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Biomedical researchers are now awash in data. Technological developments, stimulated in part by 
the successful human genome project, have increased the data-production capabilities of even the 
smallest laboratory by staggering amounts. High-throughput sequencing facilities can now 
produce the full genomic sequence of a bacterial pathogen in less than 24 hours. GenBank now 
adds more sequence data every few hours than it added in the first few years of its existence.

Formal data management is rapidly becoming a requirement in the modern research laboratory. In 
fact, many laboratories are now finding research-preparation logistics and data management to be 
the rate-limiting step in their work. Some studies indicate that proper data and logistics 
management can more than double the scientific output of a small lab. Although commercial 
laboratory information management systems (LIMs) exist, their cost and complexity make them 
impractical in the small laboratory. Many laboratories, of necessity, rely upon the "Microsoft LIMs
solution" - lots of Excel spreadsheets and the occasional Access database. MS-LIMs is clearly 
inadequate for meeting the needs ahead.

In this talk we will consider the data-management challenges (and opportunities) faced by the 
typical research laboratory and some of the options available for meeting those challenges. We 
will also consider some of the social complexities associated with laboratory data management 
(whose job is it, anyway?), as well as some of the technical compexities associated with the need 
for data-management systems to interoperate between laboratories (and even institutions). We will 
examine some of the large- and small-scale efforts (e.g., caBIG and GeMS) underway to address 
laboratory data-management issues, and, time permitting, we will offer some predictions about 
likely future paths in laboratory data management.

Abstract
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Topics

• In-Lab Data Management: Pressing need or bogus 
issue? 

• Things are Different Now
– Increased (and increasing) data complexity
– Increased residual data value 
– Increased data volume

• Awash in Data
– In-Lab Data-Generating Capacity
– Public Data Explosion
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Topics

• 21st Century Science: Post-Genome Era
– New Tools / New Mindset
– Affects more than just genetics

• Future Vision: Biomedical research is thoroughly 
data-driven and all researchers have seamless 
access to vast quantities of reliable data

• Challenge of Lab Data Management
– Seems too easy to be a real issue
– Seems too hard to be done well
– Whose job is it, anyway?
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Topics

• Impediments to Biological Data Management
– Data Source Problems
– Data Model Problems
– Philosophical Problems
– Budget Problems – Reality Check

• The Future
– Standards
– caBIG
– Industry Trends – Information Appliances
– GeMS



Introduction

Bogus Issue?



8© 2005, R. Robbins Data Management in the Research Laboratory

Personal Opinion

Data problems are dull and people 
who work on them are dull.

James Watson, some time in the 1980s.James Watson, some time in the 1980s.
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Simple Question

A biologist says, “Data management is necessary 
for my research, but not especially important. 
Personally, I’m just not interested in the details of 
how it’s done. I have one of my students (or 
techs) handle it.”
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A biologist says, “Data management is necessary 
for my research, but not especially important. 
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how it’s done. I have one of my students (or 
techs) handle it.”

Twenty years ago this biologist would have been 
described as:
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Simple Question

A biologist says, “Data management is necessary 
for my research, but not especially important. 
Personally, I’m just not interested in the details of 
how it’s done. I have one of my students (or 
techs) handle it.”

Twenty years ago this biologist would have been 
described as:

TYPICAL
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Simple Question

A biologist says, “Data management is necessary 
for my research, but not especially important. 
Personally, I’m just not interested in the details of 
how it’s done. I have one of my students (or 
techs) handle it.”

Twenty years from now this biologist will be 
described as:
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Simple Question

A biologist says, “Data management is necessary 
for my research, but not especially important. 
Personally, I’m just not interested in the details of 
how it’s done. I have one of my students (or 
techs) handle it.”

Twenty years from now this biologist will be 
described as:

INCOMPETENT
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Simple Fact

In the post-genomic world, much bio-
medical research is impossible without 
adequate information infrastructure. 
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Simple Fact

In the post-genomic world, much bio-
medical research is impossible without 
adequate information infrastructure. 

Quality IT operations, within the 
institution and within the lab, are now 
critically important to the mission of 
biomedical research organizations. 



Introduction

Issues



Awash in Data

Massive Local Capacity
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 

• Correlating genotype with clinical phenotype: Host 
Genomic Polymorphisms and Immune Reconstitution – are 
genetic factors responsible for immune reconstitution after 
antiretroviral therapy in AIDS patients?
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 

• Correlating genotype with clinical phenotype: Host 
Genomic Polymorphisms and Immune Reconstitution – are 
genetic factors responsible for immune reconstitution after 
antiretroviral therapy in AIDS patients?

How much data will be generated in 
these studies?
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

Data Management Challenge:
59 subprojects (each the shotgun sequencing of a 
180,000 bp BAC), 150,000 trace files, data-sharing 
across two collaborating labs, submission of data to 
public databases. 
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 



25© 2005, R. Robbins Data Management in the Research Laboratory

Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests?

Data Management Challenge:
50 subprojects (each consisting of 500 sequence 
traces for each of 5 fosmids from 1 of 50 
chromosomes), 125,000 trace files, data analysis, 
real-time data sharing with multiple collaborators, 
submission of data to public databases.
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 

• Correlating genotype with clinical phenotype: Host 
Genomic Polymorphisms and Immune Reconstitution – are 
genetic factors responsible for immune reconstitution after 
antiretroviral therapy in AIDS patients?
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Small Lab Data-Generation

Typical Projects in Geraghty Lab at FHCRC:
• Primary data acquisition: Sequence analysis of the rhesus 

macaque MHC – how similar/different is the rhesus MHC 
from human and what are the potential consequences of these 
differences towards ongoing clinical research? 

• Variation discovery: Genomic analysis of the KIR locus in 
humans – what is the extent of diversity of this locus and can 
we define a better sequence framework on which to build 
genetic tests? 

• Correlating genotype with clinical phenotype: Host 
Genomic Polymorphisms and Immune Reconstitution – are 
genetic factors responsible for immune reconstitution after 
antiretroviral therapy in AIDS patients?

Data Management Challenge:
32 separate loci examined; 1,000 individual DNAs;
64,000 trace files, heterozygous data interpretation, 
data sharing across multiple collaborating labs.
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Small Lab Data-Generation

Data Generation Summary:
• Rhesus macaque MHC sequencing project: 59 subprojects, 

150,000 trace files, data-sharing across two collaborating labs, 
submission of data to public databases. 

• Genomic analysis of KIR locus: 50 subprojects, 125,000 
trace files, data analysis, real-time data sharing with multiple 
collaborators, submission of data to public databases.

• Host Genomic Polymorphisms and Immune 
Reconstitution: 64,000 trace files, heterozygous data 
interpretation, data sharing across multiple collaborating labs.
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Small Lab Data-Generation

Data Generation Summary:
• Rhesus macaque MHC sequencing project: 59 subprojects, 

150,000 trace files, data-sharing across two collaborating labs, 
submission of data to public databases. 

• Genomic analysis of KIR locus: 50 subprojects, 125,000 
trace files, data analysis, real-time data sharing with multiple 
collaborators, submission of data to public databases.

