, along 
with a full description of the procedures used to generate them. 
Because the experimental procedures change rapidly and often 
radically, this is equivalent to designing and maintaining a 
database for an enterprise whose operating procedures and 
general business rules change weekly, perhaps daily, with each 
change requiring modifications to the database schema. 

As the sequence fragments accumulate, efforts will be made to 
synthesize the fragments into larger images of contiguous 
regions of the mass-storage device, and these synthesized frag- 
ments must also be represented in the database. If multiple 
inferences are consistent with the present data, all of the consis- 
tent possibilities must be represented in the database to serve as 
the basis for further reasoning when more data become available. 
As even larger regions are synthesized, the entire cascade of 
premisses, procedures, and logical dependencies must be stored, 
so that a “logical roll-back” can occur if some new observation 
renders an earlier premise doubtful. Since all of the data are 
obtained experimentally, each observation and deduction will 
have some error term associated with it. The deductive proce- 
dures must use these errors to assign probabilities to the various 
deductive outcomes obtained and stored in the database. 
Thousands of researchers from independent laboratories will be 
using the system and contributing data. Each researcher will have 
a notion of proper error definition and the rules by which errors 
should be combined to provide reliability estimates for the 
composite sequences. Therefore, the database must be capable 
of supporting probabilistic views and returning multiple an- 
swers, each with their associated conditional probabilities. The 
involvement of many independent researchers, each employing 
slightly different experimental procedures and concepts, will 
also result in extensive nomenclatural synonymy and 
homonymy. The database must take these nomenclatural dif- 
ficulties into account and present users with verbiage consistent 
with their own. 

Reverse engineering the sequence is complicated by the fact 
that the resulting image of the mass-storage device will not be a 
file-by-file copy, but rather a streaming dump of the bytes in the 
order they were entered into the device. Furthermore, the files 
are known to be fragmented. In addition, some of the device 
contains erased files or other garbage. Once the garbage has been 
recognized and discarded and the fragmented files reassembled, 
the reverse engineering of the codes can be undertaken with only 
a partial, and sometimes incorrect, understanding of the CPU on 
which the codes run. In fact, deducing the structure and function 
of the CPU is part of the project, since some of the 3.3 billion 
gigabytes are the binary specifications for the computer-assisted- 
manufacturing process that fabricates the CPU. In addition, one 
must also consider that the huge database also contains code 
generated from the result of literally millions of maintenance 
revisions performed by the worst possible set of kludge-using, 
spaghetti-coding, opportunistic hackers who delight in clever 
tricks like writing self-modifying code and relying upon undocu- 
mented system quirks. 

One computer scientist, upon hearing this metaphoric descrip- 
tion, opined that, far from being trivial, the HGP was simply 
impossible: “Why, that’s like working with both hands tied 
behind your back, blindfolded, in a vacuum!” The Human 
Genome Project isn’t impossible, but it is complex. The goal of 
this paper is to provide an overview of the HGP that emphasizes 

its generic problems and computational challenges. Presenta- 
tions of actual current database and computational efforts are 
available elsewhere [ l ] ,  [2], [4], [5] ,  [6], [IO], [ I  11. 

asic Biological Concepts 
Early on, biochemists established that an individual’s B biological structure and function is controlled by proteins, a 

workhorse set of molecules that occur in thousands of forms to 
perform thousands of functions. Since the attributes of an or- 
ganism are ultimately determined by the types and quantities of 
proteins present in its cells, these molecules are clearly the 
fundamental building blocks of life. The human body contains 
50,000 to 100,000 different kinds of protein. 

Although it is their three-dimensional configuration that gives 
proteins their functional specificity, chemically, proteins are 
linear polymers called polypeptides that contain hundreds of 
amino acids, linked by peptide bonds into a continuous sequence. 
Proteins assume their three-dimensional shape “automatically” 
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The universal code by which genetic information in 
mRNA is translated into protein. The nucleotides in 
an mRNA molecule are read in non-overlapping 
groups of three, called codons. The “reading frame” 
is established by requiring that each protein always 
begin with the codon AUG. As each successive codon 
is encountered, the protein-synthesis machinery 
incorporates the amino acid given in this table. When 
a stop codon (UAA, UAG, or UGA) appears, 
synthesis is complete. This code is used by all living 
organisms on this planet. 
The twenty amino acids commonly found in proteins, 
and their three-letter abbreviations are: 
ala alanine leu leucine 
arg arginine lys lysine 
asn asparagine met methionine 
asp aspartic acid phe phenylalanine 
cys cysteine pro proline 
gln glutamine ser serine 
glu glutamic acid thr threonine 
gly glycine trp tryptophan 
his histidine tyr tyrosine 
ile isoleucine val valine 
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once they are synthesized with a specific sequence of amino-acid 
subunits. Although many kinds of amino acids exist, only twenty 
different forms are used in proteins. Because proteins are 
linear polymers containing just twenty different subunits, 
the structure of any given protein molecule can be specified 
with a linear string using a twenty-letter alphabet. 

In the first half of this century, classical geneticists showed 
that the control of biological structure and function is passed 
from generation to generation in the form of genes- 
hypothetical entities that occur singly in gametes (sperm 
and eggs) and doubly in organisms. By 1950, it was apparent 
that genes had to act by controlling the synthesis of proteins, 
but the means by which this might be accomplished were a 
mystery. 

With the demonstration that genes are made of deoxyribo- 
nucleic acid (DNA) and the discovery of the structure of 
DNA, the science of molecular biology was established, and 
the first possibility of understanding gene function ap- 
peared. DNA is a linear polymer of molecular subunits 
called nucleotides, which occur in DNA in four specific 
forms: adenine, thymine, cytosine, and guanine (usually 
abbreviated as A, T, C ,  G) .  Because DNA is a linear polymer 
containing just these four subunits, the structure of any 
given DNA molecule can be fully specified with a linear string 
using a four-letter alphabet. 

