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Abstract

On March 12-13, 1990, the National Science Foundation sponsored a two day workshop,
hosted by the University of Virginia, at which representatives from the earth, life, and
space sciences gathered together with computer scientists to discuss the problems facing
the scientific community in the area of database management.

A summary of the discussion which took place at that meeting can be found in Technical
Report 90-21 of the Department of Computer Science at the University of Virginia. This
document provides much of the background material upon which that report is based.
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Scientific Database Management1

1. Introduction

An interdisciplinary workshop on scientific database management, sponsored by the National Sci-
ence Foundation, was held at the University of Virginia in March 1990. The workshop final report, a dig-
est of the workshop proceedings summarizing the panel discussions and highlighting the workshop
recommendations, is available as a separate technical report (TR 90-21) from the Department of Com-
puter Science, University of Virginia, Charlottesville, VA 22901.

This document contains the individual panel reports from the workshop along with other supporting
material used in the preparation of the final report. We have included the separate panel reports so that
the interested reader will have the opportunity to form his/her own opinions. Self-describing data formats
received much attention in the workshop so we have included an example of one international standard
format (FITS) as an appendix. Because of the thoughtful issues raised by the participants in their position
papers, we have included those also as an appendix.
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1Panel reports and supplementary material used in the preparation of the final report of the NSF Invitational Workshop on Scientific Data-

base Management, March 1990. The workshop was attended by Don Batory, Joe Bredekamp, Francis Bretherton, Mike Carey, Y.T. Chien, Ver-
non Derr, Glenn Flierl, Nancy Flournoy, Ed Fox, Jim French, Hector Garcia-Molina, Greg Hamm, Roy Jenne, Anita Jones, David Kingsbury,
Tom Kitchens, Barry Madore, Tom Marr, Bob McPherron, Steve Murray, Frank Olken, Gary Olsen, John Pfaltz, Bob Robbins, Larry Rosenberg,
Peter Shames, Arie Shoshani, Ferris Webster, Don Wells, Greg Withee, John Wooley, and Maria Zemankova. The workshop was supported by
NSF grant IRI-8917544. Any opinions, findings, conclusions, or recommendations expressed in this report are those of the panels and do not
necessarily reflect the views of the National Science Foundation.
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2. Multidisciplinary Interfaces

Panel members:

Ed Fox, VPI & SU
Roy Jenne, NCAR
Tom Kitchens, DOE
Barry Madore, IPAC/Caltech
Gary Olsen, Univ. of Illinois
John Pfaltz, Univ. of Virginia (chair)
Bob Robbins, NSF

2.1. Overview

From the perspective of users of scientific databases, it is essential that relevant existing databases
be easily identified, that flexible tools for searching to obtain appropriate subsets be provided, and that
processing of the data be done at a level suitable for investigators in multidisciplinary projects.

Our panel has focused on a few key issues relating to this process, so that policies and initiatives
can be developed that will provide more efficient and effective access to scientific databases that are often
obtained at great expense. It is essential that the entire process, from planning to create databases, to col-
lection of data, to identification of suitable data formats and organizations, to selection or construction of
access and manipulation software, to cataloging, to online use, and later to archiving for future require-
ments, be governed by standards that at once anticipate future activity, and on the other hand have as little
associated cost as possible (including personnel, space, and direct expense).

We note that there are many standards in related disciplines that need to be reconciled if interoper-
able systems are to be truly functional - as a result, databases are often published in archival forms that
are hard to analyze by other researchers. Also, the publication/cataloging/access issues of scientific data-
bases are closely allied to the work of librarians, information scientists, and information retrieval
researchers - and those disciplines should be involved in future database development projects. So called
"meta-data" plays a crucial role in this entire process, and is especially useful for aiding cataloging,
access, and data interpretation. Furthermore, education in the use of networks and access software as well
as in data manipulation methods is essential not only for researchers and graduate students, but also for
undergraduates who should be exposed to the existence and use of data in modern day science.

In dealing with these issues, our panel has focused on:

� Meta-data as an issue/term.

� Publication of databases as citable literature.

� Locating databases, and navigating through them.

� Standards to facilitate data usage.

� Educational needs for the effective use of databases.

It should be noted that these are not completely disjoint topics. In particular, the first three bullets
are clearly related to each other, and each has implications on the issue of standards.
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2.1.1. Important Considerations

While we chose to focus on the preceding topics, we also identified five important considerations
which should accompany any discussion.

(1) It is essential that any database approach be simple and relatively inexpensive to use. Otherwise it
fails to provide the service one wants of it. Expense may lie in the eye of the beholder; but, at least,
simple common operations should cost less than complex infrequent operations.

By database use, we mean both its development by participating scientists as a repository of their
data, as well as its secondary reuse in subsequent research.

(2) The purpose of a scientific database is to "facilitate" scientific inquiry — not to hinder it! It is to
become a tool, or a resource, to assist scientific inquiry. Development of the database itself is not a
scientific process.

(3) The development of standards must facilitate both the creation and subsequent reuse of scientific
databases — but they must not become a straight-jacket. The database tool must allow for flexibil-
ity, creativity, and playfulness on the part of a scientist.

(4) We should guard against single port failures. By this we mean that the database system must not be
so centralized that the failure of a single node, or site, renders the entire system inoperative. This
warning also applies to the dangers of adopting a single database philosophy which might, in and of
itself, preclude a certain style of doing science (e.g. object oriented versus hierarchical, fractal
versus continuum), as well as guarding against concentrating the resources of an archive in a single
physical location. Diversity of approach, multiple collections, competition for resources will allow
the field to both survive and to flourish.

(5) A flexible approach to the user interface must be conducive to research at a variety of levels of
sophistication. This commonly implies a layered implementation. Menu-driven, as well as
command-driven options at the very least must always be available. Further, different functionally
oriented interfaces may be needed to support (2) above.

2.1.2. Generic Types of Databases

In the course of discussing the major foci of our panel, we repeatedly encountered the fact that the
relative importance of one approach in comparison to another is extremely dependent on the type of data-
base collection under consideration. What is appropriate descriptive meta-data for one type of collection
may be either completely unnecessary or totally inadequate in another. Different types of data collections
require different access methods, and have different publication requirements. All too often, major
disagreements (as in the evening plenary discussion) occur because the participants are implicitly assum-
ing different database types.

Our panel observed that there is a spectrum of database types, which are characterized in terms of a
number of dimensions (which need not be independent). The three we clearly identified (we suspect there
may be more) are:

level of interpretation,
complexity, and
source.

(Note: in section 2 of this report, "complexity" is replaced by "intended analysis" as a result of discus-
sions in Panel 2.)

Level of interpretation: At one extreme of this "value-added" dimension is a simple collection of "raw"
data, or real world observations, and at the other extreme would be a collection of interpreted, or
highly processed results, sometimes called "information". Examples of the former might be a
physical collection of badger pelts collected in central Kansas or a file of sensor readings. It may
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be the case that physical artifacts or instruments must be retained and that this can only be done
in a single archive or at a single location; however, in general, replication of evidence is desirable
when possible for future interpretation.

Examples of the latter extreme might include well-structured tables of summary, statistical, or
aggregate data. The inference rules of a knowledge database would also be examples of the
latter.

We note that there will typically be various interpretations of raw data, and that the interpreta-
tions, and/or models they relate to, may incorrectly represent important aspects of reality. On the
positive side, however, the latter allow scientific theories to be developed and tested; since data
will increasingly be stored in all-digital form, they should be replicated in a number of locations
for increased reliability and security.

Complexity: This dimension may be measured in terms of the internal structure of a database, a kind of
syntactic complexity; or in terms of its cross-relationships with other data sets, a kind of semantic
complexity.

Source: We concluded that this dimension, which is not generally mentioned in the database literature,
may be the most fundamental. In Figure 2-1, we illustrate a familiar single-source database
environment. Here we envision a single mission, such as the Magellan planetary probe, generat-
ing the data that is collected. Such raw data may be retained in its original state in a "raw data
archive". Commonly, the raw data must be processed, by instrument calibration or by noise
filtering, to generate a collection of usable, or processed data. Finally, this processed data will be
interpreted in light of the original goals of the generating mission.

Both the syntactic complexity and the semantic complexity of the interpreted data will be much
greater than either of its antecedent data collections. It will require different search and retrieval
requirements. Possibly, only it alone will be "published".

Figure 2-2 illustrates a typical multi-source data collection. This structure would characterize the

Single
Mission

Raw
Data

Raw data
Archive

Processed
Data

Processed data
Archive

Interpreted
Data

Interpreted data
Archive

Single-source Data Collections
Figure 2-1
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Human Genome project in which several different agencies, with independent funding, missions,
and methodologies, generate processed data employing different computing systems and database
management techniques. All eventually contribute their data to a common data archive, such as
GENBANK, which subsequently becomes the data source for subsequent interpretation by multi-
ple research laboratories that also manage their local data collections independently.

In each of the local, multiple, and probably very dynamic, database collections one would expect
different retrieval and processing needs, as well as different documentation requirements.

The data collections associated with most scientific inquiries will occupy middle positions along
these various dimensions. For example, the primary satellite data collections discussed in the Ozone Hole
case study by Panel 4 represent an almost perfect example of the linear structure illustrated in Figure 2-1.
However, the introduction of ground observation data into the overall study moves it towards the
multiple-source structure of Figure 2-2.

We believe that this classification of data collection types, however imperfect, is an important con-
tribution by our panel.

2.2. Meta-Data

The panel discovered that virtually all of the so-called meta-data of interest to its members was
those data items which described other data — in particular, that raw or interpreted data which constituted
the scientific focus of the collection. But the meaning of term meta-data is extremely overloaded and
highly charged. Consequently, we eschewed the term altogether and simply talked about descriptive
data. See recommendation (1) below.
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Ancillary descriptive data can be used to describe an entire collection or it may describe individual
instances within the collection.

We identified two broad classes of descriptive data:

(1) Objective: This kind of descriptive data is in some sense "raw". These data are "facts", not amen-
able to later change. Examples of objective descriptive data would be:

identification
origin, or "authority"
format
how obtained, e.g. instrument, situation, method.

It was noted that the first two might be called "curatorial". It is the kind of data that is associated
with library or museum collections.

(2) Interpretative: This kind of descriptive data is interpretive in nature. Some may be included when
the collection is first created. Other forms of interpretive data may be appended over the lifetime of
the collection, as understanding of the associated data develops. Examples might be:

quality (accuracy, completeness, etc.)
content (in the sense of significance)
intent (why the collection was assembled)

It was observed that objective descriptions ought to be simple and machine interpretable, possibly
conforming to fairly rigorous standards. Subjective descriptions might be relatively unstructured, e.g.
natural language strings.

Whenever possible, the types and formats chosen for descriptive data should be carefully reviewed
by a panel of experts, including representatives from the information sciences, since this data is often
essential for subsequent cataloging and database selection. Simple policies, such as having all references
to the published literature be in standard formats, are essential, so proper linking and integration of data
with publications is feasible in a cost effective fashion as hypertext and hypermedia methods gain accep-
tance.

2.2.1. Current Status

Treatment of different kinds of descriptive data vary.

(1) Physical layout:
This kind of low-level description which is necessary for data transport protocols is most developed.
There are some standards in some disciplines (often in small user groups within a discipline). Most
are evolving standards, such as FITS [WELL81].

Few layout standards are cross-disciplinary. This is important for archival storage, as well as for
transport. Investigation of ASN.1 (Abstract Standard Notation-1) and a variety of intra-disciplinary
approaches is a priority.

(2) Internal structure:
A dictionary of relational schema is a description of internal structure. It is DBMS specific.

A class hierarchy is used to describe the internal structure of object-oriented databases. This kind of
description is system or language specific (e.g. C++, Objective C, or derivatives).

(3) Cross-reference structure: There is a growing interest in hypertext and hypermedia efforts, and vari-
ous international standards in development to coordinate linking between items. In the library sci-
ence community, there are various standards for cataloging, including MARC, and markup stan-
dards, often based upon SGML [ISO86], that should be followed so that citations, co-citations, and
other relationships can be automatically identified.
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(4) Content/quality: Whenever no clear manipulation of descriptive information other than exhaustive
search can be identified, the use of methods for handling unstructured textual information should be
adopted. When a hierarchical structure is clearly identified, a markup scheme compatible with
SGML should be used, so that context is clear and different types of elements are easily identified
(e.g., section heading vs. paragraph). Various international standards for character sets and foreign
languages should be followed.

2.2.2. Recommendations

(1) Serious discussions of scientific databases would benefit by avoiding the term meta-data. If ancil-
lary data is descriptive of a collection as a whole, its structure, or individual instances within the
collection, call it that. If the purpose of the ancillary data is to interpret the data, call it interpretive
data, or if it is an operator to compare data items call it that, etc. Whenever possible, such descrip-
tions should be done in a declarative form and if it is also possible, should be done based on some
formal or axiomatic scheme so the semantics are clear and so that in some cases, machine manipula-
tion is feasible. Furthermore, descriptions should always be packaged with the related data.

(2) Appropriate descriptive data specifications for major collections should be created by multi-
disciplinary panels. These panels should include specialists in library/information science and
information retrieval research.

(3) Controlled terms used in descriptive data should reference standard lexicons established for the par-
ticular collection, or for a class of collections. Lists of synonyms and other types of related terms in
the lexicon should be encouraged. (See "standards".) Superceded terms should be retained in
synonym lists, possibly with attached warning of obsolescence.

(4) The scientific community should establish a pool of "documentation expertise". This would consist
of specialists who are familiar with the scientific discipline and description methodologies. This
expertise is analogous to the kind of editorial expertise available to the Scientific American.

(5) Standards of an appropriate description, and an appropriate lexicon should be evolutionary and dis-
cipline specific. But we should standardize the form of descriptions. As an example, [GROS88]
describes protocols for producing extensions to the FITS standards, not actual extensions them-
selves. SGML [ISO86] was also offered as a possible standard for descriptions.

(6) Integrated methods to use lexicons and descriptive data at varying levels of detail, with flexible user
interfaces and user modeling, with a variety of natural language like as well as Boolean-based query
schemes, should be investigated, and tied in with educational efforts, to improve the ability of
researchers to find relevant databases, and then data within these collections.

2.3. Database Publication

It was argued that database collections should be treated as a form of scientific literature, and as
such should conform to generally accepted conventions of publication. One important convention is that
assertions should cite the sources of information used. An interpretation or assertion derived from a data-
base collection should cite the database.

(1) There should be a reasonably standard way of uniquely citing (referencing) a database collection or,
when appropriate, some subset of items within a collection.

(2) A literature/database citation must be permanent and recoverable. An agent publishing a database
should assure access to the database in the form originally published.

(3) By published literature, we normally mean refereed literature. As with literature, refereeing a data-
base can only provide a measure of quality control, but not guarantee the accuracy of the data. In
particular, databases should be refereed in terms of our understanding of the discipline at the time of
publication.
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2.3.1. Current Status

CD-ROM’s can be assigned an ISBN.

MARC (used in library catalogs) provides standards for cataloging databases.

Publication today is usually in two forms: by media that is distributed (e.g., tapes, CD-ROM,
diskettes), and by network access (e.g., for FTP, for client-server style access or download). While stan-
dards for distributed data have clear precedent and can be extended to new media types, their "status" in
the scientific community must be increased. This relates to the issues of who manages databases, what is
the role of PI’s vs. national and international data centers, who finances the maintenance and preservation
of databases, and other issues.

On the side of network access, the current situation is even less clear. There are a growing number of
online databases on the Internet, but no coordinated policy over NSFNET for cataloging, giving credit,
financing service and user support, and other related archive issues.

2.3.2. Recommendations

(1) The NSF should include the matter of cataloging and the prior problem of publication of databases
in its planning of NSFNET and other national networks such as the planned NREN. Research pro-
posals for projects leading to databases should be required to include plans for publishing, catalog-
ing, and either maintaining or transferring results to national archives.

(2) The scientific communities should be encouraged to develop methods to encourage the publication
of important databases, and to properly reward those involved.

(3) There should be an international standard format for citing database collections. A standard to iden-
tify subsets within a collection should be developed.

2.4. Database Location

"Browsing", a term that occurred in several position papers, can refer to three different levels of data
location described below. It is concerned with the discovery, location, or finding of potentially interest-
ing scientific information. The inability to find that relevant associated datasets even existed was cited by
the case study panel as a major issue in the "Ozone Hole" initiative. "Browsing" roughly corresponds to
the kind activity that all of us employ when searching the card catalog or the stacks of a library of printed
literature. Our panel believes that it helps to isolate three rather different modes of data location, all of
which play a significant role.

(1) Discovering the existence of database collections: At a very gross level, one may discover that a
particular organization has a certain number of named (or referencable) collections. This is very
much like finding the book titles a library holds in a particular discipline. Roy Jenne distributed a
listing of datasets at NCAR as an example. On-line inventories exist as described below.

(2) Locating "relevant" database collections: It is one thing to discover that a database collection,
such as GENBANK, exists. It is even more important to be able to locate databases that are likely
to be relevant to a particular inquiry. A title by which a collection is known may be descriptive; but
frequently the level of description is insufficient to indicate probable relevance. In traditional litera-
ture, abstracts are provided to give a more accurate indication of content, and thus probable
relevance.

(3) Finding useful data in a collection: One seldom wants the entire collection to answer an inquiry;
frequently it is a very small subset that is desired. Standard database query languages are designed
to address this latter kind of data location.

Cross-disciplinary searching is important. So, vocabulary mapping aids and systems for searching
database descriptions in multiple databases will certainly be required.
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2.4.1. Current Status

Beginning with the CONIT system at MIT and related systems such as the University of Illinois,
dating back to the 1970’s, a variety of systems have been developed to serve as "front-ends" to database
systems. These often allow users to connect to systems, sometimes allow a common command language
that hides the query syntax of systems like Dialog and BRS, and in some cases map vocabularies across
databases. The larger early systems have led to networks and PC versions.

There has been an increasing federal awareness of the need for information about the availability
and status of datasets from about 1973 onward. Under the National Climate Program Office, information
about 800 datasets held by the U.S. and Canada (many with global extent) were collected in 1979. Dis-
ciplines covered were meteorology, physical oceanography, hydrology, and related satellite data. In
1980, the World Meteorological Organization (WMO) started an INFOCLIMA system under which
dataset information was gathered from many countries. It includes selected manuscript data as well as
digital data. A thick document is available; a searchable floppy disk version is expected in mid 1990.

Other approaches to the on-line discovery and access to databases can be found in
[BURT89, COTT86, WILL86].

NASA took on the task of developing a National Master Directory for the U.S. about 1987. (Some-
times it is called the NASA directory.) Under this program (for the broad spectrum of Global Change
research), descriptions of datasets and data centers can be searched on-line. It can be readily reached
from Internet (NSFnet, Span, etc.). The concept has been to keep the data descriptions relatively simple
at the national catalog level. About 1000 datasets are included. More detailed inventories can be viewed
at the data centers. In many cases, the National Directory can pass search control to a local data center.
In this way, a user of the National Directory can ask to be connected to the on-line system at JPL or to a
NOAA center, etc. Some of this ability to pass control has been implemented; parts are under develop-
ment.

Many collections have free text descriptions of content that are analogous to the traditional abstract.
It is not evident that these descriptions are sufficient for the browser to use them as a card catalog. This
is especially a problem for a scientist looking for information which was collected by another discipline,
and likely not for a purpose he is familiar with.

2.4.2. Recommendations

(1) The discipline of "information science" has established many precepts associated with the location
of relevant data. Neither it, nor the information retrieval research community should be ignored
when approaching the issue of scientific database management.

(2) Individuals are encouraged to ensure that significant databases are described in the National Direc-
tory. (Some feel that such voluntary participation is too weak, and would urge an unspecified form
of coercion.) Agencies should adopt policies that ensure that descriptions of data collections are
entered into this on-line catalog.

(3) There are several forms of query that recur within the scientific community:
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a) identity to key value
b) identity by synonym list to key value
c) similarity to key value

1) text
2) number
3) coordinates (space and/or time)
4) subsequence in series, or sequence
5) proximity in a (mathematical) graph.

d) recursive application of a rule (e.g. moving down a hierarchy to its tips, or leaves)
e) recursive subcomponent matching

a) and b) are easily implemented. Effective implementation of c), d), and e) will require further
research.

(4) We need further experimentation with access to databases, with advanced systems and methods, to
ensure that scientific users can indeed find relevant databases.

2.5. Standards

Standards are crucial to all scientific activity. They facilitate the exchange of information and ideas.
In a sense, the standards imposed by a discipline literally determine the nature of the discipline and its
ability to communicate with other areas of science. While standards may be important, it was noted that
they should not be imposed "from above". (This would seem to contradict the conclusion in [NATI88]
p.85.) Many of the best standards evolve through usage. In particular, it was observed that standards
should not be arbitrarily imposed from above by federal agencies. Professional societies should play a
strong role in establishing suitable standards for their associated disciplines, which should then be sup-
ported, or possibly enforced, by relevant funding agencies. These societies should work together to have
consistent standards in areas where there is overlap. It was observed that:

(1) Standards of database identification across all disciplines will go a long way towards solving the
database citation issue.

(2) Standards of terminology can be established by means of lexicons. But such lexical standards
should probably be restricted to individual disciplines, or even specialities within a discipline.

It should be possible to access the meaning (some standard interpretation) within any lexicon.

(3) Lexicons should be "user friendly". There should be mechanisms that translate the various terms an
end-user may employ into the terms of the database. These equivalences themselves should be
accessible.

Possibly the ultimate user friendly lexicon would be a comprehensive one based on regular English.
But emphasis on this at this time seems a bit premature. Instead we should emphasize the standard-
ization of special sublanguages for the communities that use them, with some attempt at making
them accessible to a more general public as well.

2.5.1. Current Status

There are many different lexicons in use in varying disciplines — more research is needed into the
application of standards.

2.5.2. Recommendations

Lexicons should have not only hierarchical (broader, narrower) and simple related (e.g., ’see also’,
’see related’) connections, but other suitable relationships for the scientific domain (e.g., "site" of a
disease in a medical collection). Work on relational lexicons and standards for them are an important
area of investigation. Whenever possible, relationships across disciplines (e.g., work on Unified Medical
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Language, or Energy Vocabulary) should be done in an anticipatory fashion and should be used.

2.6. Education

The advent of new approaches to scientific enquiry, and of new technologies, does not ensure their
use. People must learn how to use them. The role of education is to convey discoveries, techniques, etc.
to others. Education should be a fundamental component in developing the use of scientific databases.

It is uncertain whether formal education is the right way to teach about scientific database use. The
way most of us learned to use a library was offered as an analogy. Except for a brief introduction to the
card catalog in high school, most mastered the retrieval mechanism on a trial and error basis.

2.6.1. Current Status

(1) Formal courses regarding the design and use of database technology are non-existent outside of
computer science and information science.

(2) Database theory, as taught in most computer science curricula, is virtually irrelevant to practitioners
who want to design and use many scientific databases.

2.6.2. Recommendations

(1) NSF sponsored workshops to spread an awareness of database potential.

(2) NSF should encourage development of multimedia and/or interactive training products that will
make students, researchers, and other professionals aware of the availability and utility of scientific
databases.
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3. Emerging and New Technologies

Panel members:

Don Batory, Univ. of Texas
Joe Bredekamp, NASA
Mike Carey, Univ. of Wisconsin
Y.T. Chien, NSF
Glenn Flierl, MIT
David Kingsbury, George Washington Univ. Medical Center
Arie Shoshani, Lawrence Berkeley Lab (chair)
Ferris Webster, Univ. of Delaware
John Wooley, NSF

3.1. Scope of Scientific Database Problems

3.1.1. Data

Datasets may be modified with operators to transform them into forms which are more appropriate
for a given purpose. Though ideally the datasets formed at each stage in such a process should be saved
and archived, in reality, often only the latter stages are preserved, because of cost.

As successive operators are applied to the dataset, in general the degree of global dependency of the
data point increases.

In the summary that follows, only those data types (in general, digital) that can be treated with
computers are discussed. There is a large class of analog data types (for example, strip-chart recordings,
deep-sea cores ...) that are not generally amenable to scientific database management without some kind
of conversion to digital format.

Engineering data

These are generally raw values in engineering units (like voltages) that frequently are not kept.

Operator: Convert engineering values to physical values (like a temperature).

Physical values

These are the uncorrected values in the units of the physical value of interest. Datasets of
uncorrected physical values are sometimes saved.

Operator: Correct data to a calibration curve, or adjust to values derived from another source.

Calibrated data

The raw physical values may be adjusted with other values, and corrected with calibration
operators. Datasets of calibrated values are normally preserved. Datasets of this type are frequently
used for scientific purposes.

Operator: Remove outliers or provide other quality assurance procedures.

Validated data

The calibrated dataset may be passed through quality assurance procedures which may remove
outliers, correct data points according to some algorithm, and transform the data to match the
constraints of other measurements. The validated datasets are the ones most commonly used for
scientific purposes.

Operator: Aggregate, average, correct, or conformally map the dataset.
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Derived data

The calibrated or validated datasets may be aggregated in some way, such as in gridded or averaged
values. Products such as maps or graphs may be prepared from the data.

Operator: Construct new datasets using physical models to constrain the data fields.

Interpreted data

Datasets may be constructed from validated datasets together with physical models to produce
derived sets that meet the constraints of some kind of physical model. Such datasets often have
global dependencies, according to the type of model that is used. Procedures to produce interpreted
datasets using dynamic models are commonly used in the atmospheric sciences to produce global
datasets.

3.1.2. Metadata

A functional definition is: Metadata is information required to identify datasets of interest, their
content, validity, and sources. There is no agreed-upon standard formulation of an ideal metadata set.
There is general agreement that most databases suffer from incomplete metadata. Examples of the kind of
information that is valuable (essential) to retain with the data are:

General identifying information such as: who collected the data, when the data were collected,
and where the data were collected.

Characteristics of the device(s) that collected the data.

Transformation operators (e.g., calibrations) applied to the data.

Programs used to manipulate or modify the data.

Models used in processing or interpreting the data.

Documentation relating to or derived from the data along with technical manuals related to the
data source and relevant publications, reports, and bibliography.

3.2. Desirable Data Types and Manipulation Operators

3.2.1. Data Types/Representation

Database systems for scientific use must be capable of accommodating a wide variety of data types
and data representations. In addition database users require the tools to manipulate these data in a wide
variety of ways. The following list represents the major groups of the data types that will be required by
a scientific database. The list is not considered exhaustive, but represents the major classes of data and
manipulations common to most scientific disciplines.

(1) Individual values. This group is comprised of alphanumeric character strings, including integers,
floating point, date, etc. These data would be subject to the usual set of manipulations (eg. sorting,
arithmetic functions, searching, etc.).

(2) Two-dimensional images, including both graphical and grey scale images. Typical manipulations
of data of this type include, smoothing, feature extraction, enclosure, comparison (differencing),
data extraction, segmentation, and contouring. An example of data of this type is a digital
representation of an autoradiogram. A sample manipulation would be the extraction of the position
and intensity of a band from an autoradiograph which contains many bands. The extracted
information will then be used in an application or placed in an individual value field(s) of the same
or another database.
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(3) Three dimensional images including computed simulations of data such as electron density maps
and images from computational models, for example, global weather maps. Data of this type would
be subject to manipulations such as rotation, stereo comparison, planar slicing, and spatial
transformation. Images of this type would also be subject to data extraction where possible, and the
resulting extracted data might also be a 3-dimensional image.