• Host Genomic Polymorphisms and Immune 
Reconstitution: 64,000 trace files, heterozygous data 
interpretation, data sharing across multiple collaborating labs.

More than 250,000 trace files generated across 
more than 100 subprojects, with data to be 
shared across multiple collaborating laboratories.

This is not a problem to be solved using the MS 
LIMs solution, implemented by a couple of hard-
working students or techs.
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Small Lab Data-Generation

Major Laboratory Challenges:
• Tracking laboratory throughput

• Organization of original data and meta data (machine, 
reagents, quality, etc.)

• Data sharing

• Cost tracking

• Creating a modular and extensible framework for future 
applications (HTR, Taqman, etc.)



Awash in Data

Public Data Explosion
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Base Pairs in GenBank
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Base Pairs in GenBank
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YEARS of the project. 
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Base Pairs in GenBank
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Growth in GenBank is exponential. More 
data were added in the last TWELVE 
HOURS than were added in the first SIX 
YEARS of the project. 

At this rate, what’s next...
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ABI Bass-o-Matic Sequencer

In with the sample, out with the sequence...
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Aside: Joint Genome Institute

Like many things in the past ten years, 
the Bass-o-Matic approach to 
sequencing has transformed from a 
joke to reality:







And this is only part way through the 
third quarter of the fiscal year…
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Aside: Joint Genome Institute



41© 2005, R. Robbins Data Management in the Research Laboratory

Aside: Joint Genome Institute

8,000,000,000 bases in 2160 hours =

3,703,703 bases per hour
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DOE/JGI Bass-o-Matic Sequencer

TGCGCATCGCGTATCGATAG
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In with the sample, out with the sequence...
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Aside: Joint Genome Institute

CSP Project Description Limits:

• Limit 5 pages for total shotgun sequencing of less 
than 400 Mb (e.g., 8x coverage of genomes < 50 
Mb, microbial communities or directed sequenc-
ing projects).

• Limit 10 pages for sequencing requests between 
400 Mb and 2 Gb (e.g., 8x coverage of genomes 
between 50 and 250 Mb). 

• Limit 15 pages for sequencing requests greater 
than 2 Gb (e.g., 8x coverage of genomes larger 
than 250 Mb). 
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What’s Really Next

The post-genome era in biological 
research will take for granted ready 
access to huge amounts of genomic 
data.

The challenge will be understanding
those data and using the understanding 
to solve real-world problems...
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Projected Base Pairs in GenBank
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Projected Base Pairs in GenBank
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indicated as the number of 
base pairs per individual 
medical record in the US.



21st Century Biology
Post Genome Era 

21st Century Biology
Post Genome Era 
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Post-Genome Era

Post-genome research involves:

• applying genomic tools and knowledge to more 
general problems

• asking new questions, tractable only to genomic 
or post-genomic analysis

• moving beyond the structural genomics of the 
human genome project and into the functional 
genomics of the post-genome era
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Post-Genome Era

Suggested definition:

• functional genomics = biology
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Post-Genome Era

An early analysis:

Walter Gilbert.  1991.  Towards a paradigm 
shift in biology.  Nature, 349:99.
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Paradigm Shift in Biology

To use [the] flood of knowledge, which will pour 
across the computer networks of the world, 
biologists not only must become computer 
literate, but also change their approach to the 
problem of understanding life.

Walter Gilbert.  1991.  Towards a paradigm shift in biology.  Nature, 349:99.Walter Gilbert.  1991.  Towards a paradigm shift in biology.  Nature, 349:99.
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Paradigm Shift in Biology

The new paradigm, now emerging, is that all the 
‘genes’ will be known (in the sense of being 
resident in databases available electronically), 
and that the starting point of a biological 
investigation will be theoretical.  An individual 
scientist will begin with a theoretical conjecture, 
only then turning to experiment to follow or test 
that hypothesis.

Walter Gilbert.  1991.  Towards a paradigm shift in biology.  Nature, 349:99.Walter Gilbert.  1991.  Towards a paradigm shift in biology.  Nature, 349:99.
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Paradigm Shift in Biology

Case of Microbiology

If a full, annotated sequence were available for all known bacteria, the practice 
of microbiology would match Gilbert’s prediction. 

If a full, annotated sequence were available for all known bacteria, the practice 
of microbiology would match Gilbert’s prediction. 

< 5,000 known and described bacteria

5,000,000 base pairs per genome

25,000,000,000 TOTAL base pairs
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Paradigm Shift in Biology

Case of Microbiology

If a full, annotated sequence were available for all known bacteria, the practice 
of microbiology would match Gilbert’s prediction. 

If a full, annotated sequence were available for all known bacteria, the practice 
of microbiology would match Gilbert’s prediction. 

< 5,000 known and described bacteria

5,000,000 base pairs per genome

25,000,000,000 TOTAL base pairs

A serious suggestion has been made that 
the DOE/JGI should consider sequencing 
ALL KNOWN and CULTURABLE bacteria.
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instrument researchers

data flow
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data flow

increasing data consistency



Single-Instrument Science

instrument researchers

data flow

increasing data consistency

RIGHT WAY:
With single-source science, data is 

MOST consistent nearest the source, 
making integration unnecessary (but 

making the need for path 
documentation high).



Multi-Instrument Science

researchers researchersdata resource(s)

data flow



Multi-Instrument Science

researchers researchersdata resource(s)

data flow

increasing data consistency



Multi-Instrument Science

researchers researchersdata resource(s)

STOP – WRONG WAY:
With multi-source science, data is 

LEAST consistent nearest the source, 
making true integration difficult.

data flow

increasing data consistency



Multi-Instrument Science

researchers researchers

data flow

data resource(s)

Extra complexity:
Undocumented, uncoordinated local data 

exchange



Multi-Instrument Science

researchers researchers

data flow

data resource(s)

Extra complexity:
Data collected locally to meet local needs are 
not globally consistent - or even equivalent. 



Data Model
Problems

Data Model
Problems
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Graph Challenges
Pedigree Relational Representation

nodes

arcs
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Graph Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Relational Representation

nodes

arcs
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus maniculatus bairdii

Suppose we permit querying at any level, but require classification of 
objects at leaf level.
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus maniculatus bairdii

Suppose we permit querying at any level, but require classification of 
objects at leaf level. Then all questions referring to nodes on the path from 
the classification point to the top return TRUE,
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus maniculatus bairdii

Suppose we permit querying at any level, but require classification of 
objects at leaf level. Then all questions referring to nodes on the path from 
the classification point to the top return TRUE, all others FALSE.



76© 2005, R. Robbins Data Management in the Research Laboratory

Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level.
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, 
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, all 
questions referring to nodes lateral to this path return FALSE, 
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(DNA sequences?)

Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, all 
questions referring to nodes lateral to this path return FALSE, and all 
questions referring to nodes below the classification point return 
MAYBE.



