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What’s so new?
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© 2001, Robert J. Robbins 1-4 Mar 2001The Canadian Biodiversity Network Conference, Ottawa, Ontario



3© 2001, Robert J. Robbins

Manhattan Purchase
7 November 1626 

High and Mighty Lords,

Yesterday the ship the Wapen van Amsterdam arrived here. It sailed 
from New Netherland out of the River Mauritius on the 23d of 
September. They report that our people are in good spirit and live in 
peace. The women also have borne some children there. They have 
purchased the Island Manhattes from the Indians for the value of 60 
guilders. It is 11,000 morgens in size [about 22,000 acres]. 

Your High and Mightinesses' obedient, 
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West Indies Trading Company purchased 
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equivalent to $24.00.

Good deal for the buyer, bad 
deal for the seller, yes?
Good deal for the buyer, bad 
deal for the seller, yes?

Suppose the local residents had invested HALF of the 
$24.00 at 8% interest. What would that be worth now? 



6© 2001, Robert J. Robbins

0

5,000,000,000,000

10,000,000,000,000

15,000,000,000,000

20,000,000,000,000

25,000,000,000,000

30,000,000,000,000

35,000,000,000,000

40,000,000,000,000

45,000,000,000,000

50,000,000,000,000

1626 1651 1676 1701 1726 1751 1776 1801 1826 1851 1876 1901 1926 1951 1976 2001

Twelve dollars, invested at 8% compound interest

Manhattan Purchase

Current value would be
$44,311,179,363,225.30



7© 2001, Robert J. Robbins

0

5,000,000,000,000

10,000,000,000,000

15,000,000,000,000

20,000,000,000,000

25,000,000,000,000

30,000,000,000,000

35,000,000,000,000

40,000,000,000,000

45,000,000,000,000

50,000,000,000,000

1626 1651 1676 1701 1726 1751 1776 1801 1826 1851 1876 1901 1926 1951 1976 2001

Twelve dollars, invested at 8% compound interest

Manhattan Purchase

Current value would be
$44,311,179,363,225.30

which is approximately 10% greater than 
the total annual purchasing power of all 
the world’s economies combined...
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This hypothetical investment started 150 
years BEFORE the American revolution, 
yet 99% of the value has accumulated in 
my lifetime (i.e., since 1944).
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Manhattan Purchase

Compound interest can be 
staggeringly powerful and 
global-scale phenomena can 
beggar the imagination.
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Manhattan Purchase

Compound interest can be 
staggeringly powerful and 
global-scale phenomena can 
beggar the imagination.

The challenges of biodiversity informatics 
will be on this scale...



Abstract

The relentless exponential effect of Moore's Law is having profound 
effects upon the role of computation in science and technology. By 
2005, analytical power previously available only at supercomputer 
centers will exist on every desktop and the volume of electronic data 
flow will be enormous.  Even now, a current Intel desktop computer 
delivers more MIPS than the first Cray and GenBank acquires more
data every week than it did in its first ten years.  

The potential information storage capacity of the biosphere is 
astounding. Efforts to document and comprehend the diversity of the 
biosphere on a global scale will constitute one of the greatest data-
management challenges of all time.
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The relentless exponential effect of Moore's Law is having profound 
effects upon the role of computation in science and technology. By 
2005, analytical power previously available only at supercomputer 
centers will exist on every desktop and the volume of electronic data 
flow will be enormous.  Even now, a current Intel desktop computer 
delivers more MIPS than the first Cray and GenBank acquires more
data every week than it did in its first ten years.  

The potential information storage capacity of the biosphere is 
astounding. Efforts to document and comprehend the diversity of the 
biosphere on a global scale will constitute one of the greatest data-
management challenges of all time.

© 2001, Robert J. Robbins
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• Moore’s Law constantly transforms IT 
(and everything else).

• Information Technology (IT) has a 
special relationship with biology. 

• Bioinformatics will transform 21st-
century biology.

• Documenting biospheric diversity on a 
global scale will constitute one of the 
greatest data-management challenges of 
all time.



Moore’s Law
Transforms InfoTech
(and everything else)
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Moore’s Law: The Statement

Every eighteen months, the 
number of transistors that can 
be placed on a chip doubles.

Gordon Moore, co-founder of Intel...Gordon Moore, co-founder of Intel...
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Moore’s Law: The Effect
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The computational performance 
that can be obtained at constant 
cost increases exponentially.
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Similarly, the cost of fixed 
computational performance 
declines exponentially. 
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Moore’s Law: The Effect

Three Phases of Novel IT Applications

• It’s Impossible
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Three Phases of Novel IT Applications

• It’s Impossible

• It’s Impractical

• It’s Overdue
In many fields, those who are overdue with key 
IT projects have experienced catastrophic losses 
in competitive advantage.
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Relevance for biology?Relevance for biology?