(4) Spatial objects such as representation in a geographic information system and vector graphics.
These representations would be subject to manipulation within GIS applications as well as further
vector graphic manipulation and subobject extraction, and containment.

(5) Text has been identified as a unique data type in addition to the alphanumeric fields mentioned
above. Text might play a unique role in databases, especially in the representation of associated
‘‘meta-data.’’ Text is subject to string matching, keyword searching, approximate matching to find
other related materials, frequency counting, and other text manipulation procedures.

(6) Sound is a unique data type collected in databases of such items as bird songs, whale
communication and human voices. Sounds are subject to comparison (sound pattern matching for
identification purposes) and to spectral analysis.

(7) A data type identified by the term ‘‘blob’’ was recognized as being a discrete entity in many
database systems. Blobs are stored in a database field and may be directly retrieved (as data type
blob) but are not subject to any further manipulation in that form. In some cases a blob may be
subject to modification by an application at which time it would be transformed into another data
type.

3.2.2. Type Extension

It was judged that modern databases would include some mechanism for type extension as part of
the database system. In this case type extension includes a variety of both user defined and query defined
functions. This results in a modular approach to database architecture where user defined functions may
be imported from a collection of potential tools. This functionality would lead to the development of
derived fields, type extensions and type conversion.

3.2.3. Type Constructors and Associated Operations

To define the schema for any scientific database, one will need to employ a number of type
constructors to capture the complex structure of typical scientific data. Some are straightforward and
exist in today’s commercial database systems, such as the well-known record and set constructors; in
such cases, existing data manipulation languages (DMLs, or query languages) are capable of dealing with
them. Others will require the addition of new DML operators in order to make full use of their
capabilities.

Both directed and undirected sequence constructors will require additional operators such as
precedence operators, string operations, approximate match searching, and multi-sequence operations.
Time-series constructors will be subject to sampling, time series analysis and transformations (e.g.,
spectral analysis). Multidimensional array constructors will be examined for adjacency,
multidimensional searching, collapse of dimension, and be subject to matrix mathematical operations.

Another type-related facility that was viewed as important is the notion of inheritance, an idea with
roots in semantic data models and object-oriented languages that is now being embraced by the majority
of the database community. Inheritance simplifies the task of defining new types that are related to other,
existing types in the database schema; it also simplifies the design of application software in some cases,
since routines to process objects of a given type T can also process objects whose types are a subtype of
T.
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3.2.4. Composition and Nesting

In order to define complex structures that represent the variety of data structures needed in scientific
applications, the ability to compose and/or nest the above structures is needed. For example, a contour
can be represented as a (circular) sequence of points in 2-dimensional space. Similarly, there are
biological structures, such as maps that can be represented as sequences of intervals. The ability to
compose and nest constructors to form such structures is useful for the generality of defining data
structures and operators over them.

3.3. Scientific Environment

Scientific database users work in a wide variety of environments, from a single personal computer
or workstation, to supercomputers, to networked heterogeneous systems. Correspondingly the needs for
flexibility, efficiency, and capability vary dramatically. But, more and more frequently, scientists find
their work requires data of many different kinds from many different sources. Scientific database systems
must deal with the complex and changing working environment, must locate and retrieve information in a
form that the requestor can interpret, and must be able to manipulate data of varied types.

3.3.1. Client-server Model

One approach which has proved fruitful in commercial distributed data systems and in other
problems involving heterogeneous hardware/ software systems has been the client-server model. In this
model, unlike the case where a program reads data directly from a disk or tape file, a ‘‘client’’ requests
information via a message sent to a ‘‘server.’’ The data is then returned via messages (inter-process
communication links). The principal advantage of this approach is that the client programs become
insulated from the hardware details and from knowing whether the data is stored locally or remotely.
Servers can also translate internal word structures or even data structures as the information is passed
along. Many of the vexing data interchange problems can be made transparent to the users.

3.3.2. Networking

In many cases, when the requestor is adequately informed about the data sets and is suitably
prepared to deal with the format, high volume transfers of data may still involve shipping of tapes or
other storage media. For exploratory work, however, a distributed environment is common and a suitably
high-speed network is required. SDB’s should be able to communicate efficiently and effectively over
networks.

3.3.3. Private Software Interlink

One cannot expect that any new system should or could be adopted by all. Private databases will
still be necessary for efficiency in processing, for convenience, or for historical reasons. New SDB
systems must support links to existing systems so that users can either export their database to others or
import other data into their systems.

3.3.4. User Interface Simplicity

User interfaces are, or should be, highly personalized entities; one need only observe a
‘‘discussion’’ of the merits of different operating systems or editors to realize that individuals seek tools
which best fit their working preferences. Simple and intuitive user interfaces are highly desirable; on the
other hand, one should not sacrifice capability. A SDB should not be restricted to a single user interface.

3.3.5. Heterogeneity

Data bases will be different in many aspects, for example, data models, scheme description,
disciplines, and machines. For the scientific user, a system would ideally hide these differences and
permit access to the data and to information about the data with minimal impediments.
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3.3.6. Database Mostly Add-on and Read-only on Servers

For a large number of applications, the basic data is not altered by the majority of users. In some
cases, it may not be changed at all, although new versions may appear; in others, a single group is
responsible for correcting the data. In other cases, the major change to a data base is the inflow of new
data. Thus many of the issues concerning commercial database designers-- updating, concurrency,
transaction rollback-- may not be important for SDB’s.

3.3.7. Multi-server Coordination/ Notification of Clients

One caution, however, is that it is not uncommon for there to be multiple copies of a data set, and it
is necessary to ensure that these remain consistent. Furthermore, a mechanism for alerting users to
changes in the data set may need to be considered. This may take the form of a notification the next time
the data set is accessed or a notice on a bulletin board.

3.4. Types of Users of Scientific Databases

Among other characteristics, scientific databases are defined by a more diverse user community than
those for a typical business database. The actual types of users of a given scientific database are very
likely to evolve with time, and in some cases, even the most-frequent category of users might change with
time. For the sake of completeness and simplicity, users are defined broadly from the creators to the end
users. The first individuals to desire access to the database will presumably be the individuals involved in
collecting the data in the first place. For many applications, the data Collectors are likely to be the major
end users and thus their needs will set the content and details of the expected applications. For an
emerging field that is rich in experimental content, but poor in theoretical formulation, the expectations of
the data Collectors will be paramount, but if a theoretical basis for understanding the phenomena under
study exists, Analysts, notably including modelers, will also place constraints on the requirements set for
developing a new scientific database. Utility to a wide community over the time period for which the
data will be of value will depend in part on the Archivists, who will have expectations in terms of
stability, efficiency of updating, access to earlier versions, and other requirements. The next level user
will need to be intradisciplinary and interdisciplinary Integrators who ensure appropriate standards are
met; namely, standards that provide access by scientists not expert in the original experimental system.
Finally, Administrators who check the quality of the system, conduct time checks, and other management
functions, will be users as well.

On the whole, the diverse list of users underlies the central issue. The entire user community must
be taken into account in the development of the initial database. The principle difficulty is that the
individuals utilizing the data at a latter date are likely to come from disciplines other than the data
Collectors or any of the early users. A change in the approach to the development of new databases is
necessary to accommodate this difficulty. In particular, it is clearly easier to ensure that essential data do
indeed impact on disparate communities if the interdisciplinary Integrators are considered in the initial
design phase. The challenge for these Integrators and for all others in the database design and
implementation is to ensure sufficient flexibility and perhaps the archival of adequate metadata, to
accommodate the needs of unanticipated user communities.

3.5. Current and Emerging DBMS Technology

Our panel identified a number of examples of existing technology which are relevant to scientific
data management problems. These include flat files, hierarchical and network DBMSs, relational
DBMSs, special-purpose data managers such as image or graphical data managers, information retrieval
systems (for text searching), and hypertext and hypermedia systems. We also identified new trends in
database management systems such as extended or extensible DBMSs, object-oriented DBMSs, and
logic-based DBMSs. We first briefly review what each of the current technologies provides for handling
scientific data problems, in terms of the kinds of objects and manipulation requirements discussed
previously, and we attempt to point out where they fall short of meeting the full needs of scientific data
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management. We then address the question of what emerging database technology has to offer in the area
of scientific database support.

3.5.1. Current Technology

Historically, data was first stored in the form of flat files, and much data is still stored that way
today. The obvious advantage of flat files is that they can be used to store any type of data. The clear
disadvantages, which led to the development of DBMSs, include lack of any structure or semantics
associated with the data. Thus, any of the data types discussed earlier could be stored in flat file form, but
the burden of manipulating them would lie completely with the application program. Hierarchical and
network based DBMSs improve on flat files by offering support for managing records rather than
unstructured data, and also provide notions of relationships (e.g., CODASYL sets) and indexing.
However they are still relatively low level data managers, requiring application programs to explicitly
navigate through the data (record by record, essentially) based on its logical and/or physical organization.

Relational DBMSs are the current focus in the commercial DBMS world. They offer a very simple
logical model for data (tables) and a more or less declarative query language (SQL) which hides the
physical details of the data. In terms of the data types and operations discussed earlier, all three types of
DBMSs basically provide support for records, where the fields are individual values, and for sets of
records. Hierarchical and network DBMSs provide some support for dealing with data which has
complex structure, e.g., a department that ‘‘contains’’ a set of employees, but (as just mentioned) provide
only low-level programming facilities for manipulating such structures. Relational DBMSs, in contrast,
can actually make it somewhat harder to represent such structured objects due to the simplicity of the
table abstraction. However, they provide large benefits in terms of programmer productivity and software
maintenance by not letting users/programmers see the physical structure of the data.

None of the three basic types of DBMSs provide any inherent support for new/specialized data
types or operations, e.g., no support for images, text, arrays, time series, etc. However, relational DBMS
vendors are now beginning to offer support for blobs and for user-defined or ‘‘abstract’’ data types
(ADTs) and associated functions. Clearly, this is an important step in the direction of handling such data
types as images or text, and will enable relational DBMSs to have such data as field values in records.
However, as will be discussed in the section on emerging technology, more research is needed (and is
currently going on) in this area, as efficiently handling such data requires a fair amount of support at the
levels of indexing, query processing, and query optimization. It should also be noted that ADT support
does not address the need for a richer set of type constructors (like arrays, time series, sequences, etc.), so
ADTs, while important, do not solve the problems of handling the complex objects anticipated in the
scientific data management area.

Information retrieval systems, which have developed and matured separately from DBMSs, provide
support for text-intensive applications. For example, they are widely used in application areas such as
library science, allowing on-line catalogs to be searched based on attribute data (e.g., author) or on textual
attributes (e.g., title or abstract searches). In the latter case, searches are specified as predicates involving
keywords of interest to the searcher. Information retrieval systems are not DBMSs, however, so they do
not provide support for much of what a DBMS provides, e.g., they do not handle non-text data, range
queries, etc. In order to provide effective support for scientific meta-data and browsing, it appears that
information retrieval technology must be integrated with more general (e.g., relational and beyond)
database management technology.

In addition to general-purpose DBMSs and the more specialized information retrieval systems, there
are also special-purpose data managers capable of handling particular types of data such as image data or
spatial data (e.g., GIS packages). While such data managers are certainly useful for managing their
particular data types, which are indeed related to the kinds of data that some of the sciences do need to
manage, they are too specialized to be useful as general-purpose solutions to scientific data management
problems. They are perhaps most important as good sources of examples of the sorts of functions that are
likely to be needed in scientific data managers for handling images and various spatial data types.
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The final entry on our current technology list, hypertext and hypermedia technology, is relatively
new (at least in a commercial sense). Products such as Hypercard exist, but research efforts are underway
to provide systems with much richer function (e.g., the Intermedia project at Brown). What
hypertext/hypermedia systems seem to do best is support nonlinear or browsing style access to data.
These systems provide support for data objects that have links into other data objects, and appear very
promising as a technology for applications such as on-line encyclopedias, document editing, etc. They
generally provide support for interaction-oriented data types, e.g., text, graphics, and perhaps sound. As
for information retrieval systems, they seem to hold promise in terms of dealing with meta-data, but do
not offer ‘‘core’’ database functionality such as managing large data sets, querying them, etc.

3.5.2. Emerging Technology

There are four basic approaches that are being taken by database researchers today to extend current
relational technology. Some of the basic concepts that appear relevant to scientific databases (e.g., new
data types) are handled by most; however, no single approach fully embraces all of the requirements we
have identified in our discussions. We briefly explain these approaches below, citing their potential
advantages and disadvantages.

Extended relational. Relational DBMSs have provided an enormously valuable tool for handling
conventional database problems; the treatment of concurrent transactions, recovery, nonprocedural query
languages, and query optimization have found wide spread acceptance in the business community. The
extended-relational approach is to build upon this success, by extending the relational model (and
relational DBMSs) to incorporate new features. Among the features discussed include: inheritance, user-
defined functions and data types, procedures as data types, nested relations, and support for triggers.

One of the advantages of extended relational DBMSs is a more likely acceptance by the database
community; the advantages of the relational model (e.g., its basis in set theory) are retained and only a
minimal set of changes need to be provided. The disadvantages of the approach is that the set of
’minimal’ changes may not be sufficient for, in our case scientific databases, or that the relational model
itself is not adequate despite modifications.

Object-oriented. Among the principle advantages of object-oriented languages are the features of
encapsulation and inheritance. They have been found to significantly simplify the development of
complex software systems. For this reason, the languages of choice in developing specialized database
applications (e.g., VLSI layout editors) are object-oriented. It turns out that a significant part of these
applications is a data management component to make data that is internally generated into persistent
data (e.g., CIF files) that can live across multiple application executions. The object-oriented DBMS
approach offers an integration of object-oriented programming technology with (relational) database
technology.

There are many benefits of this approach. Persistent data types can be declared, thereby removing
the burden of data persistency from application programmers. New data types and their operators can be
defined by users and be understood by the OO-DBMS in a clean and seamless way. Yet another benefit is
the practical realization of the useful ideas of entity (i.e., object) and generalization (i.e., inheritance) that
has been the hallmark of semantic data model research. Perhaps the primary disadvantage of the
approach is its immaturity. Presently, there is little first-hand experience with these systems.

Extensible DBMSs. No DBMS can satisfy all applications equally well. The extensible DBMS approach,
sometimes called a DBMS toolkit approach, is aimed at the tailorization of DBMS internals (e.g., storage
structures, query optimizers) to meet the requirements of applications that are not adequately served by
existing DBMSs. Extensible DBMSs is really a study of the architectural issues of DBMS construction to
make them more ’open’, that is, to make customization of DBMSs an easier task.

There is no single approach that can accomplish this goal; advances in a variety of fronts have been
recognized. The admission of new relational operators (e.g., sampling) into a DBMS requires, for
example, modification of the query optimizer to know how to optimize queries that reference the
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operator. One of the advances in extensible database research is the use of rule-based optimizers, where
the optimization strategies associated with an operator can be precisely explained in terms of compact
rules.

Another advance is the idea of composing DBMSs from prefabricated software building-blocks.
There seems to be a central core of ideas that are found in many DBMSs - from network to object-
oriented - that are constantly being reinvented. By providing tools to write generic modules once and to
compose them, and by employing carefully engineered component interfaces that are designed to simplify
the integration of new modules, some of the more difficult aspects of DBMS construction can be
simplified.

The primary disadvantage of this approach is that DBMS customizations will have to be done ’at
the factory’, requiring a designer/implementor with expertise in DBMS implementations. That is, the
toolkits are unlikely to be targeted for the end-user (i.e., scientific database community).

Logic based. Conventional relational query languages, such as SQL and its clones, are examples of
limited first-order logic data languages. A natural generalization of these languages is to use
prolog/datalog as DBMS query languages, thereby providing a significant increase in query expressibility.
Typically, complex queries - even those involving recursion - are expressed elegantly and compactly.
Queries are processed via sophisticated inference engines which provide a wide range of optimization
possibilities for complex rule sets.

Among the advantages of this approach is its solid theoretical basis. For expressing and studying
recursive queries, there is no better formalism. At the same time, the approach addresses only the
recursive query problem, and provides yet another language that scientific database users must learn (and
that must somehow be coupled with existing programming and query languages employed by the
scientific database user community).

Summary. The following is a compilation of some DBMS prototypes that are available, along with their
features:

Extended Object
System Relational Oriented Extensible Logic-Based New Data Types

Exodus x x x
Genesis x x x
LDL x x
Postgres x x x
Starburst x x x

3.6. Recommendations on Various Issues

3.6.1. Core Data Types and Operators

Scientific database systems should support a set of core scientific data types, compositions
constructors, and manipulation operators. The selection of these core capabilities should be determined
by their usefulness to a large number of scientific applications. They should be part of an optimization
procedure, and should be implemented to execute efficiently. These core capabilities should be powerful
enough for defining additional complex structures and operators in terms of the core capabilities.

3.6.2. Extendibility

Scientific database systems should be extendible, because of the variety of complex structures
required in scientific applications. The systems should facilitate the addition of new data types, new data
structures, and new manipulation operators. It should be possible to describe these additions in terms of
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the core data types and operators described above when appropriate.

3.6.3. Conceptual Modeling

The user models for scientific databases should be at the conceptual level (e.g. objects,
relationships) rather than at the logical level (e.g. relations, record types). The models should at a
minimum support various scientific data types (spatial, temporal, sequence, etc.), the aggregation and
generalization constructors, and facilities for integrity constraint specification.

3.6.4. Heterogeneous Databases

Support for heterogeneous databases is essential for most scientific applications. The interface and
transformations of databases should be specified at the conceptual level, i.e. in terms of objects and
relationships between objects. Data reformatting between systems should be done through data format
standards, so that each subsystem needs to have only two translators: to and from the standard.

3.6.5. Interoperability of Software

A scientific database environment should facilitate the interoperability of a variety of software
components, such as statistical analysis software, graphical display software, data management software,
metadata browsing software, etc.

3.6.6. Exchange Standards

Exchange standards have been proven to be extremely useful in specific scientific disciplines. The
development of standards between multiple disciplines is essential to the efficient interaction between
such disciplines. It is recommended that these standards should concentrate on data exchange formats
only, since trying to achieve agreements in other areas (e.g. query languages) may be unworkable. Data
exchange standards should be self-describing. Also, these standards should be extendible, so that
arbitrary data streams can be included as ‘‘uninterpreted data.’’

3.6.7. New Technologies

Emerging new technologies, such as Object-Oriented Database systems, Extensible Database
systems, and Logic Database systems seem promising, but it is believed that each has different
advantages. Thus, an integrated technology that enjoys the joint benefits of such technologies should be
encouraged.

3.6.8. Metadata

Scientific database systems should have powerful metadata modeling and access capabilities,
because of the complex nature and quantity of metadata in scientific applications. These capabilities
should include: support for subject hierarchies, taxonomy hierarchies, keyword search, text search, and
browsing.

3.6.9. User Interfaces

Flexible user interface development tools should be made part of a scientific database environment.
The specialization of user interfaces for scientific applications is necessary for the efficient learning and
use of such systems. User interface development tools should permits easy development of browsing,
query, and manipulation capabilities, by using menus, icons, multiple windows, graphical displays, etc.

3.6.10. Emphasis on Applied Problems

Research and development projects should be encouraged to use and cooperate with real scientific
applications. Realistic scientific problems can best be abstracted from practical scientific database needs.
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4. Core Tools

Panel members:

Vernon Derr, NOAA
Nancy Flournoy, American Univ.
Greg Hamm, Rutgers Univ.
Anita Jones, Univ. of Virginia
Bob McPherron, UCLA
Frank Olken, Lawrence Berkeley Lab
Peter Shames, Space Telescope Science Institute (chair)
Maria Zemankova, NSF

4.1. Objectives

The goal of this panel was to assess unfulfilled requirements for ‘‘core tools’’ in scientific data
management, i.e., tools not available, or not easily usable, in present database systems. Considerable
differences in tool requirements were noted across the different scientific disciplines considered; even
more significant differences were seen between large facility projects and smaller, single-laboratory
efforts. Even so, common objectives span all levels, including:

� Enable data management — Some scientific data will be managed in complex DBMS
environments, others with simple flat file archives. A spectrum of tools spanning the range of
environments is needed to encourage and facilitate good data management. Unless the intellectual
energy required to archive and manage data can be significantly lowered, scientists will be reluctant
to invest in these tools beyond their own immediate needs.

� Enable communication and standardization of data — Interdisciplinary work will only be possible
if considerable standardization of data and nomenclature are achieved, first within disciplines and
then beyond. Database tools which support the construction of thesauri, controlled vocabularies,
and easy exchange of data will be essential to facilitate this process.

� Support computational science — Most scientific database systems are built to support the needs
of the investigators who designed the experiments involved. As data resources grow, considerable
science will be done using these resources as experimental material. This use may generate
requirements beyond those obvious to the original generators of the data, and implies a need for
tools which support the painless incorporation of annotation, audit trails and other metadata needed
for later, unanticipated re-interpretation of data sets.

� Improve retrieval and analysis capabilities — Classical DBMSs provide significant tools for the
systematic organization of data, but are restricted in terms of their representational power for
abstract data types. This limits possibilities for ‘‘semantic’’ retrieval of data, and for analyses
which require embedded knowledge about data.

� Provide integrated data management and analysis environment — a variety of data analysis tools
are in use in the different disciplines. Some of these are user built, others are created and distributed
by discipline centers to a wide community of users. Ideally, access to data management facilities
from within these analysis tools or environments should be possible, so that the tools can be readily
applied to the data.

The panel thought these objectives implied a need for improving the core tools at three levels:

� DBMS/OS — Considerable improvement is needed in terms of the representational power,
manipulative capability, and interface definition of present DBMSs and operating systems.
Alternative data models may be required to support the specific needs of scientific, as opposed to
commercial, databases.
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� Utilities and other tools — Much of the friction in scientific databases is generated by
conceptually simple activities such as data laundry, reformatting, interpolation, sampling, scale
matching, etc. There is also a direct need for tools to help scientists take more responsible action in
archiving, annotating, and depositing their data for public use without a large increase in the effort
required. Considerable improvement could be made by making available well-conceived sets of
small tools needed for these sorts of tasks.

� User interfaces — All of these activities will be useless if they are not actually done, and they will
not be done if they are not easy to do. No scientist will spend six months learning to use data
management tools solely to improve the general state of the science. This implies a need for great
improvement in user interfaces to enable facile use of both of the other sets of tools mentioned
above.

Achieving a system that will support multi-disciplinary research across a variety of databases and
archives will only be possible if a number of system infrastructure elements are in place. The panel made
certain assumptions about these elements and they are best stated up front. If all of these elements are not
provided as part of the distributed system then many of the innovative science data access goals may not
be met.

The specific infrastructure elements are:

� Wide Area Networks - networks which are widely installed and supported, and are of sufficient
bandwidth and reliability are essential for the successful deployment of a distributed system.

� System Interfaces and Tool Kits - the distributed system must run on a variety of different
hardware platforms that will evolve over time. Integrating new tools and new sites must be easily
performed. An interface toolkit that can accommodate the integration of this heterogeneous and
evolving mix of systems must be provided.

� Data Exchange Formats - standard formats for data exchange must be identified or developed.
Some discipline specific models, such as FITS in astronomy, already exist. Others must be
identified or adapted from various standards efforts if easy data exchange is to be possible.

� Locality of Control - it is essential that the system infrastructure support local control over data
and computational resources, while at the same time providing for remote access to these resources.
The infrastructure should support this access and also help preserve site integrity.

4.2. Recommendations

The panel identified several specific recommendations for research which are discussed in more
detail in the following sections. These recommendations are:

Support the creation (or expansion) of one or more data analysis environments for science data that
includes database and data archival processing. This should include a sophisticated user interface
that can unify existing tools, yet be flexible enough to be:

- domain specific
- handle differing levels of user sophistication (novice/expert)
- browse across different, distributed DBMS’s
- provide ‘‘hooks’’ for special application programs
- access a hierarchy of storage in a user-transparent fashion
- support tracking of data accessed across multiple DBMS to maintain
an audit trail of transformations applied to create each dataset.

Support the development of an integrated set of user analysis tools, to include:

- data search, location, and access
- file and directory manipulation
- file and data editing
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- data transformation and processing
- data display and visualization
- statistical and other analyses

Fund research to design, prototype, and apply alternatives to the relational data model. The
resulting model will require a theoretical underpining and sufficient richness to support some or all
of:

- temporal data
- spatial data
- sequences
- graphs
- structures formed of these objects
- associated meta-data and descriptive information

Encourage long-lived facility class organizations to develop and distribute, free to their community,
software tools that are engineered to promote:

- standard interchange formats
- standard application interfaces
- standard analysis packages
- hooks for extensions

Support the creation of more and better location and retrieval capabilities including:

- A high level directory of sites, databases, and services to facilitate access to the system
by new users and experienced users alike.

- Discipline specific data directories and repositories for those fields where such facilities
do not already exist.

For all these recommendations, due consideration must be given to the support and operation of the
required network, repositories, directories, interfaces and other infrastructure elements. Moreover,
research efforts should give priority to the production of prototypes which support actual applications
with reasonable efficiency.

4.3. Data Modelling

The relational data model is built on finite set theory. Many types of scientific data do not fit this
model very well. Attempts to shoehorn scientific data into the relational model lead to obscure schemas
and queries, and (often) the inability to effectively ask or answer certain types of queries.

Investigation of alternative data models and their implementation is appropriate.

In particular, we note that much scientific data consists of observations of functions defined over
continuous domains (e.g., space and time). Thus interpolation, for example, is a natural operator. We
should have data models which can readily accommodate these kinds of data and operators.

We also need data models which include the notion of sequences of records, not simply sets of
records. Sequences are ubiquitous in molecular biology (e.g., DNA sequences), econometrics, statistics,
and signal processing (e.g., time series).

4.3.1. Implementation of alternative data models

Implementations of such alternative data models are required, because we do not expect that these
models can be effectively implemented with existing relational DBMSs. Practical experience with
applications on real DBMSs is the ultimate arbiter of the utility of new data models.
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Object oriented database systems offer one possible mechanism for supporting scientific data
models. However, providing a mechanism for constructing a scientific DBMS is not sufficient for most
applications. We believe that scientific DBMSs must provide support for functions on continuous
domains, and sequence data, etc. This should not be left as an exercise for the domain scientist designing
the database.

4.4. Integration of Analysis Tools

The scientific enterprise is characterized by generality. Operations and procedures are infrequently
performed. Their order of application is highly variable. It is difficult to predict in advance what will be
done. The information and data required may come from a wide variety of sources. These characteristics
impose constraints on the DBMS used to organize the data required by a scientist. Commercial data base
management systems available today do not work well for this purpose.

The state of the art in scientific DBMS is epitomized by the relational data base such as Ingres or
Oracle. These systems have a firm foundation for operating on data sets organized as flat files. It is
relatively easy to carry out operations such as joins, projections, concatenation, and selection via
constraints. These systems are good at maintaining information on the state of the data base as a function
of time. They provide a high degree of security and quality control over the data entered into the system.
Relational systems are primarily used to manage data at a single site. Management of distributed data is
done though the addition of networking and distributed processing capabilities added to the basic system.

These DBMS’s do not support scientific analysis well. Sequential access to a large number of
records can be very slow. Modification of existing relations, or the creation of new relations is difficult to
do because of system security. The sequence of operations which modify the data base are not easily
tracked, even though the state of the data base is accurately known. It is virtually impossible to enter
annotations onto files, or include non alphanumeric data as part of the data base.