Philosophical
Problems:

Identity

Philosophical
Problems:

Identity
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Object Identity and Bioinformatics

• In any semantic web for the life sciences, no matter 
what technology is used, several needs must be met:

– IDENTITY MANAGEMENT: It must be possible to identify 
unambiguously biological objects (more precisely to identify digital 
objects and associate them unambiguously with real-world 
biological objects).

– IDENTITY ADJUDICATION: It must be possible to determine 
whether two different digital objects describe the same or different 
real world objects

– REFERENTIAL INTEGRITY: It must be possible to make 
unambiguous, semantically well-defined assertions linking an object 
in one information resource to one or more objects in other 
information resources.
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Object Identity and Bioinformatics

• In any semantic web for the life sciences, no matter 
what technology is used, several needs must be met:

– RETAIL VS WHOLESALE CUSTOMERS: The semantic web must 
support the retail needs for coherence and the wholesale need for 
variation and disagreement (cf elephant and blind men story)

– TRI_STATE LOGIC: Systems involving the classification of 
biological objects need tri-state logic to handle queries.

– NO CURATION: In all but the best-funded public databases, there 
are no funded resources available for information curation.

– CONSISTENCY IS IMPOSSIBLE: science consists of assertions 
and observations, not facts; assertions and observations can differ 
without being untrue.
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Object Identity and Bioinformatics

• In any semantic web for the life sciences, no matter 
what technology is used, several needs must be met:

– FINAL ONTOLOGY REQUIRES PERFECT KNOWLEDGE: In a 
context-free global environment, the data model must meet the 
requirements of all possible users (or fail for some users).  

– REALITY IS NOT NEGOTIABLE: The requirements for scientific 
information systems are determined by discovery, not negotiation.

– SOCIOLOGICAL IMPEDIMENTS: Technological solutions must 
also meet sociological requirements; an information system that 
could manage useful information is a failure if many are unwilling to 
participate.

– EXPECTATIONS MUST BE MANAGED: never forget, 

success = deliverables / expectations
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Object Identity and Bioinformatics

• Concept of identity still subject to metaphysical 
distinctions:

– NUMERICAL IDENTITY: one thing being the one and only such 
thing in the universe - e.g., there should be one and only human 
being associated with a patient ID

– QUALITATIVE IDENTITY: two things being identical (sufficiently 
similar) in enough properties to be perfectly interchangeable (for 
some purpose) – e.g., there are many books associated with an 
ISBN identifier
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Object Identity and Bioinformatics

• Properties are subject to identity-related distinctions:

– ACCIDENTAL PROPERTIES: properties of an object that are 
contingent – that is, properties that are free to change without 
affecting the identity of the object

– ESSENTIAL PROPERTIES: non-contingent properties – that is, 
properties which DEFINE the identity of the object and thus which 
cannot change without affecting the identity of the object (for some 
purpose)
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Object Identity and Bioinformatics

• Properties are subject to identity-related distinctions:

– ACCIDENTAL PROPERTIES: properties of an object that are 
contingent – that is, properties that are free to change without 
affecting the identity of the object

– ESSENTIAL PROPERTIES: non-contingent properties – that is, 
properties which DEFINE the identity of the object and thus which 
cannot change without affecting the identity of the object (for some 
purpose)

Recognizing the distinction between essential 
and accidental properties is critical when one is 
developing a successful identifier scheme for 
any data resource likely to involve data sharing 
for unanticipated uses.

Especially challenging will be the fact that 
whether a particular property is essential or not 
is often context dependent. 
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Object Identity and Bioinformatics

• Properties are subject to identity-related distinctions:

– INTRINSIC PROPERTIES: properties of an object that are 
properties of the thing itself

– EXTRINSIC PROPERTIES: properties of the object that are 
properties of the object’s relationship to other objects external to 
itself
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Object Identity and Bioinformatics

• Properties are subject to identity-related distinctions:

– INTRINSIC PROPERTIES: properties of an object that are 
properties of the thing itself

– EXTRINSIC PROPERTIES: properties of the object that are 
properties of the object’s relationship to other objects external to 
itself

Identifying tandemly duplicated genes is a 
perfect example of the need to distinguish 
between extrinsic and intrinsic properties.
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Object Identity and Bioinformatics

• “Identification” is a process that reduces ambiguity. 
Ambiguity reducing identification can occur in a 
number of differ ways:

– INDIVIDUAL SPECIFICATION: denoting an individual object without 
identifying either its class membership or its individuality - e.g., “this 
thing”

– CLASS IDENTIFICATION: specifying than an object is a member of 
a class of objects that are sufficiently similar that the objects may be 
considered interchangeable (for some purpose) – e.g., “this book is 
Darwin’s Origin of Species”

– INDIVIDUAL IDENTIFICATION: specifying that an object is in fact a 
PARTICULAR genuinely unique object in the universe – e.g., this 
book is Darwin’s own personally annotated copy of Origin of 
Species”
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Object Identity and Bioinformatics

• “Identification” is a process that reduces ambiguity. 
Ambiguity reducing identification can occur in a 
number of differ ways:

– INDIVIDUAL SPECIFICATION: denoting an individual object without 
identifying either its class membership or its individuality - e.g., “this 
thing”

– CLASS IDENTIFICATION: specifying than an object is a member of 
a class of objects that are sufficiently similar that the objects may be 
considered interchangeable (for some purpose) – e.g., “this book is 
Darwin’s Origin of Species”

– INDIVIDUAL IDENTIFICATION: specifying that an object is in fact a 
PARTICULAR genuinely unique object in the universe – e.g., this 
book is Darwin’s own personally annotated copy of Origin of 
Species”

Note that as we move along this continuum 
our notion of “essential properties” changes.

This shows again that the concept of identity 
can be context dependent.
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Object Identity and Bioinformatics

• Digital identifiers (IDs) perform different kinds of 
identification:

– REAL-WORLD IDENTIFIER: identifier serves as a digital token 
representing a real-world (i.e., non-digital) object (e.g., patient ID); 
this kind of identifier is often used to associated a digital object (bag 
of properties) with a real-world object 

– DIGITAL IDENTIFIER: identifier serves as a digital token 
representing a (published?) digital object (e.g., LSID or URL)



92© 2005, R. Robbins Data Management in the Research Laboratory

Object Identity and Bioinformatics

• Digital identifiers (IDs) perform different kinds of 
identification:

– REAL-WORLD IDENTIFIER: identifier serves as a digital token 
representing a real-world (i.e., non-digital) object (e.g., patient ID); 
this kind of identifier is often used to associated a digital object (bag 
of properties) with a real-world object 

– DIGITAL IDENTIFIER: identifier serves as a digital token 
representing a (published?) digital object (e.g., LSID or URL)

This distinction can be hard to make: 
What does an IP address identify?
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Object Identity and Bioinformatics

• Digital identifiers (IDs) can truly identify particular 
objects or they can merely specify singular objects, 
with no guarantee of what that singular object is:

– IDENTIFICATION: the same LSID should always return exactly the 
same (bit for bit) digital object  

– SPECIFICATION: the same URL is not guaranteed to return the 
same thing twice
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Object Identity and Bioinformatics

• Digital identifiers (IDs) can truly identify particular 
objects or they can merely specify singular objects, 
with no guarantee of what that singular object is:

– IDENTIFICATION: the same LSID should always return exactly the 
same (bit for bit) digital object  

– SPECIFICATION: the same URL is not guaranteed to return the 
same thing twice

Note that these two situations really just represent 
the opposite ends of a continuum:

At one end EVERY property is essential – at the other 
end NO property is essential.