28© 2001, Robert J. Robbins

Cost (constant performance)

1975 1980 1985 1990 1995 2000 2005
1,000

10,000

100,000

1,000,000

10,000,000 University
Purchase



29© 2001, Robert J. Robbins

Cost (constant performance)

1975 1980 1985 1990 1995 2000 2005
1,000

10,000

100,000

1,000,000

10,000,000 University
Purchase

Department
Purchase



30© 2001, Robert J. Robbins

Cost (constant performance)

1975 1980 1985 1990 1995 2000 2005
1,000

10,000

100,000

1,000,000

10,000,000

RO1 Grant
Purchase

University
Purchase

Department
Purchase



31© 2001, Robert J. Robbins

Cost (constant performance)

1975 1980 1985 1990 1995 2000 2005
1,000

10,000

100,000

1,000,000

10,000,000

Personal
Purchase

RO1 Grant
Purchase

University
Purchase

Department
Purchase



32© 2001, Robert J. Robbins

Cost (constant performance)

1975 1980 1985 1990 1995 2000 2005
1,000

10,000

100,000

1,000,000

10,000,000

Personal
Purchase

RO1 Grant
Purchase

University
Purchase

Department
Purchase

Unplanned
Purchases



Catching
the

Wave

Catching
the

Wave



34© 2001, Robert J. Robbins

Catching the Wave

Fields Transformed by IT:

• finance & banking

Fields Transformed by IT:

• finance & banking



35© 2001, Robert J. Robbins

Catching the Wave

Fields Transformed by IT:

• finance & banking

• travel 

Fields Transformed by IT:

• finance & banking

• travel 



36© 2001, Robert J. Robbins

Catching the Wave

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing



37© 2001, Robert J. Robbins

Catching the Wave

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing

• biomedical research ?

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing

• biomedical research ?



38© 2001, Robert J. Robbins

Catching the Wave

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing

• biomedical research ?

Fields Transformed by IT:

• finance & banking

• travel 

• discount retailing

• biomedical research ?
Why biomedical research? (i) biology is inherently information 
rich, (ii) appropriately powered computers are now affordable 
for the research community, and (iii) post-genome biology will 
thrive on computation.  
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Information Technology:
• affects the performance and the 

management of tasks
• allows the manipulation of huge 

amounts of highly complex data
• is incredibly plastic

(programming and poetry are both exercises in pure thought)

• improves exponentially (Moore’s Law)
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Life is Characterized by:

• individuality

• historicity

• contingency

• high (digital) information content

No law of large numbers... No law of large numbers... 
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Biology is Special

For it is in relation to the statistical point of view 
that the structure of the vital parts of living 
organisms differs so entirely from that of any 
piece of matter that we physicists and chemists 
have ever handled in our laboratories or 
mentally at our writing desks.
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Erwin Schrödinger.  1944.  What is Life.Erwin Schrödinger.  1944.  What is Life.



52© 2001, Robert J. Robbins

The Digital Basis of Life
[The] chromosomes ... contain in some kind of 
code-script the entire pattern of the individual's 
future development and of its functioning in the 
mature state.  ...  [By] code-script we mean that the 
all-penetrating mind, once conceived by Laplace, to 
which every causal connection lay immediately 
open, could tell from their structure whether [an egg 
carrying them] would develop, under suitable 
conditions, into a black cock or into a speckled hen, 
into a fly or a maize plant, a rhodo-dendron, a 
beetle, a mouse, or a woman.

Erwin Schrödinger.  1944.  What is Life.Erwin Schrödinger.  1944.  What is Life.
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The Digital Basis of Life
We now know that 
Schrödinger’s mysterious 
human “code-script”
consists of 3.3 billion 
base pairs of DNA.
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The Digital Basis of Life

Typed in 10-pitch font, one human sequence would stretch for more 
than 5,000 miles. Digitally formatted, it could be stored on one CD-
ROM. Biologically encoded, it fits easily within a single cell.

We now know that 
Schrödinger’s mysterious 
human “code-script”
consists of 3.3 billion 
base pairs of DNA.

Information is passed from parent to 
child in form that is genuinely, not 
metaphorically digital. The 
biological encoding of digital 
information is incredibly efficient.
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Infrastructure and the HGP

Progress towards all of the [Genome Project] 
goals will require the establishment of well-
funded centralized facilities, including a stock  
center for the cloned DNA fragments 
generated in the mapping and sequencing 
effort and a data center for the computer-based 
collection and distribution of large amounts of 
DNA sequence information.