Some panel members felt that the operation of the DBMS should be kept distinct from the analysis
and display system. The scientific enterprise is so general and broad that it is difficult to believe that one
system can provide all potential applications for all scientific disciplines. It seems far more profitable to
provide straightforward links to the DBMS which can be used by application programmers in developing
separate, and quite specific modules. However, simplifying the scientists interface to eliminate the
appearance of separate systems is mandatory to improve ease of use.

In this view there are four types of DBMS tools: inventory tools, management tools, access tools
and logging tools. Inventory tools prove reports to users about the kinds of data sets, their structure, their
location, their format and so on. Management tools are more specific to the system managers. They
allow system administrators to move, copy, reformat files as complete entities. Access tools provide
programmers and users with the ability to read and modify individual records in managed data sets.
Logging tools provide a means for keeping track of the sequence of operations by which data originating
in data sets in the system is modified to produce new data sets.

Future scientific DBMS should evolve towards a truly distributed system in which, from a single
location, it is possible to apply all available tools to all managed data sets whatever their location. To do
this in a convenient way for the scientist, and to do it efficiently the entities which the relational model
supports should be generalized to include objects of greater complexity than presently supported. This
necessarily implies that the relational operators used to create queries can be generalized to include user-
defined operators.

Future DBMS should not try to do central management of distributed data. The people most
familiar with the data and its limitations should maintain control over the data. Also future DBMS’s
should not try to centralize the data at one location and allow distributed management by the various data
set owners. Instead, the future scientific DBMS should provide a means for doing distributed tracking of
data. Necessary functions of such a high level system include:

- Inventory reports
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- Access to data as whole data sets or distinct subsets
- Graphical displays for browsing data
- Textual displays for data and meta-data
- Data order and delivery service at macroscopic level

Ordinarily the data at various sites would reside in some specific DBMS which provides access to data
sets at a microscopic level of individual records. The high-level distributed data tracking system should
not depend on specific DBMS architecture at individual sites. It should, through appropriate standards
and interfaces, make use of local system functions to accomplish its tasks in a manner transparent to the
user.
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5. Ozone Hole Case Study

Panel members:

Francis Bretherton, Univ. of Wisconsin
Jim French, Univ. of Virginia
Hector Garcia-Molina, Princeton Univ.
Tom Marr, Cold Spring Harbor Lab
Steve Murray, Harvard-Smithsonian Center for Astrophysics (chair)
Larry Rosenberg, NSF
Don Wells, NRAO
Greg Withee, NOAA

5.1. Objective

The objective of this case study is to consider one situation in which scientific data was a crucial
component in a scientific inquiry. In this section we describe how the Ozone Hole was discovered and
how scientists used data to investigate the seriousness of this threat to mankind. Then we point out the
issues, the problems and the successes which involved the presence, absence and handling of various
kinds of data. We think that this story particularly well illustrates both the importance of scientific data
and the difficulties — technical and political — in applying it most effectively.

5.2. Problem Discovery

5.2.1. Early History

The Supersonic Transport project, that was suggested in late 1960’s, raised concern about the
impact of exhaust gases on stratospheric chemistry. Of particular interest was the production of ozone,
the Chapman process. Little was known then about atmospheric chemistry. It was not a distinct scientific
discipline. However, there was a belief that oxides of nitrogen would disrupt the Chapman process,
depleting the ozone layer. And ozone concentrations were known to be intrinsically highly variable.

NASA organized a program to bring chemists together to work on the problem of upper
atmospheric chemistry, particularly the chemistry of the lower stratosphere and of ozone production.
Satellite experiments were planned and carried out to monitor the ozone concentration, and to measure
the rudimentary composition of the upper atmosphere.

A large activity in atmospheric chemistry resulted. Upper atmospheric modelling increased,
supported by fundamental laboratory research in determining the reaction rates of various processes and
other necessary basic chemistry. Observations from a variety of sources were available, including
atmospheric observations from ground based spectroscopy which had commenced in the early 1900’s,
remote satellite sensors in particular the Total Ozone Measurement System (TOMS) project, and in-situ
lower stratosphere balloon measurements.

By the mid-1970’s the main outcome of this activity was the discovery of the presence of high
concentrations of chlorofluorocarbons (CFC’s) in the upper atmosphere, and that free Chlorine —
resulting from ultraviolet photo-dissociation — was the dominant mechanism which disrupts the ozone
producing Chapman process.

5.2.2. Data Systems Comments

During this period when the problem was first recognized, the NASA sponsored activity was not
widely known, particularly outside their community of atmospheric scientists. This lack of
interdisciplinary communications hampered the rate of progress in recognizing the importance of the high
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CFC concentrations.

The satellite sensor data was being saved within the Earth Science discipline, but it was not well
organized, nor well documented. Of particular importance was the fact that the description of the data
and how it was collected and filtered — the appropriate ‘‘meta-data’’ was not generated and saved.

5.2.3. Discovery

British meteorology teams had regularly monitored ozone concentration at Halley Bay, Antarctica
on and off since the International Geophysical Year 1957. By about 1984, enough data were analyzed to
produce a ‘‘hand’’ generated plot of the ozone concentration versus time from 1980. That plot showed a
trend of reduced minimum ozone concentration each October, which is the Antarctic spring. This led to
the conclusion that the ozone layer was being depleted. That is, a hole in the ozone layer over Antarctica
was discovered.

5.2.4. Data System Comments

Sufficient data were available to see this effect in 1982, and even earlier in the satellite TOMS data.
Delay in processing the British data might be attributed to the lack of awareness that there was anything
unusual to be expected and a lack of a data policy that stressed rapid analysis of data. In actuality had the
TOMS data been scrutinized in a straight-forward way, it would not have shown the depletion effect. The
cause for this is discussed below.

5.3. Data Calibration

Retroactive review of the satellite data did not indicate a concentration decrease. The reason for
this is that the raw sensor data was filtered by the ground processing system; a threshold was applied to
remove ‘‘noise’’. This threshold was set high enough that it did not permit detection of the concentration
decrease. Why?

The stratospheric models never predicted such a decrease. They had been used to help determine
where to set the noise filter in the TOMS data. Once filtered the data were used to check the model. This
circularity allowed the modellers and experimenters to believe that they had made the correct models and
filter threshold choices.

Other NOAA data from radio sonde balloons were collected but not used in the analysis and model
testing.

5.3.1. Data System Comments

Circular dependencies in modeling and data calibration led to a lack of correct data to test the
models, and lack of recognition of proper constraints on the data they were using to test their models.
Data analysis policies, or lack thereof, allowed useful data to be missed.

5.4. Understanding

5.4.1. Confirmation

Unfiltered satellite data was still in existence. It was re-analyzed, and this confirmed the existence
of an ozone hole. It was unquestionably a real phenomenon.

Within the science community the question arose of what level of resources to invest in discovering
what the danger to society and to the global climate was. A major initiative to investigate and understand
this problem was begun. It involved multidisciplinary teams of chemists, atmospheric physicists,
meteorologists, climatologists, etc. The teams needed access to data to facilitate improvement of models
with more detailed testing. New data was collected from ground, air and space to continue to monitor the
situation.
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The result of this effort was the discovery that ice clouds in the lower stratosphere over Antarctica
were the ‘‘villain’’. Ice and/or water phase chemistry leads to large quantities of free Chlorine being
release into the stratosphere in the early spring (October) which then acts as a catalyst to deplete ozone
concentrations.

The Antarctic is unique in two respects that make the ozone depletion most serious there. It is the
only place where the lower stratosphere is cold enough during the winter to make ice clouds, and air
circulation in the south polar region produces a wind vortex that prevents mixing of the stored Chlorine.

5.4.2. Data System Comments

The use of a variety of data sources from chemistry to global atmospheric monitoring networks, and
ground, air, and remote space sensing were ultimately successfully. But this only occurred after a crisis
had been generated. Routine combination of multi-source data is not ordinary operating procedure.

5.4.3. Consideration

Once the problem was thoroughly documented, the question arose of whether the Ozone Hole is a
natural or man-made occurrence. There are multiple possible sources of Chlorine. Numerous industrial
corporations across the world create chlorofluorocarbons. It was also recognized that volcanic emission
of HCl from Mt. Erebus could be another source.

Again sources of information spanned disciplines. For example, ice core samples had long been
taken to monitor long term temperatures through Carbon Dioxide analysis. But the samples might yield
data on acidity, and Chlorine content if properly analyzed. A stratospheric aerosol and gas experiment
was not initially intended to identify HCl, but re-analysis of data for this purpose might prove to be
useful.

5.4.4. Data System Comments

The need for access to relevant data is severe. Much of the information is contained in data
collected for other purposes or owned by investigators who have not published raw data in a form suitable
for re-analysis. Even awareness of potential data for this purpose is limited, no master directory of data
related to Antarctica in general or to the upper stratosphere existed.

5.5. Assessment of the Impact of Ozone Depletion

There are local effects. Increased ultraviolet flux occurs at ground level. It harms penguins. In
addition, it kills plankton and krill (crustaceans) which are essential in the food chain of whales.
Certainly the Antarctic stratosphere is connected to the general ecosystem and could over time influence
global change.

Where else might ozone concentration depletions occur? In the Arctic and mid-latitudes it is not
cold enough for ice clouds to form, but the atmosphere contains aerosols. If they include HCl, will there
be the potential for ozone depletion on a global scale?

Further study continues. The data resources include:

� SAGE - monitor aerosols,
� LIDAR measurements of aerosols at selected sites, and
� models and theory - integrate data (fusion).

An international panel, the Inter-Governmental Panel on Climate Change, is meeting at regular
intervals to review the status and impact of ozone depletion in the context of global change.
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5.6. Mitigation

The saga of the ozone hole is not played out. The problem continues. Risk assessment on the
potential magnitude of problem is needed. There is a trade-off needed to measure cost of reaction versus
effect. And the data to support the decision process is needed.

This science story is representative of questions that will arise with more frequency. A problem
will possibly afflict a population or environment segment of our world, or outside it. The question arises
of what level of resource should be allocated to understanding that problem and assessing its risk. Data is
only one portion of the puzzle, but it plays an increasingly important part.

5.7. Remarks

The saga of the ozone hole illustrates a variety of issues related to scientific data, its collection,
maintenance, archiving and processing. We rehearse these issues here.

� Information sharing and communications across disciplines. The paradigms and the terminolo-
gy of different disciplines are different. And perhaps specialization will remain so necessary
that these differences will increase, not decrease. Automation support for scientific data is quite
new. It has grown up independently in the various disciplines so that accidental problems
abound. For example, networks are not readily connected, incompatible database systems are
used with no format interchange capability between disciplines, and no automated directory sys-
tem supports inquiries about the mere existence of data. None of these problems are fundamen-
tal; all have technology solutions but they have not been found and applied.

� Data Exchange Formats. Transfer of data across disciplines is complicated by the differences
in formats used by the disciplines. Assuming that it is inappropriate to work towards a single
format, it will be necessary to have exchange formats so that data can not only be transferred
between laboratories in one discipline, but between laboratories in different disciplines.

� Data - Errors, Calibration, Quality. Discipline specific standards for the processing, archiving
and presentation of data are just now being proposed and approved by science discipline organi-
zations. As a result the quality of data is directly controlled by the scientists responsible for that
data. Scientists differ in the care they take to perform and record calibration and scrubbing me-
tadata.

� Timely Analysis. Unless locally dictated, there is no data policy ensuring timely analysis of
new data. This has even led to the invention of a term ‘‘pre-discovery’’ in the astronomy com-
munity to describe plates which record new events, such as the supernova detected in 1988,
which were not studied until after another scientist announced the event.

� Complete, Careful Retention of quality Metadata. More and more frequently data is being
scrutinized by a scientist who is different from the scientist who collected that data with a partic-
ular intent in mind. The new viewer of the data requires accurate and precise information of the
form of the data as well as how it was collected and calibrated. In some cases it would be ideal
to have access to all notes that the collecting scientist may have recorded in a laboratory note-
book. First, the existing database systems are not particularly helpful in ensuring that quality
metadata is retained. Second, acquisition of precise and accurate metadata is hard work.

� Re-analysis of data. There is increasing need and opportunity to use data for multiple pur-
poses. Success requires re-analysis of the data. And re-analysis requires that support for that
re-analysis be considered at the outset. Quality of the data has to be assured. Known errors
must be removed and calibration performed. Re-analysis calls for application of tools not antici-
pated at data collection. Automated support for the processing of scientific data is immature
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enough to make this difficult even though there are no fundamental reasons for it to be so.

� Timely distribution of data versus proprietary rights. The scientific disciplines need to adopt
policies which mediate the tension between ensuring the timely distribution of data to all comers
and the protection of the investment of the scientists who invested the intellectual effort and the
resources to acquire the data. Different disciplines may address this issue differently.

� Locating and retrieving data. The question ‘‘What data exist in the world that are related to my
problem?’’ cannot be answered today. Directories and catalogs are woefully absent. Where
they exist, support for efficient and effective query processing is sometimes lacking.

� Data Retention/Lifetime. It has repeatedly been said that the scientific community is about to
be inundated with data. Economic considerations will force decisions about what data to retain
and for how long. Intelligent judgments must be made when future data needs are not all
predictable.

� Scientists and Data Systems Computer Scientists need to work together from the onset of a
project to define system requirements and interfaces. There has been poor communication of the
problems and needs of the individual sciences to the computer scientists who could meet those
needs, because the computer scientists are not listening hard enough. And in the opposite direc-
tion individual collections of discipline scientists sometimes elect to invent ad hoc data system
solutions, which after the fact are poorer than those which the computer science specialists could
have provided. Neither field is at fault; communication between disciplines with different atti-
tudes, paradigms and skills is just difficult. Currently, there is a question of whether there is a
rewarding career path for a database creator in the sciences. However, the objectives are impor-
tant and resources are limited. Solving this problem case by case is important.

Jurists have a saying that ‘‘hard cases make bad law.’’ In a similar vein, extreme cases can lead to
bad policy. It is not completely clear whether the problems illustrated in this case study represent poor
science (e.g., failure to analyze available data, failure to calibrate properly, or failure to ask the right
questions) or represent poor data management. In many cases, the data was actually acquired and used
once the scientists had focused on the right questions. However, the case study did illustrate in very
concrete terms that good science is interdependent with good data management — an interdependence
that is likely to grow in the 90’s.
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APPENDIX A

FITS — A Self-Describing Table Interchange Format†

Donald C. Wells1

National Radio Astronomy Observatory2

Basic FITS, the ‘‘Flexible Image Transport System’’, is a data format which was designed by
astronomers in 19793 to support interchange of n -dimensional integer and floating point matrices using a
self-describing notation. FITS is the de facto interchange format used by astronomers everywhere since
1980. The rules of the format are controlled by the FITS Working Group of Commission 5
(Astronomical Data) of the International Astronomical Union, and there are North American and
European FITS standards Committees as well. FITS is also the official interchange and archive format for
NASA astrophysics missions, and NASA operates a FITS Support Office, including a hot-line service.4

There is an anonymous-guest archive for FITS matters5 and an E-mail exploder.6

The architecture of Basic FITS is extensible; the meta-rules for extensions are also a part of the
standard.7 In particular, extensions to transmit tables have been designed, and the ASCII tables extension
is also a part of the FITS standard.8 Numerous CDROMs containing databases in the FITS ASCII tables
format have been published by NASA projects during the past two years. A binary tables extension to
FITS has been proposed;9 prototype implementations have demonstrated interoperability and this
extension is currently being considered by the FITS committees for adoption.

The FITS ASCII tables extension is capable of conveying a set of tables as a self-documenting
machine-independent and OS-independent bytestream. The logical record size is 2880 bytes;10 record

������������������������������������
†The workshop organizers asked Don Wells to write a short tutorial on FITS, a self-describing data interchange format, which has been

used effectively in the astronomy community. FITS has been a very successful catalyst for the exchange of data. Two reasons are: (1) FITS is
self-describing — the astronomer structures data as suits the project needs; (2) NRAO developed the support software tools and has both main-
tained those tools and distributed them free to users.

1dwells@nrao.edu; 804-296-0277; Donald C. Wells, National Radio Astronomy Observatory, Edgemont Road, Charlottesville, VA
22903-2475.

2NRAO is operated by Associated Universities, Inc., under agreement with the National Science Foundation.
3Wells, D.C. and Greisen, E.W., 1981, Astron. Astrophys. Suppl. Ser. 44, 363-370, ‘‘FITS: A Flexible Image Transport System’’.
4Barry Schlesinger, 301-794-4246, bschlesinger@ncf.span.nasa.gov
5fits.cx.nrao.edu, 192.33.115.8, in directory /FITS; this text is /FITS/doc/fitsdbmsapp.tex
6send requests to be added to the mailing list to fitsbits-request@fits.cx.nrao.edu
7Grosbol, P., Harten, R.H., Greisen, E.W. and Wells, D.C., 1988, Astron. Astrophys. Suppl. Ser. 73, 359-364, ‘‘Generalized Extensions

and Blocking Factors for FITS’’.
8Harten, R.H., Grosbol, P., Greisen, E.W. and Wells, D.C., 1988, Astron. Astrophys. Suppl. Ser. 73, 365-372, ‘‘The FITS Tables Exten-

sion’’.
9Cotton, W.D., 1990, ‘‘FITS Binary Tables’’, draft available from D. Wells.
10This (peculiar) size is rich in prime factors; it is commensurate with the word and byte sizes of all computers that have ever been sold in

the commercial market. In 1979, when FITS was designed, machines with 6-bit bytes and 24-, 36-, and 60-bit word sizes and ones-complement
arithmetic were still commonly used by astronomers. Indeed, the first FITS file was written by an IBM 360 (32-bit, twos-complement, EBCDIC
codes, PL/I program) and was read by a CDC 6400 (60-bit, ones-complement, 6-bit ‘‘Display’’ codes, Fortran program); that interchange worked
on the first try and the file is still readable today by all FITS readers, long after both original environments have become irrelevant to astronomical
computing. Obviously a new format design today would use record lengths of 2n but most astronomers believe that the principle of protecting the
older bits is still important.
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blocking by integer factors from one to some limit (typically ten) is allowed on media for which it is a
relevant concept.7 The data structures are preceded by ‘‘headers’’, which are 80-character lines in
keyword-equals-value format. There are 36 header lines per logical record, and records are padded with
blanks. FITS headers and tables extensions do not contain carriage returns or line feeds or other non-
printing ASCII codes.

The FITS ASCII tables extensions are appended to the Basic FITS binary matrix. The matrix
dimensions are allowed to be zero, but the minimum Basic FITS header must still be present. There are
two reasons for this convention: (1) FITS is a family of formats which have internal consistency, and this
simplifies documentation, shortens learning time and made standards negotiations easier, and (2) in many
scientific applications auxiliary tabular data structures need to be associated with the main binary matrix
data structures.

In this appendix we will display a typical FITS table, a single table in a FITS file. The table has
2268 rows and 22 columns encoded in 80 ASCII characters. The data were produced by automatic
software which searched images of the Northern sky produced from scans made by the 300-foot telescope
at Green Bank, WV (the 300-foot collapsed in November 1988, about a year after these data were
recorded), and were given to D. Wells by James J. Condon of NRAO for use in this appendix. In the
verbatim listings shown below two extra lines have been prefixed to the listing of each logical record to
show the column alignments in the file, and the record number and line number are shown for each line
(these are not a part of the FITS bytestream, of course). First, we show the minimum Basic FITS header:

1 2 3 4 5 6 7 8
r/l 12345678901234567890123456789012345678901234567890123456789012345678901234567890

01/01: SIMPLE = T / Standard FITS format (AA Suppl. 73, 365)
01/02: BITPIX = 8 / 8-bit characters
01/03: NAXIS = 0 / No image data array present
01/04: EXTEND = T / There may be standard extensions
01/05: BLOCKED = T / Tape may be blocked (2880 byte records)
01/06: TELESCOP= ’NRAO91M ’ / 91m = 300-ft telescope (r.i.p.)
01/07: INSTRUME= ’7BEAM6CM’ / 7-beam receiver
01/08: OBJECT = ’87GB CAT’ / The 87GB 4.85 GHz source catalog
01/09: EPOCH = 1950.0 / Equinox (yr) of RA, dec values in table
01/10: DATE-OBS= ’01/10/87’ / Observation start date (dd/mm/yy)
01/11: OBSERVER= ’CBS ’ / Condon, Broderick, and Seielstad
01/12: ORIGIN = ’NRAOCV ’ / Written at NRAO, Charlottesville
01/13: DATE = ’11/06/90’ / Date file written (dd/mm/yy)
01/14: HISTORY AIPS IMNAME = ’B1950.11H’
01/15:
01/16: COMMENT This table contains all sources from the 87GB catalog
01/17: COMMENT with hours of right ascension = 11 (equinox B1950)
01/18: COMMENT derived from the Green Bank 4.85 GHz sky survey made in 1987
01/19: COMMENT with the 91-m telescope (J. J. Condon, J. J. Broderick, and
01/20: COMMENT G. A. Seielstad 1989, A. J. 97, 1064),
01/21: COMMENT in standard FITS table format (see Astr. Ap. Suppl. 73, 365).
01/22: COMMENT Catalog reference: P. C. Gregory and J. J. Condon,
01/23: COMMENT Ap. J. Suppl., submitted May 1990.
01/24: END
01/25:
01/26:
01/35:
01/36:

The NAXIS line declares that the binary matrix does not exist (it’s dimensionality, the number of
axes, is zero); the type of the matrix elements (BITPIX=8) does not matter in this case. The following
keyword-value pairs of this header are optional (except the END). The next logical record begins the
header of the ASCII table:
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1 2 3 4 5 6 7 8
r/l 12345678901234567890123456789012345678901234567890123456789012345678901234567890

02/01: XTENSION= ’TABLE ’ / Table extension
02/02: BITPIX = 8 / 8-bit characters
02/03: NAXIS = 2 / Simple 2-D matrix
02/04: NAXIS1 = 80 / Number of characters per row
02/05: NAXIS2 = 2268 / Number of rows = number of sources
02/06: PCOUNT = 0 / No random parameters
02/07: GCOUNT = 1 / Only one group
02/08: TFIELDS = 22 / Number of fields per row
02/09: EXTNAME = ’B1950.11H’ / Name (Epoch.hours of right ascension)
02/10: EXTVER = 1 / Version number
02/11: EXTLEVEL= 1 / Hierarchical level
02/12:
02/13: TTYPE1 = ’RAH ’ / right ascension (hours)
02/14: TBCOL1 = 1 / start in column 1
02/15: TFORM1 = ’I2 ’ / 2-digit integer
02/16: TUNIT1 = ’HR ’ / units are hours
02/17: TNULL1 = ’99 ’
02/18:
02/19: TTYPE2 = ’RAM ’ / right ascension (minutes)
02/20: TBCOL2 = 3 / start in column 3
02/21: TFORM2 = ’I2 ’ / 2-digit integer
02/22: TUNIT2 = ’MIN ’ / minutes of time
02/23: TNULL2 = ’99 ’
02/24:
02/25: TTYPE3 = ’RAS ’ / right ascension (seconds)
02/26: TBCOL3 = 5 / start in column 5
02/27: TFORM3 = ’E4.1 ’ / xx.x SP floating point
02/28: TUNIT3 = ’S ’ / seconds of time
02/29: TNULL3 = ’99.9 ’
02/30:
02/31: TTYPE4 = ’URAS ’ / rms uncertainty in RAS (seconds)
02/32: TBCOL4 = 10 / start in column 10
02/33: TFORM4 = ’E3.1 ’ / x.x SP floating point
02/34: TUNIT4 = ’S ’ / seconds of time
02/35:
02/36: TTYPE5 = ’DECDSIGN’ / declination sign

This is an extension of type ‘‘TABLE’’; it is a 2-dimensional matrix of 8-bit bytes, with 80 bytes
per row and 2268 rows in the matrix. The keyword TFIELDS on line 8 tells us that there are 22 columns
in the table. Keyword EXTNAME specifies a name for this extension (multiple extension structures can
be concatenated within a single FITS file, and can be distinguished by their names). Each of the table
columns is documented by a set of five keywords. TTYPEii specifies the column label for the ii -th
column. TBCOLii specifies the ordinal in the matrix of the first character of the data field of the column,
and TFORMii specifies the format (and the field width) in Fortran style. TUNITii specifies the physical
units of the column and TNULLii specifies the field value that signifies nulls. Here is the last header
record:
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1 2 3 4 5 6 7 8
r/l 12345678901234567890123456789012345678901234567890123456789012345678901234567890

05/01:
05/02: TTYPE20 = ’ZERO ’ / zero-level of fit (Jy)
05/03: TBCOL20 = 67 / start in column 67
05/04: TFORM20 = ’E3.3 ’ / (.)xxx SP floating point
05/05: TUNIT20 = ’JY ’ / Jansky
05/06:
05/07: TTYPE21 = ’PIXX ’ / x-coordinate pixel number
05/08: TBCOL21 = 71 / start in column 71
05/09: TFORM21 = ’I4 ’ / 4-digit integer
05/10:
05/11: TTYPE22 = ’PIXY ’ / y-coordinate pixel number
05/12: TBCOL22 = 76 / start in column 76
05/13: TFORM22 = ’I4 ’ / 4-digit integer
05/14:
05/15: AUTHOR = ’P. C. Gregory and J. J. Condon’
05/16: REFERENC= ’Ap. J. Suppl., submitted 1990 May’
05/17: DATE = ’11/06/90’ / file generation data (dd/mm/yy)
05/18:
05/19: END
05/20:
05/35:
05/36:

The next FITS logical record begins the table itself, which extends for 63 (=2268 / 36) FITS records.
Here are the first and last rows of the table:

1 2 3 4 5 6 7 8
r/l 12345678901234567890123456789012345678901234567890123456789012345678901234567890

06/01: 11 0 1.5 1.0 +181916 19 63.2 226.9 67 10 1.13 0.96 -64 -3 513 362
06/02: 11 0 3.2 1.5 +322917 23 65.7 194.2 35 7 1.38 0.68 55 -1 512 735
06/03: 11 0 5.6 1.6 +27 6 9 26 65.6 207.3 30 7 1.58 0.75 44 0 511 253
06/04: 11 0 9.7 2.0 +451913 25 61.8 166.3 27 6 1.28 0.69 -55 -2 510 93
06/05: 11 011.0 1.1 +105913 20 59.4 240.1 67 11 1.15 0.67 -4 -6 509 601
06/06: 11 011.7 0.9 + 515 9 18 55.8 248.3 135 20 1.22 0.66 -10 1 509 86

68/04: 115859.9 2.1 + 917 1 44 68.3 267.0 40 9 W 1.94 1.32 -32 -4 92 450
68/05: 1159 5.1 1.5 +472035 19 67.7 146.2 50 8 0.87 0.69 -80 1 222 283
68/06: 1159 6.2 1.6 +231311 27 77.8 230.2 35 7 1.20 0.73 -71 -1 119 804
68/07: 1159 6.9 0.9 +113140 19 70.1 263.6 146 21 0.92 0.74 -51 -2 92 651
68/08: 115911.4 0.9 +144814 19 72.7 257.3 211 29 1.01 0.81 -59 -1 96 942
68/09: 115914.0 0.9 +105335 19 69.6 264.7 153 22 1.12 0.68 5 0 89 594
68/10: 115915.7 2.0 +502524 24 65.0 142.4 32 7 1.66 0.98 -65 -6 237 559
68/11: 115916.7 1.0 +393541 16 73.9 160.6 261 32 1.15 0.85 8 1 179 484
68/12: 115919.2 1.1 +3313 5 19 77.6 181.9 73 11 1.03 0.72 -8 1 150 806
68/13: 115920.1 1.2 +445634 17 69.8 149.6 90 11 0.87 0.71 7 0 205 960
68/14: 115920.7 1.1 +3651 2 18 75.7 168.4 86 12 1.24 0.96 88 -3 165 238
68/15: 115929.5 1.4 +3130 0 23 78.3 189.5 43 8 0.99 0.67 -84 0 140 653
68/16: 115930.2 1.2 +581838 14 57.9 135.5 268 27 1.09 0.81 -4 0 283 369
68/17: 115933.9 1.9 +504917 22 64.7 141.8 36 6 0.94 0.79 -13 -2 235 595
68/18: 115934.4 1.0 +13 228 20 71.4 261.1 107 16 1.15 0.84 -25 1 85 786
68/19: 115935.0 2.3 +595826 22 56.3 134.4 35 6 1.77 0.99 89 -5 293 518
68/20: 115936.1 1.2 +45 122 17 69.7 149.4 78 10 0.96 0.81 -78 -5 202 75
68/21: 115937.6 1.6 +342824 25 77.1 176.7 36 7 1.34 0.70 -43 0 149 918
68/22: 115939.8 1.0 +214047 19 77.2 236.8 116 16 1.04 0.72 25 -1 102 667
68/23: 115941.5 2.5 +552123 26 60.6 137.6 27 6 1.25 0.83 -48 -5 262 104
68/24: 115941.8 2.2 +622451 19 54.0 132.9 43 6 1.12 0.78 48 -2 308 736
68/25: 115942.0 1.4 +182235 25 75.3 248.3 44 8 1.33 0.94 -85 -3 93 372
68/26: 115942.6 1.8 +721656 11 44.6 128.3 140 12 1.07 0.79 -20 -1 378 722
68/27: 115946.2 1.4 + 85619 26 68.1 267.9 48 10 1.19 0.61 -22 0 74 419
68/28: 115946.4 1.2 + 83314 24 67.7 268.4 61 11 0.95 0.61 -41 1 74 384
68/29: 115951.3 2.4 +272523 41 78.9 210.0 32 8 W 2.04 1.31 37 -8 117 288
68/30: 115951.6 2.3 +534640 25 62.1 138.9 29 6 1.05 0.76 -41 -1 249 858
68/31: 115952.1 1.4 +141830 26 72.5 258.8 43 9 1.35 0.66 -70 -2 81 898
68/32: 115952.1 1.3 +133037 25 71.8 260.4 48 9 W 1.05 0.56 4 -3 79 827
68/33: 115954.1 2.2 +514810 26 63.8 140.7 28 6 1.40 0.87 18 0 236 682
68/34: 115956.7 1.9 +482732 25 66.8 144.4 42 7 E 1.49 1.14 32 -5 216 384
68/35: 115957.3 2.2 +142322 57 72.5 258.6 37 8 W 2.83 0.80 29 -5 79 905
68/36: 115957.7 1.9 +585831 19 57.3 134.9 44 7 1.35 0.92 -40 1 282 429

This FITS bytestream consists of 68 logical records: 1 Basic FITS header record, 4 header records
for the table header and 63 records for the table itself. The fact that the last row of the table exactly fills
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the 36th line of the 63rd record is accidental; normally the last record is padded with blanks. Also, the fact
that the rows are 80 characters long, commensurate with 2880, is peculiar to this table; other tables might
have other row lengths. If the row length is not commensurate the rows of the FITS matrix are written as
a contiguous stream without regard to logical record boundaries. The total stream is 195840 (=68 × 2880) bytes
long.