Since DNA and proteins can both be specified as linear strings, 
researchers quickly hypothesized that genes might control the 
synthesis of proteins by simply encoding their amino-acid se- 
quences as nucleotide sequences. This proved to be true, with 
the proviso that instructions encoded in DNA are first transcribed 
into ribonucleic acid (RNA) polymers before being translated 
into the amino-acid sequence of proteins. (RNA differs from 
DNA by carrying an extra hydroxyl group on each nucleotide, 
and by carrying the nucleotide uracil, abbreviated U, wherever 
DNA carries thymine.) From this hypothesis, the “fundamental 
dogma” of molecular biology was born: DNA directs the syn- 
thesis of RNA, which directs the synthesis of protein, often 
illustrated as: 

RNA 

mRNA 

DNA + RNA + proteins 

The production of RNA from a DNA template is called 
transcription, and the production of protein from an RNA 
template is known as translation. Complexity was added to the 
fundamental dogma with the recognition that ( 1 )  DNA redun- 
dantly encodes for its own duplication, (2) DNA-directed protein 
synthesis involves three different classes of RNA (tRNA, 
mRNA, and rRNA), and (3) previously synthesized proteins in 
the form of enzymes are also key factors in both DNA replication 
and protein synthesis: 
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The specific instructions coding the amino-acid sequence for a 
particular protein are carried in the nucleotide sequence of a 
particular mRNA, which is transcribed from a particular gene in 
DNA. The means (see The Code of Life) by which mRNA 
sequences determine amino-acid sequences has proven to be the 
same for all living things on this planet. 

Life is fundamentally digital, not analog; genetic information 
is passed from generation to generation in the form of a discrete 

DNA-Directed Protein Synthesis 
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Start and stop signals encoded in the DNA tell enzymes to 
begin and end transcription, producing a primary RNA 
transcript. Other enzymes modify the transcript by adding 
or deleting nucleotides. Most human genes contain large 
regions of non-coding sequences (introns) interspersed 
with coding sequences (exons). The intron sequences are 
removed during post-transcriptional processing, yielding a 
final “A. The mRNA is translated into protein, using 
the universal code along with start and stop signals 

code. The parallel anology with the digital encoding found on 
the mass-storage devices of computer systems is almost ines- 
capable. Capturing and understanding all of the encoded infor- 
mation in human genes is the long-term goal of the human 
genome project. 

Although the mRNA-to-protein code is straightforward, the 
actual process by which information stored in a human gene 
becomes transformed into a protein is considerably more com- 
plex (see DNA-Directed Protein Syntheses). 

If we think of information encoded in  genes as equivalent to 
programs encoded on a mass-storage device, and the biological 
functions performed by proteins as the execution of these 
programs, then the steps “post-transcriptional processing” and 
“post-translational processing” represent the actions of self- 
modifying code, since they involve changes to encoded instruc- 
tions performed after the instructions are “loaded” but before 
they “execute.” Worse than simple self-modifying code, the 
protein enzymes that carry out this post processing are more 
similar to software daemons that run constantly, activating only 
when a particular program is loaded and then modifying that 
program’s code in memory before it starts executing. Reverse 
engineering self-modifying code is notoriously difficult. 

Because previously synthesized proteins effect, affect, and 
control all aspects of the expression of genetic information, 
reverse engineering the human genome will be complex, since 
these protein daemons interact with control signals carried in 
DNA to regulate the expression of genes differently in different 
tissues. The human genetic apparatus is not a mere collection of 
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recipes for building proteins, for if it were, cells carrying the same 
set of genes could not differentiate into a variety of tissues, such 
as brain and muscle. Although many control mechanisms arc 
known, the majority are not yet well understood. Identifying and 
deciphering them is a major goal of genomics. 

nderstanding the Sequence 
Soon after obtaining a DNA sequence, researchers try to 
identify and understand its function through a mixture of 

logic and experimentation. Attempting to understand a sequence 
of hexadecimal values from the mass-storage device of some 
computer system involves similar steps. This section compares 
the two processes. 

Direct Sequence Interpretation 
Understanding an arbitrary sequence is much easier if the system 
and context in which the sequence is to be interpreted are 
specified. For example. consider the following RNA sequence: 

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU 

If this sequence initiates a coding region on an mRNA molecule 
(this is. in  fact. the beginning of the coding region in human 
13-hemoglobin mRNA), then interpreting the sequence requires 
a trivial look up in the mRNA-to-protein dictionary, yielding: 

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU 
inet u l  his leu thr pro f l u  glu lys scr ala val  

Determining the actual function of a particular protein (which 
depends upon its three-dimension structure) from its sequence, 
however. is not straightforward and in fact is impossible with 
current technology. Until better algorithms are developed, the 
possible outcome space for such an n-body problem is too large 
to compute in reasonable time. 

Now consider the following hexadecimal sequence: 

CD 05 CD 20 

If it can be assumed that this sequence is executable code from 
an Intel-based, MS-DOS computer system, a knowledge of the 
op codes would permit the reverse assembly: 

CD05 INT 05 
CD20 INT 20 

Here. too, determining actual function from an interpretation 
is not entirely straightforward. For example, in MS-DOS, intcr- 
rupt 5 triggers the “print screen” routine in BIOS, and interrupt 
20 is the old “program terminate” (equivalent to the CP/M BDOS 
function OOH) op code carried over from the earliest versions of 
MS-DOS. A first hypothesis, then, would be that “CD 05 CD 20” 
could function as a self-contained executable program that 
printed whatever happened to be on the screen. then returned 
control to the operating system. 

This hypothesis, however, is not necessarily correct. Calling 
DOS interrupt 5 passes control to whatever routine is pointed to 
by the low-memory vector for INT 5 .  Although normally the 
“print screen” routine, it could be any routine left in memory by 
a previously executed terminate-and-stay resident program (c.t‘., 
[9], p 128). Determining what this four-byte program actually 
would do at a given time in a particular machine would involve 
some combination of experimentation and further analysis ofthe 
interrupt vector table and the code addressed by the INT 5 vector. 

