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Abstract
Forty years ago, bioinformatics and digital data sharing (DDS) were 

unknown. Twenty years ago, bioinformatics and DDS were in a crisis of 
scalability. Today, that problem has (largely) been solved. 

Now, bioinformatics and DDS are ubiquitous, and some are 
beginning to envision a future where digital biological data are (a) fully 
sharable, and (b) embedded in a semantic web and jointly accessible in 
a meaningful way.

Despite the successes of the past and the promises of the future, 
many unresolved problems still impede the useful sharing of biological 
data. Some of these unsolved problems were first recognized many
years ago. Others are just becoming apparent. Some of the problems 
are technical, others sociological. A few even trace their roots to 
problems in metaphysics. 

As we rush into the future, we must take care not to forget the 
lessons of the past. In this talk, we will consider several of the 
outstanding challenges still facing digital data sharing.
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Topics: Past Successes

• Past Success
– Physical Interoperability
– Data Sharing is now Easy

• The Model of NCBI/GenBank
– Tremendous success
– Special case (of sequence data)
– Special case (of NCBI)
– Doesn’t generalize
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Topics: Future Challenges

• Database Technology
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Topics: Future Challenges

• Database Technology

• Metaphysics: The Concept of Identity

• Science Itself

• Inappropriate Standards

• IT Industry Trends

• Inevitability of Change

• Social Scalability



Past Success

GenBank Model
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Base Pairs in GenBank
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Base Pairs in GenBank
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Growth in GenBank is exponential. More 
data were added in the last TWELVE 
HOURS than were added in the first SIX 
YEARS of the project. 



Future Challenge

GenBank Model
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The GenBank Model

• In some ways, GenBank provides a good 
model for other bioinformatics efforts…
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The GenBank Model

• In some ways, GenBank provides a good 
model for other bioinformatics efforts…

Track record of success
Single source for critical data
Integrated query tools
Integration with other relevant data sets
Well defined notion of what it is doing
…



18© 2006, R. Robbins Sharing Digital Biological Data

The GenBank Model

• In many other ways, GenBank provides a 
very bad model for other efforts…



19© 2006, R. Robbins Sharing Digital Biological Data

The GenBank Model

• In many other ways, GenBank provides a 
very bad model for other efforts…

Single, almost trivial data type
Monolithic, data-warehouse mechanism
Supports only observations, not “facts”
Highly constrained update mechanism
Huge (and growing) budget
…
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GenBank as a False Model

• Classic Kuhnian paradigm science

• Simple, unambiguous data type (string)

• Symbiotic relationship with publishers

• Sequences are nouns, not verbs
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GenBank as a False Model

• Classic Kuhnian paradigm science

• Simple, unambiguous data type (string)

• Symbiotic relationship with publishers

• Sequences are nouns, not verbs

NOUNS: Design a database of genes.
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GenBank as a False Model

• Classic Kuhnian paradigm science

• Simple, unambiguous data type (string)

• Symbiotic relationship with publishers

• Sequences are nouns, not verbs

NOUNS: Design a database of genes.

VERBS: Design a database of gene expression.



The PROBLEM
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The Problem

• Sharing raw digital data is now easy.

• Integrating independent digital data into 
information is hard.

• Cohering independent digital information in 
knowledge is very hard.

Raw data Information Knowledge



Challenges Due
To Limits of 

Database
Technology



Caution from
the Past
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Caution from the Past

Scientific Database Management
Final Report

edited by
James C. French, Anita K. Jones, and John L. Pfalz

Report of the Invitational NSF Workshop on
Scientific Database Management

12–13 March 1990
Charlottesville, Virginia

Anita K. Jones, Chairperson
Technical Report 90-21

August 1990
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Caution from the Past

U Va Tech Reports:
• CS-90-21

• CS-90-22

J.C. French, A.K. Jones and J.L. Pfaltz, Scientific Database 
Management (Final Report), August 1990.

http://www.esp.org/foundations/bioinformatics/holdings/CS-90-21.pdf

J.C. French, A.K. Jones and J.L. Pfaltz, Scientific Database 
Management (Panel Reports and Supporting Material), August 1990

http://www.esp.org/foundations/bioinformatics/holdings/CS-90-22.pdf
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Caution from the Past

Two major conclusions:
• The single unifying cry of the workshop 

is that existing data models are 
inadequate for science data needs. (p. 6)
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Caution from the Past

Two major conclusions:
• The single unifying cry of the workshop 

is that existing data models are 
inadequate for science data needs. (p. 6)

• The data source dimension (e.g., single 
or multi-source), which is not generally 
mentioned in the database literature, 
may present the most fundamental 
challenge. (p. 3)



Database
Problems
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Topics

Scientific data are not standard business 
data.
Schema flexibility is essential.
Better formal data models are required, 
with support for more complex logic.