At both ends, the relationship of identifier to object is 
clear. In between, this clarity does not exist and 
contention can and will exist between identifiers and 
properties (e.g., the same human being could 
accidentally be assigned two patient IDs, but we 
could infer identity from the essential properties).
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Object Identity and Bioinformatics

• Different methods exist for answering the question 
whether or not two objects are the same:

– DEMONSTRATED IDENTITY: the identifiers are the same and the 
essential properties are the same

– INFERRED IDENTITY: the identifiers are different but the essential 
properties are the same

– INFERRED NON-IDENTITY: the identifiers are the same, but the 
essential properties are different

– ASSERTED IDENTITY: the identifiers are the same, but the state of 
the essential properties are unknown
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Object Identity and Bioinformatics

• Different methods exist for answering the question 
whether or not two objects are the same:

– DEMONSTRATED IDENTITY: the identifiers are the same and the 
essential properties are the same

– INFERRED IDENTITY: the identifiers are different but the essential 
properties are the same

– INFERRED NON-IDENTITY: the identifiers are the same, but the 
essential properties are different

– ASSERTED IDENTITY: the identifiers are the same, but the state of 
the essential properties are unknown

With checksums, LSIDs are an instance of 
DEMONSTRATED identity.

Without checksums, LSIDs are an instance of 
ASSERTED identity.
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Information-Intensive Business

One can barely begin to read a current 
journal without finding a reference to 
the fact that biomedical research has 
become an information-intensive field. 
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Information-Intensive Business

One can barely begin to read a current 
journal without finding a reference to 
the fact that biomedical research has 
become an information-intensive field. 

Maybe we should look to information-
intensive fields for operational ideas…
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Reality Check I

Which is likely to be more complex? 
• identifying, documenting, and tracking the 

whereabouts of all parcels in transit in the 
UPS system at one time
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Reality Check I

Which is likely to be more complex? 
• identifying, documenting, and tracking the 

whereabouts of all parcels in transit in the 
UPS system at one time

• identifying, documenting, and tracking all 
data, all materials, and all equipment 
relevant to all aspects of all publicly 
funded biomedical research, in all fields 
and on all topics.
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Reality Check I

Five years ago, United Parcel Service:
• used redundant multi-terabyte databases 

to track all packages in transit

• had 4,000 full-time employees dedicated 
to IT 

• spent one billion dollars per year on IT 

• had an income of 1.1 billion dollars, 
against revenues of  22.4 billion dollars
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Reality Check I
Revenues IT Budget Pct

15,065,000,000 440,000,000 2.92 %
11,306,000,000 300,000,000 2.65 %
10,000,000,000 250,000,000 2.50 %

31,437,000,000 130,000,000 0.41 %
104,859,000,000 550,000,000 0.52 %

14,235,000,000 873,000,000 6.13 %

18,500,000,000 1,000,000,000 5.41 %

22,400,000,000 1,000,000,000 4.46 %

17,753,000,000 1,368,000,000 7.71 %

75,947,000,000 4,400,000,000 5.79 %

11,360,000,000 510,000,000 4.49 %

16,431,000,000 1,800,000,000 10.95 %
Company

Bristol-Myers Squibb
Pfizer

Pacific Gas & Electric

K-Mart
Wal-Mart

Sprint

MCI

United Parcel

AMR Corporation

IBM

Microsoft

Chase-Manhattan

Nation’s Bank 17,509,000,000 1,130,000,000 6.45 %
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Reality Check II

One biotech company, Celera, 
spent more money on IT in its first 
year of business than all of NCI has 
spent on IT in the last five years.
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Reality Check III

Resource Availability
• Compared to the recent past, current 

government spending on biomedical 
information infrastructure is huge.
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Reality Check III

Resource Availability
• Compared to the recent past, current 

government spending on biomedical 
information infrastructure is huge.

• Compared to what’s needed, current 
government spending on biomedical 
information infrastructure is tiny.
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Reality Check III

Appropriate overall funding level:
• approx. 5-15% of total public-sector 

biomedical research funding
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Reality Check III

Appropriate overall funding level:
• approx. 5-15% of total public-sector 

biomedical research funding

• i.e., billions of dollars per year 
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Reality Check III

Appropriate overall funding level:
• approx. 5-15% of total public-sector 

biomedical research funding

• i.e., billions of dollars per year 

Seem high? 
What percent of enterprise operating budgets goes 
to IT in those industries where IT makes a strategic 
difference?
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Reality Check III

Appropriate overall funding level:
• approx. 5-15% of total public-sector 

biomedical research funding

• i.e., billions of dollars per year 

Seem high? 
What percent of enterprise operating budgets goes 
to IT in those industries where IT makes a strategic 
difference?

Warning:
Until more resources become 

available, finding true SOLUTIONS to 
biomedical research-IT problems will 

be impossible.
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The Future
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Standards
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Standards

Standards are Useful, but:
• It is important to avoid premature 

standards.

• Constraining standards should be avoided.

• Enabling standards should be embraced.

• The utility of having many standards to 
choose from is not a joke.
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Bad Data-exchange Standard
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Bad Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard
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Industry Trends
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performance
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Industry Trends
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Industry Trends
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Industry Trends

Level of 
performance
needed by
most users

High Technology Consumer Commodity
Users want

more technology,
better performance

Users want
convenience,

reliability, low cost

Technology is “good enough”
and therefore irrelevant.
user experience dominates

Excess technology,
most users not 
interested in this region.

Technology
dominates

Unmet need

System
performance

Transition point
where technology

satisfies basic needs

Evolution into the “commodity” space 
results in a demand for “appliance-
like” solutions. 

Note that appliances have “use at 
marginal cost” characteristics.
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Industry Trends

Early
Adopters

Late
Adopters

Relative %
of users

Early adopters drive the technical capabilities of the system, forcing 
the bar of acceptable performance upward. However, at some point
the bar stabilizes and late adopters come to dominate the market for 
(and hence the design of) technology products.
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GeMS

Small-Lab Sequencing:
• An estimate, based on data supplied by 

ABI, suggests that there are approximately 
5,000 small laboratory efforts in the US 
that are equipped with one or more 
medium to high throughput sequencers.

• These labs need effective data 
management systems to deal with the 
complexities of operating the instrument 
efficiently and to manage the data 
produced by the instrument.
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GeMS

Possible Data-Management Solutions:
• Commercial LIMS systems: expensive

• “Roll-your own” LIMS: difficult to achieve, 
not extensible, prone to failure when 
developer leaves

• MS-LIMs: not up to the task

• ????
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GeMS

Commercially Available Solutions:
• Applied Biosystem's SQL-GT and 

Sequence Collector: $250,000 for the 
whole set-up.