Determining the function of a DNA sequence involves similar 
steps. After obtaining a context in which to interpret the sequence 
(so that the relevant “op codes” are known), analysis begins. 
Because the full set of biological op codes is not yet known. and 

Directed Mutagenesis 
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An excerpt from an alignment performed in an effort to 
understand the DNA control region that signals START 
OF TRANSCRIPTION for genes of the bacterium 
Escherichia coli [8]. The last nucleotide in each sequence 
(bracketed with arrowheads) is the point of transcription 
initiation, with transcription proceeding to the right. 
Analysis shows two regions of similarity upstream from 
the start of transcription; one approximately 10 bases 
upstream (the -10 consensus sequence) and the other 
approximately 35 bases upstream (the -35 consensus 
sequence). Averages of base occurrences taken over many 
sequences show these two upstream regions to be 
characterized by the consensus sequences as given in the 
figure. Interestingly, even though the contents of the 
variable region between the consensus sequences seems to 
have little or no effect upon the efficiency of the signal in 
initiating transcription, the length of the variable regions 
does seem to have an effect, thereby demonstrating some of 
the subtlety involved in biological coding. Directed 
mutagenesis studies have shown that changes toward or 
away from the consensus sequences increase or decrease, 
respectively, the ability of a DNA region to act as a site of 
transcription initiation. 

because biological subsystems are so interdependent, consider- 
able experimentation and comparative work is required for re- 
searchers to generate a tentative understanding of the sequence. 
Part of the database and computation challenges of the HGP is 
building databases for storing evolving hypotheses regarding 
these biological op codes, with the ultimate goal of using these 
data to write a “biological disassembler” that could recognize 
and interpret all functional regions in any arbitrary piece of DNA. 

Comparative Sequence Analysis 
The previous discussion examined the interpretation of arbitrary 
sequences when something is known of the system and the 
context of the sequence. But what if the system were unknown 
and the context uncertain‘! To illustrate one approach to inter- 
preting sequences from an unknown computer system, first 
assume that nothing is known of Intel-based computers or of 
MS-DOS or of ASCII. Then consider the following examples. 

When invoked. a particular MS-DOS program named 
WARMBOOT.COM causes the same effect as pressing the 
ctrl-alt-delete keys; that is, it causes the system to reboot without 
performing any of the system checks associated with a cold boot. 
This program, i n  its entirety. is found to consist of the sequence: 

BA 40 00 SE DA BB 72 00 C7 07 00 00 EA 00 00 FF FF 

How might this program work, and the sequence be inter- 
preted? If one truly knew nothing about this computer system, 
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very little could be done with just this sequence. But, suppose 
that another program named COLDBOOT.COM (that does what 
the name implies) were also known and that the program, in its 
entirety, consisted of the sequence: 

BA 40 00 8E DA BB 72 00 C7 07 34 12 EA 00 00 FF FF 

By aligning the two sequences and associating differences in 
their structure with differences in their function, a beginning, 
however feeble, reverse engineering MS-DOS machine code 
could be generated: 

Substituting “34 12” for “00 00” somehow changes the 
WARMBOOT program into a COLDBOOT program. These 
bytes must be data, and the remainder instructions for invoking 
the boot routine. This trivial comparison has allowed us to get a 
small purchase on the problem. 

Now consider a set of programs known to have similar func- 
tions. Program 1 displays “Hello world’’ on the terminal, and 
programs 2,3, and 4 display “Hi world,” “Goodbye world,” and 
“Hello,” respectively. If these are placed into a multiple align- 
ment (which requires inserting gaps to bring the similar regions 
into apposition), we have: 

1 E0 OD 90 48 65 6C 6C 6F **  ** 20 77 6F 72 6C 64 
2 EB OA 90 48 69 **  ** * *  .. ** 20 77 6F 72 6C 64 
3 E0 OF 90 47 6F 6F 64 62 79  65 20 77 6F 72 6C 64 
4 n n  EB 07 90 48 65 6C 6C 6F .* **  ** .* * *  .. **  * *  
u u  I I 

Even with no prior knowledge of the op codes or the character 
codes used by MS-DOS systems, useful insights could be ob- 
tained from these alignments and a knowledge of the four 
programs’ functions. The code sequences clearly have regions 
of identity and regions of variability, and a reasonable first 
hypothesis is that the variable regions contain codes for the 
characters to be displayed, and the constant regions contain 
instructions for displaying these characters. 

An analysis of the variable regions could lead to a tentative 
deduction of the entire character code, since the variable regions 
each seem to contain exactly the same number of codes as of 
characters displayed, and adjacent letters in the alphabet appar- 
ently have sequential code values. The hypothesized complete 
set of character codes could be tested by replacing bytes in the 
variable region with other values, then executing the program 
and recording what characters are displayed. In fact, substituting 
all values from 00 through FF would allow the rapid determina- 
tion of the entire character code. 

Similar alignments of molecular sequences are commonly 
employed in molecular biology. And, making specific substitu- 
tions in DNA, called directed mutagenesis, is also an important 
experimental technique for studying biological function and for 
deciphering the biological op codes in DNA. As an early ex- 
ample, Hawley, et al. [8], compared regions in bacterial DNA 
known to be the site of transcription initiation. This alignment 
did detect regions of similarity (see Directed Mutagenesis). 
However, “genomic computers” are inherently probabilistic. 
That is, with the exception of the mRNA-to-protein codes, most 
biological op codes occur in a variety of forms, with the different 
forms variously affecting the probability that a particular event 
will occur. Reverse engineering a system with probabilistic 
codes will certainly be more challenging than would be the case 
for a system employing deterministic codes. 