Progress towards all of the [Genome Project] 
goals will require the establishment of well-
funded centralized facilities, including a stock  
center for the cloned DNA fragments 
generated in the mapping and sequencing 
effort and a data center for the computer-based 
collection and distribution of large amounts of 
DNA sequence information.

National Research Council.  1988.  Mapping and Sequencing the 
Human Genome. Washington, DC: National Academy Press. p. 3

National Research Council.  1988.  Mapping and Sequencing the 
Human Genome. Washington, DC: National Academy Press. p. 3
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At this rate, what’s next...At this rate, what’s next...
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Celera Bass-o-Matic Sequencer
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In with the sample, out with the sequence...



65© 2001, Robert J. Robbins

What’s Really Next

The post-genome era will take for 
granted ready access to huge amounts 
of genomic data.



66© 2001, Robert J. Robbins

What’s Really Next

The post-genome era will take for 
granted ready access to huge amounts 
of genomic data.

The challenge will be understanding
those data and using the understanding 
to solve real-world problems...



67© 2001, Robert J. Robbins

What’s Really Next

The post-genome era will take for 
granted ready access to huge amounts 
of genomic data.

The challenge will be understanding
those data and using the understanding 
to solve real-world problems...

The path to understanding will require even more data...



21st Century
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The Science
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DNA

RNA

Proteins

Circuits

Phenotypes

Populations

Fundamental Dogma

The fundamental dogma of molecular biology 
is that genes act to create phenotypes through 
a flow of information from DNA to RNA to 
proteins, to interactions among proteins 
(regulatory circuits and metabolic pathways), 
and ultimately to phenotypes.

Collections of individual phenotypes, of 
course, constitute a population. 
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The Post-Genome Era
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The Post-Genome Era

An early analysis:An early analysis:

Walter Gilbert.  1991.  Towards a paradigm 
shift in biology.  Nature, 349:99.
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Paradigm Shift in Biology
Case of Microbiology

< 5,000 known and described bacteria

5,000,000 base pairs per genome

25,000,000,000 TOTAL base pairs

If a full, annotated sequence were available for all known bacteria, the practice 
of microbiology would match Gilbert’s prediction. 
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documenting biodiversity 
involves tracking species 
presence/absence per unit 
of area.
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Documenting Biodiversity

But at what resolution?

With every increase in 
resolution, the data set 
grows exponentially...
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At an elementary level, 
documenting biodiversity 
involves tracking species 
presence/absence per unit 
of area.

Documenting Biodiversity

But at what resolution?

Localized, time-series 
probability distributions are 
also needed.
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It’s one thing to say that:
The red-sided garter snake occurs 
throughout central North America and is 
found in the southern part of Manitoba up 
to Flin Flon. It is absent from the extreme 
southwestern grasslands except for 
Spruce Woods Provincial Park.  

Documenting Biodiversity
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It’s another to note:
Every fall and spring, more than 65,000 
red-sided garter snakes congregate at  
local over-wintering dens in the Narcisse 
Wildlife Management Area. This results in  
the most locally dense concentration of 
snakes in the world. 

Documenting Biodiversity
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But this only tells us where things are in cubic kilometers...But this only tells us where things are in cubic kilometers...
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• Surface of the Earth = 1015 m2.• Surface of the Earth = 1015 m2.
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Documenting and comprehending 
biospheric diversity on a global 
scale will be one of the greatest 
data-management challenges of all 
time.

Documenting Biodiversity
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Business Comparisons
Company Revenues IT Budget Pct

Bristol-Myers Squibb 15,065,000,000 440,000,000 2.92 %
Pfizer 11,306,000,000 300,000,000 2.65 %

Pacific Gas & Electric 10,000,000,000 250,000,000 2.50 %

K-Mart 31,437,000,000 130,000,000 0.41 %
Wal-Mart 104,859,000,000 550,000,000 0.52 %

Sprint 14,235,000,000 873,000,000 6.13 %

MCI 18,500,000,000 1,000,000,000 5.41 %

United Parcel 22,400,000,000 1,000,000,000 4.46 %

AMR Corporation 17,753,000,000 1,368,000,000 7.71 %

IBM 75,947,000,000 4,400,000,000 5.79 %

Microsoft 11,360,000,000 510,000,000 4.49 %

Chase-Manhattan 16,431,000,000 1,800,000,000 10.95 %

Nation’s Bank 17,509,000,000 1,130,000,000 6.45 %
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Slides:

http://www.esp.org/rjr/biodiv.pdfhttp://www.esp.org/rjr/biodiv.pdf