• Scierra Laboratory workflow system: 
$145,000 plus 18% per year maintenance, 
plus unknown customization fees.

• Geospiza finch server: Costs for various 
packages from $60,000 plus $24,000 per 
year to over $100,000 plus 28% of 
cost/year.
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GeMS

Quotes from survey respondents:
• “After we obtain the raw sequence data, it is sent on to our 

users.”

• “Traces are data-based haphazardly by individuals.”

• “As far as I know, there are no low-cost commercial 
sequence managers available.”

• “We have also 'rolled our own' software here.”

• “Unfortunately, there isn’t much out there to the best of my 
knowledge.”

• “…download into Microsoft Access”

• “There is an in-lab, home constructed, FileMaker Pro 
database of text files.”
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GeMS

To address the data management 
needs of the small sequencing 
laboratory, the Geraghty lab at 
FHCRC has been developing a 
Genetics Management Software suite 
(GeMS) - an information-appliance 
approach to managing sequencing 
data. 
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GeMS

Goals of GeMS:
• Implement an information-appliance 

approach to provide targeted support for 
high-throughput laboratory devices



140© 2005, R. Robbins Data Management in the Research Laboratory

GeMS

Information Appliances:
• are designed to support a specific activity, such as music, photography, or 

writing.

• combine powerful software applications with the ease of use of 
household appliances.

• are controlled by simple, intuitive user interfaces that require minimal 
training to use.

• can be used “out of the box”, without requiring complex configuration or 
set-up activities.

• connect to digital networks for the purpose of gathering or distributing 
information.

• manage data in standard formats and can share information easily with 
other similar systems.

Donald Norman. 1998. The Invisible Computer: Why Good Products Can Fail, the Personal Computer 
is So Complex, and Information Appliances are the Solution. MIT Press. Cambridge, Mass
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GeMS

Information Appliances:
• are designed to support a specific activity, such as music, photography, or 

writing.

• combine powerful software applications with the ease of use of 
household appliances.

• are controlled by simple, intuitive user interfaces that require minimal 
training to use.

• can be used “out of the box”, without requiring complex configuration or 
set-up activities.

• connect to digital networks for the purpose of gathering or distributing 
information.

• manage data in standard formats and can share information easily with 
other similar systems.

Small sequencing and genotyping laboratories need IT solutions to help 
them deal with their sequencing and genotype data. These labs need 
data management systems that:

Small sequencing and genotyping laboratories need IT solutions to help 
them deal with their sequencing and genotype data. These labs need 
data management systems that:
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GeMS

GeMS Services:
• Tracking laboratory throughput

• Organizing original data and meta data 
(machine, reagents, quality, etc.)

• Tracking costs

• Sharing data
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GeMS

GeMS Operational Foci:
• Emphasizes commonalities of sequencer-

based research.

• Provides a modular and extensible 
framework for future applications (HTR, 
Taqman, etc.)

• Views the specifics of the research 
(organisms, DNA source, scientific 
questions) as a detail to be managed as 
parameters within a common framework
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SEQUENCER

DNA Questions

GeMS
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Good Data-exchange Standard
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GeMS

Instruments Lab reports Clinical Care

Unstructured Local Data

Formally Structured Data

Published Digital Data

Integrated Data

Integrated Ideas and Concepts

Wide Area Collaborative Workspace

D
ata FlowFormally Structured Data Sharing

Wide area data 
integration is seen as 
stack of activities

Local data mgt layers 
focus on bringing full 
power of high through-
put DNA sequencing 
instruments into hands 
of small (R01-funded) 
laboratory

GeMS uses a layered archi-
tecture to match the various 
processes as data move from 
initial collection through 
increasing layers of 
refinement.
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GeMS
GEMS/IA uses a modular N-tier 
approach, making it easier to 
implement and giving it useful 
flexibility.

• The data store is accessed 
through a service API. 

• Core services are made 
available using a J2EE 
framework. These services are 
used by the plugins to carry 
out their functions.

• Plugins represent the 
functional components that 
use the core services.

At the base, we have developed a 
Linux-based “turn-key server” to 
provide an easy to administer 
foundation. The GeMS-IA core 
consists of a PostgreSQL database, 
a J2EE/JBoss application server.
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GeMS

GeMS-IA Technical Implementation: Open Source Components

To maximize its cost-effectiveness and extensibility, GeMS/IA has 
been designed and implemented using open source systems and tools. 
Specifically, 

Operating system: Linux
System Admin Support: WebMin
Database: Postgres
Web server: Tomcat
J2EE Server: JBoss
Client Development: Java

Currently GeMS-IA has 850 classes, and about 140,000 lines of code.

The database has 98 tables.
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GeMS

App Server (JBoss)

Database

Services (EJBs)

JSP/Servlet container (Tomcat)

Presentation (JSPs)

DataAccess (DAOs)

Domain Objects

Domain Objects

These may be running
on different machines

The Domain objects are 
populated by the services.
They are passed to the 
presentation layer using
RMI.

The EJBs implement a
public service interface
that is used by the UI and
other EJBs. 

The DAOs implement a
public interface that gives
the service layer access to
the persistent data store. In
this case, a database.

Thin Client
Domain 
Objects

The thin client and the web
client both use RMI to
connect to the services.

J2EE Application Layers

Current GeMS
Application J2EE 

Application Layers 
Software Architecture.
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GeMS
GeMS core components

Authentication 
Authentication will be implemented using the J2EE Pluggable Authentication 
Module (PAM) mechanism.

Authorization
The security requirements of this project require much more flexibility than the 
standard user/group security model. The requirements specify that access 
control apply to individual data elements

GeMS-IA Messaging
The messaging component will allow users of the GeMS system to 
communicate easily and effectively.  Users will be able to send and receive 
messages via email, secure file transfer, adding a message or URL to a web 
page, and by instant messaging.  Recipients may be specified as an individual 
user or group of users.
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GeMS
GeMS core components 
GeMS-IA Work Flow

The work flow component will allow users of the GeMS system to collect a 
series of different tasks into a “work flow.” This will free up the user to perform 
other work since they will not have to monitor the system as each individual 
task is completed. 

Plug-in management

Support for different protocols and analysis tools will be provided in pluggable 
modules. These modules are basically J2EE EARs (Enterprise Archives) that 
build upon the services provided by the platform.