This file is number 11 of 24, covering the eleventh hour of Right Ascension, the celestial longitude
coordinate, and the total survey contains about 50000 sources. Other analogous radio surveys at different
frequencies can be compared and composite tables containing source strengths or non-detections as a
function of frequency can be constructed. Similar surveys in other frequency ranges (X-ray, ultraviolet,
optical, infrared) can also be compared with this source list, and valuable astrophysical insight comes
from such ‘‘panchromatic’’ astronomy.
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On the Relationship of Extensible DBMSs to Scientific Databases†

Don Batory
Department of Computer Sciences

The University of Texas

DBMSs are complex software systems that are notoriously difficult to build. Extensible database
systems were conceived to ease the burden of DBMS construction. A number of different approaches to
extensibility have been proposed and realized within the last year [Car88, Haa89, Sto86]. Among them,
the Genesis approach is distinguished as a software building-blocks technology [Bat88a-b, Bat89]. Its
premise is that complex software systems can be constructed from prefabricated components in minutes at
virtually no cost.

Genesis 2.0 became operational in November 1989. Our objectives were achieved: customized rela-
tional DBMSs in excess of 50K lines of C could be specified and their executables produced within a half
hour. The process of specification relies on a graphical layout editor which enables target systems to be
defined as compositions of available software components. A top-down design methodology is embodied
in the editor, where implementation details, ranging from the selection of nonprocedural data language(s)
to the packaging of records in physical blocks, are captured by component assemblies. File structures,
storage systems, network DBMSs, and relational DBMSs can be expressed by the editor.

Scientific databases (SDBs) pose a unique opportunity for evaluating extensible DBMSs. Extensible
DBMSs are new and relatively untested. They provide features and capabilities that their designers felt
would be critical for tailoring DBMSs to new applications. Are these features sufficient for SDBs? If not,
what is lacking? Research in SDBs can answer important questions that could significantly influence the
course of future extensible DBMS research.

At the same time, extensible DBMSs provide a unique opportunity for helping SDB researchers.
Given the algorithms, data languages, etc. that are believed necessary for storing and processing SDBs
effectively, extensible DBMS technologies should be able to produce database systems customized for
SDB applications. Experimentation with such systems should provide invaluable feedback on proposed
algorithms, etc., ultimately reducing the time in which SDB research impacts SDB end-users.

The research communities for scientific databases and extensible DBMSs have the opportunity of
advancing their respective domains in important ways through cooperation.
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Database Needs for Global Change

Francis Bretherton
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This papers starts from the needs of Earth System Science, and emerging perspective on the functioning of
our global environment. It requires understanding the workings of an interconnections between the atmo-
sphere, ocean, cryosphere, solid earth and biosphere, with particular attention to the changes over decades
to centuries due to human activities and natural variability. As the Global Change Research Program, it is
a major U.S. initiative, linked to similar efforts in other countries around the world. It is multi-agency and
multi-disciplinary, requiring global measurements and their synthesis over many decades. The volume of
satellite data is expected to exceed 1 TByte/day by the end of this decade. Associated in situ data will be
very complex and diverse, ranging from automated instrument systems measuring temperature in the ocean
to descriptions of the annual cycle of crop planting and harvest in Africa. The management of this infor-
mation will be crucial, and a substantial fraction of available resources are being earmarked for this task.

Types of scientific activity driving the information management activity include:

Preparation of global measurement products
Syntheses using numerical models
Process studies
Data archeology
Assessments

The information system will be distributed, multi-disciplinary, and must be able to evolve with time. Con-
trol will largely be decentralized, in the hands of many different scientific groups cooperating with national
data centers according to acceptable information integrity and exchange standards. Data systems will have
to cope not just with raw data, but with metadata, and with added products and assessment information.
Derived products are likely to be the most commonly retrieved information, but an archive adequate for
re-derivation of those products is also required.

Specific issues for database systems include:

(i) The relational model is probably inadequate. Proximity in space and time is an essential attribute for
geophysical data, that must be efficiently recorded and handled in queries. Also graphical and loosely
structured text such as log books and quality assessments must remain effectively associated with the data
sets to which they refer. An object oriented approach that includes access methods with the data is needed.

(ii) Methods for browsing and classifying high volume image data need to be developed. Random access
to raw archives is prohibitively expensive.

(iii) For quasi-autonomous, distributed databases to work together, a common information exchange
language (SQL++ ?) is essential. Prototypes for such a language (or languages) need to be identified as
soon as possible.

(iv) Given the open-ended multi-disciplinary nature of this enterprise, no standardized lexicon or data-
dictionary is likely to be generally accepted by all parties. Instead, we will need an evolving system of
local aliases relatable to a centralized corporate name that uniquely identifies each distinct construct. How
can this lexicon itself be managed?
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Extensible Database Systems and Scientific Data

Michael J. Carey
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Background

Until the past few years, research and development efforts in the database system area were focused
primarily on the support of traditional business applications. The design of database systems capable of
providing effective support for less traditional data, such as scientific data, geographic data, image data,
and computer-aided design and manufacturing (CAD/CAM) data, is now widely recognized as an impor-
tant and pressing problem in the database community. Significant challenges await next-generation data-
base systems, as the needs of emerging database applications can differ quite widely from one another. For
example, some applications involve managing complex objects with many small subobjects; some depend
heavily on support for data with rich spatial relationships, requiring spatial operations; many require sup-
port for temporal data, but various notions of time exist; some involve handling very large objects such as
images or large arrays. Even the "restricted" domain of scientific data promises to be very challenging,
given the rich range of scientific data of interest nowadays; examples include sequences of Earth images
produced by weather satellites, genetic sequence data, measurements from high energy physics experi-
ments, NMR data, and descriptive data about scientific instruments and the structure of complex scientific
experiments.

Potential Solutions

Despite the apparently wide range of database requirements posed by emerging applications such as
scientific data management, certain general themes are clear: the need for new data types (simple and/or
structured) and their associated operations, new storage and index structures to support their storage and
manipulation, and optimization support to ensure that queries involving such new data types can be pro-
cessed efficiently. In response to these requirements, a number of researchers have undertaken the design
and implementation of so-called extensible database systems. Prominent examples of ongoing extensible
database system projects include POSTGRES at the University of California-Berkeley, Starburst at the
IBM Almaden Research Center, EXODUS at the University of Wisconsin, and GENESIS at the University
of Texas [1]. These projects can be loosely classified as being either "complete DBMS" projects
(POSTGRES and Starburst) or "DBMS toolkit" projects (EXODUS and GENESIS). The complete DBMS
projects aim to provide a full DBMS, based on a single data model (an extended relational model), to
satisfy all new applications. In contrast, the goal of the DBMS toolkit projects is to provide tools that will
enable new DBMSs to be easily constructed to handle new and different applications as they arise.

The EXODUS project at the University of Wisconsin [2] is an extensible database system project
that falls into the DBMS toolkit class. The project’s goal is to reduce the effort needed to develop a new,
application-specific database system such as a scientific data manager. EXODUS provides certain kernel
facilities, including a versatile storage manager. In addition, it provides an architectural framework for
developing new database systems; powerful tools to automate certain aspects of the development process,
including a rule-based query optimizer generator and a new programming language; and libraries of gen-
eric software components (e.g., access methods) that should be useful for many application domains. We
recently designed a data model and query language that we view as a solid foundation for many next-
generation database applications, and we are now putting the EXODUS toolkit to the test by using it to
build a DBMS based on this design. It is our hope that the EXODUS toolkit will prove to be useful for
addressing the challenges posed by the many scientific data management problems that appear to be emerg-
ing.

My Workshop Interests

I am associated with the EXODUS project, but I also recently spent three months working on the
Starburst project [3] as a visiting scientist at IBM. In addition, I have a strong interest in object-oriented
database research, a related direction in database technology that offers solutions to problems posed by cer-
tain classes of emerging database applications. As a result, I am hoping to get at least two things out of the
workshop. First, I am hoping to gain a much better understanding of the current and anticipated data
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management problems faced by the scientific research community. Second, I am hoping to gain insight
into how the various solutions being developed in the database research community — full extensible
DBMSs, extensible DBMS toolkits, and object-oriented DBMSs — may help in addressing scientific data
management problems. Of particular interest are the questions of (i) how different the data management
requirements are across various scientific disciplines, and (ii) whether or not it appears feasible for a single
DBMS to provide an effective solution across many disciplines.
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Are Recent Advances in Database Management Technology
Relevant to Scientific Databases?

Umeshwar Dayal
Digital Equipment Corporation
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For applications that require access to large, shared repositories of data, database management sys-
tems (DBMSs) offer many advantages over ordinary file systems. DBMSs provide data independence by
separating the conceptual model of data from the physical storage structures or access methods; this per-
mits modification of the storage organization and access methods to improve performance, without requir-
ing that the applications be rewritten. DBMSs allow different applications or users to have different views
of the same data. Modern DBMSs provide a high level query language in which users can express what
data is to be retrieved, without specifying in detail how to retrieve the data; the DBMS optimizes the exe-
cution of the request. DBMSs control the integrity of the database and protect it from unauthorized access.
DBMSs provide backup and crash recovery facilities, and mechanisms for synchronizing concurrent
accesses to shared data.

Traditionally, DBMSs have been aimed at business data processing applications. Their data models
and type systems are limited to modelling files (or relations), which are collections of structured records
(tuples) composed of fairly short alphanumeric fields (attributes). Their query languages are limited to
expressing first order queries, plus some arithmetic and aggregation operators, over these collections of
structured records. Access methods typically are limited to sequential files, B-trees, and hashing. Only
simple integrity constraints such as unique keys, value-in-range, and referential integrity are supported.
The atomic unit of work for purposes of integrity control, concurrency control, and recovery is the transac-
tion, which is assumed to be of short duration.

Recent advances in database management technology have been aimed at extending the benefits of
DBMSs to other application domains. These advances include enhanced data models, query languages and
user interfaces, access methods, integrity control, and transaction management. Much of this work has been
done in the context of extensible, object-oriented DBMSs (OODBMSs) and active DBMSs (ADBMSs),
and has been strongly influenced by the requirements of CAD/CAM, computer-aided software engineering,
and geographic information systems.1

My thesis is that many of these advanced capabilities will also be useful for managing scientific data-
bases. Scientific databases typically consist of vast quantities of unstructured ‘‘raw’’ data (e.g., observa-
tions, measurements, photographs, images), stored in many files (often on removable media); and struc-
tured data (e.g., the results of analysis or processing performed on the raw data; metadata that describes the
configuration or environment under which the raw data was obtained, instrument characteristics, etc; and
directory or catalogue data to help locate the files in which the raw data is stored). OODBMSs can bring all
of these different types of data under centralized control. Object models can directly model conceptual
entities such as experiment runs, observations, instruments, and observers; and the complex relationships
among these entities. For example, the model can be used to associate the structured data resulting from
analysis with the experimental data on which the analysis was done; or to link together data from different
runs of an experiment. Object models permit the modelling of highly structured ‘‘complex’’ objects that
are composed of other objects (e.g., an experiment may consist of several steps, each of which is itself an
object with associated information that must be recorded); and unstructured or ‘‘one of a kind’’ objects
(e.g., images, text, speech, annotations). They provide a wide range of collection types such as arrays, vec-
tors, and sequences, in addition to the conventional sets, tuples, and relations. Their generalization and
inheritance mechanisms are useful for organizing large databases with many different classes and instances
of objects. OODBMSs are extensible: new abstract data types, together with their representations, access
methods, and operators, can be added. This makes it possible, for example, to define an image or document
data type, and to include operators of these (and other) types in queries. Extensible query optimization
techniques are being developed for optimizing queries that include user-defined operators. The use of a
high level query language that provides operators for searching collections of objects and detailed
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Dayal

manipulations of individual objects facilitates exploration. Ideally, the query language is seamlessly
integrated with a programming language, so that complex computations can be invoked within queries.
Also, ideally, a graphical user interface is provided so that the scientist does not have to learn an unfamiliar
query language or programming language.

In addition, there has been work on modelling, storing, and accessing dimensional (e.g., spatial and
temporal) data, which clearly is very important for scientific databases. The spatial and temporal operators
can be combined with operators for searching over collections of objects to formulate queries such as
‘‘Find observation data for the past week for all objects located within a distance of x units from object y.’’

The development of active DBMSs was motivated by the need to provide timely, and customizable,
response to critical events or situations. ADBMSs support the event- or data-triggered invocation of
actions, in addition to the conventional, imperative, procedure call mechanism. This capability has many
uses. An example is flexible integrity control. Conventional DBMSs evaluate integrity constraints immedi-
ately on updating the database, or at the end of a transaction; in an ADBMS, constraint evaluation can be
triggered when certain specified events or situations are detected in the database. Instead of simple predi-
cates that are evaluated against the database, arbitrary integrity procedures can be invoked. This feature
could be useful in a scientific database where integrity of the data might depend on the experimental
configuration, instrument calibration, environmental factors, etc. Also, when an integrity violation is
detected, rather than roll back the transaction in its entirety, some less drastic action might be specified
(e.g., notify an operator) or a procedure might be called to ‘‘patch’’ the database (e.g., adjust the data to
correct for errors in instrument calibration). The active capabilities can also be used to alert scientists when
certain patterns of events or data are detected. They can be used to propagate operations from one object to
other, related, objects (e.g., to propagate updates from one view to another). They can be used to maintain
snapshots of the database on which the scientist may try out various ‘‘what if’’ scenarios or hypotheses; the
ADBMS can refresh the snapshot as desired (immediately as the underlying database is updated, periodi-
cally, after some critical events, or on demand). ADBMSs can be used to support collaboration in a group
of scientists by allowing them to share data, and by notifying collaborators when significant events are
detected by some members of the group. They can be used as the basis for workflow control; i.e, control-
ling long-running activities (longer than a single transaction) consisting of several steps that must be
correctly sequenced (e.g., the steps of an experiment, a simulation, or an analysis procedure). Finally, there
is ongoing work on time-constrained active DBMSs, which guarantee real-time response.

At the workshop, I would like to assess the relevance of these emerging technologies to scientific
databases. There are no commercially available DBMSs today that can fully meet the performance needs
of scientific database applications. However, the metadata, analysis data, directories and catalogues could
be brought on-line; also, there are clear advantages to bringing the raw data files under the control of a
DBMS. However, many challenging problems remain in dealing with the size, complexity, and rate of
growth of scientific databases. I would like to understand these problems, and to identify directions in
which DBMS technology should evolve to solve them: for instance, the development of more sophisticated
models, query languages, or user interfaces to facilitate ease of use by scientists; the use of optical devices
to meet the on-line storage needs; and the exploitation of parallelism and large main memory caches to
reduce computation and retrieval costs.
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Ensuring Quality Data by Fostering Teamwork
Between Researchers and Data Specialists

Vernon E. Derr
National Oceanic and Atmospheric Administration

As the nation’s scientists become more concerned with interdisciplinary data extending around the
globe in climate and global change studies, the necessity for extensive data sets useful for correlation stu-
dies and other analysis increases steadily. A new breed of scientist is appearing. They often get their prin-
cipal data from data archives rather than by their own efforts in the field or laboratory. Their demands on
data archivists for documentation attesting to quality, accuracy, precision, resolution and completeness
cause a strain on services from data centers.

Recognizing that the quality of data is an evolutionary process, that requires updating and reassess-
ment, is vital to improving the health of data sets and providing researchers with trustworthy information.
An example of reassessment in satellite data is the development of new algorithms for calculating physical
parameters from basic irradiances that would perhaps remove some of the noise and provide greater accu-
racy. Often such improvements are discovered by the scientists analyzing the data.

The extensive interdisciplinary data sets needed must be comparable in coverage and accuracy and
resolution to be useful in analysis. They may come from many data sources, perhaps even foreign sources,
and with varying quality. The researchers who need such data sets may be hard pressed to assemble them.
On the other hand, the data clerks in large centers may not normally have the scientific knowledge to pro-
vide the data as required by the researcher.

This impasse occurs often enough to require a solution. One solution might be to require the scien-
tist to delve deeply into the details of data archives. (It seems impractical to hope that data clerks would be
able to become scientifically sophisticated.) An optimum way to solve the problem would be to engage
qualified scientists in the data centers to work directly with the researchers in developing data sets, direct-
ing the activities of less knowledgeable (and less expensive) aides. A number of data centers have begun
to move in that direction by hiring well-qualified scientists. Why would a well-qualified scientist want to
work in a data center? For the same reasons a safe-cracker would like a job in a safe manufacturing com-
pany — the information available is invaluable.

The teamwork that is developing between computationally-oriented researcher and data specialist
scientists is especially rewarding when they join in writing papers and reports. The incentives for each as
joint authors is stimulating to a high degree and results in excellent science. That is, of course, the goal.
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Scientific Database Workshop Position Paper

Glen Flierl
Massachusetts Institute of Technology

The global scale observational programs in oceanography and in the area of "Global Change" will
gather volumes of biological, chemical, and physical data far beyond our present holdings. The data sets
will be highly diverse, not only in that many different processes will be observed, but also in that many
different techniques will be used by numerous groups all over the world. Microcomputers and worksta-
tions have dramatically altered the gathering and analysis of oceanic data. While the convenience and ease
of use of these machines make them ideal for the individual working on his or her data, the process of
exchanging data or collecting relevant information from archived data sets has become even more difficult.
Everyone uses different formats with different procedures for manipulating data; while many commercial
products permit importing/exporting data from other systems, few of them deal with data stored remotely
in large archives. In oceanography, the agencies archiving data are accustomed to supplying it on magnetic
tape media in their own specialized, limited, and not always convenient format.

Commercial data bases (at least those with which I am familiar) are not entirely appropriate for
scientific data for a number of reasons:

(1) The relational model is often not adequate. Scientific data often represents sampling of a continuous
process; ordering therefore is meaningful. Interpolation, smoothing, curve-fitting, Fourier transforms,
et cet. all rely on the sequence of data. Data is often grouped and such groupings again have meaning
beyond coincidence of the values of one variable. Efficiency in storage and processing requires
recognition of the grouping; many operations likewise need to handle grouping properly. Data is fre-
quently multi-dimensional, for example, a variable being known on a three- dimensional grid.

(2) In the geophysical/chemical/biological sciences, data can often not be precisely interpreted without
much other information: how was the data gathered, what instrument was used, what processing was
done? For some types of data, such as trace metal distributions, even more detail is required. This
"metadata" is almost invariably separated from the data when it is entered into archives; this can
make the data virtually useless. Systems need to carry metadata as well as information about units
and quality flags throughout the processing and make them readily accessible to the user.

(3) Many data base systems are greatly concerned with the update process but provide relatively few
data manipulation tools. Most scientific work involves a relatively stable data base (or one with a sin-
gle point where data is entered) but extensive manipulations. The ability to share tools is as important
as the ability to share data.

(4) Commercial systems are usually "closed." The available operations are fixed by the designer. Some
permit combining these operations into more complex operations, but this may involve a substantial
speed penalty. A system with hooks permitting new operations to be added at any time, along with
sufficient support so that a reasonable programmer can construct a program for a new operation.

(5) Access from programs to the data base is important. While this is possible on mainframes, it is not
always inherent in micro systems.

(6) Scientific data users need to be able to access data stored in many forms (not known a priori) on
many different machines. While there are perfectly valid reasons for using different data storage and
access methods to optimize local processing, synthesis of various data sets often falters because of
the work involved in data conversion. Packaging a standard converter with the data can alleviate
these problems (an object-oriented approach).

(7) Scientists work in different modes at different times and these modes require different capabilities of
a database. In exploration or synthesis, flexibility in gathering and manipulating data is paramount. In
other cases, such as reducing satellite imagery, efficiency is essential. Whereas scientists may be wil-
ling in the latter case to spend considerable effort in designing a database schema, they will not in the
former case.

(8) Visualization is an important part of scientific data analysis. Some databases have quite sophisticated
graphics packages; however, these are rarely able to cope with the kind of output required for
meteorological data (for example). Again, because these systems are closed, it is virtually impossible
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to add a new kind of plot.

I suggest, then, that a scientific database for a large, multi-investigator project should combine

(1) A definition of data objects and catalog objects: what inputs and outputs are expected? The substan-
tial impact of such protocols on the way a community thinks is illustrated by the X Windows experi-
ence.

(2) Construction of programs which handle these interchanges and interface with data bases and collec-
tions of data in use.

(3) Packages of "filters" or functions which transform data and which can be added to at any time. The
common relational operations (extended to groups, lists, multidimensional arrays,...) form the basic
set.

(4) Modular display (both tabular and plotting) facilities, which again are extensible by the user.

(5) A macro/shell script facility for building more complex operations from existing functions.

While it seems possible to carry out these various steps, the process requires a special openness--
availability of tools from many different groups, access to source codes, etc.-- in all aspects. Such openness
is part of the scientific endeavor (but not common to commercial vendors) and is the only way to encourage
users to develop new functions and display modules. Such user participation is important in ensuring that
scientists are not impeded by the data system and can easily find, adapt, or develop tools to do the jobs they
need done.
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Database Statistics

Nancy Flournoy
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Statistics are procedures for summarizing information, drawing inference, and assessing error proba-
bilities and loss functions associated with the summaries and inferences. Statistical methods are designed
to accommodate specific data types (e.g., discrete or continuous; qualitative or quantitative; independent or
dependent). Each statistical method takes into account the protocol by which data are generated (i.e., the
sampling scheme) and depends upon a specific objective (e.g., test a hypothesis or estimate parameters)
which may include a utility function as well.

Database structures are new ‘‘data types’’ to statistics and a theory of database statistics is needed to
support decision-making based upon them. We might begin with the relational model, but there are
scientific environments better suited to the hierarchical model, the pedigree model, or networked models in
which common keys are absent. Thus for each type of database structure, a database statistic is defined to
be a set of mathematical and/or graphical procedures that operate on database structures incorporating data
accrual protocols to permit statements of confidence regarding an objective.

Many issues arise when considering various sampling schemes and their impact on statistical assess-
ments. Classical statistical assumptions, such as that data are independent, identically distributed (e.g., as
normal random variables) are laughably simplistic. However, at the forefront of work in statistical theory
these assumptions are being relaxed and sampling protocols are being generalized and analyzed mathemati-
cally.

For example, data accrues sequentially, not independently, in databases. Sequential methods
comprise a growing statistical subfield, with more recent focus on methods that adapt as information is
added. Also, computational power, numerical approximations, and Monte Carlo techniques are being used
to make Bayesian theory tractable.

Whereas work on sequential and adaptive methods is yielding results that improve the match
between database structures and statistical techniques, database sampling schemes are often much more
complex than the generalizations now being developed. For example, databases may contain mixtures of
administrative data together with data from more than one experiment performed on the same experimental
units (e.g., subjects, organisms, etc.) and from sequential experiments on different units. A retrospective
investigation may utilize data in various combinations. A growing collection of statistical methods that
deals with the synthesis of data over different experiments is being called meta-analysis. The connections
between meta-analysis, sequential statistics, and database structures need to be made explicit and
developed in concert with further developments in both structures and statistics.

Statistical methods should be defined in terms of operations that conceptually act directly on the
database structures. It is necessary to have analyses that use the actual error structure in the data so that
conclusions are based on more accurate appraisals. It also would be a conceptual and an operational
simplification to have statistical methods that act directly on data structures. From an operational point of
view, such methods would eliminate the intermediate process of coding the creation of a flat file before
doing a statistical analysis.

There are many challenges inherent in the development of database statistics. These include the
development of statistical protocols for sampling from large databases in conjunction with valid inferential
techniques. Database statistics also need a new calculus by which to operate on database structures. Such
a calculus would extend the operations of projection, join and selection to higher dimensions and incor-
porate the concept of matrix multiplication to produce higher order cross-products.

In addition to the development of database statistics, statisticians need to increase current thrusts in
the areas of disseminated quality control, data sharing, meta-data, confidentiality and data sharing. These
issues require multidisciplinary cooperation and exchange.