• Database problems



Database I

Basics
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Relational Databases

• FACTS

• REAL OBJECTS

• CLOSED UNIVERSE

• DEDUCTIVE REASONING

• CENTRALLY OPERATED

Business Databases:
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Relational Databases

• OBSERVATIONS 

• HYPOTHETICAL OBJECTS

• OPEN UNIVERSE

• INDUCTIVE REASONING

• TOTALLY DECENTRALIZED

Scientific Databases:

• FACTS

• REAL OBJECTS

• CLOSED UNIVERSE

• DEDUCTIVE REASONING

• CENTRALLY OPERATED

Business Databases:
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Relational Databases

• SOLID

• STABLE

• GLOBALLY CONSISTENT

• STAND ALONE

• SOFT

• CONSTANTLY CHANGING

• MUTUALLY INCONSISTENT

• REQUIRE REFERENCES

Facts: Observations:
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Relational Databases

• CONCRETE

• STABLE (or known 
instability)

• IMMUTABLE (more or less)

• INSUBSTANTIAL

• UNSTABLE

• HIGHLY MUTABLE 
(lumping and splitting)

Real Objects: Hypothetical Objects:
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GDB Example:

In principle, the completed genome should consist of alternating
coding regions (genes) and non-coding regions (D-segs). Each 
map object (gene or D-seg) is an individual object, with a primary 
key and with foreign keys pointing to it.

XYZ KLMABC

DS901DS857 DS746 DS123
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GDB Example:

XYZ KLM

XYZ-L XYZ-R

ABC

DS901DS857 DS746 DS123

DS901 DS746DS999

But while the genome is being completed, the HYPOTHETICAL 
genes and D-segs may undergo lumping or splitting, creating 
challenges for the maintenance of referential integrity.
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GDB Example:

XYZ KLM

XYZ-L XYZ-R

ABC

DS901DS857 DS746 DS123

DS901 DS746DS999

But while the genome is being completed, the HYPOTHETICAL 
genes and D-segs may undergo lumping or splitting, creating 
challenges for the maintenance of referential integrity.

Reality is not negotiable:
Databases must either evolve to track 
changes in our scientific concepts, or 

become irrelevant
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Relational Databases

Closed Universe: Open Universe:
Who, of the registrants 
for this meeting, came 
to the meeting?
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Relational Databases

Closed Universe: Open Universe:
Who, of the registrants 
for this meeting, came 
to the meeting?

Who, of the registrants 
for this meeting, did not 
come to the meeting?

Who else did not come 
to the meeting?
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Relational Databases

• DETERMINISTIC

• WELL ESTABLISHED 
ALGORITHMS (formal 
logic)

• PROBABALISTIC

• METHODS STILL DEBATED 
(almost at the metaphysical 
level)

Deductive Reasoning: Inductive Reasoning:



Database II

Schema Change
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Schema-change Issues

Problems occur at many levels:

• Bio-database schemas evolve at a high rate (cf. 
failure of IGD as cited by Stein).

• We need systematic support for inter-database 
referential integrity.

• We need support for intra-database referential 
integrity following lumping or splitting actions.

• More issues…
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Schema-change Issues

Problems occur at many levels:

• Bio-database schemas evolve at a high rate (cf. 
failure of IGD as cited by Stein).

• We need systematic support for inter-database 
referential integrity.

• We need support for intra-database referential 
integrity following lumping or splitting actions.

• More issues…

Schema Evolution:
Schemas of scientific databases evolve 
at a high rate. And, data objects within 

scientific databases lump or split or 
even change class. Without tools to 

support referential integrity in the face of 
these changes, long-term data 

integration is impossible.



Database III

Data Models &
Complex Logic
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Many bio-data problems involve:

• Graphs: pedigrees, taxonomies, partial orderings, 
etc…

• Repeat time series observations, with inconsistent 
results

• Provisional conclusions

• Universal linking tables

Data-model Challenges



52© 2006, R. Robbins Sharing Digital Biological Data

Graph Challenges
Pedigree Relational Representation

nodes

arcs



53© 2006, R. Robbins Sharing Digital Biological Data

Graph Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy

nodes

arcs

Relational Representation
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Graph Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy

nodes

arcs

Relational Representation

Graph solutions needed:
It would be nice if database products 
included a CREATE GRAPH operator, 

including the ability to declare 
constraints to be maintained (e.g., 

directed, acyclic, connected, tree, etc) 
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Graph Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy

nodes

arcs

Relational Representation

Graph solutions needed:
For efficient updating, graphs are best 

stored as transitive reductions. 
For efficient querying, graphs are best 

stored as transitive closures.
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus maniculatus bairdii

Suppose we permit querying at any level, but require classification of 
objects at leaf level. Then all questions referring to nodes on the path from 
the classification point to the top return TRUE,

Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus maniculatus bairdii

Suppose we permit querying at any level, but require classification of 
objects at leaf level. Then all questions referring to nodes on the path from 
the classification point to the top return TRUE, all others FALSE.

Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level.

Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, all 
questions referring to nodes lateral to this path return FALSE, 

Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, all 
questions referring to nodes lateral to this path return FALSE, and all 
questions referring to nodes below the classification point return MAYBE.

Data Objects to be Classified

Data object
(expression arrays?)
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Classification Challenges

Order: Rodentia

Class: Mammalia

Family: Muridae

Genus: Peromyscus

Species: Peromyscus maniculatus

Subspecies:Peromyscus maniculatus bairdii

Classification Hierarchy
Classified as:

Peromyscus

Now, suppose the we permit querying at any level, and also that we allow 
classification of objects at any level. Then all questions referring to nodes 
on the path from the classification point to the top return TRUE, all 
questions referring to nodes lateral to this path return FALSE, and all 
questions referring to nodes below the classification point return MAYBE.