Retuming to our computer example, consider another align- 
ment, this time between two programs with identical 
functionality; both write “Hello world”: 

1 - - - IEB OD 90 48 65 6C 6C 6F 20 77 6F 72 66 64 2 4 [ [ ~ ~ 0 3 ~ ~ ~ [ ~ ~  

5 EB 01 9 O m ] O F  L-][EBOD 9 0 4 8  656C 6C 64 20 77 6 F 2 2  6&5C 24]@ 

This “alignment” is more complex, but it also is especially 
informative when compared with the analysis of the previous 
multiple alignment. Sequences 1 and 5 contain four identical 
subregions, but with three of them in a different order. If the order 
of blocks is ignored, these two sequences are nearly identical. 
Twenty four of the twenty five bytes in string 1 have an exact 
match in string 2. 

Likewise, proteins and genes may contain permutable func- 
tional blocks. Developing string-matching algorithms and writ- 
ing software to produce “non-linear alignments” (i.e., the 
recognition of variously ordered similar subregions), even when 
the sequences involved may contain hundreds of thousands of 
characters, is one computational challenge of the HGP. Another 
challenge is developing an indexing method for some kind of 
n-dimensional “similarity space” so that queries like “Select All 
Sequences Where Similar to Sequence X” will execute in 
reasonable time, even if run against a database containing mil- 
lions of sequences comprising more than a terabyte of data. 

At present, whenever a new DNA sequence is added to a DNA 
database, a brute-force similarity comparison is made between 
that sequence and every other sequence in the database. This is 
resource-intensive work, and it has been estimated that within 
ten years the databases will have grown and the rate of sequence 
acquisition will have increased so that it would require a teraflop 
machine running all out, twenty four hours a day, just to access 
and catalog incoming sequence data. However, an appropriate 
similarity-space index could entirely eliminate this computation- 
al burden. 

Retuming again to the hexadecimal alignment problem, from 
the previous multiple alignment of sequences 1 through 4, it was 
possible to hypothesize that the common region of code that 
began with “24” and ended with “C3” was an invariant block 
that contained instructions for writing a message to the screen. 
However, from the alignment of sequences 1 and 5, it now 
appears that “24” is more likely associated with the end of the 
variable block containing the message, and “C3” more likely 
denotes the end of the entire program rather than just the end of 
the display-message block. There is also a sequence that is nearly 
equivalent to the invariant display-message block, but with “OF’  
substituted for “03.” Furthermore, we see that the two large 
identical blocks between sequences 1 and 5 that begin with “EB 
OD 90” should probably be decomposed into two blocks, as: 

1 ” - - EB OD 90148 65 6C 6C 6F 20 77 6F 72 6C 64 2 4 / 1 8 4 ] 0 3 F q H  

5 EB 01 90 (E4 00 84 09 BdOF /01]=1901(4865 6C 6C 64 20 77 6F 72 6C 6C 2 4 ] m  

The blocks of identical or similar code can now be categorized 
as data (containing characters to be displayed) or as instructions. 
Previous work deciphering the character code should have estab- 
lished that “24” represents “$,” and our current analysis has 
observed.that all of the variable strings end with this symbol, 
even though it is not displayed. Is “$” used as punctuation to 
terminate strings? The “C3” code seems to be the terminate-pro- 
gram code, and “EB” is always followed by a hexadecimal digit 
giving the distance in bytes to the beginning of the next ex- 

March 1992 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 

__ -~ ~~~ 

29 

http://COLDBOOT.COM


Decading for &hemoglobin 

lma: 62205 
62221 Cl’CMGAGM 
62281 GTGMCCCCT 
62341 aetgggcatg 
62401 ctattggtct 
62461 
62521 
62581 
62641 
62701 
62761 
62821 
62881 
62941 
63001 
63061 
63121 
63181 
63241 
63301 
63361 
63421 
63481 
63541 
63601 

v tg 
agttcatgte at 

TcGcuuoMTTcA 
TM-XXXClV 

nscription and 

mRXA: 1 AUG GUG CAC CUC ACU CCU GAG GAG A&6 UCU GCC GUU ACU OCC CUC UGC 
49 GGC MO GUG AAC GUG GAU G M  G W  COU COU GAG GCC Cuc GGC AGG CUG 
97 CUC GUG GUC WAC CCU UGQ ACC CAQ ACC W C  W U  GAG UCC W U  Gco GAU 
145 CUC UCC ACU CCU GAU GCU GUU AUG CCC M C  CCU AAC CUG AAC CCU CAW 
193 CCC M G  AM GUG CVC OCU ofc UUU AGO CA0 Coc CUG GCU CAC CUG GAC 
241 M C  CUC A M  Coc ACC UUU ofc ACA Cuo AGU GAG CUG CAC UGU GAC M G  
289 CUG CAC GUC GAU CCU GAQ M C  W C  AGG Coc CUG GGC M C  GUG CUG GUC 
337 UGU GUG CUC GCC CAW CAC UUU GGC AAA O M  UUC ACC CCA CCA GUG CA0 
385 GCU GCC OAU CAG AM COG GUG GCU GGU GW; GCU M U  CCC CUG GCC CAC 
433 AAG UAU CAC U M  

translation and 
post-tranalational processing I 

Prot.int 1 val his leu thr pro glu glu lys ser ala val thr ala leu trp 
16 gly lys val asn Val asp glu val ply ply glu ala l e u  ply arg leu 
32 leu val val tyr pro trp thr gln arg pho phe glu ser phe gly asp 
48 leu w r  thr pro asp ala val met gly asn pro lys val lys ala his 
64 gly lys lys val leu gly ala phe ser nap gly leu a l a  his leu asp 
80 ann leu lys gly thr phe ala thr leu aer glu leu his cys asp lys 
96 leu his val asp pro glu ann phe arg leu leu gly a m  val leu val 
111 cys val leu ala his his phe gly lys glu phe thr pro pro val gln 
128 ala ala tyr gln lys val val ala ply val ala ann ala  leu ala his 
144 lya tyr his 