Fox

An Electronic Publishing / Information Storage and Retrieval
Perspective on the Management of Scientific Databases

Edward A. Fox
Dept. of Computer Science

Virginia Polytechnic Inst. & State Univ.

Scope

Scientific databases are at the heart of the investigations of many researchers in a variety of discip-
lines. "Database" as commonly used by scientists refers to collections that support a particular type of
investigation. What is notable about those databases from the computer science perspective, however, is
their heterogeneity. One may classify these databases using various contrasts: bibliographic vs. full-text,
graphic vs. image, speech vs. sound, simple vs. compound document, still vs. motion video, hypertext vs.
hypermedia, analog vs. digital, unstructured vs. normalized, relational vs. deductive, hierarchical vs. net-
work vs. tabular, local vs. distributed, geographic vs. spatial, etc. In addition to these matters of form and
structure, there are others relating to level of utility. One of the key distinctions here is the difference
between raw data, understandable information, and meaningful or usable knowledge. For the purposes of
this workshop, we propose that "scientific databases" be defined to include all of the levels, forms, and
structures mentioned above. That means that data, information, and knowledge must be considered, and
that databases can include multimedia objects of any useful type.

Prior Experience

To properly give a position, it is important to convey the basis for the statements made. As back-
ground, then, a few words are in order regarding previous research, development, and service activities.
This covers the broad areas of information storage and retrieval (IS&R) where the goal is to develop
methods, build systems, and conduct experimental investigations regarding making information readily
usable. Computer algorithms, data and file structures, query languages, knowledge representation schemes,
user interfaces, storage methods, networking, and a variety of other areas of computer science are involved
in IS&R. We have worked with two systems, SMART, designed for bibliographic collection handling
using statistical processing methods, and CODER (COmposite Document Expert/extended/effective
Retrieval), designed to support distributed information access to full-text collections through the use of AI
methods. These have been applied or are being applied to databases in computer science, medicine,
libraries, offices, and naval intelligence. Other work with digital video has focused on tool kits for
developers and on demonstrations of new technology.

In the area of electronic publishing, a series of CD-ROMs have been prepared, collecting dozens of
databases and making them accessible with a wide variety of search and hypermedia tools so that proper
contrast and usage is supported. In connection with ACM (the Association for Computing Machinery),
there has been involvement with hypertext publishing of scientific literature, a videotape documentary on
interactive digital video, extracting of book publications from review and bibliographic databases, develop-
ment of online searchable databases, and planning for construction of an electronic library in part through
standards-based work in handling electronic submissions.

Problems

Scientific databases should be usable by all those whose work would benefit from prior results, espe-
cially when produced as the result of governmental support. Key problems are: locating usable databases,
finding useful data in those databases, being able to extract that data in a usable form, and maintaining the
quality of the databases. These problems in turn lead to a host of related problems: how to effect proper
editorial control, how to develop and properly use standards, how to prepare searchable lists of databases,
how to develop network access software, how to handle electronic publishing on optical media along with
proper retrieval software, etc.

Technology

The technology involved in this field is rapidly developing. Even the long-time standard medium for
interchange, 9 track tapes, is no longer suitable for many purposes. The dramatic revolution in storage,
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where the production costs are now roughly one cent per four megabytes (for CD-ROM), make it very
clear that the real value is in the content and usability of databases. As CD-ROM or similar drives become
standard in workstations and PCs, and as storage technologies improve even further, individuals will have
local access to gigabytes of data. This has in part been made possible by electronic publishing methods,
whereby text, graphics, and in some cases images are directly prepared and processed with computers.

The other key technology, which has received much more attention by NSF, is networking. With
56KB links moving to T1 and T3 links, and as fiber networks proliferate in universities, business, and
eventually reach the home, there is tremendous opportunity for accessing vast amounts (terabytes) of
remotely stored data.

Methodology

To solve our needs to manage electronic databases, it would be wise to turn to the work that has gone
on since the 1950’s in the IS&R field. While there is widespread familiarity with relational database
methods and with certain tools relating to hypermedia, there is a great deal of largely ignored work that
could easily be applied to current problems in database access if proper initiatives were launched. Bringing
together investigators involved in — the classic field of IS&R, in database management systems, in object
oriented bases, in hypertext and hypermedia, in knowledge representation, and user interface design — a
coherent approach could emerge that should lead to standards, prototype development efforts, and practical
tools for the nation’s scientists. Wherever possible, such teams should work directly with creators and
users of scientific databases.

Plan

NSF should embark on a multi-pronged initiative as early as possible. This requires separate
administration from current programs, for several reasons. First, the computer science issues are often
viewed as more applied than basic from the vantage point of computer scientists, and so would receive low
peer review ratings. Second, funding in the knowledge and database area is at present inadequate to sup-
port the quality work that is being proposed. Third, funding by programs in the scientific disciplines that
produce the databases is also unlikely since support of work more central to those sciences would inevit-
ably be recommended by peer reviews in those disciplines.

In addition, there should be line items allowed in NSF project proposals to support not only page
charges, but also electronic publishing storage and production costs so that results are widely disseminated.
These efforts should be publicized, encouraged, and adequately supported.

The work required should deal with all of the problems discussed above. It should handle issues of
inventorying, cataloging, publishing, making accessible, constructing management tools, and developing
standards (with import/export software that is validated for all common environments) for key scientific
databases.

In launching this initiative to support making scientific databases usable, NSF should work with
other groups. NASA has recently called for proposals on an endeavor that relates, and NSF might choose
to collaborate. Other agencies are supporting standards work and research endeavors in medicine and other
areas that could be tied in. Outside government circles, too, there are many professional associations that
publish literature or databases — a coordinated effort in this regard would be of great value so that
researchers in universities and other laboratories can easily have access to useful data. One particularly
important initiative today is that of facilitating access to scientific publications at the workstation, so that
the myriad of authors, reviewers, and publishers stay coordinated enough so that the Library of Congress
and others need not retrospectively convert publications that are today produced on computer, published,
and then converted back to computer form in a way that looses most of the usefulness of the original.

NSF should and can take a bold stance on this matter, and would certainly effect considerable sav-
ings as a result of avoiding replication of investigations and wasted efforts of leading scientists writing
database management software or hunting around on the very expensive high-speed networks of tomorrow.
Proper support, followed up by encouragement of training in use of these new capabilities, will help our
nation move forward as a leader in the Information Age.
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The Challenge of Scientific Database Management

James C. French
Department of Computer Science

University of Virginia

Interest in scientific database management is heating up. A year ago a front page story in the Wall
Street Journal1 chronicled the woes of scientists facing the deluge of new data being made available by
increasingly sophisticated instruments. The same article noted that only 10 percent of existing space data
is ever analyzed; most of this data, gathered at considerable expense, may never be analyzed. More
recently, the director of the national data center at NASA Goddard Space Flight Center has conceded that
existing funding is inadequate to handle the impending increase in data.2 Scientists are becoming increas-
ingly dissatisfied with the situation. National data centers are being referred to as ‘‘data cemeteries.’’ Our
ability to collect data has far outstripped our ability to manage it effectively.

It is estimated that EOS (Earth Observing System) will create the equivalent of the entire Landsat
archive every two weeks; that is, as much data in two weeks as Landsat created in its 17 year lifetime.3

The situation is no different in the life sciences. According to a 1988 report of the National Research
Council,4

The mapping and sequencing effort will generate more data than any other single project in the history of
biology. For example, just to record the 3 billion nucleotides [of the] human genome will require nearly 1
million pages of printed text.

It has been estimated that the projected sequencing activity will cause GenBank to grow anywhere from
1000 to 1 million times its current size in the next 10 to 20 years.5

A recent Science editorial6 has described the situation as ‘‘a kind of electronic chaos that limits the
value of the vast store of information for the average user.’’ But, this is not a new refrain. Forty five years
ago, as World War II was drawing to a close, Vannevar Bush urged that, in his editor’s words, ‘‘men of
science should then turn to the massive task of making more accessible our bewildering store of
knowledge.’’7 Bush himself wrote that:

There is a growing mountain of research. But there is increased evidence that we are being bogged down to-
day as specialization extends. The investigator is staggered by the findings and conclusions of thousands of
other workers — conclusions which he cannot find time to grasp, much less to remember, as they appear.
Yet specialization becomes increasingly necessary for progress, and the effort to bridge between disciplines
is correspondingly superficial.

This sentiment was echoed 25 years later in 1970 by Alvin Toffler who wrote in Future Shock,8

Today change is so swift and relentless in the techno-societies that yesterday’s truths suddenly become
today’s fictions, and the most highly skilled and intelligent members of society admit difficulty in keeping
up with the deluge of new knowledge — even in extremely narrow fields.

Ideas come and go at a frenetic rate. (A rate, that, in science at least, has been estimated to be twenty to one
hundred times faster that a mere century ago.)

Clearly, our shortcomings in the management of scientific data have been recognized for many years.
������������������������������������

1 Wall Street Journal, January 12, 1988.
2 "Jukeboxes for Scientists," Scientific American, 261,1 (July 1989), pp. 24-25.
3 News & Comment, Science, 244 (June 16, 1989), p. 1250.
4 Mapping and Sequencing the Human Genome, Report of the Committee on Mapping and Sequencing the Human Genome,

National Research Council, Washington, D.C., 1988, p. 75.
5 J. W. Fickett and C. Burks, ‘‘Development of a Database for Nucleotide Sequences,’’ in Mathematical Methods for DNA Se-

quences, M. S. Waterman (editor), CRC Press, Boca Raton, Florida, 1989, 1-34.
6 Retrieval of Scientific and Technical Data, Science, 245 (July 7, 1989), p. 9.
7 V. Bush, ‘‘As We May Think,’’ The Atlantic Monthly, 176,1 (July 1945), pp. 101-108.
8 Alvin Toffler, Future Shock, Random House, 1970, p. 157, 177.
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Today, we are attempting to address the same problems.

Our inadequate handling of our acquired knowledge has led to one particularly alarming situation.
As Bush noted, ‘‘Mendel’s concept of the laws of genetics was lost to the world for a generation because
his publication did not reach the few who were capable of grasping and extending it.’’ More recently, it
has been noted that the celebrated hole in the ozone layer should have been detected ten years earlier —
evidence of its existence was present in the Nimbus-7 satellite data at that time.

Why does this situation persist? Why have we not solved our problems with scientific data? We
have not lacked vision. In 1945, Bush noted that, ‘‘The world has arrived at an age of cheap complex dev-
ices of great reliability; and something is bound to come of it.’’ He then went on to posit a machine,
memex, which correctly anticipated the desktop workstation, electronic mail, and hypertext. He also
envisioned an environment of harmonious data and knowledge sharing in which practioners were able to
make immediate productive use of the work of others. The current availability of ‘‘cheap complex devices
of great reliability’’ far exceeds anything that Bush imagined. Why then has this ultimate goal of his vision
not been realized?

The reasons are many and complex. Some examples include: insufficient funding; inadequate access
to technology; and too few individuals trained to analyze data.9 The root cause, however, is that we have
just not had the commitment. Until the management of scientific data is accorded priority on the national
research agenda, we will continue to lack the funding, equipment, and people necessary to solve the techni-
cal problems. Fortunately, evidence of the last several years suggests that the problems are gaining visibil-
ity and the resolution of the problems is beginning to be given due attention.

The scientific community abounds with data that has been collected by individual investigators and
has, in some sense, become the property of the investigators. The maintenance of the acquired data is a
necessary evil in the conduct of any scientific investigation. Sharing data, however, requires much more
effort on the part of the investigator (e.g., standards of quality must be maintained and guaranteed, docu-
mentation must be provided, etc.) and, from the point of view of the investigator, may not be worth the
effort. It is the availability of data to individual researchers, that is, sharing of data, which should be the
focal point of this workshop.

There are already two well known and very ambitious projects for widespread data sharing under-
way: the Global Change program and the Human Genome Project. These are concrete areas in which com-
puter science database researchers can become involved. They are also sufficiently diverse so that they
encompass most if not all the extant problems. Both initiatives involve intradisciplinary and, to one degree
or another, interdisciplinary sharing of heterogeneous data. While sharing data within a discipline is non-
trivial, sharing across disciplines is a much more difficult undertaking. But the heterogeneous distributed
database problem facing scientists is much less difficult than, for example, the problems that would be
faced by the European Economic Community.

The impression given by many scientists is that the computer science community has been singularly
unhelpful in solving the problems of data management. Within the database research community, scientific
databases have been seen by many as largely uninteresting and unglamorous. (This attitude is prevalent in
the sciences too. After all, few careers are advanced through the stewardship of data.) A relatively small
number of researchers work in this area. This workshop can serve as an educational opportunity and help
to attract researchers to this area.

Although we can not address all the problems with data management facing the scientific commun-
ity, we can make some strides toward identifying the technical issues involved and foster a cooperative
interdisciplinary atmosphere for solving these problems. Only then will we be able to achieve Bush’s goal,
that ‘‘The applications of science . . . may yet allow [man] truly to encompass the great record and to grow
in the wisdom of race experience.’’ Our challenge is to make the ‘‘great record’’ conveniently available to
the scientific community.

������������������������������������
9 According to the Association of American Universities, there will be a shortage of some 7500 Ph.D.’s in science and engineer-

ing by early in the next century. (The Ph.D. Shortage: The Federal Role, AAU, Washington, D.C., January, 1990)
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Two of the key questions to be addressed by the workshop are the following: (1) What current data-
base technology can be used in scientific data processing; and (2) What types of additional tools need to be
developed. In a first attempt to answer these questions, let me briefly look at the steps that I think are
involved in scientific data processing. (I will probably have a better understanding after the workshop; this
is my current understanding.)

(a) Producing. The first step is obviously producing the data, out of some experiment or sensor.

(b) Finding. For many, however, the first step involves finding the data produced by others. The scien-
tist decides he or she needs some particular type of data, and then must figure out who has such data.

(c) Interpreting. Once the data is procured, it must be interpreted. This involves figuring out what
exactly each datum represents, e.g., what instrument was used to obtain it, how accurate the data is,
what the test environment was, and so on.

(d) Modeling. Related to the interpretation phase is the modeling phase. This is the traditional database
activity of abstracting the entities and relationships that exist. For example, we may determine that a
measurement record contains three fields, temperature, pressure, and date. For each sensor object,
there corresponds a set of measurement records, and so on.

(e) Translating. After the data is interpreted and modeled, it may have to be translated to a different
environment for processing. This may involve changing the model and the interpretation.

(f) Storing. The data needs to be safely stored, providing such things as protection from failures, con-
currency control, and security.

(g) Processing. Finally, the data must be processed. This is very application dependent, but there may
be some common functions among scientific applications. For example are traditional database
query functions, statistical analysis (e.g., sampling, graphing, aggregation, interpolation), and time
analysis (e.g., time series analysis, time based queries).

The three steps where current database technology can provide the most help are the finding, model-
ing, and storing ones. The problem of finding scientific data is very similar to that of finding any resource
in a large distributed system (e.g., finding where machine "foo" is located) or in an information retrieval
system (e.g., finding the right book in a large library). For modeling, database researchers have provided a
wealth of models, from relational to object oriented to semantic. The scientific applications I have seen
tend to have very simple models (e.g., a file of records with 10 fields each). The file may be huge, but the
structure is simple. So in my opinion current models are more than adequate. The hard part is interpreting
and translating the data (steps (c) and (e)). Finally, there also exist many known techniques for reliably
storing data. There may, however, still be a few open questions such as management of very large objects
and data compression.

For the interpreting, translating, and processing steps I feel that current database technology is
nowhere near adequate. The main problem is that these steps are very application dependent. As stated
earlier, there are some common functions that databases may provide, but most of the hard problems are
beyond this. To translate, say, polar coordinates into cartesian ones one must actually "understand" the
application. This coordinate translation is different and unrelated to say, translating a reactor temperature
reading into an energy yield reading.

One possibility is to take a "black box" approach, where we view the database system as being a data
repository plus a collection of black boxes that "connect" one datum to another. The black boxes encode
the necessary translation and processing functions. Although this may be advantageous in some cases, in
others I think it may just push the hard problems into the black boxes, for someone else to worry about.
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Data Management for Genome Research

Nathan Goodman
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To a biologist, the term data management means more than it does to a computer scientist. It covers
all aspects of computing except data analysis. The main issues are graphical user interfaces (GUI), data
visualization, and data management per se. I will limit my comments to the latter.

A data management system has four parts. The core is the data model, e.g., relational. On top is the
language and programming model, e.g., SQL embedded in C. On the bottom are the architecture and
implementation. On the side are operational controls. All four parts must be suitable in order for a data
management system to work well in a specific application area.

Relational systems are the mainstream, best developed, data management systems today. Object
oriented systems are starting to come out. A lot of new (and not so new) ideas are in research, including
spatial, temporal, semantic, and non-first normal form (NF2) models.

Relational systems are not particularly good for genome work. The data model is not well suited for
many important kinds of genome data, including sequences, maps, and images. SQL is not well suited for
sequence searches and other important genome queries. The architecture and implementation cause perfor-
mance problems. Nonetheless, in the near term, relational systems are the only game in town and we have
to live their weaknesses.

The key near term requirements are training and database design tools so that biologists can use rela-
tional systems more productively.

The next step is to try out object oriented systems. These systems are new and incomplete. I believe
in object oriented, but it’s too early to tell how useful it will really be for genome databases.

The third step is to move new data models from research into practice. I would like to see the
development of a usable prototype system that incorporates these new data models. This is likely to be an
expensive undertaking unless we can find a way to channel existing research efforts into the project. Data-
base integration is an important theme at all steps. Many individual researchers and labs collect genome
databases. A key problem is integrating these databases into a cohesive whole.
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The biological sciences, and molecular biology in particular, present significant challenges for data
management and database technology. These challenges stem from the nature of the science and the
characteristics of the data that are generated. Both the amounts of data involved and the potential for their
analysis are in a period of unprecedented growth. Present approaches to data management will soon fail to
support the science, and indeed have never allowed full exploitation of the data already available.

A diverse science

Molecular biology derives largely from genetics and biochemistry, and many of its paradigms reflect
these origins. The science is a "cottage industry", and its practitioners tend to group themselves according
to model organisms and methods. As the science has become more data-intensive, these characteristics
have led to the separate development of data collections, tools, and analysis methods which are used
within, but rarely across domain boundaries. As a result, little effort has been devoted to designing these
resources in a common way, or in ways which might facilitate their use together. Even relatively simple
questions requiring coordinated analysis of data collections related in obvious ways (e.g., DNA sequences
and three-dimensional protein structure coordinates) can often be approached only through the laborious
construction of special-purpose software, a task rarely undertaken by biologists. As a result, the many data
collections now available do not easily support investigations into the broad range of biological questions
they might, in principle, help to answer.

Integrated management of biological data is even more difficult than integrated use. The data are
very diverse, and their validation, maintenance and interpretation requires specific expertise in each case.
This defeats immediately any vision of creating a single global repository for all biological data: even if all
the requisite expertise were gathered in one place today, new methods would shortly provide data for
which new expertise would be required. For the same reason, any single database design would not long
remain adequate for the representation of all biological data, even if such a design could be completed
once.

These problems have recently been approached through the construction of controlled-vocabulary
cross-references and "backbone" databases. These efforts are intended to allow local experts to maintain
the factual content of portions of a larger database, while permitting common central management of the
relationships among the parts. These efforts will greatly facilitate management and exploration of data
across existing boundaries, at least for closely related data sets. In the longer term, however, even these
efforts seem unlikely to provide an environment in which all biological data can be easily explored, and
into which broad new insights can easily be integrated.

Fuzzy data

Unlike many measurements in the physical sciences, biological data often have a fundamentally
qualitative flavor, even when they are numerical. Primary data are usually about observables which
represent the aggregate results of very complex behavior (e.g., the position of a band on an electrophoresis
gel). These data must be interpreted in terms of specific experience to reveal information about the system
under study. For this reason, present databases store interpretations rather than primary data (which are
rarely published). Re-interpretation of results, often necessary because of the extensive interrelatedness of
biological data, is therefore quite difficult. Future databases will need to reflect these complex relation-
ships more explicitly if the situation is to improve.

The qualitative (or better, integrative) nature of many of the stored data also generate interesting
analysis requirements. Biology often proceeds by analogy, through comparison of experimental results
from different methods, or of results in different organisms or gene systems. These analogies are almost
always inexact. There is thus a need to search the body of known results for patterns at a very high seman-
tic level. For example, it is rarely helpful to search the database of known protein structure coordinates for
the absolute positions of specific atoms, but it is immensely helpful to search for known structural motifs,



Hamm

such as a certain juxtaposition of several alpha helices. This sort of search has only recently been possible,
and serves to illustrate the kind of capability that will be needed across biology. Other examples include
searches for similar biochemical "circuits", searches for patterns of evolutionary distance among groups of
organisms, or perhaps for patterns of organization of genes within a genome or chromosome. None of
these searches can be performed at the level of the data actually reported and stored, and none are easily
possible with present approaches.

Prospects

Fortunately, many of these problems are receiving unprecedented attention, in part due to the
widespread attention given the Human Genome Initiative. Data management problems which were per-
ceived by only a few workers in specialized areas are made obvious by a project whose information needs
are several orders of magnitude beyond anything yet attempted in the biological domain. As a result, ele-
ments of a solution to the database problems in biology are emerging.

First, computational science has begun to deliver technologies which have tremendous promise for
biological databases. Examples include the object-oriented design paradigm, frame-based representational
systems, special-purpose database hardware, and semantic search algorithms. Advances in computing
hardware have resulted in nearly universal availability and familiarity with some level of computer, and
wide availability of very high-performance computers. Second, biologists are becoming increasingly
sophisticated in their use of computers, and in their abilities to state their research requirements in terms of
computational strategies. Third, biological science is now posing questions which provide problems of
fundamental interest to computer scientists, creating the possibility of effective interdisciplinary work.
Finally, there is a growing community of "trans-disciplinary" workers whose expertise is centered at the
interfaces of biology and computing, and who can provide much of the insight into how the two fields can
productively interact.

One of the principal challenges in scientific computing in the next decade will be the development of
database systems which can handle the inherent complexity of biological information. The existence and
availability of such database will transform biological research. Meeting this challenge will require the
construction of databases in fields where none are available, significant research and development in data-
base and knowledge base technology, and the provision of a robust and widely available computational
infrastructure for biological science.
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Data Management for Climate and Global Change

Roy Jenne
Data Support Section, Scientific Computing Division

National Center for Atmospheric Research

We have a small data section (six people) at the National Center for Atmospheric Research (NCAR),
whose job is to ease the problems of data access for research in Meteorology, Physical Oceanography, and
overall climate studies and modeling. The group has one of the largest archives of data (over 350 datasets,
and a volume over 16 trillion bits). Users with access to the supercomputers at NCAR (400 users at
NCAR, 650 at universities) can also readily access the data online. Simple data access programs are pro-
vided to unpack the archived data, and present arrays ready for calculations. Learning time is very low.

Other users (from around the world) obtain data on magnetic tape. Most of our data access software
is transportable to computers of various types. We now have an activity to provide more transportable
access software along with the data (especially for the packed binary data).

1. Design for Evolution of the Data Systems

It is essential that data systems be conceived so that they can gradually accommodate good new ideas
and ignore poor ones. This means that good systems are designed to cope with diversity, even though the
amount of diversity is kept limited. The access to data and information about data should not be dependent
on particular hardware or software systems.

DISCUSSION: When we consider the history of data systems, it is noted that there have been many
changes on time scales of two to five years. There have been changes in data storage systems, concepts to
define formats, and in computing capability. It is unlikely that a data system defined today will remain
constant for the next decade. The design problem is to develop data systems that are flexible enough that
the data and also information about the data (metadata) can be readily saved for the next 100 years even
though changes occur. Thus, the hardware to store data will change and the software to help access data
will also change. The basic data archive should enjoy relative stability so that errors are not introduced by
frequent conversion and handling.

It is bad practice to change all formats in an archive every time a new idea comes along. Also, the
metadata (information about data) must be structured so that it can be readily used by future systems as
well as present ones. Thus, a ‘‘data system’’ should be conceived of as an entity that operates on data and
provides easy access, not as an entity that owns the data.

2. Problems of Data System Design

It is far too common that data systems are only designed to accomplish a narrow range of functions
that the designer thought of, or had time to accomplish. Then they are sold as being good for all functions
of meteorology, astronomy, curing rheumatism, and climbing mountains. They are often conceived in the
model of what is needed for an airline reservation system. They often are not flexible enough to handle
input formats received from elsewhere in the world. This is not the model of what is most needed for
scientific computing. For this, there are several needs:

� Prepare the necessary data in reasonable structures (not necessarily ‘‘common’’ structures). For high
volume data, emphasize tightly-packed, efficient structures that control costs. Emphasize technical
developments to decrease the actual cost of data transfer and access.

� Provide simple data access routines that handle the task of obtaining data from storage, and unpack-
ing it so that it is ready for calculations. These must be efficient, and have a short learning time
(from 5 minutes to 2 hours).

� Optimize data input methods so that the user can easily do his/her own computing using a higher
level language (most commonly Fortran).

� Provide tools for graphical displays so that the user can easily prepare displays the way he wants
them. This includes tables, plots, and VCR motion film.
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� Encourage the preparation of a few ‘‘canned displays’’ that are commonly used in part of a discip-
line area.

� The world will have a number of data manipulation tools that are focused on certain tasks. Examples
are: Lotus 1-2-3; a DBMS; and Unidata (meteorology). It must be easy to take an array of data from
Fortran calculations and move it to one of these data manipulation software packages.

3. Relevance of Data Management Activities

It is sad that too often meetings about data management are not relevant for the main data needs of
the users. In the Data Support Section at NCAR, we listen to the needs and troubles of users, day after day.
Some examples are: (1) For mesoscale models, we need higher resolution datasets of earth vegetation
cover, lake extent, and elevation. Can you help us? (2) We want to use modern analysis methods to
reanalyze all of the world’s surface land, ocean, and upper air meteorological data from 1958- on. Can you
help us obtain the necessary data? (Yes, but for minimum standards of data completeness, this will be a
very large task). (3) Can you help us obtain a lot more data over Africa? (4) You are just emphasizing
access to data at NCAR, or delivery of data on half-inch tape (and some by communications). We want to
have easy access to large amounts of your data at our university department, at low cost, using technology
such as CD-ROM disks, DAT tapes, or EXAbyte. We want data access software that makes it easy to
make calculations using Fortran.

In many cases the focus of data management discussions is on data browse and display, not on the
central problems that we and users face.

4. Complaints About Data Access

Some complaints about data access and data systems can be paraphrased as follows. The last CD-
ROM we got has about 200,000 grid analyses showing meteorological fields over the Northern Hemisphere
for the past 30 years. The access software was set up so that we had to interactively access each field. We
wanted to do serious computing using thousands of fields. We did not want to waste months of our per-
sonal time to accomplish what was most appropriately done in an easy batch mode (This is now fixed). We
want to make calculations without fighting a system, and without paying a huge cost of system overhead.
Then, we want to prepare displays of the results the way we want them to look, not the way a system
decides they should look. We welcome tools to prepare these displays, but don’t tell us that we should
spend two weeks to learn your system and memorize hundreds of cryptic commands before we can do use-
ful work.

5. Catalog Systems for Information About Data Availability

At the national and local levels users must have easy access to information about major datasets and
where they are held, but only the most necessary information is needed at the national level. More
detailed information has to be readily available at the data centers. A national data catalog system, coordi-
nated by NASA, is under development. Nearly 1,000 datasets are already described in the system.