GeMS-IA Peer to peer

The peer to peer component will allow users of the GeMS-IA system to invoke 
services on other GeMS-IA instances that are set up as collaborators.
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GeMS Data Schema

LabUser

pk pkey integer
user_name varchar(10)
firstname varchar(15)
lastname varchar(15)
middlename varchar(10)
email varchar(30)
creation_date date
modified_date date
description text

Project

pk pkey integer
name varchar(15)

fk lab_user_pkey integer
start_date date
creation_date date
modified_date date
description text

Subproject

pk pkey integer
name varchar(20)

fk lab_user_pkey integer
fk project_pkey integer

start_date date
creation_date date
modified_date date
description text

PlateType

pk pkey integer
name varchar(10)
rows integer
columns integer
creation_date date
modified_date date
description text

ShotgunLibrary

pk pkey integer
fk subproject_pkey integer
fk lab_user_pkey integer

library_creation_datedate
creation_date date
modified_date date
description text

ShotgunPlateInfo

pk pkey integer
name varchar(30)
plate_seq_direction char(1)

fk shotgun_library_pkey integer
fk freezer_pkey integer

freezer_shelf integer
fk labuser_pkey integer
fk plate_type_pkey integer
fk status_pkey integer
fk protocol_pkey integer

status_date date
creation_date date
modified_date date
description date

ShotgunPlateHistory

fk shotgun_plate_info_pkey integer
fk status_pkey integer
fk labuser_pkey integer

plate_seq_direction char(1)
result char(3)
status_date date
creation_date date
modified_date date
description date

ShotgunPlateChromatLink

fk shotgun_plate_info_pkey integer
coordinate_position varchar(5)

fk chromat_info_pkey integer
creation_date date
modified_date date

SampleSheetInfo

pk pkey integer
name varchar(30)
machine_id varchar(20)

fk lab_user_pkey integer
fk owner_pkey integer
fk sequencer_protocol_pkey integer
fk protocol_pkey integer

sequence_date date
generation_date date
creation_date date
modified_date date
description text

PrimerDetail

pk pkey integer
name varchar(30)
sequence text
melting_temp float

fk status_pkey integer
fk subproject_pkey integer

subproject_position integer
fk lab_user_pkey integer
fk designer_pkey integer

status_date date
creation_date date
modified_date date
description text

PrimerDetailHistory

fk primer_detail_pkeyinteger
fk status_pkey integer
fk lab_user_pkey integer

status_date date
creation_date date
modified_date date
description text

PrimerPlate

pk pkey integer
name varchar(30)

fk plate_type_pkey integer
fk freezer_pkey integer

freezer_shelf integer
fk lab_user_pkey integer

primerplate_type varchar(20)
parent_pkey integer
generation_date date
expiration_date date
creation_date date
modified_date date
description text

SubprojectDetails

pk pkey integer
fk subproject_pkey integer

sequence text
cDNA text
locus_id text
creation_date date
modified_date date

PrimerPlateCoord

fk primer_plate_pkey integer
fk primer_detail_pkey integer

coordinate_position varchar(5)
amount_received Numeric
concentration Numeric
cost Numeric
creation_date date
modified_date date

pk primary key
fk foreign key

PCRReactionDetails

pk pkey integer
fk lab_user_pkey integer
fk protocol_pkey integer

machine_id varchar(20)
reaction_date date
creation_date date
modified_date date
description text

PCRReactionCoordinate

pk pkey integer
fk pcr_reaction_details_pkey integer

coordinate_position varchar(5)
fk tester_user_pkey integer
fk dna_source_pkey integer

pcr_result char(3)
pcr_result_date date
creation_date date
modified_date date

ChromatInfo

pk pkey integer
filename varchar(30)
phd_filename varchar(30)

fk sample_sheet_info_pkey integer
fk status_pkey integer
fk protocol_pkey integer
fk primer_detail_pkey integer

seqinsubproj char(3)
coordinate_position varchar(5)
actual_read_length_Q20 integer
actual_read_length_default integer
base_count_Q20 integer
base_count_default integer
creation_date date
modified_date date
description text

ChromatBaseQuality

fk chromat_info_pkey integer
base_position integer
quality text
base text
creation_date date
modified_date date
description text

ChromatContamination

fk chromat_info_pkey integer
fk contamination_type_pkey integer

start_position integer
stop_position integer
description text
creation_date date
modified_date date

ChromatSequence

pk pkey integer
fk dna_source_pkey integer
fk chromat_info_pkey integer

sequence_text text
creation_date date
modified_date date
description text DNASource

pk pkey integer
organism varchar(20)
material_reference varchar(30)
general_name varchar(30)
local_name varchar(20)
creation_date date
modified_date date
description text

AlternateDnasourceInfo

fk dna_source_pkey integer
id_number varchar(10)
creation_date date
modified_date date

SNPDetails

pk pkey integer
fk subproject_pkey integer
fk chromat_sequence_pkey integer
fk haplotype_pkey integer

subproject_position integer
allele char (3)
three_prime_seq text
five_prime_seq text
dbsnp_number varchar(20)
source varchar(20)
verified boolean
submitted boolean
submission_date date
creation_date date
modified_date date
description text

Protocol

pk pkey integer
type varchar(30)
name varchar(30)
creation_date date
modified_date date
description text

Status

pk pkey integer
name varchar(20)
creation_date date
modified_date date
description text

SNPAllele

fk snp_detail_pkey integer
fk dna_source_pkey integer

allele_exists char(3)
description text
creation_date date
modified_date date

Freezer

pk pkey integer
name varchar(20)
room varchar(10)
temp float
no_of_shelves integer
creation_date date
modified_date date
description text

Haplotype

pk pkey integer
fk chromat_sequence_pkey integer

locus varchar(20)
value varchar(20)
modifier varchar(20)
creation_date date
modified_date date
description text

PCRreactcoordPrimerplateLink

fk pcr_react_coord_pkey integer
fk primer_detail_pkey integer

primer_direction char(1)
fk primer_plate_pkey integer

creation_date date
modified_date date

ContaminationType

pk pkey integer
name varchar(30)
description text
creation_date date
modified_date date

ShotgunPlateInfo

ShotgunLibrary

PCRreactcoordChromatInfoLink

fk chromat_pkey integer
fk pcr_react_coord_pkey integer

creation_date date
modified_date date

LabUser
Subproject

Project

PrimerDetail

PrimerDetail

LabUser

ChromatInfo

SampleSheetInfo
PrimerDetail

Protocol

LabUser

DNASource

ChromatInfo

DNASource

Subproject

LabUser

Status

Status

PlateType
Freezer

Status

Protocol

Subproject

Haplotype
ChromatSequence

PCRReactionDetails

PrimerPlate

protocol

Freezer
PlateType
Protocol

DNASource

Tables - 31
Tables in brown are related to PCR

Tables in blue are related to SHOTGUN
Tables in green related to both PCR and Shotgun

Tables in pink Indicate the core functionality tables common to both PCR and Shotgun

PrimerDetail ChromatInfo

SampleSheetInfo

Subproject

LabUser

GeMS Database Schema

Tuesday, February 17, 2004

The GeMS schema currently relates 
all key variables in automated high 
throughput DNA sequencing to the 
output files for data analysis, 
sharing and comparison including

– DNA Source information

– SNP Identification

– Primers

– amplicons

– Haplotypes

– Sequencers

– Technicians

– PCR Thermocyclers
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GeMS
GeMS Plug-in modules

1) PCR sequencing and 2) Shotgun sequencing.
In the current GeMS, the PCR and Shotgun modules are packaged together in the 
GemsSequencing Module.
Chromatogram quality reporting
Sequence assembly reporting

3) GeMS sequence analysis tools
The programming is now broken down into four modular functions, with three directly 
used for primer design for PCR sequencing.  
Assemble/View Chromats:
RepeatMasker utility:
Primer3 utility:
Blast Primer utility: 

4) Cost accounting and reagent tracking.  
The primary function of cost tracking is to determine the cost of running a particular 
protocol.  
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GeMS: Productivity Gains
Parameter Improvement

Homologies Mapping time reduced four fold (estimated 20 hours/year).