Data Objects to be Classified

Data object
(DNA sequences?)

Tri-state logic required:
If hierarchical classification schemes 
are used, then tri-state logic may be 

required. 



Database IV

Data Integration
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Data Integration Crisis

Adequate connections among data 
objects in different databases do 
not exist.

Without adequate connectivity, much 
of the value of the data will be lost. 
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Data Integration Goals

Achieve conceptual integration of 
biomedical data. 

Provide technical integration of both 
data and analytical resources to 
facilitate conceptual integration.
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The Vision

We must begin to think of the 
computational infrastructure of 
genome research as a federated 
information infrastructure of 
interlocking pieces.

Report of the Invitational DOE Workshop on Genome 
Informatics, 26-27 April 1993, Baltimore, Maryland

http://www.esp.org/foundations/bioinformatics/holdings/doe-white-paper.pdf
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Multidatabase Taxonomy

• A multidatabase system (MDBS) supports simultaneous 
operations on multiple (perhaps different) component 
databases.

• A federated database system (FDBS) has autonomous 
components, whereas non-federated database systems
are unitary.

• A federated system with no strong central federation 
management is considered loosely coupled.

• One with strong central management and with federation 
database administrators controlling access to the 
components is tightly coupled.

• A single federation allows only one centrally managed 
federated schema; a  multiple federation allows multiple 
centrally managed schemas.
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Multidatabase
Systems

Non-federated
Database Systems

Federated
Database Systems

Loosely Coupled Tightly Coupled

Multiple
Federations

Single
Federation

Multidatabase Taxonomy
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Multidatabase
Systems

Non-federated
Database Systems

Federated
Database Systems

Tightly Coupled

Multiple
Federations

Single
Federation

Loosely Coupled

Multidatabase Taxonomy
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Multidatabase Challenges

• The coordinated updating of loosely coupled 
databases is still an unsolved problem.

• Maintaining inter-database referential 
integrity across loosely coupled databases 
is still an unaddressed problem.
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Multidatabase Challenges

• The coordinated updating of loosely coupled 
databases is still an unsolved problem.

• Maintaining inter-database referential 
integrity across loosely coupled databases 
is stll an unaddressed problem.

Both of these challenges must be addressed and 
SOLVED before a truly effective semantic web of 

shared digital data can be achieved.



Data Source
Problems

Data Source
Problems
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Topics

• Data-source problems
Biology is a small-instrument, multi-source 
science.
Integrating multi-source data is hard.
Consistency flows in the wrong direction.



Source I
Basics

Source I
Basics
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Single-instrument Science

instrument researchers

data flow
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Single-instrument Science

instrument researchers

data flow

increasing data consistency
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Single-instrument Science

instrument researchers

data flow

increasing data consistency

RIGHT WAY:
With single-source science, data is 

MOST consistent nearest the source, 
making integration unnecessary (but 

making the need for path 
documentation high).
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Multi-instrument Science

researchers researchersdata resource(s)

data flow
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Multi-instrument Science

researchers researchersdata resource(s)

data flow

increasing data consistency
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Multi-instrument Science

researchers researchersdata resource(s)

STOP – WRONG WAY:
With multi-source science, data is 

LEAST consistent nearest the source, 
making true integration difficult.

data flow

increasing data consistency
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Multi-instrument Science

researchers researchers

data flow

data resource(s)

Extra complexity:
Undocumented, uncoordinated local data 

exchange
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Multi-instrument Science

researchers researchers

data flow

data resource(s)

Extra complexity:
Data collected locally to meet local needs are 
not globally consistent - or even equivalent. 
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Multi-instrument Science

researchers researchers

data flow

data resource(s)

Extra complexity:
Multiple centralized resources may exist, 
meaning there is no authoritative source.



Challenges Due
To Problems

In
Metaphysics



Semantic Web
Issues
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Object Identity

• The CHALLENGE:

– A semantic web requires inter-database referential integrity.

– Inter-database referential integrity requires reliable and stable 
primary keys.

– Primary keys provide for the persistent maintenance of identity.

– If the concept of identity cannot be agreed upon, the proper use of 
primary keys cannot be agreed upon.

– Without common, persistent primary keys, inter-database 
referential integrity is impossible.
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Object Identity

• In any semantic web for the life sciences, no matter 
what technology is used, several needs must be met:

– IDENTITY MANAGEMENT: It must be possible to identify 
unambiguously biological objects (more precisely to identify digital 
objects and associate them unambiguously with real-world 
biological objects).

– IDENTITY ADJUDICATION: It must be possible to determine 
whether two different digital objects describe the same or different 
real world objects

– REFERENTIAL INTEGRITY: It must be possible to make 
unambiguous, semantically well-defined assertions linking an 
object in one information resource to one or more objects in other 
information resources.
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Object Identity

• In any semantic web for the life sciences, no matter 
what technology is used, several constraints must be 
addressed:

– RETAIL VS WHOLESALE CUSTOMERS: The semantic web must 
support the retail needs for coherence and the wholesale need for 
variation and disagreement.

– TRI_STATE LOGIC: Systems involving the classification of 
biological objects need tri-state logic to handle queries.

– NO CURATION: In all but the best-funded public databases, there 
are no funded resources available for information curation.