A catalog system will often give the user more details than can be assimilated. For a given subdis-
cipline area, we also need brief overview documents (online and text) that present the most important infor-
mation. Examples are: satellite sounder data, data on US energy statistics, etc.

The preparation of these overview documents will also encourage people to think of what data
should be prepared into datasets.

6. Data Structure

Over the years people have found it very useful to organize a given dataset using one to several files,
each composed of physical and logical records. To efficiently handle many types of data, we must retain
the ability to easily store and retrieve variable length records. Given this need, why do people periodically
talk as if their new ‘‘systems’’ will no longer support these structures?

Data structures that we use for data processing make it possible to reorganize data at very high
speeds, and to quickly select data subsets. We are not willing to give up this capability. Example: we
have a dataset with weather reports from the world’s ships 1854 - 1980. It has 72 million reports (each
with about 40 numbers). We can completely invert this file (volume five gigabytes) in four hours of
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CRAY-1A time. Most people now agree that to handle large datasets, it is important to keep the data in a
simple file structure, and to keep the data flow fast.

7. Problems of Bulk Data Packaging

One of our key services at NCAR is to be aware of the problems of data availability (or access) that
people are having, and to help solve these problems. In many cases, problems arise because low volume
data and high volume data are together in one file. Some examples are: (1) Analyses and observations
(now on 50 tapes) were hidden in 2,000 tapes of data; (2) One set has monthly averages integrated with 22
tapes of daily world station data, such that the small volume of monthly data is hard to access; (3) A satel-
lite dataset has 800 tapes, yet the main data that people need could be put onto about two tapes. We are
always solving a few problems like these, and sometimes encourage other groups to help.

In addition, for the larger datasets, we maintain very fast software to select data subsets based on
time, region of world, variable needed, etc.

8. System Cost and System Needs

We need to strive for cost effective data systems. An analogy is useful. In a family, it is usually
easy to justify the purchase of an automobile. We need it for work, shopping, pleasure, etc. How many of
us, therefore, purchase a Mercedes? Building data systems often present us with similar choices. We need
storage, communication, media for data transfer, access software, display software, etc. We need to choose
these resources to maximize the main goals:

� Prepare the data necessary for research.
� Operate observing systems to obtain necessary observations.
� Provide easy access to required data for research (at both local and remote sites).
� Decrease the time needed to access data, and to learn systems. We want results here, not slogans.

9. Data Activities That are Needed

The following national data activities are needed:

� Prepare (and gather) the needed datasets and selected subsets. This is the main problem retarding the
sciences.

� Promote the use of low-cost technology (eg CD-ROM and DAT) to distribute data. Provide portable
data access software with the data. Promote other technology to reduce the real cost of giving access
to high volume datasets.

� Encourage the development of lower cost mass storage systems that have one-time cost categories of
(1) $700 (use CD-ROMs or DAT-manual mount), (2) $3,000, system with small carousel, (3) $20K,
(4) $125K.

� Develop better solutions to the ‘‘data packaging problem.’’ Let users define their own formats. But
develop a few variable length blocking structures to ‘‘package’’ the data. These would be efficient,
have checksum protection, and could be used for transfer of data between computers as well as for
local storage.

� Prepare translators to change data from ‘‘simple array structure’’ to a structure needed by one of the
interactive data manipulation packages (an image analysis package, a PC publisher, Lotus 1-2-3,
etc.).

� Many scientific groups prepare a battery of software to help work with their type of data and display
it. Promote activities to gather selections of this software.

10. Papers of Possible Interest

� Data Management Methods; Data for Europe
This paper discusses data strategy, data progress, and gives a history of selected data ideas over the
last 20 years.

� What Types of Data Access do Users Need?
A few short papers review how scientists use data for both calculations and browse functions. This
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includes examples, a paper on "Levels of Data Support," etc.

� Planning Guidance for the World Climate Data System, 1982
(by Roy Jenne) Surveys data requirements. Lists the variables. Discusses data management stra-
tegy. It is document WCP-19, available from WMO, Geneva. The planning for climate includes
most of the variables needed for "Global Change."

� Other Papers
A list of documents that discuss selected data types, available inventories, data management, etc. is
available.



Jones

The Global Laboratory

Anita K. Jones
Department of Computer Science

University of Virginia

The computational mode of pursuing science has come of age. In some fields of science it depends heavily
on the availability of data. Important as it is, the data fits into a larger context. Scientists in many fields are
joining in a loosely federated, global laboratory in which a scientist is electronically connected to all other
sites of interest. A site may be of interest because of the presence of other scientists, or the presence of
data collections or an instrument (control).

This trend toward a global laboratory in which data will play a large part will only increase. And econom-
ics plays a part in determining what the computational support in this global laboratory will evolve to be.
So it is worthwhile to consider what will be expensive and what will be cheap.

� Raw compute power was expensive in times past, but is much cheaper now.
� Memory, particularly secondary storage which has mechanical parts, remains slow and cost per bit

is on a modest, but not a dramatic, decline. Dense packed, slow-access, removable media are
reliable for a short number of years and readily transported.

� Data is accumulating at multiplicative rates — much faster than the cost to store it is going down.
� Network connectivity is almost universal and is cheap, having been greatly subsidized by the U.S.

government.
� Dramatically increased network transmission speeds are predicted to remain inexpensive, relatively

speaking.
� Visualization graphics have proved useful. Physical constants, like the speed of light, constrain the

graphics-related processing to be very close to the display screen.

It leads me to believe that the global laboratory will involve multiple, but few, large data collections in
each science. Economies of scale and maintenance will favor large sites. Scientists will routinely have
high-end workstations with some graphics capabilities. They will be connected to the rest of the laboratory
by wide- and high-bandwidth data pipelines. Scientist workstations — say, the visualization intense Star-
dents — and large compute engines — for example, the Crays — will be caches for the data flowing
through the data pipelines.

Such a cache — holding for example a few 10s to 100s of gigabytes on a high end workstation — will hold
the data of interest for seconds, minutes, hours or a few days. But economics will make it less costly to re-
retrieve the data rather than to store it. Bits will routinely fall on the floor".

If this vision is only partly correct, it will put a premium on an efficient and humane solution to a number
of computer science problems:

� browsing — Effectively, all data will be remote. With data, and derived information, being inserted
into the data collections daily, browsing needs to be cheap, focused to serve the scientist’s objec-
tives, and fast. The browsing activity should result in returning modest amounts of relevant data
to the scientist as well!

� transmission — When wanted, the data must arrive in a timely way. Users strongly prefer comput-
ing services to be predictable. The network will influence such predictability more than the
compute engine in some situations. Predictable transmission latency will be prized.

� metadata — Metadata will have to be richly descriptive and accurate in order to service both brows-
ing and the computation algorithm needs.

� knowing when to throw data away — Because local scientist memory will frequently be used as a
cache, that memory will saturate much more rapidly than today’s file systems — so rapidly that
automated purging will be required. The smart, efficient, automated garbage scavenger will be
highly prized as will a data compressor demon that repaces the actual data with the set of actions
needed to re-retrieve the data.

� interfaces — Data format and systems are and will remain heterogeneous. Interfacing them better
will ease the scientist’s difficult task of dealing with unfamiliar data and systems.

� fusion — New science will result from the merging of data from traditionally unrelated sources.
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The basic paradigms for fusion of data will be stressed and should be enriched.
� tailored data management systems — The data collections are large enough and costly enough to

maintain, that they warrant having data management systems whose interfaces, and possibly
internals, are tailored to the application and its unique attributes.
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Biological Databases Contain More than DNA Sequences

David T. Kingsbury
Department of Microbiology

George Washington University Medical Center

Biology is inherently information-rich because of the complexity and variety of living systems.
Understanding these systems requires information about their organization, structure and function at a mul-
titude of levels from the macroscopic to the molecular. Moreover, each species, and in many species each
organism, represents the potential for a unique solution to the problems of life processes and the
organism’s interaction with the environment. The full understanding of biology requires extending organ-
ismic complexity to include the relationships of species and organisms in their ecological niches, and the
evolution of the biosphere over time.

Until recently, much of this information was accessible to scientific inquiry only at relatively high
levels of abstraction: the inherent richness of information was not reflected in the volume of data available.
This situation has changed rapidly over the last decade in a number of biological fields, among them
molecular biology, neurobiology, ecology and taxonomy. Emerging scientific paradigms will require sub-
stantial bodies of data organized into large and dynamic databases to support ongoing biological research.
Indeed, some aspects of modern biology (e.g., the Human Genome Project, protein structure-function stu-
dies) are now utterly dependent upon database and computer technology. In many cases current data col-
lections are not well organized for ease of retrieval but remain central to work in a given field. For exam-
ple, the major source of data about the genetic map and much of the information about specific markers of
the widely studied bacterium Escherichia coli , is a printed review. Because of the heavy reliance of the
research community on these data this review was the most widely cited paper in the biological sciences
for the two years following its publication. Further, the reliance of modern molecular biology on databases
is exemplified by the heavy dependence on GenBank, the DNA sequence database, over the past 7 - 8
years. At the present time it is impossible to publish new information about a gene sequence without pro-
viding evidence of prior examination of the gene sequence database and reporting the percent homology
with existing sequences, if any exist.

As as result of these changes, a substantial number of people now devote their careers to data
management and computational analysis in biological disciplines. However, despite significant and robust
efforts, the present generation of biological databases will fail in the next decade because they were not
(and could not have been) designed to deal with the volume, complexity, and diversity of the data which
will need to be accessible for biological research. For example:

- a single Purkinje cell is thought to have in excess of 100,000 independent inputs;

- the human central nervous system is thought to contain 1010 cells, and 1018 synapses;

- the human genome contains some 109 bases, for a "genome space" of 4 X 109 states;

- a stock center for E. coli needs to describe 20,000 strains, each with 3 X 106 nucleotides;

- taxonomy and systematics need to organize 107 leaves (i.e., species) into a multi-versioned tree.

This "explosion" of data is obviously severe in a quantitative sense, but is equally daunting in terms
of its diversity and the interrelationships which must be represented, organized and maintained. These
problems are further complicated by the nature of biological research: the data are generated by geographi-
cally dispersed researchers with relatively little standardization. Taken together, these problems pose
unique transdisciplinary challenges for database design. Indeed, it is important to note that the technology
is not yet in hand which can support the design of adequate databases for much of the biology of the next
decade. In fact, the application of the term "database" itself tends to trivialize the problem and is mislead-
ing. Database technology and theory as it currently exists is an inadequate paradigm for what is needed
now and in the future to represent and organize biological information.
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Scientific Database Workshop Position Paper

Barry F. Madore
Infrared Processing and Analysis Center

California Institute of Technology

The NASA/IPAC EXTRAGALACTIC DATABASE (= NED) is funded by NASA and run by astro-
nomers at the INFRARED PROCESSING AND ANALYSIS CENTER on the CALTECH campus. NED is
now in beta-test and will become operational in the summer of 1990. We are populating a relational data-
base so as to provide members of the astronomical community with free access to data on extragalactic
objects (quasars, galaxies, etc.) as published in catalogs and in the literature. These data will be linked by
extensive name cross-referencing and unique positions on the sky. In addition to the data, extensive
pointers to the literature will be made available by object and by attribute. With the literature we are also
providing on-line access to the published abstracts to contemporary articles (including a knowledge-based
software package which will allow the use of plain English queries to retrieve relevant papers).

Astronomers at universities and research observatories around the world will be using and contribut-
ing to this effort. International collaboration is exceedingly important to us and we would hope that the
NSF will be able to provide guidelines for the community on how best to co-ordinate these efforts with the
publishers of journals, the private and public operators of observatories and research laboratories, and the
many cognizant governmental funding agencies. Our own small efforts on all of these above issues have so
far met with very encouraging results.
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On building a National Human Genome Database

Thomas G. Marr
Computational Biology Group
Cold Spring Harbor Laboratory

The goal of the Human Genome Initiative is to completely characterize the genome at the molecular
level by mapping and ultimately sequencing the entire genome. The Human Genome Initiative presents
scientists and engineers with problems that truly will push the state-of-the-art in computer science in the
areas of database, algorithms, networking, and visualization.

There are many existing technical problems associated with building a national human genome data-
base:

(1) The data are generated nationally and internationally in a distributed and mostly uncoordinated way.

(2) There is mostly undetermined and/or unspecified imprecision and uncertainty in all mapping data at
all levels of resolution, including the sequence level.

(3) We will have multiple concurrent versions, through errors and polymorphisms, of what are, in princi-
ple, the same underlying entities.

(4) As the rate of nucleotide sequencing increases, the need for automated biological feature extraction
will become critical. Sequence analysis will become difficult within a typical relational system as
the amount of data increases, because of system constraints.

(5) Physical maps are derived, stochastic entities and multiple versions often exist. Ordering clones and
restriction fragment mapping can be shown to be NP-complete or hard, and thus combinatorially
explosive, if data are generated only in a random fashion.

(6) The community of involved scientists is expecting maximum logical connectivity with all relevant
data. This can only be accomplished with richly annotated metadata, thus adding to the complexity of
the problem because we will need expert annotators from diverse fields connected directly and
remotely to the database; computer tools for browsing and linking metadata are not well developed.

(7) The most technically mature database systems available now and for the near future unquestionably
are relational systems, but there is a large semantic gap between the type of data we want to manage
and the relational model. Object oriented database systems appear to be more appropriate, but they
are not technically mature.

(8) The existing scientific literature, to which the sequence needs to be connected, is not well organized,
is electronically inaccessible and yet is essential to the correct interpretation of the genome sequence.
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Data Validation - A Major Problem in Scientific Data Management

Robert McPherron
Institute of Geophysics and Planetary Physics

UCLA

Modern instruments and computers make it possible to acquire enormous files of digital data. These
data are an immensely valuable resource but their management poses some significant problems. One of
the most significant is data validation. We propose that the current system of research funding is not con-
ducive to the creation of validated data that can be used with assurance by secondary users. We advocate
several changes that could help alleviate this problem.

A major source of data is the principal investigator or PI. The PI is an individual scientist, or group
of scientists led by one individual who build an instrument, operate it for long intervals of time, process the
data, and write scientific papers with the data they acquire. Another important source of data is operational
systems. Magnetic observatories, weather stations and satellites, nuclear surveillance spacecraft, remote
sensing satellites. All contain instruments that routinely gather data used by the scientific community.

State of the art instruments which advance the frontiers of knowledge rarely perform as the designers
expect. The data are often contaminated by a variety of effects within the instrument and in the immediate
surroundings. These effects must be removed from the data by appropriate computer processing, or taken
into consideration when the data are used for scientific studies. Data from operational observatories are
often processed by technical staff who are disconnected from the instrument builder, and are not familiar
with the eventual application of the data. Not infrequently they unknowingly introduce errors into the data,
or fail to remove some that they should.

The principal investigator system is a sociological mechanism for producing good data and validated
scientific results. The central feature of the system is that in return for producing important scientific
results, it gives the PI both financial resources and exclusive access to data from his instrument. These
resources allow him to carry out the operations on his data that make them useful in scientific studies. The
system rewards the individual for quality control by making it easier to win future projects if he has done
well in the past. Doing well depends on successful publication of scientific results. This requires peer
review of his papers. Often errors in data are caught in this process by the PI’s competitors. Doing well
also requires recognition in the form of citation. Again, others may discover errors in data through incon-
sistencies with previous reports.

Frequently, operational systems do not have the feedback of the peer review process to guarantee
quality data. The success of individuals in these projects is measured by criteria other than scientific
results. Was a functional instrument delivered on time? Were the data transformed and deposited in the
archive in a timely manner? Often, it may be years before the data are used by some scientific investigator.
Such a system is prone to hidden errors that can catch the unwary.

Today there are fewer missions or projects with far more expensive instruments. Fewer individuals
are able to succeed as PI’s of instrument projects because of the scarcity of resources. Individuals who are
not the original instrument builder must work with data placed in archives by PI’s and operational projects.
Today, also, the nature of many disciplines is changing. The exploratory phase is over. Current research
depends on studies which make use of data from many instruments on many platforms. The fundamental
question is how can the secondary user be certain of the quality of the data he or she uses in their work?

In response to this need for access to high quality data by users other than the data producer, govern-
ment agencies are developing scientific data centers. Thus far, most scientific data centers are subsidized
by the government. Commercialization is unlikely to be successful because the scientific users has no pay-
ing customer other than the government to which they can pass the costs of data purchase. Very few
scientific data centers could survive if they had to function on the basis of data sales because the scientific
users have very small data budgets. Examples of data centers include the NOAA National Geophysical
Data Center in Boulder, CO and the attached World Data Center for Solar Terrestrial Physics. Another
example is the NASA National Space Science Data Center in Greenbelt, MD and its attached world data
center for Rockets and Satellites. Today these data centers are the final repositories of data contributed by
PI’s, Instrument Teams, and Operational Systems. An important question that any user must ask is "Are
these data of sufficient quality to answer the questions I am asking?"
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Today the quality of data in national data centers is frequently unknown! Much of the data is in for-
mats so poorly documented it is impossible to retrieve without an effort exceeding the resources available
to a secondary user. Even when the data are retrievable, there is often no documentation describing the
problems in the data. The secondary user is required to go to the original investigator for the validation of
the data, and in many cases, access to the data he needs. Sometimes the PI is no longer available, or is a
competitor of the secondary user, or has no resources himself to support the project.

In our opinion the PI system fails to deal properly with the problem of long-term archiving of data.
In its current form some PI’s do not perceive any advantage in placing their data in the data center. It takes
time and resources that are to their advantage to use to produce papers that make them more competitive.
It is often better from the PI’s point of view because he can gain partial credit if he supplies the data
directly. But almost none if it is provided by a data center. Also, it makes it possible for others to do work
that they might eventually do themselves. Finally, it exposes the problems of their instruments to the
world. Users may discover that their instrument was seriously flawed. This fact can be hidden by
appropriate choices of published examples, but not by open access to their data.

Given that a PI has done everything right and wishes to submit his data in a useable form it may not
be possible. Often the resources of a single PI exceed the total resources of a data center. It is simply not
possible for the data center to handle all of the data potentially available.

The NASA Planetary Data System is attempting to solve some of these problems. The PI and Instru-
ment Teams are required by contract to submit their data to the data center. Funds are set aside in advance
to assure that this happens. The various Nodes of the distributed data system are given incentives and
resources to acquire the data from PI’s. Additional resources are available to PI’s from the project to sub-
mit properly validated data. Data submission requires a variety of tables including instrument description,
data set definitions, parameter characterization, and standard volume labels that make the data readable in
the future. Once submitted the data are validated by a peer review committee. Data are accessed accord-
ing to the information provided. They are compared to examples of published data. Browse data sets are
created and scanned to see if all of the data specified in the catalog are actually present. Discrepancies are
identified and measures taken by the data center or the data supplier to eliminate them.

Such a system can not help but provide better data to secondary users. However, the system is
expensive. It is not viewed favorably by all PI’s. Many feel that the money required to manage this data
would be better spent by individual scientists doing research.

New incentives must be developed to guarantee that high quality data are produced by instrument
and data processing teams. These data and metadata must be captured quickly and simply in machine read-
able format at the time they are generated. All of these must be stored in a location easily accessible to
qualified researchers, without the intervention of the data producer. Some mechanism must be developed
so that credit can accrue to the data supplier without his intimate involvement in every project. There must
be changes in the level of funding that are provided to instrument builders in comparison with data
analysts. Additional resources must be made available to those who manage data after missions and pro-
jects are terminated.

We believe that the NASA Planetary Data System has developed some unique methods for obtaining
and validating data from its planetary missions. In particular the peer review process for data submission is
one that guarantees much higher quality data than has previously been submitted to data centers. This pro-
cess should be considered by all data centers as a means of obtaining validated data sets. If this process
were combined with the new publication format of the American Geophysical Union, the Brief Data
Report, it might become more advantageous for PI’s to submit their data to data centers since they could
receive citation to their efforts by other investigators. Such citations would constitute proof to funding
agencies that their work had been worthwhile.
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The Astrophysics Data System

Stephen S. Murray
Harvard-Smithsonian Center for Astrophysics

Introduction

From the point of view of an active research scientist, the explosive growth in the amount of data available
on a subject, and the diversity of data sources is often overwhelming. Some of the fundamental problems
the researcher has in dealing with this situation are:

What data are available?
Where is this data?
What is the form and content of this data?
How can this data be browsed?
How can the data be obtained?

Beyond these issues are the more familiar questions of what can be done scientifically with these data and
how were the data generated, reduced or otherwise processed before being distributed.

In the discipline of space astronomy and astrophysics, these problems become especially significant as the
era of the ‘‘Great Observatories’’ approaches. These are a series of large scale national facility missions of
long duration in several sub-disciplines:

The Hubble Space Telescope (HST): Now scheduled for launch mid-April
1990. It will return in raw telemetry over 1 terabyte per year, and operate for at
least 10 years.

The Gamma Ray Observatory (GRO): Scheduled to be launched in June 1990.
It will also be a long lived observatory returning large quantities of raw data for
analysis.

The Advanced X-Ray Astrophysics Facility (AXAF): Current schedules call for
a mid-1997 launch and a 15 year lifetime. Several hundred gigabyte per year
raw data rate.

The Space Infrared Telescope Facility (SIRTF): Probable launch by the end of
the decade (century), and a 5 to 10 year lifetime with comparable data rates of
AXAF and HST.

In 1986 NASA organized the first in a series of two workshops to develop requirements for an Astrophy-
sics Data System (ADS) that would be in place to support the scientific user community in learning about
and accessing the data from these missions as well as the many other space astronomy missions being
planned for the 1990s and beyond. The ADS workshop report (the ‘‘Squibb’’ report) called for setting up a
data system that would connect the various mission centers where data are collected, processed and
archived, with the users who are distributed throughout the country. The report stressed the importance
that data archives be ‘‘active’’ research sites where the expertise associated with the source of these data is
also maintained. Additionally, the report recognized the need to have migration paths for data and infor-
mation from mission sites to less active archival centers as the operational phase of a space project ended.
While these points seem obvious once stated, making them a matter of NASA policy was a major step for-
ward for the field. The first priority of this data system was to establish a ‘‘Master Directory’’ that could
be accessed by the community to identify and locate the data holdings from NASA supported missions.
Following these community wide workshops, and Astrophysics Data System Working Group was formed
with the goal of designing a data system to meet the needs of the community and to begin the implementa-
tion of this system with a Master Directory function.
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The Astrophysics Data System

Among the recommendations of the ADS Workshop report was the desire of the astronomical community
to be involved in the process of designing and implementing the ADS. In selecting the membership of the
working group, NASA followed this recommendation, and put together a group of scientists and computer
systems specialists who were currently involved in data systems for active missions, along with a number
of active scientific users of these data. This results in the end users of the system being actively involved in
the system, guiding its development from the perspective of the user, with a balance of input from those
technically knowledgeable with regard to implementation limitations. The working group expanded during
the initial design study to include participants from industry whose products would be included in the sys-
tem. Again, the guiding principle for the ADS development was to include the users and the developers in
the design and specification process. This is a departure from the typical NASA procurement process for
systems which involves specifications and contracts.

System Requirements

While formal requirements and specifications of the ADS were avoided in favor of a rapid prototyping
development process, the working group did establish certain overall system requirements to guide the
detailed development. Among these were the desire to provide useful service to a wide range of potential
users of the system. A minimal user, working with a modem and a personal computer needed to be sup-
ported. Similarly a scientist connected to a central computer through a ‘‘dumb’’ terminal also requires
access to the ADS. Finally, the ‘‘power’’ user with a graphics workstation should not be constrained by
the limitations of the less well endowed users. This meant creating a system with varying levels of
‘‘local’’ resource (CPU, memory, storage, display) requirement, and one not overly dependent on network
throughput. Another requirement imposed on the system was the ability to handle a wide range of sophisti-
cation in the user population. The system must offer a variety of levels of operation from completely menu
drive operation to command driven operation. Finally, the system must be responsive to the needs of the
user community. The initial system will reflect the best guess of the working group, but only through use
by the scientific community will the system requirements become known. Thus the underlying design
needs to be capable of evolution and extension without disruption.

System Architecture

Early in the design discussion of the ADS a sample user scenario was developed as a aid in determining the
required functions for the system and to help maintain a focus on the goals of the system. This has proven
to be an important tool. The scenario itself has evolved over the course of the ADS development, but it
serves as a reference to assure that the system design meets user requirements. The development approach
for the ADS is to avoid formal requirements and specifications for the system, rather rapid prototyping and
mockups are used to test ideas against the scenario and the ‘‘vision’’ of the system that the working group
has formed.

During the process of visualizing the Astrophysics Data System, it became clear that a Master Directory
function was just a first step in a more ambitious system. This lead to the concept of a server--client archi-
tecture for the ADS in which the Master Directory would be an initial service offered to the community.
The basic building blocks of the ADS would be a user agent (UA) providing a uniform interface to the sys-
tem users, a transaction manager (TM) to administer the activities of the system, a message passing system
(MPS) to provide the communication protocol between system elements, a data independent access method
(DIAM) for connecting heterogeneous data systems to the ADS, and information access method (IAM) for
handling non-traditional data, especially textual descriptive information. These five components, along
with the backbone provided by a network system (which is not part of the ADS so much as used by the
ADS) form the infrastructure out of which the ADS can be built. Each component is implemented as a
client or server, held together by the interface specification of the MPS.

Initial Components

The working group spent considerable time in selecting implementations of the various key components of
the ADS. The guidelines were to find existing products where possible, and to extend or modify these pro-
ducts to meet the specific ADS needs. These elements must be broadly, avoiding vendor specific restric-
tions and distribution fees. In practice this goal was not completely met. However, a measure of the level
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of success achieved is that the system will be available to all qualified users. A benefit of the client-server
or server-service model for the ADS is that it allows for evolution of the system and replacement of any
component by a newer version or entirely different implementation provided only that the interface to the
ADS system as a whole was not violated.

The initial components of the ADS are:

User Agent: A commercial product adapted specifically for ADS was selected and developed. It is
the Knowledge Dictionary System™, which is from Ellery Systems Inc., Boulder CO. This provides
the user interface, a test editor, a command interpreter, and a local database system. The KDS™ also
has elements of the transaction manager and message passing system embedded in it so that the user
agent can interact with the rest of the ADS.

Message Passing System: A ‘‘semi-commercial’’ product was selected for ADS use. In this case
ESI has obtained the rights to a message passing kernel based on the ANSA TestBench architecture
developed at a U.K. consortia of universities and industry. The elements of the MPS are embedded
in the various components of the ADS in order to support communications and control of processes.

Transaction Manager: This function has two components. Within the KDS™ user agent there is a
local transaction manager that protects the user’s local database. As a service for the ADS there is a
transaction management and administration service that assures orderly management of the ADS ser-
vices. The KDS™ function is part of the user agent and is currently working. The system function
has a preliminary design and is under development at ESI.

Data Independent Access Method: The ADS was able to benefit from another NASA project, the
Distributed Access View Integrated Database (DAVID), being developed at the GSFC/NSSDC. For
the purposes of the ADS, DAVID provides a homogeneous interface to the variety of mission
specific data collections and their underlying database systems. In addition, DAVID supports the
additional operators that are needed for astronomical applications and are not necessarily available
within standard commercial data base management systems.

Information Access Method: The underlying technology of the KDS™ consists of a information
access method based on classification space. The particular application to ADS is the judgement
space (j-space) methodology, wherein textual information can be indexed in a multi-dimensional
space for retrieval based on relevancy to the query being made. Furthermore, the query can be posed
in natural language, using the peculiar jargon of the field familiar to the scientific users. All descrip-
tive material can be treated in this fashion so that data, data products, images, etc., can be processed
by indexing description of these items and referencing the item to its description.