Primer Quality
eliminated design errors (start/end pos.) from 5% of all primers to none.
reduced strand errors from 1% of all primers to none (combined estimated 100 hours/year 
including laboratory time saved).

Primer Ordering automation saved one hour per plate (40 hours/year). 

Sample Sheet Creation automation saved 5 minutes per plate (200 hours/year).

PCR/Seq plate map 
creation

shows user which cell lines, primer(s), go in each well.  Reduces user errors and save 
time setting up experiments (estimated 400 hours/year including laboratory time saved).

Chromatogram Quality 
Reports

saved 30 minutes per quality output summary (estimated 100 hours/year)
eliminated naming errors – saved variable time depending on number and complexity of 
naming errors (estimated total 200 hours/year including laboratory time saved). 

Data Organization

Able to easily group together chromats based on a list of criteria.  (e.g. group all chromats
from one cell line, or all chromats from one amplicon, etc.)  Saved variable time and 
reagent cost checking quality criteria depending on the size of the project. (estimated 
$10,000 reagent costs and 100 hours/year laboratory time saved).

Managing assemblies
GeMS saves chromats in a centralized place and can dynamically create assemblies in
any combination desired.  This avoids data duplications and saves both space and 
analysis time (estimated 200 hours/year). 

Cost Tracking
Improved from general estimation to detailed tracking that related work effort and reagent 
cost to a specific protocol being run over time (saved 20% reagent costs or $30,000 
annualized).
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GeMS: Productivity Gains
Parameter Improvement

Homologies Mapping time reduced four fold (estimated 20 hours/year).

Primer Quality
eliminated design errors (start/end pos.) from 5% of all primers to none.
reduced strand errors from 1% of all primers to none (combined estimated 100 hours/year 
including laboratory time saved).

Primer Ordering automation saved one hour per plate (40 hours/year). 

Sample Sheet Creation automation saved 5 minutes per plate (200 hours/year).

PCR/Seq plate map 
creation

shows user which cell lines, primer(s), go in each well.  Reduces user errors and save 
time setting up experiments (estimated 400 hours/year including laboratory time saved).

Chromatogram Quality 
Reports

saved 30 minutes per quality output summary (estimated 100 hours/year)
eliminated naming errors – saved variable time depending on number and complexity of 
naming errors (estimated total 200 hours/year including laboratory time saved). 

Data Organization

Able to easily group together chromats based on a list of criteria.  (e.g. group all chromats
from one cell line, or all chromats from one amplicon, etc.)  Saved variable time and 
reagent cost checking quality criteria depending on the size of the project. (estimated 
$10,000 reagent costs and 100 hours/year laboratory time saved).

Managing assemblies
GeMS saves chromats in a centralized place and can dynamically create assemblies in
any combination desired.  This avoids data duplications and saves both space and 
analysis time (estimated 200 hours/year). 

Cost Tracking
Improved from general estimation to detailed tracking that related work effort and reagent 
cost to a specific protocol being run over time (saved 20% reagent costs or $30,000 
annualized).

Total Savings:

1360 hrs + $40,000 reagent costs/yr



159© 2005, R. Robbins Data Management in the Research Laboratory

GeMS

From Data Generation to 
Data Publication:

• Nightly Data pick up by 
system

• Unstructured and 
unrelated data sent to 
GeMS server for 
processing

• Data related to 
associated parameters

• Subset of data made 
available to the 
Geraghty website

Instruments

Unstructured Local Data

Formally Structured Data

Published Digital Data

Sequencer

GeMS
Cron
Job

Data

D
ata Flow

Structured Data Sharing
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GeMS Extensibility

Heterozygous Trace Resolution software  
(HTR):

• Interprets heterozygous DNA sequence data 
directly from the chromatogram without manual 
interpretation. 

• Written in Java

• Current implementation does not have user 
interface.

• Undergoing upgrades to improve accuracy and to 
deliver data quality metrics.
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GeMS Extensibility

Two cell lines - multiple polymorphic positions
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GeMS Extensibility

More Future Plans for GeMS/IA:
• To build a new module for an additional genetics data 

generating instrument (Taqman, Sequenome(?), FACSAN).

• To create and maintain the ability to connect distributed 
installations supporting the two distinct types of genetics 
instruments (sequencers and Taqman).  

NOTE: Many of the problems associated with data 
sharing between labs simply disappear if the labs 
employ common informatics systems and common data 
models. 

• To create and maintain an adaptation of the existing EDRN 
Research Network Exchange (ERNE using OODT) that will 
assist Import/export functions for distributed GeMS
installations with other widely available databases 
containing genetics data. 
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GeMS People
Immune response genes
Quyen Vu
Skylar Nelson

GeMS software development
Lee Davis*
Mike McCormick*
Simon Fortelny*
Ruihan Wang*

HTR software package
Ruihan Wang*
Wade Smith*

Dan Geraghty, Ph.D.
PI / Lab Director
geraghty@fhcrc.org
206 667 4668

Mark Thornquist,Ph.D.
(Public Health Sciences Division, 
FHCRC), EDRN related initiative

Thomas Geraghty*, (COO, 
Immunogenomics Inc.) Off-site 
testing, support, and requirements 
gathering
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GeMS People
Immune response genes
Quyen Vu
Skylar Nelson

GeMS software development
Lee Davis*
Mike McCormick*
Simon Fortelny*
Ruihan Wang*

HTR software package
Ruihan Wang*
Wade Smith*

Dan Geraghty, Ph.D.
PI / Lab Director
geraghty@fhcrc.org
206 667 4668

Mark Thornquist,Ph.D.
(Public Health Sciences Division, 
FHCRC), EDRN related initiative

Thomas Geraghty*, (COO, 
Immunogenomics Inc.) Off-site 
testing, support, and requirements 
gathering



The Solution
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Location of Solution Components

LABORATORY: QA/QC; basic data management and 
analysis

INSTITUTION: Shared resources; basic storage & 
management; statistics and analysis 
support; digital publishing support; 

RES. COMMUNITY: Information appliances; public data 
collections; analytical support

FUNDING AGENCY: Core grant support; caBIG; BISTI

GLOBAL: Identity management; authentication, 
authorization, auditing



END
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Michael Porter.  1985.  Competitive Advantage.

Margin
Marg

in

Michael Porter’s works on competitive advantage contain a 
compelling analysis of the various components of operational 
activities in a competitive enterprise.
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service
Primary

Activities

According to Porter, the value-adding primary activities of the 
enterprise define the enterprise. Primary activities must be 
managed to deliver maximum strategic competitive advantage.
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service
Primary

Activities

Support
Activities

According to Porter, the value-adding primary activities of the 
enterprise define the enterprise. Primary activities must be 
managed to deliver maximum strategic competitive advantage.