Decoding involved in the synthesis of human &hemoglobin from information 
encoded in the DNA of human chromosome number 11. The tag “DNA” labels an 
excerpt containing the c a d i i  region of the gene for &hemoglobin, taken from a 
73,326-base sequence (GenBank) spanning a region on the short arm of chromosome 
11. To produce the actual protein, all of the DNA is first copied into RNA (in which 
all of the T’s are replaced with U’s). Next, the RNA is subjected to 
post-transcriptional processing that removes all of the bases transcribed from those 
shown in lower case. The resulting functional mRNA is then translated into protein 
according to the universal code shown in Fig. 1. Finally, the first amino-acid 
(methionine) is removed during post-translational processing, yielding a molecule of 
normal human &hemoglobin containing 146 amino acids arranged in a specifk 
sequence. 

able character block, perhaps it 
represents an address for the 
character block. 

Using such techniques, it 
would be possible, in theory, to 
reverse engineer first the entire 
set of Intel op codes and then 
all application codes that run 
on such machines. The data- 
and hypothesis-management 
requirements for such an effort 
would be daunting. We would 
somehow have to record, say, 
not only that our current 
hypothesis is that “C3” is the 
program-terminate code, but 
we would also be required to 
track all of the evidence and 
reasoning to  support this 
hypothesis. At present, we 
would need to record that “03” 
and “OF’  seem to involve ad- 
dressing, and we would need 
some way to modify this 
hypothesis when additional in- 
formation is obtained. We 
would have to store all known 
program sequences in a 
database, linked to the analyses 
that had been done upon them. 
We would need to retrieve se- 
quences according to their 
similarity. Of the five screen- 
wri t ing sequences j u s t  
analyzed, numbers 1 and 5 are 
functionally the most similar. 
However, no simple indexing 
scheme based upon their linear 
contents would ever place 
them next to each other func- 
tionally. Although we could 
“eyeball” the alignment of 
short sequences, software 
would need to be developed to 
help u s  perform optimum 
alignments for large sequen- 
ces. 

If we were to reverse engineer 
a full 3.3 gigabytes of files, 
while at the same time deduc- 
ing the op codes and architec- 
ture of the CPU, the database 
requirements for recording all 
of our experimental observa- 
tions and tentative hypotheses 
would be enormously com- 
plex. If the 3.3 gigabytes of 
files were written by undis- 
ciplined hackers prone to 
clever tricks, our work would 
be rendered much more dif- 

ficult. So it is with the reverse engineering of genomes. 
Gigabytes of sequence, once obtained, are just the beginning. 
The database requirements are horrendously complex, because 
even the concepts and definitions of the objects to be stored can 
change with each new observation. 

Improved methods need to be developed for automatically 
aligning, interpreting, and decoding biological sequences. De- 

ecutable block. Perhaps “EB” is the jump instruction. The 
“90” code seems to be doing nothing. Could it be a NO 
OP? Comparing the invariant instruction block of the first 
multiple alignment with the equivalent blocks in this last 
analysis, we see that something changes in the middle of 
the coding block. Since this something” seems to be as- 
sociated with a change in the relative position of the vari- 
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spite the universality of the “A-to-protein dictionary, the 
presence of complex, not fully understood control sequences 
within coding regions makes even automatic decoding still an 
unsolved problem. Consider an actual DNA sequence (see 
Decoding for P-hemoglobin), which addresses a component of 
the functional hemoglobin that carries oxygen in the blood. 

Notice that there are non-coding regions (called introns) inter- 
spersed within the coding regions. Even individual codons may 
be divided. Before the RNA transcript from this gene becomes 
functional “A, the introns must be removed, or “spliced out.” 
Although researchers have empirically determined the point of 
splicing (“splice junctions”) for this gene, the algorithmic detec- 
tion of all splice junctions in all genes cannot be done. We have 
not yet determined precisely how splice junctions are encoded 
in DNA, despite the fact that alignment analysis has detected 
some apparent consensus sequences. Thus, to allow the useful 
deduction of protein sequences from DNA sequences in a 
genome database, the DNA sequences must be accompanied 
with a significant amount of annotation, much of which must be 
determined empirically and entered by hand. 

Because human-genome researchers are interested in the 
biological and medical effects of human genes, descriptions and 
commentaries regarding them must also be collected and stored 
in databases. The human 5-hemoglobin gene spans a mere 2000 
nucleotides, yet current commentaries in various databases (e.g., 
GenBank, for annotated DNA sequences; PIR, for annotated 
protein sequences; and OMIM, for medical commentary on 
human genes) already collectively contain more than 500,000 
bytes of information. If such an information amplification oc- 
curred over the entire genome, the HGP would ultimately in- 
volve terabytes of processed information and commentary. 

Although this amplification ratio is not likely to apply evenly 
to all portions of the genome, it might well apply to all genes. 
The 5-hemoglobin gene just happens to be one of the best studied 
human genes to date. As the Human Genome Project and related 
research continue, the data- and information-handling problems 
associated with the understanding-the-sequence component of 
the project will certainly challenge, in complexity and in volume, 
the capabilities of database technology. 

btaining the Sequence 
DNA in cells is organized into structures called chro- 0 mosomes, each of which consists of one long DNA 

molecule accompanied by numerous protein molecules. Normal 
human cells carry 46 chromosomes; 23 are contributed by each 
parent. Although human cells are not visible to the naked eye, 
they contain DNA molecules which, if straightened out and layed 
end to end, would be more than three feet long. Human chromo- 
somes occur in a variety of sizes over approximately a 5: 1 ratio 
(Fig. 1). 