– CONSISTENCY IS IMPOSSIBLE: science consists of assertions and 
observations, not facts; assertions and observations can differ 
without being untrue.
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Object Identity

• In any semantic web for the life sciences, no matter 
what technology is used, several constraints must be 
addressed:

– FINAL ONTOLOGY REQUIRES PERFECT KNOWLEDGE: In a context-
free global environment, the data model must meet the requirements 
of all possible users (or fail for some users).  

– REALITY IS NOT NEGOTIABLE: The requirements for scientific 
information systems are determined by discovery, not negotiation.

– SOCIOLOGICAL IMPEDIMENTS: Technological solutions must also 
meet sociological requirements; an information system that could
manage useful information is a failure if many are unwilling to 
participate.

– EXPECTATIONS MUST BE MANAGED: never forget, 

success = deliverables / expectations



BACKGROUND ISSUESSemantic Web
Background Issues
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Philosophical Issues: Identity

• Concept of identity still subject to metaphysical 
distinctions:

– NUMERICAL IDENTITY: one thing being the one and only such 
thing in the universe - e.g., there should be one and only human 
being associated with a patient ID

– QUALITATIVE IDENTITY: two things being identical (sufficiently 
similar) in enough properties to be perfectly interchangeable (for 
some purpose) – e.g., there can be many “different” books 
associated with the same ISBN identifier; there can also be several 
different ISBN identifiers associated with the “same” book.
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Philosophical Issues: Properties

• Properties are subject to identity-related distinctions:

– ACCIDENTAL PROPERTIES: properties of an object that are 
contingent – that is, properties that are free to change without 
affecting the identity of the object

– ESSENTIAL PROPERTIES: non-contingent properties – that is, 
properties which DEFINE the identity of the object and thus which 
cannot change without affecting the identity of the object (for some 
purpose)
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Philosophical Issues: Properties

• Properties are subject to identity-related distinctions:

– ACCIDENTAL PROPERTIES: properties of an object that are 
contingent – that is, properties that are free to change without 
affecting the identity of the object

– ESSENTIAL PROPERTIES: non-contingent properties – that is, 
properties which DEFINE the identity of the object and thus which 
cannot change without affecting the identity of the object (for some 
purpose)

Recognizing the distinction between essential 
and accidental properties will be critical in 
developing a successful identifier scheme for a 
semantic web of biology.

Especially challenging will be the fact that 
whether a particular property is essential or not 
is often context dependent. 
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Philosophical Issues: Properties

• Properties are subject to identity-related distinctions:

– INTRINSIC PROPERTIES: properties of an object that are properties 
of the thing itself

– EXTRINSIC PROPERTIES: properties of the object that are 
properties of the object’s relationship to other objects external to 
itself
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Philosophical Issues: Properties

• Properties are subject to identity-related distinctions:

– INTRINSIC PROPERTIES: properties of an object that are properties 
of the thing itself

– EXTRINSIC PROPERTIES: properties of the object that are 
properties of the object’s relationship to other objects external to 
itself

Identifying tandemly duplicated genes is a 
perfect example of the need to distinguish 
between extrinsic and intrinsic properties.
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Philosophical Issues: Identification

• “Identification” is a process that reduces ambiguity. 
Ambiguity-reducing identification can occur in a 
number of different ways:

– INDIVIDUAL SPECIFICATION: denoting an individual object without 
identifying either its class membership or its individuality - e.g., 
“this thing”

– CLASS IDENTIFICATION: specifying than an object is a member of 
a class of objects that are sufficiently similar that the objects may 
be considered interchangeable (for some purpose) – e.g., “this 
book is Darwin’s Origin of Species”

– INDIVIDUAL IDENTIFICATION: specifying that an object is in fact a 
PARTICULAR genuinely unique object in the universe – e.g., this 
book is Darwin’s own personally annotated copy of Origin of 
Species”
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Philosophical Issues: Identification

• “Identification” is a process that reduces ambiguity. 
Ambiguity-reducing identification can occur in a 
number of different ways:

– INDIVIDUAL SPECIFICATION: denoting an individual object without 
identifying either its class membership or its individuality - e.g., 
“this thing”

– CLASS IDENTIFICATION: specifying than an object is a member of 
a class of objects that are sufficiently similar that the objects may 
be considered interchangeable (for some purpose) – e.g., “this 
book is Darwin’s Origin of Species”

– INDIVIDUAL IDENTIFICATION: specifying that an object is in fact a 
PARTICULAR genuinely unique object in the universe – e.g., this 
book is Darwin’s own personally annotated copy of Origin of 
Species”

Note that as we move along this continuum 
our notion of “essential properties” changes.

This shows again that the concept of identity 
can be context dependent.
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Practical Issues: Identifying What?

• Digital identifiers (IDs) perform different kinds of 
identification:

– REAL-WORLD IDENTIFIER: identifier serves as a digital token 
representing a real-world (i.e., non-digital) object (e.g., patient ID); 
this kind of identifier is often used to associated a digital object 
(bag of properties) with a real-world object 

– DIGITAL IDENTIFIER: identifier serves as a digital token 
representing a (published?) digital object (e.g., LSID or URL)
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Practical Issues: Identifying What?