Conversely, support activities are necessary but not sufficient 
for the success of the enterprise. Support activities must be 
managed for maximum cost-effectiveness. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

$i

$o

Cash outflow $o occurs during the value-adding and support 
processes. Cash inflow $i occurs when the value-added products 
are sold to customers. 
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The Value Chain: Commerce

Simplistically speaking, the difference between cash inflow and 
outflow ($i - $o) provides the margin of profit. 

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

$i $o-
Margin

Marg
in
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The Value Chain: Commerce

Increased expenses (strategic investment) can lead to increased 
profits, if the expenses generate more value than they cost. 

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Margin
Marg

in

$i $o-
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The Value Chain: Commerce

Note: Because $o usually occurs before $i, we can judge the 
appropriateness of cost-incurring activities to the extent that we 
can measure the effect of a particular $o upon overall $i.

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Margin
Marg

in

$i $o-
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

As highly plastic tools, computers can play useful roles in both
the accomplishment and the management of tasks. Thus, 
computers have potential roles in all phases of the value chain.
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

As highly plastic tools, computers can play useful roles in both
the accomplishment and the management of tasks. Thus, 
computers have potential roles in all phases of the value chain.

Many of the most successful companies of the last fifteen years 
have achieved that success through the skilled deployment of IT 
to great competitive advantage.  
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Computers can also play useful roles in many support activities.
Here, IT delivers infrastructure strength and may contribute to 
competitive advantage through cost containment.
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The Value Chain: Commerce
In the value-adding chain, IT is a strategic asset and must be 
managed accordingly. Investment is made to maximize strategic 
competitive effectiveness. 

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service
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The Value Chain: Commerce
In the value-adding chain, IT is a strategic asset and must be 
managed accordingly. Investment is made to maximize strategic 
competitive effectiveness. 

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

In support activities, IT is a cost-center component and must be 
managed accordingly. Costs must be contained and the entire 
operation tuned to achieve maximum operational efficiency.  
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

The rapid rate of technological change adds another complexity. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

The rapid rate of technological change adds another complexity. 

Value-adding activities can become support activities overnight. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound
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Marketing

&
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Service

The rapid rate of technological change adds another complexity. 

Value-adding activities can become support activities overnight. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Although this change complicates IT operational management 
in any organization, the problem is exacerbated in a grant-
funded research organization. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Although this change complicates IT operational management 
in any organization, the problem is exacerbated in a grant-
funded research organization. 

In a grant-funded environment, the primary value-adding 
activities are funded with direct dollars, whereas the support 
activities are funded with indirect dollars. 
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Despite increased recognition of its importance, investment in 
IT to support public-sector, grant-funded research is currently 
falling behind the private sector.  Why?
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

Other factors complicate the daily management of and the long-
term planning for IT operations in a biomedical research 
organization.  

Despite increased recognition of its importance, investment in 
IT to support public-sector, grant-funded research is currently 
falling behind the private sector.  Why?
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The Value Chain: Commerce

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

First, even at a generic level, the value-adding activities for 
research are different from those of commerce.

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication
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The Value Chain: Commerce

Inbound
Logistics Operations Outbound

Logistics
Marketing

&
Sales

Service

First, even at a generic level, the value-adding activities for 
research are different from those of commerce.

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

Not only are the categories somewhat different, but there is a 
significant reversal in time sequence of some components.
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The Value Chain: Commerce

Firm Infrastructure

Human Resource Management

Technology Development

Procurement

Although some differences exist in the support activities, these
are not as significant as those in the primary activities.
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The Value Chain: Commerce

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Although some differences exist in the support activities, these
are not as significant as those in the primary activities.
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

(Independent)
Research
Activities

Support
Activities

Combining these adjustments we get the following “Porter 
diagram” for research.
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

(Independent)
Research
Activities

Support
Activities

Combining these adjustments we get the following “Porter 
diagram” for research.

Now we can consider some other complicating factors…
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

$i

$o

Cash flow is backwards, in that “income” precedes expenses. 
Furthermore, “income” is really just authorization to request 
reimbursement for appropriate expenses.
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

$i

$o

Cash flow is backwards, in that “income” precedes expenses. 
Furthermore, “income” is really just authorization to request 
reimbursement for appropriate expenses.

Because $I is capped as a reimbursement for an approved subset 
of $o, $i, must always be less than or at best equal to $o. This 
means there can never be a real profit margin. 
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

$i

$o

Without a profit margin, true strategic investment in IT is 
difficult, if not impossible.

Thus, compared with private-sector enterprises, IT investment 
in grant-funded research organizations is often trivial and 
ineffective.
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The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

Standards
Anathema

Standards
Accepted

The sociology of public-funded research activities resists 
efficiencies in the value-adding chain. Much of this resistance is 
legitimate.  
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Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics PublicationGrant

Writing
Inbound
Logistics

Research
Operations

Outbound
Logistics PublicationGrant

Writing
Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

In a grant-funded research organization, there are multiple 
value-adding chains, one for each independently funded 
research activity.
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Writing
Inbound
Logistics

Research
Operations

Outbound
Logistics PublicationGrant

Writing
Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

In a grant-funded research organization, there are multiple 
value-adding chains, one for each independently funded 
research activity.

Aligning IT operations with hundreds 
of independent research activities 
(each with its own dynamic goals, 
budgets, staff, and timelines) is not 
easy. Indeed, efforts to achieve 
specific alignment with all of these 
activities must fail.
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Outbound
Logistics Publication

The Value Chain: Research

Institute Infrastructure

Human Resource Management

Core Technology Facilities

Procurement

Grant
Writing

Inbound
Logistics

Research
Operations

Outbound
Logistics Publication

In a grant-funded research organization, there are multiple 
value-adding chains, one for each independently funded 
research activity.

The trick is UNDERSTANDING the 
process and values of research.

With understanding, and acceptance, 
real alignment can be achieved.
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Understanding Research

Business Model
• The Porter value-chain analysis shows 

that the funding model, and the value-
adding process of grant-funded research 
is fundamentally different from that of  
businesses that sell goods or services to 
consumers. 

• Measuring ROI is metaphorical (at best)

• No common measurement for success –
i.e,, no bottom line



Understanding
Research

Operational Practices
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Understanding Research

Operational Practices
• Independent 

• Portable

• Third-party pay; Third-party rewards

• Deals with the unknown, cannot be 
standards driven

• Intensely opportunistic

• Pan-enterprise collaboration



Understanding
Research

Cultural Norms
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Understanding Research

Cultural Norms
• Ultimate goal: extraction of new 

knowledge from nature

• Values-based life style

• Strong differences among fields (and 
researchers)

• One-off solutions are common
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Understanding Research

Cultural Norms
• Skepticism is a given

• Evidence is expected

• Logic is required

• Criticism is a primary form of discourse

• Understanding is the goal: NT triumphant