Because chromosomes are molecules only a few atoms wide 
but several inches long, they are fragile and break easily if 
manipulated. In the course of their work, molecular biologists 
break them into random fragments. These fragements are then 
picked up individually by thousands of “vector” micro-or- 
ganisms, each of which carries a human fragment and replicates 
the human DNA along with its own DNA. When a large popula- 
tion is later grown from a single individual micro-organism that 
is carrying just one fragment from human DNA, that population 
provides a ready source of multiple copies a particular small 
region of human DNA. Complete sets of such clones, each 
carrying different fragments from the entire genome, are known 
as “libraries.” 

Although cloning techniques provide ready sources of human 
DNA, they provide no immediate way to determine the precise 
location in the human chromosomes from which the DNA 
originated. Determining this location requires further ex- 
perimentation. Because the fragments are generated at random, 

chromosome 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
X 
Y 

pct of 
genome 

8.10% 
7.71 ‘/o 
6.48% 
6.00% 
5.81 Yo 
5.62% 
5.14% 
4.67% 
4.57% 
4.38% 
4.38% 
4.38% 
3.62% 
3.43% 
3.24% 
3.1 4% 
3.05% 
2.76% 
2.57% 
2.38% 
1 .81 Yo 
1 .go% 
4.86% 
2.10% 

number of 
base pairs 

267,142,857 
254,571,429 
21 3,714,286 
198,000,000 
191,714,286 
185,428,571 
169,714,286 
154,000,000 
150,857,143 
144,571,429 
144,571,429 
144,571,429 
11 9,428,571 
113,142,857 
106,857,143 
103,714,286 
100,571,429 
91,142,857 
84,857,143 
78,571,429 
59,714,286 
62,857,143 

160,285,714 
69,142,857 

Total in Genome: 

Average per chromosome: 

3,300,000,000 

143,478,261 

1. The relative sizes and estimated nucleotide content of the 
human autosomes and the X and Y sex chromosomes. 

a library set of fragments spanning a total length far in excess of 
one human genome is required in order to ensure a resonable 
probability that any particular piece of human DNA will be 
carried in at least one clone. The ratio of excess DNA that must 
be cloned in order to ensure reasonable coverage of the genome 
is, of course, a function of the size of the fragments generated 
and of the degree of certainty required. With modem clone- 
manipulation technology, about a five-fold set of DNA must be 
cloned to generate adequate coverage of the genome. This means 
that a good human genome clone library would contain between 
15 and 20 billion base pairs of human DNA. 

If each of these clonal fragments could be readily sequenced 
(i.e., nucleotide sequence determined), assembling the final 
human genome would be straightforward. The clonal sequences 
would be compared with each other, regions of overlap detected, 
and the final sequence assembled. However, at present, se- 
quencing DNA is expensive (about $5-10 per base) and time 
consuming. To avoid the waste that completely sequencing a 
five-fold redundant set of DNA would entail, one of the prelimi- 
nary goals is to study the clones in an effort to determine the 
minimum spanning set of DNA fragments required to cover the 
entire genome. Then, when sequencing techniques have been 
improved to a cost of less that $0.50 per base (another HGP goal), 
an all-out effort to sequence the minimal spanning set will 
commence. 

There are many techniques for building minimal spanning sets, 
and improvements are constantly being developed. Basically, 
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HIGH-RESOLUTION PHYSICAL 
(CONTIG) MAPPING 

Restriction cleavage 
and/or 

Gel reading 
I 

J 
I 

Fragment sizing 

andlor 

andlor 
Consensus map assembly 

COMPUTATIONAL COMPONENT 

Inventory Control 
Robotics 

Sample Tracking 
Laboratory Notebook 

Robotics 

Robotics 

Image Analysis 

Cuwe Fining 

Automatic Map Generation 

Contig Assembly Software 

Map Assembly Software 

Data-exchange FormatsIProtocols 
Database Design 

Database Access Tools 
Miscellaneous Analysis Software 

2. The experimental steps involved in high-resolution physical 
mapping of chromosomes. The column on the right gives the 
computational activities associated with each step. (Figure 
adapted from [ 121.) 

LARGE-SCALE 
DNA SEQUENCING 

I Preliminaly analysis 
I 

I Database submission I 
I 

1 Fulther analysis 

COMPUTATIONAL COMPONENT 

Inventory Control 
Robotics 

Sample Trackin 
Laboratory NoteLok 

Sample Tracking 

Robotics 

Robotics 

Image Analysis 

Image Analysis 

Gel Assembly Software 

Laboratory Notebook 

Sequence Analysis: Similarity Search, 
ORFIcoding-region Detection 
Data-exchange Formats/Protocols 
Database Design 
Database Access Tools 
Miscellaneous Analysis Software 

3. The experimental steps involved in large-scale DNA 
sequencing. The column on the right gives the computational 
activities associated with each step. (Figure adapted from 
[121.) 

each technique involves performing some partial charac- 
terization on each fragment, and then comparing the partial 
characterization scores for each pair of fragments to determine 
the probability of overlap between the two fragments. The result- 
ing NxN probability matrix is used to deduce sets of overlapping 
fragments. Each set of contiguous, overlapping fragments is 
known as a contig. Once the entire sequence is spanned by one 
large contig, the resulting minimal set of spanning fragments can 
be sequenced, and the final, overall sequence assembled. 

The process of fragment characterization and contig assembly 
is complicated by the occurrence of both random and systematic 
error. Some of the partial characterization measurements may be 
in error, some clones may actually carry fragments from two or 
more locations in the genome, some different regions of the 
genome may carry identical sequences, some specific human 
sequences may be systematically resistant to being incorporated 
in micro-organism clones, and finally, some additional sources 
of error are undoubtedly as yet unknown. 

The information-handling requirements for this work are: build 
a database that can (1) hold all of the different, inconsistent, and 
rapidly changing data and metadata describing the sequence 
fragments and their partial characterizations as they are obtained; 
(2) track the assembly of fragments into provisional contigs; (3) 
represent error and uncertainly associated with nearly every 
measurement and inference; (4) rapidly adapt to recording data 
for experimental procedures that may change almost daily; and 
( 5 )  allow the comparison and merger of contigs prepared with 
different experimental and computation techniques. 