• Digital identifiers (IDs) perform different kinds of 
identification:

– REAL-WORLD IDENTIFIER: identifier serves as a digital token 
representing a real-world (i.e., non-digital) object (e.g., patient ID); 
this kind of identifier is often used to associated a digital object 
(bag of properties) with a real-world object 

– DIGITAL IDENTIFIER: identifier serves as a digital token 
representing a (published?) digital object (e.g., LSID or URL)

This distinction can be hard to make: 
What does an IP address identify?
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Identification vs Specification

• Digital identifiers (IDs) can truly identify particular 
objects or they can merely specify singular objects, 
with no guarantee of what that singular object is:

– IDENTIFICATION: the same LSID should always return exactly the 
same (bit for bit) digital object  

– SPECIFICATION: the same URL is not guaranteed to return the 
same thing twice
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Identification vs Specification

• Digital identifiers (IDs) can truly identify particular 
objects or they can merely specify singular objects, 
with no guarantee of what that singular object is:

– IDENTIFICATION: the same LSID should always return exactly the 
same (bit for bit) digital object 

– SPECIFICATION: the same URL is not guaranteed to return the 
same thing twice

Note that these two situations really just represent 
the opposite ends of a continuum:

At one end EVERY property is essential – at the other 
end NO property is essential.

At both ends, the relationship of identifier to object is 
clear. In between, this clarity does not exist and 
contention can and will exist between identifiers and 
properties (e.g., the same human being could 
accidentally be assigned two patient IDs, but we 
could infer identity from the essential properties).
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Practical Issues: Identity Claims

• Different methods exist for answering the question 
whether or not two objects are the same :

– DEMONSTRATED IDENTITY: the identifiers are the same and the 
essential properties are the same

– INFERRED IDENTITY: the identifiers are different but the essential 
properties are the same

– INFERRED NON-IDENTITY: the identifiers are the same, but the 
essential properties are different

– ASSERTED IDENTITY: the identifiers are the same, but the state of 
the essential properties are unknown
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Practical Issues: Identity Claims

• Different methods exist for answering the question 
whether or not two objects are the same :

– DEMONSTRATED IDENTITY: the identifiers are the same and the 
essential properties are the same

– INFERRED IDENTITY: the identifiers are different but the essential 
properties are the same

– INFERRED NON-IDENTITY: the identifiers are the same, but the 
essential properties are different

– ASSERTED IDENTITY: the identifiers are the same, but the state of 
the essential properties are unknown

With checksums, LSIDs are an instance of 
DEMONSTRATED identity.

Without checksums, LSIDs are an instance of 
ASSERTED identity.
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Object Identity: Open Issues

• Several open issues must be addressed as a 
semantic web is deployed:

– Context-free semantics are hard

– Funding models support local optimization

– Data degradation and time limited transactions

– Sociology of cutting edge science



Challenges Due
to Science Itself
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Challenges/Limits

• Science is constantly changing
• Scientific “facts” are never globally 

consistent
• Scientific databases are never perfect
• Resources are always limiting
• Needs are constantly changing
• Technology keeps evolving
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• Science is constantly changing
• Scientific “facts” are never globally 

consistent
• Scientific databases are never perfect
• Resources are always limiting
• Needs are constantly changing
• Technology keeps evolving

Challenges/Limits

THE REAL CHALLENGE:

Doing something genuinely useful anyway.



Challenges/Limits

Data Inconsistency
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Logic 101

• If premise “A” is false, then the statement “IF 
A then B” is always true, regardless of the 
truth value of “B”.
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• That is, with a false antecedent you can prove 
anything.
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Logic 101

• If premise “A” is false, then the statement “IF 
A then B” is always true, regardless of the 
truth value of “B”.

• That is, with a false antecedent you can prove 
anything.

• “A and not A” is always false.
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Logic 101

• If premise “A” is false, then the statement “IF 
A then B” is always true, regardless of the 
truth value of “B”.

• That is, with a false antecedent you can prove 
anything.

• “A and not A” is always false.
• Feeding inconsistent premises into a logical 

calculator yields nonsense. 
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Logic 101

• If premise “A” is false, then the statement “IF 
A then B” is always true, regardless of the 
truth value of “B”.

• That is, with a false antecedent you can prove 
anything.

• “A and not A” is always false.
• Feeding inconsistent premises into a logical 

calculator yields nonsense. 

Seamless access to inconsistent 
data is a bad idea.



Challenges/Limits

Errors Accrete
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GOAL: A Caution

In parallel to the molecular database GenBank (but operat-
ing on completely different principles), GBIF envisions a 
future in which all sorts of information about any species 
(gene sequences, occurrence in ecosystems, specific 
locality data, ecological relationships, physiological require-
ments and so on) would be compiled on demand from 
many, disparate, continuously updated databases. 

SpeciesBANK would effectively be an encyclopedia of 
species that is continuously filling in missing or supplanting 
outdated information.
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GOAL: A Caution

In parallel to the molecular database GenBank (but operat-
ing on completely different principles), GBIF envisions a 
future in which all sorts of information about any species
(gene sequences, occurrence in ecosystems, specific 
locality data, ecological relationships, physiological require-
ments and so on) would be compiled on demand from 
many, disparate, continuously updated databases. 