Project Status

The development of the overall system has been underway for about 18 months. The user agent software
was initially developed to run on PC class computers and has been a) re-written in C and b) ported to
UNIX from MS-DOS. This includes all of the included functions of KDS™ such as transaction manage-
ment, information access, and local database management. Specific changes to the system were also made
for the ADS such as enhancements to the user interface, the database system and export functions to pass
data to external user functions. The user agent runs on SUN/4 workstations under SUN OS/4, and on PC’s
under MS-DOS. These are the targeted systems for initial release of the ADS. Future plans include port-
ing the UA to other UNIX based workstations, MAC personnel computers, and perhaps VMS based works-
tations.

The DAVID system has been installed at a number of ADS data sites and interfaced with local DBMS sys-
tems at these sites such as INGRES, IM/DM, and Sybase. These installations of DAVID are designed to
appear to the user as a single data system, the distributed nature of the underlying data is managed within
DAVID. Modifications to DAVID were made to deal with special data transformation functions required
for astronomical work such as the establishment of a canonical coordinate system for objects. Future work
is expected in the development of standard gridding the ADS data to improve access times for often
repeated searches. Browsing capabilities are needed to give users the opportunity to scan data sets before
carrying out major manipulations.

The MPS has several components. The main element is called the ‘‘trader’’ which runs in the background
on all of the systems where servers and services need to be arbitrated. Within the clients and servers, there
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are elements of the MPS which send and receive messages that contain service requests and the data acted
upon or returned from the service. At this time the MPS has been installed at one data site, but on several
computer systems - SUN/3 and SUN/4 running SUN OS/4, and microVAX III running VMS. At this same
site, the message passing kernel elements of the MPS have been integrated into versions of KDS™ and
DAVID so that end to end system tests can be run. A successful test of this prototype was carried out in
mid-February, where data from the Einstein Observatory observation log and one of the point source cata-
logs were accessed via queries from the user agent. These were passed via the MPS to DAVID and on to
the local (INGRES) DBMS.

The information access component of ADS has several aspects and functional requirements. In the sim-
plest form, the ADS needs to be self-explanatory and to provide novice or infrequent users with enough
information to allow simple functions to be carried out quickly and easily. For this purpose, a menu driven
interface was developed that was intuitive to use and allowed the user to scan through general information
about the ADS and its data holdings in a hierarchical inverted tree structure. An initial set of descriptive
documents were generated to populate this tree and test the menu driven system. The user agent will be
distributed with this data tree so that users will not need to depend on network connectivity to access top
level information.

An alternative to information access via the logical traversal of a data tree is provided by the j-space tech-
nology discussed above. As part of the ADS development a preliminary j-space has been created and the
information contained in the information tree has been indexed in this space. The user agent provides the
tools needed to allow natural queries to be made against this information and returns a list of the most
relevant pieces of information (documents) to a query, along with their locations in the data tree, users can
then access these items directly from KDS™. Additional information is being added to the data tree pro-
viding greater detail for the user. As the amount of information managed using this system increases, ser-
vices providing indexing, query resolution, and document retrieval will be needed. These are considered
part of the ADS and are under study. For example, the processing of queries in j-space is amenable to
parallel or vector processing, either by a central parallel computer or by distributed computing, and such an
effort is underway.

Schedule

The current schedule for ADS calls for completing the initial development by June 1990 and a beta test
phase extending through September 1990. Full release of this system will begin in October 1990 subject to
the availability of operational funds for the ADS data sites, and the central administration of ADS. In addi-
tion, there is ongoing development of the system. Plans call for resource management services, data pro-
cessing services, data browsing, and improvements in the interface. It is expected that there will be user
contributions to the system in the form of requests for new services, suggestions for improvements, and
also in the direct involvement of the community in developing services to be added to the ADS. NASA has
already begun funding of grants through its Astrophysics Software and Research Aids Program with the
requirement that these activities are coordinated through the ADS program and where appropriate meet the
specifications of that system.
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Scope

In this paper we are concerned with genomic data: data having to do with DNA in organisms, its
structure and function. Such data include: ‘‘lab notebook data’’ which describe various molecular biology
experiments and their results, various types of maps of chromosomes: cytogenetic, genetic (recombination)
linkage maps, physical (restriction enzyme cutting site) maps, DNA, RNA, and protein sequences (and the
accompanying ‘‘annotations’’ describing the function of various subsequences), protein structure data, pro-
tein function, metabolic pathway databases.

In this paper we will briefly mention several of the major problems in storing and retrieving this type
of data. We will emphasize mapping and sequence data, due to the author’s familiarity and space limita-
tions.

Sequences

The first observations to be made about genomic data is that it is largely composed of sequences:
DNA sequences, RNA sequences and protein (amino acid) sequences.

Conventional DBMS’s are built around set theory, and provide poor support for sequences (you may
be able to store a sequence in a record). The research community (DB, and functional programming
language) has begun to address this problem with work on ‘‘streams’’.

Commonplace activities with respect to this data are: approximate string matching, approximate pat-
tern recognition, and approximate parsing. There has been extensive research on the first topic, some on
the second, and very little on the third. Most of this research has been concerned with random access
memory (RAM) based models of computation and has not concerned itself with secondary storage con-
siderations.

Functional Maps

The functional annotation of DNA sequences (e.g., gene complexes) can be thought of as a parse tree
over the DNA sequences. (Actually, directed acyclic graphs (not always a tree) since portions of a DNA
sequence may have more than one function.) One would like to store these ‘‘parse trees’’ in a database and
be able to compare, and query them. Again commercial relational databases do not support such queries
very well. There has been some research on parsing DNA sequences (Searls, et al.) There has been some
work on approximate matching of trees (Shasha).

Maps

Another ubiquitous type of genomic data are genomic maps: descriptions of the spatial structure of
chromosomes. Human chromosomes are linear, those of lower organisms are circular. Maps vary in their
completeness, resolution, metrics, etc. Typically, the researcher will perform a set of experiments which
increasingly constrain the set of feasible maps until a unique map is obtained. Because maps are one
dimensional, map data is similar to the sort of temporal data which arises in scheduling and planning appli-
cations. There has been extensive interest in these problems in the AI community (Allen, Ladkin, et al.)
Map construction is thus analogous to constructing feasible schedules.

In addition to construction, approximate map alignment (similar to sequence alignment) is required.
Recently there has been work on map alignment (Rudd, Webb, Huang, Myers) algorithms.

Existing relational DB systems provide neither the inference mechanisms to support map queries, nor
the ability to manipulate maps (ordered sets of intervals), nor the ability to answer approximate map
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alignment queries.

Three Dimensional Data

Molecular biological researchers are interested in the 3D structure of the proteins (esp. of the active
sites). Typical queries ask to find either similar or complementary structures — or more generally struc-
tures which contain similar or complementary substructures.

Again, relational DBMS’s are of little use. Current methods of finding similar structures appear to
be very compute intensive, but recent work on n-gram statistics looks promising (Rackovsky).

Experimental Data

There have been attempts recently to construct Lab Notebook databases to record experimental data
on relational database systems at LANL, LBL, Baylor, et al.

Such databases are typically multi-media, i.e., they include either image data or time series instru-
mentation data. Existing DBMS are just beginning to accommodate large objects (e.g., images) and have
as yet few facilities for manipulating such data.

Aside from the multi-media aspects, lab notebooks tend to include a lot of ad hoc information.
Furthermore, the structure of the lab notes change as the experimental protocol changes. This can happen
quite quickly in a molecular biology lab.

Existing techniques for designing and restructuring relational databases are hard pressed to cope with
such frequent changes, and are quite unable to cope with ad hoc data. Proposals to develop hypertext sys-
tems to address this problem are interesting, but it is unclear how one processes queries against a hypertext
DB.

Another aspect of lab notebook data consists of formal specification of laboratory protocols, both to
facilitate interpretation of lab data and to support automated (i.e., robotic) protocol implementation. The
problem of specifying molecular biology protocols is not unique — similar problems arise in chemical
labs, drug screening, and manufacturing.
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My interests are primarily in the field of molecular biology. As areas of biology go, molecular biol-
ogy includes a substantial amount of "well-structured" data — most notably nucleotide sequences, protein
sequences, and data on the three-dimensional structure of molecules. Some other data that are reasonably
well-structured, such as bibliographic information, are also of interest in many other fields.

Unfortunately, molecular biology is not a mature field in the sense of having prior knowledge of
what information will be useful in the future. Thus, information about function or "interesting features"
that might (in principle) be amenable to fixed-vocabulary, keyword descriptions, can change rapidly. Many
other types of data are sufficiently interpretive in nature that they are not easily cast into standard formats,
and their interpretation may be dependent upon experimental parameters that are not easily summarized in
a standard form. For present purposes I will not dwell on data for which there is no clear representation
beyond text and graphics.

Even limiting consideration to the structural data (including the sequence data), the items of interest
frequently require extensive "manual" intervention for their abstraction from the existing databases. This is
a consequence of several factors:

(1) A researcher’s interest is frequently for a specific subset of a database "entry." For example, a
researcher might want a particular substring of a DNA sequence (preferably based upon a functional
description rather than the linear numbering of positions).

(2) There is frequently subtle ambiguity in these requests. However, this is rarely troublesome because
neither the databases nor the access software are sufficiency sophisticated to distinguish what might
be biologically critical differences.

(3) Much of what a biologist wants could be described as content-based retrieval. Among the most fre-
quent "queries" is, "What sequences are most similar to my newly inferred sequence?" At present
there are a large number of programs for searching the entire content of a sequence database in order
to answer this question. The critical element is the idea of "similar." There is no consensus on the
correct or optimal definition, and the issue is actually decided on performance rather than scientific
grounds. This query provides motivation for extensions in two directions. First, what I usually
would like is to retrieve the actual sequences of the molecules, rather than just their names.
Although this sounds simple, it is not; there will often be ambiguities in resolving this second step in
the request (do I want the whole DNA entry, a specific "gene" from the entry, an inferred precursor
protein, an inferred mature protein, etc.). The second extension generalizes finding similar items to
other aspects of the database: data from similar organisms, from molecules with similar functions, or
(among the most insidious problems) things with similar keywords or names. This requires one or
more measures of similarity for each type of data in the database, and a mechanism for the user to
easily modify the scope of any and all of these in performing a search (or "browsing" for data that
might be of value or interest to them).
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Molecular biology is generating a host of data which requires specialized tools for analysis and
management. Since molecular biology is an infant science, the data themselves are not well understood
and their properties and relationships are constantly being revised. However, the flow of these data is
expected to increase dramatically in the near future.

The effectiveness of a software tool in molecular biology is measured on two scales: 1) the number
of scientists who find the tool useful in their work, and 2) the "correctness" of its algorithm. A great many
tools have been created which are ineffective for one or both reasons.

The most widely used tools obviously are effective by criterion 1. Most of these tools were written
by individuals who were personally involved in the type of work the tool is meant to do. Often such a tool
is targeted at a particular hardware platform or operating environment. As such, it behaves naturally and
intuitively both for its particular biological function and for the machine it operates on. Unfortunately, this
approach often results in reinventing the same procedure for different machines, or locking scientists out of
using a popular procedure if they do not have that machine. It also results in a proliferation of tools to do
the same job, implemented in slightly different ways for slightly different applications. It often means that
these programs do not use the best underlying algorithms for accomplishing their stated goals.

In the other case, a procedure implemented to solve a biological problem, which on theoretical
grounds gives better answers, does not reach the end users because it only runs on a particular machine, or
does not have a friendly interface, or does not use standard file formats, or was not written by someone in
the business of software distribution. A sadder situation is when an algorithm and implementation are well
done, but the biological problem was not well stated to the software designer. Many less than useful tools
result when the software engineer is not the same person as the molecular biologist.

Almost all of the best tools currently available come from the private sector. They generally involve
a molecular biologist who wrote software which evolved into a product. Some have resulted in small
groups with many "cross-over" molecular biologist/software designer types. Generally they have targeted
a single hardware platform which they know is available to laboratory workers. These groups are the most
flexible at keeping up with the most current "good" algorithms, but the rate of change and growth puts a
major development burden on such groups. As the range of possible tools increases, it becomes very
unlikely that any single commercial package will contain all the tools a scientist might want, let alone the
particular version of that tool that is the best current design. These packages are not usually "state of the
art" in terms of software design or targeted hardware platform. Rather, their success stems from using
hardware that "is really out there" and addressing the specific needs of particular scientists. Most of the best
algorithms have come from an academic or government research group. Often the first versions of these
are very limited in terms of user interface or data access. Those which have become widely available gen-
erally have done so by a second step of being incorporated into one (or many) more completely developed
software packages. Many good algorithms have not been picked up by a broader package, and thus are
used relatively little by the research community.

The problem now arises that the biological world has become too complex for a single small group to
develop all possible tools to address. Further, if information from a large number of groups is to be
integrated in large data acquisition efforts, standards must be set and maintained for how the data are han-
dled. A group should not be using an algorithm for gel assembly which has been shown to make sys-
tematic errors when a better algorithm becomes available. However, if this group depends on a particular
package, it may be a long time, if ever, before that routine is available to them. In addition, access to data
will become more complex. Major biological databases are becoming very large. Relational schemas are
being developed to provide access to the many interrelationships they encompass. Yet most groups will not
be supporting the particular database manager a database group may be using. Further, they will need
intelligent access tools, since they may not know or care about the underlying schema and/or that schema
may be changing as knowledge grows.

The need for unity must be balanced by the historical fact that there are no models for success of a
large software project in this area. The small entrepreneurs have provided invaluable tools to move this
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science ahead, and cutting them out of the equation would be suicidal. Academics must be able to develop
new algorithms without getting bogged down in complex user interfaces or elaborate data access tools, yet
still easily reach the research community with useful tools. Computer scientists and database designers
must now become involved in this area, but it is unlikely they will become expert biologists. The design
needs and implementation evaluation must still flow from the biological community, but it is (very)
unlikely that this community will become computer scientists. Success can only come from collaboration
in terms of tool design, tool use, tool evaluation, data exchange, library functions, and review of quality at
all levels, across disciplines, across physical distance, across hardware platforms, across administrative
divisions (academic, government, commercial), and most important, across the changing landscape of bio-
logical knowledge over time.
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Traditional database management, as epitomized by relational database technology, is largely con-
cerned with "commercial" or "business" data. By this we mean data that is well-structured according to a
few accounting or organizational protocols. Many business transactions embody basic accounting
procedures—recording amounts transferred, accounts debited and credited, date of transaction, transaction
initiator, etc. Computerized order processing and shipping typically emulate manual procedures esta-
blished by the corporation. Student registration follows procedures set up by the university’s registrar.
And so it goes. Relational database design is largely concerned with developing data organizations (or
schema) which accurately mirror a set of configurations that can be generated by these fixed protocols.

I would argue that scientific data differs from more traditional commercial data in four significant
ways:

(1) the potential amount of scientific data,
(2) the temporal value of scientific data.
(3) the way scientific data values are aggregated, and
(4) the meta-data needed to access scientific data.

First, even though commercial databases can be enormous, virtually all commercial data must ultimately be
generated by a manual process. An order is received, a banking transaction is initiated at an automatic
teller, a student registers for a set of classes. This effectively limits the rate at which commercial databases
can grow. Scientific data, on the other hand can be mechanically generated by remote sensors or by
automated experimental devices such as nuclear accelerators. To emphasize this, we note that the EOS
(Earth Observing System) is expected to beam down in two weeks as much data as Landsat has generated
during its lifetime. It seems reasonable to assert that comparable scientific data sets may be one, or two,
orders of magnitude larger than their commercial counterparts. (This distinction may become blurred in
the future by the automatic generation of commercial transactions, such as computerized trading on the
stock market; but for now it seems valid.)

The second characteristic of scientific data is that it has no time window of "value". In commercial
databases the value of most entries decreases rapidly after entry; in days, weeks, quarters, or years. Even-
tually all commercial data ceases to have commercial value; all can be legally thrown away after a fixed
period of time, such as 7 years. This is not true if the data is perceived to have scientific significance. The
clay cuneiform tablets recording Babylonian business transactions have no [commercial] value today; but
recently a colleague used their astronomical data to confirm his analysis of the earth’s rotational behavior.
Very old scientific data can still have considerable value.

Entries in a commercial database typically involve a limited number of data values (by a data value
we mean a single numeric or string value). In the relational model, these are first aggregated as a tuple of
n-values, which typically represents a single transaction. A number of tuples are then aggregated as a set,
or relation. There are effectively two levels of aggregation, the first to create a single object, instance, or
tuple corresponding to a basic commercial entity; the second to aggregate similar entities. (This is an evi-
dent oversimplification. The relational join operator creates the possibility of different aggregations of data
values. Still there is a very real sense of restriction.) Most scientific data sets have at least one more level
of aggregation; our raw data values are typically vectors or arrays of numeric values. More importantly, if
we visualize our basic scientific entities as being "experiments", we have situations where a single entity,
instead of a fixed n-tuple of values, may very well comprise an indeterminate number of components, each
of which may be an aggregate of values. It is very much more difficult to describe precisely what collec-
tion of data values constitutes a scientific entity.

Finally, the meta-data needed to access scientific data tends to be much more complex. I know of no
really good definition for meta-data. I am using it in a loose sense to mean that associated data by which
we understand the structure of a scientific entity and/or by which we locate entities of interest. In a sense
meta-data describes the entity. For example, building on the preceding paragraph, a scientific experiment
may consist of a structured collection of results together with a structured description of the context in
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which it was conducted. To this might also be added a structured "interpretation" of the experiment. The
relational model uses a schema (or simple list of attributes) to describe its entities; the kinds of hierarchical
class structures found in semantic or object oriented database models seem more appropriate for scientific
data.

It is doubtful if these four characteristics are, by themselves, sufficient to differentiate scientific from
commercial data sets. But they do provide a basis for exploring how the management of such data sets
must differ.

Assertion 1: The primary problem in mature scientific database will be the elimination of unwanted
data.

Characteristics 1 and 2 contribute to what I call the landfill model of scientific data. Scientific data
tends to accumulate forever, even though some 95% or more will never be used, or even examined, again.
The sheer bulk of unwanted data makes the location of, and access to, valuable data problematical. To
describe the comparable task of uncovering nuggets of truth in the bible, Thomas Jefferson once used the
colorful phrase "searching for diamonds in a dunghill".

Possibly the most important step the scientific community could make would be to enunciate a policy
of selective destruction—one which, over time, would minimize the size of stored data sets while maximiz-
ing the expected value of the retained data. Such a policy, no matter how wisely formulated, will result in
the loss of data of some scientific value. But then again very little that is thrown into traditional landfills is
without any value—as dedicated landfill pickers will attest. Nevertheless it is just more economic to bury
it. Such a policy of data destruction will emerge; because it must. A rational policy would be preferable to
one of sheer necessity.

Two approaches to the landfill problem might be considered by NSF. The first would be the formu-
lation of a theory of the expected value of data. If such a theory could be developed, it might serve as the
basis of a policy of selective data destruction. An alternative approach could be based on the assumption
that the the creator of scientific data is in the best position to estimate its potential value. Individual and
institutional contributors to a national database might be charged to initially insert data into the database
(landfill) and then charged an annual service charge to keep it there. There would be no charge to mine the
database—that would be actively encouraged. Yes — there would be problems with such an administra-
tive policy; but it also has distinct possibilities!

Assertion 2: Most scientific data will be located by examining its meta-data, not the actual data.

Depending on ones sense of what is meant by "meta-data", this assertion might be true of all
databases—commercial or scientific. Most often the primary key, say employee#, of a relational database
is a kind of description of the entity, e.g. "this is data about employee 7312". Retrievals based on
employee number are common. Queries, such as "all male employees over 50 earning less than $35,000
per year", that must examine the actual employee data are much less common, but many standard query
languages, such as SQL, have features designed to accommodate them. Scientific data, on the other hand,
is far less likely to be retrieved with respect to some unique identification assigned to the entity of interest.
One envisions retrievals much more of the nature: "all satellite images of <geographic coordinates> taken
in February, over the spectrum <spectral bounds>", or "the experiments referenced in <citation>", or
"sequences of brain scan images for the same individual where at least two exhibit <condition>" (where
this latter <condition> is based on secondary analysis and possibly added to the data set well after the origi-
nal raw data).

The implications of this assertion, besides the obvious one that retrieval of scientific data is likely to
require a much richer access path structure, are two-fold. First, retrieval software will need an enhanced
capability of examining a "data dictionary" describing the structure of the data before examining any of the
data sets themselves. Second, we will probably have to re-think the kinds of operators and/or comparators
that can be applied in searching data. Contemporary data management systems are largely limited to sim-
ple equality and ordering operators (e.g. < and >); and the implementation of these in heterogeneous data-
bases can be quite complex. Given the prevalence of aggregate values as basic storage items (e.g. arrays
and images) do we allow conditional search clauses of the form "where det(<data_name>) > 1.0", or
"whose std_dev(<data_name>) < 2.5", or "where <image_name> contains <pattern>"? Is allowance for
such generalized search operators essential? If the answer is "yes", then the data retrieval systems will
have to be extensible to accommodate new operators as their need becomes apparent. Will the added com-
plexity payoff?
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Assertion 3: In commercial databases, updates modify the real data; in scientific databases updates
will primarily modify the meta-data.

When employee 7312 gets a raise, the value of the salary attribute is changed. But the schema of the
representing tuple is not. Indeed, the schema of a relation cannot be changed without a massive file refor-
matting, a task that is not undertaken lightly. In contrast, except to change actual errors, scientific data
should never change; it represents a record of observed phenomena which, once captured, should be static.
But the interpretation of scientific data, the context in which it is understood, the links between it and other
items of information, and the rules by which one manipulates it can change. Even the names by which we
know components may change.

The data dictionaries of relational database systems are static. They can only be changed by a data-
base administrator. Scientific data dictionaries and/or data catalogs are structures that must be dynamic.

Straightforward extensions of commercial (relational) database management techniques are unlikely
to suffice in the world of science. A different approach to scientific data must first be enunciated and then
implemented.
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Types of Scientific Databases
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Some confusion in discussions of scientific databases seems to derive from different individuals having dif-
ferent implicit notions of just what constitutes a scientific database. For this reason, it may be useful to
attempt some categorizations of scientific databases and then to examine each type for its individual attri-
butes, management needs, etc.

Classifications may be based upon a number of different (but not necessarily independent) criteria. For
example, scientific databases may be characterized by their users, by the type of subject matter (e.g., raw
data vs information), by their relationship to scientific literature, or by their role in the scientific process. In
addition, some integration of these different classifications may be achieved by a more general analysis of
the function performed by the database.

User Classifications:

At the broadest level, scientific databases may be classified according to the breadth of their users as being
local or public. Local databases are used to maintain data needed by an individual laboratory to support the
work of that laboratory, whereas public databases support an arbitrarily wide set of users. In actuality, of
course, these categories represent the end points of a continuum, since intermediate types, supporting the
work of a collection of collaborating laboratories can easily be envisioned.

The differences in requirements and attributes for local and public databases bear similarity to the differ-
ences between locally produced pieces of laboratory equipment (designed and built by laboratory staff) and
manufactured equipment (designed and built by an equipment vendor).

Locally produced lab equipment is often idiosyncratic, cranky, and almost impossible to use by those not
intimately familiar with its inner workings. Locally produced lab equipment never comes with a user’s
manual, and only rarely is associated with the slightest bit of documentation regarding its design. Locally
produced lab equipment is usually built to meet an immediate and pressing need, at a time when getting
something running is top priority. Conversely, the need to document the design or to plan for maintenance
is of low priority. Despite its problems, locally produced lab equipment can be remarkably cost-effective
in the laboratory in which it was produced.

Manufactured equipment, especially high quality manufactured equipment, is more predictable, usually
easier to use, and certainly better documented. Having been designed to serve many users, manufactured
equipment may be less well suited to the precise needs of the local task than locally produced equipment.

If no manufactured equipment exists that meets a complicated need, locally produced equipment can
almost always be put together to meet the most pressing needs more quickly than manufactured equipment
can be designed, built, tested, produced, ordered, shipped, delivered, and installed. However, locally pro-
duced equipment can be notoriously difficult to repair or maintain, especially if the original builder is no
longer available to perform the work.

When immediate availability and precise attention to local needs are coupled to a relatively short expected
useful life by a limited and highly motivated set of users, locally produced equipment can be far superior to
manufactured gear. However, when these conditions are not met, manufactured equipment usually proves
superior in the long run.

Local vs public databases show many of these requirements and attributes arrayed along the same contin-
uum.

Subject Matter Classifications: (by levels of analysis)

In one way or another, scientific databases can be described according the level of analysis that their sub-
ject matter has undergone prior to entry in the database. Points along this continuum are often described as
data, information, and knowledge. Since the words ‘‘data’’ through ‘‘knowledge’’ are often the source of
debate, the continuum can also be described as ranging from unprocessed observations through facts to
integrated conclusions.
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Granted, one person’s information is another’s data. However, when attention is restricted to a single point
of view, it is usually possible to array database contents along this continuum. In gene mapping using
tetrad analysis, for example, the classification of spores from a single meiosis would be data, the calcula-
tion of a recombinant frequency between two loci would be information, and the placement of these loci on
a map would be knowledge.

Subject Matter Classifications: (by matter of reference)

The contents of scientific databases can also be categorized according to whether or not they are conceived
as recording either scientific observations or facts about the real world. In a database of scientific observa-
tions, no inconsistencies result from the simultaneous presence of Jones’ observation that asbestos causes
cancer and Smith’s observation that asbestos produces no detectable health effects. However, in a database
that purports to contains facts about the real world, these two assertions would represent an inconsistency
in the database.

Given that the same observer can make different observations at different times or places or with different
methods, we see that records (tuples, whatever) in databases of scientific observations will have a certain
minimal structure: <observation, observer, time, place, method>. From one point of view, the observation
component might be considered the scientific datum and the other components considered metadata about
the scientific datum. With that terminology, we see that two records would be contradictory only if they
contain identical metadata, but contradictory data.

Databases of observations differ significantly from those of true facts, particularly in their managerial and
integrity checking requirements. To be truly valid, databases of facts about the real world must contain no
contradictory assertions either directly in the database as records or indirectly in the database as deducible
conclusions. Thus, high quality real-world-fact databases will require a very high overhead of integrity
checking. If it were not possible to automate the integrity checking, a significant management work load,
that could be performed only by experts in the subject matter of the database, would be required.

In a database of observations, on the other hand, no new observation could ever contradict an older obser-
vation in the sense of requiring that one or the other of the observations be disallowed for entry. Further-
more, databases of observations have no integrity requirement that the recorded observations should not be
permitted to allow the inference of incorrect statements.

As examples of these types of databases, consider first a database of observations of reaction constants for
different chemical reactions. To be valid, such a database would need to contain only accurate records of
actual observations, along with accurate records of the appropriate metadata. Once one of these records
were entered and checked for accuracy, no further maintenance of that record would be required. As new
observations were reported, they would simply be entered into the database, resulting in multiple records
for a given reaction. Queries regarding a particular reaction would retrieve all relevant records and the final
interpretation of the records would be left to the user.

In contrast, consider a database that claimed to contain the actual real-world reaction constants for different
chemical reactions. This database would contain only one record per reaction. As new observations were
reported, they would have to be carefully analyzed to see if they should cause the one ‘‘true’’ value to be
updated. If an update seemed appropriate, consistency with all other records in the database would have to
be checked to insure that no impossible situations (such as a chain reactions yielding perpetual energy out-
put) were implied.