It is hoped that ultimately the various efforts of multiple 
researchers will converge upon a single, correct set of contigs 
that span the entire sequence. However, while the work is ongo- 
ing, it will be necessary to maintain in the database all of the 
different, inconsistent, and overlapping versions for subparts of 
the problem. 

Every stage in contig assembly and in bulk sequencing benefits 
from computer assistance. Since actual experimental manipula- 
tions involve handling tens of thousands of tiny samples, robotics 
are required to keep errors at a minimum. Raw data from these 
experiments come in the form of images, whose manual transla- 
tion into numerical form is prohibitively time consuming. Be- 
cause valid biological experiments must be capable of 
replication, computerized inventory control is required to track 
the literally tens of thousands of components involved in com- 
plex experimental designs. As data are analyzed, determining the 
optimum next experiment may involve complex combinatorics, 
so laboratory-assistant software is needed to plan and manage 
experimentation. Figures 2 and 3 show some of the experimental 
steps, and their computational counterparts, for both contig 
assembly and large-scale DNA sequencing. 

Ullman [ 131 has commented on current database systems: “The 
modification of the database scheme is very infrequent, com- 
pared to the rate at which queries and other data manipulations 
are performed, ... the classical form of database system ... was 
designed to handle an important, but limited class of applica- 
tions. (For example), files of employees or corporate data in 
general, airline reservations, and financial records. The common 
characteristic of such applications is that they have large amounts 
of data, but the operations to be performed on the data are simple. 
In such database systems, insertion, deletion, and retrieval of 
specified records predominates, and the navigation among a 
small number of relations or files ... is one of the more complex 
things the system is expected to do.” 

With genome laboratory-support databases, schema-change 
requests can occur almost daily, and queries and updates that 
involve joins across fifteen or twenty tables would not be un- 
usual. If Ullman’s characterization of database technology is 
considered accurate, the HGP offers a real computational chal- 
lenge to database theoreticians. 
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om uter and Biological 
C olfa bo r at i on s c The success of the HGP will depend upon advances in both 

biology and computer science. This duality will necessitate 
effective collaborations, since there are few individuals with true 
knowledge of both areas. (Developing programs to train scien- 
tists for this area is yet another challenge.) Although such col- 
laborations can be both productive and fulfilling, there are many 
pitfalls awaiting those who try. This section touches upon two 
problem areas. 

Cultural Gaps 
Differences in training create a cultural gap that can make 
communication between biologists and computer scientists espe- 
cially difficult. To deal with diversity, biologists learn to extract 
signal from noise and to suppress their attention to occasional 
variants and problem cases. In contrast, software engineers learn 
to emphasize atypical cases, since these are the most likely places 
for software designs to fail. As a result, whenever computer 
scientists attempt to assess the requirements of a particular 
biological information system, they can be misled if biologists 
underestimate the complexity of their requirements by orders of 
magnitude. Systems analysts should recognize that when a 
biologist says, “All A’s are B,” what may be meant is “Some A’s 
are B, and the rest are not well understood.” As a more specific 
example, a biologist may claim, “Of course we have to keep track 
of the organism from which the DNA was obtained, but that’s 
straightforward,” neglecting to mention that “keeping track of 
the organism” involves dealing with several million species 
names, synonyms, and homonyms, all of which are logically 
connected as a directed acyclic graph that individual researchers 
will most likely prefer to view as consistent spanning trees of 
their choosing. 

The peril of being misled by biologists’ inclination to simplify 
is real. One prominent database researcher, after meeting with 
an equally prominent geneticist, concluded that the information- 
handling requirements of the genome project were trivial. “He 
told me that representing the genome merely involved descrip- 
tive attributes for a set of at most 100,000 objects that must be 
arranged in a linear order. I told him that that could be handled 
by any competent undergraduate.” After further discussions, that 
same database worker has now come to believe that unsolved 
database problems exist in the HGP. He will likely begin direct- 
ing some of his own research toward addressing these challenges. 

Nomenclature Problems 
Scientific nomenclature presents a special problem for database 
designers, since the meaning of scientific terms varies between 
specialties and over time. Because the databases associated with 
the HGP cannot be merely a snapshot of the current consensus, 
but rather must remain valid indefinitely, the databases must be 
designed to track changes in meaning. Even the most basic 
genetic concepts, such as “gene” and “locus,” mean different 
things to different biologists. At a recent conference, a group of 
bacterial geneticists were asked, “Suppose that a translocation 
has occurred so that all of the DNA for a given gene has been 
moved to a different chromosome. Do we say that the gene has 
a new locus, or do we say that the gene’s locus is at a new 
position?” All of the biologists claimed the question was trivial, 
but when pressed they split evenly in choosing an answer. If a 
requirements analyst had interviewed only one biologist on these 
definitions, the resulting system would have been perceived as 
inadequate by the fifty percent of biologists with adifferent view. 
Seeking the common semantic denominator introduces com- 
plexity, so that it is probably true that in order to meet the needs 
of many biologists, the logical atoms in a biological database 
should be defined at a level of detail and complexity greater than 
that needed by any biologist. 

Variations in concept definitions do not seem to impede the 
practice of biology, since biologists constantly refine their 
beliefs through the reality-check of experimentation. In addition, 
most scientists rarely read old literature and thus are unaware of 
the full extent of concept drift in their fields. Therefore, biologists 
often assert that terminological fluidity is not an issue in biologi- 
cal database design. This is a mistake. Many biologists don’t 
appreciate that, in a database built with five percent error in the 
definition of individual concepts, a query that joins across 15 
concepts has less than a 5050 chance of retuming an adequate 
answer. If genomic databases are going to tolerate fuzzy concepts 
while providing good answers to complex queries, systems much 
more sophisticated than textbook business databases will have 
to be built. 