SpeciesBANK would effectively be an encyclopedia of 
species that is continuously filling in missing or supplanting 
outdated information.
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Declining Overall Probabilities

• If a “record” in SpeciesBANK is assembled 
(joined) from data components maintained 
independently, and

• If the component data collections are not 
perfect (e.g., the probability of correct = p),

• Then the proportion of completely correct 
SpeciesBANK records in a query will be 
given by pn, where n is the number of 
elements joined in the query.
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Declining Overall Probabilities
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As p goes down, pn goes down a lot faster.
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Declining Overall Probabilities

What kinds of error rates (or inconsistency rates) 
occur in real data sets?

A recent study of human genome data (chromo-
some band location of genes), in two large, 
curated databases, showed an average error rate 
of 0.1, giving p = 0.9.

What about some species data?



Challenges/Limits

An Example
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Peromyscus: example

Peromyscus maniculatus
Source: http://cedarcreek.umn.edu/mammals/cricetidae.html
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NCBI:

Perobase:

BiologyBASE:

Total:

In common:

42

55

53

64

32

Peromyscus: number of species
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NCBI:

Perobase:

BiologyBASE:

Total:

In common:

42

55

53

64

32

Hmmm. Fifty percent 
concordance across 
only three resources.

Not so hot…

Peromyscus: number of species



Challenges/Limits

Constant Revision
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GOAL: Another Caution

In parallel to the molecular database GenBank (but operat-
ing on completely different principles), GBIF envisions a 
future in which all sorts of information about any species 
(gene sequences, occurrence in ecosystems, specific 
locality data, ecological relationships, physiological require-
ments and so on) would be compiled on demand from 
many, disparate, continuously updated databases. 

SpeciesBANK would effectively be an encyclopedia of 
species that is continuously filling in missing or supplanting 
outdated information.
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GOAL: Another Caution

In parallel to the molecular database GenBank (but operat-
ing on completely different principles), GBIF envisions a 
future in which all sorts of information about any species 
(gene sequences, occurrence in ecosystems, specific 
locality data, ecological relationships, physiological require-
ments and so on) would be compiled on demand from 
many, disparate, continuously updated databases. 

SpeciesBANK would effectively be an encyclopedia of 
species that is continuously filling in missing or supplanting 
outdated information.
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Primary Literature

• Each contribution to the primary literature is an 
original contribution. It may be based on prior 
findings, or it may completely overturn prior 
findings.

• NO REQUIREMENT OF CONSISTENCY exists 
between any two documents in the primary 
literature.



134© 2006, R. Robbins Sharing Digital Biological Data

Encyclopedia of Science

Should a biological database be a compilation of 
scientific facts, or should it be a collection of 
scientific observations? 

A compilation of facts is appealing, but…

Scientific “facts” have a way of changing with more 
scientific observations, and the growing burden of 
constant editing to achieve accuracy and internal 
consistency would be difficult.
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Encyclopedia of Science

Science continually evolves. Scientific knowledge is under constant 
revision in the light of new evidence. From a practical point of view, it is 
not the ultimate truth of the scientific world picture that matters, but the 
[current] scientific answers to particular questions...

The concept of an archive of reliable scientific knowledge is much too 
schematic. There is no Encyclopaedia where all well-established 
science, and only well-established science, may be consulted. If such an 
institution existed, it would be in constant agitation, as new information 
was being added, and old facts and assertions struck out.

Ziman, J.  1978.  Reliable Knowledge: An Exploration of the Grounds for Belief in Science.  
London: Cambridge University press.
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Encyclopedia of Science

Science continually evolves. Scientific knowledge is under constant 
revision in the light of new evidence. From a practical point of view, it is 
not the ultimate truth of the scientific world picture that matters, but the 
[current] scientific answers to particular questions...

The concept of an archive of reliable scientific knowledge is much too 
schematic. There is no Encyclopaedia where all well-established 
science, and only well-established science, may be consulted. If such an 
institution existed, it would be in constant agitation, as new information 
was being added, and old facts and assertions struck out.

Ziman, J.  1978.  Reliable Knowledge: An Exploration of the Grounds for Belief in Science.  
London: Cambridge University press.
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OBSERVATION:
It is easy to imagine “global integration of 
biodiversity data” as a goal for a future, 
successful SpeciesBANK program.

Limits to Global Integration
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ASSERTION:
The notion of final “global integration” is 
simply inconsistent with the actual practice 
of science and the notion of temporary 
global integration is nonsensical.

Limits to Global Integration
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Most scientists hold primary literature in high 
regard, while giving less credence to 
secondary and tertiary sources.

but

Databases as Primary Literature
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[The] layman who attempts to consult all the 
[primary literature] relevant to a particular 
scientific question is soon wearied and 
appalled by the confusion and diversity of fact 
and opinion that he will find.  

Ziman, J.  1978.  Reliable Knowledge: An Exploration of the Grounds 
for Belief in Science.  London: Cambridge University press.

Databases as Primary Literature
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[The] layman who attempts to consult all the 
[primary literature] relevant to a particular 
scientific question is soon wearied and 
appalled by the confusion and diversity of fact 
and opinion that he will find. At the research 
frontier, scientific knowledge is untested, 
unselected, contradictory and outwardly 
chaotic.

Ziman, J.  1978.  Reliable Knowledge: An Exploration of the Grounds 
for Belief in Science.  London: Cambridge University press.