Literature Relationship Classifications:

Databases of processed data (i.e., databases of information or knowledge) may be restricted so that they
contain only assertions made in the refereed literature or they may be unrestricted and permit the recording
of assertions not reported in the literature.

Unrestricted databases have many advantages (speed and timeliness of entry, etc.) but they also incur many
costs. If they permit totally unrefereed entries they risk become mere bulletin boards of assertions with
uncertain value. If they require their own referee system, they incur a significant management burden.
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Functional Classifications:

Experiment management:

These systems are used to store and manage experimental data for immediate analysis and for plan-
ning additional experiments. These systems are generally used (often in real time mode) by the
researchers who generated the data. ‘‘Lab-notebook’’ systems intended to assist in the day-by-day
management of data in physical mapping efforts provide a good example.

Because experimental protocols may change significantly and rapidly, and because these systems are
used dynamically to plan and interpret on-going experiments, these systems are characterized by a
need for flexibility and timeliness. It must be possible to modify these systems quickly without hav-
ing to resort to system redesign, coding, and compilation. And, it must be possible for users to enter,
manipulate, extract, and analyze data quickly without the intermediation of systems analysts, pro-
grammers, or other computer gurus. In short, these should be ‘‘spreadsheet-like’’ data management
systems that provide a wealth of tools to the user in an easy-to-modify, easy-to-manage format.

Since the primary users of these systems should have ready access to the original collectors of the
data (indeed, they are likely to be the original collectors), detailed data documentation is likely to be
of relatively low priority.

These systems are likely to have little or no need to link data elements to literature citations.

Data archive and retrieval:

These systems are used to store, manage, and retrieve (relatively raw) data for further analysis. In
general, these systems manage data for long-term use by many researchers other than those who ori-
ginally collected the data. Good examples would be the storage and management of telemetry data
from space probes or long-term ecological data sets.

The management of such collections of scientific data bears much similarity to the management of
scientific specimens. In both cases, there are collections of objects that may be used by scientists in
further analysis. And, in both cases, the collections are virtually worthless unless they are accom-
panied by enough documentation to allow interested scientists to discover that potentially relevant
objects exist and to verify that some of the objects are in fact appropriate and reliable subjects for
study. In addition, there must be some mechanism to allow scientists to retrieve the objects con-
veniently and in a form suitable for study.

Identifying and verifying relevant objects can only be done via a good metadata system. Since the
museum community has for years been managing scientific objects for further study, much can be
learned about metadata needs by observing the highly evolved collection-management systems used
in well run, highly respected museums.

Because these archived data sets are intended for long-term use by workers with no opportunity for
contact with the original collectors of the data, the existence of a reliable, well-maintained data docu-
mentation system is absolutely essential for the usefulness of the system. These systems should have
a moderate need to link data elements to literature citations. In some cases, linkage to citations might
be used to provide additional documentation regarding the collection and other attributes of the data.
In other cases, it might be useful to offer a citation-index function that could be used to retrieve
literature in which the data have been used.

Literature retrieval:

Literature retrieval systems are concerned with providing access to the scientific literature. They
have more in common with information retrieval systems than they do with database systems. Med-
line or BIOSIS provide the obvious examples.

Such systems do not pretend to provide information not present in the literature, nor do they pretend
to offer significant value-added interpretation of the literature. Their primary (only?) goal is to assist
the researcher in locating POTENTIALLY relevant literature. The final decision of the located
literature’s ACTUAL relevance remains with the user.

In these systems, literature citations ARE the data elements.
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Fact retrieval (literature-based):

Literature-based fact retrieval systems offer a significant value-added interpretational feature. In
these systems, expert readers comb the literature to extract ‘‘facts’’ that are placed into a (reason-
ably) structured database management system. GenBank, EMBL, etc., provide examples.

Fact retrieval (non-literature-based):

Non-literature-based fact-retrieval systems differ only in that they permit the entry of facts that have
not appeared elsewhere in the refereed literature. At issue with these systems is the degree to which
the managers of the systems must supply a quality control system that is the equivalent of the peer
review system present in refereed literature.

At one extreme, Flora North America (a database project with the goal of producing a flora for all
plant species occurring in North America) provides an example of a non-literature-based system that
has been organized to mimic the management structure for written literature. ‘‘Authors’’ provide
entries into the database, which are passed through hierarchically structured editorial (i.e., review)
committees before being entered into the actual database. Authorship of entries will be maintained
and provided to reviewers, and the identity and roles of the editors will also be made publically avail-
able.

At the other extreme, the Authorin system for GenBank allows the immediate entry of non-
literature-based, non-reviewed data into a database system.
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In providing truly useful science data systems, challenges seem to arise in two disjoint, but related,
categories: sociological issues and technological issues. We are closer to having solutions to the techno-
logical issues than we are to having solutions for the sociological ones of user expectation and modus
operandi. However, the success of any systems we produce will depend directly on how well we meet the
users’ present needs and guide their expectations for the future. Technologically, the challenge is to build
an infrastructure that will permit diversity to flourish, the system to evolve gracefully, and user needs to be
(and continue to be) fully met.

What is the functional equivalent of walking into the office of the local expert, colleague, or research
librarian and asking how to find all there is to know about Q? Much research seems to be conducted by
seeking help from the experts, following reference chains, locating the database that someone created for
their own purposes, or personal contacts and discussions. This forms some sort of network of information,
but in actual practice this process may be more closely analogous to wandering through a forest where
there are few well marked trails. The problem of locating and cross-referencing data is well known and
tools such as Xanadu, Hypertext, and others have tried to provide suitable constructs to assist the explora-
tion of this complex data space. However, the problem is still with us.

Sociological Issues: Information exchange / finding the data / trusting the data

If locating, accessing, and correlating data is the real problem, and it is as intractable as it still
appears to be, what kinds of systems might we build and what portion of the problem space can we hope to
deal with? We know that we can construct systems in which all of the data from a given project or experi-
ment can be archived, catalogued, described, and made accessible to users. Such systems, at a variety of
levels, have already been developed. Various library systems, abstract searching systems, and systems that
correlate research papers with research topics or physical objects are now in use. Several activities are
now defining systems that will integrate these project data systems into a discipline data system, offering
the possibility of spectral, temporal, and spatial analysis of different physical phenomena.

The integration of all of these existing and planned systems (in even a single discipline) appears to
just now be coming into reach, but a number of problems remain. Ensuring the quality of the data that are
entered, determining the best categorization of data or documents and seeing that their content is accurately
indexed, and identifying cross-references and linkages among data are still very labor intensive and are, as
a result, difficult to trust. Solutions may be at hand for some of these problems, but they have yet to be
rigorously applied to a large-scale system. Users seeking rigor in their research may still prefer to do the
reference work in the old way, following the paper trail. From a user perspective the systems are only as
good as the quality of the data that they contain.

Sitting at the boundary between the users and the technology are the interfaces themselves. Inter-
faces that require carefully constructed queries using some arcane syntax and specific keywords are
doomed to failure in any open user context. Some form of natural interface (natural language, pointing,
verbal) that permits expression of the problem in the user’s own terms is needed. Providing common inter-
faces that support the exploration of all elements in the data space and tools for displaying the text, data,
documents, and images that are returned is essential.

The final issues on the sociology side are those of accessing, operating, and managing the system.
Who will be able to use it, how do they get to it, who guarantees the data integrity, how is it kept up to
date, who runs it, who pays for it? Many agencies (NSF, NASA, NOAA, USGS, DOE) generate data;
some data come from private research or labs, and some from commercial entities. How can this varied
input be integrated into a system that functions as smoothly as today’s library exchanges do? How do we
ensure that such a system is a truly national scientific resource?

Technological Issues: Information interchange / integration of diverse datasets

Among the technological issues, the most obvious are those of information interchange and data
standards. There are now many fields where exchange of information is possible, but only if one is willing
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to write programs to perform the necessary data restructuring. These may be simple format conversions or
more complex re-mappings into different coordinate spaces. The data sets may be sufficiently self-
descriptive that this is possible, or the transform may rely upon some human intervention or set of conven-
tions to guide the process.

There are some notable successes in the area of data interchange, the FITS standard in astronomy
being one case in point. FITS is used by all major astronomy software packages as the standard format for
data transport and ingest. It has been used to transport data taken with single and multiple element radio
telescopes, ground-based optical telescopes, and space-based UV and X-ray telescopes. It supports image
cubes, spectral line data, and various tabular or database constructs. It is self-descriptive of the data con-
tents so that many transforms on different data types can be performed automatically. FITS has drawbacks
in that extensions are permitted but not all standardized, and there are those who complain of its complex-
ity, but it does work.

Designers of some systems are exploring the interchange of descriptive data about catalogs, meta-
data about inventories, and other information about sites, facilities, and services. However, common stan-
dards for data description and transport do not yet exist except in some limited discipline or system con-
texts. Standards coming from ISO (8211, 8824) and the space community (CCSDS, SFDU) show promise,
but are still evolving, have yet to be used in large-scale systems, and are not yet widely accepted. These are
critical for data transport and interoperability; they are essential if interoperable systems are to be realized.

Challenge: Heterogeneous, evolvable infrastructure / making it happen

Some distributed systems have succeeded because they are based upon a single vendor hardware
platform and network technology. Other systems have supported mixed vendor hardware, but with all com-
ponents running the same operating system. However, there are few examples of systems that map into the
truly heterogeneous world that we all work in. Diversity is a fact of life and technology is continually
evolving, to ensure that the status quo is anything but static. Different operating systems, different network
protocols, different hardware data formats and interfaces are a fact of life.

If it is not a requirement that different systems interoperate, if users are satisfied with learning the
interfaces of each new system they wish to use, and if data transport via bus (as in large, yellow) is accept-
able, then we need not concern ourselves with system infrastructure. If interoperability of systems is a part
of the strategy of providing powerful, convenient systems that can enhance scientific productivity, then we
must be concerned with system architecture and infrastructure.

This infrastructure is not just networks, it is also the protocols for naming systems, locating them,
establishing connections, authenticating users and services, accessing the databases and archives, browsing
the data, invoking compute servers, and getting the results back to users. It is the mechanisms for handling
system heterogeneity, for transporting information over whatever network protocol happens to be suitable,
and for gracefully evolving the system with new hardware, services, and facilities during the coming years.
And it is the portable tools, utilities, and user interfaces that link to these services and provide users with
the ability to manipulate their local view of the environment in the solution of their problems.

Creating this infrastructure is the single greatest challenge our technology must meet if large scale
distributed systems are to become a reality. This can be thought of as a system buss into which different
modules are plugged, not unlike the backplane buss of a computer. The buss provides the system back-
bone: the data exchange, the system interconnects, the data transport. It allows individual data systems to
be developed with whatever hardware, software, or protocols are appropriate as long as they conform to the
interface protocols at the buss. The NREN is to provide the network structures needed. Software building
blocks for such distributed systems do exist (CRONUS, ANSA, Kerberos), but work is needed to turn them
into a robust infrastructure for the sort of systems being discussed. Once this challenge is met we can start
dealing with the sociological issues.
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1. Introduction

As is well accepted by now, the term metadata refers to information about data. In general, it is the
information about the content and meaning of the database. In scientific applications, this information can
be quite complex, and are non-trivial to organize. Often data become obsolete because the information
about its content and meaning is non-existent or lost.

What distinguishes metadata from data? One point of view is that the distinction is arbitrary. What
is metadata for one person is considered as data by another. Consider, for example, the data collected by
seismic devices. Is the information on the type of devices, the unit of measure, etc. metadata or data?
Another point of view prefers a functional definition, which says that metadata is the information that
should be available to users in order to be able to issue queries against the data.

It is an open question whether metadata should be treated with the same tools that manage data. It is
certainly an elegant approach that is accepted in current relational technology. The question is whether
metadata have unique semantics and unique operations for their manipulation to justify special purpose
software.

Rather than answer the above question directly, we will attempt to point out below some of the
features that metadata should have in a scientific environment. We start with a brief example of a typical
scientific environment that exists in epidemiological studies of low level radiation effects on human beings.

2. An example

The original sources of data for studies of low level radiation effects are employment files, external
radiation monitoring files (e.g. radiation sensitive devices on badges), internal radiation monitoring (e.g.
urinalysis), air samples for radioactive materials, job assignments, morbidity and mortality data, etc. These
data are collected in different ways, such as automatic recording devices, data entry forms, hand written
notes, etc.

Before any analysis can proceed, these original data need to be put into computer readable files
(called "raw data" files). Because mistakes may be introduced during this step (e.g. interpreting hand-
written notes) it is necessary to capture the relationship to the original files and how the data values were
determined. The next step is to select a subset of the workers for a study (called cohort). For the cohort
selected the raw data files will be "linked" (that is identify all the records that relate to the same individual).
This is when errors such as two different Employee Numbers (or Social Security Numbers) are found and
corrected. Other inconsistencies (such as values that seem to be too large or too small, and various correla-
tions between data values) are also checked. Finally, a "clean" set of files is created.

The next step is to apply models to the raw data in order to obtain "derived" data of interest. For
example, various models are used for determining the actual internal dose from urinalysis, air samples, the
disposal capability of the human body, etc. This produces an "analysis file" for the study. Analysis files
can further be checked for inconsistencies or modelled further to produce new analysis files.

3. Observations

The above example demonstrates a process that is typical to many scientific applications and
involves the following steps: data collection, data validation, data correction, and data derivation. Each of
these steps has metadata associated with it, as described below.

3.1. Data collection

This is the process that generates the "raw data". The metadata includes information about the
objects (entities) of the database and their relationships. It also includes information about the data attri-
butes including acronyms used, text description of their meaning, units of measure, format for data values,
allowable data values (ranges or lists of permissible values), codes used for encoding the data values,
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grouping (e.g. age groups), and meaning for exception values, such as nulls). In addition, there is informa-
tion about the devices used to collect the information. In the above example, the dosimeters used vary over
time and from location to location, and usually have different characteristics. Finally, there is information
about the data sets, such as who produced them, when and where they were produced, and a text writeup
about their content.

3.2. Data Validation

The metadata associated with this process are the conditions and rules that apply in order to validate
the data. These integrity conditions may be quite complex, and in general cannot be expressed with exist-
ing query languages.

3.3. Data correction

This process is often a continuous one; as new information is found about individuals, data values are
corrected. The metadata involved are the history of corrections made to the data, the reasons for such
corrections, who made the correction, and when it was made. Often, such data is kept in log books (which
may not be in computerized form.)

3.4. Data derivation

The process of data derivation may be as simple as summing up values (e.g. total dose per year is the
sum over monthly doses), or as complex as applying a model to calculate derived values (as discussed in
the example above). The metadata involved are the statements or programs that are used to generate the
derived values. In addition, there is a need to keep track of versions of derived data.

4. Discussion

We discuss briefly below some of the implications concerning the support of metadata. For many of
the above aspects of metadata, one can find partial solutions with current technology. For example, in
order to support codes, relations (tables) can be defined using relational systems. However, it is up to
external software (or the user) to interpret these tables. If instead, there was a data model that supports the
notion of a code definition, then a "browsing" capability could automatically display the meaning of codes
(e.g. "lung cancer" instead of the code used for it).

Another interesting example exists in expressing and supporting integrity conditions. Simple condi-
tions are supported by commercially available systems, but more complex conditions are typically imple-
mented by special purpose programs. However, there is room to investigate the usefulness of rule based
systems for this purpose.

The support of derived data is another important example. The simple cases can be supported by
"view" mechanisms of current relational systems. However, there should also be support for arbitrary pro-
grams to derive data. Also, the support for version management requires special data structures and opera-
tors.

Finally, it is worth noting that text descriptions are used in the different steps mentioned above. This
suggests the need to be able to search text. The more precise approach is to organize the text content into
categories of information and keywords, but this is not always possible or practical.

Metadata is essential for integration of multiple data sets for further analysis. Integration of existing
data is one of the most difficult aspects of scientific databases. Agreed upon standards is the best solution
to facilitate data integrity, but are often difficult to achieve. Well organized metadata can at least provide
the information necessary for data integration.
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The Global Change Research Program is intended to establish an integrated, comprehensive long-
term program of documenting the Earth system on a global scale. It proposes a program of studies to
improve our understanding of the physical, geological, chemical, biological, and social processes that
influence Earth system processes and trends on global and regional scales. The ultimate objective is to
develop conceptual and predictive Earth system models.

Data and information management will be a key factor in the success of global change research. It
has been recognized in planning as an essential bridge between global change observations and scientific
understanding. In planning for a global change data and information management system, a number of data
management issues have been identified.

I. Scientific issues (Scientific use of databases)

a) Priorities for data and information management should be driven by and accountable to the scientific
program objectives.

b) The preparation of products and analyses should be an integral part of the system. Information,
derived from the data, rather than data themselves, will be needed for decision making. What should
be the relation between a database and the derived information base?

c) How can the databases needed to answer global change scientific questions be built? The system
must accept and archive dissimilar types of data collected from different data collection system, from
ground- and space- based collection systems, in different formats and on different media.

II. Technical issues (Computer science theory and application)

a) Meta-databases are critical. There are a legion of examples of datasets that were unusable because
appropriate information about the conditions under which the data were obtained were not retained.
It is possible that metadata can be treated using many of the same procedures used for databases.

b) The system must be extensible to provide for an evolving data management system and an expanding
user base.

c) The system should ensure that a scientist, decades hence, can use the datasets effectively.

d) The system must allow a scientist to find existing data and how good the data are. This will require
some kind of global high-level database directory.

III. Sociological issues (The role of databases in science)

a) Unfortunately for the development of effective scientific participation in the development and opera-
tion of a global change data and information management system, data management is often viewed
as a second-class profession. This workshop probably cannot address this issue directly, but might
help alleviate the perception indirectly through improving the scientific basis for database manage-
ment.

b) Related to the previous point, data and information management must be adequately supported. The
existing national data centers are generally not adequately supported to service present users, much
less the expanded user community and data needs the global program will involve.

c) In spite of support problems, the existing system in the earth sciences, of national and world data
centers and academic and project data units, provides a useful starting point for a distributed data and
information management system.

d) For a world-wide cooperative scientific program there must be the ethic that datasets are shared.
Databases must be part of the scientific program, and perhaps there must be suitable career rewards
for scientific database service providers.
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What is available and where is it?

One of the first questions a scientist asks when formulating a hypothesis, is what data are available to
confirm it, or contradict it. In the environmental sciences this search can be long and frustrating. A move-
ment is underway to build environmental data directories that answers the question what data are available
and where, for some disciplines. These efforts ought to be encouraged and funded as separate high-priority
projects instead of "out-of-hide" efforts.

Data services, like library services, start with a catalog system. Once these directory systems are built we
need to invest in catalog and inventory systems. They do not need to be connected at first, but they need to
be on line so that a scientist can navigate through an inventory list, and even browse through real data.
Unlimited data navigation is not available at this time, but technologies for the ingredients are.

Now that I’ve found the data, can I get it, and will it be what I want?

Data that are not accessible are worthless. Data not documented as to quality, validation technique, princi-
pal investigator, instrument and so on, make it difficult for the scientist to use the data even when she or he
gets it. Documentation also allows the scientist in advance to determine more accurately the usefulness of
the data.

An additional access area is media. It is remarkable how many individual scientists have PCs and worksta-
tions, but how few have tape readers in their offices. Tapes, and centralized machines are still necessary
for many applications, but data can be captured for the scientists workstation, for example, on CD-ROM.

CD-ROM technology will no doubt be with us for 5 to 10 years. One investment that could improve sci-
ence access to data is to purchase a CD-ROM reader for all scientists, and, at the same time, master one set
after another, on a priority basis for science use. At $600/reader and $2/disk, this cost could be less that
$1,000,000 for 1000 scientists. Putting data sets on CD-ROM is also not expensive, in terms of cost per
byte. For example, all oceanographic data residing at the National Oceanographic Data Center could be
mastered for less than $1 million including some quality and documentation improvements.

Another aspect of access is migration: from paper to tape, from tape to disk, etc. Many data will be lost to
further generations if this migration does not occur. Agencies should fund a certain percentage of data
migration each year.

Universities, companies, and Federal centers are all working on these problems. Perhaps it is time to
accelerate the process by forming a joint Federal/Industry center/partnership dedicated to making accessi-
ble the data universe.

Interagency, International, Interdisciplinary

These three "I" words make life in the data management lane quite challenging. These days more and
more scientists are tackling problems that can be solved only by using data from other scientists or other
agencies. We need to form better data bridges or gateways between agencies. NSF cannot take on these
data management challenges by itself. We have in interagency working group on data management for
global change; but that is not enough.

Scientific problems requiring international data require even more coordination. An alarming trend in the
world today is the increasing tendency for countries to treat data as a commodity, one to be bought and
sold. Data fees pose a threat to scientific programs. More and more I hear scientists not obtaining data
because they have no money. Amazingly enough even a few thousand dollars can be formidable. Block
funding arrangements between agencies and data centers can help alleviate this problem. An international
convention on data exchange, signed by all countries, could go a long way toward preserving research
access to data.

Interdisciplinary aspects of new research, such as biogeochemistry, and marine ecosystems, pose new chal-
lenges to the data system. Scientists trying to use data sets from one discipline and apply them to another
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are further removed from their understanding of data. Documentation is of utmost importance to these
interdisciplinary scientists.

Common Fallacies

Data management systems are failing because of the increase in data volume.
In general large data volumes produce digital streams with known characteristics. Data handling prac-
tices in concept are not more difficult to understand than those for smaller data sets. On the other
hand, data sets assembled from thousands of data sources, and with different sensors, algorithms, etc.,
can pose more challenging problems.

Scientists are good data managers.
In general, scientists are not good data managers. Scientists have not historically done a lot of data
management, they look to it as a chore. Data managers, on the other hand, historically have difficulty
in keeping up with the science they support; they find themselves being quite good in data manage-
ment but often working on the wrong problems and unable as a result to help scientists. Certainly the
most successful data management centers have involved data managers working with scientists.
Indeed many successful science efforts have a solid data management program integrated within them.

The lesson is that agencies should fund data management as an integral part of science programs, and
expect a good result. Federal agencies that have National data centers should fund research efforts as a
part of these centers’ functions.

Data Management as a Profession

It takes a lot talent to build a building. Someone has to perceive a need for it; an architect has to design it;
and a contractor and many subcontractors built it, etc. A parallel to scientific data management can be
drawn. A scientist may have need for a data base to be constructed. He or she calls upon a data base archi-
tect to design it, and contracts with a data engineering firm to build it. Data technicians work on subassem-
bly according to a specific instructions.

In most scientific disciplines this scenario does not happen. More often than not the scientist cannot find a
data architect, and most of the time does not recognize they exist. In fact, as a recognized profession they
do not. We have computer societies but we do not have a society of data architects and engineers. Present
data architects have various university degrees, from physics to computer science, but have learned data
management by on the job experience.

NSF could invest in a few universities to develop a data management education program. As a result a new
profession could emerge. For example, a future student could major in data architecture with a minor in
physics . . . Courses would include data navigation. As a practical matter the Federal, university, industry
data navigation laboratory cited above could be located at such a university.

General

Observations in the form of scientific data of this planet and others have been, and will continue to be fun-
damental to our ability to understand and predict the earth system. However, insufficient funds are avail-
able to manage this precious resource.

It should be a requirement that agencies set aside a percentage (e.g., 25%) of their observation budget for
data management. We would not think of building a car without wheels; why do we fund observations
without proper data handling, quality control, storage, and access facilities.
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Biological Databases, Software Development and Computational Biology
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The Instrumentation and Resources Division of NSF has created a Program with the above title to catalyze
the development of computational biology, including the development of new information resources for
biologists in the short term, and support for the development of new data and information management
tools for scientific information, over the longer term. The following summary describes the philosophy
behind our establishment of this Program and our participation, in some cases in collaboration with the
Information, Robotics, and Intelligent Systems Division, in the support of research on scientific databases,
as well as the development of new public databases for the biological, behavioral and social sciences.

Computational Biology is emerging as a discipline in its own right. This is analogous to a revolution
in the biological sciences in the late 1950s and early 1960s. During this period a group of scientists began
to analyze biological problems in a new way by applying the tools of several disciplines; namely, genetics,
microbiology, physics, biochemistry, and biophysics. The power of this approach was so great that it
emerged as a discipline itself and is now known as molecular biology. Today, the application of
mathematical and computational tools to all areas of biology is producing equally exciting results, provid-
ing insights into problems in the life sciences too complex for traditional analysis. To develop most pro-
ductivity, this new field needs unique resources of information and computation, and support for cross dis-
ciplinary training for students and established investigators who are moving into this field.

There is a consensus among all observers that biology, regardless of the subspeciality, is
overwhelmed with a large amount of very complex data. What sets biology apart from other data rich
fields is the complexity rather than the sheer volume of the data produced. However, unlike some data rich
fields, biology remains a scientific ‘‘cottage industry,’’ with the data generation done in a highly distributed
mode, with no standard format or syntax.

Thus, all areas of the biological sciences have urgent needs for the organized and accessible storage
of biological data. Generally this is referred to as biological database development; however, this terminol-
ogy implies traditional database technology such as transaction oriented relational database systems, and
given the common notion of what is meant by a database, fails to convey the difficulties and importance of
the challenge. Current database technology is inadequate to serve many areas of the biological sciences;
collaborations among computer scientists and biologists will be necessary to design information platforms
that accommodate the needs for variation in the representation of biological data, the distributed nature of
the data acquisition system, the variable demands placed on different data sets, and the absence of adequate
algorithms for data comparison, which forms the basis of biological science.
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Database management technology has progressed rapidly in recent years. We have now commer-
cially viable database management systems that provide mechanisms for storage and retrieval of large
quantities of data on anything from microcomputers, to mainframes, to specialized database machines. We
often hear that we have entered the "information age". However, I classify the current era as "data age".
We are collecting staggering volumes of data, but do not have adequate methods for effectively using the
data and producing useful information. This lack of suitable information technology is most serious in less
traditional scientific application areas where collections of very large volumes of numerical data, image
data, geographic data, genome data, and other unstructured data are used in often unforeseen ways. Infor-
mation technology is changing the conduct of research, and we are faced with challenges of providing the
most adequate information systems that enable the scientists to derive the maximum benefit from the avail-
able data.

Information technology can offer improvements in the capability to store, access, and analyze much
larger volumes of multi-media data, along with the capability to present results in visual form. Research in
information modeling can provide necessary structures and operations for storage and manipulation of
untraditional data that cannot be represented in the current predominantly relational model based database
management systems. Application of artificial intelligence techniques may provide useful approaches to
analysis, summarization, and high-level (metadata) descriptions of large volumes of data, especially when
trends over long periods of time are necessary. Information and telecommunication technologies can pro-
vide the means for more open and efficient collaboration.

In order to build useful scientific database management systems, it is necessary that the database
research community understand what the information needs of domain scientists are. I believe that in this
workshop we will be able to examine these needs, determine how the current state-of-the art of the infor-
mation technology can be applied to satisfying these needs and where the technology needs to branch out
into new directions. It is clear that providing adequate network of inter-disciplinary scientific information
systems will require collaboration of scientists from many disciplines, support from agencies currently sup-
porting research, and involvement of industry in whose domain it is to build widely available systems. This
workshop’s participants intentionally represent these spheres and it is my hope we can identify the chal-
lenges and research directions that will lead to production of effective scientific information systems.