Previous thinking about formalizing a science can provide 
insights to the developers of scientific databases. Because every 
tuple in a relational database may be regarded as a formal 
assertion in predicate calculus about the subject domain of the 
database, building a genetic database bears much in common 
with developing a formal, axiomatic structure for genetics. Al- 
though several efforts have been made to formalize genetics, 
none has met with recognized success. Forty years ago, J.  H. 
Woodger [I61 made an heroic attempt to develop a formal 
genetic calculus, yet today no practicing geneticist is familiar 
with his work. Nonetheless, his observations are relevant to those 
building genetic databases. For example, Woodger noted that the 
language of geneticists is usually not as complex as their 
thoughts: 

“Geneticists, like all good scientists, proceed in the first in- 
stance intuitively and ... their intuition has vastly outstripped the 
possibilities of expression in the ordinary usages of natural 
languages. They know what they mean, but the current linguistic 
apparatus makes it very difficult for them to say what they mean. 
This apparatus conceals the complexity of the intuitions. It is part 
of the business of genetical methodology first to discover what 
geneticists mean and then to devise the simplest method of 
saying what they mean. If the result proves to be more complex 
than one would expect from the current expositions, that is 
because these devices are succeeding in making apparent a real 
complexity in the subject matter which the natural language 
conceals.” 

This paragraph was written in 1952, before the discovery of 
DNA structure and the advent of molecular biology. Woodger’s 
observations are even more applicable today. 

The analysis and design efforts required to build genomic 
information systems will be a continuing computational chal- 
lenge of the HGP. Building genomic databases without striving 
to ferret out, understand, decompose, and represent the underly- 
ing conceptual complexity is inviting failure. Yet, most 
biologists consider worrying about nomenclatural details to be 
definitive tedium. Getting past these difficulties, to build truly 
useful information resources for the HGP, will tax the skills (and 
the patience) of computer scientists and biologists alike. 

Database and computational activities are an essential part c of the Human Genome Project. If these aspects are not 
handled well, the HGP could consume billions of dollars, and 
researchers might still find it easier to obtain data by repeating 
experiments rather than by querying a database. Should this 
occur, the HGP project could reasonably be called a failure. 

Some genomic database and software problems are fairly 
straightforward. Others will push the envelope of information- 
management theory. The HGP needs a continuum of database 
activities, ranging from pure application development to pure 
research. The research community needs production-quality, 

onclusion 
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rock-solid, public-access databases right now. But research will 
be required to develop the new ideas and technologies necessary 
for the production-quality databases of a decade hence. The 
challenges of the Human Genome Project will drive computa- 
tional science, just as earlier challenges from genetics drove the 
development of modem statistical analysis. (Regression analysis 
and analysis of variance were both initially devised by Galton, 
and Fisher, respectively, to deal with genetic problems.) 

In the Human Genome Project, computers will not merely serve 
as tools for cataloging existing knowledge. Rather, they will 
serve as instruments, helping to create new knowledge by chang- 
ing the way we see the biological world. Computers will allow 
us to see genomes, just as radio telescopes did for quasars, and 
electron microscopes for viruses. 

Robert J .  Robbins received the B.S., M.S., and 
Ph.D. degrees in zoology and biological 
science in 1973, 1974, and 1977, respectively. 
He also holds an A.B. degree in history. 
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of Medical Information in the School of 
Medicine, Johns Hopkins University. At Hop- 
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Information, which is the home of the Genome Data Base 
(GDB)- the central repository for the gene-mapping data col- 
lected by the Human Genome Project. From 1987-91, Dr. Rob- 
bins was on the staff of the National Science Foundation, where 
he was charged with facilitating the computerization of biology, 
and where he served most recently as Program Director for 
Database Activities in the Biological, Behavioral, and Social 
Sciences. Prior to that, he was a member of the faculty in 
biological science and zoology at Michigan State University. His 
research interests are centered around the development of sys- 
tems to manage scientific data, information, and knowledge. 

Dr. Robbins is a member of the IEEE Computer Society, the 
ACM, and several biological societies. He also serves on many 
advisory and policy boards for biological databases, including 
the Joint Informatics Task Force for the Human Genome Project, 
the Database Subcommittee for the Plant Genome Project, and 
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in good standing. Terms of office for the SecretaryTreasurer, 
Vice-presidents, and at-large members of the BOD from the COF 
and Councils are for two years. Further information on the roles 
and responsibilities of the BOD, EC, Officers, Councils, Com- 
missions and Committees and the procedures for elections and 
appointments are provided in the bylaws. 

Potential sources of revenue for AIMBE include dues from 
Fellows, membership fees from societies, industries and institu- 
tions, grants and contracts, income from publications, and un- 
restricted gifts. Public service contracts will provide the 
necessary flexibility to pursue the mission of AIMBE consistent 
with the public and national interest. 

Spacelabs Awards Five Scholarships 
Spacelabs, Inc. has awarded five biomedical technology students 
$1000 scholarships to be used for tuition and books. The 

the Department of Energy’s Human Genome Coordinating Com- 
mittee. 
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Spacelabs Scholarships, established earlier in 1991, will be given 
annually to students enrolled full-time in college biomedical 
technology programs. 

The 1991 Spacelabs scholarship recipients are: Cary Foshee, 
Texas State Technical Institute, Waco, Texas; James Craft, 
Madisonville Community College, Madisonville, Kentucky; Jes- 
sica Furnier, Colorado Tech College, Colorado Springs, 
Colorado; Lawrence Pakowski, Jr., Stanly Community College, 
Albemarle, North Carolina; and Frank Opice, Penn State Univer- 
sity, New Kensington, Pennsylvania. 

The intent of the scholarship program is to identify, recognize 
and encourage outstanding achievement by students of biomed- 
ical technology. Scholarship applications are judged on the basis 
of a written autobiographical sketch, letters of recommendation, 
and educational transcripts. 
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