Databases as Primary Literature
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No amount of magic can integrate “data” that are

untested, 

unselected, 

contradictory, and 

outwardly chaotic

into anything resembling a coherent whole.

Databases as Primary Literature
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Can there ever be a biological 
database of everything?

In a word: NO

Databases as Primary Literature



Constant Revision

An Example
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph taken in 1897
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The Perils of Constant Revision

Malchenko

Krzhyzhanovsky

Zaporozhets

Vanayev

Starkov
Ulyanov

Martov

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph taken in 1897
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph taken in 1897

Malchenko

Krzhyzhanovsky

Zaporozhets

Vanayev

Starkov
Ulyanov

Martov
Idealistic young men, whose efforts ultimately had some 
very practical consequences. 

In the spirit of “one for all and all for one” they worked 
together, but …
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph taken in 1897

Malchenko

Krzhyzhanovsky

Zaporozhets

Vanayev

Starkov
Ulyanov

Martov
In 1929, Malchenko was arrested and accused of being a 
“wrecker”. He was executed 18 November 1930.

As a counter-revolutionary wrecker of the party, he could 
hardly have been a participant in its early creation, so…
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph taken in 1897

Malchenko

Krzhyzhanovsky

Zaporozhets

Vanayev

Starkov
Ulyanov

Martov

History required some correction.

Thus, when the picture was next published…

×
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph published in 1939

Malchenko was gone.
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The Perils of Constant Revision

St. Petersburg Union of Struggle for the Liberation of the Working Class
Photograph published in 1939

This was not an isolated event.
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The Perils of Constant Revision

Stalin, with comrades
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The Perils of Constant Revision

Stalin, with fewer comrades



154© 2006, R. Robbins Sharing Digital Biological Data

The Perils of Constant Revision

Photograph from 1934 Russian edition of Ten Years of Uzbekistan
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The Perils of Constant Revision

Photograph from 1935 Uzbek edition of Ten Years of Uzbekistan
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The Perils of Constant Revision

Ten Comrades at the 14th Party Congress in 1925



157© 2006, R. Robbins Sharing Digital Biological Data

The Perils of Constant Revision

Ten Comrades at the 14th Party Congress in 1925
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The Perils of Constant Revision

In 1939 there were four.



159© 2006, R. Robbins Sharing Digital Biological Data

The Perils of Constant Revision

Four
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The Perils of Constant Revision

Three
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The Perils of Constant Revision

Two
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The Perils of Constant Revision

One
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caption

This book documents the 
efforts of the communist party 
to edit the historical record so 
that it always reflected current 
party dogma.

It provides a lesson in the 
fundamental impossibility of 
such a task.



Challenges Due
to Inappropriate

Standards
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Standards

• Using standards always seems like a good 
idea, but



166© 2006, R. Robbins Sharing Digital Biological Data

Standards

• Using standards always seems like a good 
idea, but

• avoiding premature standards is important, 
and



167© 2006, R. Robbins Sharing Digital Biological Data

Standards

• Using standards always seems like a good 
idea, but

• avoiding premature standards is important, 
and

• adopting bad standards can cripple an IT 
endeavor, especially one with global 
ambitions.
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Bad Data-exchange Standard
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Bad Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard
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Good Data-exchange Standard



Challenges Due
to IT Industry

Trends
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Industry Trends, I

• The advance of technology is relentless.
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Industry Trends, I

• The advance of technology is relentless.
• New technology, new standards, new 

capabilities are constantly appearing.
• Challenges once thought to be impossible yield 

to new solutions.
• Newly developed technologies, like web-services 

and XML-schema data systems make digital 
data-sharing  systems a real possibility.
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Industry Trends, I

• The advance of technology is relentless.
• New technology, new standards, new capabilities are 

constantly appearing.
• Challenges once thought to be impossible yield to 

new solutions.
• Newly developed technologies, like web-services and 

XML-schema data systems make SpeciesBANK a 
real possibility.

But always remember,

In fifteen years, today’s technology will seem as 
hopelessly dim and inadequate as 1990s 
technology seems today.

To build digital data-sharing systems, we must 
USE current technology but we must be careful 
not to DEPEND on that technology.
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Industry Trends, II

• As technology matures ease of use become 
more and more important.
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• Real user value occurs when technology is 
engineered away to invisibility.
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Industry Trends, II

• As technology matures ease of use become more 
and more important.

• Real user value occurs when technology is 
engineered away to invisibility.

To build truly useful SpeciesBANK systems,

We must appreciate and effectively use 
advanced technology.

But, we must never allow ourselves to become 
enamored of that technology.

Our success will depend on our knowledge of 
the process and practice of science than on our 
expertise with information technology.
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Industry Trends

System
performance

Time
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Industry Trends

Level of 
performance
needed by
most users

High Technology Consumer Commodity
Users want

more technology,
better performance

Users want
convenience,

reliability, low cost

Technology is “good enough”
and therefore irrelevant.
user experience dominates

Excess technology,
most users not 
interested in this region.

Technology
dominates

Unmet need

System
performance

Transition point
where technology

satisfies basic needs

Evolution into the “commodity” space 
results in a demand for “appliance-
like” solutions. 
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Industry Trends

Early
Adopters

Late
Adopters

Relative %
of users

Early adopters drive the technical capabilities of the system, forcing 
the bar of acceptable performance upward. However, at some point
the bar stabilizes and late adopters come to dominate the market for 
(and hence the design of) technology products.
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Industry Trends

Early
Adopters

Late
Adopters

Relative %
of users

Early adopters drive the technical capabilities of the system, forcing 
the bar of acceptable performance upward. However, at some point
the bar stabilizes and late adopters come to dominate the market for 
(and hence the design of) technology products.

As digital sharing of biological data 
becomes more common, most users 
will be “late adopters”…
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Challenges Due
to the 

Inevitability
of Change
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Universal Interoperability

• Hard…
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Logical Simplicity

• In a federated, component-based environment, 
the biggest challenge is managing complexity.

• This requires a commitment to simplicity.
• Components must be entirely self-contained.
• All inter-component communication occurs only 

through well defined interfaces.
• Systems must be designed to accommodate 

change.
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• In a federated, component-based environment, 
the biggest challenge is managing complexity.

• This requires a commitment to simplicity.
• Components must be entirely self-contained.
• All inter-component communication occurs only 

through well defined interfaces.
• Systems must be designed to accommodate 

change.
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Driving Assumption

• Many use case requirements across the 
federation will be inconsistent and some will be 
genuinely contradictory.
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Driving Assumption

• Many use case requirements across the 
federation will be inconsistent and some will be 
genuinely contradictory.

• The federation must work anyway.



Challenges Due
to Limits of 

Social Scalability
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Social Scalability

• In a truly federated environment, long term 
success for a federated information infrastructure 
will depend upon social scalability.

• Social scalability CANNOT be achieved through 
normative pronouncements.

• Experience suggests that social scalability is 
best achieved through a combination of pure 
laissez faire individualism and social 
consequences – i.e., social contracts.
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Social Scalability

• In a truly federated environment, long term 
success for a federated security model will 
depend upon social scalability.

• Social scalability CANNOT be achieved through 
normative pronouncements.

• Experience suggests that social scalability is 
best achieved through a combination of pure 
laissez faire individualism and social 
consequences – i.e., social contracts.

Negotiated social contracts – not 
mandated technical solutions – drive 
the emergence of standards in a 
federation.
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Social Consequences

• Every individual is free to do whatever he/she 
chooses.
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Social Consequences

• Every individual is free to do whatever he/she 
chooses.

• Every other individual is free to respond however 
he/she chooses.

• Interactive relationships then sort things out.
• Examples:

One cuts, the other chooses.
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Social Consequences

• Every individual is free to do whatever he/she 
chooses.

• Every other individual is free to respond however 
he/she chooses.

• Interactive relationships then sort things out.
• Examples:

I am free to suppress my caller ID; if I do, 
you are free to refuse to answer my calls.
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Social Consequences

• Every individual is free to do whatever he/she 
chooses.

• Every other individual is free to respond however 
he/she chooses.

• Interactive relationships then sort things out.
• Examples:

You are free to run your systems in as 
stupid and incoherent manner as you 
choose; if you do, I am free to refuse to 
have anything to do with your systems.
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Logical Issues

• Rules governing behavior can be permissions or 
prohibitions.
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Logical Issues

• Rules governing behavior can be permissions or 
prohibitions.

• The union set of contradictory permissions is a 
very flexible environment.

• The union set of contradictory prohibitions is the 
null set.

• Use case requirements across a federation will 
be contradictory. 
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Logical Issues

• Rules governing behavior can be permissions or 
prohibitions.

• The union set of contradictory permissions is a 
very flexible environment.

• The union set of contradictory prohibitions is the 
null set.

• Use case requirements across a federation will 
be contradictory. 

If a federated information infrastructure is 
to deliver services greater than the null 
set, it must be technically implemented 
on the aggregation of permissions, not 
prohibitions.

Behavioral constraints should be 
achieved on a virtual organization basis, 
through negotiated social contracts.
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Logical Issues

• Rules governing behavior can be permissions or 
prohibitions.

• The union set of contradictory permissions is a 
very flexible environment.

• The union set of contradictory prohibitions is the 
null set.

• Use case requirements across a federation will 
be contradictory. 

For example, the components of a 
federated information system should 
make it easy for users to behave 
according to common standards, but it 
should not mandate that they do so.
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Social Scalability: Required Reading

James Madison 
Alexander Hamilton
John Jay

The Federalist Papers
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Social Scalability: Required Reading

James Madison 
Alexander Hamilton
John Jay

There is no better source of ideas on how to build systems 
that work in a decentralized social environment. 

Remember, you can’t change human nature, so you must 
design systems that work despite human nature.

The Federalist Papers
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Social Scalability: Required Reading

Alexander Hamilton
James Madison
John Jay

The Federalist Papers
THEOREM:

When there is no authority to compel
participation in standard systems, then 
one must entice participation in 
standard systems.



220© 2006, R. Robbins Sharing Digital Biological Data

Social Scalability: Required Reading

Alexander Hamilton
James Madison
John Jay

The Federalist Papers
OUR TASK:

To devise an infrastructure for 
effective and enticing data-sharing 
systems with semantic-web-like 
properties that will work despite all of 
the challenges we have considered.






